1
|
Bibi I, Mushtaq S, Lee KC, Park JA, Kim JY. From molecules to medicine: thiol selective bioconjugation in synthesis of diagnostic and therapeutic radiopharmaceuticals. Theranostics 2024; 14:2396-2426. [PMID: 38646656 PMCID: PMC11024863 DOI: 10.7150/thno.95469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 03/21/2024] [Indexed: 04/23/2024] Open
Abstract
Radiolabeling of biomolecules and cells with radiolabeled prosthetic groups has significant implications for nuclear medicine, imaging, and radiotherapy. Achieving site-specific and controlled incorporation of radiolabeled prostheses under mild reaction conditions is crucial for minimizing the impact on the bioactivity of the radiolabeled compounds. The targeting of natural and abundant amino acids during radiolabeling of biomolecules often results in nonspecific and uncontrolled modifications. Cysteine is distinguished by its low natural abundance and unique nucleophilicity. It is therefore an optimal target for site-selective and site-specific radiolabeling of biomolecules under controlled parameters. This review extensively discusses thiol-specific radiolabeled prosthetic groups and provides a critical analysis and comprehensive study of the synthesis of these groups, their in vitro and in vivo stability profiles, reaction kinetics, stability of resulting adducts, and overall impact on the targeting ability of radiolabeled biomolecules. The insights presented here aim to facilitate the development of highly efficient radiopharmaceuticals, initially in preclinical settings and ultimately in clinical applications.
Collapse
Affiliation(s)
- Iqra Bibi
- Affiliation Division of Applied RI, Korea Institute of Radiological & Medical Sciences (KIRAMS), 75 Nowon-ro, Nowon-gu, Seoul 01812, Republic of Korea
- University of Science and Technology (UST), 217, Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Sajid Mushtaq
- Affiliation Division of Applied RI, Korea Institute of Radiological & Medical Sciences (KIRAMS), 75 Nowon-ro, Nowon-gu, Seoul 01812, Republic of Korea
- Department of Nuclear Engineering, Pakistan Institute of Engineering and Applied Sciences (PIEAS), P. O. Nilore, Islamabad 45650, Pakistan
| | - Kyo Chul Lee
- Affiliation Division of Applied RI, Korea Institute of Radiological & Medical Sciences (KIRAMS), 75 Nowon-ro, Nowon-gu, Seoul 01812, Republic of Korea
| | - Ji Ae Park
- Affiliation Division of Applied RI, Korea Institute of Radiological & Medical Sciences (KIRAMS), 75 Nowon-ro, Nowon-gu, Seoul 01812, Republic of Korea
| | - Jung Young Kim
- Affiliation Division of Applied RI, Korea Institute of Radiological & Medical Sciences (KIRAMS), 75 Nowon-ro, Nowon-gu, Seoul 01812, Republic of Korea
| |
Collapse
|
2
|
Prejanò M, Toscano M, Marino T. Periodicity of the Affinity of Lanmodulin for Trivalent Lanthanides and Actinides: Structural and Electronic Insights from Quantum Chemical Calculations. Inorg Chem 2023; 62:7461-7470. [PMID: 37128767 DOI: 10.1021/acs.inorgchem.3c00754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Lanmodulin (LanM) is the first identified macrochelator that has naturally evolved to sequester ions of rare earth elements (REEs) such as Y and all lanthanides, reversibly. This natural protein showed a 106 times better affinity for lanthanide cations than for Ca, which is a naturally abundant and biologically relevant element. Recent experiments have shown that its metal ion binding activity can be further extended to some actinides, like Np, Pu, and Am. For this reason, it was thought that LanM could be adopted for the separation of REE ions and actinides, thus increasing the interest in its potential use for industry-oriented applications. In this work, a systematic study of the affinity of LanM for lanthanides and actinides has been carried out, taking into account all trivalent ions belonging to the 4f (from La to Lu) and 5f (from Ac to Lr) series, starting from their chemistry in solution. On the basis of a recently published nuclear magnetic resonance structure, a model of the LanM-binding site was built and a detailed structural and electronic description of initial aquo- and LanM-metal ion complexes was provided. The obtained binding energies are in agreement with the available experimental data. A possible reason that could explain the origin of the affinity of LanM for these metal ions is also discussed.
Collapse
Affiliation(s)
- Mario Prejanò
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Via P. Bucci, 87036 Rende, Italy
| | - Marirosa Toscano
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Via P. Bucci, 87036 Rende, Italy
| | - Tiziana Marino
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Via P. Bucci, 87036 Rende, Italy
| |
Collapse
|
3
|
Liang J, Liao Y, Wang P, Yang K, Wang Y, Wang K, Zhong B, Zhou D, Cao Q, Li J, Zhao Y, Jiang N. Ferroptosis landscape in prostate cancer from molecular and metabolic perspective. Cell Death Discov 2023; 9:128. [PMID: 37061523 PMCID: PMC10105735 DOI: 10.1038/s41420-023-01430-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 04/17/2023] Open
Abstract
Prostate cancer is a major disease that threatens men's health. Its rapid progression, easy metastasis, and late castration resistance have brought obstacles to treatment. It is necessary to find new effective anticancer methods. Ferroptosis is a novel iron-dependent programmed cell death that plays a role in various cancers. Understanding how ferroptosis is regulated in prostate cancer will help us to use it as a new way to kill cancer cells. In this review, we summarize the regulation and role of ferroptosis in prostate cancer and the relationship with AR from the perspective of metabolism and molecular pathways. We also discuss the feasibility of ferroptosis in prostate cancer treatment and describe current limitations and prospects, providing a reference for future research and clinical application of ferroptosis.
Collapse
Affiliation(s)
- Jiaming Liang
- Tianjin institute of Urology, The Second Hospital of Tianjin Medical University, 300211, Tianjin, China
| | - Yihao Liao
- Tianjin institute of Urology, The Second Hospital of Tianjin Medical University, 300211, Tianjin, China
| | - Pu Wang
- Tianjin institute of Urology, The Second Hospital of Tianjin Medical University, 300211, Tianjin, China
| | - Kun Yang
- School of Future Technology, Xi'an Jiaotong University, 710049, Xi'an, Shaanxi, China
| | - Youzhi Wang
- Tianjin institute of Urology, The Second Hospital of Tianjin Medical University, 300211, Tianjin, China
| | - Keke Wang
- Department of Urology, Tangdu Hospital, The Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Boqiang Zhong
- Tianjin institute of Urology, The Second Hospital of Tianjin Medical University, 300211, Tianjin, China
| | - Diansheng Zhou
- Tianjin institute of Urology, The Second Hospital of Tianjin Medical University, 300211, Tianjin, China
| | - Qian Cao
- Tianjin institute of Urology, The Second Hospital of Tianjin Medical University, 300211, Tianjin, China
| | - Junbo Li
- Tianjin institute of Urology, The Second Hospital of Tianjin Medical University, 300211, Tianjin, China
| | - Yang Zhao
- Department of Radiology, Tianjin Medical University Second Hospital, Tianjin, China
| | - Ning Jiang
- Tianjin institute of Urology, The Second Hospital of Tianjin Medical University, 300211, Tianjin, China.
| |
Collapse
|
4
|
Gonciarz RL, Sakhamuri S, Hooshdaran N, Kumar G, Kim H, Evans MJ, Renslo AR. Elevated labile iron in castration-resistant prostate cancer is targetable with ferrous iron-activatable antiandrogen therapy. Eur J Med Chem 2023; 249:115110. [PMID: 36708680 PMCID: PMC10210592 DOI: 10.1016/j.ejmech.2023.115110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 01/05/2023] [Accepted: 01/07/2023] [Indexed: 01/15/2023]
Abstract
Clinical responses to second generation androgen signaling inhibitors (e.g., enzalutamide) in metastatic castration-resistant prostate cancer (mCRPC) are variable and transient, and are associated with dose limiting toxicities, including rare but severe CNS effects. We hypothesized that changes to iron metabolism coincident with more advanced disease might be leveraged for tumor-selective delivery of antiandrogen therapy. Using the recently described chemical probes SiRhoNox and 18F-TRX in mCRPC models, we found elevated Fe2+ to be a common feature of mCRPC in vitro and in vivo. We next synthesized ferrous-iron activatable drug conjugates of second and third-generation antiandrogens and found these conjugates possessed comparable or enhanced antiproliferative activity across mCRPC cell line models. Mouse pharmacokinetic studies showed that these prototype antiandrogen conjugates are stable in vivo and limited exposure to conjugate or free antiandrogen in the brain. Our results reveal elevated Fe2+ to be a feature of mCRPC that might be leveraged to improve the tolerability and efficacy of antiandrogen therapy.
Collapse
Affiliation(s)
- Ryan L Gonciarz
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, 94158, United States
| | - Sasank Sakhamuri
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, 94158, United States
| | - Nima Hooshdaran
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, 94158, United States
| | - Garima Kumar
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, 94158, United States
| | - Hyunjung Kim
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, 94158, United States
| | - Michael J Evans
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, 94158, United States; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, 94158, United States.
| | - Adam R Renslo
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, 94158, United States; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, 94158, United States.
| |
Collapse
|
5
|
Muir RK, Guerra M, Bogyo MM. Activity-Based Diagnostics: Recent Advances in the Development of Probes for Use with Diverse Detection Modalities. ACS Chem Biol 2022; 17:281-291. [PMID: 35026106 DOI: 10.1021/acschembio.1c00753] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Abnormal enzyme expression and activity is a hallmark of many diseases. Activity-based diagnostics are a class of chemical probes that aim to leverage this dysregulated metabolic signature to produce a detectable signal specific to diseased tissue. In this Review, we highlight recent methodologies employed in activity-based diagnostics that provide exquisite signal sensitivity and specificity in complex biological systems for multiple disease states. We divide these examples based upon their unique signal readout modalities and highlight those that have advanced into clinical trials.
Collapse
Affiliation(s)
- Ryan K. Muir
- Department of Pathology and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Matteo Guerra
- Department of Pathology and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Matthew M. Bogyo
- Department of Pathology and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, United States
| |
Collapse
|
6
|
Schneider G, Wirth M, Keller U, Saur D. Rationale for MYC imaging and targeting in pancreatic cancer. EJNMMI Res 2021; 11:104. [PMID: 34637026 PMCID: PMC8511206 DOI: 10.1186/s13550-021-00843-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/23/2021] [Indexed: 12/11/2022] Open
Abstract
The incidence and lethality of pancreatic ductal adenocarcinoma (PDAC) will continue to increase in the next decade. For most patients, chemotherapeutic combination therapies remain the standard of care. The development and successful implementation of precision oncology in other gastrointestinal tumor entities point to opportunities also for PDAC. Therefore, markers linked to specific therapeutic responses and important subgroups of the disease are needed. The MYC oncogene is a relevant driver in PDAC and is linked to drug resistance and sensitivity. Here, we update recent insights into MYC biology in PDAC, summarize the connections between MYC and drug responses, and point to an opportunity to image MYC non-invasively. In sum, we propose MYC-associated biology as a basis for the development of concepts for precision oncology in PDAC.
Collapse
Affiliation(s)
- Günter Schneider
- Medical Clinic and Policlinic II, Klinikum Rechts Der Isar, TU Munich, 81675, Munich, Germany. .,German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), 69120, Heidelberg, Germany. .,Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, 37075, Göttingen, Germany.
| | - Matthias Wirth
- German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), 69120, Heidelberg, Germany. .,Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, 12203, Berlin, Germany.
| | - Ulrich Keller
- German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), 69120, Heidelberg, Germany.,Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, 12203, Berlin, Germany.,Max-Delbrück-Center for Molecular Medicine, 13125, Berlin, Germany
| | - Dieter Saur
- German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), 69120, Heidelberg, Germany.,Insititute for Translational Cancer Research and Experimental Cancer Therapy, MRI, TU Munich, 81675, Munich, Germany
| |
Collapse
|
7
|
Shibata Y, Yasui H, Higashikawa K, Kuge Y. Transferrin-based radiolabeled probe predicts the sensitivity of human renal cancer cell lines to ferroptosis inducer erastin. Biochem Biophys Rep 2021; 26:100957. [PMID: 33681481 PMCID: PMC7910409 DOI: 10.1016/j.bbrep.2021.100957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 02/14/2021] [Accepted: 02/15/2021] [Indexed: 01/18/2023] Open
Abstract
Ferroptosis induction has been recognized as a novel cancer therapeutic strategy. To effectively apply ferroptosis-targeting cancer therapy to individual patients, a diagnostic indicator for selecting this therapeutic strategy from a number of molecular targeting drugs is needed. However, to date, methods that can predict the efficacy of ferroptosis-targeting treatment have not been established yet. In this study, we focused on the iron metabolic pathway to develop a nuclear imaging technique for diagnosing the susceptibility of cancer cells to ferroptosis. As a nuclear probe, human transferrin (Tf) was labeled with Gallium-68 (68Ga) using 2-(p-isothiocyanatobenzyl)-1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA) as a chelator (68Ga-NOTA-Tf). Western blot assay and clonogenic survival assay with human renal cancer cell lines A498 and 786-O revealed that the protein expression level of transferrin receptor1 (TfR1) and sensitivity to a ferroptosis inducer, erastin, were correlated. A cellular uptake assay with 68Ga-NOTA-Tf revealed that the cancer cells sensitive to erastin highly internalized the 68Ga-NOTA-Tf. Furthermore, treatment with the TfR1 inhibitor ferristatin II reduced the cellular uptake of 68Ga-NOTA-Tf, indicating that the intracellular uptake of the probe was mediated by TfR1. These results suggest that 68Ga-NOTA-Tf can be useful in predicting the sensitivity of cancer cells to ferroptosis inducers.
