1
|
Leck LYW, Abd El-Aziz YS, McKelvey KJ, Park KC, Sahni S, Lane DJR, Skoda J, Jansson PJ. Cancer stem cells: Masters of all traits. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167549. [PMID: 39454969 DOI: 10.1016/j.bbadis.2024.167549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 10/01/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024]
Abstract
Cancer is a heterogeneous disease, which contributes to its rapid progression and therapeutic failure. Besides interpatient tumor heterogeneity, tumors within a single patient can present with a heterogeneous mix of genetically and phenotypically distinct subclones. These unique subclones can significantly impact the traits of cancer. With the plasticity that intratumoral heterogeneity provides, cancers can easily adapt to changes in their microenvironment and therapeutic exposure. Indeed, tumor cells dynamically shift between a more differentiated, rapidly proliferating state with limited tumorigenic potential and a cancer stem cell (CSC)-like state that resembles undifferentiated cellular precursors and is associated with high tumorigenicity. In this context, CSCs are functionally located at the apex of the tumor hierarchy, contributing to the initiation, maintenance, and progression of tumors, as they also represent the subpopulation of tumor cells most resistant to conventional anti-cancer therapies. Although the CSC model is well established, it is constantly evolving and being reshaped by advancing knowledge on the roles of CSCs in different cancer types. Here, we review the current evidence of how CSCs play a pivotal role in providing the many traits of aggressive tumors while simultaneously evading immunosurveillance and anti-cancer therapy in several cancer types. We discuss the key traits and characteristics of CSCs to provide updated insights into CSC biology and highlight its implications for therapeutic development and improved treatment of aggressive cancers.
Collapse
Affiliation(s)
- Lionel Y W Leck
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia; Cancer Drug Resistance & Stem Cell Program, School of Medical Science, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Yomna S Abd El-Aziz
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia; Oral Pathology Department, Faculty of Dentistry, Tanta University, Tanta, Egypt
| | - Kelly J McKelvey
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia
| | - Kyung Chan Park
- Proteina Co., Ltd./Seoul National University, Seoul, South Korea
| | - Sumit Sahni
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia
| | - Darius J R Lane
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience & Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Jan Skoda
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic.
| | - Patric J Jansson
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia; Cancer Drug Resistance & Stem Cell Program, School of Medical Science, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia.
| |
Collapse
|
2
|
Chen L, Acharyya S, Luo C, Ni Y, Baladandayuthapani V. A probabilistic modeling framework for genomic networks incorporating sample heterogeneity. CELL REPORTS METHODS 2025:100984. [PMID: 39954675 DOI: 10.1016/j.crmeth.2025.100984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 10/28/2024] [Accepted: 01/24/2025] [Indexed: 02/17/2025]
Abstract
Probabilistic graphical models are powerful tools to quantify, visualize, and interpret network dependencies in complex biological systems such as high-throughput -omics. However, many graphical models assume sample homogeneity, limiting their effectiveness. We propose a flexible Bayesian approach called graphical regression (GraphR), which (1) incorporates sample heterogeneity at different scales through a regression-based formulation, (2) enables sparse sample-specific network estimation, (3) identifies and quantifies potential effects of heterogeneity on network structures, and (4) achieves computational efficiency via variational Bayes algorithms. We illustrate the comparative efficiency of GraphR against existing state-of-the-art methods in terms of network structure recovery and computational cost across multiple settings. We use GraphR to analyze three multi-omic and spatial transcriptomic datasets to investigate inter- and intra-sample molecular networks and delineate biological discoveries that otherwise cannot be revealed by existing approaches. We have developed a GraphR R package along with an accompanying Shiny App that provides comprehensive analysis and dynamic visualization functions.
Collapse
Affiliation(s)
- Liying Chen
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Satwik Acharyya
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Chunyu Luo
- Division of Biostatistics, University of Pennsylvania, Philadelphia, PA, USA
| | - Yang Ni
- Department of Statistics, Texas A&M University, College Station, TX, USA
| | | |
Collapse
|
3
|
Roshal M, Gao Q. Flow cytometry evaluation of acute myeloid leukemia minimal residual disease based on an understanding of the normal maturation patterns in the blast compartments. Am J Clin Pathol 2025:aqae187. [PMID: 39921543 DOI: 10.1093/ajcp/aqae187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 01/03/2025] [Indexed: 02/10/2025] Open
Abstract
OBJECTIVE Detection of minimal/measurable disease (MRD) in acute myeloid leukemia (AML) is critical for both clinical decision-making and prognostication, yet remains a challenge. Flow cytometry is a well-established method for MRD detection. Flow cytometric (FC) evaluation of MRD must consider a complex maturational pattern of normal hematopoietic development to separate normal from abnormal progenitors. Here, we offer an example of an interpretive approach based on a thorough understanding of stage- and lineage-specific hematopoietic maturation. METHODS We provide a comprehensive overview of blast maturation from early precursors (hematopoietic stem cells) to committed late-stage unilineage progenitors and commonly observed stage-specific abnormalities based on cases we have encountered in practice. We emphasize the importance of stage-specific comparisons for accurate MRD detection by flow cytometry. RESULTS The AML blasts almost invariably show abnormal phenotypes, and the phenotypes may evolve upon therapy. The detected phenotypes are necessarily confined to the target antigens included in the panel. It is therefore critical to evaluate a range of antigens to establish a specific stage/state of lineage commitment and detect potential common abnormalities. Moreover, enough cells must be acquired to allow for the detection of MRD at desired levels. Significant technical and analytical validation is critical. CONCLUSIONS Flow cytometry offers a powerful single-cell-based platform for MRD detection in AML, and the results have been proven critical for disease management. Leukemia-associated phenotype-informed difference from the normal approach presented in this review presents an analytical framework for sensitive and accurate MRD detection.
Collapse
Affiliation(s)
- Mikhail Roshal
- Division of Hematopathology, Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, US
| | - Qi Gao
- Division of Hematopathology, Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, US
| |
Collapse
|
4
|
Dai M, Lin B, Li H, Wang Y, Wu M, Wei Y, Zeng W, Qu L, Cang C, Wang X. Lysosomal cation channel TRPML1 suppression sensitizes acute myeloid leukemia cells to chemotherapeutics by inhibiting autophagy. Mol Cell Biochem 2025; 480:1209-1224. [PMID: 38951379 DOI: 10.1007/s11010-024-05054-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/12/2024] [Indexed: 07/03/2024]
Abstract
Despite the implementation of novel therapeutic regimens and extensive research efforts, chemoresistance remains a formidable challenge in the treatment of acute myeloid leukemia (AML). Notably, the involvement of lysosomes in chemoresistance has sparked interest in developing lysosome-targeted therapies to sensitize tumor cells to currently approved chemotherapy or as innovative pharmacological approaches. Moreover, as ion channels on the lysosomal membrane are critical regulators of lysosomal function, they present potential as novel targets for enhancing chemosensitivity. Here, we discovered that the expression of a lysosomal cation channel, namely transient receptor potential mucolipin 1 (TRPML1), was elevated in AML cells. Inhibiting TRPML1 individually does not impact the proliferation and apoptosis of AML cells. Importantly, inhibition of TRPML1 demonstrated the potential to modulate the sensitivity of AML cells to chemotherapeutic agents. Exploration of the underlying mechanisms revealed that suppression of TRPML1 impaired autophagy while concurrently increasing the production of reactive oxygen species (ROS) and ROS-mediated lipid peroxidation (Lipid-ROS) in AML cells. Finally, the knockdown of TRPML1 significantly reduced OCI-AML3 tumor growth following chemotherapy in a mouse model of human leukemia. In summary, targeting TRPML1 represents a promising approach for combination therapy aimed at enhancing chemosensitivity in treating AML.
Collapse
Affiliation(s)
- Meifang Dai
- Department of Hematology, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui, China
| | - Bingqian Lin
- CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Hao Li
- CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Youming Wang
- Department of Hematology, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Miaomiao Wu
- Department of Hematology, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Yanan Wei
- CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Wenping Zeng
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui, China
| | - Lili Qu
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui, China.
| | - Chunlei Cang
- CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, China.
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China.
| | - Xingbing Wang
- Department of Hematology, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
5
|
Barton BM, Son F, Verma A, Bal SK, Tang Q, Wang R, Umphred-Wilson K, Khan R, Trichka J, Dong H, Lentucci C, Chen X, Chen Y, Hong Y, Duy C, Elemento O, Melnick AM, Cao J, Chen X, Glimcher LH, Adoro S. IRE1α-XBP1 safeguards hematopoietic stem and progenitor cells by restricting pro-leukemogenic gene programs. Nat Immunol 2025; 26:200-214. [PMID: 39789376 DOI: 10.1038/s41590-024-02063-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 12/10/2024] [Indexed: 01/12/2025]
Abstract
Hematopoietic stem cells must mitigate myriad stressors throughout their lifetime to ensure normal blood cell generation. Here, we uncover unfolded protein response stress sensor inositol-requiring enzyme-1α (IRE1α) signaling in hematopoietic stem and progenitor cells (HSPCs) as a safeguard against myeloid leukemogenesis. Activated in part by an NADPH oxidase-2 mechanism, IRE1α-induced X-box binding protein-1 (XBP1) mediated repression of pro-leukemogenic programs exemplified by the Wnt-β-catenin pathway. Transcriptome analysis and genome-wide mapping of XBP1 targets in HSPCs identified an '18-gene signature' of XBP1-repressed β-catenin targets that were highly expressed in acute myeloid leukemia (AML) cases with worse prognosis. Accordingly, IRE1α deficiency cooperated with a myeloproliferative oncogene in HSPCs to cause a lethal AML in mice, while genetic induction of XBP1 suppressed the leukemia stem cell program and activity of patient-derived AML cells. Thus, IRE1α-XBP1 signaling safeguards the integrity of the blood system by restricting pro-leukemogenic programs in HSPCs.
Collapse
Affiliation(s)
- Brendan M Barton
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Francheska Son
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Akanksha Verma
- Institute of Computational Biomedicine, Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Saswat Kumar Bal
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Qianzi Tang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Rui Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Katharine Umphred-Wilson
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Rehan Khan
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Josephine Trichka
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Han Dong
- Department of Cancer Immunology and Virology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Claudia Lentucci
- Department of Cancer Immunology and Virology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Xi Chen
- Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Yinghua Chen
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Yuning Hong
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Cihangir Duy
- Cancer Signaling and Epigenetics Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Olivier Elemento
- Institute of Computational Biomedicine, Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Ari M Melnick
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Jin Cao
- Department of Experimental Therapeutics, James P. Allison Institute, MD Anderson Cancer Center, Houston, TX, USA
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Key Laboratory of Molecular Cancer Biology, Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Xi Chen
- Department of Experimental Therapeutics, James P. Allison Institute, MD Anderson Cancer Center, Houston, TX, USA
| | - Laurie H Glimcher
- Department of Cancer Immunology and Virology, Dana Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Stanley Adoro
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
6
|
Larrue C, Mouche S, Tamburini J. The E3 ubiquitin ligase MARCH5 promotes mitochondrial fusion and cell-cycle progression in acute myeloid leukemia. Blood Adv 2025; 9:337-342. [PMID: 39471482 PMCID: PMC11787479 DOI: 10.1182/bloodadvances.2024013890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/19/2024] [Accepted: 10/20/2024] [Indexed: 11/01/2024] Open
Affiliation(s)
- Clément Larrue
- Translational Research Centre in Onco-Hematology, Faculty of Medicine, University of Geneva, Swiss Cancer Center Leman, Geneva, Switzerland
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, INSERM U1037, Centre National de la Recherche Scientifique U5077, Toulouse, France
- Équipe labellisée Ligue Nationale Contre le Cancer 2023, Toulouse, France
| | - Sarah Mouche
- Translational Research Centre in Onco-Hematology, Faculty of Medicine, University of Geneva, Swiss Cancer Center Leman, Geneva, Switzerland
| | - Jerome Tamburini
- Translational Research Centre in Onco-Hematology, Faculty of Medicine, University of Geneva, Swiss Cancer Center Leman, Geneva, Switzerland
- Oncology Department, Geneva University Hospitals, Geneva, Switzerland
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique U8104, INSERM U1016, Paris, France
| |
Collapse
|
7
|
Able M, Kasper MA, Vick B, Schwach J, Gao X, Schmitt S, Tizazu B, Fischer A, Künzl S, Leilich M, Mai I, Ochtrop P, Stengl A, de Geus MAR, von Bergwelt-Baildon M, Schumacher D, Helma J, Hackenberger CPR, Götze KS, Jeremias I, Leonhardt H, Feuring M, Spiekermann K. Effective eradication of acute myeloid leukemia stem cells with FLT3-directed antibody-drug conjugates. Leukemia 2025:10.1038/s41375-024-02510-5. [PMID: 39870768 DOI: 10.1038/s41375-024-02510-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 12/09/2024] [Accepted: 12/23/2024] [Indexed: 01/29/2025]
Abstract
Refractory disease and relapse are major challenges in acute myeloid leukemia (AML) therapy attributed to survival of leukemic stem cells (LSC). To target LSCs, antibody-drug conjugates (ADCs) provide an elegant solution, combining the specificity of antibodies with highly potent payloads. We aimed to investigate if FLT3-20D9h3-ADCs delivering either the DNA-alkylator duocarmycin (DUBA) or the microtubule-toxin monomethyl auristatin F (MMAF) can eradicate quiescent LSCs. We show here that DUBA more potently kills cell-cycle arrested AML cells compared to microtubule-targeting auristatins. Due to limited stability of 20D9h3-DUBA ADC in vivo, we analyzed both ADCs in advanced in vitro stem cell assays. 20D9h3-DUBA successfully eliminated leukemic progenitors in vitro in colony-forming unit and long-term culture initiating cell assays, both in patient cells and in patient-derived xenograft (PDX) cells. Further, it completely prevented engraftment of AML PDX leukemia-initiating cells in NSG mice. 20D9h3-MMAF had a similar effect in engraftment assays, but a less prominent effect in colony assays. Both ADCs did not affect healthy stem and progenitor cells at comparable doses providing the rationale for FLT3 as therapeutic LSC target. Collectively, we show that FLT3-directed ADCs with DUBA or MMAF have potent activity against AML LSCs and represent promising candidates for further clinical development.
Collapse
Affiliation(s)
- Marina Able
- Department of Medicine III, LMU University Hospital, LMU Munich, Munich, Germany
| | - Marc-André Kasper
- Chemical Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Campus Berlin, Berlin, Germany
- Department of Chemistry, Humboldt Universität zu Berlin, Berlin, Germany
- Tubulis GmbH, Munich, Germany
| | - Binje Vick
- German Cancer Consortium (DKTK), partner site Munich, a partnership between DKFZ and LMU University Hospital, Munich, Germany
- Research Unit Apoptosis in Hematopoietic Stem Cells (AHS), Helmholtz Munich, German Research Center for Environmental Health (HMGU), Munich, Germany
| | - Jonathan Schwach
- Faculty of Biology, Human Biology and BioImaging, LMU Munich, Planegg-Martinsried, Germany
| | - Xiang Gao
- Department of Internal Medicine III, University Hospital Ulm, Ulm, Germany
| | | | - Belay Tizazu
- Department of Medicine III, LMU University Hospital, LMU Munich, Munich, Germany
| | - Amrei Fischer
- Department of Medicine III, LMU University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), partner site Munich, a partnership between DKFZ and LMU University Hospital, Munich, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sarah Künzl
- Department of Medicine III, LMU University Hospital, LMU Munich, Munich, Germany
| | - Marit Leilich
- Technical University of Munich School of Medicine and Health, Department of Medicine III, Technical University of Munich (TUM), Munich, Germany
| | | | - Philipp Ochtrop
- Chemical Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Campus Berlin, Berlin, Germany
- Tubulis GmbH, Munich, Germany
| | - Andreas Stengl
- Faculty of Biology, Human Biology and BioImaging, LMU Munich, Planegg-Martinsried, Germany
| | - Mark A R de Geus
- Chemical Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Campus Berlin, Berlin, Germany
| | - Michael von Bergwelt-Baildon
- Department of Medicine III, LMU University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), partner site Munich, a partnership between DKFZ and LMU University Hospital, Munich, Germany
- Bavarian Cancer Research Center (BZKF), Munich, Germany
| | - Dominik Schumacher
- Chemical Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Campus Berlin, Berlin, Germany
- Department of Chemistry, Humboldt Universität zu Berlin, Berlin, Germany
- Tubulis GmbH, Munich, Germany
| | - Jonas Helma
- Tubulis GmbH, Munich, Germany
- Faculty of Biology, Human Biology and BioImaging, LMU Munich, Planegg-Martinsried, Germany
| | - Christian P R Hackenberger
- Chemical Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Campus Berlin, Berlin, Germany
- Department of Chemistry, Humboldt Universität zu Berlin, Berlin, Germany
| | - Katharina S Götze
- German Cancer Consortium (DKTK), partner site Munich, a partnership between DKFZ and LMU University Hospital, Munich, Germany
- Technical University of Munich School of Medicine and Health, Department of Medicine III, Technical University of Munich (TUM), Munich, Germany
- Bavarian Cancer Research Center (BZKF), Munich, Germany
| | - Irmela Jeremias
- German Cancer Consortium (DKTK), partner site Munich, a partnership between DKFZ and LMU University Hospital, Munich, Germany
- Research Unit Apoptosis in Hematopoietic Stem Cells (AHS), Helmholtz Munich, German Research Center for Environmental Health (HMGU), Munich, Germany
- Department of Pediatrics, Dr. von Hauner Children's Hospital, LMU University Hospital, LMU, Munich, Germany
| | - Heinrich Leonhardt
- Faculty of Biology, Human Biology and BioImaging, LMU Munich, Planegg-Martinsried, Germany
| | - Michaela Feuring
- Department of Internal Medicine III, University Hospital Ulm, Ulm, Germany
| | - Karsten Spiekermann
- Department of Medicine III, LMU University Hospital, LMU Munich, Munich, Germany.
