1
|
He X, Hawkins C, Lawley L, Phan TM, Park I, Joven N, Zhang J, Wunderlich M, Mizukawa B, Pei S, Patel A, VanOudenhove J, Halene S, Fang J. GPR68 supports AML cells through the calcium/calcineurin pro-survival pathway and confers chemoresistance by mediating glucose metabolic symbiosis. Biochim Biophys Acta Mol Basis Dis 2024:167565. [PMID: 39522891 DOI: 10.1016/j.bbadis.2024.167565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/21/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
Accumulating evidence demonstrates that the "Warburg effect" that glycolysis is enhanced even in the presence of oxygen existed in hematopoietic malignancies, contributing to extracellular acidosis. G-protein coupled receptor 68 (GPR68), as a proton sensing GPCR responding to extracellular acidosis, is expected to play a critical role in hematopoietic malignancies. In the present study, we found that GPR68 was overexpressed in acute myeloid leukemia (AML) cells, and GPR68 deficiency impaired AML cell survival in vitro and cell engraftment in vivo. Mechanistic studies revealed that unlike GPR68 regulates Calpain1 in myelodysplastic syndromes (MDS) cells, GPR68 deficiency reduced cytosolic Ca2+ levels and calcineurin (CaN) activity in AML cells through an NFAT-independent mechanism. Moreover, the decreased Ca2+ levels disturbed cellular respiration (i.e., oxidative phosphorylation, OxPhos) by inhibiting isocitrate dehydrogenase (IDH) activity; this was more pronounced when BCL2 was inhibited simultaneously. Interestingly, GPR68 inhibition also decreased aerobic glycolysis in AML cells in a Ca2+-independent manner, suggesting that GPR68 mediated glucose metabolic symbiosis. As glucose metabolic symbiosis and the heterogeneous dependencies on aerobic glycolysis and cellular respiration tremendously impact chemosensitivity, the inhibition of GPR68 potentiated the tumoricidal effect of first-line chemotherapeutic agents, including BCL-2 inhibitors targeting OxPhos and cytarabine (AraC) targeting glycolysis. Consistent with these in vitro observations, higher levels of GPR68 were associated with inferior clinical outcomes in AML patients who received chemotherapies. In short, GPR68 drives the Ca2+/CaN pro-survival pathway and mediates glucose metabolic pathways in AML cells. Targeting GPR68 eradicates AML cells and alleviates chemoresistance, which could be exploited as a therapeutic target. The overexpression of GPR68 drives a Ca2+/CaN pro-survival pathway and mediates glucose metabolic symbiosis in AML cells, suggesting the diagnostic and therapeutic potential of GPR68 in AML. (GPR68, G proton-coupled receptor 68; PLCβ, phospholipase C beta; CaN, Calcineurin; IDH, isocitrate dehydrogenase; HIF-1α, Hypoxia-inducible factor alpha subunit; GLUT1, Glucose transporter type 1; HK-1, Hexokinase 1).
Collapse
Affiliation(s)
- Xiaofei He
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina College of Pharmacy, Columbia, SC 29208, USA
| | - Caleb Hawkins
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina College of Pharmacy, Columbia, SC 29208, USA
| | - Lauren Lawley
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina College of Pharmacy, Columbia, SC 29208, USA
| | - Tra Mi Phan
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina College of Pharmacy, Columbia, SC 29208, USA
| | - Isaac Park
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina College of Pharmacy, Columbia, SC 29208, USA
| | - Nicole Joven
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina College of Pharmacy, Columbia, SC 29208, USA
| | - Jiajia Zhang
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
| | - Mark Wunderlich
- Cancer and Blood Disease Institutes, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Benjamin Mizukawa
- Cancer and Blood Disease Institutes, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Shanshan Pei
- Division of Hematology, University of Colorado, Denver, CO 80045, USA
| | - Amisha Patel
- Section of Hematology, Yale Cancer Center and Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jennifer VanOudenhove
- Section of Hematology, Yale Cancer Center and Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Stephanie Halene
- Section of Hematology, Yale Cancer Center and Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Stem Cell Center and Yale RNA Center, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jing Fang
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina College of Pharmacy, Columbia, SC 29208, USA.
| |
Collapse
|
2
|
Maffeo B, Cilloni D. The Ubiquitin-Conjugating Enzyme E2 O (UBE2O) and Its Therapeutic Potential in Human Leukemias and Solid Tumors. Cancers (Basel) 2024; 16:3064. [PMID: 39272922 PMCID: PMC11394522 DOI: 10.3390/cancers16173064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Protein degradation is a biological phenomenon essential for cellular homeostasis and survival. Selective protein degradation is performed by the ubiquitination system which selectively targets proteins that need to be eliminated and leads them to proteasome degradation. In this narrative review, we focus on the ubiquitin-conjugating enzyme E2 O (UBE2O) and highlight the role of UBE2O in many biological and physiological processes. We further discuss UBE2O's implications in various human diseases, particularly in leukemias and solid cancers. Ultimately, our review aims to highlight the potential role of UBE2O as a therapeutic target and offers new perspectives for developing targeted treatments for human cancers.
Collapse
Affiliation(s)
- Beatrice Maffeo
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy
| | - Daniela Cilloni
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy
| |
Collapse
|
3
|
Justus CR, Marie MA, Sanderlin EJ, Yang LV. The Roles of Proton-Sensing G-Protein-Coupled Receptors in Inflammation and Cancer. Genes (Basel) 2024; 15:1151. [PMID: 39336742 PMCID: PMC11431078 DOI: 10.3390/genes15091151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
The precise regulation of pH homeostasis is crucial for normal physiology. However, in tissue microenvironments, it can be impacted by pathological conditions such as inflammation and cancer. Due to the overproduction and accumulation of acids (protons), the extracellular pH is characteristically more acidic in inflamed tissues and tumors in comparison to normal tissues. A family of proton-sensing G-protein-coupled receptors (GPCRs) has been identified as molecular sensors for cells responding to acidic tissue microenvironments. Herein, we review the current research progress pertaining to these proton-sensing GPCRs, including GPR4, GPR65 (TDAG8), and GPR68 (OGR1), in inflammation and cancer. Growing evidence suggests that GPR4 and GPR68 are mainly pro-inflammatory, whereas GPR65 is primarily anti-inflammatory, in various inflammatory disorders. Both anti- and pro-tumorigenic effects have been reported for this family of receptors. Moreover, antagonists and agonists targeting proton-sensing GPCRs have been developed and evaluated in preclinical models. Further research is warranted to better understand the roles of these proton-sensing GPCRs in pathophysiology and is required in order to exploit them as potential therapeutic targets for disease treatment.
Collapse
Affiliation(s)
- Calvin R Justus
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Mona A Marie
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Edward J Sanderlin
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Li V Yang
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| |
Collapse
|
4
|
Xie L, Chen C, Zhang T, Yang W, Zheng D, Cao L, Yuan J, Xu Y, Zhang Y, Liu L, Liang A, Yu Z, Zheng J. LILRB4 regulates multiple myeloma development through STAT3-PFKFB1 pathway. Cell Death Dis 2024; 15:515. [PMID: 39025844 PMCID: PMC11258265 DOI: 10.1038/s41419-024-06883-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 06/19/2024] [Accepted: 07/02/2024] [Indexed: 07/20/2024]
Abstract
Although multiple myeloma (MM) responds well to immunotherapeutic treatment, certain portions of MM are still unresponsive or relapse after immunotherapy. Other immune molecules are needed for the immunotherapy of MM. Here, we revealed that leukocyte immunoglobulin-like receptor B4 (LILRB4) was highly expressed in multiple myeloma cell lines and patient samples and that the expression of LILRB4 was adversely correlated with the overall survival of MM patients. Knockdown of LILRB4 efficiently delayed the growth of MM cells both in vitro and in vivo. Mechanistically, IKZF1 transactivated LILRB4 expression to trigger the downstream of STAT3-PFKFB1 pathways to support MM cell proliferation. Blockade of LILRB4 signaling by blocking antibodies can effectively inhibit MM progression. Our data show that targeting LILRB4 is potentially an additional therapeutic strategy for the immunotherapeutic treatment of MM.
Collapse
Affiliation(s)
- Li Xie
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chiqi Chen
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Tinghua Zhang
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Wenqian Yang
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Denghao Zheng
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Liyuan Cao
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jin Yuan
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yilu Xu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yaping Zhang
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ligen Liu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Aibin Liang
- Department of Hematology, Shanghai Tongji Hospital, Shanghai Tongji University School of Medicine, Shanghai, 200065, China.
| | - Zhuo Yu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Junke Zheng
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
5
|
Bruzzese A, Martino EA, Mendicino F, Lucia E, Olivito V, Capodanno I, Neri A, Morabito F, Vigna E, Gentile M. Myelodysplastic syndromes del(5q): Pathogenesis and its therapeutic implications. Eur J Haematol 2024; 112:860-869. [PMID: 38294126 DOI: 10.1111/ejh.14181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 02/01/2024]
Abstract
Myelodysplastic syndromes (MDS) encompass a heterogeneous set of acquired bone marrow neoplastic disorders characterized by ineffective hematopoiesis within one or more bone marrow lineages. Nearly half of MDS patients carry cytogenetic alterations, with del(5q) being the most prevalent. Since its first description, del(5q) was consistently correlated with a typical clinical phenotype marked by anemia, thrombocytosis, and a low risk of evolving into acute leukemia. Presently, the World Health Organization (WHO) classification of myeloid neoplasms recognizes a specific subtype of MDS known as "myelodysplastic neoplasm with low blast and isolated del(5q)" identified by the sole presence of 5q deletion or in combination with one other abnormality excluding -7/del(7q). Several studies have sought to unravel the biological processes triggered by del(5q) in the development of MDS, revealing the involvement of various genes localized in specific regions of chromosome 5 referred to as common deleted regions (CDR). This intricate biological landscape makes the MDS cells with del(5q) exceptionally sensitive to lenalidomide. Several studies have confirmed the efficacy of lenalidomide in this context. Regrettably, the response to lenalidomide is not conclusive, prompting ongoing research into biological mechanisms that drive patients toward leukemia and strategies to circumvent lenalidomide resistance and disease progression.
Collapse
Affiliation(s)
- Antonella Bruzzese
- Department of Onco-hematology, Hematology Unit, A.O. of Cosenza, Cosenza, Italy
| | | | - Francesco Mendicino
- Department of Onco-hematology, Hematology Unit, A.O. of Cosenza, Cosenza, Italy
| | - Eugenio Lucia
- Department of Onco-hematology, Hematology Unit, A.O. of Cosenza, Cosenza, Italy
| | - Virginia Olivito
- Department of Onco-hematology, Hematology Unit, A.O. of Cosenza, Cosenza, Italy
| | | | - Antonino Neri
- Scientific Direction Azienda USL-IRCCS of Reggio Emilia, Reggio Emilia, Italy
| | - Fortunato Morabito
- Biotechnology Research Unit, Aprigliano, A.O./ASP of Cosenza, Cosenza, Italy
| | - Ernesto Vigna
- Department of Onco-hematology, Hematology Unit, A.O. of Cosenza, Cosenza, Italy
| | - Massimo Gentile
- Department of Onco-hematology, Hematology Unit, A.O. of Cosenza, Cosenza, Italy
- Department of Pharmacy, Health and Nutritional Science, University of Calabria, Rende, Italy
| |
Collapse
|
6
|
Mina A, Pavletic S, Aplan PD. The evolution of preclinical models for myelodysplastic neoplasms. Leukemia 2024; 38:683-691. [PMID: 38396286 PMCID: PMC10997513 DOI: 10.1038/s41375-024-02181-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024]
Abstract
Myelodysplastic Neoplasms (MDS) are a group of clonal disorders characterized by ineffective hematopoiesis and morphologic dysplasia. Clinical manifestations of MDS vary widely and are dictated in large part by a range of genetic aberrations. The lack of robust in vitro models for MDS has limited the ability to conduct high throughput drug screens, which in turn has hampered the development of novel therapies for MDS. There are very few well-characterized MDS cell lines, and the available cell lines expand poorly in vitro. Conventional xenograft mouse models can provide an in vivo vessel to provide growth of cancer cells, but human MDS cells engraft poorly. Three-dimensional (3D) scaffold models that form human "ossicles" represent a promising new approach and can reproduce the intricate communication between hematopoietic stem and progenitor cells and their environment. Genetically engineered mice utilize specific mutations and may not represent the entire array of human MDS; however, genetically engineered mice provided in vivo proof of principle for novel agents such as luspatercept, demonstrating the clinical utility of this approach. This review offers an overview of available preclinical MDS models and potential approaches to accelerate accurate clinical translation.
