1
|
Szachnowski U, Sallou O, Boudet M, Bretaudeau A, Wery M, Morillon A, Primig M. The 5-Fluorouracil RNA Expression Viewer (5-FU R) Facilitates Interpreting the Effects of Drug Treatment and RRP6 Deletion on the Transcriptional Landscape in Yeast. Yeast 2024; 41:629-640. [PMID: 39345013 DOI: 10.1002/yea.3982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/11/2024] [Indexed: 10/01/2024] Open
Abstract
Saccharomyces cerevisiae is an excellent model to study the effect of external cues on cell division and stress response. 5-Fluorocuracil (5-FU) has been used to treat solid tumors since several decades. The drug was initially designed to interfere with DNA replication but was later found to exert its antiproliferative effect also via RNA-dependent processes. Since 5-FU inhibits the activity of the 3'-5'-exoribonuclease Rrp6 in yeast and mammals, earlier work has compared the effect of 5-FU treatment and RRP6 deletion at the transcriptome level in diploid synchronized yeast cells. To facilitate interpreting the expression data we have developed an improved 5-Fluorouracil RNA (5-FUR) expression viewer. Users can access information via genome coordinates and systematic or standard names for mRNAs and Xrn1-dependent-, stable-, cryptic-, and meiotic unannotated transcripts (XUTs, SUTs, CUTs, and MUTs). Normalized log2-transformed or linear data can be displayed as filled diagrams, line graphs or color-coded heatmaps. The expression data are useful for researchers interested in processes such as cell cycle regulation, mitotic repression of meiotic genes, the effect of 5-FU treatment and Rrp6 deficiency on the transcriptome and expression profiles of sense/antisense loci that encode overlapping transcripts. The viewer is accessible at http://5fur.genouest.org.
Collapse
Affiliation(s)
| | | | - Mateo Boudet
- GenOuest, IRISA, Campus de Beaulieu, Rennes, France
| | | | - Maxime Wery
- Institut Curie, Sorbonne Université, Paris, France
| | | | - Michael Primig
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), Rennes, France
| |
Collapse
|
2
|
Chen JJ, Moy C, Pagé V, Monnin C, El-Hajj ZW, Avizonis DZ, Reyes-Lamothe R, Tanny JC. The Rtf1/Prf1-dependent histone modification axis counteracts multi-drug resistance in fission yeast. Life Sci Alliance 2024; 7:e202302494. [PMID: 38514187 PMCID: PMC10958104 DOI: 10.26508/lsa.202302494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 03/23/2024] Open
Abstract
RNA polymerase II transcription elongation directs an intricate pattern of histone modifications. This pattern includes a regulatory cascade initiated by the elongation factor Rtf1, leading to monoubiquitylation of histone H2B, and subsequent methylation of histone H3 on lysine 4. Previous studies have defined the molecular basis for these regulatory relationships, but it remains unclear how they regulate gene expression. To address this question, we investigated a drug resistance phenotype that characterizes defects in this axis in the model eukaryote Schizosaccharomyces pombe (fission yeast). The mutations caused resistance to the ribonucleotide reductase inhibitor hydroxyurea (HU) that correlated with a reduced effect of HU on dNTP pools, reduced requirement for the S-phase checkpoint, and blunting of the transcriptional response to HU treatment. Mutations in the C-terminal repeat domain of the RNA polymerase II large subunit Rpb1 led to similar phenotypes. Moreover, all the HU-resistant mutants also exhibited resistance to several azole-class antifungal agents. Our results suggest a novel, shared gene regulatory function of the Rtf1-H2Bub1-H3K4me axis and the Rpb1 C-terminal repeat domain in controlling fungal drug tolerance.
Collapse
Affiliation(s)
- Jennifer J Chen
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - Calvin Moy
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - Viviane Pagé
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - Cian Monnin
- Metabolomics Innovation Resource, Goodman Cancer Institute, McGill University, Montreal, Canada
| | - Ziad W El-Hajj
- Department of Biology, McGill University, Montreal, Canada
| | - Daina Z Avizonis
- Metabolomics Innovation Resource, Goodman Cancer Institute, McGill University, Montreal, Canada
| | | | - Jason C Tanny
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| |
Collapse
|
3
|
Marešová A, Oravcová M, Rodríguez-López M, Hradilová M, Zemlianski V, Häsler R, Hernández P, Bähler J, Převorovský M. Critical importance of DNA binding for CSL protein functions in fission yeast. J Cell Sci 2024; 137:jcs261568. [PMID: 38482739 DOI: 10.1242/jcs.261568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 03/07/2024] [Indexed: 05/01/2024] Open
Abstract
CSL proteins [named after the homologs CBF1 (RBP-Jκ in mice), Suppressor of Hairless and LAG-1] are conserved transcription factors found in animals and fungi. In the fission yeast Schizosaccharomyces pombe, they regulate various cellular processes, including cell cycle progression, lipid metabolism and cell adhesion. CSL proteins bind to DNA through their N-terminal Rel-like domain and central β-trefoil domain. Here, we investigated the importance of DNA binding for CSL protein functions in fission yeast. We created CSL protein mutants with disrupted DNA binding and found that the vast majority of CSL protein functions depend on intact DNA binding. Specifically, DNA binding is crucial for the regulation of cell adhesion, lipid metabolism, cell cycle progression, long non-coding RNA expression and genome integrity maintenance. Interestingly, perturbed lipid metabolism leads to chromatin structure changes, potentially linking lipid metabolism to the diverse phenotypes associated with CSL protein functions. Our study highlights the critical role of DNA binding for CSL protein functions in fission yeast.
Collapse
Affiliation(s)
- Anna Marešová
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, 128 00 Prague 2, Czechia
| | - Martina Oravcová
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, 128 00 Prague 2, Czechia
| | - María Rodríguez-López
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Miluše Hradilová
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czechia
| | - Viacheslav Zemlianski
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, 128 00 Prague 2, Czechia
| | - Robert Häsler
- Center for Inflammatory Skin Diseases, Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Campus Kiel, Rosalind-Franklin-Straße 9, 24105 Kiel, Germany
| | - Pablo Hernández
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Jürg Bähler
- Institute of Healthy Ageing and Department of Genetics, Evolution and Environment , University College London, Gower Street, London WC1E 6BT, UK
| | - Martin Převorovský
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, 128 00 Prague 2, Czechia
| |
Collapse
|
4
|
Lebreton J, Colin L, Chatre E, Bernard P. RNAP II antagonizes mitotic chromatin folding and chromosome segregation by condensin. Cell Rep 2024; 43:113901. [PMID: 38446663 DOI: 10.1016/j.celrep.2024.113901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/07/2023] [Accepted: 02/16/2024] [Indexed: 03/08/2024] Open
Abstract
Condensin shapes mitotic chromosomes by folding chromatin into loops, but whether it does so by DNA-loop extrusion remains speculative. Although loop-extruding cohesin is stalled by transcription, the impact of transcription on condensin, which is enriched at highly expressed genes in many species, remains unclear. Using degrons of Rpb1 or the torpedo nuclease Dhp1XRN2 to either deplete or displace RNAPII on chromatin in fission yeast metaphase cells, we show that RNAPII does not load condensin on DNA. Instead, RNAPII retains condensin in cis and hinders its ability to fold mitotic chromatin and to support chromosome segregation, consistent with the stalling of a loop extruder. Transcription termination by Dhp1 limits such a hindrance. Our results shed light on the integrated functioning of condensin, and we argue that a tight control of transcription underlies mitotic chromosome assembly by loop-extruding condensin.
Collapse
Affiliation(s)
- Jérémy Lebreton
- ENS de Lyon, University Lyon, 46 allée d'Italie, 69007 Lyon, France
| | - Léonard Colin
- CNRS Laboratory of Biology and Modelling of the Cell, UMR 5239, ENS de Lyon, 46 allée d'Italie, 69007 Lyon, France
| | - Elodie Chatre
- Lymic-Platim, University Lyon, Université Claude Bernard Lyon 1, ENS de Lyon, CNRS UAR3444, Inserm US8, SFR Biosciences, 50 Avenue Tony Garnier, 69007 Lyon, France
| | - Pascal Bernard
- ENS de Lyon, University Lyon, 46 allée d'Italie, 69007 Lyon, France; CNRS Laboratory of Biology and Modelling of the Cell, UMR 5239, ENS de Lyon, 46 allée d'Italie, 69007 Lyon, France.
| |
Collapse
|
5
|
Pérez-Ortín JE, García-Marcelo MJ, Delgado-Román I, Muñoz-Centeno MC, Chávez S. Influence of cell volume on the gene transcription rate. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195008. [PMID: 38246270 DOI: 10.1016/j.bbagrm.2024.195008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/14/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024]
Abstract
Cells vary in volume throughout their life cycle and in many other circumstances, while their genome remains identical. Hence, the RNA production factory must adapt to changing needs, while maintaining the same production lines. This paradox is resolved by different mechanisms in distinct cells and circumstances. RNA polymerases have evolved to cope with the particular circumstances of each case and the different characteristics of the several RNA molecule types, especially their stabilities. Here we review current knowledge on these issues. We focus on the yeast Saccharomyces cerevisiae, where many of the studies have been performed, although we compare and discuss the results obtained in other eukaryotes and propose several ideas and questions to be tested and solved in the future. TAKE AWAY.
Collapse
Affiliation(s)
- José E Pérez-Ortín
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Facultad de Biológicas, Universitat de València, C/ Dr. Moliner 50, E46100 Burjassot, Spain.
| | - María J García-Marcelo
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Facultad de Biológicas, Universitat de València, C/ Dr. Moliner 50, E46100 Burjassot, Spain; Instituto de Biomedicina de Sevilla, Universidad de Sevilla-CSIC-Hospital Universitario V. del Rocío, Seville 41012, Spain; Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Irene Delgado-Román
- Instituto de Biomedicina de Sevilla, Universidad de Sevilla-CSIC-Hospital Universitario V. del Rocío, Seville 41012, Spain; Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - María C Muñoz-Centeno
- Instituto de Biomedicina de Sevilla, Universidad de Sevilla-CSIC-Hospital Universitario V. del Rocío, Seville 41012, Spain; Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Sebastián Chávez
- Instituto de Biomedicina de Sevilla, Universidad de Sevilla-CSIC-Hospital Universitario V. del Rocío, Seville 41012, Spain; Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
6
|
Otsubo Y, Yamashita A, Goto Y, Sakai K, Iida T, Yoshimura S, Johzuka K. Cellular responses to compound stress induced by atmospheric-pressure plasma in fission yeast. J Cell Sci 2023; 136:jcs261292. [PMID: 37990810 DOI: 10.1242/jcs.261292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 11/13/2023] [Indexed: 11/23/2023] Open
Abstract
The stress response is one of the most fundamental cellular processes. Although the molecular mechanisms underlying responses to a single stressor have been extensively studied, cellular responses to multiple stresses remain largely unknown. Here, we characterized fission yeast cellular responses to a novel stress inducer, non-thermal atmospheric-pressure plasma. Plasma irradiation generates ultraviolet radiation, electromagnetic fields and a variety of chemically reactive species simultaneously, and thus can impose multiple stresses on cells. We applied direct plasma irradiation to fission yeast and showed that strong plasma irradiation inhibited fission yeast growth. We demonstrated that mutants lacking sep1 and ace2, both of which encode transcription factors required for proper cell separation, were resistant to plasma irradiation. Sep1-target transcripts were downregulated by mild plasma irradiation. We also demonstrated that plasma irradiation inhibited the target of rapamycin kinase complex 1 (TORC1). These observations indicate that two pathways, namely the Sep1-Ace2 cell separation pathway and TORC1 pathway, operate when fission yeast cope with multiple stresses induced by plasma irradiation.