Collapse
Affiliation(s)
- Yuki Shibata
- Department of Biomedical Imaging, Graduate School of Biomedical Science and Engineering, Hokkaido University, Sapporo, Hokkaido, 060-8638, Japan
- Central Institute of Isotope Science, Hokkaido University, Sapporo, Hokkaido, 060-0815, Japan
| | - Hironobu Yasui
- Department of Biomedical Imaging, Graduate School of Biomedical Science and Engineering, Hokkaido University, Sapporo, Hokkaido, 060-8638, Japan
- Central Institute of Isotope Science, Hokkaido University, Sapporo, Hokkaido, 060-0815, Japan
- Laboratory of Radiation Biology, Department of Applied Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
| | - Kei Higashikawa
- Department of Biomedical Imaging, Graduate School of Biomedical Science and Engineering, Hokkaido University, Sapporo, Hokkaido, 060-8638, Japan
- Central Institute of Isotope Science, Hokkaido University, Sapporo, Hokkaido, 060-0815, Japan
| | - Yuji Kuge
- Department of Biomedical Imaging, Graduate School of Biomedical Science and Engineering, Hokkaido University, Sapporo, Hokkaido, 060-8638, Japan
- Central Institute of Isotope Science, Hokkaido University, Sapporo, Hokkaido, 060-0815, Japan
| |
Collapse
|
8
|
Xia L, Meng X, Wen L, Zhou N, Liu T, Xu X, Wang F, Cheng Z, Yang Z, Zhu H. A Highly Specific Multiple Enhancement Theranostic Nanoprobe for PET/MRI/PAI Image-Guided Radioisotope Combined Photothermal Therapy in Prostate Cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100378. [PMID: 33870644 DOI: 10.1002/smll.202100378] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/05/2021] [Indexed: 06/12/2023]
Abstract
An integrated molecular probe for combined tumor-targeted multimodal imaging and therapy in the era of precision medicine requires a multiplexed platform that simultaneously has high targeting specificity, versatile conjugation capability, and biocompatibility. Here, a novel biocompatible melanin nanoprobe (PMNs-II-813) coupled with a highly specific prostate-specific membrane antigen small molecule inhibitor is developed for the targeted multimodal diagnosis and treatment of prostate cancer. The melanin nanoparticles demonstrate photoacoustic imaging and photothermal therapy (PTT) functionalities via strong near-infrared absorption. The imaging contrast agents 89 Zr and Mn2+ are stably conjugated to the nanoparticles for positron emission tomography (PET) and magnetic resonance imaging (MRI). Fusion PET/MRI with PMNs-II-813 enables the monitoring of treatment effects in real time and lasts for more than 1 week, demonstrating the capability for multimodal theranostics in prostate cancer. Labeling with a therapeutic radionuclide, 131 I, simultaneously endows the nanoprobe with the capability for radioisotope therapy (RIT) and PTT under triple-modal imaging guidance. Combined PTT and RIT has an inhibitory effect on prostate cancer growth (tumor inhibition rate of ≈93% 20 days after treatment), which is significantly better than that with the single treatment. Overall, it is believed that PMNs-II-813 has potential for clinical translation to treat prostate cancer.
Collapse
Affiliation(s)
- Lei Xia
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Xiangxi Meng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Li Wen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Nina Zhou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Teli Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Xiaoxia Xu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Feng Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Zhen Cheng
- Molecular Imaging Program at Stanford (MIPS) and Bio-X Program, Department of Radiology, School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Zhi Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Hua Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| |
Collapse
|
9
|
Fang H, Cavaliere A, Li Z, Huang Y, Marquez-Nostra B. Preclinical Advances in Theranostics for the Different Molecular Subtypes of Breast Cancer. Front Pharmacol 2021; 12:627693. [PMID: 33986665 PMCID: PMC8111013 DOI: 10.3389/fphar.2021.627693] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 02/22/2021] [Indexed: 12/29/2022] Open
Abstract
Breast cancer is the most common cancer in women worldwide. The heterogeneity of breast cancer and drug resistance to therapies make the diagnosis and treatment difficult. Molecular imaging methods with positron emission tomography (PET) and single-photon emission tomography (SPECT) provide useful tools to diagnose, predict, and monitor the response of therapy, contributing to precision medicine for breast cancer patients. Recently, many efforts have been made to find new targets for breast cancer therapy to overcome resistance to standard of care treatments, giving rise to new therapeutic agents to offer more options for patients with breast cancer. The combination of diagnostic and therapeutic strategies forms the foundation of theranostics. Some of these theranostic agents exhibit high potential to be translated to clinic. In this review, we highlight the most recent advances in theranostics of the different molecular subtypes of breast cancer in preclinical studies.
Collapse
Affiliation(s)
- Hanyi Fang
- PET Center, Department of Radiology and Biomedical Imaging, School of Medicine, Yale University, New Haven, CT, United States.,Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Alessandra Cavaliere
- PET Center, Department of Radiology and Biomedical Imaging, School of Medicine, Yale University, New Haven, CT, United States
| | - Ziqi Li
- PET Center, Department of Radiology and Biomedical Imaging, School of Medicine, Yale University, New Haven, CT, United States.,Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiyun Huang
- PET Center, Department of Radiology and Biomedical Imaging, School of Medicine, Yale University, New Haven, CT, United States
| | - Bernadette Marquez-Nostra
- PET Center, Department of Radiology and Biomedical Imaging, School of Medicine, Yale University, New Haven, CT, United States
| |
Collapse
|
10
|
Viitanen R, Moisio O, Lankinen P, Li XG, Koivumäki M, Suilamo S, Tolvanen T, Taimen K, Mali M, Kohonen I, Koskivirta I, Oikonen V, Virtanen H, Santalahti K, Autio A, Saraste A, Pirilä L, Nuutila P, Knuuti J, Jalkanen S, Roivainen A. First-in-Humans Study of 68Ga-DOTA-Siglec-9, a PET Ligand Targeting Vascular Adhesion Protein 1. J Nucl Med 2020; 62:577-583. [PMID: 32817143 PMCID: PMC8049366 DOI: 10.2967/jnumed.120.250696] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/09/2020] [Indexed: 01/13/2023] Open
Abstract
Sialic acid–binding immunoglubulinlike lectin 9 (Siglec-9) is a ligand of vascular adhesion protein 1. A 68Ga-labeled peptide of Siglec-9, 68Ga-DOTA-Siglec-9, holds promise as a novel PET tracer for imaging of inflammation. This first-in-humans study investigated the safety, tolerability, biodistribution, and radiation dosimetry of this radiopharmaceutical. Methods: Six healthy men underwent dynamic whole-body PET/CT. Serial venous blood samples were drawn from 1 to 240 min after intravenous injection of 162 ± 4 MBq of 68Ga-DOTA-Siglec-9. In addition to γ-counting, the plasma samples were analyzed by high-performance liquid chromatography to detect intact tracer and radioactive metabolites. Radiation doses were calculated using the OLINDA/EXM software, version 2.2. In addition, a patient with early rheumatoid arthritis was studied with both 68Ga-DOTA-Siglec-9 and 18F-FDG PET/CT to determine the ability of the new tracer to detect arthritis. Results:68Ga-DOTA-Siglec-9 was well tolerated by all subjects. 68Ga-DOTA-Siglec-9 was rapidly cleared from the blood circulation, and several radioactive metabolites were detected. The organs with the highest absorbed doses were the urinary bladder wall (0.38 mSv/MBq) and kidneys (0.054 mSv/MBq). The mean effective dose was 0.022 mSv/MBq (range, 0.020–0.024 mSv/MBq). Most importantly, however, 68Ga-DOTA-Siglec-9 was comparable to 18F-FDG in detecting arthritis. Conclusion: Intravenous injection of 68Ga-DOTA-Siglec-9 was safe and biodistribution was favorable for testing of the tracer in larger group of patients with rheumatoid arthritis, as is planned for the next phase of clinical trials. The effective radiation dose of 68Ga-DOTA-Siglec-9 was within the same range as the effective radiation doses of other 68Ga-labeled tracers. Injection of 150 MBq of 68Ga-DOTA-Siglec-9 would expose a subject to 3.3 mSv. These findings support the possible repeated clinical use of 68Ga-DOTA-Siglec-9, such as in trials to elucidate the treatment efficacy of novel drug candidates.
Collapse
Affiliation(s)
| | - Olli Moisio
- Turku PET Centre, University of Turku, Turku, Finland
| | - Petteri Lankinen
- Department of Orthopaedics and Traumatology, Turku University Hospital and University of Turku, Turku, Finland.,Turku PET Centre, Turku University Hospital, Turku, Finland
| | - Xiang-Guo Li
- Turku PET Centre, University of Turku, Turku, Finland
| | | | - Sami Suilamo
- Department of Medical Physics, Turku University Hospital, Turku, Finland.,Department of Oncology and Radiotherapy, Turku University Hospital, Turku, Finland
| | - Tuula Tolvanen
- Turku PET Centre, Turku University Hospital, Turku, Finland.,Department of Medical Physics, Turku University Hospital, Turku, Finland
| | - Kirsi Taimen
- Department of Rheumatology and Clinical Immunology, Division of Medicine, Turku University Hospital, Turku, Finland
| | - Markku Mali
- Department of Rheumatology and Clinical Immunology, Division of Medicine, Turku University Hospital, Turku, Finland
| | - Ia Kohonen
- Department of Radiology, Turku University Hospital, Turku, Finland
| | - Ilpo Koskivirta
- Department of Rheumatology and Clinical Immunology, Division of Medicine, Turku University Hospital, Turku, Finland
| | - Vesa Oikonen
- Turku PET Centre, University of Turku, Turku, Finland
| | | | | | - Anu Autio
- Turku PET Centre, University of Turku, Turku, Finland.,MediCity Research Laboratory, University of Turku, Turku, Finland; and
| | - Antti Saraste
- Turku PET Centre, University of Turku, Turku, Finland.,Turku PET Centre, Turku University Hospital, Turku, Finland.,Heart Center, Turku University Hospital, Turku, Finland
| | - Laura Pirilä
- Department of Rheumatology and Clinical Immunology, Division of Medicine, Turku University Hospital, Turku, Finland
| | - Pirjo Nuutila
- Turku PET Centre, University of Turku, Turku, Finland.,Turku PET Centre, Turku University Hospital, Turku, Finland
| | - Juhani Knuuti
- Turku PET Centre, University of Turku, Turku, Finland.,Turku PET Centre, Turku University Hospital, Turku, Finland
| | - Sirpa Jalkanen
- MediCity Research Laboratory, University of Turku, Turku, Finland; and
| | - Anne Roivainen
- Turku PET Centre, University of Turku, Turku, Finland .,Turku PET Centre, Turku University Hospital, Turku, Finland
| |
Collapse
|
11
|
Rudkouskaya A, Sinsuebphon N, Ochoa M, Chen SJ, Mazurkiewicz JE, Intes X, Barroso M. Multiplexed non-invasive tumor imaging of glucose metabolism and receptor-ligand engagement using dark quencher FRET acceptor. Theranostics 2020; 10:10309-10325. [PMID: 32929350 PMCID: PMC7481426 DOI: 10.7150/thno.45825] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/25/2020] [Indexed: 12/31/2022] Open
Abstract
Rationale: Following an ever-increased focus on personalized medicine, there is a continuing need to develop preclinical molecular imaging modalities to guide the development and optimization of targeted therapies. Near-Infrared (NIR) Macroscopic Fluorescence Lifetime Förster Resonance Energy Transfer (MFLI-FRET) imaging offers a unique method to robustly quantify receptor-ligand engagement in live intact animals, which is critical to assess the delivery efficacy of therapeutics. However, to date, non-invasive imaging approaches that can simultaneously measure cellular drug delivery efficacy and metabolic response are lacking. A major challenge for the implementation of concurrent optical and MFLI-FRET in vivo whole-body preclinical imaging is the spectral crowding and cross-contamination between fluorescent probes. Methods: We report on a strategy that relies on a dark quencher enabling simultaneous assessment of receptor-ligand engagement and tumor metabolism in intact live mice. Several optical imaging approaches, such as in vitro NIR FLI microscopy (FLIM) and in vivo wide-field MFLI, were used to validate a novel donor-dark quencher FRET pair. IRDye 800CW 2-deoxyglucose (2-DG) imaging was multiplexed with MFLI-FRET of NIR-labeled transferrin FRET pair (Tf-AF700/Tf-QC-1) to monitor tumor metabolism and probe uptake in breast tumor xenografts in intact live nude mice. Immunohistochemistry was used to validate in vivo imaging results. Results: First, we establish that IRDye QC-1 (QC-1) is an effective NIR dark acceptor for the FRET-induced quenching of donor Alexa Fluor 700 (AF700). Second, we report on simultaneous in vivo imaging of the metabolic probe 2-DG and MFLI-FRET imaging of Tf-AF700/Tf-QC-1 uptake in tumors. Such multiplexed imaging revealed an inverse relationship between 2-DG uptake and Tf intracellular delivery, suggesting that 2-DG signal may predict the efficacy of intracellular targeted delivery. Conclusions: Overall, our methodology enables for the first time simultaneous non-invasive monitoring of intracellular drug delivery and metabolic response in preclinical studies.