Collapse
Affiliation(s)
- Alain Mina
- Myeloid Malignancies Program, Immune Deficiency Cellular Therapy Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Steven Pavletic
- Myeloid Malignancies Program, Immune Deficiency Cellular Therapy Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Peter D Aplan
- Myeloid Malignancies Program, Immune Deficiency Cellular Therapy Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
7
|
Eckardt JN, Stasik S, Röllig C, Petzold A, Sauer T, Scholl S, Hochhaus A, Crysandt M, Brümmendorf TH, Naumann R, Steffen B, Kunzmann V, Einsele H, Schaich M, Burchert A, Neubauer A, Schäfer-Eckart K, Schliemann C, Krause SW, Herbst R, Hänel M, Hanoun M, Kaiser U, Kaufmann M, Rácil Z, Mayer J, Oelschlägel U, Berdel WE, Ehninger G, Serve H, Müller-Tidow C, Platzbecker U, Baldus CD, Dahl A, Schetelig J, Bornhäuser M, Middeke JM, Thiede C. Mutated IKZF1 is an independent marker of adverse risk in acute myeloid leukemia. Leukemia 2023; 37:2395-2403. [PMID: 37833543 PMCID: PMC10681898 DOI: 10.1038/s41375-023-02061-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 09/24/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023]
Abstract
Genetic lesions of IKZF1 are frequent events and well-established markers of adverse risk in acute lymphoblastic leukemia. However, their function in the pathophysiology and impact on patient outcome in acute myeloid leukemia (AML) remains elusive. In a multicenter cohort of 1606 newly diagnosed and intensively treated adult AML patients, we found IKZF1 alterations in 45 cases with a mutational hotspot at N159S. AML with mutated IKZF1 was associated with alterations in RUNX1, GATA2, KRAS, KIT, SF3B1, and ETV6, while alterations of NPM1, TET2, FLT3-ITD, and normal karyotypes were less frequent. The clinical phenotype of IKZF1-mutated AML was dominated by anemia and thrombocytopenia. In both univariable and multivariable analyses adjusting for age, de novo and secondary AML, and ELN2022 risk categories, we found mutated IKZF1 to be an independent marker of adverse risk regarding complete remission rate, event-free, relapse-free, and overall survival. The deleterious effects of mutated IKZF1 also prevailed in patients who underwent allogeneic hematopoietic stem cell transplantation (n = 519) in both univariable and multivariable models. These dismal outcomes are only partially explained by the hotspot mutation N159S. Our findings suggest a role for IKZF1 mutation status in AML risk modeling.
Collapse
Affiliation(s)
- Jan-Niklas Eckardt
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, Dresden, Germany.
| | - Sebastian Stasik
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Christoph Röllig
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Andreas Petzold
- Dresden-Concept Genome Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Tim Sauer
- German Cancer Research Center (DKFZ) and Medical Clinic V, University Hospital Heidelberg, Heidelberg, Germany
| | - Sebastian Scholl
- Klinik für Innere Medizin II, Jena University Hospital, Jena, Germany
| | - Andreas Hochhaus
- Klinik für Innere Medizin II, Jena University Hospital, Jena, Germany
| | - Martina Crysandt
- Department of Hematology, Oncology, Hemostaseology, and Cell Therapy, University Hospital RWTH Aachen, Aachen, Germany
| | - Tim H Brümmendorf
- Department of Hematology, Oncology, Hemostaseology, and Cell Therapy, University Hospital RWTH Aachen, Aachen, Germany
| | - Ralph Naumann
- Medical Clinic III, St. Marien-Hospital Siegen, Siegen, Germany
| | - Björn Steffen
- Medical Clinic II, University Hospital Frankfurt, Frankfurt (Main), Germany
| | - Volker Kunzmann
- Medical Clinic and Policlinic II, University Hospital Würzburg, Würzburg, Germany
| | - Hermann Einsele
- Medical Clinic and Policlinic II, University Hospital Würzburg, Würzburg, Germany
| | - Markus Schaich
- Department of Hematology, Oncology and Palliative Care, Rems-Murr-Hospital Winnenden, Winnenden, Germany
| | - Andreas Burchert
- Department of Hematology, Oncology and Immunology, Philipps-University-Marburg, Marburg, Germany
| | - Andreas Neubauer
- Department of Hematology, Oncology and Immunology, Philipps-University-Marburg, Marburg, Germany
| | - Kerstin Schäfer-Eckart
- Department of Internal Medicine V, Paracelsus Medizinische Privatuniversität and University Hospital Nuremberg, Nuremberg, Germany
| | | | - Stefan W Krause
- Medical Clinic V, University Hospital Erlangen, Erlangen, Germany
| | - Regina Herbst
- Medical Clinic III, Chemnitz Hospital AG, Chemnitz, Germany
| | - Mathias Hänel
- Medical Clinic III, Chemnitz Hospital AG, Chemnitz, Germany
| | - Maher Hanoun
- Department of Hematology, University Hospital Essen, Essen, Germany
| | - Ulrich Kaiser
- Medical Clinic II, St. Bernward Hospital, Hildesheim, Germany
| | - Martin Kaufmann
- Department of Hematology, Oncology and Palliative Care, Robert-Bosch-Hospital, Stuttgart, Germany
| | - Zdenek Rácil
- Department of Internal Medicine, Hematology and Oncology, Masaryk University Hospital, Brno, Czech Republic
| | - Jiri Mayer
- Department of Internal Medicine, Hematology and Oncology, Masaryk University Hospital, Brno, Czech Republic
| | - Uta Oelschlägel
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Wolfgang E Berdel
- Department of Medicine A, University Hospital Münster, Münster, Germany
| | - Gerhard Ehninger
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Hubert Serve
- Medical Clinic II, University Hospital Frankfurt, Frankfurt (Main), Germany
| | - Carsten Müller-Tidow
- German Cancer Research Center (DKFZ) and Medical Clinic V, University Hospital Heidelberg, Heidelberg, Germany
| | - Uwe Platzbecker
- Medical Clinic I Hematology and Celltherapy, University Hospital Leipzig, Leipzig, Germany
| | - Claudia D Baldus
- Department of Internal Medicine, University Hospital Kiel, Kiel, Germany
| | - Andreas Dahl
- Dresden-Concept Genome Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Johannes Schetelig
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, Dresden, Germany
- DKMS Clinical Trials Unit, Dresden, Germany
| | - Martin Bornhäuser
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, Dresden, Germany
- German Consortium for Translational Cancer Research DKFZ, Heidelberg, Germany
- National Center for Tumor Disease (NCT), Dresden, Germany
| | - Jan Moritz Middeke
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Christian Thiede
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, Dresden, Germany
| |
Collapse
|
8
|
Muto T, Walker CS, Agarwal P, Vick E, Sampson A, Choi K, Niederkorn M, Ishikawa C, Hueneman K, Varney M, Starczynowski DT. Inactivation of p53 provides a competitive advantage to del(5q) myelodysplastic syndrome hematopoietic stem cells during inflammation. Haematologica 2023; 108:2715-2729. [PMID: 37102608 PMCID: PMC10542836 DOI: 10.3324/haematol.2022.282349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 04/17/2023] [Indexed: 04/28/2023] Open
Abstract
Inflammation is associated with the pathogenesis of myelodysplastic syndromes (MDS) and emerging evidence suggests that MDS hematopoietic stem and progenitor cells (HSPC) exhibit an altered response to inflammation. Deletion of chromosome 5 (del(5q)) is the most common chromosomal abnormality in MDS. Although this MDS subtype contains several haploinsufficient genes that impact innate immune signaling, the effects of inflammation on del(5q) MDS HSPC remains undefined. Utilizing a model of del(5q)-like MDS, inhibiting the IRAK1/4-TRAF6 axis improved cytopenias, suggesting that activation of innate immune pathways contributes to certain clinical features underlying the pathogenesis of low-risk MDS. However, low-grade inflammation in the del(5q)-like MDS model did not contribute to more severe disease but instead impaired the del(5q)-like HSPC as indicated by their diminished numbers, premature attrition and increased p53 expression. Del(5q)-like HSPC exposed to inflammation became less quiescent, but without affecting cell viability. Unexpectedly, the reduced cellular quiescence of del(5q) HSPC exposed to inflammation was restored by p53 deletion. These findings uncovered that inflammation confers a competitive advantage of functionally defective del(5q) HSPC upon loss of p53. Since TP53 mutations are enriched in del(5q) AML following an MDS diagnosis, increased p53 activation in del(5q) MDS HSPC due to inflammation may create a selective pressure for genetic inactivation of p53 or expansion of a pre-existing TP53-mutant clone.
Collapse
Affiliation(s)
- Tomoya Muto
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH; Department of Hematology, Chiba University Hospital, Chiba.
| | - Callum S Walker
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Puneet Agarwal
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Eric Vick
- Division of Hematology and Oncology, University of Cincinnati, Cincinnati, OH
| | - Avery Sampson
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Kwangmin Choi
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Madeline Niederkorn
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Chiharu Ishikawa
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH; Department of Cancer Biology, University of Cincinnati, Cincinnati, OH
| | - Kathleen Hueneman
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Melinda Varney
- Department of Pharmaceutical Science and Research, Marshall University, Huntington, WV
| | - Daniel T Starczynowski
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH; Department of Cancer Biology, University of Cincinnati, Cincinnati, OH; Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH; UC Cancer Center, Cincinnati, OH.
| |
Collapse
|
9
|
García-Trevijano ER, Ortiz-Zapater E, Gimeno A, Viña JR, Zaragozá R. Calpains, the proteases of two faces controlling the epithelial homeostasis in mammary gland. Front Cell Dev Biol 2023; 11:1249317. [PMID: 37795261 PMCID: PMC10546029 DOI: 10.3389/fcell.2023.1249317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/05/2023] [Indexed: 10/06/2023] Open
Abstract
Calpain-1 and calpain-2 are calcium-dependent Cys-proteases ubiquitously expressed in mammalian tissues with a processive, rather than degradative activity. They are crucial for physiological mammary gland homeostasis as well as for breast cancer progression. A growing number of evidences indicate that their pleiotropic functions depend on the cell type, tissue and biological context where they are expressed or dysregulated. This review considers these standpoints to cover the paradoxical role of calpain-1 and -2 in the mammary tissue either, under the physiological conditions of the postlactational mammary gland regression or the pathological context of breast cancer. The role of both calpains will be examined and discussed in both conditions, followed by a brief snapshot on the present and future challenges for calpains, the two-gateway proteases towards tissue homeostasis or tumor development.
Collapse
Affiliation(s)
- Elena R. García-Trevijano
- Department of Biochemistry and Molecular Biology, Universitat de Valencia, Valencia, Spain
- INLIVA Biomedical Research Institute, Valencia, Spain
| | - Elena Ortiz-Zapater
- Department of Biochemistry and Molecular Biology, Universitat de Valencia, Valencia, Spain
- INLIVA Biomedical Research Institute, Valencia, Spain
| | - Amparo Gimeno
- Department of Anatomy and Human Embryology, Universitat de Valencia, Valencia, Spain
| | - Juan R. Viña
- Department of Biochemistry and Molecular Biology, Universitat de Valencia, Valencia, Spain
- INLIVA Biomedical Research Institute, Valencia, Spain
| | - Rosa Zaragozá
- INLIVA Biomedical Research Institute, Valencia, Spain
- Department of Anatomy and Human Embryology, Universitat de Valencia, Valencia, Spain
| |
Collapse
|
10
|
Ye S, Zhu Y, Zhong D, Song X, Li J, Xiao F, Huang Z, Zhang W, Wu M, Zhang K, Xiang FL, Xu J. G protein-coupled receptor GPR68 inhibits lymphocyte infiltration and contributes to gender-dependent melanoma growth. Front Oncol 2023; 13:1202750. [PMID: 37350933 PMCID: PMC10282648 DOI: 10.3389/fonc.2023.1202750] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 05/15/2023] [Indexed: 06/24/2023] Open
Abstract
Introduction Melanoma is a common and aggressive type of skin cancer with rising incidence rate globally. Gender is one of the determining factors, and overall males have a higher risk of developing melanoma as well as worse prognosis. Emerging evidence show that GPR68, a G protein-coupled receptor that is sensitive to acid and mechanical stimulations for cellular microenvironment, plays an important role in tumor biology. However, whether GPR68 is involved in gender-dependent regulation of tumor growth is unclear. Methods We established a syngeneic melanoma model in Gpr68-deficient mice and investigated tumor growth in males and females. The GPR68 activation-induced cellular responses of melanocytes, including intracellular calcium dynamics, proliferation and migration were measured. The landscape of tumor-infiltrating immune cells were analyzed by flow cytometry and the expression various cytokines were checked by qRT-PCR. Results GPR68 is required for melanoma growth in males but dispensable in females. GPR68 is expressed and functional in B16-F10 melanocytes, but the activity of the receptor does not directly contribute to proliferation and migration of the cells. GPR68 inhibits infiltration of CD45+ lymphocytes, CD8+ T cells and NK cells in melanoma in male mice, but has no apparent effect in females. Furthermore, GPR68 functionally inhibits the expression of IFNγ in the tumor infiltrating CD8+ T cells and NK cells as well as the inflammatory cytokine expression in the spleen in male mice but not in females. Our results show the gender-dependent modulatory effect of GPR68 on tumor-infiltrating immune cells and their tumor-killing capacity. Discussion GPR68 is sensor for acid and mechanical stimulations, which are two important factors in the microenvironment associated with tumor growth and metastasis. Our results suggest a prominent role of the receptor molecules in tumor biology in a gender-dependent manner. Since GPCRs are more feasible to develop small molecule drugs compared to transcription factors, our study demonstrates the potential of GPR68 as a novel druggable therapeutic target for melanoma in male patients.