- German Cancer Consortium (DKTK), partner site Munich, a partnership between DKFZ and LMU University Hospital, Munich, Germany.
- Bavarian Cancer Research Center (BZKF), Munich, Germany.
| |
Collapse
|
8
|
Araki D, Chen V, Redekar N, Salisbury-Ruf C, Luo Y, Liu P, Li Y, Smith RH, Dagur P, Combs C, Larochelle A. Post-transplant G-CSF impedes engraftment of gene-edited human hematopoietic stem cells by exacerbating p53-mediated DNA damage response. Cell Stem Cell 2025; 32:53-70.e8. [PMID: 39536761 PMCID: PMC11698648 DOI: 10.1016/j.stem.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 05/06/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024]
Abstract
Granulocyte-colony-stimulating factor (G-CSF) is commonly used to accelerate recovery from neutropenia following chemotherapy and autologous transplantation of hematopoietic stem and progenitor cells (HSPCs) for malignant disorders. However, its utility after ex vivo gene therapy in human HSPCs remains unexplored. We show that administering G-CSF from day 1 to 14 post-transplant impedes engraftment of CRISPR-Cas9 gene-edited human HSPCs in murine xenograft models. G-CSF affects gene-edited HSPCs through a cell-intrinsic mechanism, causing proliferative stress and amplifying the early p53-mediated DNA damage response triggered by Cas9-mediated DNA double-strand breaks. This underscores a threshold mechanism where p53 activation must reach a critical level to impair cellular function. Transiently inhibiting p53 or delaying the initiation of G-CSF treatment to day 5 post-transplant attenuates its negative impact on gene-edited HSPCs. The potential for increased HSPC toxicity associated with post-transplant G-CSF administration in CRISPR-Cas9 autologous HSPC gene therapy warrants consideration in clinical trials.
Collapse
Affiliation(s)
- Daisuke Araki
- Cellular and Molecular Therapeutics Branch, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Vicky Chen
- Integrated Data Science Services (IDSS), National Institutes of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892, USA
| | - Neelam Redekar
- Integrated Data Science Services (IDSS), National Institutes of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892, USA
| | - Christi Salisbury-Ruf
- Cellular and Molecular Therapeutics Branch, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Yan Luo
- DNA Sequencing and Genomics Core Facility, NHLBI, NIH, Bethesda, MD 20892, USA
| | - Poching Liu
- DNA Sequencing and Genomics Core Facility, NHLBI, NIH, Bethesda, MD 20892, USA
| | - Yuesheng Li
- DNA Sequencing and Genomics Core Facility, NHLBI, NIH, Bethesda, MD 20892, USA
| | - Richard H Smith
- Cellular and Molecular Therapeutics Branch, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Pradeep Dagur
- Flow Cytometry Core Facility, NHLBI, NIH, Bethesda, MD 20892, USA
| | - Christian Combs
- Light Microscopy Core Facility, NHLBI, NIH, Bethesda, MD 20892, USA
| | - Andre Larochelle
- Cellular and Molecular Therapeutics Branch, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA.
| |
Collapse
|
9
|
Kent A, Yee Mon KJ, Hutchins Z, Putzel G, Zhigarev D, Grier A, Jia B, Kortlever RM, Barbet G, Evan GI, Blander JM. A stromal inflammasome Ras safeguard against Myc-driven lymphomagenesis. Nat Immunol 2025; 26:53-67. [PMID: 39747433 DOI: 10.1038/s41590-024-02028-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 10/29/2024] [Indexed: 01/04/2025]
Abstract
The inflammasome plays multifaceted roles in cancer, but less is known about its function during premalignancy upon initial cell transformation. We report a homeostatic function of the inflammasome in suppressing malignant transformation through Ras inhibition. We identified increased hematopoietic stem cell (HSC) proliferation within the bone marrow of inflammasome-deficient mice. HSCs within an inflammasome-deficient stroma expressed a Ras signature associated with increased Ras pathway- and cancer-related transcripts and heightened levels of cytokine, chemokine and growth factor receptors. Stromal inflammasome deficiency established a poised Ras-dependent mitogenic state within HSCs, which fueled progeny B cell lymphomagenesis upon Myc deregulation in a spontaneous model of B cell lymphoma, and shortened its premalignant stage leading to faster onset of malignancy. Thus, the stromal inflammasome preserves tissue balance by restraining Ras to disrupt the most common oncogenic Myc-Ras cooperation and establish a natural defense against transition to malignancy. These findings should inform preventative therapies against hematological malignancies.
Collapse
Affiliation(s)
- Andrew Kent
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Kristel Joy Yee Mon
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Zachary Hutchins
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Immunology and Microbial Pathogenesis, College of Life Sciences, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Gregory Putzel
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Microbial Computational Genomic Core Lab, Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Dmitry Zhigarev
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
- The Wistar Institute, Philadelphia, PA, USA
| | - Alexander Grier
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Baosen Jia
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Gaetan Barbet
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Pediatrics, The Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Gerard I Evan
- The Francis Crick Institute, London, UK
- Kings College London, London, UK
| | - J Magarian Blander
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA.
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA.
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Cornell University, New York, NY, USA.
- Immunology and Microbial Pathogenesis Program, Weill Cornell and Sloan Kettering Institute Graduate School of Medical Sciences, New York, NY, USA.
| |
Collapse
|
10
|
Li Z, Fierstein S, Tanaka-Yano M, Frenis K, Chen CC, Wang D, Falchetti M, Côté P, Curran C, Lu K, Liu T, Orkin S, Li H, Lummertz da Rocha E, Hu S, Zhu Q, Rowe RG. The epigenetic state of the cell of origin defines mechanisms of leukemogenesis. Leukemia 2025; 39:87-97. [PMID: 39354203 DOI: 10.1038/s41375-024-02428-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/18/2024] [Accepted: 09/24/2024] [Indexed: 10/03/2024]
Abstract
Acute myeloid leukemia (AML) shows variable clinical outcome. The normal hematopoietic cell of origin impacts the clinical behavior of AML, with AML from hematopoietic stem cells (HSCs) prone to chemotherapy resistance in model systems. However, the mechanisms by which HSC programs are transmitted to AML are not known. Here, we introduce the leukemogenic MLL-AF9 translocation into defined human hematopoietic populations, finding that AML from HSCs is enriched for leukemic stem cells (LSCs) compared to AML from progenitors. By epigenetic profiling, we identify a putative inherited program from the normal HSC that collaborates with oncogene-driven programs to confer aggressive behavior in HSC-AML. We find that components of this program are required for HSC-AML growth and survival and identify RNA polymerase (RNAP) II-mediated transcription as a therapeutic vulnerability. Overall, we propose a mechanism as to how epigenetic programs from the leukemic cell of origin are inherited through transformation to impart the clinical heterogeneity of AML.
Collapse
Affiliation(s)
- Zhiheng Li
- Stem Cell Program and Stem Cell Transplantation Programs, Boston Children's Hospital, Boston, MA, USA
- Department of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
- Department of Hematology/Oncology, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Sara Fierstein
- Stem Cell Program and Stem Cell Transplantation Programs, Boston Children's Hospital, Boston, MA, USA
- Department of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Mayuri Tanaka-Yano
- Stem Cell Program and Stem Cell Transplantation Programs, Boston Children's Hospital, Boston, MA, USA
- Department of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Katie Frenis
- Stem Cell Program and Stem Cell Transplantation Programs, Boston Children's Hospital, Boston, MA, USA
- Department of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Chun-Chin Chen
- Stem Cell Program and Stem Cell Transplantation Programs, Boston Children's Hospital, Boston, MA, USA
- Department of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Dahai Wang
- Stem Cell Program and Stem Cell Transplantation Programs, Boston Children's Hospital, Boston, MA, USA
- Department of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | | | - Parker Côté
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Christina Curran
- Stem Cell Program and Stem Cell Transplantation Programs, Boston Children's Hospital, Boston, MA, USA
- Department of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Kate Lu
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tianxin Liu
- Department of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Stuart Orkin
- Department of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Hojun Li
- Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Pediatrics, University of California, San Diego, CA, USA
| | | | - Shaoyan Hu
- Department of Hematology/Oncology, Children's Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Qian Zhu
- Baylor College of Medicine, Department of Molecular and Human Genetics, Houston, TX, USA.
| | - R Grant Rowe
- Stem Cell Program and Stem Cell Transplantation Programs, Boston Children's Hospital, Boston, MA, USA.
- Department of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
11
|
Ghosh G, Shannon AE, Searle BC. Data acquisition approaches for single cell proteomics. Proteomics 2025; 25:e2400022. [PMID: 39088833 PMCID: PMC11735665 DOI: 10.1002/pmic.202400022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 08/03/2024]
Abstract
Single-cell proteomics (SCP) aims to characterize the proteome of individual cells, providing insights into complex biological systems. It reveals subtle differences in distinct cellular populations that bulk proteome analysis may overlook, which is essential for understanding disease mechanisms and developing targeted therapies. Mass spectrometry (MS) methods in SCP allow the identification and quantification of thousands of proteins from individual cells. Two major challenges in SCP are the limited material in single-cell samples necessitating highly sensitive analytical techniques and the efficient processing of samples, as each biological sample requires thousands of single cell measurements. This review discusses MS advancements to mitigate these challenges using data-dependent acquisition (DDA) and data-independent acquisition (DIA). Additionally, we examine the use of short liquid chromatography gradients and sample multiplexing methods that increase the sample throughput and scalability of SCP experiments. We believe these methods will pave the way for improving our understanding of cellular heterogeneity and its implications for systems biology.
Collapse
Affiliation(s)
- Gautam Ghosh
- Ohio State Biochemistry ProgramThe Ohio State UniversityColumbusOhioUSA
- Pelotonia Institute for Immuno‐OncologyThe Ohio State University Comprehensive Cancer CenterColumbusOhioUSA
| | - Ariana E. Shannon
- Pelotonia Institute for Immuno‐OncologyThe Ohio State University Comprehensive Cancer CenterColumbusOhioUSA
- Department of Biomedical InformaticsThe Ohio State University Medical CenterColumbusOhioUSA
| | - Brian C. Searle
- Ohio State Biochemistry ProgramThe Ohio State UniversityColumbusOhioUSA
- Pelotonia Institute for Immuno‐OncologyThe Ohio State University Comprehensive Cancer CenterColumbusOhioUSA
- Department of Biomedical InformaticsThe Ohio State University Medical CenterColumbusOhioUSA
| |
Collapse
|
12
|
Pellagatti A, Boultwood J. Hyperactivation of NF-κB signaling in splicing factor mutant myelodysplastic syndromes and therapeutic approaches. Adv Biol Regul 2025; 95:101055. [PMID: 39406588 DOI: 10.1016/j.jbior.2024.101055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/01/2024] [Accepted: 10/08/2024] [Indexed: 02/19/2025]
Abstract
The transcription factor NF-κB plays a critical role in the control of innate and adaptive immunity and inflammation. Several recent studies have demonstrated that the mutation of different splicing factor genes, including SF3B1, SRSF2 and U2AF1, in myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) result in hyperactive NF-κB signaling through the aberrant splicing of different target genes. The presence of U2AF1 and SF3B1 mutations in the bone marrow cells of MDS and AML patients induces oncogenic isoforms of the target gene IRAK4, leading to hyperactivation of NF-κB signaling and an increase in the fitness of leukemic stem and progenitor cells (LSPCs). The potent IRAK4 inhibitor CA-4948 has shown efficacy in both pre-clinical studies and MDS clinical trials, with splicing factor mutant patients showing the higher response rates. Emerging data has, however, revealed that co-targeting of IRAK4 and its paralog IRAK1 is required to maximally suppress LSPC function in vitro and in vivo by inducing cellular differentiation. These findings provide a link between the presence of the commonly mutated splicing factor genes and activation of innate immune signaling pathways in myeloid malignancies and have important implications for targeted therapy in these disorders.
Collapse
Affiliation(s)
- Andrea Pellagatti
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| | - Jacqueline Boultwood
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
13
|
Sakoda T, Kikushige Y, Irifune H, Kawano G, Harada T, Semba Y, Hayashi M, Shima T, Mori Y, Eto T, Kamimura T, Iwasaki H, Ogawa R, Yoshimoto G, Kato K, Maeda T, Miyamoto T, Akashi K. TIM-3 marks measurable residual leukemic stem cells responsible for relapse after allogeneic stem cell transplantation. Cancer Sci 2024. [PMID: 39726280 DOI: 10.1111/cas.16431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024] Open
Abstract
In this study, we investigated the measurable residual leukemic stem cell (MR-LSC) population after allogeneic stem cell transplantation (allo-SCT) for high-risk acute myeloid leukemia (AML), utilizing T-cell immunoglobulin mucin-3 (TIM-3) expression as a functional marker of AML leukemic stem cells (LSCs). Analysis of the CD34+CD38- fraction of bone marrow cells immediately after achievement of engraftment revealed the presence of both TIM-3+LSCs and TIM-3- donor hematopoietic stem cells (HSCs) at varying ratios. Genetic analysis confirmed that TIM-3+ cells harbored patient-specific mutations identical to those found in AML clones, whereas TIM-3- cells did not, indicating that TIM-3+CD34+CD38- cells represent residual AML LSCs. In 92 allo-SCT occasions involving 83 AML patients, we enumerated the frequencies of TIM-3+LSCs immediately after achieving hematologic complete remission with complete donor cell chimerism. Notably, only 22.2% of patients who achieved a TIM-3+MR-LSClow status (<60%) experienced relapse, with a median event-free survival (EFS) of 1581 days (median follow-up duration was 2177 days among event-free survivors). Conversely, 87.5% of patients with TIM-3+MR-LSCint/high (≥60%) relapsed, with a median EFS of 140.5 days. Furthermore, MR-LSC status emerged as a significant independent risk factor for relapse (hazard ratio, 8.56; p < 0.0001), surpassing the impact of patient disease status prior to allo-SCT, including failure to achieve complete remission (hazard ratio, 1.98; p = 0.048). These findings suggest that evaluating TIM-3+ MR-LSCs immediately after engraftment, which reflects the competitive reconstitution of residual TIM-3+ LSCs and donor HSCs, may be valuable for predicting outcomes in AML patients undergoing allo-SCT.
Collapse
Affiliation(s)
- Teppei Sakoda
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medicine, Fukuoka, Japan
- Center for Cellular and Molecular Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Yoshikane Kikushige
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medicine, Fukuoka, Japan
- Center for Cellular and Molecular Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Hidetoshi Irifune
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medicine, Fukuoka, Japan
| | - Gentaro Kawano
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medicine, Fukuoka, Japan
| | - Takuya Harada
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medicine, Fukuoka, Japan
| | - Yuichiro Semba
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medicine, Fukuoka, Japan
| | | | - Takahiro Shima
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medicine, Fukuoka, Japan
| | - Yasuo Mori
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medicine, Fukuoka, Japan
| | - Tetsuya Eto
- Department of Hematology, Hamanomachi Hospital, Fukuoka, Japan
| | | | - Hiromi Iwasaki
- Department of Hematology, National Hospital Organisation Kyushu Medical Center, Fukuoka, Japan
| | - Ryosuke Ogawa
- Department of Hematology/Oncology, Japan Community Health Care Organisation Kyushu Hospital, Kitakyushu, Japan
| | - Goichi Yoshimoto
- Department of Hematology, Saga Prefecture Medical Center Koseikan, Saga, Japan
| | - Koji Kato
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medicine, Fukuoka, Japan
| | - Takahiro Maeda
- Division of Precision Medicine, Kyushu University Faculty of Medicine Graduate School of Medical Science, Fukuoka, Japan
| | - Toshihiro Miyamoto
- Department of Hematology, Faculty of Medicine, Institute of Medical Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Koichi Akashi
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medicine, Fukuoka, Japan
- Center for Cellular and Molecular Medicine, Kyushu University Hospital, Fukuoka, Japan
| |
Collapse
|
14
|
Sango J, Carcamo S, Sirenko M, Maiti A, Mansour H, Ulukaya G, Tomalin LE, Cruz-Rodriguez N, Wang T, Olszewska M, Olivier E, Jaud M, Nadorp B, Kroger B, Hu F, Silverman L, Chung SS, Wagenblast E, Chaligne R, Eisfeld AK, Demircioglu D, Landau DA, Lito P, Papaemmanuil E, DiNardo CD, Hasson D, Konopleva M, Papapetrou EP. RAS-mutant leukaemia stem cells drive clinical resistance to venetoclax. Nature 2024; 636:241-250. [PMID: 39478230 PMCID: PMC11618090 DOI: 10.1038/s41586-024-08137-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/30/2024] [Indexed: 12/06/2024]
Abstract
Cancer driver mutations often show distinct temporal acquisition patterns, but the biological basis for this, if any, remains unknown. RAS mutations occur invariably late in the course of acute myeloid leukaemia, upon progression or relapsed/refractory disease1-6. Here, by using human leukaemogenesis models, we first show that RAS mutations are obligatory late events that need to succeed earlier cooperating mutations. We provide the mechanistic explanation for this in a requirement for mutant RAS to specifically transform committed progenitors of the myelomonocytic lineage (granulocyte-monocyte progenitors) harbouring previously acquired driver mutations, showing that advanced leukaemic clones can originate from a different cell type in the haematopoietic hierarchy than ancestral clones. Furthermore, we demonstrate that RAS-mutant leukaemia stem cells (LSCs) give rise to monocytic disease, as observed frequently in patients with poor responses to treatment with the BCL2 inhibitor venetoclax. We show that this is because RAS-mutant LSCs, in contrast to RAS-wild-type LSCs, have altered BCL2 family gene expression and are resistant to venetoclax, driving clinical resistance and relapse with monocytic features. Our findings demonstrate that a specific genetic driver shapes the non-genetic cellular hierarchy of acute myeloid leukaemia by imposing a specific LSC target cell restriction and critically affects therapeutic outcomes in patients.