Collapse
Affiliation(s)
- Yoko Otsubo
- Interdisciplinary Research Unit, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Akira Yamashita
- Interdisciplinary Research Unit, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan
- Center for Low-temperature Plasma Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Yuhei Goto
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
- Division of Quantitative Biology, National Institute for Basic Biology, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Keiichiro Sakai
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
- Division of Quantitative Biology, National Institute for Basic Biology, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Tetsushi Iida
- Gene Engineering Division, RIKEN BioResource Research Center (BRC), 3-1-1 Koyadai, Tsukuba-shi, Ibaraki 305-0074, Japan
| | - Shinji Yoshimura
- Center for Low-temperature Plasma Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
- National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292, Japan
| | - Katsuki Johzuka
- Interdisciplinary Research Unit, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan
- Astrobiology Center, National Institutes of Natural Sciences, Nishigonaka 38, Myodaiji, Aichi 444-8585, Japan
| |
Collapse
|
7
|
Huang ZJ, Patel B, Lu WH, Yang TY, Tung WC, Bučinskas V, Greitans M, Wu YW, Lin PT. Yeast cell detection using fuzzy automatic contrast enhancement (FACE) and you only look once (YOLO). Sci Rep 2023; 13:16222. [PMID: 37758830 PMCID: PMC10533879 DOI: 10.1038/s41598-023-43452-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 09/24/2023] [Indexed: 09/29/2023] Open
Abstract
In contemporary biomedical research, the accurate automatic detection of cells within intricate microscopic imagery stands as a cornerstone for scientific advancement. Leveraging state-of-the-art deep learning techniques, this study introduces a novel amalgamation of Fuzzy Automatic Contrast Enhancement (FACE) and the You Only Look Once (YOLO) framework to address this critical challenge of automatic cell detection. Yeast cells, representing a vital component of the fungi family, hold profound significance in elucidating the intricacies of eukaryotic cells and human biology. The proposed methodology introduces a paradigm shift in cell detection by optimizing image contrast through optimal fuzzy clustering within the FACE approach. This advancement mitigates the shortcomings of conventional contrast enhancement techniques, minimizing artifacts and suboptimal outcomes. Further enhancing contrast, a universal contrast enhancement variable is ingeniously introduced, enriching image clarity with automatic precision. Experimental validation encompasses a diverse range of yeast cell images subjected to rigorous quantitative assessment via Root-Mean-Square Contrast and Root-Mean-Square Deviation (RMSD). Comparative analyses against conventional enhancement methods showcase the superior performance of the FACE-enhanced images. Notably, the integration of the innovative You Only Look Once (YOLOv5) facilitates automatic cell detection within a finely partitioned grid system. This leads to the development of two models-one operating on pristine raw images, the other harnessing the enriched landscape of FACE-enhanced imagery. Strikingly, the FACE enhancement achieves exceptional accuracy in automatic yeast cell detection by YOLOv5 across both raw and enhanced images. Comprehensive performance evaluations encompassing tenfold accuracy assessments and confidence scoring substantiate the robustness of the FACE-YOLO model. Notably, the integration of FACE-enhanced images serves as a catalyst, significantly elevating the performance of YOLOv5 detection. Complementing these efforts, OpenCV lends computational acumen to delineate precise yeast cell contours and coordinates, augmenting the precision of cell detection.
Collapse
Affiliation(s)
- Zheng-Jie Huang
- Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Brijesh Patel
- Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Wei-Hao Lu
- Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Tz-Yu Yang
- Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Wei-Cheng Tung
- Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | | | - Modris Greitans
- Institute of Electronics and Computer Science, Riga, 1006, Latvia
| | - Yu-Wei Wu
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan.
- Clinical Big Data Research Center, Taipei Medical University Hospital, Taipei, 11031, Taiwan.
- TMU Research Center for Digestive Medicine, Taipei Medical University, Taipei, 11031, Taiwan.
| | - Po Ting Lin
- Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan.
- Intelligent Manufacturing Innovation Center, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan.
| |
Collapse
|
8
|
Weidemann DE, Singh A, Grima R, Hauf S. The minimal intrinsic stochasticity of constitutively expressed eukaryotic genes is sub-Poissonian. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.06.531283. [PMID: 36945401 PMCID: PMC10028819 DOI: 10.1101/2023.03.06.531283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Stochastic variation in gene products ("noise") is an inescapable by-product of gene expression. Noise must be minimized to allow for the reliable execution of cellular functions. However, noise cannot be suppressed beyond an intrinsic lower limit. For constitutively expressed genes, this limit is believed to be Poissonian, meaning that the variance in mRNA numbers cannot be lower than their mean. Here, we show that several cell division genes in fission yeast have mRNA variances significantly below this limit, which cannot be explained by the classical gene expression model for low-noise genes. Our analysis reveals that multiple steps in both transcription and mRNA degradation are essential to explain this sub-Poissonian variance. The sub-Poissonian regime differs qualitatively from previously characterized noise regimes, a hallmark being that cytoplasmic noise is reduced when the mRNA export rate increases. Our study re-defines the lower limit of eukaryotic gene expression noise and identifies molecular requirements for ultra-low noise which are expected to support essential cell functions.
Collapse
Affiliation(s)
- Douglas E Weidemann
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - Abhyudai Singh
- Department of Electrical and Computer Engineering, University of Delaware, Newark, DE 19716, USA
- Department of Biomedical Engineering, University of Delaware, Newark, DE 19716, USA
| | - Ramon Grima
- School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3JR, Scotland, UK
| | - Silke Hauf
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
9
|
Zhang L, Cervantes MD, Pan S, Lindsley J, Dabney A, Kapler GM. Transcriptome analysis of the binucleate ciliate Tetrahymena thermophila with asynchronous nuclear cell cycles. Mol Biol Cell 2023; 34:rs1. [PMID: 36475712 PMCID: PMC9930529 DOI: 10.1091/mbc.e22-08-0326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Tetrahymena thermophila harbors two functionally and physically distinct nuclei within a shared cytoplasm. During vegetative growth, the "cell cycles" of the diploid micronucleus and polyploid macronucleus are offset. Micronuclear S phase initiates just before cytokinesis and is completed in daughter cells before onset of macronuclear DNA replication. Mitotic micronuclear division occurs mid-cell cycle, while macronuclear amitosis is coupled to cell division. Here we report the first RNA-seq cell cycle analysis of a binucleated ciliated protozoan. RNA was isolated across 1.5 vegetative cell cycles, starting with a macronuclear G1 population synchronized by centrifugal elutriation. Using MetaCycle, 3244 of the 26,000+ predicted genes were shown to be cell cycle regulated. Proteins present in both nuclei exhibit a single mRNA peak that always precedes their macronuclear function. Nucleus-limited genes, including nucleoporins and importins, are expressed before their respective nucleus-specific role. Cyclin D and A/B gene family members exhibit different expression patterns that suggest nucleus-restricted roles. Periodically expressed genes cluster into seven cyclic patterns. Four clusters have known PANTHER gene ontology terms associated with G1/S and G2/M phase. We propose that these clusters encode known and novel factors that coordinate micro- and macronuclear-specific events such as mitosis, amitosis, DNA replication, and cell division.
Collapse
Affiliation(s)
- L. Zhang
- Department of Cell Biology and Genetics, Texas A&M University Health Science Center, College Station, TX 77840,Department of Statistics, Texas A&M University, College Station, TX 77843
| | - M. D. Cervantes
- Department of Cell Biology and Genetics, Texas A&M University Health Science Center, College Station, TX 77840
| | - S. Pan
- Department of Cell Biology and Genetics, Texas A&M University Health Science Center, College Station, TX 77840,Department of Statistics, Texas A&M University, College Station, TX 77843
| | - J. Lindsley
- Department of Cell Biology and Genetics, Texas A&M University Health Science Center, College Station, TX 77840
| | - A. Dabney
- Department of Statistics, Texas A&M University, College Station, TX 77843,*Address correspondence to: Geoffrey Kapler (); A. Dabney ()
| | - G. M. Kapler
- Department of Cell Biology and Genetics, Texas A&M University Health Science Center, College Station, TX 77840,*Address correspondence to: Geoffrey Kapler (); A. Dabney ()
| |
Collapse
|
10
|
Kuenzel NA, Alcázar-Román AR, Saiardi A, Bartsch SM, Daunaraviciute S, Fiedler D, Fleig U. Inositol Pyrophosphate-Controlled Kinetochore Architecture and Mitotic Entry in S. pombe. J Fungi (Basel) 2022; 8:933. [PMID: 36135658 PMCID: PMC9506091 DOI: 10.3390/jof8090933] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Inositol pyrophosphates (IPPs) comprise a specific class of signaling molecules that regulate central biological processes in eukaryotes. The conserved Vip1/PPIP5K family controls intracellular IP8 levels, the highest phosphorylated form of IPPs present in yeasts, as it has both inositol kinase and pyrophosphatase activities. Previous studies have shown that the fission yeast S. pombe Vip1/PPIP5K family member Asp1 impacts chromosome transmission fidelity via the modulation of spindle function. We now demonstrate that an IP8 analogue is targeted by endogenous Asp1 and that cellular IP8 is subject to cell cycle control. Mitotic entry requires Asp1 kinase function and IP8 levels are increased at the G2/M transition. In addition, the kinetochore, the conductor of chromosome segregation that is assembled on chromosomes is modulated by IP8. Members of the yeast CCAN kinetochore-subcomplex such as Mal2/CENP-O localize to the kinetochore depending on the intracellular IP8-level: higher than wild-type IP8 levels reduce Mal2 kinetochore targeting, while a reduction in IP8 has the opposite effect. As our perturbations of the inositol polyphosphate and IPP pathways demonstrate that kinetochore architecture depends solely on IP8 and not on other IPPs, we conclude that chromosome transmission fidelity is controlled by IP8 via an interplay between entry into mitosis, kinetochore architecture, and spindle dynamics.
Collapse
Affiliation(s)
- Natascha Andrea Kuenzel
- Eukaryotic Microbiology, Institute of Functional Microbial Genomics, Heinrich-Heine-University, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Abel R. Alcázar-Román
- Eukaryotic Microbiology, Institute of Functional Microbial Genomics, Heinrich-Heine-University, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Adolfo Saiardi
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, Gower St., London WC1E 6BT, UK
| | - Simon M. Bartsch
- Leibniz Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Sarune Daunaraviciute
- Eukaryotic Microbiology, Institute of Functional Microbial Genomics, Heinrich-Heine-University, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Dorothea Fiedler
- Leibniz Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Ursula Fleig
- Eukaryotic Microbiology, Institute of Functional Microbial Genomics, Heinrich-Heine-University, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| |
Collapse
|
11
|
Basu S, Sarkar P, Datta S, Sundaram G. Dataset describing the genome wide effects on transcription resulting from alterations in the relative levels of the bZIP transcription factors Atf1 and Pcr1 in Schizosaccharomyces pombe. Data Brief 2022; 42:108034. [PMID: 35360049 PMCID: PMC8960879 DOI: 10.1016/j.dib.2022.108034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/18/2022] [Accepted: 03/04/2022] [Indexed: 11/18/2022] Open
Abstract
Schizosaccharomyces pombe has been used as an excellent model for studying eukaryotic cell cycle regulation and stress responses. The bZIP transcription factors Atf1(ATF2 homolog) and Pcr1(CREB homolog) have been shown to be important for regulating the expression of genes related to both stress response and cell cycle. Pcr1 has in fact been implicated as a determining factor in the segregation of the cell cycle and stress response related functions of Atf1. Interestingly Atf1 and Pcr1 levels are known to vary during the cell cycle thus giving rise to the possibility that their relative levels can influence the periodic transcriptional program of the cell. Here we report our observations on the changes in transcriptome of S. pombe cells which have been genetically manipulated to create relative differences in the levels of Atf1 and Pcr1. These results highlight new information regarding the potential role of Atf1 and Pcr1 in orchestrating the integration of the transcriptional programs of cell cycle and stress response.
Collapse
|
12
|
Kleijn IT, Martínez-Segura A, Bertaux F, Saint M, Kramer H, Shahrezaei V, Marguerat S. Growth-rate-dependent and nutrient-specific gene expression resource allocation in fission yeast. Life Sci Alliance 2022; 5:e202101223. [PMID: 35228260 PMCID: PMC8886410 DOI: 10.26508/lsa.202101223] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 12/20/2022] Open
Abstract
Cellular resources are limited and their relative allocation to gene expression programmes determines physiological states and global properties such as the growth rate. Here, we determined the importance of the growth rate in explaining relative changes in protein and mRNA levels in the simple eukaryote Schizosaccharomyces pombe grown on non-limiting nitrogen sources. Although expression of half of fission yeast genes was significantly correlated with the growth rate, this came alongside wide-spread nutrient-specific regulation. Proteome and transcriptome often showed coordinated regulation but with notable exceptions, such as metabolic enzymes. Genes positively correlated with growth rate participated in every level of protein production apart from RNA polymerase II-dependent transcription. Negatively correlated genes belonged mainly to the environmental stress response programme. Critically, metabolic enzymes, which represent ∼55-70% of the proteome by mass, showed mostly condition-specific regulation. In summary, we provide a rich account of resource allocation to gene expression in a simple eukaryote, advancing our basic understanding of the interplay between growth-rate-dependent and nutrient-specific gene expression.
