1
|
Harris L, McDonagh EM, Zhang X, Fawcett K, Foreman A, Daneck P, Sergouniotis PI, Parkinson H, Mazzarotto F, Inouye M, Hollox EJ, Birney E, Fitzgerald T. Genome-wide association testing beyond SNPs. Nat Rev Genet 2024:10.1038/s41576-024-00778-y. [PMID: 39375560 DOI: 10.1038/s41576-024-00778-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2024] [Indexed: 10/09/2024]
Abstract
Decades of genetic association testing in human cohorts have provided important insights into the genetic architecture and biological underpinnings of complex traits and diseases. However, for certain traits, genome-wide association studies (GWAS) for common SNPs are approaching signal saturation, which underscores the need to explore other types of genetic variation to understand the genetic basis of traits and diseases. Copy number variation (CNV) is an important source of heritability that is well known to functionally affect human traits. Recent technological and computational advances enable the large-scale, genome-wide evaluation of CNVs, with implications for downstream applications such as polygenic risk scoring and drug target identification. Here, we review the current state of CNV-GWAS, discuss current limitations in resource infrastructure that need to be overcome to enable the wider uptake of CNV-GWAS results, highlight emerging opportunities and suggest guidelines and standards for future GWAS for genetic variation beyond SNPs at scale.
Collapse
Affiliation(s)
- Laura Harris
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute (EBI), Wellcome Genome Campus, Hinxton, UK
| | - Ellen M McDonagh
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute (EBI), Wellcome Genome Campus, Hinxton, UK
| | - Xiaolei Zhang
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute (EBI), Wellcome Genome Campus, Hinxton, UK
| | - Katherine Fawcett
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute (EBI), Wellcome Genome Campus, Hinxton, UK
- Department of Population Health Sciences, University of Leicester, Leicester, UK
| | - Amy Foreman
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute (EBI), Wellcome Genome Campus, Hinxton, UK
| | - Petr Daneck
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Panagiotis I Sergouniotis
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute (EBI), Wellcome Genome Campus, Hinxton, UK
- Division of Evolution, Infection and Genomics, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Helen Parkinson
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute (EBI), Wellcome Genome Campus, Hinxton, UK
| | - Francesco Mazzarotto
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Michael Inouye
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Edward J Hollox
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Ewan Birney
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute (EBI), Wellcome Genome Campus, Hinxton, UK
| | - Tomas Fitzgerald
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute (EBI), Wellcome Genome Campus, Hinxton, UK.
| |
Collapse
|
2
|
Blaize JL, Garzon JLN, Howlett NG. FANCD2 genome binding is nonrandom and is enriched at large transcriptionally active neural genes prone to copy number variation. Funct Integr Genomics 2024; 24:180. [PMID: 39365306 PMCID: PMC11452531 DOI: 10.1007/s10142-024-01453-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/01/2024] [Accepted: 09/10/2024] [Indexed: 10/05/2024]
Abstract
Fanconi anemia (FA) is a rare genetic disease characterized by congenital abnormalities and increased risk for bone marrow failure and cancer. Central nervous system defects, including acute and irreversible loss of neurological function and white matter lesions with calcifications, have become increasingly recognized among FA patients, and are collectively referred to as Fanconi Anemia Neurological Syndrome or FANS. The molecular etiology of FANS is poorly understood. In this study, we have used a functional integrative genomics approach to further define the function of the FANCD2 protein and FA pathway. Combined analysis of new and existing FANCD2 ChIP-seq datasets demonstrates that FANCD2 binds nonrandomly throughout the genome with binding enriched at transcription start sites and in broad regions spanning protein-coding gene bodies. FANCD2 demonstrates a strong preference for large neural genes involved in neuronal differentiation, synapse function, and cell adhesion, with many of these genes implicated in neurodevelopmental and neuropsychiatric disorders. Furthermore, FANCD2 binds to regions of the genome that replicate late, undergo mitotic DNA synthesis (MiDAS) under conditions of replication stress, and are hotspots for copy number variation. Our analysis describes an important targeted role for FANCD2 and the FA pathway in the maintenance of large neural gene stability.
Collapse
Affiliation(s)
- Justin L Blaize
- Department of Cell and Molecular Biology, University of Rhode Island, 379 Center for Biotechnology and Life Sciences, 120 Flagg Road, Kingston, RI, USA
| | - Jada Lauren N Garzon
- Department of Cell and Molecular Biology, University of Rhode Island, 379 Center for Biotechnology and Life Sciences, 120 Flagg Road, Kingston, RI, USA
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Niall G Howlett
- Department of Cell and Molecular Biology, University of Rhode Island, 379 Center for Biotechnology and Life Sciences, 120 Flagg Road, Kingston, RI, USA.
| |
Collapse
|
3
|
Alotibi RS, Al Eissa MM, Aloraini T, Nasser KK, Al Shammari MJ, Alqahtani AS. Copy Number Variants in 30 Saudi Pediatric Patients with Neurodevelopmental Disorders: From Unknown Significance to Diagnosis. SAUDI JOURNAL OF MEDICINE & MEDICAL SCIENCES 2024; 12:292-298. [PMID: 39539796 PMCID: PMC11556511 DOI: 10.4103/sjmms.sjmms_155_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/19/2024] [Accepted: 07/24/2024] [Indexed: 11/16/2024]
Abstract
Background Structural variants (SVs), such as copy number variants (CNVs), insertions, deletions, inversions, and translocations, contribute significantly to genetic diversity and disease etiology. CNVs, which involve the duplication or deletion of DNA segments, are particularly impactful on genes crucial for biological functions and disease processes. Objective To reassess unclassified SVs that may be underlying unresolved neurodevelopmental disorders among Saudi patients. Methodology In this retrospective study conducted at King Saud Medical City, Riyadh, Saudi Arabia, 30 probands with neurodevelopmental disorders and congenital malformations were examined using next-generation sequencing methods-exome sequencing, gene panels, or SNP arrays (the Illumina platform). Reclassification was aided by online tools such as VarSome and ClinVar, with pathogenicity assessments using the ClinGen CNV Pathogenicity Calculator based on American College of Medical Genetics and Genomics criteria for CNV loss and gain, and dosage sensitivity. Results A total of 31 CNVs were analyzed, of which 2 were reclassified: one as benign and the other as pathogenic. The pathogenic CNV, [3p13p12.3 (70411134_75249376) x1], included a deletion of the FOXP1 gene and was associated with an intellectual developmental disorder, language impairment, possible autistic features, psychomotor impairment, developmental regression, and epilepsy. Conclusion This study underscores the importance of continuously documenting and revisiting unclassified CNVs in accessible databases to enhance the diagnosis and understanding of complex genotype-phenotype relationships. Reclassifying these CNVs not only accelerates diagnostic processes but also enriches our insight into their significant roles in health and disease.
Collapse
Affiliation(s)
- Raniah Saleem Alotibi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Mariam M. Al Eissa
- Department of Molecular Genetics, Public Health Authority, Public Health Laboratory, Riyadh, Saudi Arabia
- Department of Medicine, Al Faisal University, Riyadh, Saudi Arabia
| | - Taghrid Aloraini
- Department of Laboratory Medicine, Division of Translational Pathology, King Abdulaziz Medical City, Riyadh, Saudi Arabia
- Department of Genetics, King Abdullah Specialized Children Hospital, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Khalidah Khalid Nasser
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, Centre for Artificial Intelligence in Precision Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Muneera J. Al Shammari
- Department of Pediatrics, King Saud University Medical City, King Saud University, Riyadh, Saudi Arabia
| | - Amerh S. Alqahtani
- Department of Medical Genetics, King Saud Medical City, Riyadh, Saudi Arabia
| |
Collapse
|
4
|
Andrawus M, David GB, Terziyska I, Sharvit L, Bergman A, Barzilai N, Raj SM, Govindaraju DR, Atzmon G. Genome integrity as a potential index of longevity in Ashkenazi Centenarian's families. GeroScience 2024; 46:4147-4162. [PMID: 38724875 PMCID: PMC11335978 DOI: 10.1007/s11357-024-01178-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/24/2024] [Indexed: 06/19/2024] Open
Abstract
The aging process, or senescence, is characterized by age-specific decline in physical and physiological function, and increased frailty and genomic changes, including mutation accumulation. However, the mechanisms through which changes in genomic architecture influence human longevity have remained obscure. Copy number variants (CNVs), an abundant class of genomic variants, offer unique opportunities for understanding age-related genomic changes. Here we report the spectrum of CNVs in a cohort of 670 Ashkenazi Jewish centenarians, their progeny, and unrelated controls. The average ages of these groups were 97.4 ± 2.8, 69.2 ± 9.2, and 66.5 ± 7.0 respectively. For the first time, we compared different size classes of CNVs, from 1 kB to 100 MB in size. Using a high-resolution custom Affymetrix array, targeting 44,639 genomic regions, we identified a total of 12,166, 22,188, and 10,285 CNVs in centenarians, their progeny, and control groups, respectively. Interestingly, the offspring group showed the highest number of unique CNVs, followed by control and centenarians. While both gains and losses were found in all three groups, centenarians showed a significantly higher average number of both total gains and losses relative to their controls (p < 0.0327, 0.0182, respectively). Moreover, centenarians showed a lower total length of genomic material lost, suggesting that they may maintain superior genomic integrity over time. We also observe a significance fold increase of CNVs among the offspring, implying greater genomic integrity and a putative mechanism for longevity preservation. Genomic regions that experienced loss or gains appear to be distributed across many sites in the genome and contain genes involved in DNA transcription, cellular transport, developmental pathways, and metabolic functions. Our findings suggest that the exceptional longevity observed in centenarians may be attributed to the prolonged maintenance of functionally important genes. These genes are intrinsic to specific genomic regions as well as to the overall integrity of the genomic architecture. Additionally, a strong association between longer CNVs and differential gene expression observed in this study supports the notion that genomic integrity could positively influence longevity.
Collapse
Affiliation(s)
| | - Gil Ben David
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, 199 Aba Khoushy Ave., 3498838, Mount Carmel, Haifa, Israel
| | | | - Lital Sharvit
- Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Aviv Bergman
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Nir Barzilai
- Departments of Medicine and Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Srilakshmi M Raj
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | | | - Gil Atzmon
- Faculty of Natural Sciences, University of Haifa, Haifa, Israel.
- Departments of Medicine and Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
5
|
Nikjoo H, Rahmanian S, Taleei R. Modelling DNA damage-repair and beyond. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 190:1-18. [PMID: 38754703 DOI: 10.1016/j.pbiomolbio.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/27/2024] [Accepted: 05/10/2024] [Indexed: 05/18/2024]
Abstract
The paper presents a review of mechanistic modelling studies of DNA damage and DNA repair, and consequences to follow in mammalian cell nucleus. We hypothesize DNA deletions are consequences of repair of double strand breaks leading to the modifications of genome that play crucial role in long term development of genetic inheritance and diseases. The aim of the paper is to review formation mechanisms underlying naturally occurring DNA deletions in the human genome and their potential relevance for bridging the gap between induced DNA double strand breaks and deletions in damaged human genome from endogenous and exogenous events. The model of the cell nucleus presented enables simulation of DNA damage at molecular level identifying the spectrum of damage induced in all chromosomal territories and loops. Our mechanistic modelling of DNA repair for double stand breaks (DSB), single strand breaks (SSB) and base damage (BD), shows the complexity of DNA damage is responsible for the longer repair times and the reason for the biphasic feature of mammalian cells repair curves. In the absence of experimentally determined data, the mechanistic model of repair predicts the in vivo rate constants for the proteins involved in the repair of DSB, SSB, and of BD.
Collapse
Affiliation(s)
- Hooshang Nikjoo
- Department of Physiology, Anatomy and Genetics (DPAG), Oxford University, Oxford, OX1 3PT, UK.
| | | | - Reza Taleei
- Medical Physics Division, Department of Radiation Oncology Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| |
Collapse
|
6
|
Gupta V, Vashisht V, Vashisht A, Mondal AK, Alptekin A, Singh H, Kolhe R. Comprehensive Analysis of Clinically Relevant Copy Number Alterations (CNAs) Using a 523-Gene Next-Generation Sequencing Panel and NxClinical Software in Solid Tumors. Genes (Basel) 2024; 15:396. [PMID: 38674331 PMCID: PMC11049607 DOI: 10.3390/genes15040396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Copy number alterations (CNAs) are significant in tumor initiation and progression. Identifying these aberrations is crucial for targeted therapies and personalized cancer diagnostics. Next-generation sequencing (NGS) methods present advantages in scalability and cost-effectiveness, surpassing limitations associated with reference assemblies and probe capacities in traditional laboratory approaches. This retrospective study evaluated CNAs in 50 FFPE tumor samples (breast cancer, ovarian carcinoma, pancreatic cancer, melanoma, and prostate carcinoma) using Illumina's TruSight Oncology 500 (TSO500) and the Affymetrix Oncoscan Molecular Inversion Probe (OS-MIP) (ThermoFisher Scientific, Waltham, MA, USA). NGS analysis with the NxClinical 6.2 software demonstrated a high sensitivity and specificity (100%) for CNA detection, with a complete concordance rate as compared to the OS-MIP. All 54 known CNAs were identified by NGS, with gains being the most prevalent (63%). Notable CNAs were observed in MYC (18%), TP53 (12%), BRAF (8%), PIK3CA, EGFR, and FGFR1 (6%) genes. The diagnostic parameters exhibited high accuracy, including a positive predictive value, negative predictive value, and overall diagnostic accuracy. This study underscores NxClinical as a reliable software for identifying clinically relevant gene alterations using NGS TSO500, offering valuable insights for personalized cancer treatment strategies based on CNA analysis.
Collapse
Affiliation(s)
- Vivek Gupta
- Department of Pathology, Government Institute of Medical Sciences, Greater Noida 201310, India;
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (V.V.); (A.V.); (A.K.M.); (A.A.); (H.S.)
| | - Vishakha Vashisht
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (V.V.); (A.V.); (A.K.M.); (A.A.); (H.S.)
| | - Ashutosh Vashisht
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (V.V.); (A.V.); (A.K.M.); (A.A.); (H.S.)
| | - Ashis K. Mondal
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (V.V.); (A.V.); (A.K.M.); (A.A.); (H.S.)
| | - Ahmet Alptekin
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (V.V.); (A.V.); (A.K.M.); (A.A.); (H.S.)
| | - Harmanpreet Singh
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (V.V.); (A.V.); (A.K.M.); (A.A.); (H.S.)
| | - Ravindra Kolhe
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (V.V.); (A.V.); (A.K.M.); (A.A.); (H.S.)
| |
Collapse
|
7
|
Cheng L, Zhao S, Li T, Hou S, Luo Z, Xu J, Yu W, Jiang S, Monti M, Schindler D, Zhang W, Hou C, Ma Y, Cai Y, Boeke JD, Dai J. Large-scale genomic rearrangements boost SCRaMbLE in Saccharomyces cerevisiae. Nat Commun 2024; 15:770. [PMID: 38278805 PMCID: PMC10817965 DOI: 10.1038/s41467-023-44511-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 12/13/2023] [Indexed: 01/28/2024] Open
Abstract
Synthetic Chromosome Rearrangement and Modification by LoxP-mediated Evolution (SCRaMbLE) is a promising tool to study genomic rearrangements. However, the potential of SCRaMbLE to study genomic rearrangements is currently hindered, because a strain containing all 16 synthetic chromosomes is not yet available. Here, we construct SparLox83R, a yeast strain containing 83 loxPsym sites distributed across all 16 chromosomes. SCRaMbLE of SparLox83R produces versatile genome-wide genomic rearrangements, including inter-chromosomal events. Moreover, when combined with synthetic chromosomes, SCRaMbLE of hetero-diploids with SparLox83R leads to increased diversity of genomic rearrangements and relatively faster evolution of traits compared to hetero-diploids only with wild-type chromosomes. Analysis of the SCRaMbLEd strain with increased tolerance to nocodazole demonstrates that genomic rearrangements can perturb the transcriptome and 3D genome structure and consequently impact phenotypes. In summary, a genome with sparsely distributed loxPsym sites can serve as a powerful tool for studying the consequence of genomic rearrangements and accelerating strain engineering in Saccharomyces cerevisiae.