Collapse
MESH Headings
- Animals
- Female
- Humans
- Mice
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Bridged Bicyclo Compounds, Heterocyclic/therapeutic use
- Cell Lineage/genetics
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/pathology
- Monocytes/metabolism
- Monocytes/drug effects
- Mutation
- Neoplastic Stem Cells/pathology
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/metabolism
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Proto-Oncogene Proteins c-bcl-2/genetics
- Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors
- ras Proteins/metabolism
- ras Proteins/genetics
- Sulfonamides/pharmacology
- Sulfonamides/therapeutic use
- Granulocytes
- Clone Cells/metabolism
- Clone Cells/pathology
- Stem Cells/metabolism
- Stem Cells/pathology
- Recurrence
Collapse
Affiliation(s)
- Junya Sango
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Saul Carcamo
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Bioinformatics for Next Generation Sequencing Shared Resource Facility, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Maria Sirenko
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Louis V. Gerstner Jr Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Abhishek Maiti
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hager Mansour
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gulay Ulukaya
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Bioinformatics for Next Generation Sequencing Shared Resource Facility, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lewis E Tomalin
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Bioinformatics for Next Generation Sequencing Shared Resource Facility, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nataly Cruz-Rodriguez
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tiansu Wang
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Malgorzata Olszewska
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Emmanuel Olivier
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Manon Jaud
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bettina Nadorp
- Department of Medicine, Division of Precision Medicine, NYU Grossman School of Medicine, New York, NY, USA
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
| | - Benjamin Kroger
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Medical Scientist Training Program, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Feng Hu
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lewis Silverman
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Stephen S Chung
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Elvin Wagenblast
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ronan Chaligne
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- New York Genome Center, New York, NY, USA
| | - Ann-Kathrin Eisfeld
- Clara D. Bloomfield Center for Leukemia Outcomes Research, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Deniz Demircioglu
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Bioinformatics for Next Generation Sequencing Shared Resource Facility, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dan A Landau
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- New York Genome Center, New York, NY, USA
| | - Piro Lito
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elli Papaemmanuil
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Courtney D DiNardo
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dan Hasson
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Bioinformatics for Next Generation Sequencing Shared Resource Facility, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marina Konopleva
- Department of Medicine (Oncology), Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
- Montefiore Einstein Comprehensive Cancer Center, Bronx, NY, USA
| | - Eirini P Papapetrou
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
15
|
Chen CH, Chen TC, Wu TS, Hsiao TH, Chen JMM, Huang CYF, Cheng PL, Tsai JR, Teng CLJ. Myeloperoxidase and Thyrotropin-Releasing Hormone Within Leukaemia Stem Cells Increased Chemosensitivity in Acute Myeloid Leukaemia. J Cell Mol Med 2024; 28:e70306. [PMID: 39720891 DOI: 10.1111/jcmm.70306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/06/2024] [Accepted: 12/10/2024] [Indexed: 12/26/2024] Open
Abstract
Leukaemia stem cells (LSCs) are major contributors to chemoresistance in acute myeloid leukaemia (AML). Identifying potential biomarkers within LSCs that can predict chemosensitivity in AML is key. This prospective study involved 20 consecutive de novo AML patients who underwent '7 + 3' induction therapy. The patients were divided into CR (n = 15) and non-CR (n = 5) groups. Using single-cell RNA sequencing, we examined the cellular states of bone marrow mononuclear cells from AML patients at diagnosis and identified LSC among these cells. Our results showed that in non-CR AML patients, a significant increase in the proportion of immature cells during haematopoiesis within the AML cell populations was observed. Moreover, the expression of myeloperoxidase (MPO) (log2 fold-change = 0.89; adjusted p < 0.0001) and thyrotropin-releasing hormone (TRH) (log2 fold-change = 0.65; adjusted p < 0.0001) was higher within LSCs in the CR group than in the non-CR group. Furthermore, patients with higher expression of MPO and TRH demonstrated improved relapse-free survival (p = 0.002 for MPO; p = 0.009 for TRH) and overall survival (p = 0.002 for MPO; p < 0.001 for TRH). The connection between MPO or TRH and chemosensitivity could be linked with the downregulation of transforming growth factor and the upregulation of interferon-α. In conclusion, MPO and TRH in LSCs could serve as chemosensitivity biomarkers in AML.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Peroxidase/metabolism
- Male
- Female
- Middle Aged
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Neoplastic Stem Cells/drug effects
- Adult
- Aged
- Drug Resistance, Neoplasm
- Biomarkers, Tumor/metabolism
- Prospective Studies
- Prognosis
Collapse
Affiliation(s)
- Chung-Hsing Chen
- Department of Mathematics, University of Taipei, Taipei, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | - Tsung-Chih Chen
- Division of Hematology/Medical Oncology, Department of Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Ting-Shuan Wu
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Tzu-Hung Hsiao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Public Health, Fu Jen Catholic University, New Taipei City, Taiwan
- Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung, Taiwan
| | - Jo-Mei Maureen Chen
- Department of Applied Chemistry, National Chi Nan University, Puli, Nantou, Taiwan
| | - Chi-Ying F Huang
- Institute of Biopharmaceutical Sciences, National Yang-Ming Chiao Tung University, Taipei, Taiwan
| | - Po-Liang Cheng
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jia-Rung Tsai
- Division of Hematology/Medical Oncology, Department of Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chieh-Lin Jerry Teng
- Division of Hematology/Medical Oncology, Department of Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Life Science, Tunghai University, Taichung, Taiwan
- Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
16
|
Niibori-Nambu A, Wang CQ, Chin DWL, Chooi JY, Hosoi H, Sonoki T, Tham CY, Nah GSS, Cirovic B, Tan DQ, Takizawa H, Sashida G, Goh Y, Tng J, Fam WN, Fullwood MJ, Suda T, Yang H, Tergaonkar V, Taniuchi I, Li S, Chng WJ, Osato M. Integrin-α9 overexpression underlies the niche-independent maintenance of leukemia stem cells in acute myeloid leukemia. Gene 2024; 928:148761. [PMID: 39002785 DOI: 10.1016/j.gene.2024.148761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/16/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
Leukemia stem cells (LSCs) are widely believed to reside in well-characterized bone marrow (BM) niches; however, the capacity of the BM niches to accommodate LSCs is insufficient, and a significant proportion of LSCs are instead maintained in regions outside the BM. The molecular basis for this niche-independent behavior of LSCs remains elusive. Here, we show that integrin-α9 overexpression (ITGA9 OE) plays a pivotal role in the extramedullary maintenance of LSCs by molecularly mimicking the niche-interacting status, through the binding with its soluble ligand, osteopontin (OPN). Retroviral insertional mutagenesis conducted on leukemia-prone Runx-deficient mice identified Itga9 OE as a novel leukemogenic event. Itga9 OE activates Akt and p38MAPK signaling pathways. The elevated Myc expression subsequently enhances ribosomal biogenesis to overcome the cell integrity defect caused by the preexisting Runx alteration. The Itga9-Myc axis, originally discovered in mice, was further confirmed in multiple human acute myeloid leukemia (AML) subtypes, other than RUNX leukemias. In addition, ITGA9 was shown to be a functional LSC marker of the best prognostic value among 14 known LSC markers tested. Notably, the binding of ITGA9 with soluble OPN, a known negative regulator against HSC activation, induced LSC dormancy, while the disruption of ITGA9-soluble OPN interaction caused rapid cell propagation. These findings suggest that the ITGA9 OE increases both actively proliferating leukemia cells and dormant LSCs in a well-balanced manner, thereby maintaining LSCs. The ITGA9 OE would serve as a novel therapeutic target in AML.
Collapse
Affiliation(s)
- Akiko Niibori-Nambu
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore; Department of Tumor Genetics and Biology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Chelsia Qiuxia Wang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore; Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore; Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Desmond Wai Loon Chin
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Jing Yuan Chooi
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Hiroki Hosoi
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore; Department of Hematology/Oncology, Wakayama Medical University, Wakayama, Japan
| | - Takashi Sonoki
- Department of Hematology/Oncology, Wakayama Medical University, Wakayama, Japan
| | - Cheng-Yong Tham
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Giselle Sek Suan Nah
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Branko Cirovic
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Darren Qiancheng Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Hitoshi Takizawa
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Goro Sashida
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yufen Goh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Jiaqi Tng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Wee Nih Fam
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Melissa Jane Fullwood
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Toshio Suda
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore; International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan; Institute of Hematology, Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Henry Yang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Vinay Tergaonkar
- Laboratory of NFκB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Ichiro Taniuchi
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Shang Li
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore
| | - Wee Joo Chng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore; National University Cancer Institute, Singapore; National University Health System, Singapore.
| | - Motomi Osato
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore; International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan; Department of General Internal Medicine, Kumamoto Kenhoku Hospital, Kumamoto, Japan.
| |
Collapse
|
17
|
Zhang Z, Tang R, Zhu M, Zhu Z, Zhu J, Li H, Tong M, Li N, Huang J. Deciphering cell states and the cellular ecosystem to improve risk stratification in acute myeloid leukemia. Brief Bioinform 2024; 26:bbaf028. [PMID: 39865982 PMCID: PMC11770069 DOI: 10.1093/bib/bbaf028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/17/2024] [Accepted: 01/11/2025] [Indexed: 01/28/2025] Open
Abstract
Acute myeloid leukemia (AML) demonstrates significant cellular heterogeneity in both leukemic and immune cells, providing valuable insights into clinical outcomes. Here, we constructed an AML single-cell transcriptome atlas and proposed sciNMF workflow to systematically dissect underlying cellular heterogeneity. Notably, sciNMF identified 26 leukemic and immune cell states that linked to clinical variables, mutations, and prognosis. By examining the co-existence patterns among these cell states, we highlighted a unique AML cellular ecosystem (ACE) that signifies aberrant tumor milieu and poor survival, which is confirmed by public RNA-seq cohorts. We further developed the ACE signature (ACEsig), comprising 12 genes, which accurately predicts AML prognosis, and outperforms existing signatures. When applied to cytogenetically normal AML or intensively treated patients, the ACEsig continues to demonstrate strong performance. Our results demonstrate that large-scale systematic characterization of cellular heterogeneity has the potential to enhance our understanding of AML heterogeneity and contribute to more precise risk stratification strategy.
Collapse
Affiliation(s)
- Zheyang Zhang
- State Key Laboratory of Cellular Stress Biology, Xiang’an Hospital, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, No. 4221, Xiang’an South Road, Xiamen, Fujian 361102, China
- National Institute for Data Science in Health and Medicine, Xiamen University, No. 4221, Xiang’an South Road, Xiamen, Fujian 361102, China
| | - Ronghan Tang
- State Key Laboratory of Cellular Stress Biology, Xiang’an Hospital, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, No. 4221, Xiang’an South Road, Xiamen, Fujian 361102, China
| | - Ming Zhu
- State Key Laboratory of Cellular Stress Biology, Xiang’an Hospital, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, No. 4221, Xiang’an South Road, Xiamen, Fujian 361102, China
| | - Zhijuan Zhu
- Hematopoietic Stem Cell Transplantation Center, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Department of Hematology, Fujian Medical University Union Hospital, No. 29 Xinquan Street, Gulou District, Fuzhou 350001, China
| | - Jiali Zhu
- State Key Laboratory of Cellular Stress Biology, Xiang’an Hospital, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, No. 4221, Xiang’an South Road, Xiamen, Fujian 361102, China
| | - Hua Li
- Hematopoietic Stem Cell Transplantation Center, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Department of Hematology, Fujian Medical University Union Hospital, No. 29 Xinquan Street, Gulou District, Fuzhou 350001, China
- Department of Hematology and Rheumatology, The Second Affiliated Hospital of Xiamen Medical College, No. 566 Shengguang Road, Jimei District, Xiamen 361021, China
| | - Mengsha Tong
- State Key Laboratory of Cellular Stress Biology, Xiang’an Hospital, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, No. 4221, Xiang’an South Road, Xiamen, Fujian 361102, China
- National Institute for Data Science in Health and Medicine, Xiamen University, No. 4221, Xiang’an South Road, Xiamen, Fujian 361102, China
| | - Nainong Li
- Hematopoietic Stem Cell Transplantation Center, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Department of Hematology, Fujian Medical University Union Hospital, No. 29 Xinquan Street, Gulou District, Fuzhou 350001, China
- Translational Medicine Center on Hematology, Fujian Medical University, No. 29 Xinquan Street, Gulou District, Fuzhou 350001, China
| | - Jialiang Huang
- State Key Laboratory of Cellular Stress Biology, Xiang’an Hospital, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, No. 4221, Xiang’an South Road, Xiamen, Fujian 361102, China
- National Institute for Data Science in Health and Medicine, Xiamen University, No. 4221, Xiang’an South Road, Xiamen, Fujian 361102, China
| |
Collapse
|
18
|
Rubino V, Hüppi M, Höpner S, Tortola L, Schnüriger N, Legenne H, Taylor L, Voggensperger S, Keller I, Bruggman R, Kronig MN, Bacher U, Kopf M, Ochsenbein AF, Riether C. IL-21/IL-21R signaling renders acute myeloid leukemia stem cells more susceptible to cytarabine treatment and CAR T cell therapy. Cell Rep Med 2024; 5:101826. [PMID: 39536753 PMCID: PMC11604404 DOI: 10.1016/j.xcrm.2024.101826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 07/31/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Self-renewal programs in leukemia stem cells (LSCs) predict poor prognosis in patients with acute myeloid leukemia (AML). We identify CD4+ T cell-derived interleukin (IL)-21 as an important negative regulator of self-renewal of LSCs. IL-21/IL-21R signaling favors asymmetric cell division and differentiation in LSCs through the activation of p38-MAPK signaling, resulting in reduced LSC numbers and significantly prolonged survival in murine AML models. In human AML, serum IL-21 at diagnosis is identified as an independent positive prognostic biomarker for outcome and correlates with improved survival and higher complete remission rates in patients that underwent high-dose chemotherapy. IL-21 treatment inhibits primary LSC function and enhances the effect of cytarabine and CD70 CAR T cell treatment on LSCs in vitro. Low-dose IL-21 treatment prolongs the survival of AML mice in syngeneic and xenograft experiments. Therefore, promoting IL-21/IL-21R signaling on LSCs may be an approach to reduce stemness and increase differentiation in AML.
Collapse
MESH Headings
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/metabolism
- Animals
- Humans
- Cytarabine/pharmacology
- Cytarabine/therapeutic use
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/pathology
- Interleukins/metabolism
- Signal Transduction/drug effects
- Mice
- Immunotherapy, Adoptive/methods
- Female
- Mice, Inbred C57BL
- Male
- Receptors, Interleukin-21/metabolism
- Receptors, Interleukin-21/genetics
- Cell Differentiation/drug effects
- Xenograft Model Antitumor Assays
- Cell Line, Tumor
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CD4-Positive T-Lymphocytes/drug effects
Collapse
Affiliation(s)
- Viviana Rubino
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland; Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Michelle Hüppi
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Sabine Höpner
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Luigi Tortola
- Institute for Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Noah Schnüriger
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland; Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Hugo Legenne
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland; Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Lea Taylor
- Interfaculty Bioinformatics Unit and SIB Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland
| | - Svenja Voggensperger
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Irene Keller
- Interfaculty Bioinformatics Unit and SIB Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland
| | - Remy Bruggman
- Interfaculty Bioinformatics Unit and SIB Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland
| | - Marie-Noëlle Kronig
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Ulrike Bacher
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Manfred Kopf
- Institute for Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Adrian F Ochsenbein
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Carsten Riether
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland.
| |
Collapse
|
19
|
Ho TC, LaMere MW, Kawano H, Byun DK, LaMere EA, Chiu YC, Chen C, Wang J, Dokholyan NV, Calvi LM, Liesveld JL, Jordan CT, Kapur R, Singh RK, Becker MW. Targeting IL-1/IRAK1/4 signaling in Acute Myeloid Leukemia Stem Cells Following Treatment and Relapse. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.09.622796. [PMID: 39605740 PMCID: PMC11601227 DOI: 10.1101/2024.11.09.622796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Therapies for acute myeloid leukemia (AML) face formidable challenges due to relapse, often driven by leukemia stem cells (LSCs). Strategies targeting LSCs hold promise for enhancing outcomes, yet paired comparisons of functionally defined LSCs at diagnosis and relapse remain underexplored. We present transcriptome analyses of functionally defined LSC populations at diagnosis and relapse, revealing significant alterations in IL-1 signaling. Interleukin-1 receptor type I (IL1R1) and interleukin-1 receptor accessory protein (IL1RAP) were notably upregulated in leukemia stem and progenitor cells at both diagnosis and relapse. Knockdown of IL1R1 and IL1RAP reduced the clonogenicity and/or engraftment of primary human AML cells. In leukemic MLL-AF9 mice, Il1r1 knockout reduced LSC frequency and extended survival. To target IL-1 signaling at both diagnosis and relapse, we developed UR241-2, a novel interleukin-1 receptor-associated kinase 1 and 4 (IRAK1/4) inhibitor. UR241-2 robustly suppressed IL-1/IRAK1/4 signaling, including NF-κB activation and phosphorylation of p65 and p38, following IL-1 stimulation. UR241-2 selectively inhibited LSC clonogenicity in primary human AML cells at both diagnosis and relapse, while sparing normal hematopoietic stem and progenitor cells. It also reduced AML engraftment in leukemic mice. Our findings highlight the therapeutic potential of UR241-2 in targeting IL-1/IRAK1/4 signaling to eradicate LSCs and improve AML outcomes.