Collapse
Affiliation(s)
- Istvan T Kleijn
- Medical Research Council London Institute of Medical Sciences (MRC LMS), London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
- Department of Mathematics, Faculty of Natural Sciences, Imperial College London, London, UK
| | - Amalia Martínez-Segura
- Medical Research Council London Institute of Medical Sciences (MRC LMS), London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - François Bertaux
- Medical Research Council London Institute of Medical Sciences (MRC LMS), London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
- Department of Mathematics, Faculty of Natural Sciences, Imperial College London, London, UK
| | - Malika Saint
- Medical Research Council London Institute of Medical Sciences (MRC LMS), London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Holger Kramer
- Medical Research Council London Institute of Medical Sciences (MRC LMS), London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Vahid Shahrezaei
- Department of Mathematics, Faculty of Natural Sciences, Imperial College London, London, UK
| | - Samuel Marguerat
- Medical Research Council London Institute of Medical Sciences (MRC LMS), London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
13
|
Mohammadi Jenghara M, Iranpour Mobarakeh M, Ebrahimpour Komleh H. Relation Extraction of Protein Complexes from Dynamic Protein-Protein Interaction Network. J Biomed Phys Eng 2021; 11:675-684. [PMID: 34904064 PMCID: PMC8649159 DOI: 10.31661/jbpe.v0i0.1119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 02/14/2019] [Indexed: 11/16/2022]
Abstract
Background Dynamic protein-protein interaction networks (DPPIN) can confirm the conditional and temporal features of proteins and protein complexes. In addition, the relation of protein complexes in dynamic networks can provide useful information in understanding the dynamic functionality of PPI networks. Objective In this paper, an algorithm is presented to discover the temporal association rule from the dynamic PPIN dataset. Material and Methods In this analytical study, the static protein-protein interaction network is transformed into a dynamic network using the gene expression thresholding to extract the protein complex relations. The number of presented proteins of the dynamic network is large at each time point. This number will increase for extraction of multidimensional rules at different times. By mapping the gold standard protein complexes as reference protein complexes, the number of items decreases from active proteins to protein complexes at each transaction. Extracted sub graphs as protein complexes, at each time point, are weighted according to the reference protein complexes similarity degrees. Mega-transactions and extended items are created based on occurrence bitmap matrix of the reference complexes. Rules will be extracted based on Mega-transactions of protein complexes. Results The proposed method has been evaluated using gold standard protein complex rules. The amount of extracted rules from Biogrid datasets and protein complexes are 281, with support 0.2. Conclusion The characteristic of the proposed algorithm is the simultaneous extraction of intra-transaction and inter-transaction rules. The results evaluation using EBI data shows the efficiency of the proposed algorithm.
Collapse
Affiliation(s)
- Moslem Mohammadi Jenghara
- PhD, Department of Computer Engineering and Information Technology, Payame Noor University, Tehran, Iran
| | - Majid Iranpour Mobarakeh
- PhD, Department of Computer Engineering and Information Technology, Payame Noor University, Tehran, Iran
| | | |
Collapse
|
14
|
Böwer F, Schnittger A. How to Switch from Mitosis to Meiosis: Regulation of Germline Entry in Plants. Annu Rev Genet 2021; 55:427-452. [PMID: 34530640 DOI: 10.1146/annurev-genet-112618-043553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
One of the major cell fate transitions in eukaryotes is entry into meiosis. While in single-celled yeast this decision is triggered by nutrient starvation, in multicellular eukaryotes, such as plants, it is under developmental control. In contrast to animals, plants have only a short germline and instruct cells to become meiocytes in reproductive organs late in development. This situation argues for a fundamentally different mechanism of how plants recruit meiocytes, and consistently, none of the regulators known to control meiotic entry in yeast and animals are present in plants. In recent years, several factors involved in meiotic entry have been identified, especially in the model plant Arabidopsis, and pieces of a regulatory network of germline control in plants are emerging. However, the corresponding studies also show that the mechanisms of meiotic entry control are diversified in flowering plants, calling for further analyses in different plant species. Expected final online publication date for the Annual Review of Genetics, Volume 55 is November 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Franziska Böwer
- Department of Developmental Biology, Institute for Plant Sciences and Microbiology, University of Hamburg, D-22609 Hamburg, Germany;
| | - Arp Schnittger
- Department of Developmental Biology, Institute for Plant Sciences and Microbiology, University of Hamburg, D-22609 Hamburg, Germany;
| |
Collapse
|
15
|
Semiparametric Mixed-Effects Ordinary Differential Equation Models with Heavy-Tailed Distributions. JOURNAL OF AGRICULTURAL, BIOLOGICAL AND ENVIRONMENTAL STATISTICS 2021; 26:428-445. [PMID: 33840991 PMCID: PMC8020077 DOI: 10.1007/s13253-021-00446-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/12/2021] [Accepted: 02/24/2021] [Indexed: 11/01/2022]
Abstract
Ordinary differential equation (ODE) models are popularly used to describe complex dynamical systems. When estimating ODE parameters from noisy data, a common distribution assumption is using the Gaussian distribution. It is known that the Gaussian distribution is not robust when abnormal data exist. In this article, we develop a hierarchical semiparametric mixed-effects ODE model for longitudinal data under the Bayesian framework. For robust inference on ODE parameters, we consider a class of heavy-tailed distributions to model the random effects of ODE parameters and observations errors. An MCMC method is proposed to sample ODE parameters from the posterior distributions. Our proposed method is illustrated by studying a gene regulation experiment. Simulation studies show that our proposed method provides satisfactory results for the semiparametric mixed-effects ODE models with finite samples. Supplementary materials accompanying this paper appear online.
Collapse
|
16
|
Mangione MC, Chen JS, Gould KL. Cdk1 phosphorylation of fission yeast paxillin inhibits its cytokinetic ring localization. Mol Biol Cell 2021; 32:1534-1544. [PMID: 34133210 PMCID: PMC8351747 DOI: 10.1091/mbc.e20-12-0807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 06/02/2021] [Accepted: 06/11/2021] [Indexed: 11/11/2022] Open
Abstract
Divisions of the genetic material and cytoplasm are coordinated spatially and temporally to ensure genome integrity. This coordination is mediated in part by the major cell cycle regulator cyclin-dependent kinase (Cdk1). Cdk1 activity peaks during mitosis, but during mitotic exit/cytokinesis Cdk1 activity is reduced, and phosphorylation of its substrates is reversed by various phosphatases including Cdc14, PP1, PP2A, and PP2B. Cdk1 is known to phosphorylate several components of the actin- and myosin-based cytokinetic ring (CR) that mediates division of yeast and animal cells. Here we show that Cdk1 also phosphorylates the Schizosaccharomyces pombe CR component paxillin Pxl1. We determined that both the Cdc14 phosphatase Clp1 and the PP1 phosphatase Dis2 contribute to Pxl1 dephosphorylation at mitotic exit, but PP2B/calcineurin does not. Preventing Pxl1 phosphorylation by Cdk1 results in increased Pxl1 levels, precocious Pxl1 recruitment to the division site, and increased duration of CR constriction. In vitro Cdk1-mediated phosphorylation of Pxl1 inhibits its interaction with the F-BAR domain of the cytokinetic scaffold Cdc15, thereby disrupting a major mechanism of Pxl1 recruitment. Thus, Pxl1 is a novel substrate through which S. pombe Cdk1 and opposing phosphatases coordinate mitosis and cytokinesis.
Collapse
Affiliation(s)
- MariaSanta C. Mangione
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240
| | - Jun-Song Chen
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240
| | - Kathleen L. Gould
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240
| |
Collapse
|
17
|
Vicente-Soler J, Soto T, Franco A, Cansado J, Madrid M. The Multiple Functions of Rho GTPases in Fission Yeasts. Cells 2021; 10:1422. [PMID: 34200466 PMCID: PMC8228308 DOI: 10.3390/cells10061422] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 01/20/2023] Open
Abstract
The Rho family of GTPases represents highly conserved molecular switches involved in a plethora of physiological processes. Fission yeast Schizosaccharomyces pombe has become a fundamental model organism to study the functions of Rho GTPases over the past few decades. In recent years, another fission yeast species, Schizosaccharomyces japonicus, has come into focus offering insight into evolutionary changes within the genus. Both fission yeasts contain only six Rho-type GTPases that are spatiotemporally controlled by multiple guanine-nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs), and whose intricate regulation in response to external cues is starting to be uncovered. In the present review, we will outline and discuss the current knowledge and recent advances on how the fission yeasts Rho family GTPases regulate essential physiological processes such as morphogenesis and polarity, cellular integrity, cytokinesis and cellular differentiation.
Collapse
Affiliation(s)
| | | | | | - José Cansado
- Yeast Physiology Group, Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain; (J.V.-S.); (T.S.); (A.F.)
| | - Marisa Madrid
- Yeast Physiology Group, Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain; (J.V.-S.); (T.S.); (A.F.)
| |
Collapse
|
18
|
Aquino Perez C, Burocziova M, Jenikova G, Macurek L. CK1-mediated phosphorylation of FAM110A promotes its interaction with mitotic spindle and controls chromosomal alignment. EMBO Rep 2021; 22:e51847. [PMID: 34080749 DOI: 10.15252/embr.202051847] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 04/14/2021] [Accepted: 05/05/2021] [Indexed: 01/10/2023] Open
Abstract
Progression through the cell cycle is driven by cyclin-dependent kinases that control gene expression, orchestration of mitotic spindle, and cell division. To identify new regulators of the cell cycle, we performed transcriptomic analysis of human non-transformed cells expressing a fluorescent ubiquitination-based cell cycle indicator and identified 701 transcripts differentially expressed in G1 and G2 cells. Family with sequence similarity 110 member A (FAM110A) protein is highly expressed in G2 cells and localized at mitotic spindle and spindle poles during mitosis. Depletion of FAM110A impairs chromosomal alignment, delays metaphase-to-anaphase transition, and affects spindle positioning. Using mass spectrometry and immunoprecipitation, we identified casein kinase I (CK1) in complex with FAM110A during mitosis. CK1 phosphorylates the C-terminal domain of FAM110A in vitro, and inhibition of CK1 reduces phosphorylation of mitotic FAM110A. Wild-type FAM110A, but not the FAM110A-S252-S255A mutant deficient in CK1 phosphorylation, rescues the chromosomal alignment, duration of mitosis, and orientation of the mitotic spindle after depletion of endogenous FAM110A. We propose that CK1 regulates chromosomal alignment by phosphorylating FAM110A and promoting its interaction with mitotic spindle.
Collapse
Affiliation(s)
- Cecilia Aquino Perez
- Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Monika Burocziova
- Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Gabriela Jenikova
- Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Libor Macurek
- Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
19
|
Kim KD. Potential roles of condensin in genome organization and beyond in fission yeast. J Microbiol 2021; 59:449-459. [PMID: 33877578 DOI: 10.1007/s12275-021-1039-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 11/24/2022]
Abstract
The genome is highly organized hierarchically by the function of structural maintenance of chromosomes (SMC) complex proteins such as condensin and cohesin from bacteria to humans. Although the roles of SMC complex proteins have been well characterized, their specialized roles in nuclear processes remain unclear. Condensin and cohesin have distinct binding sites and mediate long-range and short-range genomic associations, respectively, to form cell cycle-specific genome organization. Condensin can be recruited to highly expressed genes as well as dispersed repeat genetic elements, such as Pol III-transcribed genes, LTR retrotransposon, and rDNA repeat. In particular, mitotic transcription factors Ace2 and Ams2 recruit condensin to their target genes, forming centromeric clustering during mitosis. Condensin is potentially involved in various chromosomal processes such as the mobility of chromosomes, chromosome territories, DNA reannealing, and transcription factories. The current knowledge of condensin in fission yeast summarized in this review can help us understand how condensin mediates genome organization and participates in chromosomal processes in other organisms.
