1
|
Michaels YS, Major MC, Bonham-Carter B, Zhang J, Heydari T, Edgar JM, Siu MM, Greenstreet L, Vilarrasa-Blasi R, Kim S, Castle EL, Forrow A, Ibanez-Rios MI, Zimmerman C, Chung Y, Stach T, Werschler N, Knapp DJHF, Vento-Tormo R, Schiebinger G, Zandstra PW. Tracking the gene expression programs and clonal relationships that underlie mast, myeloid, and T lineage specification from stem cells. Cell Syst 2024; 15:1245-1263.e10. [PMID: 39615483 DOI: 10.1016/j.cels.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 07/03/2024] [Accepted: 11/01/2024] [Indexed: 12/21/2024]
Abstract
T cells develop from hematopoietic progenitors in the thymus and protect against pathogens and cancer. However, the emergence of human T cell-competent blood progenitors and their subsequent specification to the T lineage have been challenging to capture in real time. Here, we leveraged a pluripotent stem cell differentiation system to understand the transcriptional dynamics and cell fate restriction events that underlie this critical developmental process. Time-resolved single-cell RNA sequencing revealed that downregulation of the multipotent hematopoietic program, upregulation of >90 lineage-associated transcription factors, and cell-cycle exit all occur within a highly coordinated developmental window. Gene-regulatory network inference uncovered a role for YBX1 in T lineage specification. We mapped the differentiation cell fate hierarchy using transcribed lineage barcoding and discovered that mast and myeloid potential bifurcate from each other early in hematopoiesis, upstream of T lineage restriction. Our systems-level analyses provide a quantitative, time-resolved model of human T cell fate specification. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Yale S Michaels
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 2B9, Canada; Paul Albrechtsen Research Institute CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada; Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| | - Matthew C Major
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 2B9, Canada; Paul Albrechtsen Research Institute CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Becca Bonham-Carter
- Department of Mathematics, University of British Columbia, Vancouver, BC V6T 1Z2, Canada
| | - Jingqi Zhang
- Department of Mathematics, University of British Columbia, Vancouver, BC V6T 1Z2, Canada
| | - Tiam Heydari
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 2B9, Canada
| | - John M Edgar
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 2B9, Canada
| | - Mona M Siu
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 2B9, Canada
| | - Laura Greenstreet
- Department of Mathematics, University of British Columbia, Vancouver, BC V6T 1Z2, Canada
| | | | - Seungjoon Kim
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Elizabeth L Castle
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 2B9, Canada
| | - Aden Forrow
- Department of Mathematics and Statistics, University of Maine, Orono, ME 04469-5752, USA
| | - M Iliana Ibanez-Rios
- Institut de recherche en immunologie et en cancérologie and Département de pathologie et biologie cellulaire, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Carla Zimmerman
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 2B9, Canada
| | - Yvonne Chung
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 2B9, Canada
| | - Tara Stach
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 2B9, Canada
| | - Nico Werschler
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 2B9, Canada; Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - David J H F Knapp
- Institut de recherche en immunologie et en cancérologie and Département de pathologie et biologie cellulaire, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Roser Vento-Tormo
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Geoffrey Schiebinger
- Department of Mathematics, University of British Columbia, Vancouver, BC V6T 1Z2, Canada.
| | - Peter W Zandstra
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 2B9, Canada; Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
2
|
Shin B, Chang SJ, MacNabb BW, Rothenberg EV. Transcriptional network dynamics in early T cell development. J Exp Med 2024; 221:e20230893. [PMID: 39167073 PMCID: PMC11338287 DOI: 10.1084/jem.20230893] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/07/2024] [Accepted: 07/10/2024] [Indexed: 08/23/2024] Open
Abstract
The rate at which cells enter the T cell pathway depends not only on the immigration of hematopoietic precursors into the strong Notch signaling environment of the thymus but also on the kinetics with which each individual precursor cell reaches T-lineage commitment once it arrives. Notch triggers a complex, multistep gene regulatory network in the cells in which the steps are stereotyped but the transition speeds between steps are variable. Progenitor-associated transcription factors delay T-lineage differentiation even while Notch-induced transcription factors within the same cells push differentiation forward. Progress depends on regulator cross-repression, on breaching chromatin barriers, and on shifting, competitive collaborations between stage-specific and stably expressed transcription factors, as reviewed here.
Collapse
Affiliation(s)
- Boyoung Shin
- Division of Biology and Biological Engineering California Institute of Technology , Pasadena, CA, USA
| | - Samantha J Chang
- Division of Biology and Biological Engineering California Institute of Technology , Pasadena, CA, USA
| | - Brendan W MacNabb
- Division of Biology and Biological Engineering California Institute of Technology , Pasadena, CA, USA
| | - Ellen V Rothenberg
- Division of Biology and Biological Engineering California Institute of Technology , Pasadena, CA, USA
| |
Collapse
|
3
|
Xu H, Woicik A, Poon H, Altman RB, Wang S. Multilingual translation for zero-shot biomedical classification using BioTranslator. Nat Commun 2023; 14:738. [PMID: 36759510 PMCID: PMC9911740 DOI: 10.1038/s41467-023-36476-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 02/01/2023] [Indexed: 02/11/2023] Open
Abstract
Existing annotation paradigms rely on controlled vocabularies, where each data instance is classified into one term from a predefined set of controlled vocabularies. This paradigm restricts the analysis to concepts that are known and well-characterized. Here, we present the novel multilingual translation method BioTranslator to address this problem. BioTranslator takes a user-written textual description of a new concept and then translates this description to a non-text biological data instance. The key idea of BioTranslator is to develop a multilingual translation framework, where multiple modalities of biological data are all translated to text. We demonstrate how BioTranslator enables the identification of novel cell types using only a textual description and how BioTranslator can be further generalized to protein function prediction and drug target identification. Our tool frees scientists from limiting their analyses within predefined controlled vocabularies, enabling them to interact with biological data using free text.
Collapse
Affiliation(s)
- Hanwen Xu
- School of Computer Science and Engineering, University of Washington, Seattle, WA, USA
| | - Addie Woicik
- School of Computer Science and Engineering, University of Washington, Seattle, WA, USA
| | | | - Russ B Altman
- Department of Bioengineering, Stanford University, Stanford, CA, USA.,Department of Genetics, Stanford University, Stanford, CA, USA.,Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Sheng Wang
- School of Computer Science and Engineering, University of Washington, Seattle, WA, USA.
| |
Collapse
|
4
|
Shin B, Rothenberg EV. Multi-modular structure of the gene regulatory network for specification and commitment of murine T cells. Front Immunol 2023; 14:1108368. [PMID: 36817475 PMCID: PMC9928580 DOI: 10.3389/fimmu.2023.1108368] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 01/11/2023] [Indexed: 02/04/2023] Open
Abstract
T cells develop from multipotent progenitors by a gradual process dependent on intrathymic Notch signaling and coupled with extensive proliferation. The stages leading them to T-cell lineage commitment are well characterized by single-cell and bulk RNA analyses of sorted populations and by direct measurements of precursor-product relationships. This process depends not only on Notch signaling but also on multiple transcription factors, some associated with stemness and multipotency, some with alternative lineages, and others associated with T-cell fate. These factors interact in opposing or semi-independent T cell gene regulatory network (GRN) subcircuits that are increasingly well defined. A newly comprehensive picture of this network has emerged. Importantly, because key factors in the GRN can bind to markedly different genomic sites at one stage than they do at other stages, the genes they significantly regulate are also stage-specific. Global transcriptome analyses of perturbations have revealed an underlying modular structure to the T-cell commitment GRN, separating decisions to lose "stem-ness" from decisions to block alternative fates. Finally, the updated network sheds light on the intimate relationship between the T-cell program, which depends on the thymus, and the innate lymphoid cell (ILC) program, which does not.
Collapse
Affiliation(s)
- Boyoung Shin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Ellen V. Rothenberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| |
Collapse
|
5
|
Belcheva KT, Chaudhuri J. Maintenance of Lineage Identity: Lessons from a B Cell. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:2073-2081. [PMID: 36426973 DOI: 10.4049/jimmunol.2200497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/17/2022] [Indexed: 01/04/2023]
Abstract
The maintenance of B cell identity requires active transcriptional control that enforces a B cell-specific program and suppresses alternative lineage genes. Accordingly, disrupting the B cell identity regulatory network compromises B cell function and induces cell fate plasticity by allowing derepression of alternative lineage-specific transcriptional programs. Although the B lineage is incredibly resistant to most differentiating factors, loss of just a single B lineage-specific transcription factor or the forced expression of individual non-B cell lineage transcription factors can radically disrupt B cell maintenance and allow dedifferentiation or transdifferentiation into entirely distinct lineages. B lymphocytes thereby offer an insightful and useful case study of how a specific cell lineage can maintain a stable identity throughout life and how perturbations of a single master regulator can induce cellular plasticity. In this article, we review the regulatory mechanisms that safeguard B cell identity, and we discuss how dysregulation of the B cell maintenance program can drive malignant transformation and enable therapeutic resistance.