Collapse
|
20
|
Nazaret A, Fan JL, Lavallée VP, Burdziak C, Cornish AE, Kiseliovas V, Bowman RL, Masilionis I, Chun J, Eisman SE, Wang J, Hong J, Shi L, Levine RL, Mazutis L, Blei D, Pe’er D, Azizi E. Joint representation and visualization of derailed cell states with Decipher. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.11.566719. [PMID: 38014231 PMCID: PMC10680623 DOI: 10.1101/2023.11.11.566719] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Biological insights often depend on comparing conditions such as disease and health, yet we lack effective computational tools for integrating single-cell genomics data across conditions or characterizing transitions from normal to deviant cell states. Here, we present Decipher, a deep generative model that characterizes derailed cell-state trajectories. Decipher jointly models and visualizes gene expression and cell state from normal and perturbed single-cell RNA-seq data, revealing shared and disrupted dynamics. We demonstrate its superior performance across diverse contexts, including in pancreatitis with oncogene mutation, acute myeloid leukemia, and gastric cancer.
Collapse
Affiliation(s)
- Achille Nazaret
- Department of Computer Science, Columbia University, New York, NY 10027, USA
- Irving Institute for Cancer Dynamics, Columbia University, New York, NY 10027, USA
| | - Joy Linyue Fan
- Irving Institute for Cancer Dynamics, Columbia University, New York, NY 10027, USA
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Vincent-Philippe Lavallée
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
- Department of Pediatrics, Université de Montréal, Montréal, QC, Canada
| | - Cassandra Burdziak
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Andrew E. Cornish
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Vaidotas Kiseliovas
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Alan and Sandra Gerry Metastasis and Tumor Ecosystems Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Robert L. Bowman
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ignas Masilionis
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Alan and Sandra Gerry Metastasis and Tumor Ecosystems Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jaeyoung Chun
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Alan and Sandra Gerry Metastasis and Tumor Ecosystems Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Shira E. Eisman
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - James Wang
- Department of Computer Science, Columbia University, New York, NY 10027, USA
| | - Justin Hong
- Department of Computer Science, Columbia University, New York, NY 10027, USA
- Irving Institute for Cancer Dynamics, Columbia University, New York, NY 10027, USA
| | - Lingting Shi
- Irving Institute for Cancer Dynamics, Columbia University, New York, NY 10027, USA
| | - Ross L. Levine
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Linas Mazutis
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Alan and Sandra Gerry Metastasis and Tumor Ecosystems Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Institute of Biotechnology Vilnius University, Life Sciences Centre, Vilnius 02158, Lithuania
| | - David Blei
- Department of Computer Science, Columbia University, New York, NY 10027, USA
- Department of Statistics, Columbia University, New York, NY 10027, USA
- Data Science Institute, Columbia University, New York, NY 10027, USA
| | - Dana Pe’er
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York 10027, NY 10065, USA
| | - Elham Azizi
- Department of Computer Science, Columbia University, New York, NY 10027, USA
- Irving Institute for Cancer Dynamics, Columbia University, New York, NY 10027, USA
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
- Data Science Institute, Columbia University, New York, NY 10027, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
| |
Collapse
|
21
|
Zeng AG, Iacobucci I, Shah S, Mitchell A, Wong G, Bansal S, Chen D, Gao Q, Kim H, Kennedy JA, Arruda A, Minden MD, Haferlach T, Mullighan CG, Dick JE. Single-cell transcriptional mapping reveals genetic and non-genetic determinants of aberrant differentiation in AML. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.26.573390. [PMID: 38234771 PMCID: PMC10793439 DOI: 10.1101/2023.12.26.573390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
In acute myeloid leukemia (AML), genetic mutations distort hematopoietic differentiation, resulting in the accumulation of leukemic blasts. Yet, it remains unclear how these mutations intersect with cellular origins and whether they converge upon similar differentiation patterns. Single-cell RNA sequencing (scRNA-seq) has enabled high-resolution mapping of the relationship between leukemia and normal cell states, yet this application is hampered by imprecise reference maps of normal hematopoiesis and small sample sizes among patient cohorts. As a first step we constructed a reference atlas of human bone marrow hematopoiesis from 263,519 single-cell transcriptomes spanning 55 cellular states, that was benchmarked against independent datasets of immunophenotypically pure hematopoietic stem and progenitor cells. Using this reference atlas, we mapped over 1.2 million single-cell transcriptomes spanning 318 AML, mixed phenotype acute leukemia (MPAL), and acute erythroid leukemia (AEL) samples. This large-scale analysis, together with systematic mapping of genotype-to-phenotype associations between driver mutations and differentiation landscapes, revealed convergence of diverse genetic alterations on twelve recurrent patterns of aberrant differentiation in AML. This included unconventional lymphoid and erythroid priming linked to RUNX1 and TP53 mutations, respectively. We also identified non-genetic determinants of AML differentiation such as two subgroups of KMT2A-rearranged AML that differ in the identity of their leukemic stem cells (LSCs), likely reflecting distinct cellular origins. Furthermore, distinct LSC-driven hierarchies can co-exist within individual patients, providing insights into AML evolution. Together, precise mapping of normal and malignant cell states provides a framework for advancing the study and disease classification of hematologic malignancies thereby informing therapy development.
Collapse
Affiliation(s)
- Andy G.X. Zeng
- Princess Margaret Cancer Centre, University Health Network; Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto; Toronto, ON, Canada
| | - Ilaria Iacobucci
- Department of Pathology, St Jude Children’s Research Hospital, Memphis, TN, USA
| | - Sayyam Shah
- Princess Margaret Cancer Centre, University Health Network; Toronto, ON, Canada
| | - Amanda Mitchell
- Princess Margaret Cancer Centre, University Health Network; Toronto, ON, Canada
| | - Gordon Wong
- Princess Margaret Cancer Centre, University Health Network; Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto; Toronto, ON, Canada
| | - Suraj Bansal
- Princess Margaret Cancer Centre, University Health Network; Toronto, ON, Canada
| | - David Chen
- Princess Margaret Cancer Centre, University Health Network; Toronto, ON, Canada
| | - Qingsong Gao
- Department of Pathology, St Jude Children’s Research Hospital, Memphis, TN, USA
| | - Hyerin Kim
- Princess Margaret Cancer Centre, University Health Network; Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto; Toronto, ON, Canada
| | - James A. Kennedy
- Division of Medical Oncology and Hematology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Andrea Arruda
- Princess Margaret Cancer Centre, University Health Network; Toronto, ON, Canada
| | - Mark D. Minden
- Princess Margaret Cancer Centre, University Health Network; Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
- Division of Medical Oncology and Hematology, University Health Network, Toronto, ON, Canada
| | | | - Charles G. Mullighan
- Department of Pathology, St Jude Children’s Research Hospital, Memphis, TN, USA
- Center of Excellence for Leukemia Studies, St. Jude Children’s Research Hospital, Memphis, TN
| | - John E. Dick
- Princess Margaret Cancer Centre, University Health Network; Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto; Toronto, ON, Canada
| |
Collapse
|
22
|
Colonne CK, Kimble EL, Turtle CJ. Evolving strategies to overcome barriers in CAR-T cell therapy for acute myeloid leukemia. Expert Rev Hematol 2024; 17:797-818. [PMID: 39439295 DOI: 10.1080/17474086.2024.2420614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/05/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
INTRODUCTION Acute myeloid leukemia (AML) is a complex and heterogeneous disease characterized by an aggressive clinical course and limited efficacious treatment options in the relapsed/refractory (R/R) setting. Chimeric antigen receptor (CAR)-modified T (CAR-T) cell immunotherapy is an investigational treatment strategy for R/R AML that has shown some promise. However, obstacles to successful CAR-T cell immunotherapy for AML remain. AREAS COVERED In analyses of clinical trials of CAR-T cell therapy for R/R AML, complete responses without measurable residual disease have been reported, but the durability of those responses remains unclear. Significant barriers to successful CAR-T cell therapy in AML include the scarcity of suitable tumor-target antigens (TTA), inherent T cell functional deficits, and the immunoinhibitory and hostile tumor microenvironment (TME). This review will focus on these barriers to successful CAR-T cell therapy in AML, and discuss scientific advancements and evolving strategies to overcome them. EXPERT OPINION Achieving durable remissions in R/R AML will likely require a multifaceted approach that integrates advancements in TTA selection, enhancement of the intrinsic quality of CAR-T cells, and development of strategies to overcome inhibitory mechanisms in the AML TME.
Collapse
Affiliation(s)
- Chanukya K Colonne
- Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Erik L Kimble
- Translational Science and Therapeutic Division, Fred Hutchinson Cancer Center, Seattle, USA
- Department of Medicine, Division of Hematology and Oncology, University of Washington, Seattle, USA
| | - Cameron J Turtle
- Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
- Haematology and Transfusion Medicine, Royal North Shore Hospital, Sydney, Australia
| |
Collapse
|
23
|
Feng YD, Du J, Chen HL, Shen Y, Jia YC, Zhang PY, He A, Yang Y. Characterization of stem cell landscape and assessing the stemness degree to aid clinical therapeutics in hematologic malignancies. Sci Rep 2024; 14:23743. [PMID: 39390242 PMCID: PMC11466975 DOI: 10.1038/s41598-024-74806-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/30/2024] [Indexed: 10/12/2024] Open
Abstract
Hematological malignancies are a group of cancers that affect the blood, bone marrow, and lymphatic system. Cancer stem cells (CSCs) are believed to be responsible for the initiation, progression, and relapse of hematological malignancies. However, identifying and targeting CSCs presents many challenges. We aimed to develop a stemness index (HSCsi) to identify and guide the therapy targeting CSCs in hematological malignancies. We developed a novel one-class logistic regression (OCLR) algorithm to identify transcriptomic feature sets related to stemness in hematologic malignancies. We used the HSCsi to measure the stemness degree of leukemia stem cells (LSCs) and correlate it with clinical outcomes.We analyze the correlation of HSCsi with genes and pathways involved in drug resistance and immune microenvironment of acute myeloid leukemia (AML). HSCsi revealed stemness-related biological mechanisms in hematologic malignancies and effectively identify LSCs. The index also predicted survival and relapse rates of various hematologic malignancies. We also identified potential drugs and interventions targeting cancer stem cells (CSCs) of hematologic malignancies by the index. Moreover, we found a correlation between stemness and bone marrow immune microenvironment in AML. Our study provides a novel method and tool to assess the stemness degree of hematologic malignancies and its implications for clinical outcomes and therapeutic strategies. Our HSC stemness index can facilitate the precise stratification of hematologic malignancies, suggest possible targeted and immunotherapy options, and guide the selection of patients.
Collapse
Affiliation(s)
- Yuan-Dong Feng
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 West 5Th Road, Xi'an, 710004, China
| | - Jin Du
- Department of Stomatology, The Third Affiliated Hospital of Xi'an Medical University, 277 West Youyi Road, Xi'an, 710068, China
| | - Hong-Li Chen
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 West 5Th Road, Xi'an, 710004, China
| | - Ying Shen
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 West 5Th Road, Xi'an, 710004, China
| | - Ya-Chun Jia
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 West 5Th Road, Xi'an, 710004, China
| | - Peng-Yu Zhang
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 West 5Th Road, Xi'an, 710004, China
| | - Aili He
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 West 5Th Road, Xi'an, 710004, China
| | - Yun Yang
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 West 5Th Road, Xi'an, 710004, China.
| |
Collapse
|
24
|
Man CH, Li C, Xu X, Zhao M. Metabolic regulation in normal and leukemic stem cells. Trends Pharmacol Sci 2024; 45:919-930. [PMID: 39306527 DOI: 10.1016/j.tips.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 10/06/2024]
Abstract
Hematopoietic stem cells (HSCs) and leukemic stem cells (LSCs) are crucial for ensuring hematopoietic homeostasis and driving leukemia progression, respectively. Recent research has revealed that metabolic adaptations significantly regulate the function and survival of these stem cells. In this review, we provide an overview of how metabolic pathways regulate oxidative and proteostatic stresses in HSCs during homeostasis and aging. Furthermore, we highlight targetable metabolic pathways and explore their interactions with epigenetics and the microenvironment in addressing the chemoresistance and immune evasion capacities of LSCs. The metabolic differences between HSCs and LSCs have profound implications for therapeutic strategies.
Collapse
Affiliation(s)
- Cheuk-Him Man
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China; Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
| | - Changzheng Li
- Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Xi Xu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510030, China
| | - Meng Zhao
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China; Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
| |
Collapse
|
25
|
Musil J, Ptacek A, Vanikova S. OMIP-106: A 30-color panel for analysis of check-point inhibitory networks in the bone marrow of acute myeloid leukemia patients. Cytometry A 2024; 105:729-736. [PMID: 39192598 DOI: 10.1002/cyto.a.24892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 06/26/2024] [Accepted: 07/22/2024] [Indexed: 08/29/2024]
Abstract
Acute myeloid leukemia (AML) is the most common form of acute leukemia diagnosed in adults. Despite advances in medical care, the treatment of AML still faces many challenges, such as treatment-related toxicities, that limit the use of high-intensity chemotherapy, especially in elderly patients. Currently, various immunotherapeutic approaches, that is, CAR-T cells, BiTEs, and immune checkpoint inhibitors, are being tested in clinical trials to prolong remission and improve the overall survival of AML patients. However, early reports show only limited benefits of these interventions and only in a subset of patients, showing the need for better patient stratification based on immunological markers. We have therefore developed and optimized a 30-color panel for evaluation of effector immune cell (NK cells, γδ T cells, NKT-like T cells, and classical T cells) infiltration into the bone marrow and analysis of their phenotype with regard to their differentiation, expression of inhibitory (PD-1, TIGIT, Tim3, NKG2A) and activating receptors (DNAM-1, NKG2D). We also evaluate the immune evasive phenotype of CD33+ myeloid cells, CD34+CD38-, and CD34+CD38+ hematopoietic stem and progenitor cells by analyzing the expression of inhibitory ligands such as PD-L1, CD112, CD155, and CD200. Our panel can be a valuable tool for patient stratification in clinical trials and can also be used to broaden our understanding of check-point inhibitory networks in AML.
Collapse
Affiliation(s)
- Jan Musil
- Department of Immunomonitoring and Flow Cytometry, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Antonin Ptacek
- Department of Immunomonitoring and Flow Cytometry, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University Prague, Prague, Czech Republic
| | - Sarka Vanikova
- Department of Immunomonitoring and Flow Cytometry, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University Prague, Prague, Czech Republic
| |
Collapse
|
26
|
Boutzen H, Murison A, Oriecuia A, Bansal S, Arlidge C, Wang JCY, Lupien M, Kaufmann KB, Dick JE. Identification of leukemia stem cell subsets with distinct transcriptional, epigenetic and functional properties. Leukemia 2024; 38:2090-2101. [PMID: 39169113 PMCID: PMC11436360 DOI: 10.1038/s41375-024-02358-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 07/02/2024] [Accepted: 07/17/2024] [Indexed: 08/23/2024]
Abstract
The leukemia stem cell (LSC) compartment is a complex reservoir fueling disease progression in acute myeloid leukemia (AML). The existence of heterogeneity within this compartment is well documented but prior studies have focused on genetic heterogeneity without being able to address functional heterogeneity. Understanding this heterogeneity is critical for the informed design of therapies targeting LSC, but has been hampered by LSC scarcity and the lack of reliable cell surface markers for viable LSC isolation. To overcome these challenges, we turned to the patient-derived OCI-AML22 cell model. This model includes functionally, transcriptionally and epigenetically characterized LSC broadly representative of LSC found in primary AML samples. Focusing on the pool of LSC, we used an integrated approach combining xenograft assays with single-cell analysis to identify two LSC subtypes with distinct transcriptional, epigenetic and functional properties. These LSC subtypes differed in depth of quiescence, differentiation potential, repopulation capacity, sensitivity to chemotherapy and could be isolated based on CD112 expression. A majority of AML patient samples had transcriptional signatures reflective of either LSC subtype, and some even showed coexistence within an individual sample. This work provides a framework for investigating the LSC compartment and designing combinatorial therapeutic strategies in AML.
Collapse
Affiliation(s)
- Héléna Boutzen
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 0A3, Canada.
| | - Alex Murison
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 0A3, Canada
| | - Alexa Oriecuia
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 0A3, Canada
| | - Suraj Bansal
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 0A3, Canada
| | - Christopher Arlidge
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 0A3, Canada
| | - Jean C Y Wang
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 0A3, Canada
- Division of Medical Oncology and Hematology, Department of Medicine, University Health Network, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Mathieu Lupien
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 0A3, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, M5S 1A4, Canada
| | - Kerstin B Kaufmann
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 0A3, Canada.
| | - John E Dick
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 0A3, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
27
|
Wang YQ, Ren Y, Gale RP, Niu LT, Huang XJ. Sphingosine-1 phosphate receptor 1 (S1PR1) expression maintains stemness of acute myeloid leukemia stem cells. Cancer Lett 2024; 600:217158. [PMID: 39111385 DOI: 10.1016/j.canlet.2024.217158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/24/2024] [Accepted: 08/02/2024] [Indexed: 08/17/2024]
Abstract
Acute myeloid leukemia (AML) arises from leukemia stem cells (LSCs) and is maintained by cells which have acquired features of stemness. We compared transcription profiles of AML cells with/without stem cell features defined as in vitro clonogenicity and serial engraftment in immune-deficient mice xenograft model. We used multi-parameter flow cytometry (MPFC) to separate CD34+ bone marrow-derived leukemia cells into sphingosine-1 phosphate receptor 1 (S1PR1)+ and S1PR1- fractions. Cells in the S1PR1+ fraction demonstrated significantly higher clonogenicity and higher engraftment potential compared with those in the S1PR1- fraction. In contrast, CD34+ bone marrow cells from normal samples showed reduced clonogenicity in the S1PR1+ fraction compared with the S1PR1- fraction. Inhibition of S1PR1 expression in an AML cell line reduced the colony-forming potential of KG1 cells. Transcriptomic analyses and rescue experiments indicated PI3K/AKT pathway and MYBL2 are downstream mediators of S1PR1-associated stemness. These findings implicate S1PR1 as a functional biomarker of LSCs and suggest its potential as a therapeutic target in AML treatment.