Collapse
Affiliation(s)
- Alena Rudkouskaya
- Department of Cellular and Molecular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - Nattawut Sinsuebphon
- Center for Modeling, Simulation, and Imaging in Medicine, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Marien Ochoa
- Center for Modeling, Simulation, and Imaging in Medicine, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Sez-Jade Chen
- Center for Modeling, Simulation, and Imaging in Medicine, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Joseph E. Mazurkiewicz
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY 12208, USA
| | - Xavier Intes
- Center for Modeling, Simulation, and Imaging in Medicine, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Margarida Barroso
- Department of Cellular and Molecular Physiology, Albany Medical College, Albany, NY 12208, USA
| |
Collapse
|
12
|
Deblonde GJP, Mattocks JA, Park DM, Reed DW, Cotruvo JA, Jiao Y. Selective and Efficient Biomacromolecular Extraction of Rare-Earth Elements using Lanmodulin. Inorg Chem 2020; 59:11855-11867. [PMID: 32686425 DOI: 10.1021/acs.inorgchem.0c01303] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Lanmodulin (LanM) is a recently discovered protein that undergoes a large conformational change in response to rare-earth elements (REEs). Here, we use multiple physicochemical methods to demonstrate that LanM is the most selective macromolecule for REEs characterized to date and even outperforms many synthetic chelators. Moreover, LanM exhibits metal-binding properties and structural stability unseen in most other metalloproteins. LanM retains REE binding down to pH ≈ 2.5, and LanM-REE complexes withstand high temperature (up to 95 °C), repeated acid treatments, and up to molar amounts of competing non-REE metal ions (including Mg, Ca, Zn, and Cu), allowing the protein's use in harsh chemical processes. LanM's unrivaled properties were applied to metal extraction from two distinct REE-containing industrial feedstocks covering a broad range of REE and non-REE concentrations, namely, precombustion coal and electronic waste leachates. After only a single all-aqueous step, quantitative and selective recovery of the REEs from all non-REEs initially present (Li, Na, Mg, Ca, Sr, Al, Si, Mn, Fe, Co, Ni, Cu, Zn, and U) was achieved, demonstrating the universal selectivity of LanM for REEs against non-REEs and its potential application even for industrial low-grade sources, which are currently underutilized. Our work indicates that biosourced macromolecules such as LanM may offer a new paradigm for extractive metallurgy and other applications involving f-elements.
Collapse
Affiliation(s)
- Gauthier J-P Deblonde
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States.,Glenn T. Seaborg Institute, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Joseph A Mattocks
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Dan M Park
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - David W Reed
- Biological & Chemical Science & Engineering Department, Idaho National Laboratory, Idaho Falls, Idaho 83415, United States
| | - Joseph A Cotruvo
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Yongqin Jiao
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| |
Collapse
|
13
|
Mushtaq S, Park SH. Efficient 125I-radiolabeling of biomolecules using a strain-promoted oxidation-controlled cyclooctyne-1,2-quinone cycloaddition reaction. Chem Commun (Camb) 2020; 56:415-418. [PMID: 31821393 DOI: 10.1039/c9cc08982a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a novel 1,2-catechol based radioiodinated precursor for radioiodination of bicyclo[6.1.0]nonyne (BCN) installed biologically active molecules using a strain-promoted oxidation-controlled cyclooctyne-1,2-quinone cycloaddition reaction (SPOCQ) under ambient conditions. Compared to the reported methodologies, the new strategy demonstrates some clear advantages, including high in vitro and in vivo stability, high radiochemical yield, and exceptionally fast reaction kinetics at micro-molar concentration.
Collapse
Affiliation(s)
- Sajid Mushtaq
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Jeonbuk 56212, Republic of Korea.
| | | |
Collapse
|
14
|
|
15
|
Berg E, Gill H, Marik J, Ogasawara A, Williams S, van Dongen G, Vugts D, Cherry SR, Tarantal AF. Total-Body PET and Highly Stable Chelators Together Enable Meaningful 89Zr-Antibody PET Studies up to 30 Days After Injection. J Nucl Med 2019; 61:453-460. [PMID: 31562219 DOI: 10.2967/jnumed.119.230961] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 08/29/2019] [Indexed: 01/30/2023] Open
Abstract
The use of 89Zr-antibody PET imaging to measure antibody biodistribution and tissue pharmacokinetics is well established, but current PET systems lack the sensitivity needed to study 89Zr-labeled antibodies beyond 2-3 isotope half-lives (7-10 d), after which a poor signal-to-noise ratio is problematic. However, studies across many weeks are desirable to better match antibody circulation half-life in human and nonhuman primates. These studies investigated the technical feasibility of using the primate mini-EXPLORER PET scanner, making use of its high sensitivity and 45-cm axial field of view, for total-body imaging of 89Zr-labeled antibodies in rhesus monkeys up to 30 d after injection. Methods: A humanized monoclonal IgG antibody against the herpes simplex viral protein glycoprotein D (gD) was radiolabeled with 89Zr via 1 of 4 chelator-linker combinations (benzyl isothiocyanate-DFO [DFO-Bz-NCS], where DFO is desferrioxamine B; DFO-squaramide; DFO*-Bz-NCS, where DFO* is desferrioxamine*; and DFO*-squaramide). The pharmacokinetics associated with these 4 chelator-linker combinations were compared in 12 healthy young male rhesus monkeys (∼1-2 y old, ∼3 ± 1 kg). Each animal was initially injected intravenously with unlabeled antibody in a peripheral vessel in the right arm (10 mg/kg, providing therapeutic-level antibody concentrations), immediately followed by approximately 40 MBq of one of the 89Zr-labeled antibodies injected intravenously in a peripheral vessel in the left arm. All animals were imaged 6 times over a period of 30 d, with an initial 60-min dynamic scan on day 0 (day of injection) followed by static scans of 30-45 min on approximately days 3, 7, 14, 21, and 30, with all acquired using a single bed position and images reconstructed using time-of-flight list-mode ordered-subsets expectation maximization. Activity concentrations in various organs were extracted from the PET images using manually defined regions of interest. Results: Excellent image quality was obtained, capturing the initial distribution phase in the whole-body scan; later time points showed residual 89Zr mainly in the liver. Even at 30 d after injection, representing approximately 9 half-lives of 89Zr and with a total residual activity of only 20-40 kBq in the animal, the image quality was sufficient to readily identify activity in the liver, kidneys, and upper and lower limb joints. Significant differences were noted in late time point liver uptake, bone uptake, and whole-body clearance between chelator-linker types, whereas little variation (±10%) was observed within each type. Conclusion: These studies demonstrate the ability to image 89Zr-radiolabeled antibodies up to 30 d after injection while maintaining satisfactory image quality, as provided by the primate mini-EXPLORER with high sensitivity and long axial field of view. Quantification demonstrated potentially important differences in the behavior of the 4 chelators. This finding supports further investigation.
Collapse
Affiliation(s)
- Eric Berg
- Department of Biomedical Engineering, University of California-Davis, Davis, California
| | - Herman Gill
- Department of Biomedical Imaging, Genentech Inc., South San Francisco, California
| | - Jan Marik
- Department of Biomedical Imaging, Genentech Inc., South San Francisco, California
| | - Annie Ogasawara
- Department of Biomedical Imaging, Genentech Inc., South San Francisco, California
| | - Simon Williams
- Department of Biomedical Imaging, Genentech Inc., South San Francisco, California
| | - Guus van Dongen
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, VU University, Amsterdam, The Netherlands
| | - Daniëlle Vugts
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, VU University, Amsterdam, The Netherlands
| | - Simon R Cherry
- Department of Biomedical Engineering, University of California-Davis, Davis, California.,Department of Radiology, School of Medicine, University of California-Davis, Davis, California; and
| | - Alice F Tarantal
- Department of Pediatrics and Department of Cell Biology and Human Anatomy, School of Medicine, and California National Primate Research Center, University of California-Davis, Davis, California
| |
Collapse
|
16
|
Zhao Y, Peng J, Yang J, Zhang E, Huang L, Yang H, Kakadiaris E, Li J, Yan B, Shang Z, Jiang N, Zhang X, Han G, Niu Y. Enhancing Prostate-Cancer-Specific MRI by Genetic Amplified Nanoparticle Tumor Homing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1900928. [PMID: 31183895 DOI: 10.1002/adma.201900928] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/22/2019] [Indexed: 06/09/2023]
Abstract
Precise localization and visualization of early-stage prostate cancer (PCa) is critical to improve the success of focal ablation and reduce cancer mortality. However, it remains challenging under the current imaging techniques due to the heterogeneous nature of PCa and the suboptimal sensitivity of the techniques themselves. Herein, a novel genetic amplified nanoparticle tumor-homing strategy to enhance the MRI accuracy of ultrasmall PCa lesions is reported. This strategy could specifically drive TfR expressions in PCa under PCa-specific DD3 promoter, and thus remarkably increase Tf-USPIONs concentrations in a highly accurate manner while minimizing their non-specific off-target effects on normal tissues. Consequently, this strategy can pinpoint an ultrasmall PCa lesion, which is otherwise blurred in the current MRI, and thereby addresses the unmet key need in MRI imaging for focal therapy. With this proof-of-concept experiment, the synergistic gene-nano strategy holds great promise to boost the MRI effects of a wide variety of commonly used nanoscale and molecular probes that are otherwise limited. In addition, such a strategy may also be translated and applied to MR-specific imaging of other types of cancers by using their respective tumor-specific promoters.