Collapse
Grants
- 32030004, 32150025 National Natural Science Foundation of China (National Science Foundation of China)
- 32001042 National Natural Science Foundation of China (National Science Foundation of China)
- 32101184 National Natural Science Foundation of China (National Science Foundation of China)
- 32122050 National Natural Science Foundation of China (National Science Foundation of China)
- 2021359 Youth Innovation Promotion Association of the Chinese Academy of Sciences (Youth Innovation Promotion Association CAS)
- National Key R&D Program of China (2022YFF1201800,2018YFA0900100), Guangdong Natural Science Funds for Distinguished Young Scholar (2021B1515020060), Guangdong Provincial Key Laboratory of Synthetic Genomics (2023B1212060054), Bureau of International Cooperation, Chinese Academy of Sciences (172644KYSB20180022), Shenzhen Science and Technology Program (KQTD20180413181837372, KQTD20200925153547003), Innovation Program of Chinese Academy of Agricultural Science and Shenzhen Outstanding Talents Training Fund.
- Guandong Basic and Applied Basic Research Foundation (2023A1515030285)
- UK Biotechnology and Biological Sciences Research Council (BBSRC) grants BB/M005690/1, BB/P02114X/1 and BB/W014483/1, Royal Society Newton Advanced Fellowship (NAF\R2\180590) and a Volkswagen Foundation “Life? Initiative” Grant (Ref. 94 771)
- US NSF grants MCB-1026068, MCB-1443299, MCB-1616111 and MCB-1921641
Collapse
Affiliation(s)
- Li Cheng
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Shijun Zhao
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tianyi Li
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Shenzhen Lianghe Biotechnology Co., Ltd., Shenzhen, China
| | - Sha Hou
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Zhouqing Luo
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Jinsheng Xu
- Department of Bioinformatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenfei Yu
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shuangying Jiang
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Marco Monti
- Manchester Institute of Biotechnology, University of Manchester, Manchester, M1 7DN, UK
| | - Daniel Schindler
- Manchester Institute of Biotechnology, University of Manchester, Manchester, M1 7DN, UK
| | - Weimin Zhang
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Chunhui Hou
- China State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Yingxin Ma
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yizhi Cai
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Manchester Institute of Biotechnology, University of Manchester, Manchester, M1 7DN, UK
| | - Jef D Boeke
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY, 11201, USA
| | - Junbiao Dai
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
- College of Life Sciences and Oceanography, Shenzhen University, 1066 Xueyuan Rd, Shenzhen, 518055, Guangdong, China.
| |
Collapse
|
8
|
Yeon J, Porwal C, McGrath PT, Sengupta P. Identification of a spontaneously arising variant affecting thermotaxis behavior in a recombinant inbred Caenorhabditis elegans line. G3 (BETHESDA, MD.) 2023; 13:jkad186. [PMID: 37572357 PMCID: PMC10542565 DOI: 10.1093/g3journal/jkad186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 06/26/2023] [Accepted: 08/02/2023] [Indexed: 08/14/2023]
Abstract
Analyses of the contributions of genetic variants in wild strains to phenotypic differences have led to a more complete description of the pathways underlying cellular functions. Causal loci are typically identified via interbreeding of strains with distinct phenotypes in order to establish recombinant inbred lines (RILs). Since the generation of RILs requires growth for multiple generations, their genomes may contain not only different combinations of parental alleles but also genetic changes that arose de novo during the establishment of these lines. Here, we report that in the course of generating RILs between Caenorhabditis elegans strains that exhibit distinct thermotaxis behavioral phenotypes, we identified spontaneously arising variants in the ttx-1 locus. ttx-1 encodes the terminal selector factor for the AFD thermosensory neurons, and loss-of-function mutations in ttx-1 abolish thermotaxis behaviors. The identified genetic changes in ttx-1 in the RIL are predicted to decrease ttx-1 function in part via specifically affecting a subset of AFD-expressed ttx-1 isoforms. Introduction of the relevant missense mutation in the laboratory C. elegans strain via gene editing recapitulates the thermotaxis behavioral defects of the RIL. Our results suggest that spontaneously occurring genomic changes in RILs may complicate identification of loci contributing to phenotypic variation, but that these mutations may nevertheless lead to the identification of important causal molecules and mechanisms.
Collapse
Affiliation(s)
- Jihye Yeon
- Department of Biology, Brandeis University, Waltham, MA 02454, USA
| | - Charmi Porwal
- Department of Biology, Brandeis University, Waltham, MA 02454, USA
| | - Patrick T McGrath
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Piali Sengupta
- Department of Biology, Brandeis University, Waltham, MA 02454, USA
| |
Collapse
|
9
|
Lichter EZ, Trease AJ, Cooper K, Stauch KL, Fox HS. Effects of Parkin on the Mitochondrial Genome in the Heart and Brain of Mitochondrial Mutator Mice. Adv Biol (Weinh) 2023; 7:e2300154. [PMID: 37376822 DOI: 10.1002/adbi.202300154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Indexed: 06/29/2023]
Abstract
Mitochondrial dysfunction has been implicated in neurodegenerative diseases like Parkinson's disease (PD). This study investigates the role of Parkin, a protein involved in mitochondrial quality control, and strongly linked to PD, in the context of mitochondrial DNA (mtDNA) mutations. Mitochondrial mutator mice (PolgD257A/D257A ) (Polg) are used and bred with Parkin knockout (PKO) mice or mice with disinhibited Parkin (W402A). In the brain, mtDNA mutations are analyzed in synaptosomes, presynaptic neuronal terminals, which are far from neuronal soma, which likely renders mitochondria there more vulnerable compared with brain homogenate. Surprisingly, PKO results in reduced mtDNA mutations in the brain but increased control region multimer (CRM) in synaptosomes. In the heart, both PKO and W402A lead to increased mutations, with W402A showing more mutations in the heart than PKO. Computational analysis reveals many of these mutations are deleterious. These findings suggest that Parkin plays a tissue-dependent role in regulating mtDNA damage response, with differential effects in the brain and heart. Understanding the specific role of Parkin in different tissues may provide insights into the underlying mechanisms of PD and potential therapeutic strategies. Further investigation into these pathways can enhance the understanding of neurodegenerative diseases associated with mitochondrial dysfunction.
Collapse
Affiliation(s)
- Eliezer Z Lichter
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Andrew J Trease
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Kathryn Cooper
- School of Interdisciplinary Informatics, University of Nebraska Omaha, Omaha, NE, 68182, USA
| | - Kelly L Stauch
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Howard S Fox
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| |
Collapse
|
10
|
Zemet R, Du H, Gambin T, Lupski JR, Liu P, Stankiewicz P. SNV/indel hypermutator phenotype in biallelic RAD51C variant: Fanconi anemia. Hum Genet 2023; 142:721-733. [PMID: 37031326 PMCID: PMC10996436 DOI: 10.1007/s00439-023-02550-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 03/24/2023] [Indexed: 04/10/2023]
Abstract
We previously reported a fetus with Fanconi anemia (FA), complementation group O due to compound heterozygous variants involving RAD51C. Interestingly, the trio exome sequencing analysis also detected eight apparent de novo mosaic variants with variant allele fraction (VAF) ranging between 11.5 and 37%. Here, using whole genome sequencing and a 'home-brew' variant filtering pipeline and DeepMosaic module, we investigated the number and signature of de novo heterozygous and mosaic variants and the hypothesis of a rare phenomenon of hypermutation. Eight-hundred-thirty apparent de novo SNVs and 21 de novo indels had VAFs below 37.41% and were considered postzygotic somatic mosaic variants. The VAFs showed a bimodal distribution, with one component having an average VAF of 25% (range: 18.7-37.41%) (n = 446), representing potential postzygotic first mitotic events, and the other component with an average VAF of 12.5% (range 9.55-18.69%) (n = 384), describing potential second mitotic events. No increased rate of CNV formation was observed. The mutational pattern analysis for somatic single base substitution showed SBS40, SBS5, and SBS3 as the top recognized signatures. SBS3 is a known signature associated with homologous recombination-based DNA damage repair error. Our data demonstrate that biallelic RAD51C variants show evidence for defective genomic DNA damage repair and thereby result in a hypermutator phenotype with the accumulation of postzygotic de novo mutations, at least in the prenatal period. This 'genome hypermutator phenomenon' might contribute to the observed hematological manifestations and the predisposition to tumors in patients with FA. We propose that other FA groups should be investigated for genome-wide de novo variants.
Collapse
Affiliation(s)
- Roni Zemet
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Haowei Du
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Tomasz Gambin
- Institute of Computer Science, Warsaw University of Technology, Warsaw, Poland
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
- Baylor Genetics, Houston, TX, USA.
| | - Paweł Stankiewicz
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
11
|
Genome-Wide Detection and Analysis of Copy Number Variation in Anhui Indigenous and Western Commercial Pig Breeds Using Porcine 80K SNP BeadChip. Genes (Basel) 2023; 14:genes14030654. [PMID: 36980927 PMCID: PMC10047991 DOI: 10.3390/genes14030654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Copy number variation (CNV) is an important class of genetic variations widely associated with the porcine genome, but little is known about the characteristics of CNVs in foreign and indigenous pig breeds. We performed a genome-wide comparison of CNVs between Anhui indigenous pig (AHIP) and Western commercial pig (WECP) breeds based on data from the Porcine 80K SNP BeadChip. After analysis using the PennCNV software, we detected 3863 and 7546 CNVs in the AHIP and WECP populations, respectively. We obtained 225 (loss: 178, gain: 47) and 379 (loss: 293, gain: 86) copy number variation regions (CNVRs) randomly distributed across the autosomes of the AHIP and WECP populations, accounting for 10.90% and 22.57% of the porcine autosomal genome, respectively. Functional enrichment analysis of genes in the CNVRs identified genes related to immunity (FOXJ1, FOXK2, MBL2, TNFRSF4, SIRT1, NCF1) and meat quality (DGAT1, NT5E) in the WECP population; these genes were a loss event in the WECP population. This study provides important information on CNV differences between foreign and indigenous pig breeds, making it possible to provide a reference for future improvement of these breeds and their production performance.
Collapse
|
12
|
Abstract
Exome sequencing (ES) and genome sequencing (GS) have radically transformed the diagnostic approach to undiagnosed rare/ultrarare Mendelian diseases. Next-generation sequencing (NGS), the technology integral for ES, GS, and most large (100+) gene panels, has enabled previously unimaginable diagnoses, changes in medical management, new treatments, and accurate reproductive risk assessments for patients, as well as new disease gene discoveries. Yet, challenges remain, as most individuals remain undiagnosed with current NGS. Improved NGS technology has resulted in long-read sequencing, which may resolve diagnoses in some patients who do not obtain a diagnosis with current short-read ES and GS, but its effectiveness is unclear, and it is expensive. Other challenges that persist include the resolution of variants of uncertain significance, the urgent need for patients with ultrarare disorders to have access to therapeutics, the need for equity in patient access to NGS-based testing, and the study of ethical concerns. However, the outlook for undiagnosed disease resolution is bright, due to continual advancements in the field.
Collapse
Affiliation(s)
- Jennifer A Sullivan
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina, USA;
| | - Kelly Schoch
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina, USA;
| | - Rebecca C Spillmann
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina, USA;
| | - Vandana Shashi
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina, USA;
| |
Collapse
|
13
|
Liu N, Li H, Li M, Gao Y, Yan H. Prenatally diagnosed 16p11.2 copy number variations by SNP Array: A retrospective case series. Clin Chim Acta 2023; 538:15-21. [PMID: 36374846 DOI: 10.1016/j.cca.2022.10.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 01/12/2023]
Abstract
OBJECTIVE The 16p11.2 copy number variations (CNVs) are increasingly recognized as one of the most frequent genomic disorders, with a broad spectrum of phenotypes. The fetal phenotype associated with 16p11.2 CNVs is poorly described. The current study presents prenatal series of 16p11.2 CNVs and provides a better understanding of this submicroscopic imbalance in prenatal diagnosis. METHOD Retrospective case series were extracted from a single tertiary referral center performing prenatal single nucleotide polymorphism (SNP) array from April 2017 to December 2021. The maternal demographics, indication for amniocentesis, ultrasound findings, SNP array results, inheritance of the CNVs, and pregnancy outcomes were studied. RESULTS We indentified 30 fetuses carrying 16p11.2 CNVs, representing 0.35% (30/8578) of prenatal SNP array results. The series included 17 fetuses with a proximal deletion, 7 with a distal deletion, 4 with a proximal duplication, and 2 with a distal duplication. Prenatal ultrasound anomalies were reported in 80% of these cases. The most common presentation was vertebralanomalies (9/30). Other features noted in more than one fetus were increased nuchal translucency/nuchal fold (NT/NF) (5/30), absent/hypoplastic nasal bone (3/30), polyhydramnios (3/30), ventricular septal defect (VSD) (2/30), unilateral mild ventriculomegaly (2/30), fetal growth restriction (FGR) (2/30), right aortic arch (2/30). All the 9 vertebralanomalies were present in fetuses harboring proximal deletion (9/17). Familial transmission was confirmed in 44% of cases (11/25) and termination of pregnancy was requested in 62.1% (18/29) of cases. CONCLUSION The 16p11.2 CNVs can have variable prenatal phenotypes and these CNVs are frequently inherited from parents with a milder or normal phenotype. Our results underline that vertebral deformities were frequent in cases of 16p11.2 proximal deletion, and further demonstrate the incomplete penetrance of the CNVs.
Collapse
Affiliation(s)
- Nian Liu
- Department of Health Toxicology, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Prenatal Diagnostic Center, Genetic Lab, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Li
- Prenatal Diagnostic Center, Genetic Lab, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Manman Li
- Prenatal Diagnostic Center, Genetic Lab, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanduo Gao
- Department of Ultrasound, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Yan
- Department of Health Toxicology, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
14
|
Yasin S, Görücü Yılmaz Ş, Geyik S, Oğuzkan Balcı S. The holistic approach to the CHRNA7 gene, hsa-miR-3158-5p, and 15q13.3 hotspot CNVs in migraineurs. Mol Pain 2023; 19:17448069231152104. [PMID: 36604774 PMCID: PMC9850133 DOI: 10.1177/17448069231152104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/03/2022] [Accepted: 12/29/2022] [Indexed: 01/07/2023] Open
Abstract
Migraine is a neurological disease characterized by severe headache attacks. Combinations of different genetic variations such as copy number variation (CNV) in a gene and microRNA (miRNA) expression can provide a holistic approach to the disease as a pathophysiological, diagnostic, and therapeutic target. CNVs, the Cholinergic Receptor Nicotinic Alpha 7 Subunit (CHRNA7) gene, and expression of gene-targeting miRNAs (hsa-miR-548e-5p and hsa-miR-3158-5p) in migraineurs (n = 102; with aura, n = 43; without aura, n = 59) and non-migraines (n = 120) aged 15-60 years, comparative, case-control study was conducted. Genetic markers were compared with biochemical parameters (BMI, WBC, Urea, GFR, ESR, CRP, HBG). All analyzes were performed by quantitative Real-Time PCR (q-PCR) and fold change was calculated with the 2-ΔΔCT method. The diagnostic power of the CHRNA7 gene, CNV, and miRNAs were analyzed with the receiver operating curve (ROC). CHRNA7 gene and hsa-miR-3158-5p are down-regulated in migraineurs and the gene is controlled by this miRNA via CNVs (p < .05). Both deletion and duplication were detected in patients with migraine for CVN numbers (p = .05). The number of CNV deletions was higher than duplications. When CHRNA7-CNV-hsa-miR-3158-5p was modeled together in the ROC analysis, the area under the curve (AUC) was 0.805, and the diagnostic power was "good". In migraineurs, the CHRNA7 gene can be controlled by hsa-miR-3158-5p via CNVs to modulate the mechanism of pain. These three genetic markers have diagnostic potential and may be used in antimigraine treatments.