Collapse
Affiliation(s)
- Kyoung-Dong Kim
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea.
| |
Collapse
|
20
|
Stuparević I, Novačić A, Rahmouni AR, Fernandez A, Lamb N, Primig M. Regulation of the conserved 3'-5' exoribonuclease EXOSC10/Rrp6 during cell division, development and cancer. Biol Rev Camb Philos Soc 2021; 96:1092-1113. [PMID: 33599082 DOI: 10.1111/brv.12693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 01/31/2023]
Abstract
The conserved 3'-5' exoribonuclease EXOSC10/Rrp6 processes and degrades RNA, regulates gene expression and participates in DNA double-strand break repair and control of telomere maintenance via degradation of the telomerase RNA component. EXOSC10/Rrp6 is part of the multimeric nuclear RNA exosome and interacts with numerous proteins. Previous clinical, genetic, biochemical and genomic studies revealed the protein's essential functions in cell division and differentiation, its RNA substrates and its relevance to autoimmune disorders and oncology. However, little is known about the regulatory mechanisms that control the transcription, translation and stability of EXOSC10/Rrp6 during cell growth, development and disease and how these mechanisms evolved from yeast to human. Herein, we provide an overview of the RNA- and protein expression profiles of EXOSC10/Rrp6 during cell division, development and nutritional stress, and we summarize interaction networks and post-translational modifications across species. Additionally, we discuss how known and predicted protein interactions and post-translational modifications influence the stability of EXOSC10/Rrp6. Finally, we explore the idea that different EXOSC10/Rrp6 alleles, which potentially alter cellular protein levels or affect protein function, might influence human development and disease progression. In this review we interpret information from the literature together with genomic data from knowledgebases to inspire future work on the regulation of this essential protein's stability in normal and malignant cells.
Collapse
Affiliation(s)
- Igor Stuparević
- Laboratory of Biochemistry, Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, 10000, Croatia
| | - Ana Novačić
- Laboratory of Biochemistry, Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, 10000, Croatia
| | - A Rachid Rahmouni
- Centre de Biophysique Moléculaire, UPR4301 du CNRS, Orléans, 45071, France
| | - Anne Fernandez
- Institut de Génétique Humaine, UMR 9002 CNRS, Montpellier, France
| | - Ned Lamb
- Institut de Génétique Humaine, UMR 9002 CNRS, Montpellier, France
| | - Michael Primig
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, 35000, France
| |
Collapse
|
21
|
Novák B, Tyson JJ. Computational modeling of chromosome re-replication in mutant strains of fission yeast. Mol Biol Cell 2021; 32:830-841. [PMID: 33534609 PMCID: PMC8108527 DOI: 10.1091/mbc.e20-09-0610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Typically cells replicate their genome only once per division cycle, but under some circumstances, both natural and unnatural, cells synthesize an overabundance of DNA, either in a disorganized manner (“overreplication”) or by a systematic doubling of chromosome number (“endoreplication”). These variations on the theme of DNA replication and division have been studied in strains of fission yeast, Schizosaccharomyces pombe, carrying mutations that interfere with the function of mitotic cyclin-dependent kinase (Cdk1:Cdc13) without impeding the roles of DNA-replication loading factor (Cdc18) and S-phase cyclin-dependent kinase (Cdk1:Cig2). Some of these mutations support endoreplication, and some overreplication. In this paper, we propose a dynamical model of the interactions among the proteins governing DNA replication and cell division in fission yeast. By computational simulations of the mathematical model, we account for the observed phenotypes of these re-replicating mutants, and by theoretical analysis of the dynamical system, we provide insight into the molecular distinctions between overreplicating and endoreplicating cells. In the case of induced overproduction of regulatory proteins, our model predicts that cells first switch from normal mitotic cell cycles to growth-controlled endoreplication, and ultimately to disorganized overreplication, parallel to the slow increase of protein to very high levels.
Collapse
Affiliation(s)
- Béla Novák
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - John J Tyson
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
22
|
Genome-wide identification and transcriptional modulation of histone variants and modification related genes in the low pH-exposed marine rotifer Brachionus koreanus. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 36:100748. [PMID: 33032078 DOI: 10.1016/j.cbd.2020.100748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/05/2020] [Accepted: 09/18/2020] [Indexed: 11/22/2022]
Abstract
Histone modification is considered to be a major epigenetic control mechanism. These modifications (e.g. acetylation, phosphorylation, and methylation) may affect the interaction of histones with DNA and/or regulate DNA-based processes (e.g., recombination, repair, replication, and transcription) and chromatin remodeling complexes. Despite their significance in metazoan life and evolution, few studies have been conducted to identify genes undergoing epigenetic control modification in aquatic invertebrates. In this study, we identified whole core histones (70 total genes) and post-translational modification (PTM) histone genes (63 total genes) in the marine rotifer Brachionus koreanus through whole-genome analysis, and annotated them according to the human nomenclature. Notably, upon comparative analysis of cis-regulatory motif sequences, we found that B. koreanus core histone protein structures were similar to those of mammals. Furthermore, to examine the effect of parental low pH stress on the offspring's epigenetic regulation, we investigated the expression of PTM genes in two generations of B. koreanus exposed to low pH conditions. Given that the B. koreanus genome does not possess DNA methyltransferase 1 and 3 genes, we concluded that histone genes could be involved as an important epigenetic mechanism in B. koreanus. Therefore, the histone-associated genes identified in this study could be useful for ecotoxicological studies and facilitate the application of chromatin immunoprecipitation sequencing using high-throughput DNA sequencing based on the genome-wide identification of transcription factor binding sites in rotifers.
Collapse
|
23
|
Katebi A, Kohar V, Lu M. Random Parametric Perturbations of Gene Regulatory Circuit Uncover State Transitions in Cell Cycle. iScience 2020; 23:101150. [PMID: 32450514 PMCID: PMC7251928 DOI: 10.1016/j.isci.2020.101150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 03/05/2020] [Accepted: 05/05/2020] [Indexed: 02/03/2023] Open
Abstract
Many biological processes involve precise cellular state transitions controlled by complex gene regulation. Here, we use budding yeast cell cycle as a model system and explore how a gene regulatory circuit encodes essential information of state transitions. We present a generalized random circuit perturbation method for circuits containing heterogeneous regulation types and its usage to analyze both steady and oscillatory states from an ensemble of circuit models with random kinetic parameters. The stable steady states form robust clusters with a circular structure that are associated with cell cycle phases. This circular structure in the clusters is consistent with single-cell RNA sequencing data. The oscillatory states specify the irreversible state transitions along cell cycle progression. Furthermore, we identify possible mechanisms to understand the irreversible state transitions from the steady states. We expect this approach to be robust and generally applicable to unbiasedly predict dynamical transitions of a gene regulatory circuit.
Collapse
Affiliation(s)
- Ataur Katebi
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Vivek Kohar
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Mingyang Lu
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA.
| |
Collapse
|
24
|
Fei Q, Zou Z, Roundtree IA, Sun HL, He C. YTHDF2 promotes mitotic entry and is regulated by cell cycle mediators. PLoS Biol 2020; 18:e3000664. [PMID: 32267835 PMCID: PMC7170294 DOI: 10.1371/journal.pbio.3000664] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 04/20/2020] [Accepted: 03/20/2020] [Indexed: 11/19/2022] Open
Abstract
The N6-methyladenosine (m6A) modification regulates mRNA stability and translation. Here, we show that transcriptomic m6A modification can be dynamic and the m6A reader protein YTH N6-methyladenosine RNA binding protein 2 (YTHDF2) promotes mRNA decay during cell cycle. Depletion of YTHDF2 in HeLa cells leads to the delay of mitotic entry due to overaccumulation of negative regulators of cell cycle such as Wee1-like protein kinase (WEE1). We demonstrate that WEE1 transcripts contain m6A modification, which promotes their decay through YTHDF2. Moreover, we found that YTHDF2 protein stability is dependent on cyclin-dependent kinase 1 (CDK1) activity. Thus, CDK1, YTHDF2, and WEE1 form a feedforward regulatory loop to promote mitotic entry. We further identified Cullin 1 (CUL1), Cullin 4A (CUL4A), damaged DNA-binding protein 1 (DDB1), and S-phase kinase-associated protein 2 (SKP2) as components of E3 ubiquitin ligase complexes that mediate YTHDF2 proteolysis. Our study provides insights into how cell cycle mediators modulate transcriptomic m6A modification, which in turn regulates the cell cycle.
Collapse
Affiliation(s)
- Qili Fei
- Department of Chemistry, The University of Chicago, Chicago, Illinois, United States of America
- Howard Hughes Medical Institute, The University of Chicago, Chicago, Illinois, United States of America
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Zhongyu Zou
- Department of Chemistry, The University of Chicago, Chicago, Illinois, United States of America
- Howard Hughes Medical Institute, The University of Chicago, Chicago, Illinois, United States of America
| | - Ian A. Roundtree
- Department of Chemistry, The University of Chicago, Chicago, Illinois, United States of America
- Howard Hughes Medical Institute, The University of Chicago, Chicago, Illinois, United States of America
- Medical Scientist Training Program, The University of Chicago, Chicago, Illinois, United States of America
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois, United States of America
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois, United States of America
| | - Hui-Lung Sun
- Department of Chemistry, The University of Chicago, Chicago, Illinois, United States of America
- Howard Hughes Medical Institute, The University of Chicago, Chicago, Illinois, United States of America
| | - Chuan He
- Department of Chemistry, The University of Chicago, Chicago, Illinois, United States of America
- Howard Hughes Medical Institute, The University of Chicago, Chicago, Illinois, United States of America
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois, United States of America
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
25
|
Rodríguez-López M, Gonzalez S, Hillson O, Tunnacliffe E, Codlin S, Tallada VA, Bähler J, Rallis C. The GATA Transcription Factor Gaf1 Represses tRNAs, Inhibits Growth, and Extends Chronological Lifespan Downstream of Fission Yeast TORC1. Cell Rep 2020; 30:3240-3249.e4. [PMID: 32160533 PMCID: PMC7068653 DOI: 10.1016/j.celrep.2020.02.058] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 12/17/2019] [Accepted: 02/13/2020] [Indexed: 12/13/2022] Open
Abstract
Target of Rapamycin Complex 1 (TORC1) signaling promotes growth and aging. Inhibition of TORC1 leads to reduced protein translation, which promotes longevity. TORC1-dependent post-transcriptional regulation of protein translation has been well studied, while analogous transcriptional regulation is less understood. Here we screen fission yeast mutants for resistance to Torin1, which inhibits TORC1 and cell growth. Cells lacking the GATA factor Gaf1 (gaf1Δ) grow normally even in high doses of Torin1. The gaf1Δ mutation shortens the chronological lifespan of non-dividing cells and diminishes Torin1-mediated longevity. Expression profiling and genome-wide binding experiments show that upon TORC1 inhibition, Gaf1 directly upregulates genes for small-molecule metabolic pathways and indirectly represses genes for protein translation. Surprisingly, Gaf1 binds to and downregulates the tRNA genes, so it also functions as a transcription factor for RNA polymerase III. Thus, Gaf1 controls the transcription of both protein-coding and tRNA genes to inhibit translation and growth downstream of TORC1.