Collapse
Affiliation(s)
- Yang Zhao
- Sex Hormone Research Center, Tianjin Institute of Urology, Tianjin, 300211, China
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Jing Peng
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Jinyi Yang
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Enlong Zhang
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Ling Huang
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Hong Yang
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Eugenia Kakadiaris
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Jingjin Li
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Bin Yan
- Sex Hormone Research Center, Tianjin Institute of Urology, Tianjin, 300211, China
| | - Zhiqun Shang
- Sex Hormone Research Center, Tianjin Institute of Urology, Tianjin, 300211, China
| | - Ning Jiang
- Sex Hormone Research Center, Tianjin Institute of Urology, Tianjin, 300211, China
| | - Xuening Zhang
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Gang Han
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Yuanjie Niu
- Sex Hormone Research Center, Tianjin Institute of Urology, Tianjin, 300211, China
| |
Collapse
|
17
|
Patra M, Klingler S, Eichenberger LS, Holland JP. Simultaneous Photoradiochemical Labeling of Antibodies for Immuno-Positron Emission Tomography. iScience 2019; 13:416-431. [PMID: 30903963 PMCID: PMC6430723 DOI: 10.1016/j.isci.2019.03.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/29/2019] [Accepted: 03/02/2019] [Indexed: 12/04/2022] Open
Abstract
A method for the simultaneous (one-step) photochemical conjugation and 89Zr-radiolabeling of antibodies is introduced. A photoactivatable chelate based on the functionalization of desferrioxamine B with an arylazide moiety (DFO-ArN3, [1]) was synthesized. The radiolabeled complex, 89Zr-1+, was produced and characterized. Density functional theory calculations were used to investigate the mechanism of arylazide photoactivation. 89Zr-radiolabeling experiments were also used to determine the efficiency of photochemical conjugation. A standard two-step approach gave a measured conjugation efficiency of 3.5% ± 0.4%. In contrast, the one-step process gave a higher photoradiolabeling efficiency of ∼76%. Stability measurements, cellular saturation binding assays, positron emission tomographic imaging, and biodistribution studies in mice bearing SK-OV-3 tumors confirmed the biochemical viability and tumor specificity of photoradiolabeled [89Zr]ZrDFO-azepin-trastuzumab. Experimental data support the conclusion that the combination of photochemistry and radiochemistry is a viable strategy for producing radiolabeled proteins for imaging and therapy. Photochemistry is combined with radiochemistry for radiosynthesis in a flash Simultaneous photoradiochemistry is achieved with high radiolabeling efficiency Photoradiochemistry produces viable 89Zr-radiolabeled antibodies Density functional theory calculations elucidate the photoactivation mechanism
Collapse
Affiliation(s)
- Malay Patra
- University of Zurich, Department of Chemistry, Winterthurerstrasse 190, Zurich 8057, Switzerland
| | - Simon Klingler
- University of Zurich, Department of Chemistry, Winterthurerstrasse 190, Zurich 8057, Switzerland
| | - Larissa S Eichenberger
- University of Zurich, Department of Chemistry, Winterthurerstrasse 190, Zurich 8057, Switzerland
| | - Jason P Holland
- University of Zurich, Department of Chemistry, Winterthurerstrasse 190, Zurich 8057, Switzerland.
| |
Collapse
|
18
|
Analogues of desferrioxamine B (DFOB) with new properties and new functions generated using precursor-directed biosynthesis. Biometals 2019; 32:395-408. [PMID: 30701380 DOI: 10.1007/s10534-019-00175-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 01/21/2019] [Indexed: 10/27/2022]
Abstract
Desferrioxamine B (DFOB) is a siderophore native to Streptomyces pilosus biosynthesised by the DesABCD enzyme cluster as a high affinity Fe(III) chelator. Although DFOB has a long clinical history for the treatment of chronic iron overload, limitations encourage the development of new analogues. This review describes a recent body of work that has used precursor-directed biosynthesis (PDB) to access new DFOB analogues. PDB exploits the native biosynthetic machinery of a producing organism in culture medium augmented with non-native substrates that compete against native substrates during metabolite assembly. The method allows access to analogues of natural products using benign methods, compared to multistep organic synthesis. The disadvantages of PDB are the production of metabolites in low yield and the need to purify complex mixtures. Streptomyces pilosus medium was supplemented with different types of non-native diamine substrates to compete against native 1,5-diaminopentane to generate DFOB analogues containing alkene bonds, fluorine atoms, ether or thioether functional groups, or a disulfide bond. All analogues retained function as Fe(III) chelators and have properties that could broaden the utility of DFOB. These PDB studies have also added knowledge to the understanding of DFOB biosynthesis.
Collapse
|
19
|
Cornelissen B, Knight JC, Mukherjee S, Evangelista L, Xavier C, Caobelli F, Del Vecchio S, Rbah-Vidal L, Barbet J, de Jong M, van Leeuwen FWB. Translational molecular imaging in exocrine pancreatic cancer. Eur J Nucl Med Mol Imaging 2018; 45:2442-2455. [PMID: 30225616 PMCID: PMC6208802 DOI: 10.1007/s00259-018-4146-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 08/22/2018] [Indexed: 02/06/2023]
Abstract
Effective treatment for pancreatic cancer remains challenging, particularly the treatment of pancreatic ductal adenocarcinoma (PDAC), which makes up more than 95% of all pancreatic cancers. Late diagnosis and failure of chemotherapy and radiotherapy are all too common, and many patients die soon after diagnosis. Here, we make the case for the increased use of molecular imaging in PDAC preclinical research and in patient management.
Collapse
Affiliation(s)
- Bart Cornelissen
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, Oxford University, Oxford, UK.
| | - James C Knight
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, Oxford University, Oxford, UK
| | - Somnath Mukherjee
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, Oxford University, Oxford, UK
| | | | | | - Federico Caobelli
- Department of Radiology, Universitätsspital Basel, Basel, Switzerland
| | | | - Latifa Rbah-Vidal
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | - Jacques Barbet
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | - Marion de Jong
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Fijs W B van Leeuwen
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
20
|
Vela D. Iron Metabolism in Prostate Cancer; From Basic Science to New Therapeutic Strategies. Front Oncol 2018; 8:547. [PMID: 30538952 PMCID: PMC6277552 DOI: 10.3389/fonc.2018.00547] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 11/05/2018] [Indexed: 01/09/2023] Open
Abstract
An increasing amount of research has recently strengthened the case for the existence of iron dysmetabolism in prostate cancer. It is characterized with a wide array of differential expression of iron-related proteins compared to normal cells. These proteins control iron entry, cellular iron distribution but also iron exit from prostate cells. Iron dysmetabolism is not an exclusive feature of prostate cancer cells, but it is observed in other cells of the tumor microenvironment. Disrupting the machinery that secures iron for prostate cancer cells can retard tumor growth and its invasive potential. This review unveils the current understanding of the ways that prostate cancer cells secure iron in the tumor milieu and how can we exploit this knowledge for therapeutic purposes.
Collapse
Affiliation(s)
- Driton Vela
- Department of Physiology, University of Prishtina, Prishtina, Kosovo
| |
Collapse
|
21
|
Behr SC, Villanueva-Meyer JE, Li Y, Wang YH, Wei J, Moroz A, Lee JK, Hsiao JC, Gao KT, Ma W, Cha S, Wilson DM, Seo Y, Nelson SJ, Chang SM, Evans MJ. Targeting iron metabolism in high-grade glioma with 68Ga-citrate PET/MR. JCI Insight 2018; 3:93999. [PMID: 30385712 DOI: 10.1172/jci.insight.93999] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 09/27/2018] [Indexed: 11/17/2022] Open
Abstract
Noninvasive tools that target tumor cells could improve the management of glioma. Cancer generally has a high demand for Fe(III), an essential nutrient for a variety of biochemical processes. We tested whether 68Ga-citrate, an Fe(III) biomimetic that binds to apo-transferrin in blood, detects glioma in preclinical models and patients using hybrid PET/MRI. Mouse PET/CT studies showed that 68Ga-citrate accumulates in subcutaneous U87MG xenografts in a transferrin receptor-dependent fashion within 4 hours after injection. Seventeen patients with WHO grade III or IV glioma received 3.7-10.2 mCi 68Ga-citrate and were imaged with PET/MR 123-307 minutes after injection to establish that the radiotracer can localize to human tumors. Multiple contrast-enhancing lesions were PET avid, and tumor to adjacent normal white matter ratios were consistently greater than 10:1. Several contrast-enhancing lesions were not PET avid. One minimally enhancing lesion and another tumor with significantly reduced enhancement following bevacizumab therapy were PET avid. Advanced MR imaging analysis of one patient with contrast-enhancing glioblastoma showed that metabolic hallmarks of viable tumor spatially overlaid with 68Ga-citrate accumulation. These early data underscore that high-grade glioma may be detectable with a radiotracer that targets Fe(III) transport.
Collapse
Affiliation(s)
- Spencer C Behr
- Department of Radiology and Biomedical Imaging, UCSF, San Francisco, California, USA
| | | | - Yan Li
- Department of Radiology and Biomedical Imaging, UCSF, San Francisco, California, USA
| | - Yung-Hua Wang
- Department of Radiology and Biomedical Imaging, UCSF, San Francisco, California, USA
| | - Junnian Wei
- Department of Radiology and Biomedical Imaging, UCSF, San Francisco, California, USA
| | - Anna Moroz
- Department of Radiology and Biomedical Imaging, UCSF, San Francisco, California, USA.,Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, Moscow, Russia
| | - Julia Kl Lee
- Department of Radiology and Biomedical Imaging, UCSF, San Francisco, California, USA
| | - Jeffrey C Hsiao
- Department of Radiology and Biomedical Imaging, UCSF, San Francisco, California, USA
| | - Kenneth T Gao
- Department of Radiology and Biomedical Imaging, UCSF, San Francisco, California, USA
| | - Wendy Ma
- Department of Radiology and Biomedical Imaging, UCSF, San Francisco, California, USA
| | - Soonmee Cha
- Department of Radiology and Biomedical Imaging, UCSF, San Francisco, California, USA
| | - David M Wilson
- Department of Radiology and Biomedical Imaging, UCSF, San Francisco, California, USA
| | - Youngho Seo
- Department of Radiology and Biomedical Imaging, UCSF, San Francisco, California, USA
| | - Sarah J Nelson
- Department of Radiology and Biomedical Imaging, UCSF, San Francisco, California, USA.,Helen Diller Family Comprehensive Cancer Center.,Department of Bioengineering and Therapeutic Sciences
| | - Susan M Chang
- Helen Diller Family Comprehensive Cancer Center.,Department of Neurological Surgery, and
| | - Michael J Evans
- Department of Radiology and Biomedical Imaging, UCSF, San Francisco, California, USA.,Helen Diller Family Comprehensive Cancer Center.,Department of Pharmaceutical Chemistry, UCSF, San Francisco, California, USA
| |
Collapse
|
22
|
Rudkouskaya A, Sinsuebphon N, Ward J, Tubbesing K, Intes X, Barroso M. Quantitative imaging of receptor-ligand engagement in intact live animals. J Control Release 2018; 286:451-459. [PMID: 30036545 PMCID: PMC6231501 DOI: 10.1016/j.jconrel.2018.07.032] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/06/2018] [Accepted: 07/16/2018] [Indexed: 12/29/2022]
Abstract
Maintaining an intact tumor environment is critical for quantitation of receptor-ligand engagement in a targeted drug development pipeline. However, measuring receptor-ligand engagement in vivo and non-invasively in preclinical settings is extremely challenging. We found that quantitation of intracellular receptor-ligand binding can be achieved using whole-body macroscopic lifetime-based Förster Resonance Energy Transfer (FRET) imaging in intact, live animals bearing tumor xenografts. We determined that FRET levels report on ligand binding to transferrin receptors conversely to raw fluorescence intensity. FRET levels in heterogeneous tumors correlate with intracellular ligand binding but strikingly, not with ubiquitously used ex vivo receptor expression assessment. Hence, MFLI-FRET provides a direct measurement of systemic delivery, target availability and intracellular drug delivery in preclinical studies. Here, we have used MFLI to measure FRET longitudinally in intact and live animals. MFLI-FRET is well-suited for guiding the development of targeted drug therapy in heterogeneous tumors in intact, live small animals.
Collapse
Affiliation(s)
- Alena Rudkouskaya
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, USA
| | - Nattawut Sinsuebphon
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Jamie Ward
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, USA
| | - Kate Tubbesing
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, USA
| | - Xavier Intes
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA.
| | - Margarida Barroso
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, USA.
| |
Collapse
|
23
|
Henry KE, Dacek MM, Dilling TR, Caen JD, Fox IL, Evans MJ, Lewis JS. A PET Imaging Strategy for Interrogating Target Engagement and Oncogene Status in Pancreatic Cancer. Clin Cancer Res 2018; 25:166-176. [PMID: 30228208 DOI: 10.1158/1078-0432.ccr-18-1485] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 08/17/2018] [Accepted: 09/14/2018] [Indexed: 12/27/2022]
Abstract
PURPOSE Pancreatic ductal adenocarcinoma (PDAC) is one of the most deadly cancers, with a 5-year survival rate of less than 10%. Physicians often rely on biopsy or CT to guide treatment decisions, but these techniques fail to reliably measure the actions of therapeutic agents in PDAC. KRAS mutations are present in >90% of PDAC and are connected to many signaling pathways through its oncogenic cascade, including extracellular regulated kinase (ERK) and MYC. A key downstream event of MYC is transferrin receptor (TfR), which has been identified as a biomarker for cancer therapeutics and imaging. EXPERIMENTAL DESIGN In this study, we aimed to test whether zirconium-89 transferrin ([89Zr]Zr-Tf) could measure changes in MYC depending on KRAS status of PDAC, and assess target engagement of anti-MYC and anti-ERK-targeted therapies. RESULTS Mice bearing iKras*p53* tumors showed significantly higher (P < 0.05) uptake of [89Zr]Zr-Tf in mice withdrawn from inducible oncogenic KRAS. A therapy study with JQ1 showed a statistically significant decrease (P < 0.05) of [89Zr]Zr-Tf uptake in drug versus vehicle-treated mice bearing Capan-2 and Suit-2 xenografts. IHC analysis of resected PDAC tumors reflects the data observed via PET imaging and radiotracer biodistribution. CONCLUSIONS Our study demonstrates that [89Zr]Zr-Tf is a valuable tool to noninvasively assess oncogene status and target engagement of small-molecule inhibitors downstream of oncogenic KRAS, allowing a quantitative assessment of drug delivery.