Collapse
Affiliation(s)
- Shangmei Ye
- Institute of Precision Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yunfeng Zhu
- Institute of Precision Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Dongmei Zhong
- Institute of Precision Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaodong Song
- Department of Critical Care Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jialin Li
- Department of Critical Care Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Fang Xiao
- Department of Critical Care Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhilei Huang
- Institute of Precision Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wenjie Zhang
- Institute of Precision Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Mingyue Wu
- Institute of Precision Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Kangdi Zhang
- Institute of Precision Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Fu-li Xiang
- Institute of Precision Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jie Xu
- Institute of Precision Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
11
|
de Matos Simoes R, Shirasaki R, Downey-Kopyscinski SL, Matthews GM, Barwick BG, Gupta VA, Dupéré-Richer D, Yamano S, Hu Y, Sheffer M, Dhimolea E, Dashevsky O, Gandolfi S, Ishiguro K, Meyers RM, Bryan JG, Dharia NV, Hengeveld PJ, Brüggenthies JB, Tang H, Aguirre AJ, Sievers QL, Ebert BL, Glassner BJ, Ott CJ, Bradner JE, Kwiatkowski NP, Auclair D, Levy J, Keats JJ, Groen RWJ, Gray NS, Culhane AC, McFarland JM, Dempster JM, Licht JD, Boise LH, Hahn WC, Vazquez F, Tsherniak A, Mitsiades CS. Genome-scale functional genomics identify genes preferentially essential for multiple myeloma cells compared to other neoplasias. NATURE CANCER 2023; 4:754-773. [PMID: 37237081 PMCID: PMC10918623 DOI: 10.1038/s43018-023-00550-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 03/29/2023] [Indexed: 05/28/2023]
Abstract
Clinical progress in multiple myeloma (MM), an incurable plasma cell (PC) neoplasia, has been driven by therapies that have limited applications beyond MM/PC neoplasias and do not target specific oncogenic mutations in MM. Instead, these agents target pathways critical for PC biology yet largely dispensable for malignant or normal cells of most other lineages. Here we systematically characterized the lineage-preferential molecular dependencies of MM through genome-scale clustered regularly interspaced short palindromic repeats (CRISPR) studies in 19 MM versus hundreds of non-MM lines and identified 116 genes whose disruption more significantly affects MM cell fitness compared with other malignancies. These genes, some known, others not previously linked to MM, encode transcription factors, chromatin modifiers, endoplasmic reticulum components, metabolic regulators or signaling molecules. Most of these genes are not among the top amplified, overexpressed or mutated in MM. Functional genomics approaches thus define new therapeutic targets in MM not readily identifiable by standard genomic, transcriptional or epigenetic profiling analyses.
Collapse
Affiliation(s)
- Ricardo de Matos Simoes
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
- Ludwig Center at Harvard, Boston, MA, USA
| | - Ryosuke Shirasaki
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
- Ludwig Center at Harvard, Boston, MA, USA
| | - Sondra L Downey-Kopyscinski
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Geoffrey M Matthews
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Benjamin G Barwick
- Department of Hematology and Medical Oncology and the Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Vikas A Gupta
- Department of Hematology and Medical Oncology and the Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | | | - Shizuka Yamano
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Yiguo Hu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Michal Sheffer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
- Ludwig Center at Harvard, Boston, MA, USA
| | - Eugen Dhimolea
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
- Ludwig Center at Harvard, Boston, MA, USA
| | - Olga Dashevsky
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
- Ludwig Center at Harvard, Boston, MA, USA
| | - Sara Gandolfi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
- Ludwig Center at Harvard, Boston, MA, USA
| | - Kazuya Ishiguro
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Robin M Meyers
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Jordan G Bryan
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Neekesh V Dharia
- Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Paul J Hengeveld
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Johanna B Brüggenthies
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Huihui Tang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
- Ludwig Center at Harvard, Boston, MA, USA
| | - Andrew J Aguirre
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Quinlan L Sievers
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Benjamin L Ebert
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Brian J Glassner
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Christopher J Ott
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - James E Bradner
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Nicholas P Kwiatkowski
- Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Joan Levy
- Multiple Myeloma Research Foundation, Norwalk, CT, USA
| | | | - Richard W J Groen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Hematology, Amsterdam UMC, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Nathanael S Gray
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Aedin C Culhane
- Department of Data Sciences, Dana-Farber Cancer Institute & Harvard School of Public Health, Boston, MA, USA
- Limerick Digital Cancer Research Center, Health Research Institute, School of Medicine, University of Limerick, Limerick, Ireland
| | - James M McFarland
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Joshua M Dempster
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Jonathan D Licht
- University of Florida Health Cancer Center, Gainesville, FL, USA
| | - Lawrence H Boise
- Department of Hematology and Medical Oncology and the Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - William C Hahn
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Francisca Vazquez
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA.
| | - Aviad Tsherniak
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA.
| | - Constantine S Mitsiades
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA.
- Ludwig Center at Harvard, Boston, MA, USA.
| |
Collapse
|
12
|
McVinnie K, Innes A, Nadal‐Melsio E, Atta M, Deplano S. A case of chronic neutrophilic leukemia and multiple myeloma showing the benefits of lenalidomide and cyclophosphamide therapy in treating both conditions. Am J Hematol 2022; 97:1491-1494. [PMID: 35898175 PMCID: PMC9825857 DOI: 10.1002/ajh.26670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/25/2022] [Accepted: 07/05/2022] [Indexed: 01/28/2023]
Affiliation(s)
| | - Andrew Innes
- Department of HaematologyHammersmith HospitalLondonUK
| | | | - Maria Atta
- Department of HaematologyHammersmith HospitalLondonUK
| | | |
Collapse
|
13
|
Imenez Silva PH, Câmara NO, Wagner CA. Role of proton-activated G protein-coupled receptors in pathophysiology. Am J Physiol Cell Physiol 2022; 323:C400-C414. [PMID: 35759438 DOI: 10.1152/ajpcell.00114.2022] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Local acidification is a common feature of many disease processes such as inflammation, infarction, or solid tumor growth. Acidic pH is not merely a sequelae of disease but contributes to recruitment and regulation of immune cells, modifies metabolism of parenchymal, immune and tumor cells, modulates fibrosis, vascular permeability, oxygen availability and consumption, invasiveness of tumor cells, and impacts on cell survival. Thus, multiple pH-sensing mechanisms must exist in cells involved in these processes. These pH-sensors play important roles in normal physiology and pathophysiology, and hence might be attractive targets for pharmacological interventions. Among the pH-sensing mechanisms, OGR1 (GPR68), GPR4 (GPR4), and TDAG8 (GPR65) have emerged as important molecules. These G protein-coupled receptors are widely expressed, are upregulated in inflammation and tumors, sense changes in extracellular pH in the range between pH 8 and 6, and are involved in modulating key processes in inflammation, tumor biology, and fibrosis. This review discusses key features of these receptors and highlights important disease states and pathways affected by their activity.
Collapse
Affiliation(s)
- Pedro H Imenez Silva
- Institute of Physiology, University of Zurich, Zurich, Switzerland.,National Center of Competence in Research NCCR Kidney.CH, Switzerland
| | - Niels Olsen Câmara
- Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Carsten A Wagner
- Institute of Physiology, University of Zurich, Zurich, Switzerland.,National Center of Competence in Research NCCR Kidney.CH, Switzerland
| |
Collapse
|
14
|
Drula R, Iluta S, Gulei D, Iuga C, Dima D, Ghiaur G, Buzoianu AD, Ciechanover A, Tomuleasa C. Exploiting the ubiquitin system in myeloid malignancies. From basic research to drug discovery in MDS and AML. Blood Rev 2022; 56:100971. [PMID: 35595613 DOI: 10.1016/j.blre.2022.100971] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 12/19/2022]
Abstract
The ubiquitin-proteasome system is the crucial homeostatic mechanism responsible for the degradation and turnover of proteins. As such, alterations at this level are often associated with oncogenic processes, either through accumulation of undegraded pathway effectors or, conversely, excessive degradation of tumor-suppressing factors. Therefore, investigation of the ubiquitin- proteasome system has gained much attraction in recent years, especially in the context of hematological malignancies, giving rise to efficient therapeutics such as bortezomib for multiple myeloma. Current investigations are now focused on manipulating protein degradation via fine-tuning of the ubiquitination process through inhibition of deubiquitinating enzymes or development of PROTAC systems for stimulation of ubiquitination and protein degradation. On the other hand, the efficiency of Thalidomide derivates in myelodysplastic syndromes (MDS), such as Lenalidomide, acted as the starting point for the development of targeted leukemia-associated protein degradation molecules. These novel molecules display high efficiency in overcoming the limitations of current therapeutic regimens, such as refractory diseases. Therefore, in this manuscript we will address the therapeutic opportunities and strategies based on the ubiquitin-proteasome system, ranging from the modulation of deubiquitinating enzymes and, conversely, describing the potential of modern targeted protein degrading molecules and their progress into clinical implementation.
Collapse
Affiliation(s)
- Rares Drula
- Research Center for Advanced Medicine - MedFUTURE, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Sabina Iluta
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania; Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj Napoca, Romania
| | - Diana Gulei
- Research Center for Advanced Medicine - MedFUTURE, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Cristina Iuga
- Research Center for Advanced Medicine - MedFUTURE, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania; Department of Pharmaceutical Analysis, Faculty of Pharmacy, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Delia Dima
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj Napoca, Romania
| | - Gabriel Ghiaur
- Department of Oncology, The Johns Hopkins Hospital, Johns Hopkins Medicine, Baltimore, MD, United States
| | - Anca Dana Buzoianu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Aaron Ciechanover
- Research Center for Advanced Medicine - MedFUTURE, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania; Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania; Rappaport Technion Integrated Cancer Center, Technion-Israel Institute of Technology, Haifa 3109601, Israel; Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 3109601, Israel
| | - Ciprian Tomuleasa
- Research Center for Advanced Medicine - MedFUTURE, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania; Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania; Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj Napoca, Romania.
| |
Collapse
|
15
|
IKAROS and MENIN coordinate therapeutically actionable leukemogenic gene expression in MLL-r acute myeloid leukemia. NATURE CANCER 2022; 3:595-613. [PMID: 35534777 PMCID: PMC9404532 DOI: 10.1038/s43018-022-00366-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 03/11/2022] [Indexed: 12/12/2022]
Abstract
Acute myeloid leukemia (AML) remains difficult to treat and requires new therapeutic approaches. Potent inhibitors of the chromatin-associated protein MENIN have recently entered human clinical trials, opening new therapeutic opportunities for some genetic subtypes of this disease. Using genome-scale functional genetic screens, we identified IKAROS (encoded by IKZF1) as an essential transcription factor in KMT2A (MLL1)-rearranged (MLL-r) AML that maintains leukemogenic gene expression while also repressing pathways for tumor suppression, immune regulation and cellular differentiation. Furthermore, IKAROS displays an unexpected functional cooperativity and extensive chromatin co-occupancy with mixed lineage leukemia (MLL)1-MENIN and the regulator MEIS1 and an extensive hematopoietic transcriptional complex involving homeobox (HOX)A10, MEIS1 and IKAROS. This dependency could be therapeutically exploited by inducing IKAROS protein degradation with immunomodulatory imide drugs (IMiDs). Finally, we demonstrate that combined IKAROS degradation and MENIN inhibition effectively disrupts leukemogenic transcriptional networks, resulting in synergistic killing of leukemia cells and providing a paradigm for improved drug targeting of transcription and an opportunity for rapid clinical translation.
Collapse
|
16
|
Jones LM, Starczynowski DT. IKAROS and MENIN in synergy in AML. NATURE CANCER 2022; 3:528-529. [PMID: 35624338 DOI: 10.1038/s43018-022-00387-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Affiliation(s)
- LaQuita M Jones
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- University of Cincinnati Cancer Center, Cincinnati, OH, USA
| | - Daniel T Starczynowski
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
- University of Cincinnati Cancer Center, Cincinnati, OH, USA.
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
17
|
Liu W, Teodorescu P, Halene S, Ghiaur G. The Coming of Age of Preclinical Models of MDS. Front Oncol 2022; 12:815037. [PMID: 35372085 PMCID: PMC8966105 DOI: 10.3389/fonc.2022.815037] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Myelodysplastic syndromes (MDS) are a heterogeneous group of clonal bone-marrow diseases with ineffective hematopoiesis resulting in cytopenias and morphologic dysplasia of hematopoietic cells. MDS carry a wide spectrum of genetic abnormalities, ranging from chromosomal abnormalities such as deletions/additions, to recurrent mutations affecting the spliceosome, epigenetic modifiers, or transcription factors. As opposed to AML, research in MDS has been hindered by the lack of preclinical models that faithfully replicate the complexity of the disease and capture the heterogeneity. The complex molecular landscape of the disease poses a unique challenge when creating transgenic mouse-models. In addition, primary MDS cells are difficult to manipulate ex vivo limiting in vitro studies and resulting in a paucity of cell lines and patient derived xenograft models. In recent years, progress has been made in the development of both transgenic and xenograft murine models advancing our understanding of individual contributors to MDS pathology as well as the complex primary interplay of genetic and microenvironment aberrations. We here present a comprehensive review of these transgenic and xenograft models for MDS and future directions.