Collapse
Affiliation(s)
- Sedat Yasin
- Department of Neurology,
Gaziantep
University, Gaziantep, Turkey
| | - Şenay Görücü Yılmaz
- Department of Nutrition and
Dietetics, Gaziantep
University, Gaziantep, Turkey
| | - Sırma Geyik
- Department of Neurology,
Gaziantep
University, Gaziantep, Turkey
| | | |
Collapse
|
15
|
Yuan B, Schulze KV, Assia Batzir N, Sinson J, Dai H, Zhu W, Bocanegra F, Fong CT, Holder J, Nguyen J, Schaaf CP, Yang Y, Bi W, Eng C, Shaw C, Lupski JR, Liu P. Sequencing individual genomes with recurrent genomic disorder deletions: an approach to characterize genes for autosomal recessive rare disease traits. Genome Med 2022; 14:113. [PMID: 36180924 PMCID: PMC9526336 DOI: 10.1186/s13073-022-01113-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 09/02/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND In medical genetics, discovery and characterization of disease trait contributory genes and alleles depends on genetic reasoning, study design, and patient ascertainment; we suggest a segmental haploid genetics approach to enhance gene discovery and molecular diagnostics. METHODS We constructed a genome-wide map for nonallelic homologous recombination (NAHR)-mediated recurrent genomic deletions and used this map to estimate population frequencies of NAHR deletions based on large-scale population cohorts and region-specific studies. We calculated recessive disease carrier burden using high-quality pathogenic or likely pathogenic variants from ClinVar and gnomAD. We developed a NIRD (NAHR deletion Impact to Recessive Disease) score for recessive disorders by quantifying the contribution of NAHR deletion to the overall allele load that enumerated all pairwise combinations of disease-causing alleles; we used a Punnett square approach based on an assumption of random mating. Literature mining was conducted to identify all reported patients with defects in a gene with a high NIRD score; meta-analysis was performed on these patients to estimate the representation of NAHR deletions in recessive traits from contemporary human genomics studies. Retrospective analyses of extant clinical exome sequencing (cES) were performed for novel rare recessive disease trait gene and allele discovery from individuals with NAHR deletions. RESULTS We present novel genomic insights regarding the genome-wide impact of NAHR recurrent segmental variants on recessive disease burden; we demonstrate the utility of NAHR recurrent deletions to enhance discovery in the challenging context of autosomal recessive (AR) traits and biallelic variation. Computational results demonstrate new mutations mediated by NAHR, involving recurrent deletions at 30 genomic regions, likely drive recessive disease burden for over 74% of loci within these segmental deletions or at least 2% of loci genome-wide. Meta-analyses on 170 literature-reported patients implicate that NAHR deletions are depleted from the ascertained pool of AR trait alleles. Exome reanalysis of personal genomes from subjects harboring recurrent deletions uncovered new disease-contributing variants in genes including COX10, ERCC6, PRRT2, and OTUD7A. CONCLUSIONS Our results demonstrate that genomic sequencing of personal genomes with NAHR deletions could dramatically improve allele and gene discovery and enhance clinical molecular diagnosis. Moreover, results suggest NAHR events could potentially enable human haploid genetic screens as an approach to experimental inquiry into disease biology.
Collapse
Affiliation(s)
- Bo Yuan
- grid.39382.330000 0001 2160 926XDepartment of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA ,grid.39382.330000 0001 2160 926XHuman Genome Sequencing Center, Baylor College of Medicine, Houston, TX USA
| | - Katharina V. Schulze
- grid.39382.330000 0001 2160 926XDepartment of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA ,grid.510928.7Baylor Genetics, Houston, TX USA
| | - Nurit Assia Batzir
- grid.39382.330000 0001 2160 926XDepartment of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA
| | - Jefferson Sinson
- grid.39382.330000 0001 2160 926XDepartment of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA
| | - Hongzheng Dai
- grid.39382.330000 0001 2160 926XDepartment of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA ,grid.510928.7Baylor Genetics, Houston, TX USA
| | - Wenmiao Zhu
- grid.39382.330000 0001 2160 926XDepartment of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA ,grid.510928.7Baylor Genetics, Houston, TX USA
| | | | - Chin-To Fong
- grid.412750.50000 0004 1936 9166Department of Pediatrics, University of Rochester Medical Center, Rochester, NY USA
| | - Jimmy Holder
- grid.39382.330000 0001 2160 926XDepartment of Pediatrics, Baylor College of Medicine, Houston, TX USA
| | - Joanne Nguyen
- grid.267308.80000 0000 9206 2401Department of Pediatrics, University of Texas Health Science Center, Houston, TX USA
| | - Christian P. Schaaf
- grid.39382.330000 0001 2160 926XDepartment of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA ,grid.7700.00000 0001 2190 4373Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Yaping Yang
- grid.39382.330000 0001 2160 926XDepartment of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA
| | - Weimin Bi
- grid.39382.330000 0001 2160 926XDepartment of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA ,grid.510928.7Baylor Genetics, Houston, TX USA
| | - Christine Eng
- grid.39382.330000 0001 2160 926XDepartment of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA ,grid.510928.7Baylor Genetics, Houston, TX USA
| | - Chad Shaw
- grid.39382.330000 0001 2160 926XDepartment of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA ,grid.21940.3e0000 0004 1936 8278Department of Statistics, Rice University, Houston, TX USA
| | - James R. Lupski
- grid.39382.330000 0001 2160 926XDepartment of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA ,grid.39382.330000 0001 2160 926XHuman Genome Sequencing Center, Baylor College of Medicine, Houston, TX USA ,grid.39382.330000 0001 2160 926XDepartment of Pediatrics, Baylor College of Medicine, Houston, TX USA ,grid.416975.80000 0001 2200 2638Texas Children’s Hospital, Houston, TX USA
| | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA. .,Baylor Genetics, Houston, TX, USA.
| |
Collapse
|
16
|
Böker V, Häußler J, Baumann J, Sunami Y, Trojanowicz B, Harwardt B, Hammje K, von Auw N, Erkan M, Krohn K, Kleeff J. Analysis of genomic alterations in cancer associated human pancreatic stellate cells. Sci Rep 2022; 12:13532. [PMID: 35941161 PMCID: PMC9360052 DOI: 10.1038/s41598-022-17748-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 07/30/2022] [Indexed: 11/26/2022] Open
Abstract
Pancreatic stellate cells (PSCs) constitute important cells of the pancreatic microenvironment and their close interaction with cancer cells is important in pancreatic cancer. It is currently not known whether PSCs accumulate genetic alterations that contribute to tumor biology. Our aim was to analyze genetic alterations in cancer associated PSCs. PSC DNA was matched to DNA isolated from pancreatic cancer patients’ blood (n = 5) and analyzed by Next-Generation Sequencing (NGS). Bioinformatic analysis was performed using the GATK software and pathogenicity prediction scores. Sanger sequencing was carried out to verify specific genetic alterations in a larger panel of PSCs (n = 50). NGS and GATK analysis identified on average 26 single nucleotide variants in PSC DNA as compared to the matched blood DNA that could be visualized with the Integrative Genomics Viewer. The absence of PDAC driver mutations (KRAS, p53, p16/INK4a, SMAD4) confirmed that PSC isolations were not contaminated with cancer cells. After filtering the variants, using different pathogenicity scores, ten genes were identified (SERPINB2, CNTNAP4, DENND4B, DPP4, FGFBP2, MIGA2, POLE, SNRNP40, TOP2B, and ZDHHC18) in single samples and confirmed by Sanger sequencing. As a proof of concept, functional analysis using control and SERPINB2 knock-out fibroblasts revealed functional effects on growth, migration, and collagen contraction. In conclusion, PSC DNA exhibit a substantial amount of single nucleotide variants that might have functional effects potentially contributing to tumor aggressiveness.
Collapse
Affiliation(s)
- Viktoria Böker
- Department of Visceral, Thoracic and Vascular Surgery, University Medical Center Carl Gustav Carus Dresden, 01307, Dresden, Germany.
| | - Johanna Häußler
- Department of Visceral, Vascular and Endocrine Surgery, Martin-Luther-University Halle-Wittenberg, University Medical Center Halle, 06120, Halle, Germany
| | - Jenny Baumann
- Department of Visceral, Vascular and Endocrine Surgery, Martin-Luther-University Halle-Wittenberg, University Medical Center Halle, 06120, Halle, Germany
| | - Yoshiaki Sunami
- Department of Visceral, Vascular and Endocrine Surgery, Martin-Luther-University Halle-Wittenberg, University Medical Center Halle, 06120, Halle, Germany
| | - Bogusz Trojanowicz
- Department of Visceral, Vascular and Endocrine Surgery, Martin-Luther-University Halle-Wittenberg, University Medical Center Halle, 06120, Halle, Germany
| | - Bernadette Harwardt
- Department of Visceral, Vascular and Endocrine Surgery, Martin-Luther-University Halle-Wittenberg, University Medical Center Halle, 06120, Halle, Germany
| | - Kathrin Hammje
- Department of Visceral, Vascular and Endocrine Surgery, Martin-Luther-University Halle-Wittenberg, University Medical Center Halle, 06120, Halle, Germany
| | - Nadine von Auw
- Department of Visceral, Vascular and Endocrine Surgery, Martin-Luther-University Halle-Wittenberg, University Medical Center Halle, 06120, Halle, Germany
| | - Mert Erkan
- Acibadem University Hospital Atakent, Istanbul, Turkey
| | - Knut Krohn
- Core Unit DNA im SIKT, Medical Faculty, University Leipzig, 04103, Leipzig, Germany
| | - Jörg Kleeff
- Department of Visceral, Vascular and Endocrine Surgery, University Hospital Halle, Martin-Luther-University Halle-Wittenberg, University Medical Center Halle, Ernst-Grube-Straße 40, 06120, Halle, Germany.
| |
Collapse
|
17
|
Komlósi K, Gyenesei A, Bene J. Editorial: Copy Number Variation in Rare Disorders. Front Genet 2022; 13:898059. [PMID: 35450215 PMCID: PMC9016220 DOI: 10.3389/fgene.2022.898059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 02/06/2023] Open
Affiliation(s)
- Katalin Komlósi
- Institute of Human Genetics, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Attila Gyenesei
- Bioinformatics Research Group, Genomics and Bioinformatics Core Facility, Szentagothai Research Center, University of Pécs, Pécs, Hungary
| | - Judit Bene
- Department of Medical Genetics, Clinical Centre, Medical School, University of Pécs, Pécs, Hungary
| |
Collapse
|
18
|
Giles Doran C, Pennington SR. Copy number alteration signatures as biomarkers in cancer: a review. Biomark Med 2022; 16:371-386. [PMID: 35195030 DOI: 10.2217/bmm-2021-0476] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Within certain cancers, extensive copy number alterations (CNAs) contribute to a complex and heterogenic genomic profile. This makes it difficult to understand and unravel the distinct molecular dynamics shaping the disease while preventing clinically effective patient stratification. CNA signature analysis represents a novel genomic stratification tool for probing this complexity, offering an intricate framework for deriving CNA patterns at the molecular level. This allows the underlying genomic mechanisms of specific cancers to be revealed, leading to the potential identification of therapeutic targets and prognostic associations. This review outlines the molecular and methodological basis of CNA signatures and focuses on recent advances highlighting their clinical utility, limitations and prospective future as novel diagnostic and prognostic cancer biomarkers.
Collapse
Affiliation(s)
- Conor Giles Doran
- UCD Conway Institute, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Stephen R Pennington
- UCD Conway Institute, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
19
|
Liang Y, Huang Y, Chen K, Kong X, Li M. Characterization of non-specific lipid transfer protein (nsLtp) gene families in the Brassica napus pangenome reveals abundance variation. BMC PLANT BIOLOGY 2022; 22:21. [PMID: 34996379 PMCID: PMC8740461 DOI: 10.1186/s12870-021-03408-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 12/15/2021] [Indexed: 05/13/2023]
Abstract
BACKGROUND Brassica napus is an important agricultural species, improving stress resistance was one of the main breeding goals at present. Non-specific lipid transfer proteins (nsLTPs) are small, basic proteins which are involved in some biotic or abiotic stress responses. B. napus is susceptible to a variety of fungal diseases, so identify the BnLTPs and their expression in disease responses is very important. The common reference genome of B. napus does not contain all B. napus genes because of gene presence/absence variations between individuals. Therefore, it was necessary to search for candidate BnLTP genes in the B. napus pangenome. RESULTS In the present study, the BnLTP genes were identified throughout the pangenome, and different BnLTP genes were presented among varieties. Totally, 246 BnLTP genes were identified and could be divided into five types (1, 2, C, D, and G). The classification, phylogenetic reconstruction, chromosome distribution, functional annotation, and gene expression were analyzed. We also identified potential cis-elements that respond to biotic and abiotic stresses in the 2 kb upstream regions of all BnLTP genes. RNA sequencing analysis showed that the BnLTP genes were involved in the response to Sclerotinia sclerotiorum infection. We identified 32 BnLTPs linked to blackleg resistance quantitative trait locus (QTL). CONCLUSION The identification and analysis of LTP genes in the B. napus pangenome could help to elucidate the function of BnLTP family members and provide new information for future molecular breeding in B. napus.
Collapse
Affiliation(s)
- Yu Liang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, College of Life Science, Guangxi Normal University, Guilin, China.
| | - Yang Huang
- School of Mechanical and Electrical Engineering, Guilin University of Electronic Technology, Guilin, China
| | - Kang Chen
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangdong Kong
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, College of Life Science, Guangxi Normal University, Guilin, China
| | - Maoteng Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
20
|
Lupski JR. Clan genomics: From OMIM phenotypic traits to genes and biology. Am J Med Genet A 2021; 185:3294-3313. [PMID: 34405553 PMCID: PMC8530976 DOI: 10.1002/ajmg.a.62434] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/29/2021] [Accepted: 07/04/2021] [Indexed: 12/20/2022]
Abstract
Clinical characterization of a patient phenotype has been the quintessential approach for elucidating a differential diagnosis and a hypothesis to explore a potential clinical diagnosis. This has resulted in a language of medicine and a semantic ontology, with both specialty- and subspecialty-specific lexicons, that can be challenging to translate and interpret. There is no 'Rosetta Stone' of clinical medicine such as the genetic code that can assist translation and interpretation of the language of genetics. Nevertheless, the information content embodied within a clinical diagnosis can guide management, therapeutic intervention, and potentially prognostic outlook of disease enabling anticipatory guidance for patients and families. Clinical genomics is now established firmly in medical practice. The granularity and informative content of a personal genome is immense. Yet, we are limited in our utility of much of that personal genome information by the lack of functional characterization of the overwhelming majority of computationally annotated genes in the haploid human reference genome sequence. Whereas DNA and the genetic code have provided a 'Rosetta Stone' to translate genetic variant information, clinical medicine, and clinical genomics provide the context to understand human biology and disease. A path forward will integrate deep phenotyping, such as available in a clinical synopsis in the Online Mendelian Inheritance in Man (OMIM) entries, with personal genome analyses.