Collapse
Affiliation(s)
- María Rodríguez-López
- Institute of Healthy Ageing and Department of Genetics, Evolution & Environment, University College London, London WC1E 6BT, UK
| | - Suam Gonzalez
- School of Health, Sport and Bioscience, University of East London, Stratford Campus, London E14 4LZ, UK
| | - Olivia Hillson
- School of Health, Sport and Bioscience, University of East London, Stratford Campus, London E14 4LZ, UK
| | - Edward Tunnacliffe
- Institute of Healthy Ageing and Department of Genetics, Evolution & Environment, University College London, London WC1E 6BT, UK
| | - Sandra Codlin
- Institute of Healthy Ageing and Department of Genetics, Evolution & Environment, University College London, London WC1E 6BT, UK
| | - Victor A Tallada
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/CSIC, 41013 Sevilla, Spain
| | - Jürg Bähler
- Institute of Healthy Ageing and Department of Genetics, Evolution & Environment, University College London, London WC1E 6BT, UK.
| | - Charalampos Rallis
- Institute of Healthy Ageing and Department of Genetics, Evolution & Environment, University College London, London WC1E 6BT, UK; School of Health, Sport and Bioscience, University of East London, Stratford Campus, London E14 4LZ, UK; School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK.
| |
Collapse
|
26
|
Blank HM, Papoulas O, Maitra N, Garge R, Kennedy BK, Schilling B, Marcotte EM, Polymenis M. Abundances of transcripts, proteins, and metabolites in the cell cycle of budding yeast reveal coordinate control of lipid metabolism. Mol Biol Cell 2020; 31:1069-1084. [PMID: 32129706 PMCID: PMC7346729 DOI: 10.1091/mbc.e19-12-0708] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Establishing the pattern of abundance of molecules of interest during cell division has been a long-standing goal of cell cycle studies. Here, for the first time in any system, we present experiment-matched datasets of the levels of RNAs, proteins, metabolites, and lipids from unarrested, growing, and synchronously dividing yeast cells. Overall, transcript and protein levels were correlated, but specific processes that appeared to change at the RNA level (e.g., ribosome biogenesis) did not do so at the protein level, and vice versa. We also found no significant changes in codon usage or the ribosome content during the cell cycle. We describe an unexpected mitotic peak in the abundance of ergosterol and thiamine biosynthesis enzymes. Although the levels of several metabolites changed in the cell cycle, by far the most significant changes were in the lipid repertoire, with phospholipids and triglycerides peaking strongly late in the cell cycle. Our findings provide an integrated view of the abundance of biomolecules in the eukaryotic cell cycle and point to a coordinate mitotic control of lipid metabolism.
Collapse
Affiliation(s)
- Heidi M Blank
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843
| | - Ophelia Papoulas
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX 78712.,Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712
| | - Nairita Maitra
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843
| | - Riddhiman Garge
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX 78712.,Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712
| | - Brian K Kennedy
- Departments of Biochemistry and Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596.,Centre for Healthy Ageing, National University of Singapore, National University Health System, Singapore 117609.,Buck Institute for Research on Aging, Novato, CA 94945
| | | | - Edward M Marcotte
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX 78712.,Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712
| | - Michael Polymenis
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843
| |
Collapse
|
27
|
Pérez-Posada A, Dudin O, Ocaña-Pallarès E, Ruiz-Trillo I, Ondracka A. Cell cycle transcriptomics of Capsaspora provides insights into the evolution of cyclin-CDK machinery. PLoS Genet 2020; 16:e1008584. [PMID: 32176685 PMCID: PMC7098662 DOI: 10.1371/journal.pgen.1008584] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 03/26/2020] [Accepted: 12/23/2019] [Indexed: 12/19/2022] Open
Abstract
Progression through the cell cycle in eukaryotes is regulated on multiple levels. The main driver of the cell cycle progression is the periodic activity of cyclin-dependent kinase (CDK) complexes. In parallel, transcription during the cell cycle is regulated by a transcriptional program that ensures the just-in-time gene expression. Many core cell cycle regulators are widely conserved in eukaryotes, among them cyclins and CDKs; however, periodic transcriptional programs are divergent between distantly related species. In addition, many otherwise conserved cell cycle regulators have been lost and independently evolved in yeast, a widely used model organism for cell cycle research. For a better understanding of the evolution of the cell cycle regulation in opisthokonts, we investigated the transcriptional program during the cell cycle of the filasterean Capsaspora owczarzaki, a unicellular species closely related to animals. We developed a protocol for cell cycle synchronization in Capsaspora cultures and assessed gene expression over time across the entire cell cycle. We identified a set of 801 periodic genes that grouped into five clusters of expression over time. Comparison with datasets from other eukaryotes revealed that the periodic transcriptional program of Capsaspora is most similar to that of animal cells. We found that orthologues of cyclin A, B and E are expressed at the same cell cycle stages as in human cells and in the same temporal order. However, in contrast to human cells where these cyclins interact with multiple CDKs, Capsaspora cyclins likely interact with a single ancestral CDK1-3. Thus, the Capsaspora cyclin-CDK system could represent an intermediate state in the evolution of animal-like cyclin-CDK regulation. Overall, our results demonstrate that Capsaspora could be a useful unicellular model system for animal cell cycle regulation.
Collapse
Affiliation(s)
- Alberto Pérez-Posada
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Catalonia, Spain
| | - Omaya Dudin
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Catalonia, Spain
| | - Eduard Ocaña-Pallarès
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Catalonia, Spain
| | - Iñaki Ruiz-Trillo
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Catalonia, Spain
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Catalonia, Spain
- ICREA, Barcelona, Catalonia, Spain
| | - Andrej Ondracka
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Catalonia, Spain
| |
Collapse
|
28
|
Dokshin GA, Davis GM, Sawle AD, Eldridge MD, Nicholls PK, Gourley TE, Romer KA, Molesworth LW, Tatnell HR, Ozturk AR, de Rooij DG, Hannon GJ, Page DC, Mello CC, Carmell MA. GCNA Interacts with Spartan and Topoisomerase II to Regulate Genome Stability. Dev Cell 2020; 52:53-68.e6. [PMID: 31839538 PMCID: PMC7227305 DOI: 10.1016/j.devcel.2019.11.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 08/14/2019] [Accepted: 11/13/2019] [Indexed: 12/22/2022]
Abstract
GCNA proteins are expressed across eukarya in pluripotent cells and have conserved functions in fertility. GCNA homologs Spartan (DVC-1) and Wss1 resolve DNA-protein crosslinks (DPCs), including Topoisomerase-DNA adducts, during DNA replication. Here, we show that GCNA mutants in mouse and C. elegans display defects in genome maintenance including DNA damage, aberrant chromosome condensation, and crossover defects in mouse spermatocytes and spontaneous genomic rearrangements in C. elegans. We show that GCNA and topoisomerase II (TOP2) physically interact in both mice and worms and colocalize on condensed chromosomes during mitosis in C. elegans embryos. Moreover, C. elegans gcna-1 mutants are hypersensitive to TOP2 poison. Together, our findings support a model in which GCNA provides genome maintenance functions in the germline and may do so, in part, by promoting the resolution of TOP2 DPCs.
Collapse
Affiliation(s)
- Gregoriy A Dokshin
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Gregory M Davis
- School of Health and Life Sciences, Federation University, VIC 3841, Australia
| | - Ashley D Sawle
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | - Matthew D Eldridge
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | | | - Taylin E Gourley
- School of Health and Life Sciences, Federation University, VIC 3841, Australia
| | - Katherine A Romer
- Whitehead Institute, 455 Main Street, Cambridge, MA 02142, USA; Computational and Systems Biology Program, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Luke W Molesworth
- School of Health and Life Sciences, Federation University, VIC 3841, Australia
| | - Hannah R Tatnell
- School of Health and Life Sciences, Federation University, VIC 3841, Australia
| | - Ahmet R Ozturk
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Dirk G de Rooij
- Whitehead Institute, 455 Main Street, Cambridge, MA 02142, USA; Reproductive Biology Group, Division of Developmental Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht 3584, the Netherlands; Center for Reproductive Medicine, Academic Medical Center, University of Amsterdam 1105, the Netherlands
| | - Gregory J Hannon
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK; Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - David C Page
- Whitehead Institute, 455 Main Street, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Whitehead Institute, Cambridge, MA 02142, USA
| | - Craig C Mello
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA; Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | - Michelle A Carmell
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA; Whitehead Institute, 455 Main Street, Cambridge, MA 02142, USA; Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
29
|
Kocak M, Mozhui K. An Application of the Bayesian Periodicity Test to Identify Diurnal Rhythm Genes in the Brain. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2020; 17:47-55. [PMID: 30047896 DOI: 10.1109/tcbb.2018.2859971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Biological systems are extremely dynamic and many aspects of cellular processes show rhythmic circadian patterns. Extracting such information from large expression data is challenging. In this work, we present a modified application of the Empirical Bayes periodicity test to identify genes with diurnal rhythmic behavior in two brain regions. The hypothalamus and amygdala gene expression data were generated from 100 BXD recombinant inbred mice during the day hours. Brain samples were collected over the course of two days. We first filtered the transcripts based on rank correlation at matched time points between day-1 and day-2. We then applied the proposed test of periodicity to identify diurnal rhythm genes in the full cohort and gender-specific sub-cohorts. In hypothalamus, at a Benjamini-Hochberg false discovery rate (BH-FDR) of 0.01, we identified 15 transcripts with cyclic behavior in the full cohort, none, and 53 transcripts in the female and male cohort, respectively. Similarly, in amygdala, we identified 58 diurnal rhythm genes in the full cohort, and 1 and 28 in the female and male cohorts, respectively. In conclusion, we present a modified version of the empirical Bayes periodicity test to detect periodic expression patterns. Our results demonstrate that this approach can capture cyclic patterns from relatively noisy expression data sets.
Collapse
|
30
|
Paxillin-Mediated Recruitment of Calcineurin to the Contractile Ring Is Required for the Correct Progression of Cytokinesis in Fission Yeast. Cell Rep 2019; 25:772-783.e4. [PMID: 30332655 DOI: 10.1016/j.celrep.2018.09.062] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 08/01/2018] [Accepted: 09/19/2018] [Indexed: 11/21/2022] Open
Abstract
Paxillin is a scaffold protein that participates in focal adhesion signaling in mammalian cells. Fission yeast paxillin ortholog, Pxl1, is required for contractile actomyosin ring (CAR) integrity and collaborates with the β-glucan synthase Bgs1 in septum formation. We show here that Pxl1's main function is to recruit calcineurin (CN) phosphatase to the actomyosin ring; and thus the absence of either Pxl1 or calcineurin causes similar cytokinesis defects. In turn, CN participates in the dephosphorylation of the Cdc15 F-BAR protein, which recruits and concentrates Pxl1 at the CAR. Our findings suggest the existence of a positive feedback loop between Pxl1 and CN and establish that Pxl1 is a crucial component of the CN signaling pathway during cytokinesis.
Collapse
|
31
|
González-Medina A, Hidalgo E, Ayté J. Gcn5-mediated acetylation at MBF-regulated promoters induces the G1/S transcriptional wave. Nucleic Acids Res 2019; 47:8439-8451. [PMID: 31260531 PMCID: PMC6895280 DOI: 10.1093/nar/gkz561] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 06/17/2019] [Accepted: 06/21/2019] [Indexed: 11/26/2022] Open
Abstract
In fission yeast, MBF-dependent transcription is inactivated at the end of S phase through a negative feedback loop that involves the co-repressors, Yox1 and Nrm1. Although this repression system is well known, the molecular mechanisms involved in MBF activation remain largely unknown. Compacted chromatin constitutes a barrier to activators accessing promoters. Here, we show that chromatin regulation plays a key role in activating MBF-dependent transcription. Gcn5, a part of the SAGA complex, binds to MBF-regulated promoters through the MBF co-activator Rep2 in a cell cycle-dependent manner and in a reverse correlation to the binding of the MBF co-repressors, Nrm1 or Yox1. We propose that the co-repressors function as physical barriers to SAGA recruitment onto MBF promoters. We also show that Gcn5 acetylates specific lysine residues on histone H3 in a cell cycle-regulated manner. Furthermore, either in a gcn5 mutant or in a strain in which histone H3 is kept in an unacetylated form, MBF-dependent transcription is downregulated. In summary, Gcn5 is required for the full activation and correct timing of MBF-regulated gene transcription.