Collapse
Affiliation(s)
- Wei Liu
- Section of Hematology, Yale Cancer Center and Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, United States
| | - Patric Teodorescu
- Department of Oncology, The Johns Hopkins Hospital, Johns Hopkins Medicine, Baltimore, MD, United States
| | - Stephanie Halene
- Section of Hematology, Yale Cancer Center and Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, United States
| | - Gabriel Ghiaur
- Department of Oncology, The Johns Hopkins Hospital, Johns Hopkins Medicine, Baltimore, MD, United States
| |
Collapse
|
18
|
Barreyro L, Sampson AM, Ishikawa C, Hueneman KM, Choi K, Pujato MA, Chutipongtanate S, Wyder M, Haffey WD, O'Brien E, Wunderlich M, Ramesh V, Kolb EM, Meydan C, Neelamraju Y, Bolanos LC, Christie S, Smith MA, Niederkorn M, Muto T, Kesari S, Garrett-Bakelman FE, Bartholdy B, Will B, Weirauch MT, Mulloy JC, Gul Z, Medlin S, Kovall RA, Melnick AM, Perentesis JP, Greis KD, Nurmemmedov E, Seibel WL, Starczynowski DT. Blocking UBE2N abrogates oncogenic immune signaling in acute myeloid leukemia. Sci Transl Med 2022; 14:eabb7695. [PMID: 35263148 DOI: 10.1126/scitranslmed.abb7695] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Dysregulation of innate immune signaling pathways is implicated in various hematologic malignancies. However, these pathways have not been systematically examined in acute myeloid leukemia (AML). We report that AML hematopoietic stem and progenitor cells (HSPCs) exhibit a high frequency of dysregulated innate immune-related and inflammatory pathways, referred to as oncogenic immune signaling states. Through gene expression analyses and functional studies in human AML cell lines and patient-derived samples, we found that the ubiquitin-conjugating enzyme UBE2N is required for leukemic cell function in vitro and in vivo by maintaining oncogenic immune signaling states. It is known that the enzyme function of UBE2N can be inhibited by interfering with thioester formation between ubiquitin and the active site. We performed in silico structure-based and cellular-based screens and identified two related small-molecule inhibitors UC-764864/65 that targeted UBE2N at its active site. Using these small-molecule inhibitors as chemical probes, we further revealed the therapeutic efficacy of interfering with UBE2N function. This resulted in the blocking of ubiquitination of innate immune- and inflammatory-related substrates in human AML cell lines. Inhibition of UBE2N function disrupted oncogenic immune signaling by promoting cell death of leukemic HSPCs while sparing normal HSPCs in vitro. Moreover, baseline oncogenic immune signaling states in leukemic cells derived from discrete subsets of patients with AML exhibited a selective dependency on UBE2N function in vitro and in vivo. Our study reveals that interfering with UBE2N abrogates leukemic HSPC function and underscores the dependency of AML cells on UBE2N-dependent oncogenic immune signaling states.
Collapse
Affiliation(s)
- Laura Barreyro
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Avery M Sampson
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Chiharu Ishikawa
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kathleen M Hueneman
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kwangmin Choi
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Mario A Pujato
- Center for Autoimmune Genetics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Somchai Chutipongtanate
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, USA.,Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Michael Wyder
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, USA
| | - Wendy D Haffey
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, USA
| | - Eric O'Brien
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Mark Wunderlich
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Vighnesh Ramesh
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Ellen M Kolb
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Cem Meydan
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY, USA
| | - Yaseswini Neelamraju
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| | - Lyndsey C Bolanos
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Susanne Christie
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Molly A Smith
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, USA
| | - Madeline Niederkorn
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, USA
| | - Tomoya Muto
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Santosh Kesari
- Saint John's Cancer Institute at Providence St. John's Health Center, Santa Monica, CA, USA
| | - Francine E Garrett-Bakelman
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA.,Department of Medicine, University of Virginia, Charlottesville, VA, USA.,Division of Hematology and Oncology, Weill Cornell Medicine, New York, NY, USA.,University of Virginia Cancer Center, Charlottesville, VA, USA
| | - Boris Bartholdy
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Britta Will
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Matthew T Weirauch
- Center for Autoimmune Genetics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Division of Biomedical Informatics and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
| | - James C Mulloy
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
| | - Zartash Gul
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Stephen Medlin
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Rhett A Kovall
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ari M Melnick
- Division of Hematology and Oncology, Weill Cornell Medicine, New York, NY, USA
| | - John P Perentesis
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kenneth D Greis
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, USA
| | - Elmar Nurmemmedov
- Saint John's Cancer Institute at Providence St. John's Health Center, Santa Monica, CA, USA
| | - William L Seibel
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Daniel T Starczynowski
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
19
|
iASPP suppresses Gp78-mediated TMCO1 degradation to maintain Ca 2+ homeostasis and control tumor growth and drug resistance. Proc Natl Acad Sci U S A 2022; 119:2111380119. [PMID: 35121659 PMCID: PMC8832991 DOI: 10.1073/pnas.2111380119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2021] [Indexed: 12/13/2022] Open
Abstract
Accumulating preclinical and clinical evidence has supported a central role for alterations in Ca2+ homeostasis in the development of cancer. TMCO1 protein is an identified Ca2+-channel protein, while its roles in cancer remain obscure. Here, we found that TMCO1 is increased in colon cancer tissues. In addition, it is a substrate of E3 ligase Gp78. Enhanced oncogene iASPP stabilizes TMCO1 by competitively binding with Gp78. Inhibition of iASPP-TMCO1 sensitizes cancer cells’ response to Ca2+-induced apoptosis. This study has improved our fundamental understanding of the Ca2+ homeostasis in cancer cells. iASPP-TMCO1 axis may present a promising therapeutic target that can combine the conventional drugs to reinforce Ca2+-dependent apoptosis. Ca2+ release from the endoplasmic reticulum (ER) is an essential event in the modulation of Ca2+ homeostasis, which is coordinated by multiple biological processes, ranging from cell proliferation to apoptosis. Deregulated Ca2+ homeostasis is linked with various cancer hallmarks; thus, uncovering the mechanisms underlying Ca2+ homeostasis dynamics may lead to new anticancer treatment strategies. Here, we demonstrate that a reported Ca2+-channel protein TMCO1 (transmembrane and coiled-coil domains 1) is overexpressed in colon cancer tissues at protein levels but not at messenger RNA levels in colon cancer. Further study revealed that TMCO1 is a substrate of ER-associated degradation E3 ligase Gp78. Intriguingly, Gp78-mediated TMCO1 degradation at K186 is under the control of the iASPP (inhibitor of apoptosis-stimulating protein of p53) oncogene. Mechanistically, iASPP robustly reduces ER Ca2+ stores, mainly by competitively binding with Gp78 and interfering with Gp78-mediated TMCO1 degradation. A positive correlation between iASPP and TMCO1 proteins is further validated in human colon tissues. Inhibition of iASPP-TMCO1 axis promotes cytosolic Ca2+ overload–induced apoptotic cell death, reducing tumor growth both in vitro and in vivo. Thus, iASPP-TMCO1 represents a promising anticancer treatment target by modulating Ca2+ homeostasis.
Collapse
|
20
|
Niederkorn M, Ishikawa C, M. Hueneman K, Bartram J, Stepanchick E, R. Bennett J, E. Culver-Cochran A, Bolanos LC, Uible E, Choi K, Wunderlich M, Perentesis JP, M. Chlon T, Filippi MD, Starczynowski DT. The deubiquitinase USP15 modulates cellular redox and is a therapeutic target in acute myeloid leukemia. Leukemia 2022; 36:438-451. [PMID: 34465865 PMCID: PMC8807387 DOI: 10.1038/s41375-021-01394-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 02/07/2023]
Abstract
Ubiquitin-specific peptidase 15 (USP15) is a deubiquitinating enzyme implicated in critical cellular and oncogenic processes. We report that USP15 mRNA and protein are overexpressed in human acute myeloid leukemia (AML) as compared to normal hematopoietic progenitor cells. This high expression of USP15 in AML correlates with KEAP1 protein and suppression of NRF2. Knockdown or deletion of USP15 in human and mouse AML models significantly impairs leukemic progenitor function and viability and de-represses an antioxidant response through the KEAP1-NRF2 axis. Inhibition of USP15 and subsequent activation of NRF2 leads to redox perturbations in AML cells, coincident with impaired leukemic cell function. In contrast, USP15 is dispensable for human and mouse normal hematopoietic cells in vitro and in vivo. A preclinical small-molecule inhibitor of USP15 induced the KEAP1-NRF2 axis and impaired AML cell function, suggesting that targeting USP15 catalytic function can suppress AML. Based on these findings, we report that USP15 drives AML cell function, in part, by suppressing a critical oxidative stress sensor mechanism and permitting an aberrant redox state. Furthermore, we postulate that inhibition of USP15 activity with small molecule inhibitors will selectively impair leukemic progenitor cells by re-engaging homeostatic redox responses while sparing normal hematopoiesis.
Collapse
Affiliation(s)
- Madeline Niederkorn
- grid.239573.90000 0000 9025 8099Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA ,grid.24827.3b0000 0001 2179 9593Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Chiharu Ishikawa
- grid.239573.90000 0000 9025 8099Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA ,grid.24827.3b0000 0001 2179 9593Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Kathleen M. Hueneman
- grid.239573.90000 0000 9025 8099Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
| | - James Bartram
- grid.239573.90000 0000 9025 8099Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA ,grid.24827.3b0000 0001 2179 9593Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Emily Stepanchick
- grid.239573.90000 0000 9025 8099Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
| | - Joshua R. Bennett
- grid.239573.90000 0000 9025 8099Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA ,grid.24827.3b0000 0001 2179 9593Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Ashley E. Culver-Cochran
- grid.239573.90000 0000 9025 8099Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
| | - Lyndsey C. Bolanos
- grid.239573.90000 0000 9025 8099Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
| | - Emma Uible
- grid.239573.90000 0000 9025 8099Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA ,grid.24827.3b0000 0001 2179 9593Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Kwangmin Choi
- grid.239573.90000 0000 9025 8099Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
| | - Mark Wunderlich
- grid.239573.90000 0000 9025 8099Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
| | - John P. Perentesis
- grid.239573.90000 0000 9025 8099Division of Oncology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
| | - Timothy M. Chlon
- grid.239573.90000 0000 9025 8099Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
| | - Marie-Dominique Filippi
- grid.239573.90000 0000 9025 8099Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA ,grid.24827.3b0000 0001 2179 9593Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH USA ,grid.24827.3b0000 0001 2179 9593Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Daniel T. Starczynowski
- grid.239573.90000 0000 9025 8099Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA ,grid.24827.3b0000 0001 2179 9593Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH USA ,grid.24827.3b0000 0001 2179 9593Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH USA
| |
Collapse
|
21
|
Park I, Phan TM, Fang J. Novel Molecular Mechanism of Lenalidomide in Myeloid Malignancies Independent of Deletion of Chromosome 5q. Cancers (Basel) 2021; 13:5084. [PMID: 34680233 PMCID: PMC8534127 DOI: 10.3390/cancers13205084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 09/30/2021] [Accepted: 10/08/2021] [Indexed: 12/26/2022] Open
Abstract
Lenalidomide as well as other immunomodulatory drugs (IMiDs) have achieved clinical efficacies in certain sub-types of hematologic malignancies, such as multiple myeloma, lower-risk myelodysplastic syndromes (MDS) with a single deletion of chromosome 5q (del(5q)) and others. Despite superior clinical response to lenalidomide in hematologic malignancies, relapse and resistance remains a problem in IMiD-based therapy. The last ten years have witnessed the discovery of novel molecular mechanism of IMiD-based anti-tumor therapy. IMiDs bind human cereblon (CRBN), the substrate receptor of the CRL4 E3 ubiquitin ligase complex. Binding of CRBN with IMiDs leads to degradation of the Ikaros family zinc finger proteins 1 and 3 (IKZF1 and IKZF3) and casein kinase 1 alpha. We have found that lenalidomide-mediated degradation of IKZF1 leads to activation of the G protein-coupled receptor 68 (GPR68)/calcium/calpain pro-apoptotic pathway and inhibition of the regulator of calcineurin 1 (RCAN1)/calcineurin pro-survival pathway in MDS and acute myeloid leukemia (AML). Calcineurin inhibitor Cyclosporin-A potentiates the anti-leukemia activity of lenalidomide in MDS/AML with or without del(5q). These findings broaden the therapeutic potential of IMiDs. This review summarizes novel molecular mechanism of lenalidomide in myeloid malignancies, especially without del(5q), in the hope to highlight novel therapeutic targets.
Collapse
Affiliation(s)
| | | | - Jing Fang
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina College of Pharmacy, Columbia, SC 29208, USA; (I.P.); (T.M.P.)
| |
Collapse
|
22
|
Brodie SA, Khincha PP, Giri N, Bouk AJ, Steinberg M, Dai J, Jessop L, Donovan FX, Chandrasekharappa SC, de Andrade KC, Maric I, Ellis SR, Mirabello L, Alter BP, Savage SA. Pathogenic germline IKZF1 variant alters hematopoietic gene expression profiles. Cold Spring Harb Mol Case Stud 2021; 7:mcs.a006015. [PMID: 34162668 PMCID: PMC8327879 DOI: 10.1101/mcs.a006015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 05/28/2021] [Indexed: 12/03/2022] Open
Abstract
IKZF1 encodes Ikaros, a zinc finger–containing transcription factor crucial to the development of the hematopoietic system. Germline pathogenic variants in IKZF1 have been reported in patients with acute lymphocytic leukemia and immunodeficiency syndromes. Diamond–Blackfan anemia (DBA) is a rare inherited bone marrow failure syndrome characterized by erythroid hypoplasia, associated with a spectrum of congenital anomalies and an elevated risk of certain cancers. DBA is usually caused by heterozygous pathogenic variants in genes that function in ribosomal biogenesis; however, in many cases the genetic etiology is unknown. We identified a germline IKZF1 variant, rs757907717 C > T, in identical twins with DBA-like features and autoimmune gastrointestinal disease. rs757907717 C > T results in a p.R381C amino acid change in the IKZF1 Ik-x isoform (p.R423C on isoform Ik-1), which we show is associated with altered global gene expression and perturbation of transcriptional networks involved in hematopoietic system development. These data suggest that this missense substitution caused a DBA-like syndrome in this family because of alterations in hematopoiesis, including dysregulation of networks essential for normal erythropoiesis and the immune system.