Collapse
Affiliation(s)
- Kalina T Belcheva
- Biochemistry, Cellular and Molecular Biology Allied Program, Weill Cornell Graduate School of Medical Sciences, New York, NY; and
| | - Jayanta Chaudhuri
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
6
|
Cordes M, Canté-Barrett K, van den Akker EB, Moretti FA, Kiełbasa SM, Vloemans SA, Garcia-Perez L, Teodosio C, van Dongen JJM, Pike-Overzet K, Reinders MJT, Staal FJT. Single-cell immune profiling reveals thymus-seeding populations, T cell commitment, and multilineage development in the human thymus. Sci Immunol 2022; 7:eade0182. [DOI: 10.1126/sciimmunol.ade0182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
T cell development in the mouse thymus has been studied extensively, but less is known regarding T cell development in the human thymus. We used a combination of single-cell techniques and functional assays to perform deep immune profiling of human T cell development, focusing on the initial stages of prelineage commitment. We identified three thymus-seeding progenitor populations that also have counterparts in the bone marrow. In addition, we found that the human thymus physiologically supports the development of monocytes, dendritic cells, and NK cells, as well as limited development of B cells. These results are an important step toward monitoring and guiding regenerative therapies in patients after hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- Martijn Cordes
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
- Leiden Computational Biology Center, Leiden University Medical Center, Leiden, Netherlands
| | - Kirsten Canté-Barrett
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Netherlands
| | - Erik B. van den Akker
- Leiden Computational Biology Center, Leiden University Medical Center, Leiden, Netherlands
- Delft Bioinformatics Lab, Delft University of Technology, Delft, Netherlands
- Molecular Epidemiology, Leiden University Medical Center, Leiden, Netherlands
| | - Federico A. Moretti
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Szymon M. Kiełbasa
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, Netherlands
| | - Sandra A. Vloemans
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Laura Garcia-Perez
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Cristina Teodosio
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
- Centro de Investigación del Cáncer-Instituto de Biología Molecular y Celular del Cáncer (CIC-IBMCC, USAL-CSIC-FICUS), Department of Medicine, University of Salamanca, Salamanca, Spain
| | - Jacques J. M. van Dongen
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
- Centro de Investigación del Cáncer-Instituto de Biología Molecular y Celular del Cáncer (CIC-IBMCC, USAL-CSIC-FICUS), Department of Medicine, University of Salamanca, Salamanca, Spain
| | - Karin Pike-Overzet
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Marcel J. T. Reinders
- Leiden Computational Biology Center, Leiden University Medical Center, Leiden, Netherlands
- Delft Bioinformatics Lab, Delft University of Technology, Delft, Netherlands
| | - Frank J. T. Staal
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Netherlands
- Department of Pediatrics, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
7
|
Thompson PK, Chen EL, de Pooter RF, Frelin C, Vogel WK, Lee CR, Venables T, Shah DK, Iscove NN, Leid M, Anderson MK, Zúñiga-Pflücker JC. Realization of the T Lineage Program Involves GATA-3 Induction of Bcl11b and Repression of Cdkn2b Expression. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:77-92. [PMID: 35705252 PMCID: PMC9248976 DOI: 10.4049/jimmunol.2100366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 04/28/2022] [Indexed: 01/03/2023]
Abstract
The zinc-finger transcription factor GATA-3 plays a crucial role during early T cell development and also dictates later T cell differentiation outcomes. However, its role and collaboration with the Notch signaling pathway in the induction of T lineage specification and commitment have not been fully elucidated. We show that GATA-3 deficiency in mouse hematopoietic progenitors results in an early block in T cell development despite the presence of Notch signals, with a failure to upregulate Bcl11b expression, leading to a diversion along a myeloid, but not a B cell, lineage fate. GATA-3 deficiency in the presence of Notch signaling results in the apoptosis of early T lineage cells, as seen with inhibition of CDK4/6 (cyclin-dependent kinases 4 and 6) function, and dysregulated cyclin-dependent kinase inhibitor 2b (Cdkn2b) expression. We also show that GATA-3 induces Bcl11b, and together with Bcl11b represses Cdkn2b expression; however, loss of Cdkn2b failed to rescue the developmental block of GATA-3-deficient T cell progenitor. Our findings provide a signaling and transcriptional network by which the T lineage program in response to Notch signals is realized.
Collapse
Affiliation(s)
- Patrycja K. Thompson
- Department of Immunology, University of Toronto, Toronto, ON;,Sunnybrook Research Institute, Toronto, ON
| | - Edward L.Y. Chen
- Department of Immunology, University of Toronto, Toronto, ON;,Sunnybrook Research Institute, Toronto, ON
| | - Renée F. de Pooter
- Department of Immunology, University of Toronto, Toronto, ON;,Sunnybrook Research Institute, Toronto, ON
| | - Catherine Frelin
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON
| | - Walter K. Vogel
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR
| | | | | | - Divya K. Shah
- Department of Immunology, University of Toronto, Toronto, ON;,Sunnybrook Research Institute, Toronto, ON
| | - Norman N. Iscove
- Department of Immunology, University of Toronto, Toronto, ON;,Princess Margaret Cancer Centre, University Health Network, Toronto, ON
| | - Mark Leid
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR
| | - Michele K. Anderson
- Department of Immunology, University of Toronto, Toronto, ON;,Sunnybrook Research Institute, Toronto, ON
| | | |
Collapse
|
8
|
Zhou W, Gao F, Romero-Wolf M, Jo S, Rothenberg EV. Single-cell deletion analyses show control of pro-T cell developmental speed and pathways by Tcf7, Spi1, Gata3, Bcl11a, Erg, and Bcl11b. Sci Immunol 2022; 7:eabm1920. [PMID: 35594339 PMCID: PMC9273332 DOI: 10.1126/sciimmunol.abm1920] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
As early T cell precursors transition from multipotentiality to T lineage commitment, they change expression of multiple transcription factors. It is unclear whether individual transcription factors directly control choices between T cell identity and some alternative fate or whether these factors mostly affect proliferation or survival during the normal commitment process. Here, we unraveled the impacts of deleting individual transcription factors at two stages in early T cell development, using synchronized in vitro differentiation systems, single-cell RNA-seq with batch indexing, and controlled gene-disruption strategies. First, using a customized method for single-cell CRISPR disruption, we defined how the early-acting transcription factors Bcl11a, Erg, Spi1 (PU.1), Gata3, and Tcf7 (TCF1) function before commitment. The results revealed a kinetic tug of war within individual cells between T cell factors Tcf7 and Gata3 and progenitor factors Spi1 and Bcl11a, with an unexpected guidance role for Erg. Second, we tested how activation of transcription factor Bcl11b during commitment altered ongoing cellular programs. In knockout cells where Bcl11b expression was prevented, the cells did not undergo developmental arrest, instead following an alternative path as T lineage commitment was blocked. A stepwise, time-dependent regulatory cascade began with immediate-early transcription factor activation and E protein inhibition, finally leading Bcl11b knockout cells toward exit from the T cell pathway. Last, gene regulatory networks of transcription factor cross-regulation were extracted from the single-cell transcriptome results, characterizing the specification network operating before T lineage commitment and revealing its links to both the Bcl11b knockout alternative network and the network consolidating T cell identity during commitment.
Collapse
Affiliation(s)
- Wen Zhou
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125 USA
- Program in Biochemistry and Molecular Biophysics, California Institute of Technology
- Current address: BillionToOne, Menlo Park, CA
| | - Fan Gao
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125 USA
- Caltech Bioinformatics Resource Center, Beckman Institute of Caltech
| | - Maile Romero-Wolf
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125 USA
- Current address: Center for Stem Cell Biology and Regenerative Medicine, University of Southern California
| | - Suin Jo
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125 USA
- Current address: Washington University of St. Louis
| | - Ellen V. Rothenberg
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125 USA
| |
Collapse
|
9
|
Parriott G, Kee BL. E Protein Transcription Factors as Suppressors of T Lymphocyte Acute Lymphoblastic Leukemia. Front Immunol 2022; 13:885144. [PMID: 35514954 PMCID: PMC9065262 DOI: 10.3389/fimmu.2022.885144] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 03/23/2022] [Indexed: 11/13/2022] Open
Abstract
T Lymphocyte Acute Lymphoblastic Leukemia (ALL) is an aggressive disease arising from transformation of T lymphocytes during their development. The mutation spectrum of T-ALL has revealed critical regulators of the growth and differentiation of normal and leukemic T lymphocytes. Approximately, 60% of T-ALLs show aberrant expression of the hematopoietic stem cell-associated helix-loop-helix transcription factors TAL1 and LYL1. TAL1 and LYL1 function in multiprotein complexes that regulate gene expression in T-ALL but they also antagonize the function of the E protein homodimers that are critical regulators of T cell development. Mice lacking E2A, or ectopically expressing TAL1, LYL1, or other inhibitors of E protein function in T cell progenitors, also succumb to an aggressive T-ALL-like disease highlighting that E proteins promote T cell development and suppress leukemogenesis. In this review, we discuss the role of E2A in T cell development and how alterations in E protein function underlie leukemogenesis. We focus on the role of TAL1 and LYL1 and the genes that are dysregulated in E2a-/- T cell progenitors that contribute to human T-ALL. These studies reveal novel mechanisms of transformation and provide insights into potential therapeutic targets for intervention in this disease.
Collapse
Affiliation(s)
- Geoffrey Parriott
- Committee on Immunology, University of Chicago, Chicago, IL, United States
| | - Barbara L Kee
- Committee on Immunology, University of Chicago, Chicago, IL, United States.,Committee on Cancer Biology, University of Chicago, Chicago, IL, United States.,Department of Pathology, University of Chicago, Chicago, IL, United States
| |
Collapse
|
10
|
Hosokawa H, Koizumi M, Masuhara K, Romero-Wolf M, Tanaka T, Nakayama T, Rothenberg EV. Stage-specific action of Runx1 and GATA3 controls silencing of PU.1 expression in mouse pro-T cells. J Exp Med 2021; 218:e20202648. [PMID: 34180951 PMCID: PMC8241539 DOI: 10.1084/jem.20202648] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 05/01/2021] [Accepted: 06/10/2021] [Indexed: 12/16/2022] Open
Abstract
PU.1 (encoded by Spi1), an ETS-family transcription factor with many hematopoietic roles, is highly expressed in the earliest intrathymic T cell progenitors but must be down-regulated during T lineage commitment. The transcription factors Runx1 and GATA3 have been implicated in this Spi1 repression, but the basis of the timing was unknown. We show that increasing Runx1 and/or GATA3 down-regulates Spi1 expression in pro-T cells, while deletion of these factors after Spi1 down-regulation reactivates its expression. Leveraging the stage specificities of repression and transcription factor binding revealed an unconventional but functional site in Spi1 intron 2. Acute Cas9-mediated deletion or disruption of the Runx and GATA motifs in this element reactivates silenced Spi1 expression in a pro-T cell line, substantially more than disruption of other candidate elements, and counteracts the repression of Spi1 in primary pro-T cells during commitment. Thus, Runx1 and GATA3 work stage specifically through an intronic silencing element in mouse Spi1 to control strength and maintenance of Spi1 repression during T lineage commitment.
Collapse
Affiliation(s)
- Hiroyuki Hosokawa
- Department of Immunology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
- Institute of Medical Sciences, Tokai University, Isehara, Kanagawa, Japan
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA
| | - Maria Koizumi
- Department of Immunology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Kaori Masuhara
- Department of Immunology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Maile Romero-Wolf
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA
| | - Tomoaki Tanaka
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba, Japan
| | - Toshinori Nakayama
- Department of Immunology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba, Japan
| | - Ellen V Rothenberg
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA
| |
Collapse
|
11
|
Li Y, Zeng W, Li T, Guo Y, Zheng G, He X, Bai L, Ding G, Jin L, Liu X. Integrative Single-Cell Transcriptomic Analysis of Human Fetal Thymocyte Development. Front Genet 2021; 12:679616. [PMID: 34276782 PMCID: PMC8284395 DOI: 10.3389/fgene.2021.679616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/03/2021] [Indexed: 11/23/2022] Open
Abstract
Intrathymic differentiation of T lymphocytes begins as early as intrauterine stage, yet the T cell lineage decisions of human fetal thymocytes at different gestational ages are not currently understood. Here, we performed integrative single-cell analyses of thymocytes across gestational ages. We identified conserved candidates underlying the selection of T cell receptor (TCR) lineages in different human fetal stages. The trajectory of early thymocyte commitment during fetal growth was also characterized. Comparisons with mouse data revealed conserved and species-specific transcriptional dynamics of thymocyte proliferation, apoptosis and selection. Genome-wide association study (GWAS) data associated with multiple autoimmune disorders were analyzed to characterize susceptibility genes that are highly expressed at specific stages during fetal thymocyte development. In summary, our integrative map describes previously underappreciated aspects of human thymocyte development, and provides a comprehensive reference for understanding T cell lymphopoiesis in a self-tolerant and functional adaptive immune system.