Collapse
Affiliation(s)
| | - Elena Hidalgo
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - José Ayté
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona 08003, Spain
| |
Collapse
|
32
|
Nakazawa N, Arakawa O, Yanagida M. Condensin locates at transcriptional termination sites in mitosis, possibly releasing mitotic transcripts. Open Biol 2019; 9:190125. [PMID: 31615333 PMCID: PMC6833218 DOI: 10.1098/rsob.190125] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Condensin is an essential component of chromosome dynamics, including mitotic chromosome condensation and segregation, DNA repair, and development. Genome-wide localization of condensin is known to correlate with transcriptional activity. The functional relationship between condensin accumulation and transcription sites remains unclear, however. By constructing the auxin-inducible degron strain of condensin, herein we demonstrate that condensin does not affect transcription itself. Instead, RNA processing at transcriptional termination appears to define condensin accumulation sites during mitosis, in the fission yeast Schizosaccharomyces pombe. Combining the auxin-degron strain with the nda3 β-tubulin cold-sensitive (cs) mutant enabled us to inactivate condensin in mitotically arrested cells, without releasing the cells into anaphase. Transcriptional activation and termination were not affected by condensin's degron-mediated depletion, at heat-shock inducible genes or mitotically activated genes. On the other hand, condensin accumulation sites shifted approximately 500 bp downstream in the auxin-degron of 5′-3′ exoribonuclease Dhp1, in which transcripts became aberrantly elongated, suggesting that condensin accumulates at transcriptionally terminated DNA regions. Growth defects in mutant strains of 3′-processing ribonuclease and polyA cleavage factors were additive in condensin temperature-sensitive (ts) mutants. Considering condensin's in vitro activity to form double-stranded DNAs from unwound, single-stranded DNAs or DNA-RNA hybrids, condensin-mediated processing of mitotic transcripts at the 3′-end may be a prerequisite for faithful chromosome segregation.
Collapse
Affiliation(s)
- Norihiko Nakazawa
- Okinawa Institute of Science and Technology Graduate University, G0 Cell Unit, Onna-son, Okinawa 904-0495, Japan
| | - Orie Arakawa
- Okinawa Institute of Science and Technology Graduate University, G0 Cell Unit, Onna-son, Okinawa 904-0495, Japan
| | - Mitsuhiro Yanagida
- Okinawa Institute of Science and Technology Graduate University, G0 Cell Unit, Onna-son, Okinawa 904-0495, Japan
| |
Collapse
|
33
|
Sun M, Zhang J. Chromosome-wide co-fluctuation of stochastic gene expression in mammalian cells. PLoS Genet 2019; 15:e1008389. [PMID: 31525198 PMCID: PMC6762216 DOI: 10.1371/journal.pgen.1008389] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 09/26/2019] [Accepted: 08/28/2019] [Indexed: 12/31/2022] Open
Abstract
Gene expression is subject to stochastic noise, but to what extent and by which means such stochastic variations are coordinated among different genes are unclear. We hypothesize that neighboring genes on the same chromosome co-fluctuate in expression because of their common chromatin dynamics, and verify it at the genomic scale using allele-specific single-cell RNA-sequencing data of mouse cells. Unexpectedly, the co-fluctuation extends to genes that are over 60 million bases apart. We provide evidence that this long-range effect arises in part from chromatin co-accessibilities of linked loci attributable to three-dimensional proximity, which is much closer intra-chromosomally than inter-chromosomally. We further show that genes encoding components of the same protein complex tend to be chromosomally linked, likely resulting from natural selection for intracellular among-component dosage balance. These findings have implications for both the evolution of genome organization and optimal design of synthetic genomes in the face of gene expression noise.
Collapse
Affiliation(s)
- Mengyi Sun
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, United States of America
| | - Jianzhi Zhang
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, United States of America
| |
Collapse
|
34
|
Cohen R, Milo S, Sharma S, Savidor A, Covo S. Ribonucleotide reductase from Fusarium oxysporum does not Respond to DNA replication stress. DNA Repair (Amst) 2019; 83:102674. [PMID: 31375409 DOI: 10.1016/j.dnarep.2019.102674] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/22/2019] [Accepted: 07/22/2019] [Indexed: 12/14/2022]
Abstract
Ribonucleotide reductase (RNR) catalyzes the rate limiting step in dNTP biosynthesis and is tightly regulated at the transcription and activity levels. One of the best characterized responses of yeast to DNA damage is up-regulation of RNR transcription and activity and consequently, elevation of the dNTP pools. Hydroxyurea is a universal inhibitor of RNR that causes S phase arrest. It is used in the clinic to treat certain types of cancers. Here we studied the response of the fungal plant pathogen Fusarium oxysporum to hydroxyurea in order to generate hypotheses that can be used in the future in development of a new class of pesticides. F. oxysporum causes severe damage to more than 100 agricultural crops and specifically threatens banana cultivation world-wide. Although the recovery of F. oxysporum from transient hydroxyurea exposure was similar to the one of Saccharomyces cerevisiae, colony formation was strongly inhibited in F. oxysporum in comparison with S. cerevisiae. As expected, genomic and phosphoproteomic analyses of F. oxysporum conidia (spores) exposed to hydroxyurea showed hallmarks of DNA replication perturbation and activation of recombination. Unexpectedly and strikingly, RNR was not induced by either hydroxyurea or the DNA-damaging agent methyl methanesulfonate as determined at the RNA and protein levels. Consequently, dNTP concentrations were significantly reduced, even in response to a low dose of hydroxyurea. Methyl methanesulfonate treatment did not induce dNTP pools in F. oxysporum, in contrast to the response of RNR and dNTP pools to DNA damage and hydroxyurea in several tested organisms. Our results are important because the lack of a feedback mechanism to increase RNR expression in F. oxysporum is expected to sensitize the pathogen to a fungal-specific ribonucleotide inhibitor. The potential impact of our observations on F. oxysporum genome stability and genome evolution is discussed.
Collapse
Affiliation(s)
- Rotem Cohen
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot, 76100, Israel
| | - Shira Milo
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot, 76100, Israel
| | - Sushma Sharma
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Alon Savidor
- de Botton Institute for Protein Profiling, the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Shay Covo
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot, 76100, Israel.
| |
Collapse
|
35
|
Ren B, Tan HL, Nguyen TTT, Sayed AMM, Li Y, Mok YK, Yang H, Chen ES. Regulation of transcriptional silencing and chromodomain protein localization at centromeric heterochromatin by histone H3 tyrosine 41 phosphorylation in fission yeast. Nucleic Acids Res 2019; 46:189-202. [PMID: 29136238 PMCID: PMC5758876 DOI: 10.1093/nar/gkx1010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 10/13/2017] [Indexed: 12/29/2022] Open
Abstract
Heterochromatin silencing is critical for genomic integrity and cell survival. It is orchestrated by chromodomain (CD)-containing proteins that bind to methylated histone H3 lysine 9 (H3K9me), a hallmark of heterochromatin. Here, we show that phosphorylation of tyrosine 41 (H3Y41p)—a novel histone H3 modification—participates in the regulation of heterochromatin in fission yeast. We show that a loss-of-function mutant of H3Y41 can suppress heterochromatin de-silencing in the centromere and subtelomere repeat regions, suggesting a de-silencing role for H3Y41p on heterochromatin. Furthermore, we show both in vitro and in vivo that H3Y41p differentially regulates two CD-containing proteins without the change in the level of H3K9 methylation: it promotes the binding of Chp1 to histone H3 and the exclusion of Swi6. H3Y41p is preferentially enriched on centromeric heterochromatin during M- to early S phase, which coincides with the localization switch of Swi6/Chp1. The loss-of-function H3Y41 mutant could suppress the hypersensitivity of the RNAi mutants towards hydroxyurea (HU), which arrests replication in S phase. Overall, we describe H3Y41p as a novel histone modification that differentially regulates heterochromatin silencing in fission yeast via the binding of CD-containing proteins.
Collapse
Affiliation(s)
- Bingbing Ren
- Department of Biochemistry, National University of Singapore, Yong Loo Lin School of Medicine, Singapore
| | - Hwei Ling Tan
- Department of Biochemistry, National University of Singapore, Yong Loo Lin School of Medicine, Singapore
| | - Thi Thuy Trang Nguyen
- Department of Biochemistry, National University of Singapore, Yong Loo Lin School of Medicine, Singapore
| | | | - Ying Li
- Cancer Science Institute, National University of Singapore, Yong Loo Lin School of Medicine, Singapore
| | - Yu-Keung Mok
- Department of Biological Sciences, National University of Singapore
| | - Henry Yang
- Cancer Science Institute, National University of Singapore, Yong Loo Lin School of Medicine, Singapore.,National University Health System (NUHS), Singapore
| | - Ee Sin Chen
- Department of Biochemistry, National University of Singapore, Yong Loo Lin School of Medicine, Singapore.,National University Health System (NUHS), Singapore
| |
Collapse
|
36
|
Gopalan S, Gibbon DM, Banks CA, Zhang Y, Florens LA, Washburn MP, Dabas P, Sharma N, Seidel CW, Conaway RC, Conaway JW. Schizosaccharomyces pombe Pol II transcription elongation factor ELL functions as part of a rudimentary super elongation complex. Nucleic Acids Res 2019; 46:10095-10105. [PMID: 30102332 PMCID: PMC6212713 DOI: 10.1093/nar/gky713] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 07/26/2018] [Indexed: 12/21/2022] Open
Abstract
ELL family transcription factors activate the overall rate of RNA polymerase II (Pol II) transcription elongation by binding directly to Pol II and suppressing its tendency to pause. In metazoa, ELL regulates Pol II transcription elongation as part of a large multisubunit complex referred to as the Super Elongation Complex (SEC), which includes P-TEFb and EAF, AF9 or ENL, and an AFF family protein. Although orthologs of ELL and EAF have been identified in lower eukaryotes including Schizosaccharomyces pombe, it has been unclear whether SEC-like complexes function in lower eukaryotes. In this report, we describe isolation from S. pombe of an ELL-containing complex with features of a rudimentary SEC. This complex includes S. pombe Ell1, Eaf1, and a previously uncharacterized protein we designate Ell1 binding protein 1 (Ebp1), which is distantly related to metazoan AFF family members. Like the metazoan SEC, this S. pombe ELL complex appears to function broadly in Pol II transcription. Interestingly, it appears to have a particularly important role in regulating genes involved in cell separation.
Collapse
Affiliation(s)
- Sneha Gopalan
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA.,The Open University, Milton Keynes, UK
| | - Dana M Gibbon
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Charles As Banks
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Ying Zhang
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | | | - Michael P Washburn
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA.,Department of Pathology and Laboratory Med icine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Preeti Dabas
- University School of Biotechnology, G.G.S.Indraprastha University, New Delhi 110078, India
| | - Nimisha Sharma
- University School of Biotechnology, G.G.S.Indraprastha University, New Delhi 110078, India
| | | | - Ronald C Conaway
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA.,Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Joan W Conaway
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA.,Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
37
|
Saint M, Bertaux F, Tang W, Sun XM, Game L, Köferle A, Bähler J, Shahrezaei V, Marguerat S. Single-cell imaging and RNA sequencing reveal patterns of gene expression heterogeneity during fission yeast growth and adaptation. Nat Microbiol 2019; 4:480-491. [PMID: 30718845 DOI: 10.1038/s41564-018-0330-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 11/26/2018] [Indexed: 12/20/2022]
Abstract
Phenotypic cell-to-cell variability is a fundamental determinant of microbial fitness that contributes to stress adaptation and drug resistance. Gene expression heterogeneity underpins this variability but is challenging to study genome-wide. Here we examine the transcriptomes of >2,000 single fission yeast cells exposed to various environmental conditions by combining imaging, single-cell RNA sequencing and Bayesian true count recovery. We identify sets of highly variable genes during rapid proliferation in constant culture conditions. By integrating single-cell RNA sequencing and cell-size data, we provide insights into genes that are regulated during cell growth and division, including genes whose expression does not scale with cell size. We further analyse the heterogeneity of gene expression during adaptive and acute responses to changing environments. Entry into the stationary phase is preceded by a gradual, synchronized adaptation in gene regulation that is followed by highly variable gene expression when growth decreases. Conversely, sudden and acute heat shock leads to a stronger, coordinated response and adaptation across cells. This analysis reveals that the magnitude of global gene expression heterogeneity is regulated in response to different physiological conditions within populations of a unicellular eukaryote.
Collapse
Affiliation(s)
- Malika Saint
- MRC London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - François Bertaux
- MRC London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- Department of Mathematics, Faculty of Natural Sciences, Imperial College London, London, UK
- Institut Pasteur, Paris, France
| | - Wenhao Tang
- Department of Mathematics, Faculty of Natural Sciences, Imperial College London, London, UK
| | - Xi-Ming Sun
- MRC London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Laurence Game
- MRC London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Anna Köferle
- Research Department of Genetics, Evolution and Environment and UCL Genetics Institute, University College London, London, UK
- Munich Center for Neurosciences, Ludwig-Maximilian-Universität, Planegg, Germany
| | - Jürg Bähler
- Research Department of Genetics, Evolution and Environment and UCL Genetics Institute, University College London, London, UK
| | - Vahid Shahrezaei
- Department of Mathematics, Faculty of Natural Sciences, Imperial College London, London, UK.
| | - Samuel Marguerat
- MRC London Institute of Medical Sciences, London, UK.
