1
|
He C, Li Q, Wu W, Liu K, Li X, Zheng H, Lai Y. Ferroptosis-associated genes and compounds in renal cell carcinoma. Front Immunol 2024; 15:1473203. [PMID: 39399506 PMCID: PMC11466770 DOI: 10.3389/fimmu.2024.1473203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/09/2024] [Indexed: 10/15/2024] Open
Abstract
As the main type of renal cell carcinoma (RCC), clear cell RCC (ccRCC) is often associated with the deletion or mutation of the von Hippel Lindau (VHL) gene, enhancement of glucose and lipid metabolism, and heterogeneity of the tumor microenvironment. VHL alterations in RCC cells lead to the activation of hypoxia-inducible factors and their downstream target vascular endothelial growth factor, and to the reprogramming of multiple cell death pathways and metabolic weakness, including ferroptosis, which are associated with targeted therapy or immunotherapy. The changes in biological metabolites (e.g., iron and lipids) support ferroptosis as a potential therapeutic strategy for RCC, while iron metabolism and ferroptosis regulation have been examined as anti-RCC agents in numerous studies, and various ferroptosis-related molecules have been shown to be related to the metastasis and prognosis of ccRCC. For example, glutathione peroxidase 4 and glutaminase inhibitors can inhibit pyrimidine synthesis and increase reactive oxygen species levels in VHL-deficient RCC cells. In addition, the release of damage-associated molecular patterns by tumor cells undergoing ferroptosis also mediates antitumor immunity, and immune therapy can synergize with targeted therapy or radiotherapy through ferroptosis. However, Inducing ferroptosis not only suppresses cancer, but also promotes cancer development due to its potential negative effects on anti-cancer immunity. Therefore, ferroptosis and various tumor microenviroment-related molecules may co-occur during the development and treatment of RCC, and further understanding of the interactions, core targets, and related drugs of ferroptosis may provide new combination drug strategies for RCC treatment. Here we summarize the key genes and compounds on ferroptosis and RCC in order to envision future treatment strategies and to provide sufficient information for overcoming RCC resistance through ferroptosis.
Collapse
Affiliation(s)
- Chengwu He
- Department of Urology, Shenzhen Shockwave Lithotripsy Research Institute, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Qingyi Li
- Department of Urology, Shenzhen Shockwave Lithotripsy Research Institute, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Weijia Wu
- Department of Urology, Shenzhen Shockwave Lithotripsy Research Institute, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Ke Liu
- Department of Urology, Shenzhen Shockwave Lithotripsy Research Institute, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Xingwen Li
- Tibet Future Biomedicine Company Limited, Golmud, Qinghai, China
| | - Hanxiong Zheng
- Department of Urology, Shenzhen Shockwave Lithotripsy Research Institute, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yongchang Lai
- Department of Pharmaceutical Management, School of Medical Business, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Chen L, Duan F, Ge F, Tian L, Li Y, Li Y, Zhu Q, Zhou Q, Lin H. Inhibitor of apoptosis stimulating protein of p53 protects against MPP +-induced neurotoxicity of dopaminergic neurons. Metab Brain Dis 2024; 39:871-884. [PMID: 38842662 DOI: 10.1007/s11011-024-01367-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 05/30/2024] [Indexed: 06/07/2024]
Abstract
Inhibitor of apoptosis stimulating protein of p53 (iASPP) is related to the pathogenesis of several neurological disorders by affecting the oxidative stress and survival of neurons. However, whether iASPP has a role in Parkinson disease (PD) remains to be determined. This work explored the potential regulatory effect of iASPP in an in vitro model of PD based on 1-methyl-4-phenylpyridinium (MPP+)-evoked neurotoxicity of dopaminergic neurons in culture. MN9D neurons were treated with MPP+ at 200 µM in the culture media for 24 h to induce neurotoxicity. Overexpression and silencing of iASPP in neurons were achieved by infecting recombinant adenovirus expressing iASPP and sh-iASPP, respectively. Protein expression was examined by immunoblotting. MPP+-evoked neurotoxicity of dopaminergic neurons was determined by cell viability, TUNEL, and flow cytometric assays. The transcriptional activity of nuclear erythroid factor 2-like 2 (Nrf2) was assessed by luciferase reporter assay. Kelch-like ECH-associated protein 1 (Keap1)-knockout neurons were generated by lentiCRISPR/Cas9-Keap1 constructs. Expression levels of iASPP declined in MPP+-stimulated neurons. Overexpression of iASPP in neurons exhibited inhibitory effects on MPP+-evoked apoptosis, α-synuclein accumulation, and oxidative stress, while iASPP-deficient neurons were more sensitive to MPP+-induced neurotoxicity. Overexpression of iASPP led to an enhancing effect on Nrf2 activation in MPP+-stimulated neurons. Mechanism research revealed that iASPP may contribute to the activation of Nrf2 by competing with Nrf2 in binding with Keap1. Notably, the regulatory effect of iASPP on Nrf2 was diminished in Keap1-knockout neurons. The chemical inhibition of Nrf2 or knockdown of Nrf2 abrogated the protective effects of iASPP on MPP+-induced neurotoxicity. To conclude, iASPP protects dopaminergic neurons against MPP+-induced neurotoxicity through modulation of the Keap1/Nrf2 axis. Therefore, iASPP may play a crucial role in mediating the loss of dopaminergic neurons in PD, and targeting the iASPP-Nrf2 axis could be a promising strategy for treating PD.
Collapse
Affiliation(s)
- Lei Chen
- Neurosurgery, Xi'an International Medical Center Hospital, Xi'an, 710075, China
| | - Fengju Duan
- Neurology, Xi'an International Medical Center Hospital, No. 777 Xitai Road, Xi'an, 710075, China
| | - Fangfang Ge
- Neurology, Xi'an International Medical Center Hospital, No. 777 Xitai Road, Xi'an, 710075, China
| | - Lu Tian
- Neurology, Xi'an International Medical Center Hospital, No. 777 Xitai Road, Xi'an, 710075, China
| | - Yuanyuan Li
- Neurology, Xi'an International Medical Center Hospital, No. 777 Xitai Road, Xi'an, 710075, China
| | - Ying Li
- Neurology, Xi'an International Medical Center Hospital, No. 777 Xitai Road, Xi'an, 710075, China
| | - Qing Zhu
- Neurology, Xi'an International Medical Center Hospital, No. 777 Xitai Road, Xi'an, 710075, China
| | - Qiong Zhou
- Neurology, Xi'an International Medical Center Hospital, No. 777 Xitai Road, Xi'an, 710075, China.
| | - Hong Lin
- Neurology, Xi'an International Medical Center Hospital, No. 777 Xitai Road, Xi'an, 710075, China.
| |
Collapse
|
3
|
Pinto EM, Fridman C, Figueiredo BC, Salvador H, Teixeira MR, Pinto C, Pinheiro M, Kratz CP, Lavarino C, Legal EAMF, Le A, Kelly G, Koeppe E, Stoffel EM, Breen K, Hahner S, Heinze B, Techavichit P, Krause A, Ogata T, Fujisawa Y, Walsh MF, Rana HQ, Maxwell KN, Garber JE, Rodriguez-Galindo C, Ribeiro RC, Zambetti GP. Multiple TP53 p.R337H haplotypes and implications for tumor susceptibility. HGG ADVANCES 2024; 5:100244. [PMID: 37794678 PMCID: PMC10597792 DOI: 10.1016/j.xhgg.2023.100244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/06/2023] Open
Abstract
The germline TP53 p.R337H mutation is reported as the most common germline TP53 variant. It exists at a remarkably high frequency in the population of southeast Brazil as founder mutation in two distinct haplotypes with the most frequent co-segregating with the p.E134∗ variant of the XAF1 tumor suppressor and an increased cancer risk. Founder mutations demonstrate linkage disequilibrium with neighboring genetic polymorphic markers that can be used to identify the founder variant in different geographic regions and diverse populations. We report here a shared haplotype among Brazilian, Portuguese, and Spanish families and the existence of three additional distinct TP53 p.R337H alleles. Mitochondrial DNA sequencing and Y-STR profiling of Brazilian carriers of the founder TP53 p.R337H allele reveal an excess of Native American haplogroups in maternal lineages and exclusively European haplogroups in paternal lineages, consistent with communities established through male European settlers with extensive intermarriage with Indigenous women. The identification of founder and independent TP53 p.R337H alleles underlines the importance for considering the haplotype as a functional unit and the additive effects of constitutive polymorphisms and associated variants in modifier genes that can influence the cancer phenotype.
Collapse
Affiliation(s)
- Emilia M Pinto
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - Cintia Fridman
- Departamento de Medicina Legal, Bioética, Medicina do Trabalho e Medicina Física e Reabilitação, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | | | - Hector Salvador
- Pediatric Oncology Department, Sant Joan de Deu Hospital, Barcelona, Spain
| | - Manuel R Teixeira
- Cancer Genetics Group, IPO Porto Research Center (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Porto, Portugal; Department of Laboratory Genetics, Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center and School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Carla Pinto
- Cancer Genetics Group, IPO Porto Research Center (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Porto, Portugal
| | - Manuela Pinheiro
- Cancer Genetics Group, IPO Porto Research Center (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Porto, Portugal
| | - Christian P Kratz
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Cinzia Lavarino
- Pediatric Oncology Department, Sant Joan de Deu Hospital, Barcelona, Spain
| | - Edith A M F Legal
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Paraná, Brazil
| | - Anh Le
- Department of Medicine-Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gregory Kelly
- Department of Medicine-Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Erika Koeppe
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Elena M Stoffel
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Kelsey Breen
- Department of Pediatrics and Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Stefanie Hahner
- Department of Medicine I, Division of Endocrinology and Diabetology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Britta Heinze
- Department of Medicine I, Division of Endocrinology and Diabetology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Piti Techavichit
- Integrative and Innovative Hematology/Oncology Research Unit, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Amanda Krause
- Division of Human Genetics, National Health Laboratory Service (NHLS) and Faculty of Health Sciences, School of Pathology, The University of the Witwatersrand, Johannesburg, South Africa
| | - Tsutomu Ogata
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yasuko Fujisawa
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Michael F Walsh
- Department of Pediatrics and Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Huma Q Rana
- Division of Cancer Genetics and Prevention, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Kara N Maxwell
- Department of Medicine-Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Judy E Garber
- Division of Cancer Genetics and Prevention, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Carlos Rodriguez-Galindo
- Department of Global Pediatric Medicine, St. Jude Children's Research Hospital, Memphis, TN, USA; Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Raul C Ribeiro
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Gerard P Zambetti
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
4
|
Schittenhelm MM, Kaiser M, Győrffy B, Kampa-Schittenhelm KM. Evaluation of apoptosis stimulating protein of TP53-1 (ASPP1/PPP1R13B) to predict therapy resistance and overall survival in acute myeloid leukemia (AML). Cell Death Dis 2024; 15:25. [PMID: 38195541 PMCID: PMC10776670 DOI: 10.1038/s41419-023-06372-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/26/2023] [Accepted: 12/05/2023] [Indexed: 01/11/2024]
Abstract
ASPP1 (PPP1R13B) belongs to a family of p53-binding proteins and enhances apoptosis by stimulation of p53-transactivation of selected proapoptotic target genes. It is preferentially expressed in hematopoietic stem cells (HSC) and together with p53 preserves the genomic integrity of the HSC pool. Consequently, dysfunction of ASPP1 has been associated with malignant transformation and development of acute lymphoblastic leukemias and lymphomas - whereas methylation of the promoter region is linked to reduced transcription and ultimately attenuated expression of ASPP1. The role of ASPP1 in AML is not known. We now show that impaired regulation of PPP1R13B contributes to the biology of leukemogenesis and primary therapy resistance in AML. PPP1R13B mRNA expression patterns thereby define a distinct prognostic profile - which is not reflected by the European leukemia net (ELN) risk score. These findings have direct therapeutic implications and we provide a strategy to restore ASPP1 protein levels using hypomethylating agents to sensitize cells towards proapoptotic drugs. Prospective clinical trials are warranted to investigate the role of ASPP1 (PPP1R13B) as a biomarker for risk stratification and as a potential therapeutic target to restore susceptibility to chemotherapy.
Collapse
Affiliation(s)
- Marcus M Schittenhelm
- Medical research center (MFZ) and Clinic of Medical Oncology and Hematology, Cantonal Hospital St. Gallen (KSSG), St. Gallen, Switzerland
| | - Max Kaiser
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen (UKT), Tübingen, Germany
| | - Balázs Győrffy
- Semmelweis University Dept. of Bioinformatics and Dept. of Pediatrics, Budapest, H-1094, Hungary
- TTK Cancer Biomarker Research Group, Institute of Enzymology, Budapest, H-1117, Hungary
| | - Kerstin M Kampa-Schittenhelm
- Medical research center (MFZ) and Clinic of Medical Oncology and Hematology, Cantonal Hospital St. Gallen (KSSG), St. Gallen, Switzerland.
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen (UKT), Tübingen, Germany.
| |
Collapse
|
5
|
Khan Y, Khan NU, Ali I, Khan S, Khan AU, Iqbal A, Adams BD. Significant association of BRCA1 (rs1799950), BRCA2 (rs144848) and TP53 (rs1042522) polymorphism with breast cancer risk in Pashtun population of Khyber Pakhtunkhwa, Pakistan. Mol Biol Rep 2023:10.1007/s11033-023-08463-9. [PMID: 37300745 DOI: 10.1007/s11033-023-08463-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 04/14/2023] [Indexed: 06/12/2023]
Abstract
BACKGROUND Single nucleotide polymorphism (SNPs) in BRCA1, BRCA2 and TP53 has been widely associated with breast cancer risk in different ethnicities with inconsistent results. There is no such study conducted so far in the Pashtun population of Khyber Pakhtunkhwa, Pakistan. Therefore, this study was conducted to check BRCA1 (rs1799950), BRCA2 (rs144848) and TP53 (rs1042522) polymorphism with breast cancer risk in Pashtun population of Khyber Pakhtunkhwa, Pakistan. METHODS This study, consisting 140 breast cancer patients and 80 gender and age matched healthy controls were subjected to confirm BRCA1, BRCA2 and TP53 polymorphism. Clinicopathological data and blood samples were taken from all the participants. DNA was extracted and SNPs were confirmed using T-ARMS-PCR protocol. RESULTS Our data indicated that BRCA1, BRCA2, and TP53 selected SNPs risk allele and risk allele containing genotypes displayed significant association (p < 0.05) with breast cancer risk in the Pashtun population of Khyber Pakhtunkhwa, Pakistan. CONCLUSION All the three selected SNPs of BRCA1, BRCA2 and TP53 showed significant association with breast cancer risk in the Pashtun population of Khyber Pakhtunkhwa, Pakistan. However, more investigation will be required on large data sets to confirm the selected SNPs and other SNPs in the selected and other related genes with the risk of breast cancer.