Collapse
Affiliation(s)
- Yuchen Li
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China.,Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Weihong Zeng
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China.,Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Tong Li
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China.,Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Yanyan Guo
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China.,Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Guangyong Zheng
- Bio-Med Big Data Center, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoying He
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Lilian Bai
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China.,Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Guolian Ding
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China.,Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China.,Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Li Jin
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China.,Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Xinmei Liu
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China.,Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China.,Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| |
Collapse
|
12
|
Pohlmeier L, Sonar SS, Rodewald H, Kopf M, Tortola L. Comparative analysis of the role of mast cells in murine asthma models using Kit-sufficient mast cell-deficient animals. Allergy 2021; 76:2030-2043. [PMID: 33559884 DOI: 10.1111/all.14765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 12/15/2020] [Accepted: 01/04/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Asthma is a frequent chronic disease that can potentially severely affect the respiratory capacity and well-being of patients. Mast cells (MCs) are regarded as major players in human asthma due to their capacity to release crucial inflammatory mediators following allergen exposure. However, unambiguous characterization of their role in animal models has long been hindered by the unavailability of specific MC-deficient models lacking confounding MC-unrelated effects. This study aims to examine the role of MCs in Kit-sufficient MC-deficient Cpa3Cre /+ mice. METHODS We used a variety of models of acute and chronic asthma employing distinct routes and regimes of sensitization. These sensitizations were done via the peritoneal cavity, the skin, or the lung. Additionally, different allergens, i.e. ovalbumin and house dust mite extract, were used. RESULTS Our results show that the absence of MCs had no impact on the severity of allergic airway inflammation in any of the tested mouse models, as measured by leukocyte infiltration in the airways, cytokine expression, antibody production, airway hyper-responsiveness and mucus production. CONCLUSION This indicates that MCs do not play a major role in murine allergic airway inflammation.
Collapse
Affiliation(s)
- Lea Pohlmeier
- Institute of Molecular Health Sciences ETH Zurich Zurich Switzerland
| | | | - Hans‐Reimer Rodewald
- Division for Cellular Immunology German Cancer Research Center Heidelberg Germany
| | - Manfred Kopf
- Institute of Molecular Health Sciences ETH Zurich Zurich Switzerland
| | - Luigi Tortola
- Institute of Molecular Health Sciences ETH Zurich Zurich Switzerland
| |
Collapse
|
13
|
Guo Y, Proaño-Pérez E, Muñoz-Cano R, Martin M. Anaphylaxis: Focus on Transcription Factor Activity. Int J Mol Sci 2021; 22:ijms22094935. [PMID: 34066544 PMCID: PMC8124588 DOI: 10.3390/ijms22094935] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/22/2021] [Accepted: 05/02/2021] [Indexed: 12/11/2022] Open
Abstract
Anaphylaxis is a severe allergic reaction, rapid in onset, and can lead to fatal consequences if not promptly treated. The incidence of anaphylaxis has risen at an alarming rate in past decades and continues to rise. Therefore, there is a general interest in understanding the molecular mechanism that leads to an exacerbated response. The main effector cells are mast cells, commonly triggered by stimuli that involve the IgE-dependent or IgE-independent pathway. These signaling pathways converge in the release of proinflammatory mediators, such as histamine, tryptases, prostaglandins, etc., in minutes. The action and cell targets of these proinflammatory mediators are linked to the pathophysiologic consequences observed in this severe allergic reaction. While many molecules are involved in cellular regulation, the expression and regulation of transcription factors involved in the synthesis of proinflammatory mediators and secretory granule homeostasis are of special interest, due to their ability to control gene expression and change phenotype, and they may be key in the severity of the entire reaction. In this review, we will describe our current understanding of the pathophysiology of human anaphylaxis, focusing on the transcription factors' contributions to this systemic hypersensitivity reaction. Host mutation in transcription factor expression, or deregulation of their activity in an anaphylaxis context, will be updated. So far, the risk of anaphylaxis is unpredictable thus, increasing our knowledge of the molecular mechanism that leads and regulates mast cell activity will enable us to improve our understanding of how anaphylaxis can be prevented or treated.
Collapse
Affiliation(s)
- Yanru Guo
- Biochemistry Unit, Biomedicine Department, Faculty of Medicine, University of Barcelona, 08036 Barcelona, Spain; (Y.G.); (E.P.-P.)
- Clinical and Experimental Respiratory Immunoallergy (IRCE), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain;
| | - Elizabeth Proaño-Pérez
- Biochemistry Unit, Biomedicine Department, Faculty of Medicine, University of Barcelona, 08036 Barcelona, Spain; (Y.G.); (E.P.-P.)
- Clinical and Experimental Respiratory Immunoallergy (IRCE), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain;
| | - Rosa Muñoz-Cano
- Clinical and Experimental Respiratory Immunoallergy (IRCE), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain;
- Allergy Section, Pneumology Department, Hospital Clinic, University of Barcelona, 08036 Barcelona, Spain
- ARADyAL (Asthma, Drug Adverse Reactions and Allergy) Research Network, 28029 Madrid, Spain
| | - Margarita Martin
- Biochemistry Unit, Biomedicine Department, Faculty of Medicine, University of Barcelona, 08036 Barcelona, Spain; (Y.G.); (E.P.-P.)
- Clinical and Experimental Respiratory Immunoallergy (IRCE), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain;
- ARADyAL (Asthma, Drug Adverse Reactions and Allergy) Research Network, 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-93-4024541; Fax: +34-93-4035882
| |
Collapse
|
14
|
Chiara VD, Daxinger L, Staal FJT. The Route of Early T Cell Development: Crosstalk between Epigenetic and Transcription Factors. Cells 2021; 10:1074. [PMID: 33946533 PMCID: PMC8147249 DOI: 10.3390/cells10051074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/25/2021] [Accepted: 04/26/2021] [Indexed: 12/21/2022] Open
Abstract
Hematopoietic multipotent progenitors seed the thymus and then follow consecutive developmental stages until the formation of mature T cells. During this process, phenotypic changes of T cells entail stage-specific transcriptional programs that underlie the dynamic progression towards mature lymphocytes. Lineage-specific transcription factors are key drivers of T cell specification and act in conjunction with epigenetic regulators that have also been elucidated as crucial players in the establishment of regulatory networks necessary for proper T cell development. In this review, we summarize the activity of transcription factors and epigenetic regulators that together orchestrate the intricacies of early T cell development with a focus on regulation of T cell lineage commitment.
Collapse
Affiliation(s)
- Veronica Della Chiara
- Department of Human Genetics, Leiden University Medical Centre (LUMC), 2300 RC Leiden, The Netherlands; (V.D.C.); (L.D.)
| | - Lucia Daxinger
- Department of Human Genetics, Leiden University Medical Centre (LUMC), 2300 RC Leiden, The Netherlands; (V.D.C.); (L.D.)
| | - Frank J. T. Staal
- Department of Immunology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
15
|
Rothenberg EV. Logic and lineage impacts on functional transcription factor deployment for T-cell fate commitment. Biophys J 2021; 120:4162-4181. [PMID: 33838137 PMCID: PMC8516641 DOI: 10.1016/j.bpj.2021.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/22/2021] [Accepted: 04/02/2021] [Indexed: 11/19/2022] Open
Abstract
Transcription factors are the major agents that read the regulatory sequence information in the genome to initiate changes in expression of specific genes, both in development and in physiological activation responses. Their actions depend on site-specific DNA binding and are largely guided by their individual DNA target sequence specificities. However, their action is far more conditional in a real developmental context than would be expected for simple reading of local genomic DNA sequence, which is common to all cells in the organism. They are constrained by slow-changing chromatin states and by interactions with other transcription factors, which affect their occupancy patterns of potential sites across the genome. These mechanisms lead to emergent discontinuities in function even for transcription factors with minimally changing expression. This is well revealed by diverse lineages of blood cells developing throughout life from hematopoietic stem cells, which use overlapping combinations of transcription factors to drive strongly divergent gene regulation programs. Here, using development of T lymphocytes from hematopoietic multipotent progenitor cells as a focus, recent evidence is reviewed on how binding specificity and dynamics, transcription factor cooperativity, and chromatin state changes impact the effective regulatory functions of key transcription factors including PU.1, Runx1, Notch-RBPJ, and Bcl11b.
Collapse
Affiliation(s)
- Ellen V Rothenberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California.
| |
Collapse
|
16
|
Romero-Wolf M, Shin B, Zhou W, Koizumi M, Rothenberg EV, Hosokawa H. Notch2 complements Notch1 to mediate inductive signaling that initiates early T cell development. J Cell Biol 2021; 219:152003. [PMID: 32756905 PMCID: PMC7659720 DOI: 10.1083/jcb.202005093] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/07/2020] [Accepted: 07/09/2020] [Indexed: 12/13/2022] Open
Abstract
Notch signaling is the dominant intercellular signaling input during the earliest stages of T cell development in the thymus. Although Notch1 is known to be indispensable, we show that it does not mediate all Notch signaling in precommitment stages: Notch2 initially works in parallel to promote early murine T cell development and antagonize other fates. Notch-regulated target genes before and after T lineage commitment change dynamically, and we show that this partially reflects shifts in genome-wide DNA binding by RBPJ, the transcription factor activated by complex formation with the Notch intracellular domain. Although Notch signaling and transcription factor PU.1 can activate some common targets in precommitment T progenitors, Notch signaling and PU.1 activity have functionally antagonistic effects on multiple targets, delineating separation of pro-T cells from alternative PU.1-dependent fates. These results define a distinct mechanism of Notch signal response that distinguishes the initial stages of murine T cell development.