Collapse
Affiliation(s)
- Yu-Qing Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematological Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yue Ren
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematological Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Robert Peter Gale
- Centre for Hematology Research, Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Li-Ting Niu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematological Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematological Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
| |
Collapse
|
28
|
Peretz CAC, Kennedy VE, Walia A, Delley CL, Koh A, Tran E, Clark IC, Hayford CE, D'Amato C, Xue Y, Fontanez KM, May-Zhang AA, Smithers T, Agam Y, Wang Q, Dai HP, Roy R, Logan AC, Perl AE, Abate A, Olshen A, Smith CC. Multiomic single cell sequencing identifies stemlike nature of mixed phenotype acute leukemia. Nat Commun 2024; 15:8191. [PMID: 39294124 PMCID: PMC11411136 DOI: 10.1038/s41467-024-52317-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 08/30/2024] [Indexed: 09/20/2024] Open
Abstract
Despite recent work linking mixed phenotype acute leukemia (MPAL) to certain genetic lesions, specific driver mutations remain undefined for a significant proportion of patients and no genetic subtype is predictive of clinical outcomes. Moreover, therapeutic strategy for MPAL remains unclear, and prognosis is overall poor. We performed multiomic single cell profiling of 14 newly diagnosed adult MPAL patients to characterize the inter- and intra-tumoral transcriptional, immunophenotypic, and genetic landscapes of MPAL. We show that neither genetic profile nor transcriptome reliably correlate with specific MPAL immunophenotypes. Despite this, we find that MPAL blasts express a shared stem cell-like transcriptional profile indicative of high differentiation potential. Patients with the highest differentiation potential demonstrate inferior survival in our dataset. A gene set score, MPAL95, derived from genes highly enriched in the most stem-like MPAL cells, is applicable to bulk RNA sequencing data and is predictive of survival in an independent patient cohort, suggesting a potential strategy for clinical risk stratification.
Collapse
Affiliation(s)
- Cheryl A C Peretz
- Division of Hematology and Oncology, Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Vanessa E Kennedy
- Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Anushka Walia
- Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Cyrille L Delley
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Andrew Koh
- Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Elaine Tran
- Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Iain C Clark
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, USA
| | | | | | - Yi Xue
- Fluent Biosciences Inc., Watertown, MA, USA
| | | | | | | | - Yigal Agam
- Fluent Biosciences Inc., Watertown, MA, USA
| | - Qian Wang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| | - Hai-Ping Dai
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| | - Ritu Roy
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Aaron C Logan
- Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Alexander E Perl
- Department of Medicine, Division of Hematology-Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Adam Abate
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Adam Olshen
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | - Catherine C Smith
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA.
- Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
29
|
Grenier JMP, Testut C, Bal M, Bardin F, De Grandis M, Gelsi-Boyer V, Vernerey J, Delahaye M, Granjeaud S, Zemmour C, Spinella JF, Chavakis T, Mancini SJC, Boher JM, Hébert J, Sauvageau G, Vey N, Schwaller J, Hospital MA, Fauriat C, Aurrand-Lions M. Genetic deletion of JAM-C in preleukemic cells rewires leukemic stem cell gene expression program in AML. Blood Adv 2024; 8:4662-4678. [PMID: 38954834 PMCID: PMC11402138 DOI: 10.1182/bloodadvances.2023011747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 05/23/2024] [Accepted: 06/19/2024] [Indexed: 07/04/2024] Open
Abstract
ABSTRACT The leukemic stem cell (LSC) score LSC-17 based on a stemness-related gene expression signature is an indicator of poor disease outcome in acute myeloid leukemia (AML). However, it is not known whether "niche anchoring" of LSC affects disease evolution. To address this issue, we conditionally inactivated the adhesion molecule JAM-C (Junctional Adhesion Molecule-C) expressed by hematopoietic stem cells (HSCs) and LSCs in an inducible mixed-lineage leukemia (iMLL)-AF9-driven AML mouse model. Deletion of Jam3 (encoding JAM-C) before induction of the leukemia-initiating iMLL-AF9 fusion resulted in a shift from long-term to short-term HSC expansion, without affecting disease initiation and progression. In vitro experiments showed that JAM-C controlled leukemic cell nesting irrespective of the bone marrow stromal cells used. RNA sequencing performed on leukemic HSCs isolated from diseased mice revealed that genes upregulated in Jam3-deficient animals belonged to activation protein-1 (AP-1) and tumor necrosis factor α (TNF-α)/NF-κB pathways. Human orthologs of dysregulated genes allowed to identify a score that was distinct from, and complementary to, the LSC-17 score. Substratification of patients with AML using LSC-17 and AP-1/TNF-α genes signature defined 4 groups with median survival ranging from <1 year to a median of "not reached" after 8 years. Finally, coculture experiments showed that AP-1 activation in leukemic cells was dependent on the nature of stromal cells. Altogether, our results identify the AP-1/TNF-α gene signature as a proxy of LSC anchoring in bone marrow niches, which improves the prognostic value of the LSC-17 score. This trial was registered at www.ClinicalTrials.gov as #NCT02320656.
Collapse
Affiliation(s)
- Julien M. P. Grenier
- Aix Marseille University, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Equipe Labellisée Ligue 2020, Marseille, France
- UMR 7268, Aix-Marseille Université, EFS, CNRS, GENGLOBE, Marseille, France
| | - Céline Testut
- Aix Marseille University, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Equipe Labellisée Ligue 2020, Marseille, France
| | - Matthieu Bal
- Aix Marseille University, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Equipe Labellisée Ligue 2020, Marseille, France
- Département de la Recherche Clinique et de l’Innovation, Institut Paoli-Calmettes, Marseille, France
| | - Florence Bardin
- Aix Marseille University, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Equipe Labellisée Ligue 2020, Marseille, France
| | - Maria De Grandis
- Aix-Marseille University, CNRS, EFS, ADES, Biologie des Groupes Sanguins, Marseille, France
- UMR 7268, Aix-Marseille Université, EFS, CNRS, GENGLOBE, Marseille, France
| | - Véronique Gelsi-Boyer
- Aix Marseille University, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Equipe Labellisée Ligue 2020, Marseille, France
| | - Julien Vernerey
- Aix Marseille University, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Equipe Labellisée Ligue 2020, Marseille, France
| | - Marjorie Delahaye
- Aix Marseille University, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Equipe Labellisée Ligue 2020, Marseille, France
| | - Samuel Granjeaud
- Aix Marseille University, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Equipe Labellisée Ligue 2020, Marseille, France
| | - Christophe Zemmour
- Département de la Recherche Clinique et de l’Innovation, Institut Paoli-Calmettes, Marseille, France
| | - Jean-François Spinella
- Laboratory of Molecular Genetics of Stem Cells, Institute for Research in Immunology and Cancer, University of Montreal, Montreal, QC, Canada
| | - Triantafyllos Chavakis
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Stéphane J. C. Mancini
- UMR 1236, University of Rennes, INSERM, Etablissement Français du Sang Bretagne, Rennes, France
| | - Jean-Marie Boher
- Département de la Recherche Clinique et de l’Innovation, Institut Paoli-Calmettes, Marseille, France
| | - Josée Hébert
- Division of Hematology-Oncology, Department of Medicine, Maisonneuve-Rosemont Hospital, Université de Montréal, Montreal, QC, Canada
| | - Guy Sauvageau
- Laboratory of Molecular Genetics of Stem Cells, Institute for Research in Immunology and Cancer, University of Montreal, Montreal, QC, Canada
| | - Norbert Vey
- Aix Marseille University, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Equipe Labellisée Ligue 2020, Marseille, France
| | - Jürg Schwaller
- Department of Biomedicine, University Children’s Hospital, University of Basel, Basel, Switzerland
| | | | - Cyril Fauriat
- Aix Marseille University, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Equipe Labellisée Ligue 2020, Marseille, France
| | - Michel Aurrand-Lions
- Aix Marseille University, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Equipe Labellisée Ligue 2020, Marseille, France
| |
Collapse
|
30
|
Lian X, Chatterjee S, Sun Y, Dilliard SA, Moore S, Xiao Y, Bian X, Yamada K, Sung YC, Levine RM, Mayberry K, John S, Liu X, Smith C, Johnson LT, Wang X, Zhang CC, Liu DR, Newby GA, Weiss MJ, Yen JS, Siegwart DJ. Bone-marrow-homing lipid nanoparticles for genome editing in diseased and malignant haematopoietic stem cells. NATURE NANOTECHNOLOGY 2024; 19:1409-1417. [PMID: 38783058 PMCID: PMC11757007 DOI: 10.1038/s41565-024-01680-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 04/15/2024] [Indexed: 05/25/2024]
Abstract
Therapeutic genome editing of haematopoietic stem cells (HSCs) would provide long-lasting treatments for multiple diseases. However, the in vivo delivery of genetic medicines to HSCs remains challenging, especially in diseased and malignant settings. Here we report on a series of bone-marrow-homing lipid nanoparticles that deliver mRNA to a broad group of at least 14 unique cell types in the bone marrow, including healthy and diseased HSCs, leukaemic stem cells, B cells, T cells, macrophages and leukaemia cells. CRISPR/Cas and base editing is achieved in a mouse model expressing human sickle cell disease phenotypes for potential foetal haemoglobin reactivation and conversion from sickle to non-sickle alleles. Bone-marrow-homing lipid nanoparticles were also able to achieve Cre-recombinase-mediated genetic deletion in bone-marrow-engrafted leukaemic stem cells and leukaemia cells. We show evidence that diverse cell types in the bone marrow niche can be edited using bone-marrow-homing lipid nanoparticles.
Collapse
Affiliation(s)
- Xizhen Lian
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sumanta Chatterjee
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yehui Sun
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sean A Dilliard
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Stephen Moore
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yufen Xiao
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xiaoyan Bian
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kohki Yamada
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yun-Chieh Sung
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Rachel M Levine
- Department of Hematology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Kalin Mayberry
- Department of Hematology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Samuel John
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xiaoye Liu
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Caroline Smith
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lindsay T Johnson
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xu Wang
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Cheng Cheng Zhang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Gregory A Newby
- Department of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Mitchell J Weiss
- Department of Hematology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Jonathan S Yen
- Department of Hematology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Daniel J Siegwart
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
31
|
Xu J, Li P, Wang Y, Li J, Xu B, Zhao J, Chen C, Gu S, Ding C, Liu P. The role of proliferating stem-like plasma cells in relapsed or refractory multiple myeloma: Insights from single-cell RNA sequencing and proteomic analysis. Br J Haematol 2024; 205:1031-1043. [PMID: 38671576 DOI: 10.1111/bjh.19486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/10/2024] [Indexed: 04/28/2024]
Abstract
The management and comprehension of relapsed or refractory multiple myeloma (RRMM) continues to pose a significant challenge. By integrating single-cell RNA sequencing (scRNA-seq) data of 15 patients with plasma cell disorders (PCDs) and proteomic data obtained from mass spectrometry-based analysis of CD138+ plasma cells (PCs) from 144 PCDs patients, we identified a state of malignant PCs characterized by high stemness score and increased proliferation originating from RRMM. This state has been designated as proliferating stem-like plasma cells (PSPCs). NUCKS1 was identified as the gene marker representing the stemness of PSPCs. Comparison of differentially expressed genes among various PC states revealed a significant elevation in LGALS1 expression in PSPCs. Survival analysis on the MMRF CoMMpass dataset and GSE24080 dataset established LGALS1 as a gene associated with unfavourable prognostic implications for multiple myeloma. Ultimately, we discovered three specific ligand-receptor pairs within the midkine (MDK) signalling pathway network that play distinct roles in facilitating efficient cellular communication between PSPCs and the surrounding microenvironment cells. These insights have the potential to contribute to the understanding of molecular mechanism and the development of therapeutic strategies involving the application of stem-like cells in RRMM treatment.
Collapse
Affiliation(s)
- Jiadai Xu
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Hematology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, Fujian, China
| | - Panpan Li
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yawen Wang
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jing Li
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Bei Xu
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiangyan Zhao
- Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Chen Chen
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shiyang Gu
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chen Ding
- Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Peng Liu
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Hematology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, Fujian, China
| |
Collapse
|
32
|
Sato S, Rancourt A, Satoh MS. Cell fate simulation reveals cancer cell features in the tumor microenvironment. J Biol Chem 2024; 300:107697. [PMID: 39173950 PMCID: PMC11419826 DOI: 10.1016/j.jbc.2024.107697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/26/2024] [Accepted: 08/06/2024] [Indexed: 08/24/2024] Open
Abstract
To elucidate the dynamic evolution of cancer cell characteristics within the tumor microenvironment (TME), we developed an integrative approach combining single-cell tracking, cell fate simulation, and 3D TME modeling. We began our investigation by analyzing the spatiotemporal behavior of individual cancer cells in cultured pancreatic (MiaPaCa2) and cervical (HeLa) cancer cell lines, with a focus on the α2-6 sialic acid (α2-6Sia) modification on glycans, which is associated with cell stemness. Our findings revealed that MiaPaCa2 cells exhibited significantly higher levels of α2-6Sia modification, correlating with enhanced reproductive capabilities, whereas HeLa cells showed less prevalence of this modification. To accommodate the in vivo variability of α2-6Sia levels, we employed a cell fate simulation algorithm that digitally generates cell populations based on our observed data while varying the level of sialylation, thereby simulating cell growth patterns. Subsequently, we performed a 3D TME simulation with these deduced cell populations, considering the microenvironment that could impact cancer cell growth. Immune cell landscape information derived from 193 cervical and 172 pancreatic cancer cases was used to estimate the degree of the positive or negative impact. Our analysis suggests that the deduced cells generated based on the characteristics of MiaPaCa2 cells are less influenced by the immune cell landscape within the TME compared to those of HeLa cells, highlighting that the fate of cancer cells is shaped by both the surrounding immune landscape and the intrinsic characteristics of the cancer cells.
Collapse
Affiliation(s)
- Sachiko Sato
- Glycobiology and Bioimaging Laboratory of Research Center for Infectious Diseases and Axe of Infectious and Immunological Diseases, Research Centre of CHU de Quebec, Faculty of Medicine, Laval University, Quebec, Canada
| | - Ann Rancourt
- Glycobiology and Bioimaging Laboratory of Research Center for Infectious Diseases and Axe of Infectious and Immunological Diseases, Research Centre of CHU de Quebec, Faculty of Medicine, Laval University, Quebec, Canada; Laboratory of DNA Damage Responses and Bioimaging, Research Centre of CHU de Quebec, Faculty of Medicine, Laval University, Quebec, Canada
| | - Masahiko S Satoh
- Laboratory of DNA Damage Responses and Bioimaging, Research Centre of CHU de Quebec, Faculty of Medicine, Laval University, Quebec, Canada.
| |
Collapse
|
33
|
Khattab S, El Sorady M, El-Ghandour A, Visani G, Piccaluga PP. Hematopoietic and leukemic stem cells homeostasis: the role of bone marrow niche. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:1027-1055. [PMID: 39351440 PMCID: PMC11438561 DOI: 10.37349/etat.2024.00262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 07/01/2024] [Indexed: 10/04/2024] Open
Abstract
The bone marrow microenvironment (BMM) has highly specialized anatomical characteristics that provide a sanctuary place for hematopoietic stem cells (HSCs) that allow appropriate proliferation, maintenance, and self-renewal capacity. Several cell types contribute to the constitution and function of the bone marrow niche. Interestingly, uncovering the secrets of BMM and its interaction with HSCs in health paved the road for research aiming at better understanding the concept of leukemic stem cells (LSCs) and their altered niche. In fact, they share many signals that are responsible for interactions between LSCs and the bone marrow niche, due to several biological similarities between LSCs and HSCs. On the other hand, LSCs differ from HSCs in their abnormal activation of important signaling pathways that regulate survival, proliferation, drug resistance, invasion, and spread. Targeting these altered niches can help in better treatment choices for hematological malignancies and bone marrow disorders in general and acute myeloid leukemia (AML) in particular. Moreover, targeting those niches may help in decreasing the emergence of drug resistance and lower the relapse rate. In this article, the authors reviewed the most recent literature on bone marrow niches and their relations with either normal HSCs and AML cells/LSC, by focusing on pathogenetic and therapeutic implications.