Collapse
Affiliation(s)
- Yumna Khan
- Institute of Biotechnology and Genetic Engineering (Health Division), The University of Agriculture, Peshawar, Pakistan
| | - Najeeb Ullah Khan
- Institute of Biotechnology and Genetic Engineering (Health Division), The University of Agriculture, Peshawar, Pakistan.
| | - Ijaz Ali
- Centre for Applied Mathematics and Bioinformatics (CAMB), Gulf University for Science and Technology, Hawally, Kuwait
| | - Samiullah Khan
- Institute of Radiotherapy and Nuclear Medicine (IRNUM), Peshawar, Pakistan
| | - Aakif Ullah Khan
- Institute of Radiotherapy and Nuclear Medicine (IRNUM), Peshawar, Pakistan
| | - Aqib Iqbal
- Institute of Biotechnology and Genetic Engineering (Health Division), The University of Agriculture, Peshawar, Pakistan
| | - Brian D Adams
- Department of RNA Science, The Brain Institute of America, New Haven, CT, USA.
| |
Collapse
|
6
|
Wang H, Guo M, Wei H, Chen Y. Targeting p53 pathways: mechanisms, structures, and advances in therapy. Signal Transduct Target Ther 2023; 8:92. [PMID: 36859359 PMCID: PMC9977964 DOI: 10.1038/s41392-023-01347-1] [Citation(s) in RCA: 154] [Impact Index Per Article: 154.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/19/2022] [Accepted: 02/07/2023] [Indexed: 03/03/2023] Open
Abstract
The TP53 tumor suppressor is the most frequently altered gene in human cancers, and has been a major focus of oncology research. The p53 protein is a transcription factor that can activate the expression of multiple target genes and plays critical roles in regulating cell cycle, apoptosis, and genomic stability, and is widely regarded as the "guardian of the genome". Accumulating evidence has shown that p53 also regulates cell metabolism, ferroptosis, tumor microenvironment, autophagy and so on, all of which contribute to tumor suppression. Mutations in TP53 not only impair its tumor suppressor function, but also confer oncogenic properties to p53 mutants. Since p53 is mutated and inactivated in most malignant tumors, it has been a very attractive target for developing new anti-cancer drugs. However, until recently, p53 was considered an "undruggable" target and little progress has been made with p53-targeted therapies. Here, we provide a systematic review of the diverse molecular mechanisms of the p53 signaling pathway and how TP53 mutations impact tumor progression. We also discuss key structural features of the p53 protein and its inactivation by oncogenic mutations. In addition, we review the efforts that have been made in p53-targeted therapies, and discuss the challenges that have been encountered in clinical development.
Collapse
Affiliation(s)
- Haolan Wang
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Ming Guo
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Hudie Wei
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Yongheng Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
7
|
Hyaluronan-Induced CD44-iASPP Interaction Affects Fibroblast Migration and Survival. Cancers (Basel) 2023; 15:cancers15041082. [PMID: 36831425 PMCID: PMC9954134 DOI: 10.3390/cancers15041082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
In the present study, we show that the inhibitor of the apoptosis-stimulating protein of p53 (iASPP) physically interacts with the hyaluronan receptor CD44 in normal and transformed cells. We noticed that the CD44 standard isoform (CD44s), but not the variant isoform (CD44v), bound to iASPP via the ankyrin-binding domain in CD44s. The formation of iASPP-CD44s complexes was promoted by hyaluronan stimulation in fibroblasts but not in epithelial cells. The cellular level of p53 affected the amount of the iASPP-CD44 complex. iASPP was required for hyaluronan-induced CD44-dependent migration and adhesion of fibroblasts. Of note, CD44 altered the sub-cellular localization of the iASPP-p53 complex; thus, ablation of CD44 promoted translocation of iASPP from the nucleus to the cytoplasm, resulting in increased formation of a cytoplasmic iASPP-p53 complex in fibroblasts. Overexpression of iASPP decreased, but CD44 increased the level of intracellular reactive oxygen species (ROS). Knock-down of CD44s, in the presence of p53, led to increased cell growth and cell density of fibroblasts by suppression of p27 and p53. Our observations suggest that the balance of iASPP-CD44 and iASPP-p53 complexes affect the survival and migration of fibroblasts.
Collapse
|
8
|
Al Moussawi K, Chung K, Carroll TM, Osterburg C, Smirnov A, Lotz R, Miller P, Dedeić Z, Zhong S, Oti M, Kouwenhoven EN, Asher R, Goldin R, Tellier M, Murphy S, Zhou H, Dötsch V, Lu X. Mutant Ras and inflammation-driven skin tumorigenesis is suppressed via a JNK-iASPP-AP1 axis. Cell Rep 2022; 41:111503. [PMID: 36261000 PMCID: PMC9597577 DOI: 10.1016/j.celrep.2022.111503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 06/29/2022] [Accepted: 09/22/2022] [Indexed: 11/05/2022] Open
Abstract
Concurrent mutation of a RAS oncogene and the tumor suppressor p53 is common in tumorigenesis, and inflammation can promote RAS-driven tumorigenesis without the need to mutate p53. Here, we show, using a well-established mutant RAS and an inflammation-driven mouse skin tumor model, that loss of the p53 inhibitor iASPP facilitates tumorigenesis. Specifically, iASPP regulates expression of a subset of p63 and AP1 targets, including genes involved in skin differentiation and inflammation, suggesting that loss of iASPP in keratinocytes supports a tumor-promoting inflammatory microenvironment. Mechanistically, JNK-mediated phosphorylation regulates iASPP function and inhibits iASPP binding with AP1 components, such as JUND, via PXXP/SH3 domain-mediated interaction. Our results uncover a JNK-iASPP-AP1 regulatory axis that is crucial for tissue homeostasis. We show that iASPP is a tumor suppressor and an AP1 coregulator.
Collapse
Affiliation(s)
- Khatoun Al Moussawi
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Kathryn Chung
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Thomas M Carroll
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Christian Osterburg
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt, Germany
| | - Artem Smirnov
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Rebecca Lotz
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt, Germany
| | - Paul Miller
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Zinaida Dedeić
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Shan Zhong
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Martin Oti
- Radboud University, Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | - Evelyn N Kouwenhoven
- Radboud University, Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | - Ruth Asher
- Cellular Pathology, John Radcliffe Hospital, Oxford OX3 9DU, UK; Department of Histopathology, University Hospital Wales, Cardiff CF14 4XW, UK
| | - Robert Goldin
- Department of Pathology, Imperial College London, Faculty of Medicine at St Mary's, Norfolk Place, London W2 1PG, UK
| | - Michael Tellier
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Shona Murphy
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Huiqing Zhou
- Radboud University, Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands; Radboud University Medical Centre, Department of Human Genetics, Radboud Institute for Molecular Life Sciences, 6500 Nijmegen, the Netherlands
| | - Volker Dötsch
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt, Germany
| | - Xin Lu
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7DQ, UK.
| |
Collapse
|
9
|
Mayer G, Shpilt Z, Kowalski H, Tshuva EY, Friedler A. Targeting Protein Interaction Hotspots Using Structured and Disordered Chimeric Peptide Inhibitors. ACS Chem Biol 2022; 17:1811-1823. [PMID: 35758642 DOI: 10.1021/acschembio.2c00177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The main challenge in inhibiting protein-protein interactions (PPI) for therapeutic purposes is designing molecules that bind specifically to the interaction hotspots. Adding to the complexity, such hotspots can be within both structured and disordered interaction interfaces. To address this, we present a strategy for inhibiting the structured and disordered hotspots of interactions using chimeric peptides that contain both structured and disordered parts. The chimeric peptides we developed are comprised of a cyclic structured part and a disordered part, which target both disordered and structured hotspots. We demonstrate our approach by developing peptide inhibitors for the interactions of the antiapoptotic iASPP protein. First, we developed a structured, α-helical stapled peptide inhibitor, derived from the N-terminal domain of MDM2. The peptide bound two hotspots on iASPP at the low micromolar range and had a cytotoxic effect on A2780 cancer cells with a half-maximal inhibitory concentration (IC50) value of 10 ± 1 μM. We then developed chimeric peptides comprising the structured stapled helical peptide and the disordered p53-derived LinkTer peptide that we previously showed to inhibit iASPP by targeting its disordered RT loop. The chimeric peptide targeted both structured and disordered domains in iASPP with higher affinity compared to the individual structured and disordered peptides and caused cancer cell death. Our strategy overcomes the inherent difficulty in inhibiting the interactions of proteins that possess structured and disordered regions. It does so by using chimeric peptides derived from different interaction partners that together target a much wider interface covering both the structured and disordered domains. This paves the way for developing such inhibitors for therapeutic purposes.
Collapse
Affiliation(s)
- Guy Mayer
- The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - Zohar Shpilt
- The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - Hadar Kowalski
- The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - Edit Y Tshuva
- The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - Assaf Friedler
- The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| |
Collapse
|
10
|
Falduto GH, Pfeiffer A, Zhang Q, Yin Y, Metcalfe DD, Olivera A. A Critical Function for the Transcription Factors GLI1 and GLI2 in the Proliferation and Survival of Human Mast Cells. Front Immunol 2022; 13:841045. [PMID: 35251038 PMCID: PMC8888842 DOI: 10.3389/fimmu.2022.841045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/27/2022] [Indexed: 11/13/2022] Open
Abstract
Mast cell hyperactivity and accumulation in tissues are associated with allergy and other mast cell-related disorders. However, the molecular pathways regulating mast cell survival in homeostasis and disease are not completely understood. As glioma-associated oncogene (GLI) proteins are involved in both tissue homeostasis and in the hematopoietic system by regulating cell fate decisions, we sought to investigate the role for GLI proteins in the control of proliferation and survival of human mast cells. GLI1 transcripts were present in primary human mast cells and mast cell lines harboring or not activating mutations in the tyrosine kinase receptor KIT (HMC-1.1 and HMC-1.2, and LAD2 cells, respectively), while GLI2 transcripts were only present in HMC-1.1 and HMC-1.2 cells, suggesting a role for oncogenic KIT signaling in the regulation of GLI2. Reduction in GLI activity by small molecule inhibitors, or by shRNA-mediated knockdown of GLI1 or GLI2, led to increases in apoptotic cell death in both cultured human and murine mast cells, and reduced the number of peritoneal mast cells in mice. Although GLI proteins are typically activated via the hedgehog pathway, steady-state activation of GLI in mast cells occurred primarily via non-canonical pathways. Apoptosis induced by GLI silencing was associated with a downregulation in the expression of KIT and of genes that influence p53 stability and function including USP48, which promotes p53 degradation; and iASPP, which inhibits p53-induced transcription, thus leading to the induction of p53-regulated apoptotic genes. Furthermore, we found that GLI silencing inhibited the proliferation of neoplastic mast cell lines, an effect that was more pronounced in rapidly growing cells. Our findings support the conclusion that GLI1/2 transcription factors are critical regulators of mast cell survival and that their inhibition leads to a significant reduction in the number of mast cells in vitro and in vivo, even in cells with constitutively active KIT variants. This knowledge can potentially be applicable to reducing mast cell burden in mast cell-related diseases.
Collapse
Affiliation(s)
- Guido Hernan Falduto
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Annika Pfeiffer
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Qunshu Zhang
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Yuzhi Yin
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Dean Darrel Metcalfe
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Ana Olivera
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
11
|
PCR-RFLP genotyping analysis of TP53 Arg72Pro polymorphism and susceptibility to esophageal cancer in Pakistani population. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
Akter R, Islam MS, Islam MS, Aziz MA, Hussain MS, Millat MS, Uddin MS, Islam MS. A case-control study investigating the association of TP53 rs1042522 and CDH1 rs16260 polymorphisms with prostate cancer risk. Meta Gene 2021. [DOI: 10.1016/j.mgene.2021.100962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
13
|
Rieger I, Tsintari V, Overkamp M, Fend F, Lopez CD, Schittenhelm MM, Kampa-Schittenhelm KM. ASPP2κ Is Expressed In Human Colorectal Carcinoma And Promotes Chemotherapy Resistance And Tumorigenesis. Front Mol Biosci 2021; 8:727203. [PMID: 34805267 PMCID: PMC8602356 DOI: 10.3389/fmolb.2021.727203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 10/14/2021] [Indexed: 11/30/2022] Open
Abstract
Alternative splicing is a common physiologic mechanism to generate numerous distinct gene products from one gene locus, which can result in unique gene products with differing important functional outcomes depending on cell context. Aberrant alternative splicing is a hallmark of cancer that can contribute to oncogenesis and aggressiveness of the disease as well as resistance to therapy. However, aberrant splicing might also result in novel targets for cancer therapy. ASPP2 is a haplo-insufficient tumor suppressor, that functions through both p53-dependent as well as p53-independent mechanisms to enhance cell death after stress. Interestingly, the common human tumor TP53 mutations result in a loss of the binding sites to ASPP2, leading to impaired induction of apoptosis. Vice versa, attenuation of ASPP2 has been described to be associated with high-risk disease, therapy failure and poor clinical outcome especially in tumors harboring the TP53 wildtype (WT) isoform. We have recently identified a novel, dominant-negative splicing variant of ASPP2, named ASPP2κ, with oncogenic potential. Exon-skipping results in a reading-frame shift with a premature translation stop, omitting most of the ASPP2 C-terminus - which harbors the p53-binding domain. Consequently, the ASPP2-p53 interaction is abrogated, which in part impacts on oncogenesis, aggressiveness of disease and response to therapy. Since ASPP2κ has been shown in hematologic malignancies to promote tumorigenesis, we further wished to determine if aberrant ASPP2κ expression plays a role in human solid tumors. In this report, we find that ASPP2κ is frequently expressed in human colorectal tumors (CRC). Using ASPP2κ overexpressing and interference CRC models, we demonstrate a functional role of ASPP2κ in contributing to oncogenesis and resistance to therapy in CRC by 1) enhancing proliferation, 2) promoting cell migration and, 3) conferring resistance to chemotherapy induced apoptosis. Our findings have far-reaching consequences for future diagnostic and therapeutic strategies for ASPP2κ expressing colorectal cancer patients and provide proof-of-principle to further explore ASPP2κ as potential predictive marker and target for therapy in clinical trials.