Collapse
Affiliation(s)
- Maile Romero-Wolf
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA
| | - Boyoung Shin
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA
| | - Wen Zhou
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA
| | - Maria Koizumi
- Department of Immunology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Ellen V Rothenberg
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA
| | - Hiroyuki Hosokawa
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA.,Department of Immunology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| |
Collapse
|
17
|
Hosokawa H, Rothenberg EV. How transcription factors drive choice of the T cell fate. Nat Rev Immunol 2021; 21:162-176. [PMID: 32918063 PMCID: PMC7933071 DOI: 10.1038/s41577-020-00426-6] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2020] [Indexed: 12/21/2022]
Abstract
Recent evidence has elucidated how multipotent blood progenitors transform their identities in the thymus and undergo commitment to become T cells. Together with environmental signals, a core group of transcription factors have essential roles in this process by directly activating and repressing specific genes. Many of these transcription factors also function in later T cell development, but control different genes. Here, we review how these transcription factors work to change the activities of specific genomic loci during early intrathymic development to establish T cell lineage identity. We introduce the key regulators and highlight newly emergent insights into the rules that govern their actions. Whole-genome deep sequencing-based analysis has revealed unexpectedly rich relationships between inherited epigenetic states, transcription factor-DNA binding affinity thresholds and influences of given transcription factors on the activities of other factors in the same cells. Together, these mechanisms determine T cell identity and make the lineage choice irreversible.
Collapse
Affiliation(s)
- Hiroyuki Hosokawa
- Department of Immunology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Ellen V Rothenberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
18
|
Hosokawa H, Masuhara K, Koizumi M. Transcription factors regulate early T cell development via redeployment of other factors: Functional dynamics of constitutively required factors in cell fate decisions. Bioessays 2021; 43:e2000345. [PMID: 33624856 DOI: 10.1002/bies.202000345] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/30/2021] [Accepted: 02/08/2021] [Indexed: 01/02/2023]
Abstract
Establishment of cell lineage identity from multipotent progenitors is controlled by cooperative actions of lineage-specific and stably expressed transcription factors, combined with input from environmental signals. Lineage-specific master transcription factors activate and repress gene expression by recruiting consistently expressed transcription factors and chromatin modifiers to their target loci. Recent technical advances in genome-wide and multi-omics analysis have shed light on unexpected mechanisms that underlie more complicated actions of transcription factors in cell fate decisions. In this review, we discuss functional dynamics of stably expressed and continuously required factors, Notch and Runx family members, throughout developmental stages of early T cell development in the thymus. Pre- and post-commitment stage-specific transcription factors induce dynamic redeployment of Notch and Runx binding genomic regions. Thus, together with stage-specific transcription factors, shared transcription factors across distinct developmental stages regulate acquisition of T lineage identity.
Collapse
Affiliation(s)
- Hiroyuki Hosokawa
- Department of Immunology, Tokai University School of Medicine, Isehara, Kanagawa, Japan.,Institute of Medical Sciences, Tokai University, Isehara, Kanagawa, Japan
| | - Kaori Masuhara
- Department of Immunology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Maria Koizumi
- Department of Immunology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| |
Collapse
|
19
|
RORα is a critical checkpoint for T cell and ILC2 commitment in the embryonic thymus. Nat Immunol 2021; 22:166-178. [PMID: 33432227 PMCID: PMC7116838 DOI: 10.1038/s41590-020-00833-w] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 11/03/2020] [Indexed: 01/30/2023]
Abstract
Type 2 innate lymphoid cells (ILC2) contribute to immune homeostasis, protective immunity and tissue repair. Here we demonstrate that functional ILC2 cells can arise in the embryonic thymus from shared T cell precursors, preceding the emergence of CD4+CD8+ (double-positive) T cells. Thymic ILC2 cells migrated to mucosal tissues, with colonization of the intestinal lamina propria. Expression of the transcription factor RORα repressed T cell development while promoting ILC2 development in the thymus. From RNA-seq, assay for transposase-accessible chromatin sequencing (ATAC-seq) and chromatin immunoprecipitation followed by sequencing (ChIP-seq) data, we propose a revised transcriptional circuit to explain the co-development of T cells and ILC2 cells from common progenitors in the thymus. When Notch signaling is present, BCL11B dampens Nfil3 and Id2 expression, permitting E protein-directed T cell commitment. However, concomitant expression of RORα overrides the repression of Nfil3 and Id2 repression, allowing ID2 to repress E proteins and promote ILC2 differentiation. Thus, we demonstrate that RORα expression represents a critical checkpoint at the bifurcation of the T cell and ILC2 lineages in the embryonic thymus.
Collapse
|
20
|
Rothenberg EV, Göttgens B. How haematopoiesis research became a fertile ground for regulatory network biology as pioneered by Eric Davidson. Curr Opin Hematol 2021; 28:1-10. [PMID: 33229891 PMCID: PMC7755131 DOI: 10.1097/moh.0000000000000628] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW This historical perspective reviews how work of Eric H. Davidson was a catalyst and exemplar for explaining haematopoietic cell fate determination through gene regulation. RECENT FINDINGS Researchers studying blood and immune cells pioneered many of the early mechanistic investigations of mammalian gene regulatory processes. These efforts included the characterization of complex gene regulatory sequences exemplified by the globin and T-cell/B-cell receptor gene loci, as well as the identification of many key regulatory transcription factors through the fine mapping of chromosome translocation breakpoints in leukaemia patients. As the repertoire of known regulators expanded, assembly into gene regulatory network models became increasingly important, not only to account for the truism that regulatory genes do not function in isolation but also to devise new ways of extracting biologically meaningful insights from even more complex information. Here we explore how Eric H. Davidson's pioneering studies of gene regulatory network control in nonvertebrate model organisms have had an important and lasting impact on research into blood and immune cell development. SUMMARY The intellectual framework developed by Davidson continues to contribute to haematopoietic research, and his insistence on demonstrating logic and causality still challenges the frontier of research today.
Collapse
Affiliation(s)
- Ellen V. Rothenberg
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Berthold Göttgens
- Wellcome and MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge CB2 0AW, UK
| |
Collapse
|
21
|
Olariu V, Yui MA, Krupinski P, Zhou W, Deichmann J, Andersson E, Rothenberg EV, Peterson C. Multi-scale Dynamical Modeling of T Cell Development from an Early Thymic Progenitor State to Lineage Commitment. Cell Rep 2021; 34:108622. [PMID: 33440162 DOI: 10.1016/j.celrep.2020.108622] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 04/24/2020] [Accepted: 12/18/2020] [Indexed: 01/13/2023] Open
Abstract
Intrathymic development of committed progenitor (pro)-T cells from multipotent hematopoietic precursors offers an opportunity to dissect the molecular circuitry establishing cell identity in response to environmental signals. This transition encompasses programmed shutoff of stem/progenitor genes, upregulation of T cell specification genes, proliferation, and ultimately commitment. To explain these features in light of reported cis-acting chromatin effects and experimental kinetic data, we develop a three-level dynamic model of commitment based upon regulation of the commitment-linked gene Bcl11b. The levels are (1) a core gene regulatory network (GRN) architecture from transcription factor (TF) perturbation data, (2) a stochastically controlled chromatin-state gate, and (3) a single-cell proliferation model validated by experimental clonal growth and commitment kinetic assays. Using RNA fluorescence in situ hybridization (FISH) measurements of genes encoding key TFs and measured bulk population dynamics, this single-cell model predicts state-switching kinetics validated by measured clonal proliferation and commitment times. The resulting multi-scale model provides a mechanistic framework for dissecting commitment dynamics.
Collapse
Affiliation(s)
- Victor Olariu
- Computational Biology and Biological Physics, Department of Astronomy and Theoretical Physics, Lund University, Lund, Sweden
| | - Mary A Yui
- Division of Biology and Biological Engineering, 156-29, California Institute of Technology, Pasadena, CA 91125, USA
| | - Pawel Krupinski
- Computational Biology and Biological Physics, Department of Astronomy and Theoretical Physics, Lund University, Lund, Sweden
| | - Wen Zhou
- Division of Biology and Biological Engineering, 156-29, California Institute of Technology, Pasadena, CA 91125, USA
| | - Julia Deichmann
- Computational Biology and Biological Physics, Department of Astronomy and Theoretical Physics, Lund University, Lund, Sweden
| | - Emil Andersson
- Computational Biology and Biological Physics, Department of Astronomy and Theoretical Physics, Lund University, Lund, Sweden
| | - Ellen V Rothenberg
- Division of Biology and Biological Engineering, 156-29, California Institute of Technology, Pasadena, CA 91125, USA.
| | - Carsten Peterson
- Computational Biology and Biological Physics, Department of Astronomy and Theoretical Physics, Lund University, Lund, Sweden.
| |
Collapse
|
22
|
Spinner CA, Lazarevic V. Transcriptional regulation of adaptive and innate lymphoid lineage specification. Immunol Rev 2020; 300:65-81. [PMID: 33615514 DOI: 10.1111/imr.12935] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/26/2020] [Accepted: 11/16/2020] [Indexed: 12/28/2022]
Abstract
Once alerted to the presence of a pathogen, activated CD4+ T cells initiate distinct gene expression programs that produce multiple functionally specialized T helper (Th) subsets. The cytokine milieu present at the time of antigen encounter instructs CD4+ T cells to differentiate into interferon-(IFN)-γ-producing Th1 cells, interleukin-(IL)-4-producing Th2 cells, IL-17-producing Th17 cells, follicular T helper (Tfh) cells, or regulatory T (Treg) cells. In each of these Th cell subsets, a single transcription factor has been identified as a critical regulator of its specialized differentiation program. In this context, the expression of the "master regulator" is necessary and sufficient to activate lineage-specific genes while restricting the gene expression program of alternative Th fates. Thus, the transcription factor T-bet controls Th1 differentiation program, while the development of Th2, Th17, Tfh, and Treg cells is dependent on transcription factors GATA3, RORγt, Bcl6, and Foxp3, respectively. Nevertheless, master regulators or, more precisely, lineage-defining transcription factors do not function in isolation. In fact, they interact with a complex network of transcription factors, orchestrating cell lineage specification programs. In this review, we discuss the concept of the combinatorial interactions of key transcription factors in determining helper T cell identity. Additionally, lineage-defining transcription factors have well-established functions beyond their role in CD4+ Th subsets. They play critically important functions at distinct stages during T cell development in the thymus and they control the development of innate lymphoid cells (ILCs) in the bone marrow. In tracking the journey of T cells traversing from the thymus to the periphery and during the immune response, we discuss in broad terms developmental stage and context-dependent functions of lineage-defining transcription factors in regulating specification programs of innate and adaptive lymphocytes.