Collapse
Affiliation(s)
- James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
- Texas Children's Hospital, Houston, Texas, USA
| |
Collapse
|
21
|
Mostovoy Y, Yilmaz F, Chow SK, Chu C, Lin C, Geiger EA, Meeks NJL, Chatfield KC, Coughlin CR, Surti U, Kwok PY, Shaikh TH. Genomic regions associated with microdeletion/microduplication syndromes exhibit extreme diversity of structural variation. Genetics 2021; 217:6066166. [PMID: 33724415 DOI: 10.1093/genetics/iyaa038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 12/18/2020] [Indexed: 11/12/2022] Open
Abstract
Segmental duplications (SDs) are a class of long, repetitive DNA elements whose paralogs share a high level of sequence similarity with each other. SDs mediate chromosomal rearrangements that lead to structural variation in the general population as well as genomic disorders associated with multiple congenital anomalies, including the 7q11.23 (Williams-Beuren Syndrome, WBS), 15q13.3, and 16p12.2 microdeletion syndromes. Population-level characterization of SDs has generally been lacking because most techniques used for analyzing these complex regions are both labor and cost intensive. In this study, we have used a high-throughput technique to genotype complex structural variation with a single molecule, long-range optical mapping approach. We characterized SDs and identified novel structural variants (SVs) at 7q11.23, 15q13.3, and 16p12.2 using optical mapping data from 154 phenotypically normal individuals from 26 populations comprising five super-populations. We detected several novel SVs for each locus, some of which had significantly different prevalence between populations. Additionally, we localized the microdeletion breakpoints to specific paralogous duplicons located within complex SDs in two patients with WBS, one patient with 15q13.3, and one patient with 16p12.2 microdeletion syndromes. The population-level data presented here highlights the extreme diversity of large and complex SVs within SD-containing regions. The approach we outline will greatly facilitate the investigation of the role of inter-SD structural variation as a driver of chromosomal rearrangements and genomic disorders.
Collapse
Affiliation(s)
- Yulia Mostovoy
- Cardiovascular Research Institute, UCSF School of Medicine, San Francisco, CA 94143, USA
| | - Feyza Yilmaz
- Department of Integrative Biology, University of Colorado Denver, Denver, CO 80204, USA.,Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Stephen K Chow
- Cardiovascular Research Institute, UCSF School of Medicine, San Francisco, CA 94143, USA
| | - Catherine Chu
- Cardiovascular Research Institute, UCSF School of Medicine, San Francisco, CA 94143, USA
| | - Chin Lin
- Cardiovascular Research Institute, UCSF School of Medicine, San Francisco, CA 94143, USA
| | - Elizabeth A Geiger
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Naomi J L Meeks
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Kathryn C Chatfield
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado School of Medicine, Aurora, CO 80045, USA.,Department of Pediatrics, Section of Cardiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Curtis R Coughlin
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Urvashi Surti
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Pui-Yan Kwok
- Cardiovascular Research Institute, UCSF School of Medicine, San Francisco, CA 94143, USA.,Department of Dermatology, UCSF School of Medicine, San Francisco, CA 94143, USA.,Institute for Human Genetics, UCSF School of Medicine, San Francisco, CA 94143, USA
| | - Tamim H Shaikh
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
22
|
Demir E. Adverse biological effects of ingested polystyrene microplastics using Drosophila melanogaster as a model in vivo organism. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2021; 84:649-660. [PMID: 33874844 DOI: 10.1080/15287394.2021.1913684] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The abundant presence and extensive use of polystyrene microplastics (PSMPs) has recently become a serious environmental concern, as impact of exposure to these substances on human health remains unknown. While in vitro studies yield data on adverse effect of PSMPs, in vivo approaches are more relevant for risk assessment. Drosophila melanogaster is one of the most genetically and experimentally accessible model organisms used in biology as an in vivo model. D. melanogaster was selected as a representative in vivo model organism to examine the genotoxic potential of PSMPs at 5 concentrations of three different sizes namely 4, 10, or 20 µm. In particular, the wing somatic mutation and recombination test (SMART), a scalable, time-efficient in vivo assay developed to study genotoxicity of various compounds in a rapid manner at low costs was used. The third-instar Drosophila larvae were exposed to PSMPs through food at 5 concentrations ranging from 0.01-10 mM. Viability (lethality), larval length, morphological deformations, locomotor activity (climbing behavior), and genotoxic effects were the end-points measured. Exposure to PSMPs at 4, 10, or 20 µm produced significant morphological defects, impaired climbing behavior, and genotoxicity as evidenced by the SMART test demonstrating induction of somatic recombination. Significant increases were observed in the frequency of total spots, suggesting that PSMPs might induce genotoxic activity predominantly via initiation of somatic DNA recombination in a concentration-dependent manner.
Collapse
Affiliation(s)
- Eşref Demir
- Antalya Bilim University, Vocational School of Health Services, Department of Medical Services and Techniques, Medical Laboratory Techniques Programme, Antalya, Turkey
| |
Collapse
|
23
|
Identification of Copy Number Variants in a Southern Chinese Cohort of Patients with Congenital Scoliosis. Genes (Basel) 2021; 12:genes12081213. [PMID: 34440387 PMCID: PMC8391542 DOI: 10.3390/genes12081213] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/01/2021] [Accepted: 08/03/2021] [Indexed: 12/15/2022] Open
Abstract
Congenital scoliosis (CS) is a lateral curvature of the spine resulting from congenital vertebral malformations (CVMs) and affects 0.5–1/1000 live births. The copy number variant (CNV) at chromosome 16p11.2 has been implicated in CVMs and recent studies identified a compound heterozygosity of 16p11.2 microdeletion and TBX6 variant/haplotype causing CS in multiple cohorts, which explains about 5–10% of the affected cases. Here, we studied the genetic etiology of CS by analyzing CNVs in a cohort of 67 patients with congenital hemivertebrae and 125 family controls. We employed both candidate gene and family-based approaches to filter CNVs called from whole exome sequencing data. This identified 12 CNVs in four scoliosis-associated genes (TBX6, NOTCH2, DSCAM, and SNTG1) as well as eight recessive and 64 novel rare CNVs in 15 additional genes. Some candidates, such as DHX40, NBPF20, RASA2, and MYSM1, have been found to be associated with syndromes with scoliosis or implicated in bone/spine development. In particular, the MYSM1 mutant mouse showed spinal deformities. Our findings suggest that, in addition to the 16p11.2 microdeletion, other CNVs are potentially important in predisposing to CS.
Collapse
|
24
|
Shukla V, Høffding MK, Hoffmann ER. Genome diversity and instability in human germ cells and preimplantation embryos. Semin Cell Dev Biol 2021; 113:132-147. [PMID: 33500205 PMCID: PMC8097364 DOI: 10.1016/j.semcdb.2020.12.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 12/18/2020] [Indexed: 12/26/2022]
Abstract
Genome diversity is essential for evolution and is of fundamental importance to human health. Generating genome diversity requires phases of DNA damage and repair that can cause genome instability. Humans have a high incidence of de novo congenital disorders compared to other organisms. Recent access to eggs, sperm and preimplantation embryos is revealing unprecedented rates of genome instability that may result in infertility and de novo mutations that cause genomic imbalance in at least 70% of conceptions. The error type and incidence of de novo mutations differ during developmental stages and are influenced by differences in male and female meiosis. In females, DNA repair is a critical factor that determines fertility and reproductive lifespan. In males, aberrant meiotic recombination causes infertility, embryonic failure and pregnancy loss. Evidence suggest germ cells are remarkably diverse in the type of genome instability that they display and the DNA damage responses they deploy. Additionally, the initial embryonic cell cycles are characterized by a high degree of genome instability that cause congenital disorders and may limit the use of CRISPR-Cas9 for heritable genome editing.
Collapse
Affiliation(s)
- Vallari Shukla
- DNRF Center for Chromosome Stability, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Miya Kudo Høffding
- DNRF Center for Chromosome Stability, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Eva R Hoffmann
- DNRF Center for Chromosome Stability, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
25
|
Duan R, Saadi NW, Grochowski CM, Bhadila G, Faridoun A, Mitani T, Du H, Fatih JM, Jhangiani SN, Akdemir ZC, Gibbs RA, Pehlivan D, Posey JE, Marafi D, Lupski JR. A novel homozygous SLC13A5 whole-gene deletion generated by Alu/Alu-mediated rearrangement in an Iraqi family with epileptic encephalopathy. Am J Med Genet A 2021; 185:1972-1980. [PMID: 33797191 DOI: 10.1002/ajmg.a.62192] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/10/2021] [Accepted: 03/05/2021] [Indexed: 01/05/2023]
Abstract
Biallelic loss-of-function (LoF) of SLC13A5 (solute carrier family 13, member 5) induced deficiency in sodium/citrate transporter (NaCT) causes autosomal recessive developmental epileptic encephalopathy 25 with hypoplastic amelogenesis imperfecta (DEE25; MIM #615905). Many pathogenic SLC13A5 single nucleotide variants (SNVs) and small indels have been described; however, no cases with copy number variants (CNVs) have been sufficiently investigated. We describe a consanguineous Iraqi family harboring an 88.5 kb homozygous deletion including SLC13A5 in Chr17p13.1. The three affected male siblings exhibit neonatal-onset epilepsy with fever-sensitivity, recurrent status epilepticus, global developmental delay/intellectual disability (GDD/ID), and other variable neurological findings as shared phenotypical features of DEE25. Two of the three affected subjects exhibit hypoplastic amelogenesis imperfecta (AI), while the proband shows no evidence of dental abnormalities or AI at 2 years of age with apparently unaffected primary dentition. Characterization of the genomic architecture at this locus revealed evidence for genomic instability generated by an Alu/Alu-mediated rearrangement; confirmed by break-point junction Sanger sequencing. This multiplex family from a distinct population elucidates the phenotypic consequence of complete LoF of SLC13A5 and illustrates the importance of read-depth-based CNV detection in comprehensive exome sequencing analysis to solve cases that otherwise remain molecularly unsolved.
Collapse
Affiliation(s)
- Ruizhi Duan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Nebal Waill Saadi
- College of Medicine, University of Baghdad, Baghdad, Iraq.,Children Welfare Teaching Hospital, Medical City Complex, Baghdad, Iraq
| | | | - Ghalia Bhadila
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, Maryland, USA.,Department of Pediatric Dentistry, Faculty of Dentistry, King AbdulAziz University, Jeddah, Saudi Arabia
| | - Afnan Faridoun
- Department of General Dental Practice, Faculty of Dentistry, Kuwait University, Kuwait
| | - Tadahiro Mitani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Haowei Du
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Jawid M Fatih
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Shalini N Jhangiani
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
| | - Zeynep C Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Richard A Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
| | - Davut Pehlivan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Texas Children's Hospital, Houston, Texas, USA.,Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine & Texas Children's Hospital, Houston, Texas, USA
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Dana Marafi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Department of Pediatrics, Faculty of Medicine, Kuwait University, Safat, Kuwait
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA.,Texas Children's Hospital, Houston, Texas, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
26
|
Liu Q, Xu J, Zhu Y, Mo Y, Yao XF, Wang R, Ku W, Huang Z, Xia S, Tong J, Huang C, Su Y, Lin W, Peng K, Liu CM, Xiao L. The Copy Number Variation of OsMTD1 Regulates Rice Plant Architecture. FRONTIERS IN PLANT SCIENCE 2021; 11:620282. [PMID: 33643334 PMCID: PMC7905320 DOI: 10.3389/fpls.2020.620282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/31/2020] [Indexed: 06/12/2023]
Abstract
Copy number variation (CNV) may have phenotypic effects by altering the expression level of the gene(s) or regulatory element(s) contained. It is believed that CNVs play pivotal roles in controlling plant architecture and other traits in plant. However, the effects of CNV contributing to special traits remain largely unknown. Here we report a CNV involved in rice architecture by modulating tiller number and leaf angle. In the genome of Oryza sativa ssp. japonica cv. Nipponbare, we found a locus Loc_Os08g34249 is derived from a 13,002-bp tandem duplication in the nearby region of OsMTD1, a gene regulating tillering in rice. Further survey of 230 rice cultivars showed that the duplication occurred in only 13 japonica rice cultivars. Phenotypic investigation indicated that this CNV region may contribute to tiller number. Moreover, we revealed that OsMTD1 not only influences rice tiller number and leaf angle, but also represses pri-miR156f transcription in the CNV region. Intriguingly, this CNV performs function through both the dosage and position effects on OsMTD1 and pri-miR156f. Thus, our work identified a CNV and revealed a molecular regulatory basis for its effects on plant architecture, implying this CNV may possess importance and application potential in molecular breeding in rice.
Collapse
Affiliation(s)
- Qing Liu
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Jinke Xu
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Yunhua Zhu
- Hengyang Medical College, University of South China, Hengyang, China
| | - Yuxing Mo
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Xue-Feng Yao
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Ruozhong Wang
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Wenzhen Ku
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Zhigang Huang
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Shitou Xia
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Jianhua Tong
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Chao Huang
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Yi Su
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Wanhuang Lin
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Keqin Peng
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Chun-Ming Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Langtao Xiao
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| |
Collapse
|
27
|
Gasmi L, Baek S, Kim JC, Kim S, Lee MR, Park SE, Shin TY, Lee SJ, Parker BL, Kim JS. Gene diversity explains variation in biological features of insect killing fungus, Beauveria bassiana. Sci Rep 2021; 11:91. [PMID: 33420123 PMCID: PMC7794557 DOI: 10.1038/s41598-020-78910-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 11/25/2020] [Indexed: 11/09/2022] Open
Abstract
Beauveria bassiana is a species complex whose isolates show considerable natural genetic variability. However, little is known about how this genetic diversity affects the fungus performance. Herein, we characterized the diversity of genes involved in various mechanisms of the infective cycle of 42 isolates that have different growth rates, thermotolerance and virulence. The analysed genes showed general genetic diversity measured as non-synonymous changes (NSC) and copy number variation (CNV), with most of them being subjected to positive episodic diversifying selection. Correlation analyses between NSC or CNV and the isolate virulence, thermotolerance and growth rate revealed that various genes shaped the biological features of the fungus. Lectin-like, mucin signalling, Biotrophy associated and chitinase genes NSCs correlated with the three biological features of B. bassiana. In addition, other genes (i.e. DNA photolyase and cyclophilin B) that had relatively conserved sequences, had variable CNs across the isolates which were correlated with the variability of either virulence or thermotolerance of B. bassiana isolates. The data obtained is important for a better understanding of population structure, ecological and potential impact when isolates are used as mycoinsecticides and can justify industrialization of new isolates.
Collapse
Affiliation(s)
- Laila Gasmi
- Department of Agricultural Biology, Jeonbuk National University, Jeonju, 54596, Korea
| | - Sehyeon Baek
- Department of Agricultural Biology, Jeonbuk National University, Jeonju, 54596, Korea
| | - Jong Cheol Kim
- Department of Agricultural Biology, Jeonbuk National University, Jeonju, 54596, Korea
| | - Sihyeon Kim
- Department of Agricultural Biology, Jeonbuk National University, Jeonju, 54596, Korea
| | - Mi Rong Lee
- Department of Agricultural Biology, Jeonbuk National University, Jeonju, 54596, Korea
| | - So Eun Park
- Department of Agricultural Biology, Jeonbuk National University, Jeonju, 54596, Korea
| | - Tae Young Shin
- Department of Agricultural Biology, Jeonbuk National University, Jeonju, 54596, Korea
| | - Se Jin Lee
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, 32611-0700, USA
| | - Bruce L Parker
- Entomology Research Laboratory, University of Vermont, 661 Spear Street, Burlington, VT, 05405-0105, USA
| | - Jae Su Kim
- Department of Agricultural Biology, Jeonbuk National University, Jeonju, 54596, Korea.