Collapse
Affiliation(s)
- Ingmar Rieger
- Department of Oncology, Hematology, Clinical Immunology and Rheumatology, University Hospital Tübingen (UKT), Tübingen, Germany
| | - Vasileia Tsintari
- Department of Oncology, Hematology, Clinical Immunology and Rheumatology, University Hospital Tübingen (UKT), Tübingen, Germany
| | - Mathis Overkamp
- Institute of Pathology at the University Hospital Tübingen, Tübingen, Germany
| | - Falko Fend
- Institute of Pathology at the University Hospital Tübingen, Tübingen, Germany
| | - Charles D Lopez
- Department of Hematology and Medical Oncology, Oregon Health and Science University (OHSU), Portland, OR, United States
| | - Marcus M Schittenhelm
- Clinic of Medical Oncology and Hematology, Cantonal Hospital St. Gallen (KSSG), St. Gallen, Switzerland
| | - Kerstin M Kampa-Schittenhelm
- Department of Oncology, Hematology, Clinical Immunology and Rheumatology, University Hospital Tübingen (UKT), Tübingen, Germany.,Translational Experimental Hematology and Oncology, Medical Research Center and Department of Oncology and Hematology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| |
Collapse
|
14
|
De Souza C, Madden J, Koestler DC, Minn D, Montoya DJ, Minn K, Raetz AG, Zhu Z, Xiao WW, Tahmassebi N, Reddy H, Nelson N, Karnezis AN, Chien J. Effect of the p53 P72R Polymorphism on Mutant TP53 Allele Selection in Human Cancer. J Natl Cancer Inst 2021; 113:1246-1257. [PMID: 33555293 PMCID: PMC8633460 DOI: 10.1093/jnci/djab019] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 01/06/2021] [Accepted: 02/03/2021] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND TP53 mutations occur in more than 50% of cancers. We sought to determine the effect of the intragenic P72R single nucleotide polymorphism (SNP; rs1042522) on the oncogenic properties of mutant p53. METHODS P72R allelic selection in tumors was determined from genotype calls and a Gaussian distributed mixture model. The SNP effect on mutant p53 was determined in p53-negative cancer cell lines. RNA-sequencing, chromatin immunoprecipitation, and survival analysis were performed to describe the SNP effect. All statistical tests were 2-sided. RESULTS Among 409 patients with germline heterozygous P72R SNP who harbored somatic mutations in TP53, we observed a selection bias against missense TP53 mutants encoding the P72 SNP (P = 1.64 x 10-13). Exogenously expressed hotspot p53 mutants with the P72 SNP were negatively selected in cancer cells. Gene expression analyses showed the enrichment of p53 pathway genes and inflammatory genes in cancer cells transduced with mutants encoding P72 SNP. Immune gene signature is enriched in patients harboring missense TP53 mutations with homozygous P72 SNP. These patients have improved overall survival as compared with those with the R72 SNP (P = .04). CONCLUSION This is the largest study demonstrating a selection against the P72 SNP. Missense p53 mutants with the P72 SNP retain partial wild-type tumor-suppressive functions, which may explain the selection bias against P72 SNP across cancer types. Ovarian cancer patients with the P72 SNP have a better prognosis than with the R72 SNP. Our study describes a previously unknown role through which the rs1042522 SNP modifies tumor suppressor activities of mutant p53 in patients.
Collapse
Affiliation(s)
- Cristabelle De Souza
- Department of Biochemistry and Molecular Medicine, UC Davis Medical Center, Sacramento, CA, USA
- University of New Mexico Biomedical Sciences Graduate Program, Albuquerque, NM, USA
- Current affiliation: Stanford University School of Medicine, Institute for Regenerative Medicine and Stem Cell Research, Stanford, CA, USA
| | - Jill Madden
- The Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA, USA
| | - Devin C Koestler
- Department of Biostatistics and Data Science, Kansas University Medical Center, Kansas City, KS, USA
| | - Dennis Minn
- College of Information and Computer Sciences, University of Massachusetts, Amherst, MA, USA
| | - Dennis J Montoya
- Department of Biochemistry and Molecular Medicine, UC Davis Medical Center, Sacramento, CA, USA
| | - Kay Minn
- Novogene Corporation, Sacramento, CA, USA
| | - Alan G Raetz
- Department of Biochemistry and Molecular Medicine, UC Davis Medical Center, Sacramento, CA, USA
| | - Zheng Zhu
- Department of Biochemistry and Molecular Medicine, UC Davis Medical Center, Sacramento, CA, USA
| | - Wen-Wu Xiao
- Department of Biochemistry and Molecular Medicine, UC Davis Medical Center, Sacramento, CA, USA
| | - Neeki Tahmassebi
- Department of Biochemistry and Molecular Medicine, UC Davis Medical Center, Sacramento, CA, USA
| | - Harikumara Reddy
- Department of Biochemistry and Molecular Medicine, UC Davis Medical Center, Sacramento, CA, USA
| | - Nina Nelson
- Department of Biochemistry and Molecular Medicine, UC Davis Medical Center, Sacramento, CA, USA
| | - Anthony N Karnezis
- Department of Pathology and Laboratory Medicine, UC Davis Medical Center, Sacramento, CA, USA
| | - Jeremy Chien
- Department of Biochemistry and Molecular Medicine, UC Davis Medical Center, Sacramento, CA, USA
- Department of Obstetrics and Gynecology, UC Davis Medical Center, Sacramento, CA, USA
| |
Collapse
|
15
|
Ge W, Wang Y, Zheng S, Zhao D, Wang X, Zhang X, Hu Y. Nuclear iASPP determines cell fate by selectively inhibiting either p53 or NF-κB. Cell Death Discov 2021; 7:195. [PMID: 34312379 PMCID: PMC8313550 DOI: 10.1038/s41420-021-00582-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 06/05/2021] [Indexed: 01/15/2023] Open
Abstract
p53 and NF-κBp65 are essential transcription factors (TFs) in the cellular response to stress. Two signaling systems can often be entwined together and generally produce opposing biological outcomes in a cell context-dependent manner. Inhibitor of apoptosis-stimulating protein of p53 (iASPP) has the potential to inhibit both p53 and NF-κBp65, yet how such activities of iASPP are integrated with cancer remains unknown. Here, we utilized different cell models with diverse p53/NF-κBp65 activities. An iASPP(295–828) mutant, which is exclusively located in the nucleus and has been shown to be essential for its inhibitory effects on p53/NF-κBp65, was used to investigate the functional interaction between iASPP and the two TFs. The results showed that iASPP inhibits apoptosis under conditions when p53 is activated, while it can also elicit a proapoptotic effect when NF-κBp65 alone is activated. Furthermore, we demonstrated that iASPP inhibited the transcriptional activity of p53/NF-κBp65, but with a preference toward p53, thereby producing an antiapoptotic outcome when both TFs were simultaneously activated. This may be due to stronger binding between p53 and iASPP than NF-κBp65 and iASPP. Overall, these findings provide important insights into how the activities of p53 and NF-κBp65 are modulated by iASPP. Despite being a well-known oncogene, iASPP may have a proapoptotic role, which will guide the development of iASPP-targeted therapies to reach optimal outcomes in the future.
Collapse
Affiliation(s)
- Wenjie Ge
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150001, China
| | - Yudong Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150001, China
| | - Shanliang Zheng
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150001, China
| | - Dong Zhao
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150001, China
| | - Xingwen Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150001, China
| | - Xiaoshi Zhang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China.
| | - Ying Hu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150001, China. .,Shenzhen Graduate School of Harbin Institute of Technology, Shenzhen, 518055, China.
| |
Collapse
|
16
|
Zhou L, Yang X, Shu S, Wang S, Guo F, Yin Y, Zhou W, Han H, Chai X. Sufentanil Protects the Liver from Ischemia/Reperfusion-Induced Inflammation and Apoptosis by Inhibiting ATF4-Induced TP53BP2 Expression. Inflammation 2021; 44:1160-1174. [PMID: 33751357 DOI: 10.1007/s10753-020-01410-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/18/2020] [Accepted: 12/26/2020] [Indexed: 12/18/2022]
Abstract
Liver ischemia-reperfusion (I/R) injury is a pathological process that often occurs during liver and trauma surgery. This study aimed to investigate the protective effect and potential mechanisms of sufentanil on hepatic I/R injury. I/R rat model and hypoxic/reoxygenation (H/R)-induced buffalo rat liver (BRL)-3A cell model were established. Following pretreatment with sufentanil, the enzymatic activities of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in rat serum and the changes of hepatic histopathology were evaluated to track the extent of liver injury. The levels of inflammatory factors were determined with ELISA kits and RT-qPCR. The infiltration of macrophages was assessed after detecting monocyte chemoattractant protein 1 (MCP-1) and F4/80 expression. Additionally, apoptosis was measured by means of TUNEL staining, and gene expression related to apoptosis was examined using RT-qPCR and western blotting. Then, TP53BP2 was overexpressed in BRL-3A cells exposed to H/R condition to evaluate whether sufentanil defended the liver against injury by regulating TP53BP2 expression. Moreover, the potential binding site of ATF4 on the TP53BP2 promoter was analyzed using JASPAR databases and verified by chromosomal immunoprecipitation (ChIP) assay. Furthermore, TP53BP2 expression and endoplasmic reticulum stress (ERS)-related protein levels were determined after ATF4 was overexpressed in sufentanil-treated BRL-3A cells. Results revealed that sufentanil significantly improved hepatic I/R injury, decreased the levels of inflammatory factors, and alleviated hepatocyte apoptosis. Notably, upregulated TP53BP2 expression was observed in hepatic tissues, and TP53BP2 overexpression markedly reversed the protective effects of sufentanil on the inflammation and apoptosis in H/R-stimulated BRL-3A cells. Additionally, ATF4 was confirmed to combine with the TP53BP2 promoter. ATF4 upregulation attenuated the inhibitory effects of sufentanil on the expression of TP53BP2 and ERS-associated proteins. These findings demonstrated that sufentanil protects the liver from inflammation and apoptosis injury induced by I/R by inhibiting ATF4 expression and further suppressing TP53BP2 expression, suggesting a promising therapeutic candidate for the treatment of liver I/R injury.
Collapse
Affiliation(s)
- Ling Zhou
- Department of Anesthesiology, Anhui Provincial Hospital, Cheeloo College of Medicine, Shangdong University, 17 Lujiang Road, Hefei, 230000, Anhui, China
| | - Xinlu Yang
- Department of Anesthesiology, Anhui Provincial Hospital, Cheeloo College of Medicine, Shangdong University, 17 Lujiang Road, Hefei, 230000, Anhui, China
| | - Shuhua Shu
- Department of Anesthesiology, Anhui Provincial Hospital, Cheeloo College of Medicine, Shangdong University, 17 Lujiang Road, Hefei, 230000, Anhui, China
| | - Sheng Wang
- Department of Anesthesiology, Anhui Provincial Hospital, Cheeloo College of Medicine, Shangdong University, 17 Lujiang Road, Hefei, 230000, Anhui, China
| | - Fenglin Guo
- Department of Anesthesiology, Anhui Provincial Hospital, Cheeloo College of Medicine, Shangdong University, 17 Lujiang Road, Hefei, 230000, Anhui, China
| | - Ying Yin
- Department of Anesthesiology, Anhui Provincial Hospital, Cheeloo College of Medicine, Shangdong University, 17 Lujiang Road, Hefei, 230000, Anhui, China
| | - Weide Zhou
- Department of Anesthesiology, Anhui Provincial Hospital, Cheeloo College of Medicine, Shangdong University, 17 Lujiang Road, Hefei, 230000, Anhui, China
| | - Han Han
- Department of Anesthesiology, Anhui Provincial Hospital, Cheeloo College of Medicine, Shangdong University, 17 Lujiang Road, Hefei, 230000, Anhui, China
| | - Xiaoqing Chai
- Department of Anesthesiology, Anhui Provincial Hospital, Cheeloo College of Medicine, Shangdong University, 17 Lujiang Road, Hefei, 230000, Anhui, China.
| |
Collapse
|
17
|
Liu Z, Xiao Z, Li M, Xiao Y, Wang X, He J, Li Y. Association Between Arg72Pro Polymorphism in TP53 and Malignant Abdominal Solid Tumor Risk in Hunan Children. Cancer Control 2021; 28:10732748211004880. [PMID: 33759598 PMCID: PMC8204553 DOI: 10.1177/10732748211004880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Pediatric solid tumors are heterogeneous and comprise various histological subtypes. TP53, a tumor suppressor, orchestrates the transcriptional activation of anti-cancer genes. The gene coding for this protein is highly polymorphic, and its mutations are associated with cancer development. The Arg72Pro polymorphism in TP53 has been associated with susceptibility to various types of cancer. Here, in this hospital-based study, we evaluated the association of this polymorphism with susceptibility toward malignant abdominal solid tumors in children in the Hunan province of China. We enrolled 162 patients with neuroblastoma, 60 patients with Wilms' tumor, and 28 patients with hepatoblastoma as well as 270 controls. Genotypes were determined using a TaqMan assay, and the strength of the association was assessed using an odds ratio, within a 95% confidence interval identified using logistic regression models. Our results showed that the Arg72Pro polymorphism did not exhibit significant association with susceptibility toward pediatric malignant abdominal solid tumors. Stratification analysis revealed that this polymorphism exerts weak sex- and age-specific effects on Wilms' tumor and hepatoblastoma susceptibility, respectively. Overall, our results indicate that the Arg72Pro polymorphism may have a marginal effect on susceptibility toward pediatric malignant abdominal solid tumors in Hunan, and this finding warrants further confirmation.
Collapse
Affiliation(s)
- Zan Liu
- Department of Pediatric Surgery, Hunan Children’s Hospital, Changsha, Hunan, China
| | - Zhenghui Xiao
- Emergency Center of Hunan Children’s Hospital, Changsha, Hunan, China
| | - Ming Li
- Department of Pediatric Surgery, Hunan Children’s Hospital, Changsha, Hunan, China
| | - Yaling Xiao
- Department of Pediatric Surgery, Hunan Children’s Hospital, Changsha, Hunan, China
| | - Xiyang Wang
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
- Jing He, Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou 510623, China.
| | - Yong Li
- Department of Pediatric Surgery, Hunan Children’s Hospital, Changsha, Hunan, China
- Yong Li, Department of Pediatric Surgery, Hunan Children’s Hospital, 86 Ziyuan Road, Changsha 410004, Hunan, China.
| |
Collapse
|
18
|
The P72R Polymorphism in R248Q/W p53 Mutants Modifies the Mutant Effect on Epithelial to Mesenchymal Transition Phenotype and Cell Invasion via CXCL1 Expression. Int J Mol Sci 2020; 21:ijms21218025. [PMID: 33126568 PMCID: PMC7662892 DOI: 10.3390/ijms21218025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/21/2020] [Accepted: 10/21/2020] [Indexed: 12/18/2022] Open
Abstract
High-grade serous carcinoma (HGSC), the most lethal subtype of epithelial ovarian cancer (EOC), is characterized by widespread TP53 mutations (>90%), most of which are missense mutations (>70%). The objective of this study was to investigate differential transcriptional targets affected by a common germline P72R SNP (rs1042522) in two p53 hotspot mutants, R248Q and R248W, and identify the mechanism through which the P72R SNP affects the neomorphic properties of these mutants. Using isogenic cell line models, transcriptomic analysis, xenografts, and patient data, we found that the P72R SNP modifies the effect of p53 hotspot mutants on cellular morphology and invasion properties. Most importantly, RNA sequencing studies identified CXCL1 a critical factor that is differentially affected by P72R SNP in R248Q and R248W mutants and is responsible for differences in cellular morphology and functional properties observed in these p53 mutants. We show that the mutants with the P72 SNP promote a reversion of the EMT phenotype to epithelial characteristics, whereas its R72 counterpart promotes a mesenchymal transition via the chemokine CXCL1. These studies reveal a new role of the P72R SNP in modulating the neomorphic properties of p53 mutants via CXCL1, which has significant implications for tumor invasion and metastasis.