Collapse
Affiliation(s)
- Camille A Spinner
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Vanja Lazarevic
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
23
|
Wei C, Yu P, Cheng L. Hematopoietic Reprogramming Entangles with Hematopoiesis. Trends Cell Biol 2020; 30:752-763. [PMID: 32861580 DOI: 10.1016/j.tcb.2020.07.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 02/06/2023]
Abstract
Hematopoiesis generally refers to hematopoietic development in fetuses and adults, as well as to hematopoietic stem cell differentiation into progeny lineages. The multiple processes that generate diverse hematopoietic cells have been considered to be unidirectional. However, many reports have recently demonstrated that these processes are not only reversible but also interconvertible via cell reprogramming. The cell reprogramming that occurs in hematopoietic cells is termed hematopoietic reprogramming. We focus on both autogenous and artificial hematopoietic reprogramming under physiological and pathological conditions that is mainly directed by the actions of transcription factors (TFs), chemical compounds, or extracellular cytokines. A comprehensive understanding of hematopoietic reprogramming will help us not only to generate desirable cells for cell therapy but also to further analyze normal and malignant hematopoiesis.
Collapse
Affiliation(s)
- Chuijin Wei
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Pei Yu
- Department of Orthopaedics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lin Cheng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
24
|
Garcia-Perez L, Famili F, Cordes M, Brugman M, van Eggermond M, Wu H, Chouaref J, Granado DSL, Tiemessen MM, Pike-Overzet K, Daxinger L, Staal FJT. Functional definition of a transcription factor hierarchy regulating T cell lineage commitment. SCIENCE ADVANCES 2020; 6:eaaw7313. [PMID: 32789164 PMCID: PMC7400773 DOI: 10.1126/sciadv.aaw7313] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 06/17/2020] [Indexed: 05/02/2023]
Abstract
T cell factor 1 (Tcf1) is the first T cell-specific protein induced by Notch signaling in the thymus, leading to the activation of two major target genes, Gata3 and Bcl11b. Tcf1 deficiency results in partial arrests in T cell development, high apoptosis, and increased development of B and myeloid cells. Phenotypically, seemingly fully T cell-committed thymocytes with Tcf1 deficiency have promiscuous gene expression and an altered epigenetic profile and can dedifferentiate into more immature thymocytes and non-T cells. Restoring Bcl11b expression in Tcf1-deficient cells rescues T cell development but does not strongly suppress the development of non-T cells; in contrast, expressing Gata3 suppresses their development but does not rescue T cell development. Thus, T cell development is controlled by a minimal transcription factor network involving Notch signaling, Tcf1, and the subsequent division of labor between Bcl11b and Gata3, thereby ensuring a properly regulated T cell gene expression program.
Collapse
Affiliation(s)
- Laura Garcia-Perez
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Farbod Famili
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Martijn Cordes
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Martijn Brugman
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Marja van Eggermond
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Haoyu Wu
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Jihed Chouaref
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | | | | | - Karin Pike-Overzet
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Lucia Daxinger
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Frank J. T. Staal
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
25
|
Rao TN, Kumar S, Pulikkottil AJ, Oliveri F, Hendriks RW, Beckel F, Fehling HJ. Novel, Non-Gene-Destructive Knock-In Reporter Mice Refute the Concept of Monoallelic Gata3 Expression. THE JOURNAL OF IMMUNOLOGY 2020; 204:2600-2611. [PMID: 32213568 DOI: 10.4049/jimmunol.2000025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 02/26/2020] [Indexed: 02/04/2023]
Abstract
Accurately tuned expression levels of the transcription factor GATA-3 are crucial at several stages of T cell and innate lymphoid cell development and differentiation. Moreover, several lines of evidence suggest that Gata3 expression might provide a reliable molecular marker for the identification of elusive progenitor cell subsets at the earliest stages of T lineage commitment. To be able to faithfully monitor Gata3 expression noninvasively at the single-cell level, we have generated a novel strain of knock-in reporter mice, termed GATIR, by inserting an expression cassette encoding a bright fluorescent marker into the 3'-untranslated region of the endogenous Gata3 locus. Importantly, in contrast to three previously published strains of Gata3 reporter mice, GATIR mice preserve physiological Gata3 expression on the targeted allele. In this study, we show that GATIR mice faithfully reflect endogenous Gata3 expression without disturbing the development of GATA-3-dependent lymphoid cell populations. We further show that GATIR mice provide an ideal tool for noninvasive monitoring of Th2 polarization and straightforward identification of innate lymphoid cell 2 progenitor populations. Finally, as our reporter is non-gene-destructive, GATIR mice can be bred to homozygosity, not feasible with previously published strains of Gata3 reporter mice harboring disrupted alleles. The availability of hetero- and homozygous Gata3 reporter mice with an exceptionally bright fluorescent marker, allowed us to visualize allelic Gata3 expression in individual cells simply by flow cytometry. The unambiguous results obtained provide compelling evidence against previously postulated monoallelic Gata3 expression in early T lineage and hematopoietic stem cell subsets.
Collapse
Affiliation(s)
| | - Suresh Kumar
- Institute of Immunology, University Hospital, D-89081 Ulm, Germany; and
| | | | - Franziska Oliveri
- Institute of Immunology, University Hospital, D-89081 Ulm, Germany; and
| | - Rudi W Hendriks
- Department of Pulmonary Medicine, Erasmus Medical Center, NL-3000 CA Rotterdam, the Netherlands
| | - Franziska Beckel
- Institute of Immunology, University Hospital, D-89081 Ulm, Germany; and
| | | |
Collapse
|
26
|
Logical modeling of cell fate specification—Application to T cell commitment. Curr Top Dev Biol 2020; 139:205-238. [DOI: 10.1016/bs.ctdb.2020.02.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
27
|
Pires CF, Rosa FF, Kurochkin I, Pereira CF. Understanding and Modulating Immunity With Cell Reprogramming. Front Immunol 2019; 10:2809. [PMID: 31921109 PMCID: PMC6917620 DOI: 10.3389/fimmu.2019.02809] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 11/15/2019] [Indexed: 12/30/2022] Open
Abstract
Cell reprogramming concepts have been classically developed in the fields of developmental and stem cell biology and are currently being explored for regenerative medicine, given its potential to generate desired cell types for replacement therapy. Cell fate can be experimentally reversed or modified by enforced expression of lineage specific transcription factors leading to pluripotency or attainment of another somatic cell type identity. The possibility to reprogram fibroblasts into induced dendritic cells (DC) competent for antigen presentation creates a paradigm shift for understanding and modulating the immune system with direct cell reprogramming. PU.1, IRF8, and BATF3 were identified as sufficient and necessary to impose DC fate in unrelated cell types, taking advantage of Clec9a, a C-type lectin receptor with restricted expression in conventional DC type 1. The identification of such minimal gene regulatory networks helps to elucidate the molecular mechanisms governing development and lineage heterogeneity along the hematopoietic hierarchy. Furthermore, the generation of patient-tailored reprogrammed immune cells provides new and exciting tools for the expanding field of cancer immunotherapy. Here, we summarize cell reprogramming concepts and experimental approaches, review current knowledge at the intersection of cell reprogramming with hematopoiesis, and propose how cell fate engineering can be merged to immunology, opening new opportunities to understand the immune system in health and disease.
Collapse
Affiliation(s)
- Cristiana F. Pires
- Cell Reprogramming in Hematopoiesis and Immunity Laboratory, Lund Stem Cell Center, Molecular Medicine and Gene Therapy, Lund University, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Fábio F. Rosa
- Cell Reprogramming in Hematopoiesis and Immunity Laboratory, Lund Stem Cell Center, Molecular Medicine and Gene Therapy, Lund University, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Ilia Kurochkin
- Center for Neurobiology and Brain Restoration, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Carlos-Filipe Pereira
- Cell Reprogramming in Hematopoiesis and Immunity Laboratory, Lund Stem Cell Center, Molecular Medicine and Gene Therapy, Lund University, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
28
|
Guiding T lymphopoiesis from pluripotent stem cells by defined transcription factors. Cell Res 2019; 30:21-33. [PMID: 31729468 PMCID: PMC6951346 DOI: 10.1038/s41422-019-0251-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 10/15/2019] [Indexed: 12/22/2022] Open
Abstract
Achievement of immunocompetent and therapeutic T lymphopoiesis from pluripotent stem cells (PSCs) is a central aim in T cell regenerative medicine. To date, preferentially reconstituting T lymphopoiesis in vivo from PSCs remains a practical challenge. Here we documented that synergistic and transient expression of Runx1 and Hoxa9 restricted in the time window of endothelial-to-hematopoietic transition and hematopoietic maturation stages in a PSC differentiation scheme (iR9-PSC) in vitro induced preferential generation of engraftable hematopoietic progenitors capable of homing to thymus and developing into mature T cells in primary and secondary immunodeficient recipients. Single-cell transcriptome and functional analyses illustrated the cellular trajectory of T lineage induction from PSCs, unveiling the T-lineage specification determined at as early as hemogenic endothelial cell stage and identifying the bona fide pre-thymic progenitors. The induced T cells distributed normally in central and peripheral lymphoid organs and exhibited abundant TCRαβ repertoire. The regenerative T lymphopoiesis restored immune surveillance in immunodeficient mice. Furthermore, gene-edited iR9-PSCs produced tumor-specific T cells in vivo that effectively eradicated tumor cells. This study provides insight into universal generation of functional and therapeutic T cells from the unlimited and editable PSC source.
Collapse
|
29
|
Abstract
Specification of multipotent blood precursor cells in postnatal mice to become committed T-cell precursors involves a gene regulatory network of several interacting but functionally distinct modules. Many links of this network have been defined by perturbation tests and by functional genomics. However, using the network model to predict real-life kinetics of the commitment process is still difficult, partly due to the tenacity of repressive chromatin states, and to the ability of transcription factors to affect each other's binding site choices through competitive recruitment to alternative sites ("coregulator theft"). To predict kinetics, future models will need to incorporate mechanistic information about chromatin state change dynamics and more sophisticated understanding of the proteomics and cooperative DNA site choices of transcription factor complexes.
Collapse
Affiliation(s)
- Ellen V Rothenberg
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
30
|
Abstract
In this review, Rothenburg discusses the gene regulatory network and chromatin-based kinetic constraints that determine activities of transcription factors in the primary establishment of T-cell identity. T-cell development in mammals is a model for lineage choice and differentiation from multipotent stem cells. Although T-cell fate choice is promoted by signaling in the thymus through one dominant pathway, the Notch pathway, it entails a complex set of gene regulatory network and chromatin state changes even before the cells begin to express their signature feature, the clonal-specific T-cell receptors (TCRs) for antigen. This review distinguishes three developmental modules for T-cell development, which correspond to cell type specification, TCR expression and selection, and the assignment of cells to different effector types. The first is based on transcriptional regulatory network events, the second is dominated by somatic gene rearrangement and mutation and cell selection, and the third corresponds to establishing a poised state of latent regulator priming through an unknown mechanism. Interestingly, in different lineages, the third module can be deployed at variable times relative to the completion of the first two modules. This review focuses on the gene regulatory network and chromatin-based kinetic constraints that determine activities of transcription factors TCF1, GATA3, PU.1, Bcl11b, Runx1, and E proteins in the primary establishment of T-cell identity.