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, 54596, Korea.
| |
Collapse
|
28
|
Binversie EE, Baker LA, Engelman CD, Hao Z, Moran JJ, Piazza AM, Sample SJ, Muir P. Analysis of copy number variation in dogs implicates genomic structural variation in the development of anterior cruciate ligament rupture. PLoS One 2020; 15:e0244075. [PMID: 33382735 PMCID: PMC7774950 DOI: 10.1371/journal.pone.0244075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 12/02/2020] [Indexed: 11/19/2022] Open
Abstract
Anterior cruciate ligament (ACL) rupture is an important condition of the human knee. Second ruptures are common and societal costs are substantial. Canine cranial cruciate ligament (CCL) rupture closely models the human disease. CCL rupture is common in the Labrador Retriever (5.79% prevalence), ~100-fold more prevalent than in humans. Labrador Retriever CCL rupture is a polygenic complex disease, based on genome-wide association study (GWAS) of single nucleotide polymorphism (SNP) markers. Dissection of genetic variation in complex traits can be enhanced by studying structural variation, including copy number variants (CNVs). Dogs are an ideal model for CNV research because of reduced genetic variability within breeds and extensive phenotypic diversity across breeds. We studied the genetic etiology of CCL rupture by association analysis of CNV regions (CNVRs) using 110 case and 164 control Labrador Retrievers. CNVs were called from SNPs using three different programs (PennCNV, CNVPartition, and QuantiSNP). After quality control, CNV calls were combined to create CNVRs using ParseCNV and an association analysis was performed. We found no strong effect CNVRs but found 46 small effect (max(T) permutation P<0.05) CCL rupture associated CNVRs in 22 autosomes; 25 were deletions and 21 were duplications. Of the 46 CCL rupture associated CNVRs, we identified 39 unique regions. Thirty four were identified by a single calling algorithm, 3 were identified by two calling algorithms, and 2 were identified by all three algorithms. For 42 of the associated CNVRs, frequency in the population was <10% while 4 occurred at a frequency in the population ranging from 10–25%. Average CNVR length was 198,872bp and CNVRs covered 0.11 to 0.15% of the genome. All CNVRs were associated with case status. CNVRs did not overlap previous canine CCL rupture risk loci identified by GWAS. Associated CNVRs contained 152 annotated genes; 12 CNVRs did not have genes mapped to CanFam3.1. Using pathway analysis, a cluster of 19 homeobox domain transcript regulator genes was associated with CCL rupture (P = 6.6E-13). This gene cluster influences cranial-caudal body pattern formation during embryonic limb development. Clustered genes were found in 3 CNVRs on chromosome 14 (HoxA), 28 (NKX6-2), and 36 (HoxD). When analysis was limited to deletion CNVRs, the association was strengthened (P = 8.7E-16). This study suggests a component of the polygenic risk of CCL rupture in Labrador Retrievers is associated with small effect CNVs and may include aspects of stifle morphology regulated by homeobox domain transcript regulator genes.
Collapse
Affiliation(s)
- Emily E. Binversie
- Comparative Orthopaedic and Genetics Research Laboratory, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Lauren A. Baker
- Comparative Orthopaedic and Genetics Research Laboratory, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Corinne D. Engelman
- Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Zhengling Hao
- Comparative Orthopaedic and Genetics Research Laboratory, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - John J. Moran
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Alexander M. Piazza
- Comparative Orthopaedic and Genetics Research Laboratory, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Susannah J. Sample
- Comparative Orthopaedic and Genetics Research Laboratory, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Peter Muir
- Comparative Orthopaedic and Genetics Research Laboratory, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
29
|
Abstract
Non-obstructive azoospermia is a distinct diagnosis within male infertility in which no sperm is found in the ejaculate as a result of spermatogenesis failure. Because of the increased prevalence of genetic abnormalities in men with non-obstructive azoospermia, male infertility guidelines recommend screening for karyotype abnormalities and Y chromosome microdeletions in this population. Numerous karyotype abnormalities may be present resulting in impaired spermatogenesis, including: Klinefelter syndrome, translocations, and deletions. Y chromosome microdeletions of the AZFa, AZFb, AZFc subregions all can also result in non-obstructive azoospermia with the possibility of sperm being present if only the AZFc subregion is deleted. While these are the two genetic tests recommended by the guidelines, nearly 50%-80% of non-obstructive azoospermia has no identifiable cause and is deemed idiopathic. Several other genetic defects can lead to non-obstructive azoospermia including Kallmann syndrome, mild androgen insensitivity syndrome, and TEX11. While many additional candidate genes have been proposed, many have yet to be verified or are so infrequent in the population that screening is cost-ineffective. Much research is still required in the genetics of non-obstructive azoospermia and will require multi-institutional initiatives to better understand the genetics of condition.
Collapse
Affiliation(s)
- Vanessa N Peña
- Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Taylor P Kohn
- Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Amin S Herati
- Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
30
|
Assessment of Genetic Drift in Large Pharmacogenomic Studies. Cell Syst 2020; 11:393-401.e2. [DOI: 10.1016/j.cels.2020.08.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 07/04/2020] [Accepted: 08/18/2020] [Indexed: 12/16/2022]
|
31
|
Esteves L, Caramelo F, Ribeiro IP, Carreira IM, de Melo JB. Probability distribution of copy number alterations along the genome: an algorithm to distinguish different tumour profiles. Sci Rep 2020; 10:14868. [PMID: 32913269 PMCID: PMC7483770 DOI: 10.1038/s41598-020-71859-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 08/13/2020] [Indexed: 11/11/2022] Open
Abstract
Copy number alterations (CNAs) comprise deletions or amplifications of fragments of genomic material that are particularly common in cancer and play a major contribution in its development and progression. High resolution microarray-based genome-wide technologies have been widely used to detect CNAs, generating complex datasets that require further steps to allow for the determination of meaningful results. In this work, we propose a methodology to determine common regions of CNAs from these datasets, that in turn are used to infer the probability distribution of disease profiles in the population. This methodology was validated using simulated data and assessed using real data from Head and Neck Squamous Cell Carcinoma and Lung Adenocarcinoma, from the TCGA platform. Probability distribution profiles were produced allowing for the distinction between different phenotypic groups established within that cohort. This method may be used to distinguish between groups in the diseased population, within well-established degrees of confidence. The application of such methods may be of greater value in the clinical context both as a diagnostic or prognostic tool and, even as a useful way for helping to establish the most adequate treatment and care plans.
Collapse
Affiliation(s)
- Luísa Esteves
- Cytogenetics and Genomics Laboratory, Faculty of Medicine, University of Coimbra, Polo Ciências da Saúde, 3000-354, Coimbra, Portugal
| | - Francisco Caramelo
- Laboratory of Biostatistics and Medical Informatics, IBILI-Faculty of Medicine, University of Coimbra, 3000-354, Coimbra, Portugal
| | - Ilda Patrícia Ribeiro
- Cytogenetics and Genomics Laboratory, Faculty of Medicine, University of Coimbra, Polo Ciências da Saúde, 3000-354, Coimbra, Portugal.,iCBR-CIMAGO-Center of Investigation on Environment, Genetics and Oncobiology-Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Isabel M Carreira
- Cytogenetics and Genomics Laboratory, Faculty of Medicine, University of Coimbra, Polo Ciências da Saúde, 3000-354, Coimbra, Portugal.,iCBR-CIMAGO-Center of Investigation on Environment, Genetics and Oncobiology-Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Joana Barbosa de Melo
- Cytogenetics and Genomics Laboratory, Faculty of Medicine, University of Coimbra, Polo Ciências da Saúde, 3000-354, Coimbra, Portugal. .,iCBR-CIMAGO-Center of Investigation on Environment, Genetics and Oncobiology-Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
32
|
Ponnapalli SP, Bradley MW, Devine K, Bowen J, Coppens SE, Leraas KM, Milash BA, Li F, Luo H, Qiu S, Wu K, Yang H, Wittwer CT, Palmer CA, Jensen RL, Gastier-Foster JM, Hanson HA, Barnholtz-Sloan JS, Alter O. Retrospective clinical trial experimentally validates glioblastoma genome-wide pattern of DNA copy-number alterations predictor of survival. APL Bioeng 2020; 4:026106. [PMID: 32478280 PMCID: PMC7229984 DOI: 10.1063/1.5142559] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 04/27/2020] [Indexed: 12/20/2022] Open
Abstract
Modeling of genomic profiles from the Cancer Genome Atlas (TCGA) by using recently developed mathematical frameworks has associated a genome-wide pattern of DNA copy-number alterations with a shorter, roughly one-year, median survival time in glioblastoma (GBM) patients. Here, to experimentally test this relationship, we whole-genome sequenced DNA from tumor samples of patients. We show that the patients represent the U.S. adult GBM population in terms of most normal and disease phenotypes. Intratumor heterogeneity affects ≈ 11 % and profiling technology and reference human genome specifics affect <1% of the classifications of the tumors by the pattern, where experimental batch effects normally reduce the reproducibility, i.e., precision, of classifications based upon between one to a few hundred genomic loci by >30%. With a 2.25-year Kaplan-Meier median survival difference, a 3.5 univariate Cox hazard ratio, and a 0.78 concordance index, i.e., accuracy, the pattern predicts survival better than and independent of age at diagnosis, which has been the best indicator since 1950. The prognostic classification by the pattern may, therefore, help to manage GBM pseudoprogression. The diagnostic classification may help drugs progress to regulatory approval. The therapeutic predictions, of previously unrecognized targets that are correlated with survival, may lead to new drugs. Other methods missed this relationship in the roughly 3B-nucleotide genomes of the small, order of magnitude of 100, patient cohorts, e.g., from TCGA. Previous attempts to associate GBM genotypes with patient phenotypes were unsuccessful. This is a proof of principle that the frameworks are uniquely suitable for discovering clinically actionable genotype-phenotype relationships.
Collapse
Affiliation(s)
- Sri Priya Ponnapalli
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | | | - Karen Devine
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Jay Bowen
- The Research Institute at Nationwide Children's Hospital, Columbus, Ohio 43205, USA
| | - Sara E. Coppens
- The Research Institute at Nationwide Children's Hospital, Columbus, Ohio 43205, USA
| | - Kristen M. Leraas
- The Research Institute at Nationwide Children's Hospital, Columbus, Ohio 43205, USA
| | - Brett A. Milash
- Center for High-Performance Computing, University of Utah, Salt Lake City, Utah 84112, USA
| | - Fuqiang Li
- Beijing Genomics Institute (BGI) -Shenzhen, Shenzhen, Guangdong 518083, China
| | - Huijuan Luo
- Beijing Genomics Institute (BGI) -Shenzhen, Shenzhen, Guangdong 518083, China
| | - Shi Qiu
- BGI-Americas, Cambridge, Massachusetts 02142, USA
| | | | | | - Carl T. Wittwer
- Department of Pathology, University of Utah, Salt Lake City, Utah 84112, USA
| | | | | | | | | | - Jill S. Barnholtz-Sloan
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Orly Alter
- Author to whom correspondence should be addressed:
| |
Collapse
|
33
|
Hu Q, Maurais EG, Ly P. Cellular and genomic approaches for exploring structural chromosomal rearrangements. Chromosome Res 2020; 28:19-30. [PMID: 31933061 PMCID: PMC7131874 DOI: 10.1007/s10577-020-09626-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/20/2019] [Accepted: 01/01/2020] [Indexed: 12/13/2022]
Abstract
Human chromosomes are arranged in a linear and conserved sequence order that undergoes further spatial folding within the three-dimensional space of the nucleus. Although structural variations in this organization are an important source of natural genetic diversity, cytogenetic aberrations can also underlie a number of human diseases and disorders. Approaches for studying chromosome structure began half a century ago with karyotyping of Giemsa-banded chromosomes and has now evolved to encompass high-resolution fluorescence microscopy, reporter-based assays, and next-generation DNA sequencing technologies. Here, we provide a general overview of experimental methods at different resolution and sensitivity scales and discuss how they can be complemented to provide synergistic insight into the study of human chromosome structural rearrangements. These approaches range from kilobase-level resolution DNA fluorescence in situ hybridization (FISH)-based imaging approaches of individual cells to genome-wide sequencing strategies that can capture nucleotide-level information from diverse sample types. Technological advances coupled to the combinatorial use of multiple methods have resulted in the discovery of new rearrangement classes along with mechanistic insights into the processes that drive structural alterations in the human genome.
Collapse
Affiliation(s)
- Qing Hu
- Department of Pathology, Department of Cell Biology, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Elizabeth G Maurais
- Department of Pathology, Department of Cell Biology, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Peter Ly
- Department of Pathology, Department of Cell Biology, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
34
|
Zhao Y, Long L, Wan J, Biliya S, Brady SC, Lee D, Ojemakinde A, Andersen EC, Vannberg FO, Lu H, McGrath PT. A spontaneous complex structural variant in rcan-1 increases exploratory behavior and laboratory fitness of Caenorhabditis elegans. PLoS Genet 2020; 16:e1008606. [PMID: 32092052 PMCID: PMC7058356 DOI: 10.1371/journal.pgen.1008606] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 03/05/2020] [Accepted: 01/11/2020] [Indexed: 01/02/2023] Open
Abstract
Over long evolutionary timescales, major changes to the copy number, function, and genomic organization of genes occur, however, our understanding of the individual mutational events responsible for these changes is lacking. In this report, we study the genetic basis of adaptation of two strains of C. elegans to laboratory food sources using competition experiments on a panel of 89 recombinant inbred lines (RIL). Unexpectedly, we identified a single RIL with higher relative fitness than either of the parental strains. This strain also displayed a novel behavioral phenotype, resulting in higher propensity to explore bacterial lawns. Using bulk-segregant analysis and short-read resequencing of this RIL, we mapped the change in exploration behavior to a spontaneous, complex rearrangement of the rcan-1 gene that occurred during construction of the RIL panel. We resolved this rearrangement into five unique tandem inversion/duplications using Oxford Nanopore long-read sequencing. rcan-1 encodes an ortholog to human RCAN1/DSCR1 calcipressin gene, which has been implicated as a causal gene for Down syndrome. The genomic rearrangement in rcan-1 creates two complete and two truncated versions of the rcan-1 coding region, with a variety of modified 5’ and 3’ non-coding regions. While most copy-number variations (CNVs) are thought to act by increasing expression of duplicated genes, these changes to rcan-1 ultimately result in the reduction of its whole-body expression due to changes in the upstream regions. By backcrossing this rearrangement into a common genetic background to create a near isogenic line (NIL), we demonstrate that both the competitive advantage and exploration behavioral changes are linked to this complex genetic variant. This NIL strain does not phenocopy a strain containing an rcan-1 loss-of-function allele, which suggests that the residual expression of rcan-1 is necessary for its fitness effects. Our results demonstrate how colonization of new environments, such as those encountered in the laboratory, can create evolutionary pressure to modify gene function. This evolutionary mismatch can be resolved by an unexpectedly complex genetic change that simultaneously duplicates and diversifies a gene into two uniquely regulated genes. Our work shows how complex rearrangements can act to modify gene expression in ways besides increased gene dosage. Evolution acts on genetic variants that modify phenotypes that increase the likelihood of staying alive and passing on these genetic changes to subsequent generations (i.e. fitness). There is general interest in understanding the types of genetic variants that can increase fitness in specific environments. One route that fitness can be increased is through changes in behavior, such as finding new food sources. Here, we identify a spontaneous genetic change that increases exploration behavior and fitness of animals in laboratory environments. Interestingly, this genetic change is not a simple genetic change that deletes or changes the sequence of a protein product, but rather a complex structural variant that simultaneously duplicates the rcan-1 gene and also modifies its expression in a number of tissues. Our work demonstrates how a complex structural change can duplicate a gene, modify the DNA control regions that determine its cellular sites of action, and confer a fitness advantage that could lead to its spread in a population.