Collapse
Affiliation(s)
- Seth A Brodie
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland 20850, USA
| | - Payal P Khincha
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Neelam Giri
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Aaron J Bouk
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland 20850, USA
| | - Mia Steinberg
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland 20850, USA
| | - Jieqiong Dai
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland 20850, USA
| | - Lea Jessop
- Laboratory of Genetic Susceptibility, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Frank X Donovan
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Settara C Chandrasekharappa
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Kelvin C de Andrade
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Irina Maric
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Steven R Ellis
- Department of Biochemistry and Molecular Biology, University of Louisville, Louisville, Kentucky 40292, USA
| | - Lisa Mirabello
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Blanche P Alter
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Sharon A Savage
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
23
|
Jan M, Sperling AS, Ebert BL. Cancer therapies based on targeted protein degradation - lessons learned with lenalidomide. Nat Rev Clin Oncol 2021; 18:401-417. [PMID: 33654306 PMCID: PMC8903027 DOI: 10.1038/s41571-021-00479-z] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2021] [Indexed: 02/08/2023]
Abstract
For decades, anticancer targeted therapies have been designed to inhibit kinases or other enzyme classes and have profoundly benefited many patients. However, novel approaches are required to target transcription factors, scaffolding proteins and other proteins central to cancer biology that typically lack catalytic activity and have remained mostly recalcitrant to drug development. The selective degradation of target proteins is an attractive approach to expand the druggable proteome, and the selective oestrogen receptor degrader fulvestrant served as an early example of this concept. Following a long and tragic history in the clinic, the immunomodulatory imide drug (IMiD) thalidomide was discovered to exert its therapeutic activity via a novel and unexpected mechanism of action: targeting proteins to an E3 ubiquitin ligase for subsequent proteasomal degradation. This discovery has paralleled and directly catalysed myriad breakthroughs in drug development, leading to the rapid maturation of generalizable chemical platforms for the targeted degradation of previously undruggable proteins. Decades of clinical experience have established front-line roles for thalidomide analogues, including lenalidomide and pomalidomide, in the treatment of haematological malignancies. With a new generation of 'degrader' drugs currently in development, this experience provides crucial insights into class-wide features of degraders, including a unique pharmacology, mechanisms of resistance and emerging therapeutic opportunities. Herein, we review these past experiences and discuss their application in the clinical development of novel degrader therapies.
Collapse
Affiliation(s)
- Max Jan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Adam S Sperling
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Benjamin L Ebert
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Boston, MA, USA.
| |
Collapse
|
24
|
Inhibition of host Ogr1 enhances effector CD8 + T-cell function by modulating acidic microenvironment. Cancer Gene Ther 2021; 28:1213-1224. [PMID: 34158625 PMCID: PMC8571096 DOI: 10.1038/s41417-021-00354-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/07/2021] [Accepted: 05/25/2021] [Indexed: 01/18/2023]
Abstract
Immunotherapies for cancer, such as immune checkpoint blockade or adoptive T-cell transfer, can lead to a long-lasting clinical response. But the therapeutic response rate remains low on account of many tumors that have evolved sophisticated strategies to evade immune surveillance. Solid tumors are characterized by the highly acidic microenvironment, which may weaken the effectiveness of antitumor immunity. Here, we explored a promising therapeutic development deployed by pH manipulation for avoiding immunoevasion. The highly acidified microenvironment of melanoma induces the expression of G-protein-coupled receptor (Ogr1) in T cells, which weakened their effective function and promote tumor growth. Ogr1 inhibition reactivate CD8+ T cells and have a cytotoxic role by reducing the activity of high glycolysis, resulting in comparatively low acidification of the tumor microenvironment, and leads to tumor suppression. In addition, the adoptive transfer of Ogr1-/--CD8+ T cells enhanced the antitumor responses, with the potential for immediate clinical transformation.
Collapse
|
25
|
Wang S, Li Z, Gao S. Key regulators of sensitivity to immunomodulatory drugs in cancer treatment. Biomark Res 2021; 9:43. [PMID: 34090534 PMCID: PMC8180172 DOI: 10.1186/s40364-021-00297-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/18/2021] [Indexed: 12/13/2022] Open
Abstract
Immunomodulatory drugs (IMiDs) include thalidomide, lenalidomide, and pomalidomide, which have shown significant efficacy in the treatment of multiple myeloma (MM), myelodysplastic syndrome (MDS) with deletion of chromosome 5q (del(5q)) and other hematological malignancies. IMiDs hijack the CRL4CRBN ubiquitin ligase to target cellular proteins for ubiquitination and degradation, which is responsible for their clinical activity in MM and MDS with del(5q). However, intrinsic and acquired resistance frequently limit the efficacy of IMiDs. Recently, many efforts have been made to explore key regulators of IMiD sensitivity, resulting in great advances in the understanding of the regulatory networks related to this class of drugs. In this review, we describe the mechanism of IMiDs in cancer treatment and summarize the key regulators of IMiD sensitivity. Furthermore, we introduce genome-wide CRISPR-Cas9 screenings, through which the regulatory networks of IMiD sensitivity could be identified.
Collapse
Affiliation(s)
- Shichao Wang
- The Fifth Affiliated Hospital of Zhengzhou University, No. 3 Kangfu Front Street, 450052, Zhengzhou, China.
| | - Zhiyue Li
- The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, 127 Dongming Road, Zhengzhou, 450008, China
| | - Shaobing Gao
- The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, 127 Dongming Road, Zhengzhou, 450008, China.
| |
Collapse
|
26
|
Tijore A, Yao M, Wang YH, Hariharan A, Nematbakhsh Y, Lee Doss B, Lim CT, Sheetz M. Selective killing of transformed cells by mechanical stretch. Biomaterials 2021; 275:120866. [PMID: 34044258 DOI: 10.1016/j.biomaterials.2021.120866] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/13/2021] [Accepted: 04/30/2021] [Indexed: 12/12/2022]
Abstract
Cancer cells differ from normal cells in several important features like anchorage independence, Warburg effect and mechanosensing. Further, in recent studies, they respond aberrantly to external mechanical distortion. Consistent with altered mechano-responsiveness, we find that cyclic stretching of tumor cells from many different tissues reduces growth rate and causes apoptosis on soft surfaces. Surprisingly, normal cells behave similarly when transformed by depletion of the rigidity sensor protein (Tropomyosin 2.1). Restoration of rigidity sensing in tumor cells promotes rigidity dependent mechanical behavior, i.e. cyclic stretching enhances growth and reduces apoptosis on soft surfaces. The mechanism of mechanical apoptosis (mechanoptosis) of transformed cells involves calcium influx through the mechanosensitive channel, Piezo1 that activates calpain 2 dependent apoptosis through the BAX molecule and subsequent mitochondrial activation of caspase 3 on both fibronetin and collagen matrices. Thus, it is possible to selectively kill tumor cells by mechanical perturbations, while stimulating the growth of normal cells.
Collapse
Affiliation(s)
- Ajay Tijore
- Mechanobiology Institute, National University of Singapore, 117411, Singapore
| | - Mingxi Yao
- Mechanobiology Institute, National University of Singapore, 117411, Singapore
| | - Yu-Hsiu Wang
- Mechanobiology Institute, National University of Singapore, 117411, Singapore
| | - Anushya Hariharan
- Mechanobiology Institute, National University of Singapore, 117411, Singapore
| | - Yasaman Nematbakhsh
- Department of Biomedical Engineering, National University of Singapore, 117575, Singapore
| | - Bryant Lee Doss
- Mechanobiology Institute, National University of Singapore, 117411, Singapore
| | - Chwee Teck Lim
- Mechanobiology Institute, National University of Singapore, 117411, Singapore; Department of Biomedical Engineering, National University of Singapore, 117575, Singapore; Institute for Health Innovation and Technology, National University of Singapore, 117599, Singapore
| | - Michael Sheetz
- Mechanobiology Institute, National University of Singapore, 117411, Singapore; Molecular Mechanomedicine Program, Biochemistry and Molecular Biology Department, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
27
|
Ramalingam V, Hwang I. Identification of Meat Quality Determining Marker Genes in Fibroblasts of Bovine Muscle Using Transcriptomic Profiling. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:3776-3786. [PMID: 33730852 DOI: 10.1021/acs.jafc.0c06973] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In the present study, we comparatively analyzed the transcriptomic profiling of fibroblasts derived from two different muscles, biceps femoris and longissimus dorsi with significant difference in the meat quality and tenderness. EBSeq algorithm was applied to analyze the data, and genes were considered to be significantly differentially expressed if the false discovery rate value was <0.05, the P value was <0.01, and the fold change was >0.585. The results revealed that 253 genes were differentially expressed genes (DEGs) (170 genes were upregulated, and 83 were downregulated) and more than 100 DEGs were probably associated with intramuscular fat deposition, tenderness, and toughness, which are driving the meat quality and were involved in biological processes such as collagen synthesis, cell differentiation, and muscle tissue and fiber development; molecular functions such as chemokine activity and collagen activity; cellular components such as cytoplasm and myofibril; and pathways such as collagen signaling and metabolic pathways. A gene-act network and a co-expression network revealed the close relationship between intramuscular fat deposition and meat tenderness. The expressions of 20 DEGs were validated by real-time PCR, and the results suggested that the DEGs are correlated with RNA-seq data and play crucial roles in muscle growth, development processes, toughness, and tenderness of the meat. Together, the genome-wide transcriptome analysis revealed that various genes are responsible for toughness and tenderness variance in the difference muscles of beef.
Collapse
Affiliation(s)
- Vaikundamoorthy Ramalingam
- Centre for Natural Products & Traditional Knowledge, CSIR-Indian Institute of Chemica Technology, Hyderabad, Telangana 500007, India
- Department of Animal Science, Jeonbuk National University, Jeonju 561-756, Republic of Korea
| | - Inho Hwang
- Department of Animal Science, Jeonbuk National University, Jeonju 561-756, Republic of Korea
| |
Collapse
|
28
|
Wang R, Wang M, Zhou J, Wu D, Ye J, Sun G, Sun X. Saponins in Chinese Herbal Medicine Exerts Protection in Myocardial Ischemia-Reperfusion Injury: Possible Mechanism and Target Analysis. Front Pharmacol 2021; 11:570867. [PMID: 33597866 PMCID: PMC7883640 DOI: 10.3389/fphar.2020.570867] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 10/28/2020] [Indexed: 12/21/2022] Open
Abstract
Myocardial ischemia is a high-risk disease among middle-aged and senior individuals. After thrombolytic therapy, heart tissue can potentially suffer further damage, which is called myocardial ischemia-reperfusion injury (MIRI). At present, the treatment methods and drugs for MIRI are scarce and cannot meet the current clinical needs. The mechanism of MIRI involves the interaction of multiple factors, and the current research hotspots mainly include oxidative stress, inflammation, calcium overload, energy metabolism disorders, pyroptosis, and ferroptosis. Traditional Chinese medicine (TCM) has multiple targets and few toxic side effects; clinical preparations containing Panax ginseng C. A. Mey., Panax notoginseng (Burk.) F. H. Chen, Aralia chinensis L., cardioprotection, and other Chinese herbal medicines have been used to treat patients with coronary heart disease, angina pectoris, and other cardiovascular diseases. Studies have shown that saponins are the main active substances in TCMs containing Panax ginseng C. A. Mey., Panax notoginseng (Burk.) F. H. Chen, Aralia chinensis L., and Radix astragali. In the present review, we sorted the saponin components with anti-MIRI effects and their regulatory mechanisms. Each saponin can play a cardioprotective role via multiple mechanisms, and the signaling pathways involved in different saponins are not the same. We found that more active saponins in Panax ginseng C. A. Mey. are mainly dammar-type structures and have a strong regulatory effect on energy metabolism. The highly active saponin components of Aralia chinensis L. are oleanolic acid structures, which have significant regulatory effects on calcium homeostasis. Therefore, saponins in Chinese herbal medicine provide a broad application prospect for the development of highly effective and low-toxicity anti-MIRI drugs.