Collapse
Affiliation(s)
- Kelly E Henry
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Megan M Dacek
- Program of Molecular Pharmacology and Chemistry, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Pharmacology, Weill Cornell Medical College, New York, New York
| | - Thomas R Dilling
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jonathan D Caen
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ian L Fox
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Michael J Evans
- Departments of Radiology and Biomedical Imaging, and Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California
| | - Jason S Lewis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York. .,Program of Molecular Pharmacology and Chemistry, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Pharmacology, Weill Cornell Medical College, New York, New York.,Department of Radiology, Weill Cornell Medical College, New York, New York.,Radiochemistry and Molecular Imaging Probes Core, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
24
|
Zhang P, Cui Y, Anderson CF, Zhang C, Li Y, Wang R, Cui H. Peptide-based nanoprobes for molecular imaging and disease diagnostics. Chem Soc Rev 2018; 47:3490-3529. [PMID: 29497722 DOI: 10.1039/c7cs00793k] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Pathological changes in a diseased site are often accompanied by abnormal activities of various biomolecules in and around the involved cells. Identifying the location and expression levels of these biomolecules could enable early-stage diagnosis of the related disease, the design of an appropriate treatment strategy, and the accurate assessment of the treatment outcomes. Over the past two decades, a great diversity of peptide-based nanoprobes (PBNs) have been developed, aiming to improve the in vitro and in vivo performances of water-soluble molecular probes through engineering of their primary chemical structures as well as the physicochemical properties of their resultant assemblies. In this review, we introduce strategies and approaches adopted for the identification of functional peptides in the context of molecular imaging and disease diagnostics, and then focus our discussion on the design and construction of PBNs capable of navigating through physiological barriers for targeted delivery and improved specificity and sensitivity in recognizing target biomolecules. We highlight the biological and structural roles that low-molecular-weight peptides play in PBN design and provide our perspectives on the future development of PBNs for clinical translation.
Collapse
Affiliation(s)
- Pengcheng Zhang
- State Key Laboratory of Drug Research & Center for Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China.
| | | | | | | | | | | | | |
Collapse
|
25
|
Price TW, Greenman J, Stasiuk GJ. Current advances in ligand design for inorganic positron emission tomography tracers 68Ga, 64Cu, 89Zr and 44Sc. Dalton Trans 2018; 45:15702-15724. [PMID: 26865360 DOI: 10.1039/c5dt04706d] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A key part of the development of metal based Positron Emission Tomography probes is the chelation of the radiometal. In this review the recent developments in the chelation of four positron emitting radiometals, 68Ga, 64Cu, 89Zr and 44Sc, are explored. The factors that effect the chelation of each radio metal and the ideal ligand system will be discussed with regards to high in vivo stability, complexation conditions, conjugation to targeting motifs and complexation kinetics. A series of cyclic, cross-bridged and acyclic ligands will be discussed, such as CP256 which forms stable complexes with 68Ga under mild conditions and PCB-TE2A which has been shown to form a highly stable complex with 64Cu. 89Zr and 44Sc have seen significant development in recent years with a number of chelates being applied to each metal - eight coordinate di-macrocyclic terephthalamide ligands were found to rapidly produce more stable complexes with 89Zr than the widely used DFO.
Collapse
Affiliation(s)
- Thomas W Price
- School of Biological, Biomedical and Environmental Sciences, The University of Hull, HU6 7RX, UK. and Positron Emission Tomography Research Centre, The University of Hull, HU6 7RX, UK
| | - John Greenman
- School of Biological, Biomedical and Environmental Sciences, The University of Hull, HU6 7RX, UK.
| | - Graeme J Stasiuk
- School of Biological, Biomedical and Environmental Sciences, The University of Hull, HU6 7RX, UK. and Positron Emission Tomography Research Centre, The University of Hull, HU6 7RX, UK
| |
Collapse
|
26
|
Henry KE, Dilling TR, Abdel-Atti D, Edwards KJ, Evans MJ, Lewis JS. Noninvasive 89Zr-Transferrin PET Shows Improved Tumor Targeting Compared with 18F-FDG PET in MYC-Overexpressing Human Triple-Negative Breast Cancer. J Nucl Med 2018; 59:51-57. [PMID: 28848040 PMCID: PMC5750524 DOI: 10.2967/jnumed.117.192286] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 08/04/2017] [Indexed: 12/20/2022] Open
Abstract
The current standard for breast PET imaging is 18F-FDG. The heterogeneity of 18F-FDG uptake in breast cancer limits its utility, varying greatly among receptor status, histopathologic subtypes, and proliferation markers. 18F-FDG PET often exhibits nonspecific internalization and low specificity and sensitivity, especially with tumors smaller than 1 cm3 MYC is a protein involved in oncogenesis and is overexpressed in triple-negative breast cancer (TNBC). Increased surface expression of transferrin receptor (TfR) is a downstream event of MYC upregulation and has been validated as a clinically relevant target for molecular imaging. Transferrin labeled with 89Zr has successfully identified MYC status in many cancer subtypes preclinically and been shown to predict response and changes in oncogene status via treatment with small-molecule inhibitors that target MYC and PI3K signaling pathways. We hypothesized that 89Zr-transferrin PET will noninvasively detect MYC and TfR and improve upon the current standard of 18F-FDG PET for MYC-overexpressing TNBC. Methods: In this study, 89Zr-transferrin and 18F-FDG imaging were compared in preclinical models of TNBC. TNBC cells (MDA-MB-157, MDA-MB-231, and Hs578T) were treated with bromodomain-containing protein 4 (BRD4) inhibitors JQ1 and OTX015 (0.5-1 μM). Cell proliferation, gene expression, and protein expression were assayed to explore the effects of these inhibitors on MYC and TfR. Results: Head-to-head comparison showed that 89Zr-transferrin targets TNBC tumors significantly better (P < 0.05-0.001) than 18F-FDG through PET imaging and biodistribution studies in MDA-MB-231 and MDA-MB-157 xenografts and a patient-derived xenograft model of TNBC. c-Myc and TfR gene expression was decreased upon treatment with BRD4 inhibitors and c-MYC small interfering RNA (P < 0.01-0.001 for responding cell lines), compared with vehicle treatment. MYC and TfR protein expression, along with receptor-mediated internalization of transferrin, was also significantly decreased upon drug treatment in MDA-MB-231 and MDA-MB-157 cells (P < 0.01-0.001). Conclusion:89Zr-transferrin targets human TNBC primary tumors significantly better than 18F-FDG, as shown through PET imaging and biodistribution studies. 89Zr-transferrin is a useful tool to interrogate MYC via TfR-targeted PET imaging in TNBC.
Collapse
Affiliation(s)
- Kelly E Henry
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Thomas R Dilling
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Dalya Abdel-Atti
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kimberly J Edwards
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Michael J Evans
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Jason S Lewis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Pharmacology and Radiology, Weill Cornell Medical College, New York, New York; and
- Radiochemistry and Molecular Imaging Probes Core, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
27
|
Chen F, Ma K, Zhang L, Madajewski B, Zanzonico P, Sequeira S, Gonen M, Wiesner U, Bradbury MS. Target-or-Clear Zirconium-89 Labeled Silica Nanoparticles for Enhanced Cancer-Directed Uptake in Melanoma: A Comparison of Radiolabeling Strategies. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2017; 29:8269-8281. [PMID: 29123332 PMCID: PMC5675572 DOI: 10.1021/acs.chemmater.7b02567] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Designing a nanomaterials platform with high target-to-background ratios has long been one of the major challenges in the field of nanomedicine. Here, we introduce a "target-or-clear" multifunctional nanoparticle platform that demonstrates high tumor-targeting efficiency and retention while minimizing off-target effects. Encouraged by the favorable preclinical and clinical pharmacokinetic profiles derived after fine-tuning surface chemical properties of radioiodinated (124I, t1/2 = 100.2 h) ultrasmall cRGDY-conjugated fluorescent silica nanoparticles (C dots), we sought to investigate how the biological properties of these radioconjugates could be influenced by the conjugation of radiometals such as zirconium-89 (89Zr, t1/2 = 78.4 h) using two different strategies: chelator-free and chelator-based radiolabeling. The attachment of 89Zr to newer, surface-aminated, integrin-targeting C' dots using a two-pot synthesis approach led to favorable pharmacokinetics and clearance profiles as well as high tumor uptake and target-to-background ratios in human melanoma models relative to biological controls while maintaining particle sizes below the effective renal glomerular filtration size cutoff <10 nm. Nanoconjugates were also characterized in terms of their radiostability and plasma residence half-lives. Our 89Zr-labeled ultrasmall hybrid organic-inorganic particle is a clinically promising positron emission tomography tracer offering radiobiological properties suitable for enhanced molecularly targeted cancer imaging applications.
Collapse
Affiliation(s)
- Feng Chen
- Department of Radiology, Sloan Kettering Institute for Cancer Research, New York, New York 10065, United States
| | - Kai Ma
- Department of Materials Science & Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Li Zhang
- Department of Radiology, Sloan Kettering Institute for Cancer Research, New York, New York 10065, United States
| | - Brian Madajewski
- Department of Radiology, Sloan Kettering Institute for Cancer Research, New York, New York 10065, United States
| | - Pat Zanzonico
- Department of Medical Physics, Sloan Kettering Institute for Cancer Research, New York, New York 10065, United States
| | - Sonia Sequeira
- Research and Technology Management, Sloan Kettering Institute for Cancer Research, New York, New York 10065, United States
| | - Mithat Gonen
- Department of Epidemiology and Biostatistics, Sloan Kettering Institute for Cancer Research, New York, New York 10065, United States
| | - Ulrich Wiesner
- Department of Materials Science & Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Michelle S. Bradbury
- Department of Radiology, Sloan Kettering Institute for Cancer Research, New York, New York 10065, United States
- Molecular Pharmacology Program, Sloan Kettering Institute for Cancer Research, New York, New York 10065, United States
| |
Collapse
|
28
|
Heinzmann K, Carter LM, Lewis JS, Aboagye EO. Multiplexed imaging for diagnosis and therapy. Nat Biomed Eng 2017; 1:697-713. [PMID: 31015673 DOI: 10.1038/s41551-017-0131-8] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 08/02/2017] [Indexed: 12/12/2022]
Abstract
Complex molecular and metabolic phenotypes depict cancers as a constellation of different diseases with common themes. Precision imaging of such phenotypes requires flexible and tunable modalities capable of identifying phenotypic fingerprints by using a restricted number of parameters while ensuring sensitivity to dynamic biological regulation. Common phenotypes can be detected by in vivo imaging technologies, and effectively define the emerging standards for disease classification and patient stratification in radiology. However, for the imaging data to accurately represent a complex fingerprint, the individual imaging parameters need to be measured and analysed in relation to their wider spatial and molecular context. In this respect, targeted palettes of molecular imaging probes facilitate the detection of heterogeneity in oncogene-driven alterations and their response to treatment, and lead to the expansion of rational-design elements for the combination of imaging experiments. In this Review, we evaluate criteria for conducting multiplexed imaging, and discuss its opportunities for improving patient diagnosis and the monitoring of therapy.