Collapse
Affiliation(s)
- Shaimaa Khattab
- Biobank of Research, IRCCS Azienda Ospedaliera-Universitaria di Bologna Policlinico di S. Orsola, 40138 Bologna, Italy
- Department of Medical and Surgical Sciences, Bologna University School of Medicine, 40138 Bologna, Italy
- Medical Research Institute, Hematology department, Alexandria University, Alexandria 21561, Egypt
| | - Manal El Sorady
- Department of Internal Medicine, Faculty of Medicine, Alexandria University, Alexandria 5310002, Egypt
| | - Ashraf El-Ghandour
- Department of Internal Medicine, Faculty of Medicine, Alexandria University, Alexandria 5310002, Egypt
| | - Giuseppe Visani
- Hematology and Stem Cell Transplant Center, Azienda Ospedaliera Marche Nord, 61121 Pesaro, Italy
| | - Pier Paolo Piccaluga
- Biobank of Research, IRCCS Azienda Ospedaliera-Universitaria di Bologna Policlinico di S. Orsola, 40138 Bologna, Italy
- Department of Medical and Surgical Sciences, Bologna University School of Medicine, 40138 Bologna, Italy
| |
Collapse
|
34
|
Chu X, Tian W, Ning J, Xiao G, Zhou Y, Wang Z, Zhai Z, Tanzhu G, Yang J, Zhou R. Cancer stem cells: advances in knowledge and implications for cancer therapy. Signal Transduct Target Ther 2024; 9:170. [PMID: 38965243 PMCID: PMC11224386 DOI: 10.1038/s41392-024-01851-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/27/2024] [Accepted: 04/28/2024] [Indexed: 07/06/2024] Open
Abstract
Cancer stem cells (CSCs), a small subset of cells in tumors that are characterized by self-renewal and continuous proliferation, lead to tumorigenesis, metastasis, and maintain tumor heterogeneity. Cancer continues to be a significant global disease burden. In the past, surgery, radiotherapy, and chemotherapy were the main cancer treatments. The technology of cancer treatments continues to develop and advance, and the emergence of targeted therapy, and immunotherapy provides more options for patients to a certain extent. However, the limitations of efficacy and treatment resistance are still inevitable. Our review begins with a brief introduction of the historical discoveries, original hypotheses, and pathways that regulate CSCs, such as WNT/β-Catenin, hedgehog, Notch, NF-κB, JAK/STAT, TGF-β, PI3K/AKT, PPAR pathway, and their crosstalk. We focus on the role of CSCs in various therapeutic outcomes and resistance, including how the treatments affect the content of CSCs and the alteration of related molecules, CSCs-mediated therapeutic resistance, and the clinical value of targeting CSCs in patients with refractory, progressed or advanced tumors. In summary, CSCs affect therapeutic efficacy, and the treatment method of targeting CSCs is still difficult to determine. Clarifying regulatory mechanisms and targeting biomarkers of CSCs is currently the mainstream idea.
Collapse
Affiliation(s)
- Xianjing Chu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Wentao Tian
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jiaoyang Ning
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Gang Xiao
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yunqi Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Ziqi Wang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Zhuofan Zhai
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Guilong Tanzhu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Jie Yang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Rongrong Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China.
| |
Collapse
|
35
|
Huang D, Yu Z, Lu H, Jiang P, Qian X, Han Y, Qian P. Adhesion GPCR ADGRE2 Maintains Proteostasis to Promote Progression in Acute Myeloid Leukemia. Cancer Res 2024; 84:2090-2108. [PMID: 39082681 DOI: 10.1158/0008-5472.can-23-2314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 01/19/2024] [Accepted: 03/28/2024] [Indexed: 08/15/2024]
Abstract
Acute myeloid leukemia (AML) is an aggressive and heterogeneous hematologic malignancy. In elderly patients, AML incidence is high and has a poor prognosis due to a lack of effective therapies. G protein-coupled receptors (GPCR) play integral roles in physiologic processes and human diseases. Particularly, one third of adhesion GPCRs, the second largest group of GPCRs, are highly expressed in hematopoietic stem and progenitor cells or lineage cells. Here, we investigate the role of adhesion GPCRs in AML and whether they could be harnessed as antileukemia targets. Systematic screening of the impact of adhesion GPCRs on AML functionality by bioinformatic and functional analyses revealed high expression of ADGRE2 in AML, particularly in leukemic stem cells, which is associated with poor patient outcomes. Silencing ADGRE2 not only exerts antileukemic effects in AML cell lines and cells derived from patients with AML in vitro, but also delays AML progression in xenograft models in vivo. Mechanistically, ADGRE2 activates phospholipase Cβ/protein kinase C/MEK/ERK signaling to enhance the expression of AP1 and transcriptionally drive the expression of DUSP1, a protein phosphatase. DUSP1 dephosphorylates Ser16 in the J-domain of the co-chaperone DNAJB1, which facilitates the DNAJB1-HSP70 interaction and maintenance of proteostasis in AML. Finally, combined inhibition of MEK, AP1, and DUSP1 exhibits robust therapeutic efficacy in AML xenograft mouse models. Collectively, this study deciphers the roles and mechanisms of ADGRE2 in AML and provides a promising therapeutic strategy for treating AML. Significance: Increased expression of the adhesion GPCR member ADGRE2 in AML supports leukemia stem cell self-renewal and leukemogenesis by modulating proteostasis via an MEK/AP1/DUSP1 axis, which can be targeted to suppress AML progression.
Collapse
MESH Headings
- Animals
- Humans
- Mice
- Cell Line, Tumor
- Cell Proliferation
- Disease Progression
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/genetics
- Mice, Inbred NOD
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Proteostasis
- Receptors, G-Protein-Coupled/metabolism
- Receptors, G-Protein-Coupled/genetics
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Deyu Huang
- Bone Marrow Transplantation Center of the First Affiliated Hospital, Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- State Key Laboratory of Experimental Hematology, Institute of Hematology, Zhejiang University and Zhejiang Provincial Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Zebin Yu
- Bone Marrow Transplantation Center of the First Affiliated Hospital, Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- State Key Laboratory of Experimental Hematology, Institute of Hematology, Zhejiang University and Zhejiang Provincial Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Huan Lu
- Bone Marrow Transplantation Center of the First Affiliated Hospital, Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- State Key Laboratory of Experimental Hematology, Institute of Hematology, Zhejiang University and Zhejiang Provincial Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Penglei Jiang
- Bone Marrow Transplantation Center of the First Affiliated Hospital, Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- State Key Laboratory of Experimental Hematology, Institute of Hematology, Zhejiang University and Zhejiang Provincial Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Xinyue Qian
- Bone Marrow Transplantation Center of the First Affiliated Hospital, Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- State Key Laboratory of Experimental Hematology, Institute of Hematology, Zhejiang University and Zhejiang Provincial Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Yingli Han
- Bone Marrow Transplantation Center of the First Affiliated Hospital, Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Pengxu Qian
- Bone Marrow Transplantation Center of the First Affiliated Hospital, Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- State Key Laboratory of Experimental Hematology, Institute of Hematology, Zhejiang University and Zhejiang Provincial Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, China
| |
Collapse
|
36
|
Choi HS, Kim BS, Yoon S, Oh SO, Lee D. Leukemic Stem Cells and Hematological Malignancies. Int J Mol Sci 2024; 25:6639. [PMID: 38928344 PMCID: PMC11203822 DOI: 10.3390/ijms25126639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
The association between leukemic stem cells (LSCs) and leukemia development has been widely established in the context of genetic alterations, epigenetic pathways, and signaling pathway regulation. Hematopoietic stem cells are at the top of the bone marrow hierarchy and can self-renew and progressively generate blood and immune cells. The microenvironment, niche cells, and complex signaling pathways that regulate them acquire genetic mutations and epigenetic alterations due to aging, a chronic inflammatory environment, stress, and cancer, resulting in hematopoietic stem cell dysregulation and the production of abnormal blood and immune cells, leading to hematological malignancies and blood cancer. Cells that acquire these mutations grow at a faster rate than other cells and induce clone expansion. Excessive growth leads to the development of blood cancers. Standard therapy targets blast cells, which proliferate rapidly; however, LSCs that can induce disease recurrence remain after treatment, leading to recurrence and poor prognosis. To overcome these limitations, researchers have focused on the characteristics and signaling systems of LSCs and therapies that target them to block LSCs. This review aims to provide a comprehensive understanding of the types of hematopoietic malignancies, the characteristics of leukemic stem cells that cause them, the mechanisms by which these cells acquire chemotherapy resistance, and the therapies targeting these mechanisms.
Collapse
Affiliation(s)
- Hee-Seon Choi
- Department of Convergence Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea;
| | - Byoung Soo Kim
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan 50612, Republic of Korea;
| | - Sik Yoon
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (S.Y.); (S.-O.O.)
| | - Sae-Ock Oh
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (S.Y.); (S.-O.O.)
| | - Dongjun Lee
- Department of Convergence Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea;
- Transplantation Research Center, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea
| |
Collapse
|
37
|
Hybel TE, Jensen SH, Rodrigues MA, Hybel TE, Pedersen MN, Qvick SH, Enemark MH, Bill M, Rosenberg CA, Ludvigsen M. Imaging Flow Cytometry and Convolutional Neural Network-Based Classification Enable Discrimination of Hematopoietic and Leukemic Stem Cells in Acute Myeloid Leukemia. Int J Mol Sci 2024; 25:6465. [PMID: 38928171 PMCID: PMC11203419 DOI: 10.3390/ijms25126465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Acute myeloid leukemia (AML) is a heterogenous blood cancer with a dismal prognosis. It emanates from leukemic stem cells (LSCs) arising from the genetic transformation of hematopoietic stem cells (HSCs). LSCs hold prognostic value, but their molecular and immunophenotypic heterogeneity poses challenges: there is no single marker for identifying all LSCs across AML samples. We hypothesized that imaging flow cytometry (IFC) paired with artificial intelligence-driven image analysis could visually distinguish LSCs from HSCs based solely on morphology. Initially, a seven-color IFC panel was employed to immunophenotypically identify LSCs and HSCs in bone marrow samples from five AML patients and ten healthy donors, respectively. Next, we developed convolutional neural network (CNN) models for HSC-LSC discrimination using brightfield (BF), side scatter (SSC), and DNA images. Classification using only BF images achieved 86.96% accuracy, indicating significant morphological differences. Accuracy increased to 93.42% when combining BF with DNA images, highlighting differences in nuclear morphology, although DNA images alone were inadequate for accurate HSC-LSC discrimination. Model development using SSC images revealed minor granularity differences. Performance metrics varied substantially between AML patients, indicating considerable morphologic variations among LSCs. Overall, we demonstrate proof-of-concept results for accurate CNN-based HSC-LSC differentiation, instigating the development of a novel technique within AML monitoring.
Collapse
Affiliation(s)
- Trine Engelbrecht Hybel
- Department of Hematology, Aarhus University Hospital, 8200 Aarhus N, Denmark; (T.E.H.); (M.H.E.)
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus N, Denmark
| | - Sofie Hesselberg Jensen
- Department of Hematology, Aarhus University Hospital, 8200 Aarhus N, Denmark; (T.E.H.); (M.H.E.)
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus N, Denmark
| | | | - Thomas Engelbrecht Hybel
- Department of Hematology, Aarhus University Hospital, 8200 Aarhus N, Denmark; (T.E.H.); (M.H.E.)
| | - Maya Nautrup Pedersen
- Department of Hematology, Aarhus University Hospital, 8200 Aarhus N, Denmark; (T.E.H.); (M.H.E.)
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus N, Denmark
| | - Signe Håkansson Qvick
- Department of Hematology, Aarhus University Hospital, 8200 Aarhus N, Denmark; (T.E.H.); (M.H.E.)
| | - Marie Hairing Enemark
- Department of Hematology, Aarhus University Hospital, 8200 Aarhus N, Denmark; (T.E.H.); (M.H.E.)
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus N, Denmark
| | - Marie Bill
- Department of Hematology, Aarhus University Hospital, 8200 Aarhus N, Denmark; (T.E.H.); (M.H.E.)
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus N, Denmark
| | - Carina Agerbo Rosenberg
- Department of Hematology, Aarhus University Hospital, 8200 Aarhus N, Denmark; (T.E.H.); (M.H.E.)
| | - Maja Ludvigsen
- Department of Hematology, Aarhus University Hospital, 8200 Aarhus N, Denmark; (T.E.H.); (M.H.E.)
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus N, Denmark
| |
Collapse
|
38
|
Jo MY, Jeong YJ, Song KH, Choi YH, Kwon TK, Chang YC. 4-O-Methylascochlorin Synergistically Enhances 5-Fluorouracil-Induced Apoptosis by Inhibiting the Wnt/β-Catenin Signaling Pathway in Colorectal Cancer Cells. Int J Mol Sci 2024; 25:5746. [PMID: 38891932 PMCID: PMC11172374 DOI: 10.3390/ijms25115746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
4-O-Methyl-ascochlorin (MAC), a derivative of the prenyl-phenol antibiotic ascochlorin extracted from the fungus Ascochyta viciae, shows anticarcinogenic effects on various cancer cells. 5-Fluorouracil (5-FU) is used to treat colorectal cancer (CRC); however, its efficacy must be enhanced. In this study, we investigated the molecular mechanisms by which MAC acts synergistically with 5-FU to inhibit cell proliferation and induce apoptosis in CRC cells. MAC enhanced the cytotoxic effects of 5-FU by suppressing the Akt/mTOR/p70S6K and Wnt/β-catenin signaling pathways. It also reduced the viability of 5-FU-resistant (5-FU-R) cells. Furthermore, expression of anti-apoptosis-related proteins and cancer stem-like cell (CSC) markers by 5-FU-R cells decreased in response to MAC. Similar to MAC, the knockdown of CTNNB1 induced apoptosis and reduced expression of mRNA encoding CRC markers in 5-FU-R cells. In summary, these results suggest that MAC and other β-catenin modulators may be useful in overcoming the 5-FU resistance of CRC cells.
Collapse
Affiliation(s)
- Min-Young Jo
- Research Institute of Biomedical Engineering and Department of Cell Biology, Daegu Catholic University School of Medicine, Daegu 42472, Republic of Korea
| | - Yun-Jeong Jeong
- Research Institute of Biomedical Engineering and Department of Cell Biology, Daegu Catholic University School of Medicine, Daegu 42472, Republic of Korea
| | - Kwon-Ho Song
- Research Institute of Biomedical Engineering and Department of Cell Biology, Daegu Catholic University School of Medicine, Daegu 42472, Republic of Korea
| | - Yung Hyun Choi
- Department of Biochemistry, College of Korean Medicine, Dong-Eui University, Busan 47227, Republic of Korea
| | - Taeg Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, Daegu 42601, Republic of Korea
| | - Young-Chae Chang
- Research Institute of Biomedical Engineering and Department of Cell Biology, Daegu Catholic University School of Medicine, Daegu 42472, Republic of Korea
| |
Collapse
|
39
|
Sloan AR, Silver DJ, Kint S, Gallo M, Lathia JD. Cancer stem cell hypothesis 2.0 in glioblastoma: Where are we now and where are we going? Neuro Oncol 2024; 26:785-795. [PMID: 38394444 PMCID: PMC11066900 DOI: 10.1093/neuonc/noae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024] Open
Abstract
Over the past 2 decades, the cancer stem cell (CSC) hypothesis has provided insight into many malignant tumors, including glioblastoma (GBM). Cancer stem cells have been identified in patient-derived tumors and in some mouse models, allowing for a deeper understanding of cellular and molecular mechanisms underlying GBM growth and therapeutic resistance. The CSC hypothesis has been the cornerstone of cellular heterogeneity, providing a conceptual and technical framework to explain this longstanding phenotype in GBM. This hypothesis has evolved to fit recent insights into how cellular plasticity drives tumor growth to suggest that CSCs do not represent a distinct population but rather a cellular state with substantial plasticity that can be achieved by non-CSCs under specific conditions. This has further been reinforced by advances in genomics, including single-cell approaches, that have used the CSC hypothesis to identify multiple putative CSC states with unique properties, including specific developmental and metabolic programs. In this review, we provide a historical perspective on the CSC hypothesis and its recent evolution, with a focus on key functional phenotypes, and provide an update on the definition for its use in future genomic studies.
Collapse
Affiliation(s)
- Anthony R Sloan
- Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Case Comprehensive Cancer Center, Cleveland, Ohio, USA
| | - Daniel J Silver
- Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Case Comprehensive Cancer Center, Cleveland, Ohio, USA
| | - Sam Kint
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Marco Gallo
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Pediatrics, Section of Hematology and Oncology, Baylor College of Medicine, Houston, Texas, USA
- Texas Children’s Cancer Center, Texas Children’s Hospital, Houston, Texas, USA
| | - Justin D Lathia
- Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Case Comprehensive Cancer Center, Cleveland, Ohio, USA
- Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
40
|
Loh JJ, Ma S. Hallmarks of cancer stemness. Cell Stem Cell 2024; 31:617-639. [PMID: 38701757 DOI: 10.1016/j.stem.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/11/2024] [Accepted: 04/03/2024] [Indexed: 05/05/2024]
Abstract
Cancer stemness is recognized as a key component of tumor development. Previously coined "cancer stem cells" (CSCs) and believed to be a rare population with rigid hierarchical organization, there is good evidence to suggest that these cells exhibit a plastic cellular state influenced by dynamic CSC-niche interplay. This revelation underscores the need to reevaluate the hallmarks of cancer stemness. Herein, we summarize the techniques used to identify and characterize the state of these cells and discuss their defining and emerging hallmarks, along with their enabling and associated features. We also highlight potential future directions in this field of research.