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK.
| |
Collapse
|
38
|
Cho CY, Kelliher CM, Haase SB. The cell-cycle transcriptional network generates and transmits a pulse of transcription once each cell cycle. Cell Cycle 2019; 18:363-378. [PMID: 30668223 PMCID: PMC6422481 DOI: 10.1080/15384101.2019.1570655] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Multiple studies have suggested the critical roles of cyclin-dependent kinases (CDKs) as well as a transcription factor (TF) network in generating the robust cell-cycle transcriptional program. However, the precise mechanisms by which these components function together in the gene regulatory network remain unclear. Here we show that the TF network can generate and transmit a "pulse" of transcription independently of CDK oscillations. The premature firing of the transcriptional pulse is prevented by early G1 inhibitors, including transcriptional corepressors and the E3 ubiquitin ligase complex APCCdh1. We demonstrate that G1 cyclin-CDKs facilitate the activation and accumulation of TF proteins in S/G2/M phases through inhibiting G1 transcriptional corepressors (Whi5 and Stb1) and APCCdh1, thereby promoting the initiation and propagation of the pulse by the TF network. These findings suggest a unique oscillatory mechanism in which global phase-specific transcription emerges from a pulse-generating network that fires once-and-only-once at the start of the cycle.
Collapse
Affiliation(s)
- Chun-Yi Cho
- Department of Biology, Duke University, Durham, NC, USA
| | | | | |
Collapse
|
39
|
Down-regulation of Cdk1 activity in G1 coordinates the G1/S gene expression programme with genome replication. Curr Genet 2019; 65:685-690. [DOI: 10.1007/s00294-018-00926-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 12/20/2018] [Accepted: 12/22/2018] [Indexed: 02/07/2023]
|
40
|
Cell Cycle-Regulated Transcription of CENP-A by the MBF Complex Ensures Optimal Level of CENP-A for Centromere Formation. Genetics 2019; 211:861-875. [PMID: 30635289 DOI: 10.1534/genetics.118.301745] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/04/2019] [Indexed: 11/18/2022] Open
Abstract
The centromere plays an essential role in chromosome segregation. In most eukaryotes, centromeres are epigenetically defined by the conserved histone H3 variant CENP-A. Proper centromere assembly is dependent upon the tight regulation of CENP-A level. Cell cycle regulation of CENP-A transcription appears to be a universal feature across eukaryotes, but the molecular mechanism underlying the temporal control of CENP-A transcription and how such regulation contributes to centromere function remains elusive. CENP-A in fission yeast has been shown to be transcribed before S phase. Using various synchronization methods, we confirmed that CENP-A transcription occurs at G1, leading to an almost twofold increase of the protein during S phase. Through a genetic screen, we identified the MBF (MluI box-binding factors) complex as a key regulator of temporal control of CENP-A transcription. The periodic transcription of CENP-A is lost in MBF mutants, resulting in CENP-A mislocalization and chromosome segregation defects. We identified the MCB (MluI cell cycle box) motif in the CENP-A promoter, and further showed that the MBF complex binds to the motif to restrict CENP-A transcription to G1. Mutations of the MCB motif cause constitutive CENP-A expression and deleterious effects on cell survival. Using promoters driving transcription to different cell cycle stages, we found that timing of CENP-A transcription is dispensable for its centromeric localization. Our data instead indicate that cell cycle-regulated CENP-A transcription is a key step to ensure that a proper amount of CENP-A is generated across generations. This study provides mechanistic insights into the regulation of cell cycle-dependent CENP-A transcription, as well as its importance on centromere function.
Collapse
|
41
|
Larriba Y, Rueda C, Fernández MA, Peddada SD. Microarray Data Normalization and Robust Detection of Rhythmic Features. Methods Mol Biol 2019; 1986:207-225. [PMID: 31115890 DOI: 10.1007/978-1-4939-9442-7_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Data derived from microarray technologies are generally subject to various sources of noise and accordingly the raw data are pre-processed before formally analysed. Data normalization is a key pre-processing step when dealing with microarray experiments, such as circadian gene-expressions, since it removes systematic variations across arrays. A wide variety of normalization methods are available in the literature. However, from our experience in the study of rhythmic expression patterns in oscillatory systems (e.g. cell-cycle, circadian clock), the choice of the normalization method may substantially impair the identification of rhythmic genes. Hence, the identification of a gene as rhythmic could be just as an artefact of how the data were normalized. Yet, gene rhythmicity detection is crucial in modern toxicological and pharmacological studies, thus a procedure to truly identify rhythmic genes that are robust to the choice of a normalization method is required.To perform the task of detecting rhythmic features, we propose a rhythmicity measure based on bootstrap methodology to robustly identify rhythmic genes in oscillatory systems. Although our methodology can be extended to any high-throughput experiment, in this chapter, we illustrate how to apply it to a publicly available circadian clock microarray gene-expression data and give full details (both statistical and computational) so that the methodology can be used in an easy way. We will show that the choice of normalization method has very little effect on the proposed methodology since the results derived from the bootstrap-based rhythmicity measure are highly rank correlated for any pair of normalization methods considered. This suggests, on the one hand, that the rhythmicity measure proposed is robust to the choice of the normalization method, and on the other hand, that gene rhythmicity detected using this measure is potentially not a mere artefact of the normalization method used. In this way the researcher using this methodology will be protected against the possible effect of different normalizations, as the conclusions obtained will not depend so strongly on them. Additionally, the described bootstrap methodology can also be employed as a tool to simulate gene-expression participating in an oscillatory system from a reference data set.
Collapse
Affiliation(s)
- Yolanda Larriba
- Departamento de Estadística e Investigación Operativa, Universidad de Valladolid, Valladolid, Spain.
| | - Cristina Rueda
- Departamento de Estadística e Investigación Operativa, Universidad de Valladolid, Valladolid, Spain
| | - Miguel A Fernández
- Departamento de Estadística e Investigación Operativa, Universidad de Valladolid, Valladolid, Spain
| | - Shyamal D Peddada
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
42
|
Humaidan D, Breinig F, Helms V. Adding phosphorylation events to the core oscillator driving the cell cycle of fission yeast. PLoS One 2018; 13:e0208515. [PMID: 30513113 PMCID: PMC6279014 DOI: 10.1371/journal.pone.0208515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 11/19/2018] [Indexed: 11/19/2022] Open
Abstract
Much is known about the regulatory elements controlling the cell cycle in fission yeast (Schizosaccharomyces pombe). This regulation is mainly done by the (cyclin-dependent kinase/cyclin) complex (Cdc2/Cdc13) that activates specific target genes and proteins via phosphorylation events during the cell cycle in a time-dependent manner. However, more work is still needed to complement the existing gaps in the current fission yeast gene regulatory network to be able to overcome abnormalities in its growth, repair and development, i.e. explain many phenomena including mitotic catastrophe. In this work we complement the previously presented core oscillator of the cell cycle of fission yeast by selected phosphorylation events and study their effects on the temporal evolution of the core oscillator based Boolean network. Thereby, we attempt to establish a regulatory link between the autonomous cell cycle oscillator and the remainder of the cell. We suggest the unclear yet regulatory effect of phosphorylation on the added components, and discuss many unreported points regarding the temporal evolution of the cell cycle and its components. To better visualize the results regardless of the programming background we developed an Android application that can be used to run the core and extended model of the fission yeast cell cycle step by step.
Collapse
Affiliation(s)
- Dania Humaidan
- Center for Bioinformatics, Saarland University, Saarbruecken, Germany
- * E-mail:
| | - Frank Breinig
- Molecular and Cell Biology and Center of Human and Molecular Biology, Saarland University, Saarbruecken, Germany
| | - Volkhard Helms
- Center for Bioinformatics, Saarland University, Saarbruecken, Germany
| |
Collapse
|
43
|
Wang L, Li S, Sun Z, Wen G, Zheng F, Fu C, Li H. Segmentation of yeast cell's bright-field image with an edge-tracing algorithm. JOURNAL OF BIOMEDICAL OPTICS 2018; 23:1-7. [PMID: 30456935 DOI: 10.1117/1.jbo.23.11.116503] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 10/17/2018] [Indexed: 06/09/2023]
Abstract
Phenotype analysis of yeast cell requires high-throughput imaging and automatic analysis of abundant image data. At first, each cell needs to be segmented and labeled in the bright-field images. However, the ambiguous boundary of bright-field yeast cell images leads to the failure of traditional segmentation algorithms. We propose a segmentation algorithm based on the morphological characteristics of yeast cells. Seed points are first identified along the cell contour and then connected by an edge tracing approach. In this way, "ill-detected" noise points are removed so that edges of yeast cells can be successfully extracted in bright-field images with sparsely distributed cells. In densely packed images, yeast cells with normal morphology can also be correctly segmented and labeled.
Collapse
Affiliation(s)
- Linbo Wang
- Chinese Academy of Sciences, Suzhou Institute of Biomedical Engineering and Technology, CAS Center f, China
| | - Simin Li
- Chinese Academy of Sciences, Suzhou Institute of Biomedical Engineering and Technology, CAS Center f, China
| | - Zhenglong Sun
- Chinese Academy of Sciences, Suzhou Institute of Biomedical Engineering and Technology, CAS Center f, China
| | - Gang Wen
- Chinese Academy of Sciences, Suzhou Institute of Biomedical Engineering and Technology, CAS Center f, China
| | - Fan Zheng
- University of Sciences and Technology of China, College of Life Sciences, Baohe District, Hefei, China
| | - Chuanhai Fu
- University of Sciences and Technology of China, College of Life Sciences, Baohe District, Hefei, China
| | - Hui Li
- Chinese Academy of Sciences, Suzhou Institute of Biomedical Engineering and Technology, CAS Center f, China
| |
Collapse
|
44
|
Kelliher CM, Foster MW, Motta FC, Deckard A, Soderblom EJ, Moseley MA, Haase SB. Layers of regulation of cell-cycle gene expression in the budding yeast Saccharomyces cerevisiae. Mol Biol Cell 2018; 29:2644-2655. [PMID: 30207828 PMCID: PMC6249835 DOI: 10.1091/mbc.e18-04-0255] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 08/30/2018] [Accepted: 09/04/2018] [Indexed: 11/11/2022] Open
Abstract
In the budding yeast Saccharomyces cerevisiae, transcription factors (TFs) regulate the periodic expression of many genes during the cell cycle, including gene products required for progression through cell-cycle events. Experimental evidence coupled with quantitative models suggests that a network of interconnected TFs is capable of regulating periodic genes over the cell cycle. Importantly, these dynamical models were built on transcriptomics data and assumed that TF protein levels and activity are directly correlated with mRNA abundance. To ask whether TF transcripts match protein expression levels as cells progress through the cell cycle, we applied a multiplexed targeted mass spectrometry approach (parallel reaction monitoring) to synchronized populations of cells. We found that protein expression of many TFs and cell-cycle regulators closely followed their respective mRNA transcript dynamics in cycling wild-type cells. Discordant mRNA/protein expression dynamics was also observed for a subset of cell-cycle TFs and for proteins targeted for degradation by E3 ubiquitin ligase complexes such as SCF (Skp1/Cul1/F-box) and APC/C (anaphase-promoting complex/cyclosome). We further profiled mutant cells lacking B-type cyclin/CDK activity ( clb1-6) where oscillations in ubiquitin ligase activity, cyclin/CDKs, and cell-cycle progression are halted. We found that a number of proteins were no longer periodically degraded in clb1-6 mutants compared with wild type, highlighting the importance of posttranscriptional regulation. Finally, the TF complexes responsible for activating G1/S transcription (SBF and MBF) were more constitutively expressed at the protein level than at periodic mRNA expression levels in both wild-type and mutant cells. This comprehensive investigation of cell-cycle regulators reveals that multiple layers of regulation (transcription, protein stability, and proteasome targeting) affect protein expression dynamics during the cell cycle.