Collapse
Affiliation(s)
- Kathrin Heinzmann
- Department of Surgery and Cancer, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Lukas M Carter
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Jason S Lewis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Eric O Aboagye
- Department of Surgery and Cancer, Imperial College London, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
29
|
Aggarwal R, Behr SC, Paris PL, Truillet C, Parker MFL, Huynh LT, Wei J, Hann B, Youngren J, Huang J, Premasekharan G, Ranatunga N, Chang E, Gao KT, Ryan CJ, Small EJ, Evans MJ. Real-Time Transferrin-Based PET Detects MYC-Positive Prostate Cancer. Mol Cancer Res 2017; 15:1221-1229. [PMID: 28592703 PMCID: PMC5581675 DOI: 10.1158/1541-7786.mcr-17-0196] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 05/17/2017] [Accepted: 06/02/2017] [Indexed: 01/15/2023]
Abstract
Noninvasive biomarkers that detect the activity of important oncogenic drivers could significantly improve cancer diagnosis and management of treatment. The goal of this study was to determine whether 68Ga-citrate (which avidly binds to circulating transferrin) can detect MYC-positive prostate cancer tumors, as the transferrin receptor is a direct MYC target gene. PET imaging paired with 68Ga-citrate and molecular analysis of preclinical models, human cell-free DNA (cfDNA), and clinical biopsies were conducted to determine whether 68Ga-citrate can detect MYC-positive prostate cancer. Importantly, 68Ga-citrate detected human prostate cancer models in a MYC-dependent fashion. In patients with castration-resistant prostate cancer, analysis of cfDNA revealed that all patients with 68Ga-citrate avid tumors had a gain of at least one MYC copy number. Moreover, biopsy of two PET avid metastases showed molecular or histologic features characteristic of MYC hyperactivity. These data demonstrate that 68Ga-citrate targets prostate cancer tumors with MYC hyperactivity. A larger prospective study is ongoing to demonstrate the specificity of 68Ga-citrate for tumors with hyperactive MYC.Implications: Noninvasive measurement of MYC activity with quantitative imaging modalities could substantially increase our understanding of the role of MYC signaling in clinical settings for which invasive techniques are challenging to implement or do not characterize the biology of all tumors in a patient. Moreover, measuring MYC activity noninvasively opens the opportunity to study changes in MYC signaling in patients under targeted therapeutic conditions thought to indirectly inhibit MYC. Mol Cancer Res; 15(9); 1221-9. ©2017 AACR.
Collapse
Affiliation(s)
- Rahul Aggarwal
- Department of Medicine, Division of Hematology/Oncology, University of California San Francisco, San Francisco, California
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - Spencer C Behr
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Pamela L Paris
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - Charles Truillet
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Matthew F L Parker
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Loc T Huynh
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Junnian Wei
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Byron Hann
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - Jack Youngren
- Department of Medicine, Division of Hematology/Oncology, University of California San Francisco, San Francisco, California
| | - Jiaoti Huang
- Department of Pathology, Duke University, Durham, North Carolina
| | - Gayatri Premasekharan
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - Nimna Ranatunga
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - Emily Chang
- Department of Medicine, Division of Hematology/Oncology, University of California San Francisco, San Francisco, California
| | - Kenneth T Gao
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Charles J Ryan
- Department of Medicine, Division of Hematology/Oncology, University of California San Francisco, San Francisco, California
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - Eric J Small
- Department of Medicine, Division of Hematology/Oncology, University of California San Francisco, San Francisco, California
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - Michael J Evans
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California.
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California
| |
Collapse
|
30
|
Tsopelas C, Hsieh W. Preparation of68Ga-Mg-Ca-phytate colloid and its evaluation as a liver imaging agent. J Labelled Comp Radiopharm 2017; 60:528-541. [DOI: 10.1002/jlcr.3530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/05/2017] [Accepted: 06/07/2017] [Indexed: 01/15/2023]
Affiliation(s)
- Chris Tsopelas
- RAH Radiopharmacy, Nuclear Medicine Department; Royal Adelaide Hospital; Adelaide South Australia Australia
| | - William Hsieh
- RAH Radiopharmacy, Nuclear Medicine Department; Royal Adelaide Hospital; Adelaide South Australia Australia
| |
Collapse
|
31
|
Clark PM, Ebiana VA, Gosa L, Cloughesy TF, Nathanson DA. Harnessing Preclinical Molecular Imaging to Inform Advances in Personalized Cancer Medicine. J Nucl Med 2017; 58:689-696. [PMID: 28385796 DOI: 10.2967/jnumed.116.181693] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 03/27/2017] [Indexed: 12/11/2022] Open
Abstract
Comprehensive molecular analysis of individual tumors provides great potential for personalized cancer therapy. However, the presence of a particular genetic alteration is often insufficient to predict therapeutic efficacy. Drugs with distinct mechanisms of action can affect the biology of tumors in specific and unique ways. Therefore, assays that can measure drug-induced perturbations of defined functional tumor properties can be highly complementary to genomic analysis. PET provides the capacity to noninvasively measure the dynamics of various tumor biologic processes in vivo. Here, we review the underlying biochemical and biologic basis for a variety of PET tracers and how they may be used to better optimize cancer therapy.
Collapse
Affiliation(s)
- Peter M Clark
- Department of Molecular and Medical Pharmacology, David Geffen UCLA School of Medicine, Los Angeles, California.,Crump Institute for Molecular Imaging, David Geffen UCLA School of Medicine, Los Angeles, California
| | - Victoria A Ebiana
- Department of Neurology, David Geffen UCLA School of Medicine, Los Angeles, California; and
| | - Laura Gosa
- Department of Molecular and Medical Pharmacology, David Geffen UCLA School of Medicine, Los Angeles, California.,Ahmanson Translational Imaging Division, David Geffen UCLA School of Medicine, Los Angeles, California
| | - Timothy F Cloughesy
- Department of Neurology, David Geffen UCLA School of Medicine, Los Angeles, California; and
| | - David A Nathanson
- Department of Molecular and Medical Pharmacology, David Geffen UCLA School of Medicine, Los Angeles, California .,Ahmanson Translational Imaging Division, David Geffen UCLA School of Medicine, Los Angeles, California
| |
Collapse
|
32
|
Sugyo A, Tsuji AB, Sudo H, Nomura F, Satoh H, Koizumi M, Kurosawa G, Kurosawa Y, Saga T. Uptake of 111In-labeled fully human monoclonal antibody TSP-A18 reflects transferrin receptor expression in normal organs and tissues of mice. Oncol Rep 2017; 37:1529-1536. [PMID: 28184946 DOI: 10.3892/or.2017.5412] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 12/22/2016] [Indexed: 11/06/2022] Open
Abstract
Transferrin receptor (TfR) is an attractive molecule for targeted therapy of cancer. Various TfR-targeted therapeutic agents such as anti-TfR antibodies conjugated with anticancer agents have been developed. An antibody that recognizes both human and murine TfR is needed to predict the toxicity of antibody-based agents before clinical trials, there is no such antibody to date. In this study, a new fully human monoclonal antibody TSP-A18 that recognizes both human and murine TfR was developed and the correlation analysis of the radiolabeled antibody uptake and TfR expression in two murine strains was conducted. TSP-A18 was selected using extracellular portions of human and murine TfR from a human antibody library. The cross-reactivity of TSP-A18 with human and murine cells was confirmed by flow cytometry. Cell binding and competitive inhibition assays with [111In]TSP-A18 showed that TSP-A18 bound highly to TfR-expressing MIAPaCa-2 cells with high affinity. Biodistribution studies of [111In]TSP-A18 and [67Ga]citrate (a transferrin-mediated imaging probe) were conducted in C57BL/6J and BALB/c-nu/nu mice. [111In]TSP-A18 was accumulated highly in the spleen and bone containing marrow component of both strains, whereas high [67Ga]citrate uptake was only observed in bone containing marrow component and not in the spleen. Western blotting indicated the spleen showed the strongest TfR expression compared with other organs in both strains. There was significant correlation between [111In]TSP-A18 uptake and TfR protein expression in both strains, whereas there was significant correlation of [67Ga]citrate uptake with TfR expression only in C57BL/6J. These findings suggest that the difference in TfR expression between murine strains should be carefully considered when testing for the toxicity of anti-TfR antibody in mice and the uptake of anti-TfR antibody could reflect tissue TfR expression more accurately compared with that of transferrin-mediated imaging probe such as [67Ga]citrate.
Collapse
Affiliation(s)
- Aya Sugyo
- Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, Inage-ku, Chiba 263-8555, Japan
| | - Atsushi B Tsuji
- Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, Inage-ku, Chiba 263-8555, Japan
| | - Hitomi Sudo
- Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, Inage-ku, Chiba 263-8555, Japan
| | - Fumiko Nomura
- Research and Development Division, Perseus Proteomics Inc., Meguro-ku, Tokyo 153-0041, Japan
| | - Hirokazu Satoh
- Research and Development Division, Perseus Proteomics Inc., Meguro-ku, Tokyo 153-0041, Japan
| | - Mitsuru Koizumi
- Department of Nuclear Medicine, Cancer Institute Hospital, Koto-Ku, Tokyo 135-8550, Japan
| | - Gene Kurosawa
- Innovation Center for Advanced Medicine, School of Medicine, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Yoshikazu Kurosawa
- Innovation Center for Advanced Medicine, School of Medicine, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Tsuneo Saga
- Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, Inage-ku, Chiba 263-8555, Japan
| |
Collapse
|
33
|
Richardson-Sanchez T, Tieu W, Gotsbacher MP, Telfer TJ, Codd R. Exploiting the biosynthetic machinery of Streptomyces pilosus to engineer a water-soluble zirconium(iv) chelator. Org Biomol Chem 2017. [DOI: 10.1039/c7ob01079f] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A combined microbiology-chemistry approach has been used to generate a water-soluble chain-extended octadentate hydroxamic acid designed as a high affinity and selective Zr(iv) ligand.
Collapse
Affiliation(s)
| | - William Tieu
- School of Medical Sciences (Pharmacology) and Bosch Institute
- The University of Sydney
- Australia
| | - Michael P. Gotsbacher
- School of Medical Sciences (Pharmacology) and Bosch Institute
- The University of Sydney
- Australia
| | - Thomas J. Telfer
- School of Medical Sciences (Pharmacology) and Bosch Institute
- The University of Sydney
- Australia
| | - Rachel Codd
- School of Medical Sciences (Pharmacology) and Bosch Institute
- The University of Sydney
- Australia
| |
Collapse
|
34
|
Truillet C, Cunningham JT, Parker MFL, Huynh LT, Conn CS, Ruggero D, Lewis JS, Evans MJ. Noninvasive Measurement of mTORC1 Signaling with 89Zr-Transferrin. Clin Cancer Res 2016; 23:3045-3052. [PMID: 28007777 DOI: 10.1158/1078-0432.ccr-16-2448] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 12/09/2016] [Accepted: 12/09/2016] [Indexed: 12/31/2022]
Abstract
Purpose: mTOR regulates many normal physiological processes and when hyperactive can drive numerous cancers and human diseases. However, it is very challenging to detect and quantify mTOR signaling noninvasively in clinically relevant animal models of disease or man. We hypothesized that a nuclear imaging tool measuring intracellular mTOR activity could address this unmet need.Experimental Design: Although the biochemical activity of mTOR is not directly amenable to nuclear imaging probe development, we show that the transferrin receptor can be used to indirectly measure intracellular changes in mTOR activity.Results: After verifying that the uptake of radiolabeled transferrin (the soluble ligand of the transferrin receptor) is stimulated by active mTORC1 in vitro, we showed that 89Zr-labeled transferrin (Tf) can measure mTORC1 signaling dynamics in normal and cancerous mouse tissues with PET. Finally, we show that 89Zr-Tf can detect the upregulation of mTORC1 by tumor cells to escape the antitumor effects of a standard-of-care antiandrogen, which is to our knowledge the first example of applying PET to interrogate the biology of treatment resistant cancer.Conclusions: In summary, we have developed the first quantitative assay to provide a comprehensive measurement of mTOR signaling dynamics in vivo, in specific normal tissues, and during tumor development in genetically engineered animal models using a nuclear imaging tool that is readily translatable to man. Clin Cancer Res; 23(12); 3045-52. ©2016 AACR.