Collapse
Affiliation(s)
- Jia-Jian Loh
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Stephanie Ma
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong SAR, China; Laboratory of Synthetic Chemistry and Chemical Biology, Hong Kong Science and Technology Park, Hong Kong SAR, China; Centre for Translational and Stem Cell Biology, Hong Kong Science and Technology Park, Hong Kong SAR, China.
| |
Collapse
|
41
|
Ai CJ, Chen LJ, Guo LX, Wang YP, Zhao ZY. Gossypol acetic acid regulates leukemia stem cells by degrading LRPPRC via inhibiting IL-6/JAK1/STAT3 signaling or resulting mitochondrial dysfunction. World J Stem Cells 2024; 16:444-458. [PMID: 38690512 PMCID: PMC11056636 DOI: 10.4252/wjsc.v16.i4.444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/11/2024] [Accepted: 03/14/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Leukemia stem cells (LSCs) are found to be one of the main factors contributing to poor therapeutic effects in acute myeloid leukemia (AML), as they are protected by the bone marrow microenvironment (BMM) against conventional therapies. Gossypol acetic acid (GAA), which is extracted from the seeds of cotton plants, exerts anti-tumor roles in several types of cancer and has been reported to induce apoptosis of LSCs by inhibiting Bcl2. AIM To investigate the exact roles of GAA in regulating LSCs under different microenvironments and the exact mechanism. METHODS In this study, LSCs were magnetically sorted from AML cell lines and the CD34+CD38- population was obtained. The expression of leucine-rich pentatricopeptide repeat-containing protein (LRPPRC) and forkhead box M1 (FOXM1) was evaluated in LSCs, and the effects of GAA on malignancies and mitochondrial function were measured. RESULTS LRPPRC was found to be upregulated, and GAA inhibited cell proliferation by degrading LRPPRC. GAA induced LRPPRC degradation and inhibited the activation of interleukin 6 (IL-6)/janus kinase (JAK) 1/signal transducer and activator of transcription (STAT) 3 signaling, enhancing chemosensitivity in LSCs against conventional chemotherapies, including L-Asparaginase, Dexamethasone, and cytarabine. GAA was also found to downregulate FOXM1 indirectly by regulating LRPPRC. Furthermore, GAA induced reactive oxygen species accumulation, disturbed mitochondrial homeostasis, and caused mitochondrial dysfunction. By inhibiting IL-6/JAK1/STAT3 signaling via degrading LRPPRC, GAA resulted in the elimination of LSCs. Meanwhile, GAA induced oxidative stress and subsequent cell damage by causing mitochondrial damage. CONCLUSION Taken together, the results indicate that GAA might overcome the BMM protective effect and be considered as a novel and effective combination therapy for AML.
Collapse
Affiliation(s)
- Cheng-Jin Ai
- Department of Laboratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 641000, Sichuan Province, China
| | - Ling-Juan Chen
- Department of Laboratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 641000, Sichuan Province, China
| | - Li-Xuan Guo
- Department of Laboratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 641000, Sichuan Province, China
| | - Ya-Ping Wang
- Department of Ophthalmology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 641000, Sichuan Province, China
| | - Zi-Yi Zhao
- Central Laboratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 641000, Sichuan Province, China
- Traditional Chinese Medicine Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu 641000, Sichuan Province, China.
| |
Collapse
|
42
|
Hollands CG, Boyd AL, Zhao X, Reid JC, Henly C, ElRafie A, Boylan D, Broder E, Kalau O, Johnson P, Mark A, McNicol J, Xenocostas A, Berg T, Foley R, Trus M, Leber B, Garcia-Horton A, Campbell C, Bhatia M. Identification of cells of leukemic stem cell origin with non-canonical regenerative properties. Cell Rep Med 2024; 5:101485. [PMID: 38582086 PMCID: PMC11031376 DOI: 10.1016/j.xcrm.2024.101485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 10/19/2023] [Accepted: 03/04/2024] [Indexed: 04/08/2024]
Abstract
Despite most acute myeloid leukemia (AML) patients entering remission following chemotherapy, outcomes remain poor due to surviving leukemic cells that contribute to relapse. The nature of these enduring cells is poorly understood. Here, through temporal single-cell transcriptomic characterization of AML hierarchical regeneration in response to chemotherapy, we reveal a cell population: AML regeneration enriched cells (RECs). RECs are defined by CD74/CD68 expression, and although derived from leukemic stem cells (LSCs), are devoid of stem/progenitor capacity. Based on REC in situ proximity to CD34-expressing cells identified using spatial transcriptomics on AML patient bone marrow samples, RECs demonstrate the ability to augment or reduce leukemic regeneration in vivo based on transfusion or depletion, respectively. Furthermore, RECs are prognostic for patient survival as well as predictive of treatment failure in AML cohorts. Our study reveals RECs as a previously unknown functional catalyst of LSC-driven regeneration contributing to the non-canonical framework of AML regeneration.
Collapse
Affiliation(s)
- Cameron G Hollands
- Michael G. DeGroote School of Medicine, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Allison L Boyd
- Michael G. DeGroote School of Medicine, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Xueli Zhao
- Michael G. DeGroote School of Medicine, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Jennifer C Reid
- Michael G. DeGroote School of Medicine, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Charisa Henly
- Michael G. DeGroote School of Medicine, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Amro ElRafie
- Michael G. DeGroote School of Medicine, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - David Boylan
- Michael G. DeGroote School of Medicine, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Emily Broder
- Michael G. DeGroote School of Medicine, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Olivia Kalau
- Michael G. DeGroote School of Medicine, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Paige Johnson
- Michael G. DeGroote School of Medicine, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Alyssa Mark
- Michael G. DeGroote School of Medicine, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Jamie McNicol
- Michael G. DeGroote School of Medicine, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Anargyros Xenocostas
- Department of Medicine, Division of Hematology, Schulich School of Medicine, University of Western Ontario, London, Ontario N6A 3K7, Canada; Hematology Exploration and Applications in Leukemia (HEAL) Program, Hamilton, ON, Canada
| | - Tobias Berg
- Hematology Exploration and Applications in Leukemia (HEAL) Program, Hamilton, ON, Canada; Department of Oncology, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Ronan Foley
- Hematology Exploration and Applications in Leukemia (HEAL) Program, Hamilton, ON, Canada; Department of Oncology, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Michael Trus
- Hematology Exploration and Applications in Leukemia (HEAL) Program, Hamilton, ON, Canada; Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Brian Leber
- Hematology Exploration and Applications in Leukemia (HEAL) Program, Hamilton, ON, Canada; Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Alejandro Garcia-Horton
- Hematology Exploration and Applications in Leukemia (HEAL) Program, Hamilton, ON, Canada; Department of Oncology, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Clinton Campbell
- Hematology Exploration and Applications in Leukemia (HEAL) Program, Hamilton, ON, Canada; Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Mickie Bhatia
- Michael G. DeGroote School of Medicine, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada; Hematology Exploration and Applications in Leukemia (HEAL) Program, Hamilton, ON, Canada.
| |
Collapse
|
43
|
Kim D, Kim S, Song H, Gwak D, Min S, Byun JM, Koh Y, Hong J, Yoon S, Yun H, Shin D. Pursuing dynamics of minimal residual leukemic subclones in relapsed and refractory acute myeloid leukemia during conventional therapy. Cancer Med 2024; 13:e7182. [PMID: 38591109 PMCID: PMC11002636 DOI: 10.1002/cam4.7182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/23/2024] [Accepted: 03/29/2024] [Indexed: 04/10/2024] Open
Abstract
BACKGROUND Acute myeloid leukemia (AML) is characterized by clonal heterogeneity, leading to frequent relapses and drug resistance despite intensive clinical therapy. Although AML's clonal architecture has been addressed in many studies, practical monitoring of dynamic changes in those subclones during relapse and treatment is still understudied. METHOD Fifteen longitudinal bone marrow (BM) samples were collected from three relapsed and refractory (R/R) AML patients. Using droplet digital polymerase chain reaction (ddPCR), the frequencies of patient's leukemic variants were assessed in seven cell populations that were isolated from each BM sample based on cellular phenotypes. By quantifying mutant clones at the diagnosis, remission, and relapse stages, the distribution of AML subclones was sequentially monitored. RESULTS Minimal residual (MR) leukemic subclones exhibit heterogeneous distribution among BM cell populations, including mature leukocyte populations. During AML progression, these subclones undergo active phenotypic transitions and repopulate into distinct cell population regardless of normal hematopoiesis hierarchic order. Of these, MR subclones in progenitor populations of patient BM predominantly carry MR leukemic properties, leading to more robust expansion and stubborn persistence than those in mature populations. Moreover, a minor subset of MR leukemic subclones could be sustained at an extremely low frequency without clonal expansion during relapse. CONCLUSIONS In this study, we observed treatment persistent MR leukemic subclones and their phenotypic changes during the treatment process of R/R AML patients. This underscores the importance of preemptive inhibition of clonal promiscuity in R/R AML, proposing a practical method for monitoring AML MR subclones.
Collapse
Affiliation(s)
- Dongchan Kim
- Cancer Research InstituteSeoul National University College of MedicineSeoulRepublic of Korea
- Center for Medical InnovationSeoul National University HospitalSeoulRepublic of Korea
| | - Sheehyun Kim
- Center for Medical InnovationSeoul National University HospitalSeoulRepublic of Korea
- Center for Precision MedicineSeoul National University HospitalSeoulRepublic of Korea
| | - Hyojin Song
- Center for Medical InnovationSeoul National University HospitalSeoulRepublic of Korea
- Center for Precision MedicineSeoul National University HospitalSeoulRepublic of Korea
| | - Daehyeon Gwak
- Cancer Research InstituteSeoul National University College of MedicineSeoulRepublic of Korea
- Center for Medical InnovationSeoul National University HospitalSeoulRepublic of Korea
| | - Suji Min
- Cancer Research InstituteSeoul National University College of MedicineSeoulRepublic of Korea
- Center for Medical InnovationSeoul National University HospitalSeoulRepublic of Korea
| | - Ja Min Byun
- Cancer Research InstituteSeoul National University College of MedicineSeoulRepublic of Korea
- Center for Medical InnovationSeoul National University HospitalSeoulRepublic of Korea
- Department of Internal MedicineSeoul National University HospitalSeoulRepublic of Korea
| | - Youngil Koh
- Cancer Research InstituteSeoul National University College of MedicineSeoulRepublic of Korea
- Center for Medical InnovationSeoul National University HospitalSeoulRepublic of Korea
- Department of Internal MedicineSeoul National University HospitalSeoulRepublic of Korea
| | - Junshik Hong
- Cancer Research InstituteSeoul National University College of MedicineSeoulRepublic of Korea
- Center for Medical InnovationSeoul National University HospitalSeoulRepublic of Korea
- Department of Internal MedicineSeoul National University HospitalSeoulRepublic of Korea
| | - Sung‐Soo Yoon
- Cancer Research InstituteSeoul National University College of MedicineSeoulRepublic of Korea
- Center for Medical InnovationSeoul National University HospitalSeoulRepublic of Korea
- Department of Internal MedicineSeoul National University HospitalSeoulRepublic of Korea
| | - Hongseok Yun
- Center for Medical InnovationSeoul National University HospitalSeoulRepublic of Korea
- Center for Precision MedicineSeoul National University HospitalSeoulRepublic of Korea
| | - Dong‐Yeop Shin
- Cancer Research InstituteSeoul National University College of MedicineSeoulRepublic of Korea
- Center for Medical InnovationSeoul National University HospitalSeoulRepublic of Korea
- Department of Internal MedicineSeoul National University HospitalSeoulRepublic of Korea
| |
Collapse
|
44
|
Cruz SM, Iranpur KR, Judge SJ, Ames E, Sturgill IR, Farley LE, Darrow MA, Crowley JS, Monjazeb AM, Murphy WJ, Canter RJ. Low-Dose Sorafenib Promotes Cancer Stem Cell Expansion and Accelerated Tumor Progression in Soft Tissue Sarcomas. Int J Mol Sci 2024; 25:3351. [PMID: 38542325 PMCID: PMC10969893 DOI: 10.3390/ijms25063351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/14/2024] [Accepted: 03/14/2024] [Indexed: 08/03/2024] Open
Abstract
The cancer stem cell (CSC) hypothesis postulates that heterogeneous human cancers harbor a population of stem-like cells which are resistant to cytotoxic therapies, thus providing a reservoir of relapse following conventional therapies like chemotherapy and radiation (RT). CSCs have been observed in multiple human cancers, and their presence has been correlated with worse clinical outcomes. Here, we sought to evaluate the impact of drug dosing of the multi-tyrosine kinase inhibitor, sorafenib, on CSC and non-CSCs in soft tissue sarcoma (STS) models, hypothesizing differential effects of sorafenib based on dose and target cell population. In vitro, human cancer cell lines and primary STS from surgical specimens were exposed to escalating doses of sorafenib to determine cell viability and expression of CSC marker aldehyde dehydrogenase (ALDH). In vivo, ALDHbright CSCs were isolated, exposed to sorafenib, and xenograft growth and survival analyses were performed. We observed that sarcoma CSCs appear to paradoxically respond to the tyrosine kinase inhibitor sorafenib at low doses with increased proliferation and stem-like function of CSCs, whereas anti-viability effects dominated at higher doses. Importantly, STS patients receiving neoadjuvant sorafenib and RT on a clinical trial (NCT00864032) showed increased CSCs post therapy, and higher ALDH scores post therapy were associated with worse metastasis-free survival. These data suggest that low-dose sorafenib may promote the CSC phenotype in STS with clinically significant effects, including increased tumor growth and higher rates of metastasis formation in sarcoma patients.
Collapse
Affiliation(s)
- Sylvia M. Cruz
- Division of Surgical Oncology, Department of Surgery, University of California Davis, Sacramento, CA 95817, USA
| | - Khurshid R. Iranpur
- Division of Surgical Oncology, Department of Surgery, University of California Davis, Sacramento, CA 95817, USA
| | - Sean J. Judge
- Division of Surgical Oncology, Department of Surgery, University of California Davis, Sacramento, CA 95817, USA
| | - Erik Ames
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Ian R. Sturgill
- Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Lauren E. Farley
- Division of Surgical Oncology, Department of Surgery, University of California Davis, Sacramento, CA 95817, USA
| | - Morgan A. Darrow
- Department of Pathology and Laboratory Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Jiwon Sarah Crowley
- Division of Surgical Oncology, Department of Surgery, University of California Davis, Sacramento, CA 95817, USA
| | - Arta M. Monjazeb
- Department of Radiation Oncology, University of California Davis, Sacramento, CA 95817, USA
| | - William J. Murphy
- Department of Dermatology, University of California Davis, Sacramento, CA 95817, USA;
| | - Robert J. Canter
- Division of Surgical Oncology, Department of Surgery, University of California Davis, Sacramento, CA 95817, USA
| |
Collapse
|
45
|
Paudel BB, Tan SF, Fox TE, Ung J, Golla U, Shaw JJP, Dunton W, Lee I, Fares WA, Patel S, Sharma A, Viny AD, Barth BM, Tallman MS, Cabot M, Garrett-Bakelman FE, Levine RL, Kester M, Feith DJ, Claxton D, Janes KA, Loughran TP. Acute myeloid leukemia stratifies as 2 clinically relevant sphingolipidomic subtypes. Blood Adv 2024; 8:1137-1142. [PMID: 38170742 PMCID: PMC10909712 DOI: 10.1182/bloodadvances.2023010535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 10/06/2023] [Accepted: 10/27/2023] [Indexed: 01/05/2024] Open
Affiliation(s)
- B. Bishal Paudel
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA
| | - Su-Fern Tan
- Department of Medicine, Division of Hematology & Oncology, University of Virginia, Charlottesville, VA
| | - Todd E. Fox
- Department of Pharmacology, University of Virginia, Charlottesville, VA
| | - Johnson Ung
- Department of Medicine, Division of Hematology & Oncology, University of Virginia, Charlottesville, VA
- Department of Microbiology/Immunology/Cancer Biology, University of Virginia, Charlottesville, VA
| | - Upendarrao Golla
- Department of Medicine, Division of Hematology and Oncology, Pennsylvania State University College of Medicine, Hershey, PA
| | - Jeremy J. P. Shaw
- Department of Medicine, Division of Hematology & Oncology, University of Virginia, Charlottesville, VA
| | - Wendy Dunton
- Department of Medicine, Division of Hematology & Oncology, University of Virginia, Charlottesville, VA
| | - Irene Lee
- Department of Medicine, Division of Hematology & Oncology, University of Virginia, Charlottesville, VA
- Department of Internal Medicine, Baylor College of Medicine, Houston, TX
| | - Wisam A. Fares
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA
| | - Satyam Patel
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA
| | - Arati Sharma
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA
- Penn State Cancer Institute, Hershey, PA
| | - Aaron D. Viny
- Department of Medicine, Division of Hematology & Oncology, and of Genetics & Development, Herbert Irving Comprehensive Cancer Center, New York, NY
- Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY
| | - Brian M. Barth
- Department of Chemistry, Biology, and Health Sciences, South Dakota School of Mines and Technology, Rapid City, SD
- Department of Natural Sciences, University of Alaska Southeast, Juneau, AK
| | - Martin S. Tallman
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Myles Cabot
- Department of Biochemistry & Molecular Biology, East Carolina University, Greenville, NC
- East Carolina Diabetes and Obesity Institute, Brody School of Medicine, East Carolina University, Greenville, NC
| | - Francine E. Garrett-Bakelman
- Department of Medicine, Division of Hematology & Oncology, University of Virginia, Charlottesville, VA
- Department of Biochemistry & Molecular Genetics, University of Virginia, Charlottesville, VA
- University of Virginia Cancer Center, Charlottesville, VA
| | - Ross L. Levine
- Human Oncology and Pathogenesis Program and Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Mark Kester
- Department of Pharmacology, University of Virginia, Charlottesville, VA
| | - David J. Feith
- Department of Medicine, Division of Hematology & Oncology, University of Virginia, Charlottesville, VA
- University of Virginia Cancer Center, Charlottesville, VA
| | - David Claxton
- Department of Medicine, Division of Hematology and Oncology, Pennsylvania State University College of Medicine, Hershey, PA
- Penn State Cancer Institute, Hershey, PA
| | - Kevin A. Janes
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA
- Department of Biochemistry & Molecular Genetics, University of Virginia, Charlottesville, VA
- University of Virginia Cancer Center, Charlottesville, VA
| | - Thomas P. Loughran
- Department of Medicine, Division of Hematology & Oncology, University of Virginia, Charlottesville, VA
- University of Virginia Cancer Center, Charlottesville, VA
| |
Collapse
|
46
|
Han DJ, Kim S, Lee SY, Kang SJ, Moon Y, Kim HS, Kim M, Kim TM. Cellular abundance-based prognostic model associated with deregulated gene expression of leukemic stem cells in acute myeloid leukemia. Front Cell Dev Biol 2024; 12:1345660. [PMID: 38523628 PMCID: PMC10958127 DOI: 10.3389/fcell.2024.1345660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/06/2024] [Indexed: 03/26/2024] Open
Abstract
Background: Previous studies have reported that genes highly expressed in leukemic stem cells (LSC) may dictate the survival probability of patients and expression-based cellular deconvolution may be informative in forecasting prognosis. However, whether the prognosis of acute myeloid leukemia (AML) can be predicted using gene expression and deconvoluted cellular abundances is debatable. Methods: Nine different cell-type abundances of a training set composed of the AML samples of 422 patients, were used to build a model for predicting prognosis by least absolute shrinkage and selection operator Cox regression. This model was validated in two different validation sets, TCGA-LAML and Beat AML (n = 179 and 451, respectively). Results: We introduce a new prognosis predicting model for AML called the LSC activity (LSCA) score, which incorporates the abundance of 5 cell types, granulocyte-monocyte progenitors, common myeloid progenitors, CD45RA + cells, megakaryocyte-erythrocyte progenitors, and multipotent progenitors. Overall survival probabilities between the high and low LSCA score groups were significantly different in TCGA-LAML and Beat AML cohorts (log-rank p-value = 3.3 × 10 - 4 and 4.3 × 10 - 3 , respectively). Also, multivariate Cox regression analysis on these two validation sets shows that LSCA score is independent prognostic factor when considering age, sex, and cytogenetic risk (hazard ratio, HR = 2.17; 95% CI 1.40-3.34; p < 0.001 and HR = 1.20; 95% CI 1.02-1.43; p < 0.03, respectively). The performance of the LSCA score was comparable to other prognostic models, LSC17, APS, and CTC scores, as indicated by the area under the curve. Gene set variation analysis with six LSC-related functional gene sets indicated that high and low LSCA scores are associated with upregulated and downregulated genes in LSCs. Conclusion: We have developed a new prognosis prediction scoring system for AML patients, the LSCA score, which uses deconvoluted cell-type abundance only.