Collapse
|
19
|
Correlation between P53 Arg72Pro and MDM4 gene rs4245739 polymorphisms in breast cancer. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
20
|
Johnson TG, Schelch K, Lai K, Marzec KA, Kennerson M, Grusch M, Reid G, Burgess A. YB-1 Knockdown Inhibits the Proliferation of Mesothelioma Cells through Multiple Mechanisms. Cancers (Basel) 2020; 12:E2285. [PMID: 32823952 PMCID: PMC7464182 DOI: 10.3390/cancers12082285] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/07/2020] [Accepted: 08/12/2020] [Indexed: 12/29/2022] Open
Abstract
Y-box binding protein-1 (YB-1) is a multifunctional oncoprotein that has been shown to regulate proliferation, invasion and metastasis in a variety of cancer types. We previously demonstrated that YB-1 is overexpressed in mesothelioma cells and its knockdown significantly reduces tumour cell proliferation, migration, and invasion. However, the mechanisms driving these effects are unclear. Here, we utilised an unbiased RNA-seq approach to characterise the changes to gene expression caused by loss of YB-1 knockdown in three mesothelioma cell lines (MSTO-211H, VMC23 and REN cells). Bioinformatic analysis showed that YB-1 knockdown regulated 150 common genes that were enriched for regulators of mitosis, integrins and extracellular matrix organisation. However, each cell line also displayed unique gene expression signatures, that were differentially enriched for cell death or cell cycle control. Interestingly, deregulation of STAT3 and p53-pathways were a key differential between each cell line. Using flow cytometry, apoptosis assays and single-cell time-lapse imaging, we confirmed that MSTO-211H, VMC23 and REN cells underwent either increased cell death, G1 arrest or aberrant mitotic division, respectively. In conclusion, this data indicates that YB-1 knockdown affects a core set of genes in mesothelioma cells. Loss of YB-1 causes a cascade of events that leads to reduced mesothelioma proliferation, dependent on the underlying functionality of the STAT3/p53-pathways and the genetic landscape of the cell.
Collapse
Affiliation(s)
- Thomas G. Johnson
- The Asbestos Diseases Research Institute (ADRI), Concord Hospital, Concord, Sydney 2139, Australia;
- The ANZAC Research Institute, Concord Repatriation General Hospital, Sydney 2139, Australia; (K.L.); (K.A.M.); (M.K.)
- Faculty of Medicine and Health, The University of Sydney Concord Clinical School, Sydney 2139, Australia
- Sydney Catalyst Translational Research Centre, Sydney 2050, Australia
| | - Karin Schelch
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria; (K.S.); (M.G.)
| | - Kaitao Lai
- The ANZAC Research Institute, Concord Repatriation General Hospital, Sydney 2139, Australia; (K.L.); (K.A.M.); (M.K.)
- Faculty of Medicine and Health, The University of Sydney Concord Clinical School, Sydney 2139, Australia
| | - Kamila A. Marzec
- The ANZAC Research Institute, Concord Repatriation General Hospital, Sydney 2139, Australia; (K.L.); (K.A.M.); (M.K.)
| | - Marina Kennerson
- The ANZAC Research Institute, Concord Repatriation General Hospital, Sydney 2139, Australia; (K.L.); (K.A.M.); (M.K.)
- Faculty of Medicine and Health, The University of Sydney Concord Clinical School, Sydney 2139, Australia
- Molecular Medicine Laboratory, Concord Repatriation General Hospital, Sydney 2139, Australia
| | - Michael Grusch
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria; (K.S.); (M.G.)
| | - Glen Reid
- Department of Pathology, The University of Otago, Dunedin 9054, New Zealand;
- The Maurice Wilkins Centre, University of Otago, Dunedin 9054, New Zealand
| | - Andrew Burgess
- The ANZAC Research Institute, Concord Repatriation General Hospital, Sydney 2139, Australia; (K.L.); (K.A.M.); (M.K.)
- Faculty of Medicine and Health, The University of Sydney Concord Clinical School, Sydney 2139, Australia
| |
Collapse
|
21
|
Mayer G, Shpilt Z, Bressler S, Marcu O, Schueler-Furman O, Tshuva EY, Friedler A. Targeting an Interaction Between Two Disordered Domains by Using a Designed Peptide. Chemistry 2020; 26:10240-10249. [PMID: 32181542 DOI: 10.1002/chem.202000465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/14/2020] [Indexed: 11/09/2022]
Abstract
Intrinsically disordered regions in proteins (IDRs) mediate many disease-related protein-protein interactions. However, the unfolded character and continuous conformational changes of IDRs make them difficult to target for therapeutic purposes. Here, we show that a designed peptide based on the disordered p53 linker domain can be used to target a partner IDR from the anti-apoptotic iASPP protein, promoting apoptosis of cancer cells. The p53 linker forms a hairpin-like structure with its two termini in close proximity. We designed a peptide derived from the disordered termini without the hairpin, designated as p53 LinkTer. The LinkTer peptide binds the disordered RT loop of iASPP with the same affinity as the parent p53 linker peptide, and inhibits the p53-iASPP interaction in vitro. The LinkTer peptide shows increased stability to proteolysis, penetrates cancer cells, causes nuclei shrinkage, and compromises the viability of cells. We conclude that a designed peptide comprising only the IDR from a peptide sequence can serve as an improved inhibitor since it binds its target protein without the need for pre-folding, paving the way for therapeutic targeting of IDRs.
Collapse
Affiliation(s)
- Guy Mayer
- The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel
| | - Zohar Shpilt
- The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel
| | - Shachar Bressler
- The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel
| | - Orly Marcu
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ora Schueler-Furman
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Edit Y Tshuva
- The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel
| | - Assaf Friedler
- The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel
| |
Collapse
|
22
|
Increases of iASPP-Keap1 interaction mediated by syringin enhance synaptic plasticity and rescue cognitive impairments via stabilizing Nrf2 in Alzheimer's models. Redox Biol 2020; 36:101672. [PMID: 32828017 PMCID: PMC7452088 DOI: 10.1016/j.redox.2020.101672] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/15/2020] [Accepted: 08/03/2020] [Indexed: 12/30/2022] Open
Abstract
Oxidative stress is an important pathogenic manifestation of Alzheimer's disease (AD) that contributes to synaptic dysfunction, which precedes Aβ accumulation and neurofibrillary tangle formation. However, the molecular machineries that govern the decline of antioxidative defence in AD remains to be elucidated, and effective candidate for AD treatment is limited. Here, we showed that the decreases in the inhibitor of apoptosis-stimulating protein of p53 (iASPP) was associated with the vulnerability to oxidative stress in the amyloid precursor protein (APP)/presenilin 1 (PS1) mouse brain. Treatment with an antioxidant, syringin, could ameliorate AD-related pathologic and behavioural impairments. Interestingly, syringin treatment resulted in an upregulation of iASPP and the increase in the interaction of iASPP with Kelchlike ECH-associating protein 1 (Keap1). Syringin reduced neuronal apoptosis independently of p53. We confirmed that syringin-induced enhancement of antioxidant defenses involved the stabilization of Nrf2 in overexpressing human Swedish mutant APP (APPswe) cells in vitro. Syringin-mediated Nrf2 nuclear translocation facilitated the activation of the Nrf2 downstream genes via iASPP/Nrf2 axis. Our results demonstrate that syringin-mediated increases of iASPP-Keap1 interaction restore cellular redox balance. Further study on the syringin-iASPP interactions may help in understanding the regulatory mechanism and designing novel potent modulators for AD treatment. Poor expression of iASPP is associated with the serious accumulation of β-amyloid. Syringin reduces Aβ production and mitigates cognitive deficits by amending redox. Syringin-caused increases of iASPP facilitate the activation of NADPH and γGCL-C. Syringin protects neuronal cells against oxidative stress via iASPP/Nrf2 axis.
Collapse
|
23
|
Neykova K, Tosto V, Giardina I, Tsibizova V, Vakrilov G. Endometrial receptivity and pregnancy outcome. J Matern Fetal Neonatal Med 2020; 35:2591-2605. [PMID: 32744104 DOI: 10.1080/14767058.2020.1787977] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Human implantation is a highly complex and multifactorial process. Successful implantation requires the presence of a healthy embryo, a receptive endometrium, and a synchronized molecular dialogue between the two, as well as immune tolerance/protection from the host. The endometrial receptivity refers to a hormonally limited period in which the endometrial tissue acquires a transient functional status allowing blastocyst implantation and pregnancy initiation. Global knowledge of endometrial receptivity grew up in recent years. Improvements in genetics, new biomarkers, noninvasive methods, new advanced techniques (Endometrial receptivity assay - the ERA system, proteomic analysis) offer the possibility to evaluate the endometrial status and to manage patients with infertility problems, especially women undergoing assisted reproductive treatment. This overview reports the most relevant knowledge and recent advances in the study of implantation processes from the perspective of the endometrium, often considered as being the main barrier for a successful pregnancy initiation. Endometrial receptivity is a topic of great interest and further studies are needed for the early identification of endometrial abnormalities and the discovery of new strategies for increasing the chance for the establishment of pregnancy.
Collapse
Affiliation(s)
- Konstantsa Neykova
- Department of Reproductive Medicine, "Maichin Dom" State University Hospital, Sofia, Bulgaria
| | - Valentina Tosto
- Department of Obstetrics and Gynecology, Centre for Perinatal and Reproductive Medicine, University of Perugia, Perugia, Italy
| | - Irene Giardina
- Department of Obstetrics and Gynecology, Centre for Perinatal and Reproductive Medicine, University of Perugia, Perugia, Italy
| | - Valentina Tsibizova
- Almazov National Medical Research Centre, St Petetrsburg, Russian Federation
| | - Georgi Vakrilov
- Department of Reproductive Medicine, "Maichin Dom" State University Hospital, Sofia, Bulgaria
| |
Collapse
|
24
|
Zhang WL, Zhu ZL, Huang MC, Tang YJ, Tang YL, Liang XH. Susceptibility of Multiple Primary Cancers in Patients With Head and Neck Cancer: Nature or Nurture? Front Oncol 2019; 9:1275. [PMID: 31824853 PMCID: PMC6882292 DOI: 10.3389/fonc.2019.01275] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/04/2019] [Indexed: 02/05/2023] Open
Abstract
Multiple primary cancers (MPCs) are major obstacles to long-term survival in head and neck cancer (HNSCC), however, the molecular mechanism underlying multiple carcinogenesis remains unclear. “Field cancerization” is a classical theory to elaborate the malignant progression of MPCs. Apart from environmental and immune factors, genetic factors may have great potential as molecular markers for MPCs risk prediction. This review focuses on inherited and acquired gene mutations in MPCs, including germ-line mutation, single-nucleotide polymorphism, chromosomal instability, microsatellite instability and DNA methylation. And definition and prognosis of MPCs have also been discussed. These may pave the way for the early detection, prevention and effective treatment of MPCs in HNSCC.
Collapse
Affiliation(s)
- Wei-Long Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhuo-Li Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mei-Chang Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ya-Jie Tang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Ya-Ling Tang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin-Hua Liang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
25
|
Chen S, Wu J, Zhong S, Li Y, Zhang P, Ma J, Ren J, Tan Y, Wang Y, Au KF, Siebold C, Bond GL, Chen Z, Lu M, Jones EY, Lu X. iASPP mediates p53 selectivity through a modular mechanism fine-tuning DNA recognition. Proc Natl Acad Sci U S A 2019; 116:17470-17479. [PMID: 31395738 PMCID: PMC6717262 DOI: 10.1073/pnas.1909393116] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The most frequently mutated protein in human cancer is p53, a transcription factor (TF) that regulates myriad genes instrumental in diverse cellular outcomes including growth arrest and cell death. Cell context-dependent p53 modulation is critical for this life-or-death balance, yet remains incompletely understood. Here we identify sequence signatures enriched in genomic p53-binding sites modulated by the transcription cofactor iASPP. Moreover, our p53-iASPP crystal structure reveals that iASPP displaces the p53 L1 loop-which mediates sequence-specific interactions with the signature-corresponding base-without perturbing other DNA-recognizing modules of the p53 DNA-binding domain. A TF commonly uses multiple structural modules to recognize its cognate DNA, and thus this mechanism of a cofactor fine-tuning TF-DNA interactions through targeting a particular module is likely widespread. Previously, all tumor suppressors and oncoproteins that associate with the p53 DNA-binding domain-except the oncogenic E6 from human papillomaviruses (HPVs)-structurally cluster at the DNA-binding site of p53, complicating drug design. By contrast, iASPP inhibits p53 through a distinct surface overlapping the E6 footprint, opening prospects for p53-targeting precision medicine to improve cancer therapy.
Collapse
Affiliation(s)
- Shuo Chen
- Ludwig Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Jiale Wu
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shan Zhong
- Ludwig Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Yuntong Li
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ping Zhang
- Ludwig Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Jingyi Ma
- Ludwig Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Jingshan Ren
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Yun Tan
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yunhao Wang
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242
| | - Kin Fai Au
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242
- Department of Biostatistics, University of Iowa, Iowa City, IA 52242
| | - Christian Siebold
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Gareth L Bond
- Ludwig Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Zhu Chen
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;
| | - Min Lu
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;
| | - E Yvonne Jones
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom;
| | - Xin Lu
- Ludwig Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, United Kingdom;
| |
Collapse
|
26
|
Zhou Y, Millott R, Kim HJ, Peng S, Edwards RA, Skene-Arnold T, Hammel M, Lees-Miller SP, Tainer JA, Holmes CFB, Glover JNM. Flexible Tethering of ASPP Proteins Facilitates PP-1c Catalysis. Structure 2019; 27:1485-1496.e4. [PMID: 31402222 DOI: 10.1016/j.str.2019.07.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 06/14/2019] [Accepted: 07/22/2019] [Indexed: 12/15/2022]
Abstract
ASPP (apoptosis-stimulating proteins of p53) proteins bind PP-1c (protein phosphatase 1) and regulate p53 impacting cancer cell growth and apoptosis. Here we determine the crystal structure of the oncogenic ASPP protein, iASPP, bound to PP-1c. The structure reveals a 1:1 complex that relies on interactions of the iASPP SILK and RVxF motifs with PP-1c, plus interactions of the PP-1c PxxPxR motif with the iASPP SH3 domain. Small-angle X-ray scattering analyses suggest that the crystal structure undergoes slow interconversion with more extended conformations in solution. We show that iASPP, and the tumor suppressor ASPP2, enhance the catalytic activity of PP-1c against the small-molecule substrate, pNPP as well as p53. The combined results suggest that PxxPxR binding to iASPP SH3 domain is critical for complex formation, and that the modular ASPP-PP-1c interface provides dynamic flexibility that enables functional binding and dephosphorylation of p53 and other diverse protein substrates.