Collapse
Affiliation(s)
- Charles Truillet
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - John T Cunningham
- Department of Urology, University of California San Francisco, San Francisco, California
| | - Matthew F L Parker
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Loc T Huynh
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Crystal S Conn
- Department of Urology, University of California San Francisco, San Francisco, California.,Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - Davide Ruggero
- Department of Urology, University of California San Francisco, San Francisco, California.,Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - Jason S Lewis
- Department of Radiology and the Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York. .,Departments of Radiology and Pharmacology, Weill Cornell Medical College, New York
| | - Michael J Evans
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California. .,Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| |
Collapse
|
35
|
Petrik M, Zhai C, Haas H, Decristoforo C. Siderophores for molecular imaging applications. Clin Transl Imaging 2016; 5:15-27. [PMID: 28138436 PMCID: PMC5269471 DOI: 10.1007/s40336-016-0211-x] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 09/30/2016] [Indexed: 01/21/2023]
Abstract
This review covers publications on siderophores applied for molecular imaging applications, mainly for radionuclide-based imaging. Siderophores are low molecular weight chelators produced by bacteria and fungi to scavenge essential iron. Research on these molecules has a continuing history over the past 50 years. Many biomedical applications have been developed, most prominently the use of the siderophore desferrioxamine (DFO) to tackle iron overload related diseases. Recent research described the upregulation of siderophore production and transport systems during infection. Replacing iron in siderophores by radionuclides, the most prominent Ga-68 for PET, opens approaches for targeted imaging of infection; the proof of principle has been reported for fungal infections using 68Ga-triacetylfusarinine C (TAFC). Additionally, fluorescent siderophores and therapeutic conjugates have been described and may be translated to optical imaging and theranostic applications. Siderophores have also been applied as bifunctional chelators, initially DFO as chelator for Ga-67 and more recently for Zr-89 where it has become the standard chelator in Immuno-PET. Improved DFO constructs and bifunctional chelators based on cyclic siderophores have recently been developed for Ga-68 and Zr-89 and show promising properties for radiopharmaceutical development in PET. A huge potential from basic biomedical research on siderophores still awaits to be utilized for clinical and translational imaging.
Collapse
Affiliation(s)
- Milos Petrik
- Faculty of Medicine and Dentistry, Institute of Molecular and Translational Medicine, Palacky University, Olomouc, Czech Republic
| | - Chuangyan Zhai
- Universitätsklinik für Nuklearmedizin, Medizinische Universität Innsbruck, Anichstr. 35, 6020 Innsbruck, Austria
- Department of Experimental Nuclear Medicine, Guangzhou Medical University, Guangzhou, Guangdong China
| | - Hubertus Haas
- Division of Molecular Biology, Biocenter, Medical University Innsbruck, Innsbruck, Austria
| | - Clemens Decristoforo
- Universitätsklinik für Nuklearmedizin, Medizinische Universität Innsbruck, Anichstr. 35, 6020 Innsbruck, Austria
| |
Collapse
|
36
|
Truillet C, Thomas E, Lux F, Huynh LT, Tillement O, Evans MJ. Synthesis and Characterization of (89)Zr-Labeled Ultrasmall Nanoparticles. Mol Pharm 2016; 13:2596-601. [PMID: 27266800 DOI: 10.1021/acs.molpharmaceut.6b00264] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The ultrasmall nanoparticle AGuIX is a versatile platform that tolerates a range of chemical diversity for theranostic applications. Our previous work showed that AGuIX clears rapidly from normal tissues, while durably accumulating within the tumor microenvironment. On this basis, AGuIX was used to detect tumor tissue with Gd(3+) enhanced MRI and can sensitize tumors to radiation therapy. As we begin the translation of AGuIX, we appreciated that coupling AGuIX to a long-lived radioisotope would help to more completely measure the magnitude and duration of its retention within the tumor microenvironment. Therefore, we developed (89)Zr-DFO-AGuIX. AGuIX was coupled to DFO and then to (89)Zr in ∼99% radiochemical yield. Stability studies showed that (89)Zr-DFO-AGuIX did not dissociate after 72 h. In animals bearing U87MG xenografts, it was detectable at levels above background for 72 h. Lastly, (89)Zr-DFO-AGuIX did not accumulate in inflammatory abscesses in vivo, highlighting its specificity for well vascularized tumors.
Collapse
Affiliation(s)
- Charles Truillet
- Department of Radiology and Biomedical Imaging, University of California San Francisco , 185 Berry Street, Lobby 6, Suite 350, San Francisco, California 94107, United States
| | - Eloise Thomas
- Institut Lumière Matière, UMR5306, Université Claude Bernard Lyon1-CNRS, Université de Lyon , 69622 Villeurbanne cedex, France
| | - Francois Lux
- Institut Lumière Matière, UMR5306, Université Claude Bernard Lyon1-CNRS, Université de Lyon , 69622 Villeurbanne cedex, France
| | - Loc T Huynh
- Department of Radiology and Biomedical Imaging, University of California San Francisco , 185 Berry Street, Lobby 6, Suite 350, San Francisco, California 94107, United States
| | - Olivier Tillement
- Institut Lumière Matière, UMR5306, Université Claude Bernard Lyon1-CNRS, Université de Lyon , 69622 Villeurbanne cedex, France
| | - Michael J Evans
- Department of Radiology and Biomedical Imaging, University of California San Francisco , 185 Berry Street, Lobby 6, Suite 350, San Francisco, California 94107, United States
| |
Collapse
|
37
|
Abstract
Imaging reveals complex structures and dynamic interactive processes, located deep inside the body, that are otherwise difficult to decipher. Numerous imaging modalities harness every last inch of the energy spectrum. Clinical modalities include magnetic resonance imaging (MRI), X-ray computed tomography (CT), ultrasound, and light-based methods [endoscopy and optical coherence tomography (OCT)]. Research modalities include various light microscopy techniques (confocal, multiphoton, total internal reflection, superresolution fluorescence microscopy), electron microscopy, mass spectrometry imaging, fluorescence tomography, bioluminescence, variations of OCT, and optoacoustic imaging, among a few others. Although clinical imaging and research microscopy are often isolated from one another, we argue that their combination and integration is not only informative but also essential to discovering new biology and interpreting clinical datasets in which signals invariably originate from hundreds to thousands of cells per voxel.
Collapse
|
38
|
Spacer-free BODIPY fluorogens in antimicrobial peptides for direct imaging of fungal infection in human tissue. Nat Commun 2016; 7:10940. [PMID: 26956772 PMCID: PMC4786873 DOI: 10.1038/ncomms10940] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 02/03/2016] [Indexed: 12/12/2022] Open
Abstract
Fluorescent antimicrobial peptides are promising structures for in situ, real-time imaging of fungal infection. Here we report a fluorogenic probe to image Aspergillus fumigatus directly in human pulmonary tissue. We have developed a fluorogenic Trp-BODIPY amino acid with a spacer-free C-C linkage between Trp and a BODIPY fluorogen, which shows remarkable fluorescence enhancement in hydrophobic microenvironments. The incorporation of our fluorogenic amino acid in short antimicrobial peptides does not impair their selectivity for fungal cells, and enables rapid and direct fungal imaging without any washing steps. We have optimized the stability of our probes in human samples to perform multi-photon imaging of A. fumigatus in ex vivo human tissue. The incorporation of our unique BODIPY fluorogen in biologically relevant peptides will accelerate the development of novel imaging probes with high sensitivity and specificity.
Collapse
|
39
|
Singh R, Norret M, House MJ, Galabura Y, Bradshaw M, Ho D, Woodward RC, St Pierre TG, Luzinov I, Smith NM, Lim LY, Iyer KS. Dose-Dependent Therapeutic Distinction between Active and Passive Targeting Revealed Using Transferrin-Coated PGMA Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:351-359. [PMID: 26619362 DOI: 10.1002/smll.201502730] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/13/2015] [Indexed: 06/05/2023]
Abstract
The paradigm of using nanoparticle-based formulations for drug delivery relies on their enhanced passive accumulation in the tumor interstitium. Nanoparticles with active targeting capabilities attempt to further enhance specific delivery of drugs to the tumors via interaction with overexpressed cellular receptors. Consequently, it is widely accepted that drug delivery using actively targeted nanoparticles maximizes the therapeutic benefit and minimizes the off-target effects. However, the process of nanoparticle mediated active targeting initially relies on their passive accumulation in tumors. In this article, it is demonstrated that these two tumor-targeted drug delivery mechanisms are interrelated and dosage dependent. It is reported that at lower doses, actively targeted nanoparticles have distinctly higher efficacy in tumor inhibition than their passively targeted counterparts. However, the enhanced permeability and retention effect of the tumor tissue becomes the dominant factor influencing the efficacy of both passively and actively targeted nanoparticles when they are administered at higher doses. Importantly, it is demonstrated that dosage is a pivotal parameter that needs to be taken into account in the assessment of nanoparticle mediated targeted drug delivery.
Collapse
Affiliation(s)
- Ruhani Singh
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, W. A., 6009, Australia
| | - Marck Norret
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, W. A., 6009, Australia
| | - Michael J House
- School of Physics, The University of Western Australia, Crawley, W. A., 6009, Australia
| | - Yuriy Galabura
- School of Materials Science and Engineering, Clemson University, Clemson, SC, 29634, USA
| | - Michael Bradshaw
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, W. A., 6009, Australia
| | - Diwei Ho
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, W. A., 6009, Australia
| | - Robert C Woodward
- School of Physics, The University of Western Australia, Crawley, W. A., 6009, Australia
| | - Timothy G St Pierre
- School of Physics, The University of Western Australia, Crawley, W. A., 6009, Australia
| | - Igor Luzinov
- School of Materials Science and Engineering, Clemson University, Clemson, SC, 29634, USA
| | - Nicole M Smith
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, W. A., 6009, Australia
- School of Animal Biology, The University of Western Australia, Crawley, W. A., 6009, Australia
| | - Lee Yong Lim
- School of Medicine and Pharmacology, The University of Western Australia, Crawley, W. A., 6009, Australia
| | - Killugudi Swaminathan Iyer
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, W. A., 6009, Australia
| |
Collapse
|
40
|
Doran MG, Carnazza KE, Steckler JM, Spratt DE, Truillet C, Wongvipat J, Sawyers CL, Lewis JS, Evans MJ. Applying ⁸⁹Zr-Transferrin To Study the Pharmacology of Inhibitors to BET Bromodomain Containing Proteins. Mol Pharm 2016; 13:683-8. [PMID: 26725682 PMCID: PMC4738321 DOI: 10.1021/acs.molpharmaceut.5b00882] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
![]()
Chromatin modifying proteins are
attractive drug targets in oncology,
given the fundamental reliance of cancer on altered transcriptional
activity. Multiple transcription factors can be impacted downstream
of primary target inhibition, thus making it challenging to understand
the driving mechanism of action of pharmacologic inhibition of chromatin
modifying proteins. This in turn makes it difficult to identify biomarkers
predictive of response and pharmacodynamic tools to optimize drug
dosing. In this report, we show that 89Zr-transferrin,
an imaging tool we developed to measure MYC activity in cancer, can
be used to identify cancer models that respond to broad spectrum inhibitors
of transcription primarily due to MYC inhibition. As a proof of concept,
we studied inhibitors of BET bromodomain containing proteins, as they
can impart antitumor effects in a MYC dependent or independent fashion.
In vitro, we show that transferrin receptor biology is inhibited in
multiple MYC positive models of prostate cancer and double hit lymphoma
when MYC biology is impacted. Moreover, we show that bromodomain inhibition
in one lymphoma model results in transferrin receptor expression changes
large enough to be quantified with 89Zr-transferrin and
positron emission tomography (PET) in vivo. Collectively, these data
further underscore the diagnostic utility of the relationship between
MYC and transferrin in oncology, and provide the rationale to incorporate
transferrin-based PET into early clinical trials with bromodomain
inhibitors for the treatment of solid tumors.
Collapse
Affiliation(s)
- Michael G Doran
- Department of Radiology, Memorial Sloan Kettering Cancer Center , 1275 York Avenue, New York, New York 10065, United States
| | - Kathryn E Carnazza
- Department of Radiology, Memorial Sloan Kettering Cancer Center , 1275 York Avenue, New York, New York 10065, United States
| | - Jeffrey M Steckler
- Department of Radiology, Memorial Sloan Kettering Cancer Center , 1275 York Avenue, New York, New York 10065, United States
| | - Daniel E Spratt
- Department of Radiation Oncology, University of Michigan , 1500 East Medical Center Drive, Ann Arbor, Michigan 48109, United States
| | - Charles Truillet
- Department of Radiology and Biomedical Imaging, University of California San Francisco , 185 Berry Street, Lobby 6 Suite 350, San Francisco, California 94143, United States
| | - John Wongvipat
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center , 1275 York Avenue, New York, New York 10065, United States
| | - Charles L Sawyers
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center , 1275 York Avenue, New York, New York 10065, United States
| | - Jason S Lewis
- Department of Radiology, Memorial Sloan Kettering Cancer Center , 1275 York Avenue, New York, New York 10065, United States.,Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center , 1275 York Avenue, New York, New York 10065, United States
| | - Michael J Evans
- Department of Radiology and Biomedical Imaging, University of California San Francisco , 185 Berry Street, Lobby 6 Suite 350, San Francisco, California 94143, United States
| |
Collapse
|
41
|
Rudd SE, Roselt P, Cullinane C, Hicks RJ, Donnelly PS. A desferrioxamine B squaramide ester for the incorporation of zirconium-89 into antibodies. Chem Commun (Camb) 2016; 52:11889-11892. [DOI: 10.1039/c6cc05961a] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A squaramide ester derivative of desferrioxamine B is used to attach zirconium-89 to the antibody trastuzumab and the new conjugate is used for positron emission tomography imaging in mouse models of breast cancer.