Collapse
Affiliation(s)
- Dong-Jin Han
- Department of Medical Informatics, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sunmin Kim
- Department of Medical Informatics, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seo-Young Lee
- Department of Medical Informatics, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, Republic of Korea
| | - Su Jung Kang
- Department of Medical Informatics, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Youngbeen Moon
- Department of Medical Informatics, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hoon Seok Kim
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Catholic Genetic Laboratory Center, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Myungshin Kim
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Catholic Genetic Laboratory Center, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Tae-Min Kim
- Department of Medical Informatics, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, Republic of Korea
- CMC Institute for Basic Medical Science, The Catholic Medical Center of The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
47
|
Sipos F, Műzes G. Sirtuins Affect Cancer Stem Cells via Epigenetic Regulation of Autophagy. Biomedicines 2024; 12:386. [PMID: 38397988 PMCID: PMC10886574 DOI: 10.3390/biomedicines12020386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Sirtuins (SIRTs) are stress-responsive proteins that regulate several post-translational modifications, partly by acetylation, deacetylation, and affecting DNA methylation. As a result, they significantly regulate several cellular processes. In essence, they prolong lifespan and control the occurrence of spontaneous tumor growth. Members of the SIRT family have the ability to govern embryonic, hematopoietic, and other adult stem cells in certain tissues and cell types in distinct ways. Likewise, they can have both pro-tumor and anti-tumor effects on cancer stem cells, contingent upon the specific tissue from which they originate. The impact of autophagy on cancer stem cells, which varies depending on the specific circumstances, is a very intricate phenomenon that has significant significance for clinical and therapeutic purposes. SIRTs exert an impact on the autophagy process, whereas autophagy reciprocally affects the activity of certain SIRTs. The mechanism behind this connection in cancer stem cells remains poorly understood. This review presents the latest findings that position SIRTs at the point where cancer cells and autophagy interact. Our objective is to highlight the various roles of distinct SIRTs in cancer stem cell-related functions through autophagy. This would demonstrate their significance in the genesis and recurrence of cancer and offer a more precise understanding of their treatment possibilities in relation to autophagy.
Collapse
Affiliation(s)
- Ferenc Sipos
- Immunology Division, Department of Internal Medicine and Hematology, Semmelweis University, 1088 Budapest, Hungary;
| | | |
Collapse
|
48
|
Velasco‐Hernandez T, Trincado JL, Vinyoles M, Closa A, Martínez‐Moreno A, Gutiérrez‐Agüera F, Molina O, Rodríguez‐Cortez VC, Ximeno‐Parpal P, Fernández‐Fuentes N, Petazzi P, Beneyto‐Calabuig S, Velten L, Romecin P, Casquero R, Abollo‐Jiménez F, de la Guardia RD, Lorden P, Bataller A, Lapillonne H, Stam RW, Vives S, Torrebadell M, Fuster JL, Bueno C, Sarry J, Eyras E, Heyn H, Menéndez P. Integrative single-cell expression and functional studies unravels a sensitization to cytarabine-based chemotherapy through HIF pathway inhibition in AML leukemia stem cells. Hemasphere 2024; 8:e45. [PMID: 38435427 PMCID: PMC10895904 DOI: 10.1002/hem3.45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/11/2023] [Accepted: 01/13/2024] [Indexed: 03/05/2024] Open
Abstract
Relapse remains a major challenge in the clinical management of acute myeloid leukemia (AML) and is driven by rare therapy-resistant leukemia stem cells (LSCs) that reside in specific bone marrow niches. Hypoxia signaling maintains cells in a quiescent and metabolically relaxed state, desensitizing them to chemotherapy. This suggests the hypothesis that hypoxia contributes to the chemoresistance of AML-LSCs and may represent a therapeutic target to sensitize AML-LSCs to chemotherapy. Here, we identify HIFhigh and HIFlow specific AML subgroups (inv(16)/t(8;21) and MLLr, respectively) and provide a comprehensive single-cell expression atlas of 119,000 AML cells and AML-LSCs in paired diagnostic-relapse samples from these molecular subgroups. The HIF/hypoxia pathway signature is attenuated in AML-LSCs compared with more differentiated AML cells but is more expressed than in healthy hematopoietic cells. Importantly, chemical inhibition of HIF cooperates with standard-of-care chemotherapy to impair AML growth and to substantially eliminate AML-LSCs in vitro and in vivo. These findings support the HIF pathway in the stem cell-driven drug resistance of AML and unravel avenues for combinatorial targeted and chemotherapy-based approaches to specifically eliminate AML-LSCs.
Collapse
Affiliation(s)
- Talia Velasco‐Hernandez
- Josep Carreras Leukemia Research InstituteBarcelonaSpain
- Red Española de Terapias Avanzadas (TERAV)‐Instituto de Salud Carlos III (ISCIII) (RICORS, RD21/0017/0029)MadridSpain
| | - Juan L. Trincado
- Josep Carreras Leukemia Research InstituteBarcelonaSpain
- Red Española de Terapias Avanzadas (TERAV)‐Instituto de Salud Carlos III (ISCIII) (RICORS, RD21/0017/0029)MadridSpain
| | - Meritxell Vinyoles
- Josep Carreras Leukemia Research InstituteBarcelonaSpain
- Red Española de Terapias Avanzadas (TERAV)‐Instituto de Salud Carlos III (ISCIII) (RICORS, RD21/0017/0029)MadridSpain
| | - Adria Closa
- The John Curtin School of Medical ResearchThe Australian National UniversityCanberraAustralian Capital TerritoryAustralia
- EMBL Australia Partner Laboratory Network at the Australian National UniversityCanberraAustralian Capital TerritoryAustralia
| | | | | | - Oscar Molina
- Josep Carreras Leukemia Research InstituteBarcelonaSpain
- Red Española de Terapias Avanzadas (TERAV)‐Instituto de Salud Carlos III (ISCIII) (RICORS, RD21/0017/0029)MadridSpain
| | - Virginia C. Rodríguez‐Cortez
- Josep Carreras Leukemia Research InstituteBarcelonaSpain
- Red Española de Terapias Avanzadas (TERAV)‐Instituto de Salud Carlos III (ISCIII) (RICORS, RD21/0017/0029)MadridSpain
| | | | | | - Paolo Petazzi
- Josep Carreras Leukemia Research InstituteBarcelonaSpain
- Red Española de Terapias Avanzadas (TERAV)‐Instituto de Salud Carlos III (ISCIII) (RICORS, RD21/0017/0029)MadridSpain
| | - Sergi Beneyto‐Calabuig
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
| | - Lars Velten
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
| | - Paola Romecin
- Josep Carreras Leukemia Research InstituteBarcelonaSpain
- Red Española de Terapias Avanzadas (TERAV)‐Instituto de Salud Carlos III (ISCIII) (RICORS, RD21/0017/0029)MadridSpain
| | | | | | - Rafael D. de la Guardia
- Josep Carreras Leukemia Research InstituteBarcelonaSpain
- GENYO, Center for Genomics and Oncological ResearchPfizer/Universidad de Granada/Junta de AndalucíaGranadaSpain
| | - Patricia Lorden
- CNAG‐CRG, Centre for Genomic Regulation (CRG)Barcelona Institute of Science and Technology (BIST)BarcelonaSpain
| | - Alex Bataller
- Department of HematologyHospital Clínic de BarcelonaBarcelonaSpain
| | - Hélène Lapillonne
- Centre de Recherce Saint‐AntoineArmand‐Trousseau Childrens HospitalParisFrance
| | - Ronald W. Stam
- Princess Maxima Center for Pediatric OncologyUtrechtThe Netherlands
| | - Susana Vives
- Josep Carreras Leukemia Research InstituteBarcelonaSpain
- Hematology DepartmentICO‐Hospital Germans Trias i PujolBarcelonaSpain
| | - Montserrat Torrebadell
- Hematology LaboratoryHospital Sant Joan de DéuBarcelonaSpain
- Leukemia and Other Pediatric Hemopathies. Developmental Tumors Biology Group. Institut de Recerca Hospital Sant Joan de DéuBarcelonaSpain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) ISCIIIMadridSpain
| | - Jose L. Fuster
- Red Española de Terapias Avanzadas (TERAV)‐Instituto de Salud Carlos III (ISCIII) (RICORS, RD21/0017/0029)MadridSpain
- Sección de Oncohematología PediátricaHospital Clínico Universitario Virgen de la Arrixaca and Instituto Murciano de Investigación Biosanitaria (IMIB)MurciaSpain
| | - Clara Bueno
- Josep Carreras Leukemia Research InstituteBarcelonaSpain
- Red Española de Terapias Avanzadas (TERAV)‐Instituto de Salud Carlos III (ISCIII) (RICORS, RD21/0017/0029)MadridSpain
- CIBER‐ONCBarcelonaSpain
| | - Jean‐Emmanuel Sarry
- Centre de Recherches en Cancérologie de ToulouseUniversité de ToulouseInserm U1037, CNRS U5077ToulouseFrance
- LabEx ToucanToulouseFrance
- Équipe Labellisée Ligue Nationale Contre le CancerToulouseFrance
| | - Eduardo Eyras
- The John Curtin School of Medical ResearchThe Australian National UniversityCanberraAustralian Capital TerritoryAustralia
- EMBL Australia Partner Laboratory Network at the Australian National UniversityCanberraAustralian Capital TerritoryAustralia
- Hospital del Mar Medical Research Institute (IMIM)BarcelonaSpain
- Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain
| | - Holger Heyn
- CNAG‐CRG, Centre for Genomic Regulation (CRG)Barcelona Institute of Science and Technology (BIST)BarcelonaSpain
| | - Pablo Menéndez
- Josep Carreras Leukemia Research InstituteBarcelonaSpain
- Red Española de Terapias Avanzadas (TERAV)‐Instituto de Salud Carlos III (ISCIII) (RICORS, RD21/0017/0029)MadridSpain
- CIBER‐ONCBarcelonaSpain
- Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain
- Department of Biomedicine, School of MedicineUniversity of BarcelonaBarcelonaSpain
| |
Collapse
|
49
|
Lin TL, Jaiswal AK, Ritter AJ, Reppas J, Tran TM, Neeb ZT, Katzman S, Thaxton ML, Cohen A, Sanford JR, Rao DS. Targeting IGF2BP3 enhances antileukemic effects of menin-MLL inhibition in MLL-AF4 leukemia. Blood Adv 2024; 8:261-275. [PMID: 38048400 PMCID: PMC10824693 DOI: 10.1182/bloodadvances.2023011132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/03/2023] [Accepted: 11/22/2023] [Indexed: 12/06/2023] Open
Abstract
ABSTRACT RNA-binding proteins (RBPs) are emerging as a novel class of therapeutic targets in cancer, including in leukemia, given their important role in posttranscriptional gene regulation, and have the unexplored potential to be combined with existing therapies. The RBP insulin-like growth factor 2 messenger RNA-binding protein 3 (IGF2BP3) has been found to be a critical regulator of MLL-AF4 leukemogenesis and represents a promising therapeutic target. Here, we study the combined effects of targeting IGF2BP3 and menin-MLL interaction in MLL-AF4-driven leukemia in vitro and in vivo, using genetic inhibition with CRISPR-Cas9-mediated deletion of Igf2bp3 and pharmacologic inhibition of the menin-MLL interaction with multiple commercially available inhibitors. Depletion of Igf2bp3 sensitized MLL-AF4 leukemia to the effects of menin-MLL inhibition on cell growth and leukemic initiating cells in vitro. Mechanistically, we found that both Igf2bp3 depletion and menin-MLL inhibition led to increased differentiation in vitro and in vivo, seen in functional readouts and by gene expression analyses. IGF2BP3 knockdown had a greater effect on increasing survival and attenuating disease than pharmacologic menin-MLL inhibition with small molecule MI-503 alone and showed enhanced antileukemic effects in combination. Our work shows that IGF2BP3 is an oncogenic amplifier of MLL-AF4-mediated leukemogenesis and a potent therapeutic target, providing a paradigm for targeting leukemia at both the transcriptional and posttranscriptional level.
Collapse
Affiliation(s)
- Tasha L. Lin
- Division of Hematology and Oncology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Amit K. Jaiswal
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Alexander J. Ritter
- Department of Molecular, Cell and Developmental Biology and Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, CA
| | - Jenna Reppas
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Tiffany M. Tran
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Zachary T. Neeb
- Department of Molecular, Cell and Developmental Biology and Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, CA
| | - Sol Katzman
- Center for Biomolecular Science & Engineering, University of California Santa Cruz, Santa Cruz, CA
| | - Michelle L. Thaxton
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Amanda Cohen
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Jeremy R. Sanford
- Department of Molecular, Cell and Developmental Biology and Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, CA
- Center for Biomolecular Science & Engineering, University of California Santa Cruz, Santa Cruz, CA
| | - Dinesh S. Rao
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA
- Broad Stem Cell Research Center, University of California, Los Angeles, Los Angeles, CA
| |
Collapse
|
50
|
Scott MT, Liu W, Mitchell R, Clarke CJ, Kinstrie R, Warren F, Almasoudi H, Stevens T, Dunn K, Pritchard J, Drotar ME, Michie AM, Jørgensen HG, Higgins B, Copland M, Vetrie D. Activating p53 abolishes self-renewal of quiescent leukaemic stem cells in residual CML disease. Nat Commun 2024; 15:651. [PMID: 38246924 PMCID: PMC10800356 DOI: 10.1038/s41467-024-44771-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/04/2024] [Indexed: 01/23/2024] Open
Abstract
Whilst it is recognised that targeting self-renewal is an effective way to functionally impair the quiescent leukaemic stem cells (LSC) that persist as residual disease in chronic myeloid leukaemia (CML), developing therapeutic strategies to achieve this have proved challenging. We demonstrate that the regulatory programmes of quiescent LSC in chronic phase CML are similar to that of embryonic stem cells, pointing to a role for wild type p53 in LSC self-renewal. In support of this, increasing p53 activity in primitive CML cells using an MDM2 inhibitor in combination with a tyrosine kinase inhibitor resulted in reduced CFC outputs and engraftment potential, followed by loss of multilineage priming potential and LSC exhaustion when combination treatment was discontinued. Our work provides evidence that targeting LSC self-renewal is exploitable in the clinic to irreversibly impair quiescent LSC function in CML residual disease - with the potential to enable more CML patients to discontinue therapy and remain in therapy-free remission.
Collapse
Affiliation(s)
- Mary T Scott
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Wei Liu
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Rebecca Mitchell
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Cassie J Clarke
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Ross Kinstrie
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Felix Warren
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Hassan Almasoudi
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, UK
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | - Thomas Stevens
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Karen Dunn
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - John Pritchard
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Mark E Drotar
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, UK
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Alison M Michie
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Heather G Jørgensen
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | | | - Mhairi Copland
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - David Vetrie
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|