Collapse
Affiliation(s)
- Yeyun Zhou
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Robyn Millott
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Hyeong Jin Kim
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Shiyun Peng
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Ross A Edwards
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Tamara Skene-Arnold
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Michal Hammel
- Molecular Biophysics & Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Susan P Lees-Miller
- Department of Biochemistry and Molecular Biology, Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada
| | - John A Tainer
- Molecular Biophysics & Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Charles F B Holmes
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| | - J N Mark Glover
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|
27
|
Epigenetic Regulation of iASPP-p63 Feedback Loop in Cutaneous Squamous Cell Carcinoma. J Invest Dermatol 2019; 139:1658-1671.e8. [DOI: 10.1016/j.jid.2019.01.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 01/09/2019] [Accepted: 01/09/2019] [Indexed: 01/09/2023]
|
28
|
Xiao Y, Zhang S, Li Q, Liu Z, Mai W, Chen W, Lei J, Hu H. miR-219a-5p Ameliorates Hepatic Ischemia/Reperfusion Injury via Impairing TP53BP2. Dig Dis Sci 2019; 64:2177-2186. [PMID: 30796685 DOI: 10.1007/s10620-019-05535-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 02/14/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Hepatic ischemia/reperfusion (I/R) injury is a serious complication that occurs upon hypovolemic shock, liver resection, and transplantation. A significant age-dependent difference in the injury response to hepatic I/R in both human and animal models has been reported. Nevertheless, the molecular mechanism is currently unclear. AIMS To clarify the reason why aged animals or people were more vulnerable to hepatic I/R injury. METHODS In the present study, we found decreased miR-219a-5p expression in the old mice more vulnerable to hepatic I/R injury. Administrated with agomir-miR-219a-5p diminished the severity of hepatic I/R injury in old mice, as indicated by lower serum ALT and AST, oxidative parameters including MDA, TOA, and OSI, and decreased apoptotic cell number. The effect of miR-219a-5p was also confirmed in the H2O2-induced apoptosis model in AML-12 and NCTC1469 cells. After miR-219a-5p overexpression, two key apoptosis-related proteins Bax and P21, target genes of TP53, were decreased. Furthermore, TP53BP2 interacts with p53 family members and promotes their transcriptional activities toward pro-apoptosis genes. RESULTS RNA sequencing, western blot, and luciferase reporter assay proved that TP53BP2, a crucial TP53 transcriptional activity enhancer in vivo, was directly regulated by miR-219a-5p. CONCLUSIONS In summary, our study demonstrated that age-related miR-219a-5p can attenuate hepatic I/R injury through inhibiting TP53BP2 and downstream TP53-dependent apoptosis of hepatic cells in mice.
Collapse
Affiliation(s)
- Yu Xiao
- Department of Anesthesiology, Jiangxi Provincial Children's Hospital, 122 Yangming Road, Nanchang, 330006, Jiangxi Province, China
| | - Shouhua Zhang
- Department of General Surgery, Jiangxi Provincial Children's Hospital, Nanchang, 330006, Jiangxi Province, China
| | - Qiang Li
- Department of Anesthesiology, Jiangxi Provincial Children's Hospital, 122 Yangming Road, Nanchang, 330006, Jiangxi Province, China
| | - Zhiwen Liu
- Department of General Surgery, Jiangxi Provincial Children's Hospital, Nanchang, 330006, Jiangxi Province, China
| | - Wenli Mai
- Department of Oncology, Jiangxi Provincial Cancer Hospital, Nanchang, 330029, China
| | - Wen Chen
- Department of Oncology, Jiangxi Provincial Cancer Hospital, Nanchang, 330029, China
| | - Jun Lei
- Department of General Surgery, Jiangxi Provincial Children's Hospital, Nanchang, 330006, Jiangxi Province, China
| | - Huakun Hu
- Department of Anesthesiology, Jiangxi Provincial Children's Hospital, 122 Yangming Road, Nanchang, 330006, Jiangxi Province, China.
| |
Collapse
|
29
|
Bowen ME, McClendon J, Long HK, Sorayya A, Van Nostrand JL, Wysocka J, Attardi LD. The Spatiotemporal Pattern and Intensity of p53 Activation Dictates Phenotypic Diversity in p53-Driven Developmental Syndromes. Dev Cell 2019; 50:212-228.e6. [PMID: 31178404 PMCID: PMC6650355 DOI: 10.1016/j.devcel.2019.05.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 03/14/2019] [Accepted: 05/03/2019] [Indexed: 12/11/2022]
Abstract
Inappropriate activation of the p53 transcription factor contributes to numerous developmental syndromes characterized by distinct constellations of phenotypes. How p53 drives exquisitely specific sets of symptoms in diverse syndromes, however, remains enigmatic. Here, we deconvolute the basis of p53-driven developmental syndromes by leveraging an array of mouse strains to modulate the spatial expression pattern, temporal profile, and magnitude of p53 activation during embryogenesis. We demonstrate that inappropriate p53 activation in the neural crest, facial ectoderm, anterior heart field, and endothelium induces distinct spectra of phenotypes. Moreover, altering the timing and degree of p53 hyperactivation substantially affects the phenotypic outcomes. Phenotypes are associated with p53-driven cell-cycle arrest or apoptosis, depending on the cell type, with gene expression programs, rather than extent of mitochondrial priming, largely governing the specific response. Together, our findings provide a critical framework for decoding the role of p53 as a mediator of diverse developmental syndromes.
Collapse
Affiliation(s)
- Margot E Bowen
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jacob McClendon
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Hannah K Long
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Aryo Sorayya
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jeanine L Van Nostrand
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Joanna Wysocka
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institue, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Laura D Attardi
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
30
|
Meirson T, Bomze D, Kahlon L, Gil-Henn H, Samson AO. A helical lock and key model of polyproline II conformation with SH3. Bioinformatics 2019; 36:154-159. [DOI: 10.1093/bioinformatics/btz527] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/09/2019] [Accepted: 06/24/2019] [Indexed: 11/12/2022] Open
Abstract
Abstract
Motivation
More than half of the human proteome contains the proline-rich motif, PxxP. This motif has a high propensity for adopting a left-handed polyproline II (PPII) helix and can potentially bind SH3 domains. SH3 domains are generally grouped into two classes, based on whether the PPII binds in a positive (N-to-C terminal) or negative (C-to-N terminal) orientation. Since the discovery of this structural motif, over six decades ago, a systematic understanding of its binding remains poor and the consensus amino acid sequence that binds SH3 domains is still ill defined.
Results
Here, we show that the PPII interaction with SH3 domains is governed by the helix backbone and its prolines, and their rotation angle around the PPII helical axis. Based on a geometric analysis of 131 experimentally solved SH3 domains in complex with PPIIs, we observed a rotary translation along the helical screw axis, and separated them by 120° into three categories we name α (0–120°), β (120–240°) and γ (240–360°). Furthermore, we found that PPII helices are distinguished by a shifting PxxP motif preceded by positively charged residues which act as a structural reading frame and dictates the organization of SH3 domains; however, there is no one single consensus motif for all classified PPIIs. Our results demonstrate a remarkable apparatus of a lock with a rotating and translating key with no known equivalent machinery in molecular biology. We anticipate our model to be a starting point for deciphering the PPII code, which can unlock an exponential growth in our understanding of the relationship between protein structure and function.
Availability and implementation
We have implemented the proposed methods in the R software environment and in an R package freely available at https://github.com/Grantlab/bio3d.
Supplementary information
Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Tomer Meirson
- Drug Discovery Laboratory, The Azrieli Faculty of Medicine, Safed 1589, Israel
- Laboratory of Cell Migration and Invasion, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1589, Israel
| | - David Bomze
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 39040, Israel
| | - Liron Kahlon
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1589, Israel
| | - Hava Gil-Henn
- Laboratory of Cell Migration and Invasion, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1589, Israel
| | - Abraham O Samson
- Drug Discovery Laboratory, The Azrieli Faculty of Medicine, Safed 1589, Israel
| |
Collapse
|
31
|
Schittenhelm MM, Walter B, Tsintari V, Federmann B, Bajrami Saipi M, Akmut F, Illing B, Mau-Holzmann U, Fend F, Lopez CD, Kampa-Schittenhelm KM. Alternative splicing of the tumor suppressor ASPP2 results in a stress-inducible, oncogenic isoform prevalent in acute leukemia. EBioMedicine 2019; 42:340-351. [PMID: 30952616 PMCID: PMC6491939 DOI: 10.1016/j.ebiom.2019.03.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/10/2019] [Accepted: 03/11/2019] [Indexed: 01/01/2023] Open
Abstract
Background Apoptosis-stimulating Protein of TP53-2 (ASPP2) is a tumor suppressor enhancing TP53-mediated apoptosis via binding to the TP53 core domain. TP53 mutations found in cancers disrupt ASPP2 binding, arguing for an important role of ASPP2 in TP53-mediated tumor suppression. We now identify an oncogenic splicing variant, ASPP2κ, with high prevalence in acute leukemia. Methods An mRNA screen to detect ASPP2 splicing variants was performed and ASPP2κ was validated using isoform-specific PCR approaches. Translation into a genuine protein isoform was evaluated after establishing epitope-specific antibodies. For functional studies cell models with forced expression of ASPP2κ or isoform-specific ASPP2κ-interference were created to evaluate proliferative, apoptotic and oncogenic characteristics of ASPP2κ. Findings Exon skipping generates a premature stop codon, leading to a truncated C-terminus, omitting the TP53-binding sites. ASPP2κ translates into a dominant-negative protein variant impairing TP53-dependent induction of apoptosis. ASPP2κ is expressed in CD34+ leukemic progenitor cells and functional studies argue for a role in early oncogenesis, resulting in perturbed proliferation and impaired induction of apoptosis, mitotic failure and chromosomal instability (CIN) – similar to TP53 mutations. Importantly, as expression of ASPP2κ is stress-inducible it defines a novel class of dynamic oncogenes not represented by genomic mutations. Interpretation Our data demonstrates that ASPP2κ plays a distinctive role as an antiapoptotic regulator of the TP53 checkpoint, rendering cells to a more aggressive phenotype as evidenced by proliferation and apoptosis rates – and ASPP2κ expression results in acquisition of genomic mutations, a first initiating step in leukemogenesis. We provide proof-of-concept to establish ASPP2κ as a clinically relevant biomarker and a target for molecule-defined therapy. Fund Unrestricted grant support from the Wilhelm Sander Foundation for Cancer Research, the IZKF Program of the Medical Faculty Tübingen, the Brigitte Schlieben-Lange Program and the Margarete von Wrangell Program of the State Ministry Baden-Wuerttemberg for Science, Research and Arts and the Athene Program of the excellence initiative of the Eberhard-Karls University, Tübingen.
Collapse
Affiliation(s)
- Marcus Matthias Schittenhelm
- Department of Oncology, Hematology, Rheumatology, Immunology and Pulmology, University Hospital Tübingen, Germany
| | - Bianca Walter
- Department of Oncology, Hematology, Rheumatology, Immunology and Pulmology, University Hospital Tübingen, Germany
| | - Vasileia Tsintari
- Department of Oncology, Hematology, Rheumatology, Immunology and Pulmology, University Hospital Tübingen, Germany
| | - Birgit Federmann
- Institute of General and Molecular Pathology and Pathological Anatomy, University Hospital Tübingen, Germany
| | - Mihada Bajrami Saipi
- Department of Oncology, Hematology, Rheumatology, Immunology and Pulmology, University Hospital Tübingen, Germany
| | - Figen Akmut
- Department of Oncology, Hematology, Rheumatology, Immunology and Pulmology, University Hospital Tübingen, Germany
| | - Barbara Illing
- Department of Oncology, Hematology, Rheumatology, Immunology and Pulmology, University Hospital Tübingen, Germany
| | | | - Falko Fend
- Institute of General and Molecular Pathology and Pathological Anatomy, University Hospital Tübingen, Germany
| | - Charles Darin Lopez
- Department of Hematology and Medical Oncology, Oregon Health and Science University, Portland, OR, United States of America
| | | |
Collapse
|
32
|
Cabezas M, García-Quevedo L, Alonso C, Manubens M, Álvarez Y, Barquinero JF, Ramón Y Cajal S, Ortega M, Blanco A, Caballín MR, Armengol G. Polymorphisms in MDM2 and TP53 Genes and Risk of Developing Therapy-Related Myeloid Neoplasms. Sci Rep 2019; 9:150. [PMID: 30655613 PMCID: PMC6336808 DOI: 10.1038/s41598-018-36931-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 11/22/2018] [Indexed: 12/28/2022] Open
Abstract
One of the most severe complications after successful cancer therapy is the development of therapy-related myeloid neoplasms (t-MN). Constitutional genetic variation is likely to impact on t-MN risk. We aimed to evaluate if polymorphisms in the p53 pathway can be useful for predicting t-MN susceptibility. First, an association study revealed that the Pro variant of the TP53 Arg72Pro polymorphism and the G allele of the MDM2 SNP309 were associated with t-MN risk. The Arg variant of TP53 is more efficient at inducing apoptosis, whereas the Pro variant is a more potent inductor of cell cycle arrest and DNA repair. As regards MDM2 SNP309, the G allele is associated with attenuation of the p53 apoptotic response. Second, to evaluate the biological effect of the TP53 polymorphism, we established Jurkat isogenic cell lines expressing p53Arg or p53Pro. Jurkat p53Arg cells presented higher DNA damage and higher apoptotic potential than p53Pro cells, after treatment with chemotherapy agents. Only p53Pro cells presented t(15;17) translocation and del(5q). We suggest that failure to repair DNA lesions in p53Arg cells would lead them to apoptosis, whereas some p53Pro cells, prone to cell cycle arrest and DNA repair, could undergo misrepair, generating chromosomal abnormalities typical of t-MN.
Collapse
Affiliation(s)
- Maria Cabezas
- Unit of Biological Anthropology, Department of Animal Biology, Plant Biology and Ecology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193, Bellaterra, Catalonia, Spain
| | - Lydia García-Quevedo
- Unit of Biological Anthropology, Department of Animal Biology, Plant Biology and Ecology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193, Bellaterra, Catalonia, Spain
| | - Cintia Alonso
- Unit of Biological Anthropology, Department of Animal Biology, Plant Biology and Ecology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193, Bellaterra, Catalonia, Spain
| | - Marta Manubens
- Unit of Biological Anthropology, Department of Animal Biology, Plant Biology and Ecology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193, Bellaterra, Catalonia, Spain
| | - Yolanda Álvarez
- Unit of Biological Anthropology, Department of Animal Biology, Plant Biology and Ecology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193, Bellaterra, Catalonia, Spain
| | - Joan Francesc Barquinero
- Unit of Biological Anthropology, Department of Animal Biology, Plant Biology and Ecology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193, Bellaterra, Catalonia, Spain
| | - Santiago Ramón Y Cajal
- Department of Pathology, Vall d'Hebron University Hospital, 08035, Barcelona, Catalonia, Spain.,Spanish Biomedical Research Network Centre in Oncology (CIBERONC), Barcelona, Catalonia, Spain
| | - Margarita Ortega
- Department of Hematology, Vall d'Hebron University Hospital, 08035, Barcelona, Catalonia, Spain
| | - Adoración Blanco
- Department of Hematology, Vall d'Hebron University Hospital, 08035, Barcelona, Catalonia, Spain
| | - María Rosa Caballín
- Unit of Biological Anthropology, Department of Animal Biology, Plant Biology and Ecology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193, Bellaterra, Catalonia, Spain
| | - Gemma Armengol
- Unit of Biological Anthropology, Department of Animal Biology, Plant Biology and Ecology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193, Bellaterra, Catalonia, Spain.
| |
Collapse
|
33
|
Zhang J, Yang Y, Li W, Yan L, Zhang D, He J, Wang J. TP53 gene rs1042522 allele G decreases neuroblastoma risk: a two-centre case-control study. J Cancer 2019; 10:467-471. [PMID: 30719141 PMCID: PMC6360307 DOI: 10.7150/jca.27482] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 12/08/2018] [Indexed: 02/07/2023] Open
Abstract
The TP53 gene plays a crucial role in the prevention of cancer formation, which is closely related to TP53 mutation. TP53 gene polymorphism rs1042522 C>G was largely investigated in various cancers, but its contribution to neuroblastoma is as yet undefined. Here, we evaluated the effect of the TP53 gene rs1042522 C>G polymorphism on the development of neuroblastoma in two different regions, with patients from hospitals in both North and South China. The clinical data involved 374 patients and 812 controls. The resulting odds ratios (ORs) and 95% confidence intervals (CIs) were used with a logistic regression model to determine the intensity of associations between the factors of interest. We found that the TP53 gene rs1042522 allele G was associated with a reduced risk of developing neuroblastoma. In our stratified analysis of age, sex, primary sites and clinical stages, we observed that male children, older than 18 months, with tumours derived from the mediastinum who had the rs1042522 CG/GG genotypes were at a decreased risk of developing neuroblastoma. These results indicate that the TP53 gene rs1042522 allele G may be a potential protective factor against neuroblastoma in Chinese children.