Collapse
Affiliation(s)
| | - Matthew W. Foster
- Duke Center for Genomic and Computational Biology, Proteomics and Metabolomics Shared Resource, Durham, NC 27701
| | | | | | - Erik J. Soderblom
- Duke Center for Genomic and Computational Biology, Proteomics and Metabolomics Shared Resource, Durham, NC 27701
| | - M. Arthur Moseley
- Duke Center for Genomic and Computational Biology, Proteomics and Metabolomics Shared Resource, Durham, NC 27701
| | | |
Collapse
|
45
|
Cryo-ET reveals the macromolecular reorganization of S. pombe mitotic chromosomes in vivo. Proc Natl Acad Sci U S A 2018; 115:10977-10982. [PMID: 30297429 DOI: 10.1073/pnas.1720476115] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Chromosomes condense during mitosis in most eukaryotes. This transformation involves rearrangements at the nucleosome level and has consequences for transcription. Here, we use cryo-electron tomography (cryo-ET) to determine the 3D arrangement of nuclear macromolecular complexes, including nucleosomes, in frozen-hydrated Schizosaccharomyces pombe cells. Using 3D classification analysis, we did not find evidence that nucleosomes resembling the crystal structure are abundant. This observation and those from other groups support the notion that a subset of fission yeast nucleosomes may be partially unwrapped in vivo. In both interphase and mitotic cells, there is also no evidence of monolithic structures the size of Hi-C domains. The chromatin is mingled with two features: pockets, which are positions free of macromolecular complexes; and "megacomplexes," which are multimegadalton globular complexes like preribosomes. Mitotic chromatin is more crowded than interphase chromatin in subtle ways. Nearest-neighbor distance analyses show that mitotic chromatin is more compacted at the oligonucleosome than the dinucleosome level. Like interphase, mitotic chromosomes contain megacomplexes and pockets. This uneven chromosome condensation helps explain a longstanding enigma of mitosis: a subset of genes is up-regulated.
Collapse
|
46
|
Singh B, Wu PYJ. Regulation of the program of DNA replication by CDK: new findings and perspectives. Curr Genet 2018; 65:79-85. [PMID: 29926159 DOI: 10.1007/s00294-018-0860-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 06/14/2018] [Accepted: 06/15/2018] [Indexed: 12/18/2022]
Abstract
Progression through the cell cycle is driven by the activities of the cyclin-dependent kinase (CDK) family of enzymes, which establish an ordered passage through the cell cycle phases. CDK activity is crucial for the cellular transitions from G1 to S and G2 to M, which are highly controlled to promote the faithful duplication of the genetic material and the transmission of the genome into daughter cells, respectively. While oscillations in CDK activity are essential for cell division, how its specific dynamics may shape cellular processes remains an open question. Recently, we have investigated the potential role of CDK in establishing the profile of replication initiation along the chromosomes, also referred to as the replication program. Our results demonstrated that the timing and level of CDK activity at G1/S provide two critical and independent inputs that modulate the pattern of origin usage. In this review, we will present the conclusions of our study and discuss the implications of our findings for cellular function and physiology.
Collapse
Affiliation(s)
- Balveer Singh
- CNRS, Institute of Genetics and Development of Rennes, University of Rennes, UMR 6290, 2 avenue du Pr. Léon Bernard, 35043, Rennes, France
| | - Pei-Yun Jenny Wu
- CNRS, Institute of Genetics and Development of Rennes, University of Rennes, UMR 6290, 2 avenue du Pr. Léon Bernard, 35043, Rennes, France.
| |
Collapse
|
47
|
Schiklenk C, Petrova B, Kschonsak M, Hassler M, Klein C, Gibson TJ, Haering CH. Control of mitotic chromosome condensation by the fission yeast transcription factor Zas1. J Cell Biol 2018; 217:2383-2401. [PMID: 29735745 PMCID: PMC6028546 DOI: 10.1083/jcb.201711097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 03/28/2018] [Accepted: 04/17/2018] [Indexed: 01/05/2023] Open
Abstract
How chromosomes compact into rod-shaped structures is a longstanding unresolved question of cell biology. Schiklenk et al. identify the transcription factor Zas1 as a central regulator of mitotic chromosome condensation in fission yeast and show that it uses a conserved transactivation domain–based mechanism to control gene expression. Although the formation of rod-shaped chromosomes is vital for the correct segregation of eukaryotic genomes during cell divisions, the molecular mechanisms that control the chromosome condensation process have remained largely unknown. Here, we identify the C2H2 zinc-finger transcription factor Zas1 as a key regulator of mitotic condensation dynamics in a quantitative live-cell microscopy screen of the fission yeast Schizosaccharomyces pombe. By binding to specific DNA target sequences in their promoter regions, Zas1 controls expression of the Cnd1 subunit of the condensin protein complex and several other target genes, whose combined misregulation in zas1 mutants results in defects in chromosome condensation and segregation. Genetic and biochemical analysis reveals an evolutionarily conserved transactivation domain motif in Zas1 that is pivotal to its function in gene regulation. Our results suggest that this motif, together with the Zas1 C-terminal helical domain to which it binds, creates a cis/trans switch module for transcriptional regulation of genes that control chromosome condensation.
Collapse
Affiliation(s)
- Christoph Schiklenk
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Boryana Petrova
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Marc Kschonsak
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Markus Hassler
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Carlo Klein
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Toby J Gibson
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Christian H Haering
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany .,Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| |
Collapse
|
48
|
Larriba Y, Rueda C, Fernández MA, Peddada SD. A Bootstrap Based Measure Robust to the Choice of Normalization Methods for Detecting Rhythmic Features in High Dimensional Data. Front Genet 2018; 9:24. [PMID: 29456555 PMCID: PMC5801422 DOI: 10.3389/fgene.2018.00024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 01/17/2018] [Indexed: 01/01/2023] Open
Abstract
Motivation: Gene-expression data obtained from high throughput technologies are subject to various sources of noise and accordingly the raw data are pre-processed before formally analyzed. Normalization of the data is a key pre-processing step, since it removes systematic variations across arrays. There are numerous normalization methods available in the literature. Based on our experience, in the context of oscillatory systems, such as cell-cycle, circadian clock, etc., the choice of the normalization method may substantially impact the determination of a gene to be rhythmic. Thus rhythmicity of a gene can purely be an artifact of how the data were normalized. Since the determination of rhythmic genes is an important component of modern toxicological and pharmacological studies, it is important to determine truly rhythmic genes that are robust to the choice of a normalization method. Results: In this paper we introduce a rhythmicity measure and a bootstrap methodology to detect rhythmic genes in an oscillatory system. Although the proposed methodology can be used for any high-throughput gene expression data, in this paper we illustrate the proposed methodology using several publicly available circadian clock microarray gene-expression datasets. We demonstrate that the choice of normalization method has very little effect on the proposed methodology. Specifically, for any pair of normalization methods considered in this paper, the resulting values of the rhythmicity measure are highly correlated. Thus it suggests that the proposed measure is robust to the choice of a normalization method. Consequently, the rhythmicity of a gene is potentially not a mere artifact of the normalization method used. Lastly, as demonstrated in the paper, the proposed bootstrap methodology can also be used for simulating data for genes participating in an oscillatory system using a reference dataset. Availability: A user friendly code implemented in R language can be downloaded from http://www.eio.uva.es/~miguel/robustdetectionprocedure.html
Collapse
Affiliation(s)
- Yolanda Larriba
- Departamento de Estadística e Investigación Operativa, Universidad de Valladolid, Valladolid, Spain
| | - Cristina Rueda
- Departamento de Estadística e Investigación Operativa, Universidad de Valladolid, Valladolid, Spain
| | - Miguel A Fernández
- Departamento de Estadística e Investigación Operativa, Universidad de Valladolid, Valladolid, Spain
| | - Shyamal D Peddada
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Durham, NC, United States.,Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
49
|
Hendler A, Medina EM, Buchler NE, de Bruin RAM, Aharoni A. The evolution of a G1/S transcriptional network in yeasts. Curr Genet 2018; 64:81-86. [PMID: 28744706 DOI: 10.1007/s00294-017-0726-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 07/11/2017] [Accepted: 07/17/2017] [Indexed: 11/28/2022]
Abstract
The G1-to-S cell cycle transition is promoted by the periodic expression of a large set of genes. In Saccharomyces cerevisiae G1/S gene expression is regulated by two transcription factor (TF) complexes, the MBF and SBF, which bind to specific DNA sequences, the MCB and SCB, respectively. Despite extensive research little is known regarding the evolution of the G1/S transcription regulation including the co-evolution of the DNA binding domains with their respective DNA binding sequences. We have recently examined the co-evolution of the G1/S TF specificity through the systematic generation and examination of chimeric Mbp1/Swi4 TFs containing different orthologue DNA binding domains in S. cerevisiae (Hendler et al. in PLoS Genet 13:e1006778. doi: 10.1371/journal.pgen.1006778 , 2017). Here, we review the co-evolution of G1/S transcriptional network and discuss the evolutionary dynamics and specificity of the MBF-MCB and SBF-SCB interactions in different fungal species.
Collapse
Affiliation(s)
- Adi Hendler
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, 84105, Beersheba, Israel
| | - Edgar M Medina
- Department of Biology, Duke University, Durham, NC, USA
- Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Nicolas E Buchler
- Department of Biology, Duke University, Durham, NC, USA.
- Center for Genomic and Computational Biology, Duke University, Durham, NC, USA.
| | - Robertus A M de Bruin
- MRC Laboratory for Molecular Cell Biology, University College London, London, WC1E 6BT, UK.
| | - Amir Aharoni
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, 84105, Beersheba, Israel.
| |
Collapse
|
50
|
Szedlak A, Sims S, Smith N, Paternostro G, Piermarocchi C. Cell cycle time series gene expression data encoded as cyclic attractors in Hopfield systems. PLoS Comput Biol 2017; 13:e1005849. [PMID: 29149186 PMCID: PMC5711035 DOI: 10.1371/journal.pcbi.1005849] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 12/01/2017] [Accepted: 10/25/2017] [Indexed: 12/18/2022] Open
Abstract
Modern time series gene expression and other omics data sets have enabled unprecedented resolution of the dynamics of cellular processes such as cell cycle and response to pharmaceutical compounds. In anticipation of the proliferation of time series data sets in the near future, we use the Hopfield model, a recurrent neural network based on spin glasses, to model the dynamics of cell cycle in HeLa (human cervical cancer) and S. cerevisiae cells. We study some of the rich dynamical properties of these cyclic Hopfield systems, including the ability of populations of simulated cells to recreate experimental expression data and the effects of noise on the dynamics. Next, we use a genetic algorithm to identify sets of genes which, when selectively inhibited by local external fields representing gene silencing compounds such as kinase inhibitors, disrupt the encoded cell cycle. We find, for example, that inhibiting the set of four kinases AURKB, NEK1, TTK, and WEE1 causes simulated HeLa cells to accumulate in the M phase. Finally, we suggest possible improvements and extensions to our model. Cell cycle—the process in which a parent cell replicates its DNA and divides into two daughter cells—is an upregulated process in many forms of cancer. Identifying gene inhibition targets to regulate cell cycle is important to the development of effective therapies. Although modern high throughput techniques offer unprecedented resolution of the molecular details of biological processes like cell cycle, analyzing the vast quantities of the resulting experimental data and extracting actionable information remains a formidable task. Here, we create a dynamical model of the process of cell cycle using the Hopfield model (a type of recurrent neural network) and gene expression data from human cervical cancer cells and yeast cells. We find that the model recreates the oscillations observed in experimental data. Tuning the level of noise (representing the inherent randomness in gene expression and regulation) to the “edge of chaos” is crucial for the proper behavior of the system. We then use this model to identify potential gene targets for disrupting the process of cell cycle. This method could be applied to other time series data sets and used to predict the effects of untested targeted perturbations.
Collapse
Affiliation(s)
- Anthony Szedlak
- Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan, United States of America
| | - Spencer Sims
- Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan, United States of America
| | - Nicholas Smith
- Salgomed Inc., Del Mar, California, United States of America
| | - Giovanni Paternostro
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, United States of America
| | - Carlo Piermarocchi
- Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan, United States of America
- * E-mail:
| |
Collapse
|