Collapse
Affiliation(s)
- Ellen V Rothenberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
31
|
Insights into Thymus Development and Viral Thymic Infections. Viruses 2019; 11:v11090836. [PMID: 31505755 PMCID: PMC6784209 DOI: 10.3390/v11090836] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/03/2019] [Accepted: 09/06/2019] [Indexed: 12/16/2022] Open
Abstract
T-cell development in the thymus is a complex and highly regulated process, involving a wide variety of cells and molecules which orchestrate thymocyte maturation into either CD4+ or CD8+ single-positive (SP) T cells. Here, we briefly review the process regulating T-cell differentiation, which includes the latest advances in this field. In particular, we highlight how, starting from a pool of hematopoietic stem cells in the bone marrow, the sequential action of transcriptional factors and cytokines dictates the proliferation, restriction of lineage potential, T-cell antigen receptors (TCR) gene rearrangements, and selection events on the T-cell progenitors, ultimately leading to the generation of mature T cells. Moreover, this review discusses paradigmatic examples of viral infections affecting the thymus that, by inducing functional changes within this lymphoid gland, consequently influence the behavior of peripheral mature T-lymphocytes.
Collapse
|
32
|
Rothenberg EV. Causal Gene Regulatory Network Modeling and Genomics: Second-Generation Challenges. J Comput Biol 2019; 26:703-718. [PMID: 31063008 DOI: 10.1089/cmb.2019.0098] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Gene regulatory network modeling has played a major role in advancing the understanding of developmental systems, by crystallizing structures of relevant extant information, by formally posing hypothetical functional relationships between network elements, and by offering clear predictive tests to improve understanding of the mechanisms driving developmental progression. Both ordinary differential equation (ODE)-based and Boolean models have also been highly successful in explaining dynamics within subcircuits of more complex processes. In a very small number of cases, gene regulatory network models of much more global scope have been proposed that successfully predict the dynamics of the processes establishing most of an embryonic body plan. Can such successes be expanded to very different developmental systems, including post-embryonic mammalian systems? This perspective discusses several problems that must be solved in more quantitative and predictive theoretical terms, to make this possible. These problems include: the effects of cellular history on chromatin state and how these affect gene accessibility; the dose dependence of activities of many transcription factors (a problem for Boolean models); stochasticity of some transcriptional outputs (a problem for simple ODE models); response timing delays due to epigenetic remodeling requirements; functionally different kinds of repression; and the regulatory syntax that governs responses of genes with multiple enhancers.
Collapse
Affiliation(s)
- Ellen V Rothenberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California
| |
Collapse
|
33
|
Delacher M, Schmidl C, Herzig Y, Breloer M, Hartmann W, Brunk F, Kägebein D, Träger U, Hofer AC, Bittner S, Weichenhan D, Imbusch CD, Hotz-Wagenblatt A, Hielscher T, Breiling A, Federico G, Gröne HJ, Schmid RM, Rehli M, Abramson J, Feuerer M. Rbpj expression in regulatory T cells is critical for restraining T H2 responses. Nat Commun 2019; 10:1621. [PMID: 30962454 PMCID: PMC6453958 DOI: 10.1038/s41467-019-09276-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 02/26/2019] [Indexed: 12/14/2022] Open
Abstract
The transcriptional regulator Rbpj is involved in T-helper (TH) subset polarization, but its function in Treg cells remains unclear. Here we show that Treg-specific Rbpj deletion leads to splenomegaly and lymphadenopathy despite increased numbers of Treg cells with a polyclonal TCR repertoire. A specific defect of Rbpj-deficient Treg cells in controlling TH2 polarization and B cell responses is observed, leading to the spontaneous formation of germinal centers and a TH2-associated immunoglobulin class switch. The observed phenotype is environment-dependent and can be induced by infection with parasitic nematodes. Rbpj-deficient Treg cells adopt open chromatin landscapes and gene expression profiles reminiscent of tissue-derived TH2-polarized Treg cells, with a prevailing signature of the transcription factor Gata-3. Taken together, our study suggests that Treg cells require Rbpj to specifically restrain TH2 responses, including their own excessive TH2-like differentiation potential.
Collapse
Affiliation(s)
- Michael Delacher
- Chair for Immunology, University Regensburg and University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
- Regensburg Center for Interventional Immunology (RCI), University Regensburg and University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
- Immune Tolerance Group, Tumor Immunology Program, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Christian Schmidl
- Regensburg Center for Interventional Immunology (RCI), University Regensburg and University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Yonatan Herzig
- Department of Immunology, Weizmann Institute of Science, 234 Herzl Street, 76100, Rehovot, Israel
| | - Minka Breloer
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Straße 74, 20359, Hamburg, Germany
| | - Wiebke Hartmann
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Straße 74, 20359, Hamburg, Germany
| | - Fabian Brunk
- Division of Developmental Immunology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Danny Kägebein
- Immune Tolerance Group, Tumor Immunology Program, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Ulrike Träger
- Immune Tolerance Group, Tumor Immunology Program, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Ann-Cathrin Hofer
- Immune Tolerance Group, Tumor Immunology Program, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Sebastian Bittner
- Chair for Immunology, University Regensburg and University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
- Regensburg Center for Interventional Immunology (RCI), University Regensburg and University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Dieter Weichenhan
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Charles D Imbusch
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Agnes Hotz-Wagenblatt
- Genomics and Proteomics Core Facility, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Thomas Hielscher
- Division of Biostatistics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Achim Breiling
- Division of Epigenetics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Giuseppina Federico
- Division of Cellular and Molecular Pathology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Hermann-Josef Gröne
- Division of Cellular and Molecular Pathology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Roland M Schmid
- Department of Internal Medicine, Technical University of Munich, Ismaninger Straße 22, 81675, Munich, Germany
| | - Michael Rehli
- Regensburg Center for Interventional Immunology (RCI), University Regensburg and University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Jakub Abramson
- Department of Immunology, Weizmann Institute of Science, 234 Herzl Street, 76100, Rehovot, Israel
| | - Markus Feuerer
- Chair for Immunology, University Regensburg and University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany.
- Regensburg Center for Interventional Immunology (RCI), University Regensburg and University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany.
- Immune Tolerance Group, Tumor Immunology Program, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| |
Collapse
|
34
|
Ye Y, Kang X, Bailey J, Li C, Hong T. An enriched network motif family regulates multistep cell fate transitions with restricted reversibility. PLoS Comput Biol 2019; 15:e1006855. [PMID: 30845219 PMCID: PMC6424469 DOI: 10.1371/journal.pcbi.1006855] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 03/19/2019] [Accepted: 02/07/2019] [Indexed: 12/16/2022] Open
Abstract
Multistep cell fate transitions with stepwise changes of transcriptional profiles are common to many developmental, regenerative and pathological processes. The multiple intermediate cell lineage states can serve as differentiation checkpoints or branching points for channeling cells to more than one lineages. However, mechanisms underlying these transitions remain elusive. Here, we explored gene regulatory circuits that can generate multiple intermediate cellular states with stepwise modulations of transcription factors. With unbiased searching in the network topology space, we found a motif family containing a large set of networks can give rise to four attractors with the stepwise regulations of transcription factors, which limit the reversibility of three consecutive steps of the lineage transition. We found that there is an enrichment of these motifs in a transcriptional network controlling the early T cell development, and a mathematical model based on this network recapitulates multistep transitions in the early T cell lineage commitment. By calculating the energy landscape and minimum action paths for the T cell model, we quantified the stochastic dynamics of the critical factors in response to the differentiation signal with fluctuations. These results are in good agreement with experimental observations and they suggest the stable characteristics of the intermediate states in the T cell differentiation. These dynamical features may help to direct the cells to correct lineages during development. Our findings provide general design principles for multistep cell linage transitions and new insights into the early T cell development. The network motifs containing a large family of topologies can be useful for analyzing diverse biological systems with multistep transitions. The functions of cells are dynamically controlled in many biological processes including development, regeneration and disease progression. Cell fate transition, or the switch of cellular functions, often involves multiple steps. The intermediate stages of the transition provide the biological systems with the opportunities to regulate the transitions in a precise manner. These transitions are controlled by key regulatory genes of which the expression shows stepwise patterns, but how the interactions of these genes can determine the multistep processes was unclear. Here, we present a comprehensive analysis on the design principles of gene circuits that govern multistep cell fate transition. We found a large network family with common structural features that can generate systems with the ability to control three consecutive steps of the transition. We found that this type of networks is enriched in a gene circuit controlling the development of T lymphocyte, a crucial type of immune cells. We performed mathematical modeling using this gene circuit and we recapitulated the stepwise and irreversible loss of stem cell properties of the developing T lymphocytes. Our findings can be useful to analyze a wide range of gene regulatory networks controlling multistep cell fate transitions.
Collapse
Affiliation(s)
- Yujie Ye
- Department of Biochemistry & Cellular and Molecular Biology, The University of Tennessee, Knoxville, Tennessee, United States of America
| | - Xin Kang
- Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China.,School of Mathematical Sciences, Fudan University, Shanghai, China
| | - Jordan Bailey
- Department of Biochemistry & Cellular and Molecular Biology, The University of Tennessee, Knoxville, Tennessee, United States of America
| | - Chunhe Li
- Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China.,Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Tian Hong
- Department of Biochemistry & Cellular and Molecular Biology, The University of Tennessee, Knoxville, Tennessee, United States of America.,National Institute for Mathematical and Biological Synthesis, Knoxville, Tennessee, United States of America
| |
Collapse
|
35
|
Rothenberg EV, Hosokawa H, Ungerbäck J. Mechanisms of Action of Hematopoietic Transcription Factor PU.1 in Initiation of T-Cell Development. Front Immunol 2019; 10:228. [PMID: 30842770 PMCID: PMC6391351 DOI: 10.3389/fimmu.2019.00228] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 01/28/2019] [Indexed: 12/20/2022] Open
Abstract
PU.1 is an ETS-family transcription factor that plays a broad range of roles in hematopoiesis. A direct regulator of myeloid, dendritic-cell, and B cell functional programs, and a well-known antagonist of terminal erythroid cell differentiation, it is also expressed in the earliest stages of T-cell development of each cohort of intrathymic pro-T cells. Its expression in this context appears to give T-cell precursors initial, transient access to myeloid and dendritic cell developmental competence and therefore to represent a source of antagonism or delay of T-cell lineage commitment. However, it has remained uncertain until recently why T-cell development is also intensely dependent upon PU.1. Here, we review recent work that sheds light on the molecular biology of PU.1 action across the genome in pro-T cells and identifies the genes that depend on PU.1 for their correct regulation. This work indicates modes of chromatin engagement, pioneering, and cofactor recruitment (“coregulator theft”) by PU.1 as well as gene network interactions that not only affect specific target genes but also have system-wide regulatory consequences, amplifying the impact of PU.1 beyond its own direct binding targets. The genes directly regulated by PU.1 also suggest a far-reaching transformation of cell biology and signaling potential between the early stages of T-cell development when PU.1 is expressed and when it is silenced. These cell-biological functions can be important to distinguish fetal from adult T-cell development and have the potential to illuminate aspects of thymic function that have so far remained the most mysterious.