Collapse
Affiliation(s)
- Jiao Zhang
- Department of Pediatric Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
- ✉ Corresponding authors: Jiao Zhang, Department of Pediatric Surgery, the First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou 450052, Henan, China, Tel./Fax: (+86- 0371) 66279071, e-mail: ; Jing He, Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou 510623, Guangdong, China, Tel./Fax: (+86-020) 38076560, e-mail:
| | - Yang Yang
- Department of Pediatric Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Wenya Li
- Department of Pediatric Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Lizhao Yan
- Department of Pediatric Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Da Zhang
- Department of Pediatric Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
- ✉ Corresponding authors: Jiao Zhang, Department of Pediatric Surgery, the First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou 450052, Henan, China, Tel./Fax: (+86- 0371) 66279071, e-mail: ; Jing He, Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou 510623, Guangdong, China, Tel./Fax: (+86-020) 38076560, e-mail:
| | - Jiaxiang Wang
- Department of Pediatric Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| |
Collapse
|
34
|
Chan Y, Zhu B, Zhang J, Luo Y, Tang W. Associations Between TP53 and MDM2 Polymorphisms and the Follicle-Stimulating Hormone/Luteinizing Hormone Ratio in Infertile Women. Genet Test Mol Biomarkers 2018; 22:405-412. [PMID: 29957069 DOI: 10.1089/gtmb.2017.0260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
AIMS This is a follow-up study based on the results of our previous article, to further explore the effect of the TP53 codon 72 (rs1042522) and MDM2 SNP309 (rs2279744) polymorphisms on basal follicle-stimulating hormone (FSH)/luteinizing hormone (LH) ratios in infertility women. MATERIALS AND METHODS The distribution of two genetic polymorphisms (rs1042522 and rs2279744) and basal FSH/LH ratios were tested and analyzed in 1051 in vitro fertilization (IVF) patients at a university-affiliated hospital. RESULTS The TP53 codon 72 polymorphism had a significant association with the FSH/LH ratio (group I: FSH/LH <2.3 and group II: FSH/LH ≥2.3) (C/C vs. G/G: odds ratio [OR] = 1.69, 95% confidence interval [CI]: 1.07-2.65, p = 0.02; G/C vs. G/G: OR = 1.86, 95% CI: 1.25-2.77, p = 0.002). In a stratification analysis, C allele carriers and the C/C genotype showed a strong association with positive clinical pregnancy outcomes after IVF compared with G allele carriers and the G/G genotype in the recessive, dominant, and allelic genetic models in group I (C/C vs. G/G: OR = 1.84, 95% CI: 1.25-2.69, p = 0.01; C/C vs. G carrier: OR = 1.52, 95% CI: 1.12-2.07, p = 0.01; C carrier vs. G/G: OR = 1.46, 95% CI: 1.07-2.01, p = 0.02; C allele vs. G allele: OR = 1.34, 95% CI: 1.11-1.62, p = 0.003), no significant associations by stratification were observed for group II. No associations were found between MDM2 SNP309 and either of two groups. CONCLUSION The TP53 codon 72 polymorphism is associated with FSH/LH ratios, suggesting that it is a potential predictive genetic marker of IVF outcome in patients younger than 35 years of age with baseline FSH levels below 10 IU/L and who have an FSH/LH ratio <2.3.
Collapse
Affiliation(s)
- Ying Chan
- 1 Department of Gynecology and Obstetrics, First People's Hospital of Yunnan Province , Kunming, China .,2 Lab of Molecular Genetics of Aging and Tumor, Faculty of Medicine, Kunming University of Science and Technology , Kunming, China .,3 Department of Reproductive Medicine, The Second Hospital Affiliated Kunming Medical University , Kunming, China
| | - Baosheng Zhu
- 1 Department of Gynecology and Obstetrics, First People's Hospital of Yunnan Province , Kunming, China
| | - Jinman Zhang
- 1 Department of Gynecology and Obstetrics, First People's Hospital of Yunnan Province , Kunming, China
| | - Ying Luo
- 2 Lab of Molecular Genetics of Aging and Tumor, Faculty of Medicine, Kunming University of Science and Technology , Kunming, China
| | - Wenru Tang
- 2 Lab of Molecular Genetics of Aging and Tumor, Faculty of Medicine, Kunming University of Science and Technology , Kunming, China
| |
Collapse
|
35
|
Akhter N, Dar SA, Chattopadhyay S, Haque S, Anwer R, Wahid M, Jawed A, Lohani M, Mandal RK, Shukla NK, Abdul Y, Husain SA. Impact of p53 arg72pro SNP on Breast Cancer Risk in North Indian Population. Curr Genomics 2018; 19:395-410. [PMID: 30065615 PMCID: PMC6030857 DOI: 10.2174/1389202919666171205104137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 10/25/2017] [Accepted: 10/26/2017] [Indexed: 12/31/2022] Open
Abstract
Background: Genetic changes in p53 gene contribute to breast cancer susceptibility. Objective and Methods: A case-control study and a meta-analysis were performed to investigate the role of p53 codon72 SNP with breast cancer susceptibility in Indian women. Results: p53 heterozygous arginine variant was associated with decreased risk of breast cancer in total cohort. In meta-analysis, Allelic and GG vs. CC genetic comparison model were found to be associated with breast cancer risk. Moreover, recessive comparison model indicated a protective correlation with breast cancer occurrence. Conclusion: The findings of our case-control study and meta-analysis suggest a significant association between p53 Arg72Pro polymorphism and an increased risk of breast cancer in Indian population.
Collapse
Affiliation(s)
- Naseem Akhter
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Albaha University, Albaha, Saudi Arabia.,Department of Biosciences, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi-110025, India
| | - Sajad A Dar
- Research and Scientific Studies Unit, College of Nursing & Allied Health Sciences, Jazan University, Jazan-45142, Saudi Arabia
| | - Shilpi Chattopadhyay
- Department of Biosciences, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi-110025, India
| | - Shafiul Haque
- Department of Biosciences, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi-110025, India.,Research and Scientific Studies Unit, College of Nursing & Allied Health Sciences, Jazan University, Jazan-45142, Saudi Arabia
| | - Razique Anwer
- Department of Anatomy, College of Medicine, Al Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Mohd Wahid
- Department of Biosciences, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi-110025, India.,Research and Scientific Studies Unit, College of Nursing & Allied Health Sciences, Jazan University, Jazan-45142, Saudi Arabia
| | - Arshad Jawed
- Research and Scientific Studies Unit, College of Nursing & Allied Health Sciences, Jazan University, Jazan-45142, Saudi Arabia
| | - Mohtashim Lohani
- Research and Scientific Studies Unit, College of Nursing & Allied Health Sciences, Jazan University, Jazan-45142, Saudi Arabia.,Department of Biosciences, Integral University, Lucknow - 226026, Uttar Pradesh, India
| | - Raju K Mandal
- Research and Scientific Studies Unit, College of Nursing & Allied Health Sciences, Jazan University, Jazan-45142, Saudi Arabia
| | | | | | - Syed Akhtar Husain
- Department of Biosciences, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi-110025, India
| |
Collapse
|
36
|
Dreussi E, Ecca F, Scarabel L, Gagno S, Toffoli G. Immunogenetics of prostate cancer: a still unexplored field of study. Pharmacogenomics 2018; 19:263-283. [PMID: 29325503 DOI: 10.2217/pgs-2017-0163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The immune system is a double-edged sword with regard to the prostate cancer (PCa) battle. Immunogenetics, the study of the potential role of immune-related polymorphisms, is taking its first steps in the treatment of this malignancy. This review summarizes the most recent papers addressing the potential of immunogenetics in PCa, reporting immune-related polymorphisms associated with tumor aggressiveness, treatment toxicity and patients' prognosis. With some peculiarities, RNASEL, IL-6, IL-10, IL-1β and MMP7 have arisen as the most significant biomarkers in PCa treatment and management, having a potential clinical role. Validation prospective clinical studies are required to translate immunogenetics into precision treatment of PCa.
Collapse
Affiliation(s)
- Eva Dreussi
- Department of Experimental & Clinical Pharmacology, Centro di Riferimento Oncologico, National Cancer Institute, Aviano, 33081, Italy
| | - Fabrizio Ecca
- Department of Experimental & Clinical Pharmacology, Centro di Riferimento Oncologico, National Cancer Institute, Aviano, 33081, Italy
| | - Lucia Scarabel
- Department of Experimental & Clinical Pharmacology, Centro di Riferimento Oncologico, National Cancer Institute, Aviano, 33081, Italy
| | - Sara Gagno
- Department of Experimental & Clinical Pharmacology, Centro di Riferimento Oncologico, National Cancer Institute, Aviano, 33081, Italy
| | - Giuseppe Toffoli
- Department of Experimental & Clinical Pharmacology, Centro di Riferimento Oncologico, National Cancer Institute, Aviano, 33081, Italy
| |
Collapse
|
37
|
Falik-Zaccai TC, Barsheshet Y, Mandel H, Segev M, Lorber A, Gelberg S, Kalfon L, Ben Haroush S, Shalata A, Gelernter-Yaniv L, Chaim S, Raviv Shay D, Khayat M, Werbner M, Levi I, Shoval Y, Tal G, Shalev S, Reuveni E, Avitan-Hersh E, Vlodavsky E, Appl-Sarid L, Goldsher D, Bergman R, Segal Z, Bitterman-Deutsch O, Avni O. Sequence variation in PPP1R13L results in a novel form of cardio-cutaneous syndrome. EMBO Mol Med 2017; 9:319-336. [PMID: 28069640 PMCID: PMC5331242 DOI: 10.15252/emmm.201606523] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Dilated cardiomyopathy (DCM) is a life-threatening disorder whose genetic basis is heterogeneous and mostly unknown. Five Arab Christian infants, aged 4-30 months from four families, were diagnosed with DCM associated with mild skin, teeth, and hair abnormalities. All passed away before age 3. A homozygous sequence variation creating a premature stop codon at PPP1R13L encoding the iASPP protein was identified in three infants and in the mother of the other two. Patients' fibroblasts and PPP1R13L-knocked down human fibroblasts presented higher expression levels of pro-inflammatory cytokine genes in response to lipopolysaccharide, as well as Ppp1r13l-knocked down murine cardiomyocytes and hearts of Ppp1r13l-deficient mice. The hypersensitivity to lipopolysaccharide was NF-κB-dependent, and its inducible binding activity to promoters of pro-inflammatory cytokine genes was elevated in patients' fibroblasts. RNA sequencing of Ppp1r13l-knocked down murine cardiomyocytes and of hearts derived from different stages of DCM development in Ppp1r13l-deficient mice revealed the crucial role of iASPP in dampening cardiac inflammatory response. Our results determined PPP1R13L as the gene underlying a novel autosomal-recessive cardio-cutaneous syndrome in humans and strongly suggest that the fatal DCM during infancy is a consequence of failure to regulate transcriptional pathways necessary for tuning cardiac threshold response to common inflammatory stressors.
Collapse
Affiliation(s)
- Tzipora C Falik-Zaccai
- Institute of Human Genetics, Galilee Medical Center, Nahariya, Israel .,Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel
| | - Yiftah Barsheshet
- Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel
| | - Hanna Mandel
- Metabolic Disease Unit, Rambam Health Care Campus, Haifa, Israel.,Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Meital Segev
- Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel
| | - Avraham Lorber
- Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel.,Department of Pediatric Cardiology, Rambam Health Care Campus, Haifa, Israel
| | - Shachaf Gelberg
- Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel
| | - Limor Kalfon
- Institute of Human Genetics, Galilee Medical Center, Nahariya, Israel
| | - Shani Ben Haroush
- Institute of Human Genetics, Galilee Medical Center, Nahariya, Israel
| | - Adel Shalata
- The Winter Genetic Institute, Bnei Zion Medical Center, Haifa, Israel
| | | | - Sarah Chaim
- Institute of Human Genetics, Galilee Medical Center, Nahariya, Israel
| | - Dorith Raviv Shay
- Institute of Human Genetics, Galilee Medical Center, Nahariya, Israel
| | - Morad Khayat
- The Genetic Institute, Ha'emek Medical Center, Afula, Israel
| | - Michal Werbner
- Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel
| | - Inbar Levi
- Institute of Human Genetics, Galilee Medical Center, Nahariya, Israel
| | - Yishay Shoval
- Institute of Human Genetics, Galilee Medical Center, Nahariya, Israel
| | - Galit Tal
- Metabolic Disease Unit, Rambam Health Care Campus, Haifa, Israel.,Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Stavit Shalev
- Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel.,The Genetic Institute, Ha'emek Medical Center, Afula, Israel
| | - Eli Reuveni
- Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel
| | | | - Eugene Vlodavsky
- Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel.,Department of Pathology, Rambam Health Care Campus, Haifa, Israel
| | - Liat Appl-Sarid
- Department of Pathology, Galilee Medical Center, Nahariya, Israel
| | - Dorit Goldsher
- Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel.,Department of Diagnostic Imaging, Rambam Health Care Campus, Haifa, Israel
| | - Reuven Bergman
- Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel.,Department of Dermatology, Rambam Health Care Campus, Haifa, Israel
| | - Zvi Segal
- Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel.,Department of Ophthalmology, Galilee Medical Center, Nahariya, Israel
| | - Ora Bitterman-Deutsch
- Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel.,Dermatology Clinic, Galilee Medical Center, Nahariya, Israel
| | - Orly Avni
- Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel
| |
Collapse
|
38
|
Duan X, Li J. Association between MDM2 SNP309, p53 Arg72Pro, and hepatocellular carcinoma risk: A MOOSE-compliant meta-analysis. Medicine (Baltimore) 2017; 96:e7856. [PMID: 28885338 PMCID: PMC6392589 DOI: 10.1097/md.0000000000007856] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Epidemiological studies have determined the associations between polymorphisms on the promoter of MDM2 (SNP309) and the codon 72 on exon 4 of p53 (p53 Arg72Pro) and the risk of hepatocellular carcinoma (HCC); however, the results were not always consistent. The aim of the present meta-analysis was to evaluate the overall associations between these 2 variants and HCC risk.The MEDLINE, Web of science, EMBASE, Cochrane Library, and CNKI databases were searched for eligibility studies and the data were synthesized under the fixed- or random-effects model. Heterogeneity among the studies was evaluated with the Cochrane test Q and I statistic.For MDM2 SNP309, the pooled odds ratio (OR) from 15 independent studies with a total of 4038 cases and 5491 controls suggested a significant association for the variant with HCC risk [allele model, G vs T: pooled OR = 1.48, 95% confidence interval (95% CI) = 1.26-1.73; pooled OR = 1.53, 95% CI = 1.26-1.81, for G/T vs T/T; pooled OR = 2.04, 95% CI = 1.54-2.71 for G/G vs T/T]. For p53 Arg72Pro, a total of 21 studies with 7285 cases and 9710 controls suggested that the variant was also associated with HCC risk under common genetic model (allele Pro vs Arg, pooled OR = 1.13, 95% CI = 1.02-1.25; Pro/Pro vs Arg/Arg, pooled OR = 1.32, 95% CI =1.06-1.64). No publication bias was found for all the meta-analysis as suggested by the Begg funnel plot and Egger tests.These results suggested that variants MDM2 SNP309 and p53 Arg72Pro are susceptibility factors for HCC; however, more studies are warranted to validate the results.