Collapse
Affiliation(s)
- Yuehui Zhao
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Lijiang Long
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- Interdisciplinary Graduate Program in Quantitative Biosciences, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Jason Wan
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States of America
| | - Shweta Biliya
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Shannon C. Brady
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Daehan Lee
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Akinade Ojemakinde
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Erik C. Andersen
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Fredrik O. Vannberg
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Hang Lu
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Patrick T. McGrath
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- Interdisciplinary Graduate Program in Quantitative Biosciences, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
35
|
Ueki M, Kimura-Kataoka K, Fujihara J, Iida R, Kawai Y, Kusaka A, Sasaki T, Takeshita H, Yasuda T. Evaluation of the functional effects of genetic variants‒missense and nonsense SNPs, indels and copy number variations‒in the gene encoding human deoxyribonuclease I potentially implicated in autoimmunity. Sci Rep 2019; 9:13660. [PMID: 31541133 PMCID: PMC6754452 DOI: 10.1038/s41598-019-49935-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 08/29/2019] [Indexed: 01/31/2023] Open
Abstract
Genetic variants, such as single nucleotide polymorphisms (SNPs), in the deoxyribonuclease I (DNase I) gene which remarkably reduce or abolish the activity are assumed to be substantially responsible for the genetic backgrounds determining susceptibility to autoimmune dysfunction. Here, we evaluated many genetic variants, including missense and nonsense SNPs, and indel (inframe) variants in the gene, potentially implicated in autoimmune diseases as functional variants resulting in altered activity levels. Eighteen missense and 7 nonsense SNPs, and 9 indel (inframe) variants were found to result in loss of function and disappearance of DNase I activity. Furthermore, considering the positions in the DNase I protein corresponding to the various nonsense SNPs, all of the other nonsense SNPs and frameshift variants registered in the Ensembl database (https://asia.ensembl.org) appear likely to exert a pathogenetic effect through loss of the activity. Accordingly, a total of 60 genetic variants in the DNase 1 gene (DNASE1) inducing abolishment or marked reduction of the DNase I activity could be identified as genetic risk factors for autoimmunity, irrespective of how sparsely they were distributed in the population. It was noteworthy that SNP p.Gln244Arg, reportedly associated with autoimmunity and reducing the activity to about half of that of the wild type, and SNP p.Arg107Gly, abolishing the activity completely, were distributed worldwide and in African populations at the polymorphic level, respectively. On the other hand, with regard to copy number variations in DNASE1 where loss of copy leads to a reduction of the in vivo enzyme activity, only 2 diploid copy numbers were distributed in Japanese and German populations, demonstrating no loss of copy. These exhaustive data for genetic variants in DNASE1 resulting in loss or marked reduction of the DNase I activity are highly informative when considering genetic predisposition leading to autoimmune dysfunction.
Collapse
Affiliation(s)
- Misuzu Ueki
- Department of Medical Genetics and Biochemistry, Faculty of Medical Sciences, University of Fukui, Eiheiji, Fukui, Japan
| | - Kaori Kimura-Kataoka
- Department of Legal Medicine, Shimane University School of Medicine, Enya, Izumo, Japan
| | - Junko Fujihara
- Department of Legal Medicine, Shimane University School of Medicine, Enya, Izumo, Japan
| | - Reiko Iida
- Department of Life Sciences, Faculty of Medical Sciences, University of Fukui, Eiheiji, Fukui, Japan
| | - Yasuyuki Kawai
- Department of Cardiology, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Akari Kusaka
- Department of Legal Medicine, Shimane University School of Medicine, Enya, Izumo, Japan
| | - Takamitsu Sasaki
- Department of Legal Medicine, Shimane University School of Medicine, Enya, Izumo, Japan
| | - Haruo Takeshita
- Department of Legal Medicine, Shimane University School of Medicine, Enya, Izumo, Japan.
| | - Toshihiro Yasuda
- Department of Medical Genetics and Biochemistry, Faculty of Medical Sciences, University of Fukui, Eiheiji, Fukui, Japan
| |
Collapse
|
36
|
Bradley MW, Aiello KA, Ponnapalli SP, Hanson HA, Alter O. GSVD- and tensor GSVD-uncovered patterns of DNA copy-number alterations predict adenocarcinomas survival in general and in response to platinum. APL Bioeng 2019; 3:036104. [PMID: 31463421 PMCID: PMC6701977 DOI: 10.1063/1.5099268] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 08/06/2019] [Indexed: 12/14/2022] Open
Abstract
More than a quarter of lung, uterine, and ovarian adenocarcinoma (LUAD, USEC, and OV) tumors are resistant to platinum drugs. Only recently and only in OV, patterns of copy-number alterations that predict survival in response to platinum were discovered, and only by using the tensor GSVD to compare Agilent microarray platform-matched profiles of patient-matched normal and primary tumor DNA. Here, we use the GSVD to compare whole-genome sequencing (WGS) and Affymetrix microarray profiles of patient-matched normal and primary LUAD, USEC, and OV tumor DNA. First, the GSVD uncovers patterns similar to one Agilent OV pattern, where a loss of most of the chromosome arm 6p combined with a gain of 12p encode for transformation. Like the Agilent OV pattern, the WGS LUAD and Affymetrix LUAD, USEC, and OV patterns are correlated with shorter survival, in general and in response to platinum. Like the tensor GSVD, the GSVD separates these tumor-exclusive genotypes from experimental inconsistencies. Second, by identifying the shorter survival phenotypes among the WGS- and Affymetrix-profiled tumors, the Agilent pattern proves to be a technology-independent predictor of survival, independent also of the best other indicator at diagnosis, i.e., stage. Third, like no other indicator, the pattern predicts the overall survival of OV patients experiencing progression-free survival, in general and in response to platinum. We conclude that comparative spectral decompositions, such as the GSVD and tensor GSVD, underlie a mathematically universal description of the relationships between a primary tumor's genotype and a patient's overall survival phenotype, which other methods miss.
Collapse
Affiliation(s)
| | | | - Sri Priya Ponnapalli
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | | | | |
Collapse
|
37
|
Integrative multi-omic analysis identifies new drivers and pathways in molecularly distinct subtypes of ALS. Sci Rep 2019; 9:9968. [PMID: 31292500 PMCID: PMC6620285 DOI: 10.1038/s41598-019-46355-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 06/04/2019] [Indexed: 02/07/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is an incurable and fatal neurodegenerative disease. Increasing the chances of success for future clinical strategies requires more in-depth knowledge of the molecular basis underlying disease heterogeneity. We recently laid the foundation for a molecular taxonomy of ALS by whole-genome expression profiling of motor cortex from sporadic ALS (SALS) patients. Here, we analyzed copy number variants (CNVs) occurring in the same patients, by using a customized exon-centered comparative genomic hybridization array (aCGH) covering a large panel of ALS-related genes. A large number of novel and known disease-associated CNVs were detected in SALS samples, including several subgroup-specific loci, suggestive of a great divergence of two subgroups at the molecular level. Integrative analysis of copy number profiles with their associated transcriptomic data revealed subtype-specific genomic perturbations and candidate driver genes positively correlated with transcriptional signatures, suggesting a strong interaction between genomic and transcriptomic events in ALS pathogenesis. The functional analysis confirmed our previous pathway-based characterization of SALS subtypes and identified 24 potential candidates for genomic-based patient stratification. To our knowledge, this is the first comprehensive "omics" analysis of molecular events characterizing SALS pathology, providing a road map to facilitate genome-guided personalized diagnosis and treatments for this devastating disease.
Collapse
|
38
|
Vicari S, Napoli E, Cordeddu V, Menghini D, Alesi V, Loddo S, Novelli A, Tartaglia M. Copy number variants in autism spectrum disorders. Prog Neuropsychopharmacol Biol Psychiatry 2019; 92:421-427. [PMID: 30797015 DOI: 10.1016/j.pnpbp.2019.02.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 02/15/2019] [Accepted: 02/19/2019] [Indexed: 11/24/2022]
Abstract
In recent years, there has been an explosive increase in genetic studies related to autism spectrum disorder (ASD). This implicated the accumulation of a large amount of molecular data that may be used to verify various hypotheses and models developed to explore the complex genetic component of ASD. Several lines of evidence support the view that structural genomic variation contributes to the pathogenesis of ASD. The introduction of more sophisticated techniques for whole-genome screening, including array comparative genome hybridization and high-resolution single nucleotide polymorphism analysis, has allowed to identify an increasing number of ASD susceptibility loci. Copy number variants (CNVs) are the most common type of structural variation in the human genome and are considered important contributors to the pathogenesis of neurodevelopmental disorders, including ASD. In this review, we describe the accumulated evidence concerning the genetic events associated with ASD, and summarize current knowledge about the clinical relevance of CNVs in these disorders.
Collapse
Affiliation(s)
- Stefano Vicari
- Department of Neuroscience, Child Neuropsychiatric Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| | - Eleonora Napoli
- Department of Neuroscience, Child Neuropsychiatric Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Viviana Cordeddu
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Deny Menghini
- Department of Neuroscience, Child Neuropsychiatric Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Viola Alesi
- Laboratory of Medical Genetics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Sara Loddo
- Laboratory of Medical Genetics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Antonio Novelli
- Laboratory of Medical Genetics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
39
|
Zepeda‐Mendoza C, Goodenberger ML, Kuhl A, Rice GM, Hoppman N. Familial segregation of a 5q15-q21.2 deletion associated with facial dysmorphism and speech delay. Clin Case Rep 2019; 7:1154-1160. [PMID: 31183085 PMCID: PMC6552940 DOI: 10.1002/ccr3.2186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/16/2019] [Accepted: 04/11/2019] [Indexed: 11/16/2022] Open
Abstract
We report a two-generation family with four females harboring an 8.5Mb heterozygous deletion of 5q15-q21.2 who present with dysmorphic craniofacial features and speech delay. We hypothesize haploinsufficiency of CHD1 to be contributing to the clinical features observed in this family.
Collapse
Affiliation(s)
- Cinthya Zepeda‐Mendoza
- Division of Laboratory Genetics and Genomics, Departments of Laboratory Medicine and PathologyMayo ClinicRochesterMinnesota
| | - McKinsey L. Goodenberger
- Division of Laboratory Genetics and Genomics, Departments of Laboratory Medicine and PathologyMayo ClinicRochesterMinnesota
| | - Ashley Kuhl
- School of Medicine and Public HealthUniversity of WisconsinMadisonWisconsin
| | - Gregory M. Rice
- School of Medicine and Public HealthUniversity of WisconsinMadisonWisconsin
| | - Nicole Hoppman
- Division of Laboratory Genetics and Genomics, Departments of Laboratory Medicine and PathologyMayo ClinicRochesterMinnesota
| |
Collapse
|
40
|
Ueki M, Fujihara J, Kimura-Kataoka K, Yamada K, Takinami Y, Takeshita H, Iida R, Yasuda T. Low genetic heterogeneity of copy number variations (CNVs) in the genes encoding the human deoxyribonucleases 1-like 3 and II potentially relevant to autoimmunity. PLoS One 2019; 14:e0215479. [PMID: 31022206 PMCID: PMC6483174 DOI: 10.1371/journal.pone.0215479] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 04/02/2019] [Indexed: 11/18/2022] Open
Abstract
Deoxyribonucleases (DNases) might play a role in prevention of autoimmune conditions such as systemic lupus erythematosus through clearance of cell debris resulting from apoptosis and/or necrosis. Previous studies have suggested that variations in the in vivo activities of DNases I-like 3(1L3) and II have an impact on autoimmune-related conditions. The genes for these DNases are known to show copy number variations (CNVs) whereby copy loss leads to a reduction of the in vivo activities of the enzymes, thereby possibly affecting the pathophysiological background of autoimmune diseases. Using a simple newly developed quantitative real-time PCR method, we investigated the distributions of the CNVs for DNASE1L3 and DNASE2 in Japanese and German populations. It was found that only 2 diploid copy numbers for all of these DNASE CNVs was distributed in both of the study populations; no copy loss or gain was evident for any of the autoimmune-related DNase genes. Therefore, it was demonstrated that these human autoimmune-related DNase genes show low genetic diversity of CNVs resulting in alterations of the in vivo levels of DNase activity.
Collapse
Affiliation(s)
- Misuzu Ueki
- Division of Medical Genetics and Biochemistry, School of Medical Sciences, University of Fukui, Eiheiji, Fukui, Japan
| | - Junko Fujihara
- Department of Legal Medicine, Shimane University School of Medicine, Izumo, Shimane, Japan
| | - Kaori Kimura-Kataoka
- Department of Legal Medicine, Shimane University School of Medicine, Izumo, Shimane, Japan
| | - Kazuo Yamada
- Department of Legal Medicine, Shimane University School of Medicine, Izumo, Shimane, Japan
| | - Yoshikazu Takinami
- Department of Emergency and Critical Care Medicine, Shimane University School of Medicine, Izumo, Shimane, Japan
| | - Haruo Takeshita
- Department of Legal Medicine, Shimane University School of Medicine, Izumo, Shimane, Japan
- * E-mail:
| | - Reiko Iida
- Division of Life Science, School of Medical Sciences, University of Fukui, Eiheiji, Fukui, Japan
| | - Toshihiro Yasuda
- Division of Medical Genetics and Biochemistry, School of Medical Sciences, University of Fukui, Eiheiji, Fukui, Japan
| |
Collapse
|
41
|
Lin YL, Gokcumen O. Fine-Scale Characterization of Genomic Structural Variation in the Human Genome Reveals Adaptive and Biomedically Relevant Hotspots. Genome Biol Evol 2019; 11:1136-1151. [PMID: 30887040 PMCID: PMC6475128 DOI: 10.1093/gbe/evz058] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2019] [Indexed: 12/25/2022] Open
Abstract
Genomic structural variants (SVs) are distributed nonrandomly across the human genome. The "hotspots" of SVs have been implicated in evolutionary innovations, as well as medical conditions. However, the evolutionary and biomedical features of these hotspots remain incompletely understood. Here, we analyzed data from 2,504 genomes to construct a refined map of 1,148 SV hotspots in human genomes. We confirmed that segmental duplication-related nonallelic homologous recombination is an important mechanistic driver of SV hotspot formation. However, to our surprise, we also found that a majority of SVs in hotspots do not form through such recombination-based mechanisms, suggesting diverse mechanistic and selective forces shaping hotspots. Indeed, our evolutionary analyses showed that the majority of SV hotspots are within gene-poor regions and evolve under relaxed negative selection or neutrality. However, we still found a small subset of SV hotspots harboring genes that are enriched for anthropologically crucial functions and evolve under geography-specific and balancing adaptive forces. These include two independent hotspots on different chromosomes affecting alpha and beta hemoglobin gene clusters. Biomedically, we found that the SV hotspots coincide with breakpoints of clinically relevant, large de novo SVs, significantly more often than genome-wide expectations. For example, we showed that the breakpoints of multiple large SVs, which lead to idiopathic short stature, coincide with SV hotspots. Therefore, the mutational instability in SV hotpots likely enables chromosomal breaks that lead to pathogenic structural variation formations. Overall, our study contributes to a better understanding of the mutational and adaptive landscape of the genome.