Collapse
Affiliation(s)
- Stacey E. Rudd
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute
- University of Melbourne
- Melbourne
- Australia
| | - Peter Roselt
- Research Division
- Peter MacCallum Cancer Centre
- Melbourne 3000
- Australia
| | - Carleen Cullinane
- Research Division
- Peter MacCallum Cancer Centre
- Melbourne 3000
- Australia
- The Sir Peter MacCallum Department of Oncology
| | - Rodney J. Hicks
- The Sir Peter MacCallum Department of Oncology
- The University of Melbourne
- Parkville
- Australia
- Centre for Cancer Imaging
| | - Paul S. Donnelly
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute
- University of Melbourne
- Melbourne
- Australia
| |
Collapse
|
42
|
Abstract
The MYC oncogene plays a pivotal role in the development and progression of human cancers. It encodes a transcription factor that has broad reaching effects on many cellular functions, most importantly in driving cell growth through regulation of genes involved in ribosome biogenesis, metabolism, and cell cycle. Upon binding DNA with its partner MAX, MYC recruits factors that release paused RNA polymerases to drive transcription and amplify gene expression. At physiologic levels of MYC, occupancy of high-affinity DNA-binding sites drives 'house-keeping' metabolic genes and those involved in ribosome and mitochondrial biogenesis for biomass accumulation. At high oncogenic levels of MYC, invasion of low-affinity sites and enhancer sequences alter the transcriptome and cause metabolic imbalances, which activates stress response and checkpoints such as p53. Loss of checkpoints unleashes MYC's full oncogenic potential to couple metabolism with neoplastic cell growth and division. Cells that overexpress MYC, however, are vulnerable to metabolic perturbations that provide potential new avenues for cancer therapy.
Collapse
|
43
|
Maier KE, Jangra RK, Shieh KR, Cureton DK, Xiao H, Snapp EL, Whelan SP, Chandran K, Levy M. A New Transferrin Receptor Aptamer Inhibits New World Hemorrhagic Fever Mammarenavirus Entry. MOLECULAR THERAPY. NUCLEIC ACIDS 2016; 5:e321. [DOI: 10.1038/mtna.2016.32] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 04/07/2016] [Indexed: 01/12/2023]
|
44
|
Wirth M, Schneider G. MYC: A Stratification Marker for Pancreatic Cancer Therapy. Trends Cancer 2015; 2:1-3. [PMID: 28741497 DOI: 10.1016/j.trecan.2015.12.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 12/01/2015] [Accepted: 12/02/2015] [Indexed: 12/28/2022]
Abstract
One approach to improve cancer treatment is to stratify patients and to develop subgroup-specific therapies. We will discuss the potential of MYC as a stratification marker in pancreatic ductal adenocarcinoma. Furthermore, we will point to possibilities for how to annotate the MYC status and how to target MYC-associated vulnerabilities.
Collapse
Affiliation(s)
- Matthias Wirth
- II. Medizinische Klinik, Technische Universität München, München, 81675, Germany
| | - Günter Schneider
- II. Medizinische Klinik, Technische Universität München, München, 81675, Germany.
| |
Collapse
|
45
|
Shen A, Wang L, Huang M, Sun J, Chen Y, Shen YY, Yang X, Wang X, Ding J, Geng M. c-Myc alterations confer therapeutic response and acquired resistance to c-Met inhibitors in MET-addicted cancers. Cancer Res 2015; 75:4548-59. [PMID: 26483207 DOI: 10.1158/0008-5472.can-14-2743] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 07/23/2015] [Indexed: 11/16/2022]
Abstract
Use of kinase inhibitors in cancer therapy leads invariably to acquired resistance stemming from kinase reprogramming. To overcome the dynamic nature of kinase adaptation, we asked whether a signal-integrating downstream effector might exist that provides a more applicable therapeutic target. In this study, we reported that the transcriptional factor c-Myc functions as a downstream effector to dictate the therapeutic response to c-Met inhibitors in c-Met-addicted cancer and derived resistance. Dissociation of c-Myc from c-Met control, likely overtaken by a variety of reprogrammed kinases, led to acquisition of drug resistance. Notably, c-Myc blockade by RNA interference or pharmacologic inhibition circumvented the acquired resistance to c-Met inhibition. Combining c-Myc blockade and c-Met inhibition in MET-amplified patient-derived xenograft mouse models heightened therapeutic activity. Our findings offer a preclinical proof of concept for the application of c-Myc-blocking agents as a tactic to thwart resistance to kinase inhibitors.
Collapse
Affiliation(s)
- Aijun Shen
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai China
| | - Lu Wang
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai China
| | - Min Huang
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai China
| | - Jingya Sun
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai China
| | - Yi Chen
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai China
| | - Yan-Yan Shen
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai China
| | - Xinying Yang
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai China
| | - Xin Wang
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai China
| | - Jian Ding
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai China.
| | - Meiyu Geng
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai China.
| |
Collapse
|
46
|
Preclinical evaluation of ⁸⁹Zr-labeled human antitransferrin receptor monoclonal antibody as a PET probe using a pancreatic cancer mouse model. Nucl Med Commun 2015; 36:286-94. [PMID: 25460304 DOI: 10.1097/mnm.0000000000000245] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
OBJECTIVE Pancreatic cancer is aggressive and its prognosis remains poor; thus, effective therapy is urgently needed. Transferrin receptor (TfR) is highly expressed in pancreatic cancer and is considered to be a good candidate for molecular-targeted therapy. We radiolabeled and evaluated fully human anti-TfR monoclonal antibodies as a new PET probe for evaluating the biodistribution of the anti-TfR antibody in pancreatic cancer. MATERIALS AND METHODS TfR expression was evaluated in four human pancreatic cancer (MIAPaCa-2, PANC-1, BxPC-3, and AsPC-1) and murine A4 cell lines. The binding of 125I-labeled anti-TfR antibodies (TSP-A01, TSP-A02, TSP-A03, and TSP-A04) to MIAPaCa-2 cells was compared. 125I-labeled, 67Ga-labeled, and 89Zr-labeled TSP-A01 were evaluated by cell binding, competitive inhibition, and internalization assays. Biodistribution studies of 125I-labeled and 89Zr-labeled TSP-A01 were conducted in mice bearing MIAPaCa-2 and A4 tumors. PET imaging with [89Zr]TSP-A01 was carried out. RESULTS MIAPaCa-2 cells showed the highest TfR expression in vitro and in vivo, whereas A4 cells showed no expression. Of the four antibodies, [125I]TSP-A01 showed the highest binding to MIAPaCa-2 cells, but not to A4 cells. The dissociation constant of TSP-A01 was 0.29 nmol/l. Uptake of radiolabeled TSP-A01, especially [89Zr]TSP-A01, was significantly higher in MIAPaCa-2 tumors than in A4 tumors. PET with [89Zr]TSP-A01 clearly visualized MIAPaCa-2 xenografts but not A4 xenografts. CONCLUSION [89Zr]TSP-A01 is a promising PET probe for evaluating the accumulation of anti-TfR antibody in pancreatic cancer and has the potential to facilitate the selection of appropriate patients who would benefit from anti-TfR antibody therapy.
Collapse
|
47
|
Pandya DN, Pailloux S, Tatum D, Magda D, Wadas TJ. Di-macrocyclic terephthalamide ligands as chelators for the PET radionuclide zirconium-89. Chem Commun (Camb) 2015; 51:2301-3. [PMID: 25556851 DOI: 10.1039/c4cc09256b] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of bifunctional chelators (BFCs) which can stably chelate zirconium-89 ((89)Zr) while being conjugated to targeting molecules is an area of active research. Herein we report the first octadentate terephthalamide ligands, which are easily radiolabeled with (89)Zr and are highly stable in vitro. They represent a novel class of chelators, which are worthy of further development as BFCs for (89)Zr.
Collapse
Affiliation(s)
- Darpan N Pandya
- Radiochemistry Service and Cyclotron Operations, Cancer Biology and Radiology, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157, USA.
| | | | | | | | | |
Collapse
|
48
|
Preston GC, Sinclair LV, Kaskar A, Hukelmann JL, Navarro MN, Ferrero I, MacDonald HR, Cowling VH, Cantrell DA. Single cell tuning of Myc expression by antigen receptor signal strength and interleukin-2 in T lymphocytes. EMBO J 2015; 34:2008-24. [PMID: 26136212 PMCID: PMC4551349 DOI: 10.15252/embj.201490252] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 05/18/2015] [Indexed: 12/29/2022] Open
Abstract
Myc controls the metabolic reprogramming that supports effector T cell differentiation. The expression of Myc is regulated by the T cell antigen receptor (TCR) and pro-inflammatory cytokines such as interleukin-2 (IL-2). We now show that the TCR is a digital switch for Myc mRNA and protein expression that allows the strength of the antigen stimulus to determine the frequency of T cells that express Myc. IL-2 signalling strength also directs Myc expression but in an analogue process that fine-tunes Myc quantity in individual cells via post-transcriptional control of Myc protein. Fine-tuning Myc matters and is possible as Myc protein has a very short half-life in T cells due to its constant phosphorylation by glycogen synthase kinase 3 (GSK3) and subsequent proteasomal degradation. We show that Myc only accumulates in T cells exhibiting high levels of amino acid uptake allowing T cells to match Myc expression to biosynthetic demands. The combination of digital and analogue processes allows tight control of Myc expression at the population and single cell level during immune responses.
Collapse
Affiliation(s)
- Gavin C Preston
- Department of Cell Signalling & Immunology, College of Life Sciences University of Dundee, Dundee, UK
| | - Linda V Sinclair
- Department of Cell Signalling & Immunology, College of Life Sciences University of Dundee, Dundee, UK
| | - Aneesa Kaskar
- Department of Cell Signalling & Immunology, College of Life Sciences University of Dundee, Dundee, UK Centre for Gene Regulation and Expression, College of Life Sciences University of Dundee, Dundee, UK
| | - Jens L Hukelmann
- Department of Cell Signalling & Immunology, College of Life Sciences University of Dundee, Dundee, UK Centre for Gene Regulation and Expression, College of Life Sciences University of Dundee, Dundee, UK
| | - Maria N Navarro
- Department of Cell Signalling & Immunology, College of Life Sciences University of Dundee, Dundee, UK Instituto Investigación Sanitaria/Hospital Universitario de la Princesa Universidad Autónoma de Madrid, Madrid, Spain
| | - Isabel Ferrero
- Ludwig Center for Cancer Research of the University of Lausanne, Epalinges, Switzerland
| | - H Robson MacDonald
- Ludwig Center for Cancer Research of the University of Lausanne, Epalinges, Switzerland
| | - Victoria H Cowling
- Centre for Gene Regulation and Expression, College of Life Sciences University of Dundee, Dundee, UK
| | - Doreen A Cantrell
- Department of Cell Signalling & Immunology, College of Life Sciences University of Dundee, Dundee, UK
| |
Collapse
|
49
|
|
50
|
Alam IS, Arshad MA, Nguyen QD, Aboagye EO. Radiopharmaceuticals as probes to characterize tumour tissue. Eur J Nucl Med Mol Imaging 2015; 42:537-61. [PMID: 25647074 DOI: 10.1007/s00259-014-2984-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 12/18/2014] [Indexed: 01/06/2023]
Abstract
Tumour cells exhibit several properties that allow them to grow and divide. A number of these properties are detectable by nuclear imaging methods. We discuss crucial tumour properties that can be described by current radioprobe technologies, further discuss areas of emerging radioprobe development, and finally articulate need areas that our field should aspire to develop. The review focuses largely on positron emission tomography and draws upon the seminal 'Hallmarks of Cancer' review article by Hanahan and Weinberg in 2011 placing into context the present and future roles of radiotracer imaging in characterizing tumours.
Collapse
Affiliation(s)
- Israt S Alam
- Comprehensive Cancer Imaging Centre, Imperial College London, London, W12 0NN, UK
| | | | | | | |
Collapse
|