Collapse
Affiliation(s)
- Ellen V Rothenberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Hiroyuki Hosokawa
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Jonas Ungerbäck
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| |
Collapse
|
36
|
Hosokawa H, Ungerbäck J, Wang X, Matsumoto M, Nakayama KI, Cohen SM, Tanaka T, Rothenberg EV. Transcription Factor PU.1 Represses and Activates Gene Expression in Early T Cells by Redirecting Partner Transcription Factor Binding. Immunity 2019; 48:1119-1134.e7. [PMID: 29924977 DOI: 10.1016/j.immuni.2018.04.024] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 02/21/2018] [Accepted: 04/19/2018] [Indexed: 01/09/2023]
Abstract
Transcription factors normally regulate gene expression through their action at sites where they bind to DNA. However, the balance of activating and repressive functions that a transcription factor can mediate is not completely understood. Here, we showed that the transcription factor PU.1 regulated gene expression in early T cell development both by recruiting partner transcription factors to its own binding sites and by depleting them from the binding sites that they preferred when PU.1 was absent. The removal of partner factors Satb1 and Runx1 occurred primarily from sites where PU.1 itself did not bind. Genes linked to sites of partner factor "theft" were enriched for genes that PU.1 represses despite lack of binding, both in a model cell line system and in normal T cell development. Thus, system-level competitive recruitment dynamics permit PU.1 to affect gene expression both through its own target sites and through action at a distance.
Collapse
Affiliation(s)
- Hiroyuki Hosokawa
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Jonas Ungerbäck
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, USA; Division of Molecular Hematology, Lund University, Sweden
| | - Xun Wang
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Masaki Matsumoto
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Japan
| | - Keiichi I Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Japan
| | - Sarah M Cohen
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Tomoaki Tanaka
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Japan; AMED-CREST, AMED, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Ellen V Rothenberg
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
37
|
Rothenberg EV. Encounters across networks: Windows into principles of genomic regulation. Mar Genomics 2019; 44:3-12. [PMID: 30661741 DOI: 10.1016/j.margen.2019.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/06/2019] [Accepted: 01/06/2019] [Indexed: 12/13/2022]
Abstract
Gene regulatory networks account for the ability of the genome to program development in complex multi-cellular organisms. Such networks are based on principles of gene regulation by combinations of transcription factors that bind to specific cis-regulatory DNA sites to activate transcription. These cis-regulatory regions mediate logic processing at each network node, enabling progressive increases in organismal complexity with development. Gene regulatory network explanations of development have been shown to account for patterning and cell type diversification in fly and sea urchin embryonic systems, where networks are characterized by fast coupling between transcriptional inputs and changes in target gene transcription rates, and crucial cis-regulatory elements are concentrated relatively close to the protein coding sequences of the target genes, thus facilitating their identification. Stem cell-based development in post-embryonic mammalian systems also depends on gene networks, but differs from the fly and sea urchin systems. First, the number of regulatory elements per gene and the distances between regulatory elements and the genes they control are considerably larger, forcing searches via genome-wide transcription factor binding surveys rather than functional assays. Second, the intrinsic timing of network state transitions can be slowed considerably by the need to undo stem-cell chromatin configurations, which presumably add stability to stem-cell states but retard responses to transcription factor changes during differentiation. The dispersed, partially redundant cis-regulatory systems controlling gene expression and the slow state transition kinetics in these systems already reveal new insights and opportunities to extend understanding of the repertoire of gene networks and regulatory system logic.
Collapse
Affiliation(s)
- Ellen V Rothenberg
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
38
|
Zaidan N, Ottersbach K. The multi-faceted role of Gata3 in developmental haematopoiesis. Open Biol 2018; 8:rsob.180152. [PMID: 30463912 PMCID: PMC6282070 DOI: 10.1098/rsob.180152] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 10/29/2018] [Indexed: 12/22/2022] Open
Abstract
The transcription factor Gata3 is crucial for the development of several tissues and cell lineages both during development as well as postnatally. This importance is apparent from the early embryonic lethality following germline Gata3 deletion, with embryos displaying a number of phenotypes, and from the fact that Gata3 has been implicated in several cancer types. It often acts at the level of stem and progenitor cells in which it controls the expression of key lineage-determining factors as well as cell cycle genes, thus being one of the main drivers of cell fate choice and tissue morphogenesis. Gata3 is involved at various stages of haematopoiesis both in the adult as well as during development. This review summarizes the various contributions of Gata3 to haematopoiesis with a particular focus on the emergence of the first haematopoietic stem cells in the embryo—a process that appears to be influenced by Gata3 at various levels, thus highlighting the complex nature of Gata3 action.
Collapse
Affiliation(s)
- Nada Zaidan
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK.,King Abdullah International Medical Research Centre, Ministry of National Guard Health Affairs, Riyadh, Kingdom of Saudi Arabia
| | - Katrin Ottersbach
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| |
Collapse
|
39
|
Bcl11b and combinatorial resolution of cell fate in the T-cell gene regulatory network. Proc Natl Acad Sci U S A 2018; 114:5800-5807. [PMID: 28584128 DOI: 10.1073/pnas.1610617114] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
T-cell development from hematopoietic progenitors depends on multiple transcription factors, mobilized and modulated by intrathymic Notch signaling. Key aspects of T-cell specification network architecture have been illuminated through recent reports defining roles of transcription factors PU.1, GATA-3, and E2A, their interactions with Notch signaling, and roles of Runx1, TCF-1, and Hes1, providing bases for a comprehensively updated model of the T-cell specification gene regulatory network presented herein. However, the role of lineage commitment factor Bcl11b has been unclear. We use self-organizing maps on 63 RNA-seq datasets from normal and perturbed T-cell development to identify functional targets of Bcl11b during commitment and relate them to other regulomes. We show that both activation and repression target genes can be bound by Bcl11b in vivo, and that Bcl11b effects overlap with E2A-dependent effects. The newly clarified role of Bcl11b distinguishes discrete components of commitment, resolving how innate lymphoid, myeloid, and dendritic, and B-cell fate alternatives are excluded by different mechanisms.
Collapse
|
40
|
Hosokawa H, Rothenberg EV. Cytokines, Transcription Factors, and the Initiation of T-Cell Development. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a028621. [PMID: 28716889 DOI: 10.1101/cshperspect.a028621] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Multipotent blood progenitor cells migrate into the thymus and initiate the T-cell differentiation program. T-cell progenitor cells gradually acquire T-cell characteristics while shedding their multipotentiality for alternative fates. This process is supported by extracellular signaling molecules, including Notch ligands and cytokines, provided by the thymic microenvironment. T-cell development is associated with dynamic change of gene regulatory networks of transcription factors, which interact with these environmental signals. Together with Notch or pre-T-cell-receptor (TCR) signaling, cytokines always control proliferation, survival, and differentiation of early T cells, but little is known regarding their cross talk with transcription factors. However, recent results suggest ways that cytokines expressed in distinct intrathymic niches can specifically modulate key transcription factors. This review discusses how stage-specific roles of cytokines and transcription factors can jointly guide development of early T cells.
Collapse
Affiliation(s)
- Hiroyuki Hosokawa
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| | - Ellen V Rothenberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| |
Collapse
|
41
|
Transcription factor Hoxb5 reprograms B cells into functional T lymphocytes. Nat Immunol 2018; 19:279-290. [PMID: 29434353 DOI: 10.1038/s41590-018-0046-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 01/08/2018] [Indexed: 02/02/2023]
Abstract
Deletion of master regulators of the B cell lineage reprograms B cells into T cells. Here we found that the transcription factor Hoxb5, which is expressed in uncommitted hematopoietic progenitor cells but is not present in cells committed to the B cell or T cell lineage, was able to reprogram pro-pre-B cells into functional early T cell lineage progenitors. This reprogramming started in the bone marrow and was completed in the thymus and gave rise to T lymphocytes with transcriptomes, hierarchical differentiation, tissue distribution and immunological functions that closely resembled those of their natural counterparts. Hoxb5 repressed B cell 'master genes', activated regulators of T cells and regulated crucial chromatin modifiers in pro-pre-B cells and ultimately drove the B cell fate-to-T cell fate conversion. Our results provide a de novo paradigm for the generation of functional T cells through reprogramming in vivo.
Collapse
|
42
|
Rothenberg EV. Fitting structure to function in gene regulatory networks. HISTORY AND PHILOSOPHY OF THE LIFE SCIENCES 2017; 39:37. [PMID: 29038942 PMCID: PMC5660880 DOI: 10.1007/s40656-017-0164-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Cascades of transcriptional regulation are the common source of the forward drive in all developmental systems. Increases in complexity and specificity of gene expression at successive stages are based on the collaboration of varied combinations of transcription factors already expressed in the cells to turn on new genes, and the logical relationships between the transcription factors acting and becoming newly expressed from stage to stage are best visualized as gene regulatory networks. However, gene regulatory networks used in different developmental contexts underlie processes that actually operate through different sets of rules, which affect the kinetics, synchronicity, and logical properties of individual network nodes. Contrasting early embryonic development in flies and sea urchins with adult mammalian hematopoietic development from stem cells, major differences are seen in transcription factor dosage dependence, the silencing or damping impacts of repression, and the impact of cellular regulatory history on the parts of the genome that are accessible to transcription factor action in a given cell type. These different features not only affect the kinds of models that can illuminate developmental mechanisms in the respective biological systems, but also reflect the evolutionary needs of these biological systems to optimize different aspects of development.