Collapse
Affiliation(s)
- Yen-Lung Lin
- Department of Biological Sciences, University at Buffalo
| | - Omer Gokcumen
- Department of Biological Sciences, University at Buffalo
- Corresponding author: E-mail: or
| |
Collapse
|
42
|
Posey JE, O'Donnell-Luria AH, Chong JX, Harel T, Jhangiani SN, Coban Akdemir ZH, Buyske S, Pehlivan D, Carvalho CMB, Baxter S, Sobreira N, Liu P, Wu N, Rosenfeld JA, Kumar S, Avramopoulos D, White JJ, Doheny KF, Witmer PD, Boehm C, Sutton VR, Muzny DM, Boerwinkle E, Günel M, Nickerson DA, Mane S, MacArthur DG, Gibbs RA, Hamosh A, Lifton RP, Matise TC, Rehm HL, Gerstein M, Bamshad MJ, Valle D, Lupski JR. Insights into genetics, human biology and disease gleaned from family based genomic studies. Genet Med 2019; 21:798-812. [PMID: 30655598 PMCID: PMC6691975 DOI: 10.1038/s41436-018-0408-7] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 12/05/2018] [Indexed: 12/16/2022] Open
Abstract
Identifying genes and variants contributing to rare disease phenotypes and Mendelian conditions informs biology and medicine, yet potential phenotypic consequences for variation of >75% of the ~20,000 annotated genes in the human genome are lacking. Technical advances to assess rare variation genome-wide, particularly exome sequencing (ES), enabled establishment in the United States of the National Institutes of Health (NIH)-supported Centers for Mendelian Genomics (CMGs) and have facilitated collaborative studies resulting in novel "disease gene" discoveries. Pedigree-based genomic studies and rare variant analyses in families with suspected Mendelian conditions have led to the elucidation of hundreds of novel disease genes and highlighted the impact of de novo mutational events, somatic variation underlying nononcologic traits, incompletely penetrant alleles, phenotypes with high locus heterogeneity, and multilocus pathogenic variation. Herein, we highlight CMG collaborative discoveries that have contributed to understanding both rare and common diseases and discuss opportunities for future discovery in single-locus Mendelian disorder genomics. Phenotypic annotation of all human genes; development of bioinformatic tools and analytic methods; exploration of non-Mendelian modes of inheritance including reduced penetrance, multilocus variation, and oligogenic inheritance; construction of allelic series at a locus; enhanced data sharing worldwide; and integration with clinical genomics are explored. Realizing the full contribution of rare disease research to functional annotation of the human genome, and further illuminating human biology and health, will lay the foundation for the Precision Medicine Initiative.
Collapse
Affiliation(s)
- Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| | - Anne H O'Donnell-Luria
- Analytic and Translational Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Boston Children's Hospital, Boston, MA, USA
| | - Jessica X Chong
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Tamar Harel
- Department of Genetic and Metabolic Diseases, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Shalini N Jhangiani
- The Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Zeynep H Coban Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Steven Buyske
- Department of Genetics, Rutgers University, Piscataway, NJ, USA
- Department of Statistics, Rutgers University, Piscataway, NJ, USA
| | - Davut Pehlivan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Claudia M B Carvalho
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Samantha Baxter
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Nara Sobreira
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Baylor Genetics Laboratory, Houston, TX, USA
| | - Nan Wu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Sushant Kumar
- Computational Biology and Bioinformatics Program, Yale University Medical School, New Haven, CT, USA
| | - Dimitri Avramopoulos
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Janson J White
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Kimberly F Doheny
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
- Center for Inherited Disease Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - P Dane Witmer
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
- Center for Inherited Disease Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Corinne Boehm
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - V Reid Sutton
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Donna M Muzny
- The Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Eric Boerwinkle
- The Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Human Genetics Center, University of Texas Health Science Center, Houston, TX, USA
| | - Murat Günel
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | | | - Shrikant Mane
- Yale Center for Genome Analysis, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Daniel G MacArthur
- Analytic and Translational Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Richard A Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- The Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Ada Hamosh
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Richard P Lifton
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY, USA
| | - Tara C Matise
- Department of Genetics, Rutgers University, Piscataway, NJ, USA
| | - Heidi L Rehm
- Analytic and Translational Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Mark Gerstein
- Computational Biology and Bioinformatics Program, Yale University Medical School, New Haven, CT, USA
| | - Michael J Bamshad
- Department of Pediatrics, University of Washington, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - David Valle
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
- The Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA.
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.
- Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
43
|
Lupski JR. 2018 Victor A. McKusick Leadership Award: Molecular Mechanisms for Genomic and Chromosomal Rearrangements. Am J Hum Genet 2019; 104:391-406. [PMID: 30849326 PMCID: PMC6407437 DOI: 10.1016/j.ajhg.2018.12.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, and Texas Children's Hospital, Houston, TX 77030, USA.
| |
Collapse
|
44
|
Liu J, Wu N, Yang N, Takeda K, Chen W, Li W, Du R, Liu S, Zhou Y, Zhang L, Liu Z, Zuo Y, Zhao S, Blank R, Pehlivan D, Dong S, Zhang J, Shen J, Si N, Wang Y, Liu G, Li S, Zhao Y, Zhao H, Chen Y, Zhao Y, Song X, Hu J, Lin M, Tian Y, Yuan B, Yu K, Niu Y, Yu B, Li X, Chen J, Yan Z, Zhu Q, Meng X, Chen X, Su J, Zhao X, Wang X, Ming Y, Li X, Raggio CL, Zhang B, Weng X, Zhang S, Zhang X, Watanabe K, Matsumoto M, Jin L, Shen Y, Sobreira NL, Posey JE, Giampietro PF, Valle D, Liu P, Wu Z, Ikegawa S, Lupski JR, Zhang F, Qiu G. TBX6-associated congenital scoliosis (TACS) as a clinically distinguishable subtype of congenital scoliosis: further evidence supporting the compound inheritance and TBX6 gene dosage model. Genet Med 2019; 21:1548-1558. [PMID: 30636772 DOI: 10.1038/s41436-018-0377-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 11/09/2018] [Indexed: 02/07/2023] Open
Abstract
PURPOSE To characterize clinically measurable endophenotypes, implicating the TBX6 compound inheritance model. METHODS Patients with congenital scoliosis (CS) from China(N = 345, cohort 1), Japan (N = 142, cohort 2), and the United States (N = 10, cohort 3) were studied. Clinically measurable endophenotypes were compared according to the TBX6 genotypes. A mouse model for Tbx6 compound inheritance (N = 52) was investigated by micro computed tomography (micro-CT). A clinical diagnostic algorithm (TACScore) was developed to assist in clinical recognition of TBX6-associated CS (TACS). RESULTS In cohort 1, TACS patients (N = 33) were significantly younger at onset than the remaining CS patients (P = 0.02), presented with one or more hemivertebrae/butterfly vertebrae (P = 4.9 × 10‒8), and exhibited vertebral malformations involving the lower part of the spine (T8-S5, P = 4.4 × 10‒3); observations were confirmed in two replication cohorts. Simple rib anomalies were prevalent in TACS patients (P = 3.1 × 10‒7), while intraspinal anomalies were uncommon (P = 7.0 × 10‒7). A clinically usable TACScore was developed with an area under the curve (AUC) of 0.9 (P = 1.6 × 10‒15). A Tbx6-/mh (mild-hypomorphic) mouse model supported that a gene dosage effect underlies the TACS phenotype. CONCLUSION TACS is a clinically distinguishable entity with consistent clinically measurable endophenotypes. The type and distribution of vertebral column abnormalities in TBX6/Tbx6 compound inheritance implicate subtle perturbations in gene dosage as a cause of spine developmental birth defects responsible for about 10% of CS.
Collapse
Affiliation(s)
- Jiaqi Liu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Nan Wu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China. .,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China. .,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, China. .,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| | | | - Nan Yang
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China.,NHC Key Laboratory of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Kazuki Takeda
- Laboratory of Bone and Joint Diseases, Center for Integrative Medical Sciences, RIKEN, Tokyo, Japan.,Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Weisheng Chen
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Graduate School of Peking Union Medical College, Beijing, China
| | - Weiyu Li
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China.,NHC Key Laboratory of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai, China
| | - Renqian Du
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Sen Liu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, China
| | - Yangzhong Zhou
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Department of Internal Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Ling Zhang
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China.,NHC Key Laboratory of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai, China
| | - Zhenlei Liu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yuzhi Zuo
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, China
| | - Sen Zhao
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Robert Blank
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Davut Pehlivan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Shuangshuang Dong
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China.,NHC Key Laboratory of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai, China
| | - Jianguo Zhang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, China
| | - Jianxiong Shen
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, China
| | - Nuo Si
- The McKusick-Zhang Center for Genetic Medicine, Institute of Basic Medical Sciences, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yipeng Wang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Gang Liu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, China
| | - Shugang Li
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yanxue Zhao
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Hong Zhao
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yixin Chen
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Yu Zhao
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaofei Song
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Jianhua Hu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Mao Lin
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Graduate School of Peking Union Medical College, Beijing, China
| | - Ye Tian
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Bo Yuan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Keyi Yu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yuchen Niu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Department of Central Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Bin Yu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaoxin Li
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Department of Central Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jia Chen
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Zihui Yan
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Graduate School of Peking Union Medical College, Beijing, China
| | - Qiankun Zhu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Xiaolu Meng
- The McKusick-Zhang Center for Genetic Medicine, Institute of Basic Medical Sciences, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaoli Chen
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing, China
| | - Jianzhong Su
- College of Biomedical Engineering, The Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiuli Zhao
- The McKusick-Zhang Center for Genetic Medicine, Institute of Basic Medical Sciences, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaoyue Wang
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yue Ming
- PET-CT Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiao Li
- Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Cathleen L Raggio
- Department of Orthopedic Surgery, Hospital for Special Surgery, New York, NY, USA
| | - Baozhong Zhang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xisheng Weng
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, China
| | - Shuyang Zhang
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xue Zhang
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,The McKusick-Zhang Center for Genetic Medicine, Institute of Basic Medical Sciences, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Kota Watanabe
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Morio Matsumoto
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | | | - Li Jin
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Yiping Shen
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Nara L Sobreira
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Philip F Giampietro
- Department of Pediatrics, Drexel University College of Medicine, Philadelphia, PA, USA
| | - David Valle
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Baylor Genetics Laboratory, Houston, TX, USA
| | - Zhihong Wu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, China.,Department of Central Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Shiro Ikegawa
- Laboratory of Bone and Joint Diseases, Center for Integrative Medical Sciences, RIKEN, Tokyo, Japan
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Departments of Pediatrics, Baylor College of Medicine, Houston, TX, USA.,Texas Children's Hospital, Houston, TX, USA
| | - Feng Zhang
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China.,NHC Key Laboratory of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Guixing Qiu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China. .,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China. .,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
45
|
Klein HL, Bačinskaja G, Che J, Cheblal A, Elango R, Epshtein A, Fitzgerald DM, Gómez-González B, Khan SR, Kumar S, Leland BA, Marie L, Mei Q, Miné-Hattab J, Piotrowska A, Polleys EJ, Putnam CD, Radchenko EA, Saada AA, Sakofsky CJ, Shim EY, Stracy M, Xia J, Yan Z, Yin Y, Aguilera A, Argueso JL, Freudenreich CH, Gasser SM, Gordenin DA, Haber JE, Ira G, Jinks-Robertson S, King MC, Kolodner RD, Kuzminov A, Lambert SAE, Lee SE, Miller KM, Mirkin SM, Petes TD, Rosenberg SM, Rothstein R, Symington LS, Zawadzki P, Kim N, Lisby M, Malkova A. Guidelines for DNA recombination and repair studies: Cellular assays of DNA repair pathways. MICROBIAL CELL (GRAZ, AUSTRIA) 2019; 6:1-64. [PMID: 30652105 PMCID: PMC6334234 DOI: 10.15698/mic2019.01.664] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 08/29/2018] [Accepted: 09/14/2018] [Indexed: 12/29/2022]
Abstract
Understanding the plasticity of genomes has been greatly aided by assays for recombination, repair and mutagenesis. These assays have been developed in microbial systems that provide the advantages of genetic and molecular reporters that can readily be manipulated. Cellular assays comprise genetic, molecular, and cytological reporters. The assays are powerful tools but each comes with its particular advantages and limitations. Here the most commonly used assays are reviewed, discussed, and presented as the guidelines for future studies.
Collapse
Affiliation(s)
- Hannah L. Klein
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Giedrė Bačinskaja
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Jun Che
- Department of Radiation Oncology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, USA
| | - Anais Cheblal
- Friedrich Miescher Institute for Biomedical Research (FMI), 4058 Basel, Switzerland
| | - Rajula Elango
- Department of Biology, University of Iowa, Iowa City, IA, USA
| | - Anastasiya Epshtein
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Devon M. Fitzgerald
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Belén Gómez-González
- Centro Andaluz de BIología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla, Seville, Spain
| | - Sharik R. Khan
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Sandeep Kumar
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | | | - Léa Marie
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA
| | - Qian Mei
- Systems, Synthetic and Physical Biology Graduate Program, Rice University, Houston, TX, USA
| | - Judith Miné-Hattab
- Institut Curie, PSL Research University, CNRS, UMR3664, F-75005 Paris, France
- Sorbonne Université, Institut Curie, CNRS, UMR3664, F-75005 Paris, France
| | - Alicja Piotrowska
- NanoBioMedical Centre, Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznan, Poland
| | | | - Christopher D. Putnam
- Ludwig Institute for Cancer Research, University of California School of Medicine, San Diego, La Jolla, CA, USA
- Department of Medicine, University of California School of Medicine, San Diego, La Jolla, CA, USA
| | | | - Anissia Ait Saada
- Institut Curie, PSL Research University, CNRS, UMR3348 F-91405, Orsay, France
- University Paris Sud, Paris-Saclay University, CNRS, UMR3348, F-91405, Orsay, France
| | - Cynthia J. Sakofsky
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Eun Yong Shim
- Department of Radiation Oncology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, USA
| | - Mathew Stracy
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Jun Xia
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Zhenxin Yan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Yi Yin
- Department of Molecular Genetics and Microbiology and University Program in Genetics and Genomics, Duke University Medical Center, Durham, NC USA
| | - Andrés Aguilera
- Centro Andaluz de BIología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla, Seville, Spain
| | - Juan Lucas Argueso
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Catherine H. Freudenreich
- Department of Biology, Tufts University, Medford, MA USA
- Program in Genetics, Tufts University, Boston, MA, USA
| | - Susan M. Gasser
- Friedrich Miescher Institute for Biomedical Research (FMI), 4058 Basel, Switzerland
| | - Dmitry A. Gordenin
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - James E. Haber
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center Brandeis University, Waltham, MA, USA
| | - Grzegorz Ira
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Sue Jinks-Robertson
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC USA
| | | | - Richard D. Kolodner
- Ludwig Institute for Cancer Research, University of California School of Medicine, San Diego, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California School of Medicine, San Diego, La Jolla, CA, USA
- Moores-UCSD Cancer Center, University of California School of Medicine, San Diego, La Jolla, CA, USA
- Institute of Genomic Medicine, University of California School of Medicine, San Diego, La Jolla, CA, USA
| | - Andrei Kuzminov
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Sarah AE Lambert
- Institut Curie, PSL Research University, CNRS, UMR3348 F-91405, Orsay, France
- University Paris Sud, Paris-Saclay University, CNRS, UMR3348, F-91405, Orsay, France
| | - Sang Eun Lee
- Department of Radiation Oncology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, USA
| | - Kyle M. Miller
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | | | - Thomas D. Petes
- Department of Molecular Genetics and Microbiology and University Program in Genetics and Genomics, Duke University Medical Center, Durham, NC USA
| | - Susan M. Rosenberg
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Systems, Synthetic and Physical Biology Graduate Program, Rice University, Houston, TX, USA
| | - Rodney Rothstein
- Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Lorraine S. Symington
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA
| | - Pawel Zawadzki
- NanoBioMedical Centre, Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznan, Poland
| | - Nayun Kim
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Michael Lisby
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Anna Malkova
- Department of Biology, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
46
|
Genomic Structural Variations Within Five Continental Populations of Drosophila melanogaster. G3-GENES GENOMES GENETICS 2018; 8:3247-3253. [PMID: 30111620 PMCID: PMC6169376 DOI: 10.1534/g3.118.200631] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Chromosomal structural variations (SV) including insertions, deletions, inversions, and translocations occur within the genome and can have a significant effect on organismal phenotype. Some of these effects are caused by structural variations containing genes. Large structural variations represent a significant amount of the genetic diversity within a population. We used a global sampling of Drosophila melanogaster (Ithaca, Zimbabwe, Beijing, Tasmania, and Netherlands) to represent diverse populations within the species. We used long-read sequencing and optical mapping technologies to identify SVs in these genomes. Among the five lines examined, we found an average of 2,928 structural variants within these genomes. These structural variations varied greatly in size and location, included many exonic regions, and could impact adaptation and genomic evolution.