Collapse
Affiliation(s)
- Xiaohua Duan
- School of Life Science and Technology, ShanghaiTech University
| | - Jingquan Li
- School of Public Health, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
39
|
Lessel D, Wu D, Trujillo C, Ramezani T, Lessel I, Alwasiyah MK, Saha B, Hisama FM, Rading K, Goebel I, Schütz P, Speit G, Högel J, Thiele H, Nürnberg G, Nürnberg P, Hammerschmidt M, Zhu Y, Tong DR, Katz C, Martin GM, Oshima J, Prives C, Kubisch C. Dysfunction of the MDM2/p53 axis is linked to premature aging. J Clin Invest 2017; 127:3598-3608. [PMID: 28846075 DOI: 10.1172/jci92171] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 07/14/2017] [Indexed: 12/20/2022] Open
Abstract
The tumor suppressor p53, a master regulator of the cellular response to stress, is tightly regulated by the E3 ubiquitin ligase MDM2 via an autoregulatory feedback loop. In addition to its well-established role in tumorigenesis, p53 has also been associated with aging in mice. Several mouse models with aberrantly increased p53 activity display signs of premature aging. However, the relationship between dysfunction of the MDM2/p53 axis and human aging remains elusive. Here, we have identified an antiterminating homozygous germline mutation in MDM2 in a patient affected by a segmental progeroid syndrome. We show that this mutation abrogates MDM2 activity, thereby resulting in enhanced levels and stability of p53. Analysis of the patient's primary cells, genome-edited cells, and in vitro and in vivo analyses confirmed the MDM2 mutation's aberrant regulation of p53 activity. Functional data from a zebrafish model further demonstrated that mutant Mdm2 was unable to rescue a p53-induced apoptotic phenotype. Altogether, our findings indicate that mutant MDM2 is a likely driver of the observed segmental form of progeria.
Collapse
Affiliation(s)
- Davor Lessel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Danyi Wu
- Department of Biological Sciences, Columbia University, New York, New York, USA
| | - Carlos Trujillo
- Genetics Unit, Dr. Erfan & Bagedo Hospital, Jeddah, Saudi Arabia
| | - Thomas Ramezani
- Institute of Developmental Biology, University of Cologne, Cologne, Germany
| | - Ivana Lessel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mohammad K Alwasiyah
- Aziziah Maternity and Children's Hospital, Ministry of Health, Jeddah, Saudi Arabia
| | - Bidisha Saha
- Department of Pathology, University of Washington, Seattle, Washington, USA
| | - Fuki M Hisama
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Katrin Rading
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ingrid Goebel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Petra Schütz
- Institute of Human Genetics, University of Ulm, Ulm, Germany
| | - Günter Speit
- Institute of Human Genetics, University of Ulm, Ulm, Germany
| | - Josef Högel
- Institute of Human Genetics, University of Ulm, Ulm, Germany
| | | | | | - Peter Nürnberg
- Cologne Center for Genomics.,Center for Molecular Medicine Cologne, and.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Matthias Hammerschmidt
- Institute of Developmental Biology, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne, and.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Yan Zhu
- Department of Biological Sciences, Columbia University, New York, New York, USA
| | - David R Tong
- Department of Biological Sciences, Columbia University, New York, New York, USA
| | - Chen Katz
- Department of Biological Sciences, Columbia University, New York, New York, USA
| | - George M Martin
- Department of Pathology, University of Washington, Seattle, Washington, USA.,Molecular Biology Institute, UCLA, Los Angeles, California, USA
| | - Junko Oshima
- Department of Pathology, University of Washington, Seattle, Washington, USA.,Department of Medicine, Chiba University, Chiba, Japan
| | - Carol Prives
- Department of Biological Sciences, Columbia University, New York, New York, USA
| | - Christian Kubisch
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Institute of Human Genetics, University of Ulm, Ulm, Germany
| |
Collapse
|
40
|
Aydin M, Bozkurt A, Cikman A, Gulhan B, Karabakan M, Gokce A, Alper M, Kara M. Lack of evidence of HPV etiology of prostate cancer following radical surgery and higher frequency of the Arg/Pro genotype in Turkish men with prostate cancer. Int Braz J Urol 2017; 43:36-46. [PMID: 28124524 PMCID: PMC5293381 DOI: 10.1590/s1677-5538.ibju.2015.0429] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 08/24/2016] [Indexed: 11/22/2022] Open
Abstract
Objectives The aim of this study was to assess the possible role of HPV in the development of prostate cancer (PCa) and investigate the distribution of the p53 codon 72 polymorphism in PCa in a Turkish population. Materials and methods A total of 96 tissues, which had been obtained using a radical surgery method, formalin-fixed and parafin-embedded, were used in this study. The study group consisted of 60 PCa tissues (open radical prostatectomy) and the control group contained 36 benign prostatic hyperplasia tissues (BPH) (transvesical open prostatectomy). The presence of HPV and the p53 codon 72 polymorphism was investigated in both groups using real-time PCR and pyrosequencing. Results The results of the real-time PCR showed no HPV DNA in any of the 36 BPH tissue samples. HPV-DNA was positive in only 1 of the 60 PCa samples (1.7%). The HPV type of this sample was identified as HPV-57. The distribution of the three genotypes, Arg/Arg, Arg/Pro and Pro/Pro was found to be 45.6, 45.6, and 8.8% in the PCa group and 57.1%, 34.3% and 8.6% in the control group, respectively. Compared with the control group, patients with PCa had a higher frequency of the Arg/Pro genotype and Proline allele (odds ratio (OR)=1.67, 95% confidence interval (CI)=0.68-4.09, p=0.044; OR=1.13, 95% CI=0.76-1.68, p=0.021, respectively). Conclusions The results of the study do not support the hyphothesis that prostate cancer is associated with HPV infection but indicated that Proline allele can be a risk factor in the development of PCa in the Turkish population.
Collapse
Affiliation(s)
- Merve Aydin
- Department of Medical Microbiology, Faculty of Medicine, Erzincan University, Erzincan, Turkey
| | - Aliseydi Bozkurt
- Department of Urology, Erzincan University, Mengucek Gazi Training and Research Hospital, Erzincan, Turkey
| | - Aytekin Cikman
- Department of Medical Microbiology, Faculty of Medicine, Erzincan University, Erzincan, Turkey
| | - Baris Gulhan
- Department of Medical Microbiology, Faculty of Medicine, Erzincan University, Erzincan, Turkey
| | - Mehmet Karabakan
- Department of Urology, Erzincan University, Mengucek Gazi Training and Research Hospital, Erzincan, Turkey
| | - Aysun Gokce
- Department of Pathology, Dıskapı Training and Research Hospital, Ankara, Turkey
| | - Murat Alper
- Department of Pathology, Dıskapı Training and Research Hospital, Ankara, Turkey
| | - Murat Kara
- Department of Medical Microbiology, Faculty of Medicine, Erzincan University, Erzincan, Turkey
| |
Collapse
|
41
|
Domínguez ER, Orona J, Lin K, Pérez CJ, Benavides F, Kusewitt DF, Johnson DG. The p53 R72P polymorphism does not affect the physiological response to ionizing radiation in a mouse model. Cell Cycle 2017; 16:1153-1163. [PMID: 28594296 DOI: 10.1080/15384101.2017.1312234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Tissue culture and mouse model studies show that the presence of the arginine (R) or proline (P) coding single nucleotide polymorphism (SNP) of the tumor suppressor gene p53 at codon 72 (p53 R72P) differentially affects the responses to genotoxic insult. Compared to the P variant, the R variant shows increased apoptosis in most cell cultures and mouse model tissues in response to genotoxins, and epidemiological studies suggest that the R variant may enhance cancer survival and reduce the risks of adverse reactions to genotoxic cancer treatment. As ionizing radiation (IR) treatment is often used in cancer therapy, we sought to test the physiological effects of IR in mouse models of the p53 R72P polymorphism. By performing blood counts, immunohistochemical (IHC) staining and survival studies in mouse populations rigorously controlled for strain background, sex and age, we discovered that p53 R72P polymorphism did not differentially affect the physiological response to IR. Our findings suggest that genotyping for this polymorphism to personalize IR therapy may have little clinical utility.
Collapse
Affiliation(s)
- Emily R Domínguez
- a Department of Epigenetics and Molecular Carcinogenesis , The University of Texas MD Anderson Cancer Center , Smithville , TX , USA
| | - Jennifer Orona
- a Department of Epigenetics and Molecular Carcinogenesis , The University of Texas MD Anderson Cancer Center , Smithville , TX , USA
| | - Kevin Lin
- a Department of Epigenetics and Molecular Carcinogenesis , The University of Texas MD Anderson Cancer Center , Smithville , TX , USA
| | - Carlos J Pérez
- a Department of Epigenetics and Molecular Carcinogenesis , The University of Texas MD Anderson Cancer Center , Smithville , TX , USA
| | - Fernando Benavides
- a Department of Epigenetics and Molecular Carcinogenesis , The University of Texas MD Anderson Cancer Center , Smithville , TX , USA
| | - Donna F Kusewitt
- b Department of Pathology , The University of Mexico School of Medicine , Albuquerque , NM , USA
| | - David G Johnson
- a Department of Epigenetics and Molecular Carcinogenesis , The University of Texas MD Anderson Cancer Center , Smithville , TX , USA
| |
Collapse
|
42
|
Yagnik G, Jahangiri A, Chen R, Wagner JR, Aghi MK. Role of a p53 polymorphism in the development of nonfunctional pituitary adenomas. Mol Cell Endocrinol 2017; 446:81-90. [PMID: 28214592 PMCID: PMC5553295 DOI: 10.1016/j.mce.2017.02.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 02/10/2017] [Accepted: 02/10/2017] [Indexed: 02/07/2023]
Abstract
Non-functional pituitary adenomas (NFPAs) are among the commonest intracranial neoplasms. While histologically benign, NFPAs sometimes become large enough to limit therapeutic options and reduce quality of life. Investigations of the molecular etiology of NFPAs have failed to identify prevalent genetic changes and, while a role for p53 has been suggested, TP53 gene alterations have yet to be described in NFPAs. We found that the polymorphism rs1042522:C > G in codon 72 of exon 4 of the TP53 gene, whose C variant produces a proline and is more common in most ethnicities, has a G variant producing an arginine in 79.8% of NFPAs (n = 42; p < 1.411 × 10-18 vs. 1000 Genomes database), causing patients to present a decade earlier with symptomatic NFPAs. In cultured NFPA cells, transfection with the rs1042522 G variant versus the C variant reduced expression of cell arrest gene p21 and increased proliferation. These findings suggest that this TP53 polymorphism influences NFPA growth.
Collapse
Affiliation(s)
- Garima Yagnik
- University of California, San Francisco (UCSF) Department of Neurological Surgery and Brain Tumor Research Center, 1450 Third Street Room HD-465, San Francisco, CA 94158, USA.
| | - Arman Jahangiri
- University of California, San Francisco (UCSF) Department of Neurological Surgery and Brain Tumor Research Center, 1450 Third Street Room HD-465, San Francisco, CA 94158, USA
| | - Rebecca Chen
- University of California, San Francisco (UCSF) Department of Neurological Surgery and Brain Tumor Research Center, 1450 Third Street Room HD-465, San Francisco, CA 94158, USA
| | - Jeffrey R Wagner
- University of California, San Francisco (UCSF) Department of Neurological Surgery and Brain Tumor Research Center, 1450 Third Street Room HD-465, San Francisco, CA 94158, USA
| | - Manish K Aghi
- University of California, San Francisco (UCSF) Department of Neurological Surgery and Brain Tumor Research Center, 1450 Third Street Room HD-465, San Francisco, CA 94158, USA.
| |
Collapse
|
43
|
Lu W, Cheng F, Yan W, Li X, Yao X, Song W, Liu M, Shen X, Jiang H, Chen J, Li J, Huang J. Selective targeting p53 WT lung cancer cells harboring homozygous p53 Arg72 by an inhibitor of CypA. Oncogene 2017; 36:4719-4731. [PMID: 28394340 PMCID: PMC5562848 DOI: 10.1038/onc.2017.41] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 01/22/2017] [Accepted: 01/24/2017] [Indexed: 02/05/2023]
Abstract
TP53 plays essential roles in tumor initiation and progression, and is frequently mutated in cancer. However, pharmacological stabilization and reactivation of p53 have not been actively explored for targeted cancer therapies. Herein, we identify a novel Cyclophilin A (CypA) small molecule inhibitor (HL001) that induces non-small cell lung cancer (NSCLC) cell cycle arrest and apoptosis via restoring p53 expression. We find that HL001 stabilizes p53 through inhibiting the MDM2-mediated p53 ubiquitination. Further mechanistic studies reveal that the downregulation of G3BP1 and the induction of reactive oxygen species and DNA damage by HL001 contribute to p53 stabilization. Surprisingly, HL001 selectively suppresses tumor growth in p53 wild-type NSCLC harboring Arg72 homozygous alleles (p53-72R) through disrupting interaction between MDM2 and p53-72R in a CypA-dependent manner. Moreover, combining HL001 with cisplatin synergistically enhance tumor regression in orthotopic NSCLC mouse model. Collectively, this study demonstrates that pharmacologic inhibition of CypA offers a potential therapeutic strategy via specific activation of p53-72R in NSCLC.