Collapse
Affiliation(s)
- Ruiying Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China
| | - Min Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China
| | - Jiahui Zhou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China
| | - Daoshun Wu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China
| | - Jingxue Ye
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guibo Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
29
|
Liu M, Jin J, Ji Y, Shan H, Zou Z, Cao Y, Yang L, Liu L, Zhou L, Lei H, Wu Y, Xu H, Wu Y. Hsp90/C terminal Hsc70-interacting protein regulates the stability of Ikaros in acute myeloid leukemia cells. SCIENCE CHINA-LIFE SCIENCES 2021; 64:1481-1490. [PMID: 33439458 DOI: 10.1007/s11427-020-1860-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 11/27/2020] [Indexed: 12/26/2022]
Abstract
The stability of Ikaros family zinc finger protein 1 (Ikaros), a critical hematopoietic transcription factor, can be regulated by cereblon (CRBN) ubiquitin ligase stimulated by immunomodulatory drugs in multiple myeloma. However, other stabilization mechanisms of Ikaros have yet to be elucidated. In this study, we show that the pharmacologic inhibition or knockdown of Hsp90 downregulates Ikaros in acute myeloid leukemia (AML) cells. Proteasome inhibitor MG132 but not autophagy inhibitor chloroquine could suppress the Hsp90 inhibitor STA-9090-induced reduction of Ikaros, which is accompanied with the increased ubiquitination of Ikaros. Moreover, Ikaros interacts with E3 ubiquitin-ligase C terminal Hsc70 binding protein (CHIP), which mediates the STA-9090-induced ubiquitination of Ikaros. In addition, the knockdown of Ikaros effectively inhibits the proliferation of leukemia cells, but this phenomenon could be rescued by Ikaros overexpression. Collectively, our findings indicate that the interplay between HSP90 and CHIP regulates the stability of Ikaros in AML cells, which provides a novel strategy for AML treatment through targeting the HSP90/Ikaros/CHIP axis.
Collapse
Affiliation(s)
- Meng Liu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jin Jin
- Department of Ultrasound, Second Affiliated Hospital of Zhejiang University, Hangzhou, 310009, China
| | - Yanjie Ji
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Huizhuang Shan
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhihui Zou
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yang Cao
- Department of Hematology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Li Yang
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ligen Liu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Li Zhou
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Hu Lei
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yunzhao Wu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Hanzhang Xu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Yingli Wu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
30
|
Nguyen KM, Busino L. Targeting the E3 ubiquitin ligases DCAF15 and cereblon for cancer therapy. Semin Cancer Biol 2020; 67:53-60. [DOI: 10.1016/j.semcancer.2020.03.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/02/2020] [Accepted: 03/06/2020] [Indexed: 12/22/2022]
|
31
|
Cosín-Roger J, Ortiz-Masia D, Barrachina MD, Calatayud S. Metabolite Sensing GPCRs: Promising Therapeutic Targets for Cancer Treatment? Cells 2020; 9:cells9112345. [PMID: 33113952 PMCID: PMC7690732 DOI: 10.3390/cells9112345] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/21/2020] [Accepted: 10/21/2020] [Indexed: 02/07/2023] Open
Abstract
G-protein-coupled receptors constitute the most diverse and largest receptor family in the human genome, with approximately 800 different members identified. Given the well-known metabolic alterations in cancer development, we will focus specifically in the 19 G-protein-coupled receptors (GPCRs), which can be selectively activated by metabolites. These metabolite sensing GPCRs control crucial processes, such as cell proliferation, differentiation, migration, and survival after their activation. In the present review, we will describe the main functions of these metabolite sensing GPCRs and shed light on the benefits of their potential use as possible pharmacological targets for cancer treatment.
Collapse
Affiliation(s)
- Jesús Cosín-Roger
- Hospital Dr. Peset, Fundación para la Investigación Sanitaria y Biomédica de la Comunitat Valenciana, FISABIO, 46017 Valencia, Spain
- Correspondence: ; Tel.: +34-963851234
| | - Dolores Ortiz-Masia
- Departament of Medicine, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain;
| | - Maria Dolores Barrachina
- Departament of Pharmacology and CIBER, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain; (M.D.B.); (S.C.)
| | - Sara Calatayud
- Departament of Pharmacology and CIBER, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain; (M.D.B.); (S.C.)
| |
Collapse
|
32
|
Martinez-Høyer S, Karsan A. Mechanisms of lenalidomide sensitivity and resistance. Exp Hematol 2020; 91:22-31. [PMID: 32976949 DOI: 10.1016/j.exphem.2020.09.196] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/17/2020] [Accepted: 09/21/2020] [Indexed: 12/13/2022]
Abstract
The discovery that the immunomodulatory imide drugs (IMiDs) possess antitumor properties revolutionized the treatment of specific types of hematological cancers. Since then, much progress has been made in understanding why the IMiDs are so efficient in targeting the malignant clones in difficult-to-treat diseases. Despite their efficacy, IMiD resistance arises eventually. Herein we summarize the mechanisms of sensitivity and resistance to lenalidomide in del(5q) myelodysplastic syndrome and multiple myeloma, two diseases in which these drugs are at the therapeutic frontline. Understanding the molecular and cellular mechanisms underlying IMiD efficacy and resistance may allow development of specific strategies to eliminate the malignant clone in otherwise incurable diseases.
Collapse
Affiliation(s)
- Sergio Martinez-Høyer
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden.
| | - Aly Karsan
- Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC, Canada; Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
33
|
FBXO11 is a candidate tumor suppressor in the leukemic transformation of myelodysplastic syndrome. Blood Cancer J 2020; 10:98. [PMID: 33024076 PMCID: PMC7538974 DOI: 10.1038/s41408-020-00362-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/15/2020] [Accepted: 09/18/2020] [Indexed: 12/26/2022] Open
Abstract
Myelodysplastic syndrome (MDS) is a heterogeneous myeloid malignancy characterized by blood cell morphological dysplasia, ineffective clonal hematopoiesis, and risk of transformation to secondary acute myeloid leukemia (sAML). A number of genetic abnormalities have been identified in MDS and sAML, but sensitive sequencing methods can detect these mutations in nearly all healthy individuals by 60 years of age. To discover novel cellular pathways that accelerate MDS and sAML, we performed a CRISPR/Cas9 screen in the human MDS-L cell line. We report here that loss of the F-Box protein FBXO11, a component of the SCF ubiquitin ligase complex, confers cytokine independent growth to MDS-L cells, suggesting a tumor suppressor role for FBXO11 in myeloid malignancies. Putative FBXO11 substrates are enriched for proteins with functions in RNA metabolism and, of note, spliceosome mutations that are commonly found in MDS/sAML are rare in patients with low FBXO11 expression. We also reveal that loss of FBXO11 leads to significant changes in transcriptional pathways influencing leukocyte proliferation, differentiation, and apoptosis. Last, we find that FBXO11 expression is reduced in patients with secondary AML. We conclude that loss of FBXO11 is a mechanism for disease transformation of MDS into AML, and may represent a future therapeutic target.
Collapse
|
34
|
Yamamoto J, Suwa T, Murase Y, Tateno S, Mizutome H, Asatsuma-Okumura T, Shimizu N, Kishi T, Momose S, Kizaki M, Ito T, Yamaguchi Y, Handa H. ARID2 is a pomalidomide-dependent CRL4 CRBN substrate in multiple myeloma cells. Nat Chem Biol 2020; 16:1208-1217. [PMID: 32958952 DOI: 10.1038/s41589-020-0645-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 08/10/2020] [Indexed: 12/15/2022]
Abstract
The immunomodulatory drug (IMiD) thalidomide and its derivatives lenalidomide and pomalidomide are therapeutic agents used in the treatment of multiple myeloma. Although pomalidomide offers considerable clinical benefits to patients with lenalidomide-resistant multiple myeloma, the molecular mechanisms underlying its superior efficacy remain unclear. Here we show that ARID2, a component of the polybromo-associated BAF (PBAF) chromatin-remodeling complex, is a pomalidomide-induced neosubstrate of CRL4CRBN. BRD7, another subunit of PBAF, is critical for pomalidomide-induced ARID2 degradation. ARID2 is involved in transcriptional regulation of pomalidomide target genes including MYC. Pomalidomide is more effective than lenalidomide in degrading ARID2 and is capable of inhibiting MYC expression and proliferation in lenalidomide-resistant cell lines. Notably, ARID2 expression is associated with a poor prognosis and is higher in chemoresistant minimal residual disease (MRD) populations, and in patients with relapsed/refractory multiple myeloma. These findings suggest that ARID2 is a promising target for overcoming lenalidomide resistance in patients with multiple myeloma.
Collapse
Affiliation(s)
- Junichi Yamamoto
- Department of Chemical Biology, Tokyo Medical University, Shinjuku, Japan.,School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Tetsufumi Suwa
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Yuki Murase
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Shumpei Tateno
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Hirotaka Mizutome
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | | | - Nobuyuki Shimizu
- Department of Chemical Biology, Tokyo Medical University, Shinjuku, Japan
| | - Tsutomu Kishi
- Department of Chemical Biology and Applied Chemistry, Nihon University, Koriyama, Japan
| | - Shuji Momose
- Department of Pathology, Saitama Medical Center, Saitama Medical University, Kawagoe, Japan
| | - Masahiro Kizaki
- Department of Hematology, Saitama Medical Center, Saitama Medical University, Kawagoe, Japan
| | - Takumi Ito
- Department of Chemical Biology, Tokyo Medical University, Shinjuku, Japan.,PRESTO, JST, Kawaguchi, Japan
| | - Yuki Yamaguchi
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan.
| | - Hiroshi Handa
- Department of Chemical Biology, Tokyo Medical University, Shinjuku, Japan.
| |
Collapse
|
35
|
Teodorescu P, Pasca S, Dima D, Tomuleasa C, Ghiaur G. Targeting the Microenvironment in MDS: The Final Frontier. Front Pharmacol 2020; 11:1044. [PMID: 32742264 PMCID: PMC7364152 DOI: 10.3389/fphar.2020.01044] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/26/2020] [Indexed: 12/15/2022] Open
Abstract
Myelodysplastic syndromes (MDS) are a heterogeneous group of malignant disorders of hematopoietic stem and progenitor cells (HSPC), mainly characterized by ineffective hematopoiesis leading to peripheral cytopenias and progressive bone marrow failure. While clonal dominance is nearly universal at diagnosis, most genetic mutations identified in patients with MDS do not provide a conspicuous advantage to the malignant cells. In this context, malignant cells alter their adjacent bone marrow microenvironment (BME) and rely on cell extrinsic factors to maintain clonal dominance. The profoundly disturbed BME favors the myelodysplastic cells and, most importantly is detrimental to normal hematopoietic cells. Thus, the MDS microenvironment not only contributes to the observed cytopenias seen in these patients but could also negatively impact the engraftment of normal, allogeneic HSPCs in patients with MDS undergoing bone marrow transplant. Therefore, successful therapies in MDS should not only target the malignant cells but also reprogram their bone marrow microenvironment. Here, we will provide a synopsis of how drugs currently used or on the verge of being approved for the treatment of MDS may achieve this goal.
Collapse
Affiliation(s)
- Patric Teodorescu
- Department of Hematology, Iuliu Hategan University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Department of Oncology, The Johns Hopkins Hospital, Johns Hopkins Medicine, Baltimore, MD, United States
| | - Sergiu Pasca
- Department of Hematology, Iuliu Hategan University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Delia Dima
- Department of Hematology, Iuliu Hategan University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ciprian Tomuleasa
- Department of Hematology, Iuliu Hategan University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Gabriel Ghiaur
- Department of Oncology, The Johns Hopkins Hospital, Johns Hopkins Medicine, Baltimore, MD, United States
| |
Collapse
|
36
|
He X, Hawkins C, Lawley L, Freeman K, Phan TM, Zhang J, Xu Y, Fang J. Whole body deletion of Gpr68 does not change hematopoietic stem cell function. Stem Cell Res 2020; 47:101869. [PMID: 32592951 PMCID: PMC7749853 DOI: 10.1016/j.scr.2020.101869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 05/21/2020] [Accepted: 05/29/2020] [Indexed: 11/17/2022] Open
Abstract
G protein-coupled receptor 68 (GPR68) responds to extracellular protons, thus called the proton-sensing G protein-coupled receptor (GPCR), leading to activation of the phospholipase C-β (PLCβ)/calcium (Ca2+) pathway or the adenylyl cyclase (AC)/cyclic AMP (cAMP) pathway. We recently found that whole body deletion of Gpr68 (Gpr68-/- mice) reduced the number of B lymphocytes with age and during hematopoietic regeneration, such as in response to fluorouracil (5-FU) administration. This prompted us to characterize the hematopoietic stem cell (HSC) phenotype in Gpr68-/- mice. Despite high level of Gpr68 protein expression on HSC in bone marrow (BM), the pool size of HSC was unaltered in Gpr68-/- mice either under steady state or upon stress, including aging and 5-FU treatment. HSC from Gpr68-/- mice exhibited comparable cellular features, such as cell cycle quiescence and cell survival. HSC from Gpr68-/- mice also exhibited comparable competitiveness after serial transplantation. Surprisingly, cytosolic Ca2+ accumulation was increased in HSC from Gpr68-/- mice. In contrast, cAMP levels were reduced in hematopoietic stem and progenitor cells (HSPC) from Gpr68-/- mice. Intriguingly, we found high level of Gpr68 protein expression on non-hematopoietic cells in BM, especially endothelial cells that function as HSC niche. In addition, expression of other proton-sensing GPCR was upregulated in HSPC from Gpr68-/- mice. Our studies suggest that Gpr68-/- mice display insignificant phenotype on HSC biology, possibly due to the function of Gpr68 in non-hematopoietic cells and/or the compensatory effects from other proton-sensing GPCR.