Collapse
Affiliation(s)
- Ellen V Rothenberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA.
| |
Collapse
|
43
|
Garn H, Renz H. GATA-3-specific DNAzyme - A novel approach for stratified asthma therapy. Eur J Immunol 2017; 47:22-30. [PMID: 27910098 DOI: 10.1002/eji.201646450] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 11/25/2016] [Accepted: 11/29/2016] [Indexed: 12/17/2022]
Abstract
It is now well established that type-2 immune mechanisms drive the inflammation in about 50% of asthma patients. The major cellular and molecular players regulating this important network have been identified. In terms of therapeutic intervention, cytokine and cytokine-receptor pathways have been given major attention, since these molecules are relatively easily accessible for a blockade through monoclonal antibodies, and a number of positive clinical results support this concept. However, targeting events controlling the type-2 immunity network upstream of selective cytokine pathways would be equally attractive. Type-2 immunity is regulated through a delicate interplay of several transcription factors (including GATA-3, STAT-6, NFAT, IRF4, c-maf), with GATA-3 as master regulator in this regard. Since transcription factors are intracellularly located they cannot be directly targeted by monoclonal antibodies. For intracellular targets, antisense technologies such as antisense DNA and siRNA have been shown to be a promising approach, and have recently made major advances toward clinical application. Here, we summarize the development of a GATA-3-specific DNAzyme-a molecule class that combines the superior specificity of antisense molecules with an inherent RNA-cleaving enzymatic activity-for the treatment of type-2-driven asthma from preclinical development toward a proof-of-concept clinical study.
Collapse
Affiliation(s)
- Holger Garn
- Institute of Laboratory Medicine and Pathobiochemistry, Philipps University Marburg, Medical Faculty, Marburg, Germany
| | - Harald Renz
- Institute of Laboratory Medicine and Pathobiochemistry, Philipps University Marburg, Medical Faculty, Marburg, Germany
| |
Collapse
|
44
|
GATA3 Abundance Is a Critical Determinant of T Cell Receptor β Allelic Exclusion. Mol Cell Biol 2017; 37:MCB.00052-17. [PMID: 28320875 DOI: 10.1128/mcb.00052-17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 03/14/2017] [Indexed: 12/30/2022] Open
Abstract
Allelic exclusion describes the essential immunological process by which feedback repression of sequential DNA rearrangements ensures that only one autosome expresses a functional T or B cell receptor. In wild-type mammals, approximately 60% of cells have recombined the DNA of one T cell receptor β (TCRβ) V-to-DJ-joined allele in a functional configuration, while the second allele has recombined only the DJ sequences; the other 40% of cells have recombined the V to the DJ segments on both alleles, with only one of the two alleles predicting a functional TCRβ protein. Here we report that the transgenic overexpression of GATA3 leads predominantly to biallelic TCRβ gene (Tcrb) recombination. We also found that wild-type immature thymocytes can be separated into distinct populations based on intracellular GATA3 expression and that GATA3LO cells had almost exclusively recombined only one Tcrb locus (that predicted a functional receptor sequence), while GATA3HI cells had uniformly recombined both Tcrb alleles (one predicting a functional and the other predicting a nonfunctional rearrangement). These data show that GATA3 abundance regulates the recombination propensity at the Tcrb locus and provide new mechanistic insight into the historic immunological conundrum for how Tcrb allelic exclusion is mediated.
Collapse
|
45
|
Zhong C, Zhu J. Transcriptional regulators dictate innate lymphoid cell fates. Protein Cell 2017; 8:242-254. [PMID: 28108952 PMCID: PMC5359184 DOI: 10.1007/s13238-017-0369-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 12/20/2016] [Indexed: 12/15/2022] Open
Abstract
Research on innate lymphoid cells (ILC) has recently been a fast paced topic of immunological research. As ILCs are able to produce signature Th cytokine, ILCs have garnered considerable attention and have been described to represent the innate counterpart of the CD4+ T helper (Th) cells. The development and function of ILCs are precisely regulated by a network of crucial transcription factors, which are also involved in the development or differentiation of conventional natural killer (cNK) cells and T cells. In this review, we will summarize the key transcriptional regulators and their functions through each phases of ILC development. With the phase of ILC lineage commitment, we will focus in particular on the roles of the transcription regulators Id2 and GATA-3, which in collaboration with other transcriptional factors, are critically involved in the generation of ILC fate determined progenitors. Once an ILC lineage has been established, several other transcription factors are required for the specification and functional regulation of distinct mature ILC subsets. Thus, a comprehensive understanding of the interactions and regulatory mechanisms mediated by these transcription factors will help us to further understand how ILCs exert their helper-like functions and bridge the innate and adaptive immunity.
Collapse
Affiliation(s)
- Chao Zhong
- Molecular and Cellular Immunoregulation Unit, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 USA
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191 China
| | - Jinfang Zhu
- Molecular and Cellular Immunoregulation Unit, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| |
Collapse
|
46
|
The development of T cells from stem cells in mice and humans. Future Sci OA 2017; 3:FSO186. [PMID: 28883990 PMCID: PMC5583695 DOI: 10.4155/fsoa-2016-0095] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 02/20/2017] [Indexed: 12/19/2022] Open
Abstract
T cells develop from hematopoietic stem cells in the specialized microenvironment of the thymus. The main transcriptional players of T-cell differentiation such as Notch, Tcf-1, Gata3 and Bcl11b have been identified, but their role and regulation are not yet completely understood. In humans, functional experiments on T-cell development have traditionally been rather difficult to perform, but novel in vitro culture systems and in vivo xenograft models have allowed detailed studies on human T-cell development. Recent work has allowed the use of human severe combined immunodeficiency stem cells to unravel developmental checkpoints for human thymocyte development.
Collapse
|
47
|
Shen J, Wang ZY, Cheng T. [Generation of engraftable hematopoietic stem cells from human pluripotent stem cells]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2017; 38:257-260. [PMID: 28395456 PMCID: PMC7348385 DOI: 10.3760/cma.j.issn.0253-2727.2017.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
| | | | - T Cheng
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Disease Hospital, CAMS & PUMC, Tianjin 300020, China
| |
Collapse
|
48
|
Rothenberg EV, Kueh HY, Yui MA, Zhang JA. Hematopoiesis and T-cell specification as a model developmental system. Immunol Rev 2016; 271:72-97. [PMID: 27088908 DOI: 10.1111/imr.12417] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The pathway to generate T cells from hematopoietic stem cells guides progenitors through a succession of fate choices while balancing differentiation progression against proliferation, stage to stage. Many elements of the regulatory system that controls this process are known, but the requirement for multiple, functionally distinct transcription factors needs clarification in terms of gene network architecture. Here, we compare the features of the T-cell specification system with the rule sets underlying two other influential types of gene network models: first, the combinatorial, hierarchical regulatory systems that generate the orderly, synchronized increases in complexity in most invertebrate embryos; second, the dueling 'master regulator' systems that are commonly used to explain bistability in microbial systems and in many fate choices in terminal differentiation. The T-cell specification process shares certain features with each of these prevalent models but differs from both of them in central respects. The T-cell system is highly combinatorial but also highly dose-sensitive in its use of crucial regulatory factors. The roles of these factors are not always T-lineage-specific, but they balance and modulate each other's activities long before any mutually exclusive silencing occurs. T-cell specification may provide a new hybrid model for gene networks in vertebrate developmental systems.
Collapse
Affiliation(s)
- Ellen V Rothenberg
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Hao Yuan Kueh
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Mary A Yui
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Jingli A Zhang
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
49
|
Manesso E, Kueh HY, Freedman G, Rothenberg EV, Peterson C. Irreversibility of T-Cell Specification: Insights from Computational Modelling of a Minimal Network Architecture. PLoS One 2016; 11:e0161260. [PMID: 27551921 PMCID: PMC4995000 DOI: 10.1371/journal.pone.0161260] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 08/02/2016] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND/OBJECTIVES A cascade of gene activations under the control of Notch signalling is required during T-cell specification, when T-cell precursors gradually lose the potential to undertake other fates and become fully committed to the T-cell lineage. We elucidate how the gene/protein dynamics for a core transcriptional module governs this important process by computational means. METHODS We first assembled existing knowledge about transcription factors known to be important for T-cell specification to form a minimal core module consisting of TCF-1, GATA-3, BCL11B, and PU.1 aiming at dynamical modeling. Model architecture was based on published experimental measurements of the effects on each factor when each of the others is perturbed. While several studies provided gene expression measurements at different stages of T-cell development, pure time series are not available, thus precluding a straightforward study of the dynamical interactions among these genes. We therefore translate stage dependent data into time series. A feed-forward motif with multiple positive feed-backs can account for the observed delay between BCL11B versus TCF-1 and GATA-3 activation by Notch signalling. With a novel computational approach, all 32 possible interactions among Notch signalling, TCF-1, and GATA-3 are explored by translating combinatorial logic expressions into differential equations for BCL11B production rate. RESULTS Our analysis reveals that only 3 of 32 possible configurations, where GATA-3 works as a dimer, are able to explain not only the time delay, but very importantly, also give rise to irreversibility. The winning models explain the data within the 95% confidence region and are consistent with regard to decay rates. CONCLUSIONS This first generation model for early T-cell specification has relatively few players. Yet it explains the gradual transition into a committed state with no return. Encoding logics in a rate equation setting allows determination of binding properties beyond what is possible in a Boolean network.
Collapse
Affiliation(s)
- Erica Manesso
- Computational Biology and Biological Physics, Department of Astronomy and Theoretical Physics, Lund University, SE-223 62 Lund, Sweden
| | - Hao Yuan Kueh
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, United States of America
| | - George Freedman
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, United States of America
| | - Ellen V. Rothenberg
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, United States of America
- * E-mail: (EVR); (CP)
| | - Carsten Peterson
- Computational Biology and Biological Physics, Department of Astronomy and Theoretical Physics, Lund University, SE-223 62 Lund, Sweden
- * E-mail: (EVR); (CP)
| |
Collapse
|
50
|
GATA3 induces human T-cell commitment by restraining Notch activity and repressing NK-cell fate. Nat Commun 2016; 7:11171. [PMID: 27048872 PMCID: PMC4823830 DOI: 10.1038/ncomms11171] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 02/25/2016] [Indexed: 01/03/2023] Open
Abstract
The gradual reprogramming of haematopoietic precursors into the T-cell fate is characterized by at least two sequential developmental stages. Following Notch1-dependent T-cell lineage specification during which the first T-cell lineage genes are expressed and myeloid and dendritic cell potential is lost, T-cell specific transcription factors subsequently induce T-cell commitment by repressing residual natural killer (NK)-cell potential. How these processes are regulated in human is poorly understood, especially since efficient T-cell lineage commitment requires a reduction in Notch signalling activity following T-cell specification. Here, we show that GATA3, in contrast to TCF1, controls human T-cell lineage commitment through direct regulation of three distinct processes: repression of NK-cell fate, upregulation of T-cell lineage genes to promote further differentiation and restraint of Notch activity. Repression of the Notch1 target gene DTX1 hereby is essential to prevent NK-cell differentiation. Thus, GATA3-mediated positive and negative feedback mechanisms control human T-cell lineage commitment. Strong Notch signalling promotes initial T cell lineage specification of lymphoid progenitors but is also permissive for thymic natural killer (NK) cell development. Here the authors show that GATA3 directs human T-lineage commitment by modulating Notch activity and repressing the NK programme.
Collapse
|