Collapse
Affiliation(s)
- W Lu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China.,Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - F Cheng
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, China
| | - W Yan
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - X Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - X Yao
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - W Song
- Veterans Affairs Medical Center, Tennessee Valley Healthcare System, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - M Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - X Shen
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China.,CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, China
| | - H Jiang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China.,CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, China
| | - J Chen
- Veterans Affairs Medical Center, Tennessee Valley Healthcare System, Vanderbilt University School of Medicine, Nashville, TN, USA.,Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA.,Department of Cell and Development Biology, Vanderbilt University School of Medicine, Nashville, TN, USA.,Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - J Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - J Huang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
44
|
Van Hook K, Wang Z, Chen D, Nold C, Zhu Z, Anur P, Lee HJ, Yu Z, Sheppard B, Dai MS, Sears R, Spellman P, Lopez CD. ΔN-ASPP2, a novel isoform of the ASPP2 tumor suppressor, promotes cellular survival. Biochem Biophys Res Commun 2016; 482:1271-1277. [PMID: 27939881 DOI: 10.1016/j.bbrc.2016.12.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 12/05/2016] [Indexed: 12/15/2022]
Abstract
ASPP2 is a tumor suppressor that works, at least in part, through enhancing p53-dependent apoptosis. We now describe a new ASPP2 isoform, ΔN-ASPP2, generated from an internal transcription start site that encodes an N-terminally truncated protein missing a predicted 254 amino acids. ΔN-ASPP2 suppresses p53 target gene transactivation, promoter occupancy, and endogenous p53 target gene expression in response to DNA damage. Moreover, ΔN-ASPP2 promotes progression through the cell cycle, as well as resistance to genotoxic stress-induced growth inhibition and apoptosis. Additionally, we found that ΔN-ASPP2 expression is increased in human breast tumors as compared to adjacent normal breast tissue; in contrast, ASPP2 is suppressed in the majority of these breast tumors. Together, our results provide insight into how this new ASPP2 isoform may play a role in regulating the ASPP2-p53 axis.
Collapse
Affiliation(s)
- Kathryn Van Hook
- Department of Medicine, Division of Hematology and Medical Oncology and the Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Zhiping Wang
- Department of Medicine, Division of Hematology and Medical Oncology and the Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Dexi Chen
- Department of Medicine, Division of Hematology and Medical Oncology and the Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239, USA; Beijing Institute of Hepatology, Beijing You'an Hospital, Capital Medical University, Beijing, 100069, China
| | - Casey Nold
- Department of Medicine, Division of Hematology and Medical Oncology and the Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Zhiyi Zhu
- Department of Medicine, Division of Hematology and Medical Oncology and the Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Pavana Anur
- Department of Molecular and Medical Genetics and the Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Hun-Joo Lee
- Department of Medicine, Division of Hematology and Medical Oncology and the Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Zhiyong Yu
- Shandong Tumor Hospital and Institute, Jinan, 250117, China
| | - Brett Sheppard
- Department of Surgery and the Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Mu-Shui Dai
- Department of Molecular and Medical Genetics and the Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Rosalie Sears
- Department of Molecular and Medical Genetics and the Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Paul Spellman
- Department of Molecular and Medical Genetics and the Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Charles D Lopez
- Department of Medicine, Division of Hematology and Medical Oncology and the Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239, USA.
| |
Collapse
|
45
|
Abstract
p53 that is activated in response to DNA-damaging stress can induce apoptosis or either transient or permanent cell cycle arrests. Apoptosis and permanent cell cycle arrest (senescence) are bona-fide tumor suppressor mechanisms through which p53 inhibits cancer cell survival. In contrast, transient cell cycle arrests induced by p53 can increase survival by allowing cells time to repair their DNA before proceeding with cell division. Mechanisms that control the choice of response to p53 (apoptosis vs arrest) are not fully understood. There is abundant crosstalk between p53 and the IGF-1R/AKT/mTORC1 signaling pathway. Recent studies indicate this crosstalk can determine the choice of response to p53. These findings have clear implications for the potential use of IGF-1R pathway inhibitors against p53 wild-type or p53-null or mutant cancers.
Collapse
Affiliation(s)
- Lei Duan
- Rush University Medical Center, Department of Anatomy and Cell Biology, 600 S Paulina Ave., AcFac 507, Chicago, IL 60612
| | - Carl G Maki
- Rush University Medical Center, Department of Anatomy and Cell Biology, 600 S Paulina Ave., AcFac 507, Chicago, IL 60612
| |
Collapse
|
46
|
Abstract
The p53 tumor suppressor is highly regulated at the level of protein degradation and transcriptional activity. The key players of the pathway, p53, MDM2, and MDMX are present at multiple conformational states that are responsive to regulation by post-translational modifications and protein-protein interactions. The structures of major functional domains of these proteins have been determined, but the mechanisms of several intrinsically disordered regions remain unclear despite their critical roles in signaling and regulation. Recent studies suggest that these disordered regions function in part by dynamic intra molecular interactions with the structured domains to regulate p53 DNA binding, MDM2 ubiquitin E3 ligase activity, and MDMX-p53 binding. These findings provide new insight on how p53 is controlled by various stress signals, and suggest potential targets for the search of allosteric regulators of the p53 pathway.
Collapse
Affiliation(s)
- Jiandong Chen
- Molecular Oncology Department, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| |
Collapse
|
47
|
Hossain A, Murshid GMM, Zilani MNH, Islam F, Sultana R, Sultana T, Hossain MG, Rahman MM. TP53 codon 72 polymorphism and breast cancer risk in Bangladeshi population. Breast Cancer 2016; 24:571-578. [PMID: 27837441 DOI: 10.1007/s12282-016-0740-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 11/06/2016] [Indexed: 02/05/2023]
Abstract
BACKGROUND Breast cancer, a hereditary or heterogeneous sporadic disease, is the most common cancer in women worldwide. The tumor suppressor TP53 gene has been found to be the most commonly mutated genes in many types of human cancers, including breast cancer. This study aimed to investigate the association of codon 72 polymorphism of TP53 gene with breast cancer risk in Bangladeshi females. METHODS The study included 125 cases and 125 healthy controls. Genotyping and polymorphism were determined by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis. RESULTS The frequencies of the three genotypes Arg/Arg, Arg/Pro, and Pro/Pro were 43.2, 33.6, and 23.2% in cases, whereas 48.8, 40.8, and 10.4% in controls, respectively. The frequency of mutant homozygous (Pro/Pro) genotype was significantly increased in breast cancer patients as compared with controls (23.2 vs 10.4%), and showed 2.52-fold significantly increased risk for breast cancer (OR 2.5199, 95% CI 1.19-5.33, p = 0.0157). The frequencies of Pro/Pro genotype were significantly higher in breast cancer cases with non-breast feeding status. Pro allele frequency was found to be significantly increased in breast cancer cases (OR 1.4978, 95% CI 1.0357-2.1662, p = 0.0318). CONCLUSIONS Our data suggest that mutant (Pro/Pro) homozygosity at codon 72 of TP53 gene is significantly associated with breast cancer susceptibility in Bangladeshi women. In addition, this association was significantly related to lactating status.
Collapse
Affiliation(s)
- Amir Hossain
- Pharmacy Discipline, Life Science School, Khulna University, Khulna, 9208, Bangladesh
| | | | | | - Fahrima Islam
- Pharmacy Discipline, Life Science School, Khulna University, Khulna, 9208, Bangladesh
- Department of Medicinal Chemistry, University of Zagreb, Zagreb, 10000, Croatia
| | | | | | - Md Golam Hossain
- Pharmacy Discipline, Life Science School, Khulna University, Khulna, 9208, Bangladesh
| | - Md Mustafizur Rahman
- Pharmacy Discipline, Life Science School, Khulna University, Khulna, 9208, Bangladesh.
| |
Collapse
|
48
|
Wang Y, Wu XS, He J, Ma T, Lei W, Shen ZY. A novel TP53 variant (rs78378222 A > C) in the polyadenylation signal is associated with increased cancer susceptibility: evidence from a meta-analysis. Oncotarget 2016; 7:32854-65. [PMID: 27147571 PMCID: PMC5078057 DOI: 10.18632/oncotarget.9056] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 04/02/2016] [Indexed: 02/07/2023] Open
Abstract
Polymorphisms in TP53 are involved in the progression of different types of cancer. A rare novel TP53 variant (rs78378222 A > C allele) was found via whole-genome sequencing in 2011. This variant was shown to significantly increase the risk of glioma, colorectal adenoma and prostate cancer. Functional analysis further revealed that this variant hindered TP53 expression and its downstream effect on apoptosis. Several studies have investigated the relationship between rs78378222 and cancer susceptibility. However, the results were not consistent. We conducted the first meta-analysis to give a more credible assessment on the association about this variant and cancer risk. Our meta-analysis included 34 studies consisting of 36599 cases and 91272 controls. These studies were mostly on the basis of high-grade data from Genome-wide association studies (GWASs). The results indicated that TP53 rs78378222 was significantly associated with an increased risk of overall cancer (AC vs. AA: OR = 1.511, 95% CI = 1.285-1.777). Furthermore, stratified analyses indicated that rs78378222 increased the risk of nervous system cancer, skin cancer and other cancer. To summarize, this meta-analysis suggested that rs78378222 C allele is a potent risk factor for overall cancer.
Collapse
Affiliation(s)
- Ying Wang
- 1 Department of Cardiovascular Surgery, The First Affiliated Hospital and Institute for Cardiovascular Science, Soochow University, Suzhou, Jiangsu, China
| | - Xue-Song Wu
- 2 School of Humanities and Social Science, Harbin Medical University, Harbin, Heilongjiang, China
| | - Jing He
- 3 Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
- 4 Department of Experimental Research, Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Tianjiao Ma
- 5 Department of Internal Medicine, Harbin Medical University, Harbin, Heilongjiang, China
| | - Wei Lei
- 1 Department of Cardiovascular Surgery, The First Affiliated Hospital and Institute for Cardiovascular Science, Soochow University, Suzhou, Jiangsu, China
| | - Zhen-Ya Shen
- 1 Department of Cardiovascular Surgery, The First Affiliated Hospital and Institute for Cardiovascular Science, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
49
|
Beckerman R, Yoh K, Mattia-Sansobrino M, Zupnick A, Laptenko O, Karni-Schmidt O, Ahn J, Byeon IJ, Keezer S, Prives C. Lysines in the tetramerization domain of p53 selectively modulate G1 arrest. Cell Cycle 2016; 15:1425-38. [PMID: 27210019 DOI: 10.1080/15384101.2016.1170270] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Functional in a tetrameric state, the protein product of the p53 tumor suppressor gene confers its tumor-suppressive activity by transactivating genes which promote cell-cycle arrest, senescence, or programmed cell death. How p53 distinguishes between these divergent outcomes is still a matter of considerable interest. Here we discuss the impact of 2 mutations in the tetramerization domain that confer unique properties onto p53. By changing lysines 351 and 357 to arginine, thereby blocking all post-translational modifications of these residues, DNA binding and transcriptional regulation by p53 remain virtually unchanged. On the other hand, by changing these lysines to glutamine (2KQ-p53), thereby neutralizing their positive charge and potentially mimicking acetylation, p53 is impaired in the induction of cell cycle arrest and yet can still effectively induce cell death. Surprisingly, when 2KQ-p53 is expressed at high levels in H1299 cells, it can bind to and transactivate numerous p53 target genes including p21, but not others such as miR-34a and cyclin G1 to the same extent as wild-type p53. Our findings show that strong induction of p21 is not sufficient to block H1299 cells in G1, and imply that modification of one or both of the lysines within the tetramerization domain may serve as a mechanism to shunt p53 from inducing cell cycle arrest.
Collapse
Affiliation(s)
| | - Kathryn Yoh
- a Department of Biological Sciences , Columbia University , New York , NY , USA
| | | | | | - Oleg Laptenko
- a Department of Biological Sciences , Columbia University , New York , NY , USA
| | - Orit Karni-Schmidt
- a Department of Biological Sciences , Columbia University , New York , NY , USA
| | - Jinwoo Ahn
- b Department of Structural Biology , University of Pittsburgh , Pittsburgh , PA , USA
| | - In-Ja Byeon
- b Department of Structural Biology , University of Pittsburgh , Pittsburgh , PA , USA
| | - Susan Keezer
- c Cell Signaling Technology, Inc. , Danvers , MA , USA
| | - Carol Prives
- a Department of Biological Sciences , Columbia University , New York , NY , USA
| |
Collapse
|
50
|
Liu H, Chen F, Zhang L, Zhou Q, Gui S, Wang Y. A novel all-trans retinoic acid derivative 4-amino‑2‑trifluoromethyl-phenyl retinate inhibits the proliferation of human hepatocellular carcinoma HepG2 cells by inducing G0/G1 cell cycle arrest and apoptosis via upregulation of p53 and ASPP1 and downregulation of iASPP. Oncol Rep 2016; 36:333-41. [PMID: 27177208 DOI: 10.3892/or.2016.4795] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 01/21/2016] [Indexed: 11/06/2022] Open
Abstract
4-Amino-2-trifluoromethyl-phenyl retinate (ATPR), a novel all-trans retinoic acid (ATRA) derivative, was reported to function as a tumor inhibitor in various types of cancer cells in vitro. However, little is known concerning its antitumor effect on human hepatocellular carcinoma (HCC) HepG2 cells. The aims of the present study were to investigate the effects of ATPR on the proliferation of HepG2 cells and to explore the probable mechanisms. A series of experiments were performed following the treatment of HepG2 cells with ATRA and ATPR. MTT and plate colony formation assays were used to measure the cell viability. To confirm the influence on proliferation, flow cytometry was used to detect the distribution of the cell cycle. Apoptosis was observed by Hoechst staining and flow cytometry. In addition, to characterize the underlying molecular mechanisms, immunofluorescence was applied to observe the distribution of p53. The transcription and translation levels of p53 were analyzed by real-time quantitative RT-PCR (qRT-PCR) and western blotting. The expression levels of murine double minute 2 (MDM2), apoptosis stimulating proteins of p53 (ASPP), cell cycle- and apoptosis-associated proteins were detected by western blotting. After HepG2 cells were incubated with ATRA and ATPR, the viability of the HepG2 cells was inhibited in a dose- and time-dependent manner. As well, ATPR significantly suppressed HepG2 cell colony formation and arrested cells at the G0/G1 phase, while ATRA had no obvious effects. Both Hoechst staining and flow cytometry unveiled the apoptosis of HepG2 cells. Moreover, the fluorescent density of p53 was higher in the nuclei after exposure to ATPR than that in the ATRA group. HepG2 cells treated with ATPR showed elevated mRNA and protein levels of p53 when compared with these levels in the ATRA-treated cells. Western blotting showed that ATPR increased ASPP1, p21 and Bax expression and decreased MDM2, iASPP, cyclin D and E, cyclin-dependent kinase 6 (CDK6) and Bcl-2 expression, while CDK4 and ASPP2 expression were scarcely altered. Consequently, ATPR exerted a better inhibitory effect on the proliferation of HepG2 cells than ATRA through increased expression of p53 and ASPP1 and downregulation of iASPP, thereby resulting in G0/G1 cell cycle arrest and apoptosis.
Collapse
Affiliation(s)
- Hui Liu
- Laboratory of Molecular Biology and Department of Biochemistry, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Feihu Chen
- College of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Ling Zhang
- Laboratory of Molecular Biology and Department of Biochemistry, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Qing Zhou
- Laboratory of Molecular Biology and Department of Biochemistry, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Shuyu Gui
- Key Laboratory of Gene Research of Anhui Province, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yuan Wang
- Laboratory of Molecular Biology and Department of Biochemistry, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| |
Collapse
|