Collapse
Affiliation(s)
- Xiaofei He
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina College of Pharmacy, Columbia, SC, USA
| | - Caleb Hawkins
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina College of Pharmacy, Columbia, SC, USA
| | - Lauren Lawley
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina College of Pharmacy, Columbia, SC, USA
| | - Kennedy Freeman
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina College of Pharmacy, Columbia, SC, USA
| | - Tra Mi Phan
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina College of Pharmacy, Columbia, SC, USA
| | - Jiajia Zhang
- Department of Epidemiology and Biostatistics, University of South Carolina Arnold School of Public Health, Columbia, SC, USA
| | - Yan Xu
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jing Fang
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina College of Pharmacy, Columbia, SC, USA.
| |
Collapse
|
37
|
Cyclosporine enhances the sensitivity to lenalidomide in MDS/AML in vitro. Exp Hematol 2020; 86:21-27.e2. [PMID: 32437909 DOI: 10.1016/j.exphem.2020.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/30/2020] [Accepted: 05/02/2020] [Indexed: 12/26/2022]
Abstract
Our previous study revealed that expression of G protein-coupled receptor 68 (GPR68) was upregulated in MDSL cells, a cell line representing myelodysplastic syndromes (MDS), in response to lenalidomide (LEN), and mediated a calcium/calpain proapoptotic pathway. Isx, a GPR68 agonist, enhanced the sensitivity to LEN in MDSL cells. The fact that Isx is not a U.S. Food and Drug Administration-approved drug prompts us to look for alternative candidates that could enhance the sensitivity of LEN in MDS as well as other hematologic malignancies, such as acute myeloid leukemia (AML). In the study described here, we found that regulator of calcineurin 1 (RCAN1), an endogenous inhibitor of calcineurin (CaN), was upregulated in MDSL cells in response to LEN, possibly through degradation of IKZF1. Consistently, cyclosporin (Cys), a pharmacological inhibitor of CaN, inhibited the activity of CaN and induced apoptosis in MDSL cells, indicating that CaN provided a prosurvival signal in MDSL cells. In addition, Cys enhanced the cytotoxic effect of LEN in MDS/AML cell lines as well as primary bone marrow cells from MDS patients and AML patient-derived xenograft models. Intriguingly, pretreatment with LEN reversed the suppressive effect of Cys on T-cell activation. Our study suggests a novel mechanism of action of LEN in mediating cytotoxicity in MDS/AML via upregulation of RCAN1, thus inhibiting the CaN prosurvival pathway. Our study also suggests that Cys enhances the sensitivity to LEN in MDS/AML cells without compromising T-cell activation.
Collapse
|
38
|
Muto T, Walker CS, Choi K, Hueneman K, Smith MA, Gul Z, Garcia-Manero G, Ma A, Zheng Y, Starczynowski DT. Adaptive response to inflammation contributes to sustained myelopoiesis and confers a competitive advantage in myelodysplastic syndrome HSCs. Nat Immunol 2020; 21:535-545. [PMID: 32313245 DOI: 10.1038/s41590-020-0663-z] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 03/17/2020] [Indexed: 02/06/2023]
Abstract
Despite evidence of chronic inflammation in myelodysplastic syndrome (MDS) and cell-intrinsic dysregulation of Toll-like receptor (TLR) signaling in MDS hematopoietic stem and progenitor cells (HSPCs), the mechanisms responsible for the competitive advantage of MDS HSPCs in an inflammatory milieu over normal HSPCs remain poorly defined. Here, we found that chronic inflammation was a determinant for the competitive advantage of MDS HSPCs and for disease progression. The cell-intrinsic response of MDS HSPCs, which involves signaling through the noncanonical NF-κB pathway, protected these cells from chronic inflammation as compared to normal HSPCs. In response to inflammation, MDS HSPCs switched from canonical to noncanonical NF-κB signaling, a process that was dependent on TLR-TRAF6-mediated activation of A20. The competitive advantage of TLR-TRAF6-primed HSPCs could be restored by deletion of A20 or inhibition of the noncanonical NF-κB pathway. These findings uncover the mechanistic basis for the clonal dominance of MDS HSPCs and indicate that interfering with noncanonical NF-κB signaling could prevent MDS progression.
Collapse
Affiliation(s)
- Tomoya Muto
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Callum S Walker
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kwangmin Choi
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kathleen Hueneman
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Molly A Smith
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Zartash Gul
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA
| | | | - Averil Ma
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Yi Zheng
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Daniel T Starczynowski
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA. .,Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA. .,Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
39
|
He X, Feng S, Hawkins C, Lawley L, Fan W, Xu Y, Zha XM, Fang J. G protein-coupled receptor 68 increases the number of B lymphocytes. AMERICAN JOURNAL OF BLOOD RESEARCH 2020; 10:15-21. [PMID: 32411498 PMCID: PMC7218682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/03/2020] [Indexed: 06/11/2023]
Abstract
G protein-coupled receptor 68 (GPR68) is a proton sensor that is activated upon binding to extracellular protons. We have previously found that GPR68 induces a proapoptotic pathway in bone marrow (BM) cells from the patients with myelodysplastic syndromes (MDS) after treated with lenalidomide. However, the function of GPR68 in normal hematopoietic cells remains unclear. With genetic loss of function approach, we found reduced frequency and number of B lymphocytes in the peripheral blood (PB) of whole body Gpr68-/- mice compared to control littermates upon aging. During hematopoietic regeneration, such as in response to fluorouracil (5-FU), we also found reduced frequency and number of B lymphocytes in Gpr68-/- mice compared to wild type mice. Mechanism studies revealed that Gpr68 expression was upregulated in B lymphocytes of BM during aging and in hematopoietic progenitor cells after treatment with 5-FU. In addition, activation of Gpr68 by its activators increased the frequency and number of B lymphocytes. Our studies indicate that Gpr68 expression is upregulated in hematopoietic cells upon aging and during hematopoietic regeneration that ends up with increased number of B lymphocytes.
Collapse
Affiliation(s)
- Xiaofei He
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina College of PharmacyColumbia, SC, USA
| | - Saran Feng
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina College of PharmacyColumbia, SC, USA
| | - Caleb Hawkins
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina College of PharmacyColumbia, SC, USA
| | - Lauren Lawley
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina College of PharmacyColumbia, SC, USA
| | - Wenxin Fan
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina College of PharmacyColumbia, SC, USA
| | - Yan Xu
- Department of Obstetrics and Gynecology, Indiana University School of MedicineIndianapolis, IN, USA
| | - Xiang-Ming Zha
- Department of Physiology and Cell Biology, University of South Alabama College of MedicineMobile, SA, USA
| | - Jing Fang
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina College of PharmacyColumbia, SC, USA
| |
Collapse
|
40
|
Martinez-Høyer S, Deng Y, Parker J, Jiang J, Mo A, Docking TR, Gharaee N, Li J, Umlandt P, Fuller M, Jädersten M, Kulasekararaj A, Malcovati L, List AF, Hellström-Lindberg E, Platzbecker U, Karsan A. Loss of lenalidomide-induced megakaryocytic differentiation leads to therapy resistance in del(5q) myelodysplastic syndrome. Nat Cell Biol 2020; 22:526-533. [PMID: 32251398 DOI: 10.1038/s41556-020-0497-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 02/28/2020] [Indexed: 12/11/2022]
Abstract
Interstitial deletion of the long arm of chromosome 5 (del(5q)) is the most common structural genomic variant in myelodysplastic syndromes (MDS)1. Lenalidomide (LEN) is the treatment of choice for patients with del(5q) MDS, but half of the responding patients become resistant2 within 2 years. TP53 mutations are detected in ~20% of LEN-resistant patients3. Here we show that patients who become resistant to LEN harbour recurrent variants of TP53 or RUNX1. LEN upregulated RUNX1 protein and function in a CRBN- and TP53-dependent manner in del(5q) cells, and mutation or downregulation of RUNX1 rendered cells resistant to LEN. LEN induced megakaryocytic differentiation of del(5q) cells followed by cell death that was dependent on calpain activation and CSNK1A1 degradation4,5. We also identified GATA2 as a LEN-responsive gene that is required for LEN-induced megakaryocyte differentiation. Megakaryocytic gene-promoter analyses suggested that LEN-induced degradation of IKZF1 enables a RUNX1-GATA2 complex to drive megakaryocytic differentiation. Overexpression of GATA2 restored LEN sensitivity in the context of RUNX1 or TP53 mutations by enhancing LEN-induced megakaryocytic differentiation. Screening for mutations that block LEN-induced megakaryocytic differentiation should identify patients who are resistant to LEN.
Collapse
Affiliation(s)
- Sergio Martinez-Høyer
- Michael Smith Genome Sciences Centre, BC Cancer Research Centre, Vancouver, British Columbia, Canada.,Department of Hematology, Erasmus Medical Centre, Rotterdam, the Netherlands
| | - Yu Deng
- Michael Smith Genome Sciences Centre, BC Cancer Research Centre, Vancouver, British Columbia, Canada.,Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jeremy Parker
- Michael Smith Genome Sciences Centre, BC Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Jihong Jiang
- Michael Smith Genome Sciences Centre, BC Cancer Research Centre, Vancouver, British Columbia, Canada.,Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Angela Mo
- Michael Smith Genome Sciences Centre, BC Cancer Research Centre, Vancouver, British Columbia, Canada.,Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - T Roderick Docking
- Michael Smith Genome Sciences Centre, BC Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Nadia Gharaee
- Michael Smith Genome Sciences Centre, BC Cancer Research Centre, Vancouver, British Columbia, Canada.,Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jenny Li
- Michael Smith Genome Sciences Centre, BC Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Patricia Umlandt
- Michael Smith Genome Sciences Centre, BC Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Megan Fuller
- Michael Smith Genome Sciences Centre, BC Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Martin Jädersten
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Austin Kulasekararaj
- Department of Haematological Medicine, King's College Hospital and King's College London, London, UK
| | - Luca Malcovati
- Department of Molecular Medicine, University of Pavia & Department of Hematology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Alan F List
- Department of Malignant Hematology, Moffitt Cancer Center, Tampa, FL, USA
| | - Eva Hellström-Lindberg
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Uwe Platzbecker
- Medical Clinic and Policlinic 1, Hematology and Cellular Therapy, University Hospital Leipzig, Leipzig, Germany
| | - Aly Karsan
- Michael Smith Genome Sciences Centre, BC Cancer Research Centre, Vancouver, British Columbia, Canada. .,Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
41
|
Ganesan S, Palani HK, Balasundaram N, David S, Devasia AJ, George B, Mathews V. Combination Lenalidomide/Bortezomib Treatment Synergistically Induces Calpain-Dependent Ikaros Cleavage and Apoptosis in Myeloma Cells. Mol Cancer Res 2020; 18:529-536. [PMID: 31915234 DOI: 10.1158/1541-7786.mcr-19-0431] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 09/14/2019] [Accepted: 12/23/2019] [Indexed: 11/16/2022]
Abstract
Multiple myeloma had been successfully treated by combining lenalidomide and bortezomib with reports suggesting benefits of such a combination even in relapsed/refractory cases. Recently, it was demonstrated that Ikaros degradation by lenalidomide happens via proteasome-dependent pathway and this process is critical for the eradication of myeloma cells. On the basis of this, an antagonistic effect should be observed if a combination of both these agents were used, which however is not the observation seen in the clinical setting. Our study demonstrates that when these agents are combined they exhibit a synergistic activity against myeloma cells and degradation of Ikaros happens by a proteasome-independent calcium-induced calpain pathway. Our study identifies the crucial role of calcium-induced calpain pathway in inducing apoptosis of myeloma cells when this combination or lenalidomide and bortezomib is used. We also report that this combination enhanced the expression of CD38 compared with lenalidomide alone. Thus, data from our study would establish the rationale for the addition of daratumumab along with this combination to further enhance therapeutic activity against multiple myeloma. IMPLICATIONS: Lenalidomide and bortezomib combination degrades IKZF1 in multiple myeloma through a calcium-dependent calpain and caspase pathway. VISUAL OVERVIEW: http://mcr.aacrjournals.org/content/molcanres/18/4/529/F1.large.jpg.