Collapse
|
47
|
Aiello KA, Ponnapalli SP, Alter O. Mathematically universal and biologically consistent astrocytoma genotype encodes for transformation and predicts survival phenotype. APL Bioeng 2018; 2. [PMID: 30397684 PMCID: PMC6215493 DOI: 10.1063/1.5037882] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
DNA alterations have been observed in astrocytoma for decades. A copy-number genotype predictive of a survival phenotype was only discovered by using the generalized singular value decomposition (GSVD) formulated as a comparative spectral decomposition. Here, we use the GSVD to compare whole-genome sequencing (WGS) profiles of patient-matched astrocytoma and normal DNA. First, the GSVD uncovers a genome-wide pattern of copy-number alterations, which is bounded by patterns recently uncovered by the GSVDs of microarray-profiled patient-matched glioblastoma (GBM) and, separately, lower-grade astrocytoma and normal genomes. Like the microarray patterns, the WGS pattern is correlated with an approximately one-year median survival time. By filling in gaps in the microarray patterns, the WGS pattern reveals that this biologically consistent genotype encodes for transformation via the Notch together with the Ras and Shh pathways. Second, like the GSVDs of the microarray profiles, the GSVD of the WGS profiles separates the tumor-exclusive pattern from normal copy-number variations and experimental inconsistencies. These include the WGS technology-specific effects of guanine-cytosine content variations across the genomes that are correlated with experimental batches. Third, by identifying the biologically consistent phenotype among the WGS-profiled tumors, the GBM pattern proves to be a technology-independent predictor of survival and response to chemotherapy and radiation, statistically better than the patient's age and tumor's grade, the best other indicators, and MGMT promoter methylation and IDH1 mutation. We conclude that by using the complex structure of the data, comparative spectral decompositions underlie a mathematically universal description of the genotype-phenotype relations in cancer that other methods miss.
Collapse
Affiliation(s)
- Katherine A Aiello
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah 84112, USA.,Department of Bioengineering, University of Utah, Salt Lake City, Utah 84112, USA
| | - Sri Priya Ponnapalli
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | - Orly Alter
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah 84112, USA.,Department of Bioengineering, University of Utah, Salt Lake City, Utah 84112, USA.,Huntsman Cancer Institute and Department of Human Genetics, University of Utah, Salt Lake City, Utah 84112, USA
| |
Collapse
|
48
|
Cheung SW, Bi W. Novel applications of array comparative genomic hybridization in molecular diagnostics. Expert Rev Mol Diagn 2018; 18:531-542. [PMID: 29848116 DOI: 10.1080/14737159.2018.1479253] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
INTRODUCTION In 2004, the implementation of array comparative genomic hybridization (array comparative genome hybridization [CGH]) into clinical practice marked a new milestone for genetic diagnosis. Array CGH and single-nucleotide polymorphism (SNP) arrays enable genome-wide detection of copy number changes in a high resolution, and therefore microarray has been recognized as the first-tier test for patients with intellectual disability or multiple congenital anomalies, and has also been applied prenatally for detection of clinically relevant copy number variations in the fetus. Area covered: In this review, the authors summarize the evolution of array CGH technology from their diagnostic laboratory, highlighting exonic SNP arrays developed in the past decade which detect small intragenic copy number changes as well as large DNA segments for the region of heterozygosity. The applications of array CGH to human diseases with different modes of inheritance with the emphasis on autosomal recessive disorders are discussed. Expert commentary: An exonic array is a powerful and most efficient clinical tool in detecting genome wide small copy number variants in both dominant and recessive disorders. However, whole-genome sequencing may become the single integrated platform for detection of copy number changes, single-nucleotide changes as well as balanced chromosomal rearrangements in the near future.
Collapse
Affiliation(s)
- Sau W Cheung
- a Department of Molecular and Human Genetics , Baylor College of Medicine , Houston , TX , USA
| | - Weimin Bi
- a Department of Molecular and Human Genetics , Baylor College of Medicine , Houston , TX , USA.,b Baylor Genetics , Houston , TX , USA
| |
Collapse
|
49
|
Mauri G, Valtorta E, Cerea G, Amatu A, Schirru M, Marrapese G, Fiorillo V, Recchimuzzo P, Cavenago IS, Bonazzina EF, Motta V, Lauricella C, Veronese S, Tosi F, Maiolani M, Rospo G, Truini M, Bonoldi E, Christiansen J, Potts SJ, Siena S, Sartore-Bianchi A. TRKA expression and NTRK1 gene copy number across solid tumours. J Clin Pathol 2018; 71:926-931. [PMID: 29802225 DOI: 10.1136/jclinpath-2018-205124] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/18/2018] [Accepted: 05/04/2018] [Indexed: 12/17/2022]
Abstract
AIMS Neurotrophic Tropomyosin Kinase Receptor 1 (NTRK1) gene encodes for the protein Tropomyosin-related kinase A (TRKA). Deregulated activity of TRKA has been shown to have oncogenic potential. We present here the results of an immunohistochemical (IHC) observational cohort study of TRKA expression together with gene copy number (GCN) assessment in various solid tumours. METHODS Formalin-fixed, paraffin-embedded consecutive samples of different tumour types were tested for TRKA expression. Samples showing TRKA IHC staining in at least 10% of cells were analysed by fluorescence in situ hybridisation to assess NTRK1 gene rearrangements and/or individual GCN gain. All patients underwent this molecular assessment within the phase I ALKA-001 clinical trial. RESULTS 1043 samples were tested and annotation for histology was available in 1023. Most of the samples were colorectal adenocarcinoma (CRC) (n=550, 52.7%) and lung adenocarcinoma (n=312, 29.9%). 24 samples (2.3%) were biliary tract carcinoma (BTC). Overall, 17 (1.6%) samples were characterised by TRKA IHC expression (four weak, eight moderate, five strong): 9/17 lung adenocarcinoma, 3/17 CRC, 3/17 BTC, 1/17 thyroid cancer and 1/17 cancer of unknown primary. Of these, 1/17 with strong TRKA IHC staining displayed NTRK1 gene rearrangement and 15/17 NTRK1 GCN gain by FISH. No correlation was found between intensity of TRKA IHC staining and number of copies of NTRK1. CONCLUSIONS TRKA expression can be found in 1.6% of solid tumours and can be paralleled by NTRK1 gene rearrangements or mostly GCN gain. The prognostic and translational therapeutic impact of the latter remains to be established.
Collapse
Affiliation(s)
- Gianluca Mauri
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy.,Dipartimento di Ematologia e Onco-Ematologia, Università degli Studi di Milano, Milan, Italy
| | - Emanuele Valtorta
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy.,Department of Laboratory Medicine, Division of Pathology, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Giulio Cerea
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Alessio Amatu
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Michele Schirru
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Giovanna Marrapese
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Vincenzo Fiorillo
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy.,Department of Laboratory Medicine, Division of Pathology, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Patrizia Recchimuzzo
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy.,Department of Laboratory Medicine, Division of Pathology, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Ivana Stella Cavenago
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy.,Department of Laboratory Medicine, Division of Pathology, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | | | - Valentina Motta
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy.,Department of Laboratory Medicine, Division of Pathology, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Calogero Lauricella
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy.,Department of Laboratory Medicine, Division of Pathology, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Silvio Veronese
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy.,Department of Laboratory Medicine, Division of Pathology, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Federica Tosi
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy.,Dipartimento di Ematologia e Onco-Ematologia, Università degli Studi di Milano, Milan, Italy
| | - Martina Maiolani
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy.,Dipartimento di Ematologia e Onco-Ematologia, Università degli Studi di Milano, Milan, Italy
| | | | - Mauro Truini
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy.,Department of Laboratory Medicine, Division of Pathology, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Emanuela Bonoldi
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy.,Department of Laboratory Medicine, Division of Pathology, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | | | | | - Salvatore Siena
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy.,Dipartimento di Ematologia e Onco-Ematologia, Università degli Studi di Milano, Milan, Italy
| | - Andrea Sartore-Bianchi
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy.,Dipartimento di Ematologia e Onco-Ematologia, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
50
|
Marey I, Ben Yaou R, Deburgrave N, Vasson A, Nectoux J, Leturcq F, Eymard B, Laforet P, Behin A, Stojkovic T, Mayer M, Tiffreau V, Desguerre I, Boyer FC, Nadaj-Pakleza A, Ferrer X, Wahbi K, Becane HM, Claustres M, Chelly J, Cossee M. Non Random Distribution of DMD Deletion Breakpoints and Implication of Double Strand Breaks Repair and Replication Error Repair Mechanisms. J Neuromuscul Dis 2018; 3:227-245. [PMID: 27854212 DOI: 10.3233/jnd-150134] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND Dystrophinopathies are mostly caused by copy number variations, especially deletions, in the dystrophin gene (DMD). Despite the large size of the gene, deletions do not occur randomly but mainly in two hot spots, the main one involving exons 45 to 55. The underlying mechanisms are complex and implicate two main mechanisms: Non-homologous end joining (NHEJ) and micro-homology mediated replication-dependent recombination (MMRDR). OBJECTIVE Our goals were to assess the distribution of intronic breakpoints (BPs) in the genomic sequence of the main hot spot of deletions within DMD gene and to search for specific sequences at or near to BPs that might promote BP occurrence or be associated with DNA break repair. METHODS Using comparative genomic hybridization microarray, 57 deletions within the intron 44 to 55 region were mapped. Moreover, 21 junction fragments were sequenced to search for specific sequences. RESULTS Non-randomly distributed BPs were found in introns 44, 47, 48, 49 and 53 and 50% of BPs clustered within genomic regions of less than 700bp. Repeated elements (REs), known to promote gene rearrangement via several mechanisms, were present in the vicinity of 90% of clustered BPs and less frequently (72%) close to scattered BPs, illustrating the important role of such elements in the occurrence of DMD deletions. Palindromic and TTTAAA sequences, which also promote DNA instability, were identified at fragment junctions in 20% and 5% of cases, respectively. Micro-homologies (76%) and insertions or deletions of small sequences were frequently found at BP junctions. CONCLUSIONS Our results illustrate, in a large series of patients, the important role of RE and other genomic features in DNA breaks, and the involvement of different mechanisms in DMD gene deletions: Mainly replication error repair mechanisms, but also NHEJ and potentially aberrant firing of replication origins. A combination of these mechanisms may also be possible.
Collapse
Affiliation(s)
- Isabelle Marey
- Service de Biochimie et Génétique Moléculaire, HUPC Hôpital Cochin, Paris, France
| | - Rabah Ben Yaou
- UPMC-Paris 6, UM 76, INSERM, U974, CNRS, UMR 7215, Center of Research in Myology, Institut de Myologie, Paris, France.,AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Centre de Référence de Pathologie Neuromusculaire Paris-Est, Paris, France
| | - Nathalie Deburgrave
- Service de Biochimie et Génétique Moléculaire, HUPC Hôpital Cochin, Paris, France
| | - Aurélie Vasson
- Service de Biochimie et Génétique Moléculaire, HUPC Hôpital Cochin, Paris, France
| | - Juliette Nectoux
- Service de Biochimie et Génétique Moléculaire, HUPC Hôpital Cochin, Paris, France.,INSERM, U1016, Institut Cochin, CNRS UMR8104, Université Paris Descartes, Paris, France
| | - France Leturcq
- Service de Biochimie et Génétique Moléculaire, HUPC Hôpital Cochin, Paris, France.,UPMC-Paris 6, UM 76, INSERM, U974, CNRS, UMR 7215, Center of Research in Myology, Institut de Myologie, Paris, France
| | - Bruno Eymard
- AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Centre de Référence de Pathologie Neuromusculaire Paris-Est, Paris, France
| | - Pascal Laforet
- AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Centre de Référence de Pathologie Neuromusculaire Paris-Est, Paris, France
| | - Anthony Behin
- AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Centre de Référence de Pathologie Neuromusculaire Paris-Est, Paris, France
| | - Tanya Stojkovic
- AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Centre de Référence de Pathologie Neuromusculaire Paris-Est, Paris, France
| | - Michèle Mayer
- AP-HP, Hôpital Armand TROUSSEAU, Centre de référence de pathologie neuromusculaire Paris-Est, Paris, France
| | - Vincent Tiffreau
- Université de Lille 2, EA 4488, Centre de référence des maladies neuromusculaires du CHRU de Lille, Service de médecine physique et réadaptation, Hôpital Swynghedauw, Lille, France
| | - Isabelle Desguerre
- AP-HP, Hôpital Necker-Enfants Malades, Service de Neuropédiatrie, Centre de référence de pathologie neuromusculaires Garches-Necker-Mondor-Hendaye, Paris, France
| | - François Constant Boyer
- Service de Médecine Physique et Réadaptation, Centre de référence de pathologie neuromusculaires, Hôpital Sébastopol, CHU de Reims, Reims, France
| | - Aleksandra Nadaj-Pakleza
- Service de neurologie, Centre de référence de pathologie neuromusculaires Pays de Loire, Hôpital Larrey, CHU d'Angers, Angers, France
| | - Xavier Ferrer
- Service de neurologie, Centre de référence de pathologie neuromusculaires Aquitaine, Hôpital Pellegrin, CHU de Bordeaux, Bordeaux, France
| | - Karim Wahbi
- APHP, service de cardiologie, Hôpital Cochin, Paris, France
| | - Henri-Marc Becane
- AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Centre de Référence de Pathologie Neuromusculaire Paris-Est, Paris, France
| | - Mireille Claustres
- CHRU Montpellier, Laboratoire de Génétique moléculaire, Montpellier, France.,Université de Montpellier, Laboratoire de Génétique de Maladies rares, EA 7402, Montpellier, France
| | - Jamel Chelly
- Service de Biochimie et Génétique Moléculaire, HUPC Hôpital Cochin, Paris, France.,INSERM, U1016, Institut Cochin, CNRS UMR8104, Université Paris Descartes, Paris, France
| | - Mireille Cossee
- CHRU Montpellier, Laboratoire de Génétique moléculaire, Montpellier, France.,Université de Montpellier, Laboratoire de Génétique de Maladies rares, EA 7402, Montpellier, France
| |
Collapse
|