Collapse
Affiliation(s)
- Saravanan Ganesan
- Department of Haematology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Hamenth Kumar Palani
- Department of Haematology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Nithya Balasundaram
- Department of Haematology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Sachin David
- Department of Haematology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Anup J Devasia
- Department of Haematology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Biju George
- Department of Haematology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Vikram Mathews
- Department of Haematology, Christian Medical College, Vellore, Tamil Nadu, India.
| |
Collapse
|
42
|
Dou A, Fang J. Cyclosporine Broadens the Therapeutic Potential of Lenalidomide in Myeloid Malignancies. JOURNAL OF CELLULAR IMMUNOLOGY 2020; 2:237-244. [PMID: 32984863 PMCID: PMC7518522 DOI: 10.33696/immunology.2.049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The immunomodulatory drug lenalidomide is used for the treatment of certain hematologic malignancies, including myelodysplastic syndromes (MDS). Lenalidomide interacts with cereblon (CRBN), a component of the CRL4CRBN E3 ubiquitin ligase complex, leading to ubiquitination and subsequent degradation of substrates, such as transcription factor Ikaros (Ikaros family zinc finger 1, IKZF1). With a genome loss of function screen, we recently identified two novel pathways mediated by lenalidomide in MDS. In this review, we summarized the major findings of these two pathways and their clinical implications. Depletion of G protein-coupled receptor 68 (GPR68) or an endogenous calcineurin (CaN) inhibitor, regulator of calcineurin 1 (RCAN1), reversed the inhibitory effect of lenalidomide on MDSL cells, an MDS cell line. Intriguingly, both GPR68 and RCAN1 expression levels were upregulated in MDSL cells after treatment with lenalidomide that was dependent on diminishment of IKZF1, indicating that IKZF1 functioned as a transcription repressor for GPR68 and RCAN1. Mechanistic studies revealed that upregulation or activation of GPR68 induced a Ca2+/calpain pro-apoptotic pathway, while upregulation of RCAN1 inhibited the CaN pro-survival pathway in MDSL cells. Notably, the pharmacological CaN inhibitor, cyclosporine, enhanced the sensitivity to lenalidomide in MDS as well as acute myeloid leukemia (AML). Surprisingly, pretreatment with lenalidomide reversed the immunosuppressive effects of cyclosporine on T lymphocytes. Our studies suggest that lenalidomide mediates degradation of IKZF1, leading to derepression of GPR68 and RCAN1 that activates the Ca2+/calpain pro- apoptotic pathway and inhibits the CaN pro-survival pathway, respectively. Our studies implicate that cyclosporine extends the therapeutic potential of lenalidomide to myeloid malignancies without compromising immune function.
Collapse
Affiliation(s)
- Aixia Dou
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina College of Pharmacy, Columbia, SC, USA
| | - Jing Fang
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina College of Pharmacy, Columbia, SC, USA
| |
Collapse
|
43
|
A phenylphthalimide derivative, TC11, induces apoptosis by degrading MCL1 in multiple myeloma cells. Biochem Biophys Res Commun 2019; 521:252-258. [PMID: 31653349 DOI: 10.1016/j.bbrc.2019.10.119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 10/14/2019] [Indexed: 11/21/2022]
Abstract
To date, the prognosis of multiple myeloma (MM) in patients harboring cytogenetic abnormalities (CA) involving t (4; 14) and deletion of chromosome 17 remains poor despite recent advances in drug development that include the use of immunomodulatory drugs (IMiDs) such as lenalidomide for MM. To address this issue, we have developed a novel phenylphthalimide derivative, TC11, that is structurally related to IMiDs. It remains unclear how TC11 induces apoptosis of MM cells with high-risk CA. Here, we show that TC11 does not induce degradation of CRBN's substrates, IKZF1/3 and CK1α, and induces apoptosis of CRBN-silenced MM; this effect was independent of the cereblon (CRBN) pathway, which is involved in the mechanism of action of IMiDs used for the treatment of MM. We also revealed that TC11, in contrast to existing IMiDs, induced degradation of MCL1 and activation of caspase-9. Furthermore, inhibition of CDK1 by CGP74514A prevented TC11-induced MCL1 degradation, caspase-9 activation, and the subsequent apoptotic cell death. We showed that ectopic MCL1 expression rescued apoptosis of MM. These observations suggest that TC11 induces apoptotic death caused by degradation of MCL1 during prolonged mitotic arrest. Therefore, our findings suggest that TC11 is a potential drug candidate for high-risk MM.
Collapse
|
44
|
Wiley SZ, Sriram K, Salmerón C, Insel PA. GPR68: An Emerging Drug Target in Cancer. Int J Mol Sci 2019; 20:E559. [PMID: 30696114 PMCID: PMC6386835 DOI: 10.3390/ijms20030559] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 01/18/2019] [Accepted: 01/24/2019] [Indexed: 12/19/2022] Open
Abstract
GPR68 (or ovarian cancer G protein-coupled receptor 1, OGR1) is a proton-sensing G-protein-coupled receptor (GPCR) that responds to extracellular acidity and regulates a variety of cellular functions. Acidosis is considered a defining hallmark of the tumor microenvironment (TME). GPR68 expression is highly upregulated in numerous types of cancer. Emerging evidence has revealed that GPR68 may play crucial roles in tumor biology, including tumorigenesis, tumor growth, and metastasis. This review summarizes current knowledge regarding GPR68-its expression, regulation, signaling pathways, physiological roles, and functions it regulates in human cancers (including prostate, colon and pancreatic cancer, melanoma, medulloblastoma, and myelodysplastic syndrome). The findings provide evidence for GPR68 as a potentially novel therapeutic target but in addition, we note challenges in developing drugs that target GPR68.
Collapse
Affiliation(s)
- Shu Z Wiley
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Krishna Sriram
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Cristina Salmerón
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Paul A Insel
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA.
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
45
|
Biswas M, Chatterjee SS, Boila LD, Chakraborty S, Banerjee D, Sengupta A. MBD3/NuRD loss participates with KDM6A program to promote DOCK5/8 expression and Rac GTPase activation in human acute myeloid leukemia. FASEB J 2019; 33:5268-5286. [PMID: 30668141 DOI: 10.1096/fj.201801035r] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cancer genome sequencing studies have focused on identifying oncogenic mutations. However, mutational profiling alone may not always help dissect underlying epigenetic dependencies in tumorigenesis. Nucleosome remodeling and deacetylase (NuRD) is an ATP-dependent chromatin remodeling complex that regulates transcriptional architecture and is involved in cell fate commitment. We demonstrate that loss of MBD3, an important NuRD scaffold, in human primary acute myeloid leukemia (AML) cells associates with leukemic NuRD. Interestingly, CHD4, an intact ATPase subunit of leukemic NuRD, coimmunoprecipitates and participates with H3K27Me3/2-demethylase KDM6A to induce expression of atypical guanine nucleotide exchange factors, dedicator of cytokinesis (DOCK) 5 and 8 (DOCK5/8), promoting Rac GTPase signaling. Mechanistically, MBD3 deficiency caused loss of histone deacytelase 1 occupancy with a corresponding increase in KDM6A, CBP, and H3K27Ac on DOCK5/8 loci, leading to derepression of gene expression. Importantly, the Cancer Genome Atlas AML cohort reveals that DOCK5/ 8 levels are correlated with MBD3 and KDM6A, and DOCK5/ 8 expression is significantly increased in patients who are MBD3 low and KDM6A high with a poor survival. In addition, pharmacological inhibition of DOCK signaling selectively attenuates AML cell survival. Because MBD3 and KDM6A have been implicated in metastasis, our results may suggest a general phenomenon in tumorigenesis. Collectively, these findings provide evidence for MBD3-deficient NuRD in leukemia pathobiology and inform a novel epistasis between NuRD and KDM6A toward maintenance of oncogenic gene expression in AML.-Biswas, M., Chatterjee, S. S., Boila, L. D., Chakraborty, S., Banerjee, D., Sengupta, A. MBD3/NuRD loss participates with KDM6A program to promote DOCK5/8 expression and Rac GTPase activation in human acute myeloid leukemia.
Collapse
Affiliation(s)
- Mayukh Biswas
- Stem Cell and Leukemia Laboratory, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB), Translational Research Unit of Excellence (TRUE), Salt Lake, Kolkata, West Bengal, India.,Cancer Biology and Inflammatory Disorder Division, CSIR-IICB, Jadavpur, Kolkata, West Bengal, India; and
| | - Shankha Subhra Chatterjee
- Stem Cell and Leukemia Laboratory, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB), Translational Research Unit of Excellence (TRUE), Salt Lake, Kolkata, West Bengal, India.,Cancer Biology and Inflammatory Disorder Division, CSIR-IICB, Jadavpur, Kolkata, West Bengal, India; and
| | - Liberalis Debraj Boila
- Stem Cell and Leukemia Laboratory, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB), Translational Research Unit of Excellence (TRUE), Salt Lake, Kolkata, West Bengal, India.,Cancer Biology and Inflammatory Disorder Division, CSIR-IICB, Jadavpur, Kolkata, West Bengal, India; and
| | - Sayan Chakraborty
- Stem Cell and Leukemia Laboratory, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB), Translational Research Unit of Excellence (TRUE), Salt Lake, Kolkata, West Bengal, India.,Cancer Biology and Inflammatory Disorder Division, CSIR-IICB, Jadavpur, Kolkata, West Bengal, India; and
| | | | - Amitava Sengupta
- Stem Cell and Leukemia Laboratory, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB), Translational Research Unit of Excellence (TRUE), Salt Lake, Kolkata, West Bengal, India.,Cancer Biology and Inflammatory Disorder Division, CSIR-IICB, Jadavpur, Kolkata, West Bengal, India; and
| |
Collapse
|
46
|
Abstract
Our knowledge about the genetics of myelodysplastic syndromes (MDS) and related myeloid disorders has been dramatically improved during the past decade, in which revolutionized sequencing technologies have played a major role. Through intensive efforts of sequencing of a large number of MDS genomes, a comprehensive registry of driver mutations recurrently found in a recognizable fraction of MDS patients has been revealed, and ongoing efforts are being made to clarify their impacts on clinical phenotype and prognosis, as well as their role in the pathogenesis of MDS. Among major mutational targets in MDS are the molecules involved in DNA methylations, chromatin modification, RNA splicing, transcription, signal transduction, cohesin regulation, and DNA repair. Showing substantial overlaps with driver mutations seen in acute myeloid leukemia (AML), as well as age-related clonal hematopoiesis in healthy individuals, these mutations are presumed to have a common clonal origin. Mutations are thought to be acquired and positively selected in a well-organized manner to allow for expansion of the initiating clone to compromise normal hematopoiesis, ultimately giving rise to MDS and subsequent transformation to AML in many patients. Significant correlations between mutations suggest the presence of functional interactions between mutations, which dictate disease progression. Mutations are frequently associated with specific disease phenotype, drug response, and clinical outcomes, and thus, it is essential to be familiar with MDS genetics for better management of patients. This review aims to provide a brief overview of the recent progresses in MDS genetics.
Collapse
|
47
|
Fuchs O. Treatment of Lymphoid and Myeloid Malignancies by Immunomodulatory Drugs. Cardiovasc Hematol Disord Drug Targets 2019; 19:51-78. [PMID: 29788898 DOI: 10.2174/1871529x18666180522073855] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 05/05/2018] [Accepted: 05/14/2018] [Indexed: 06/08/2023]
Abstract
Thalidomide and its derivatives (lenalidomide, pomalidomide, avadomide, iberdomide hydrochoride, CC-885 and CC-90009) form the family of immunomodulatory drugs (IMiDs). Lenalidomide (CC5013, Revlimid®) was approved by the US FDA and the EMA for the treatment of multiple myeloma (MM) patients, low or intermediate-1 risk transfusion-dependent myelodysplastic syndrome (MDS) with chromosome 5q deletion [del(5q)] and relapsed and/or refractory mantle cell lymphoma following bortezomib. Lenalidomide has also been studied in clinical trials and has shown promising activity in chronic lymphocytic leukemia (CLL) and non-Hodgkin lymphoma (NHL). Lenalidomide has anti-inflammatory effects and inhibits angiogenesis. Pomalidomide (CC4047, Imnovid® [EU], Pomalyst® [USA]) was approved for advanced MM insensitive to bortezomib and lenalidomide. Other IMiDs are in phases 1 and 2 of clinical trials. Cereblon (CRBN) seems to have an important role in IMiDs action in both lymphoid and myeloid hematological malignancies. Cereblon acts as the substrate receptor of a cullin-4 really interesting new gene (RING) E3 ubiquitin ligase CRL4CRBN. This E3 ubiquitin ligase in the absence of lenalidomide ubiquitinates CRBN itself and the other components of CRL4CRBN complex. Presence of lenalidomide changes specificity of CRL4CRBN which ubiquitinates two transcription factors, IKZF1 (Ikaros) and IKZF3 (Aiolos), and casein kinase 1α (CK1α) and marks them for degradation in proteasomes. Both these transcription factors (IKZF1 and IKZF3) stimulate proliferation of MM cells and inhibit T cells. Low CRBN level was connected with insensitivity of MM cells to lenalidomide. Lenalidomide decreases expression of protein argonaute-2, which binds to cereblon. Argonaute-2 seems to be an important drug target against IMiDs resistance in MM cells. Lenalidomide decreases also basigin and monocarboxylate transporter 1 in MM cells. MM cells with low expression of Ikaros, Aiolos and basigin are more sensitive to lenalidomide treatment. The CK1α gene (CSNK1A1) is located on 5q32 in commonly deleted region (CDR) in del(5q) MDS. Inhibition of CK1α sensitizes del(5q) MDS cells to lenalidomide. CK1α mediates also survival of malignant plasma cells in MM. Though, inhibition of CK1α is a potential novel therapy not only in del(5q) MDS but also in MM. High level of full length CRBN mRNA in mononuclear cells of bone marrow and of peripheral blood seems to be necessary for successful therapy of del(5q) MDS with lenalidomide. While transfusion independence (TI) after lenalidomide treatment is more than 60% in MDS patients with del(5q), only 25% TI and substantially shorter duration of response with occurrence of neutropenia and thrombocytopenia were achieved in lower risk MDS patients with normal karyotype treated with lenalidomide. Shortage of the biomarkers for lenalidomide response in these MDS patients is the main problem up to now.
Collapse
Affiliation(s)
- Ota Fuchs
- Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20 Prague 2, Czech Republic
| |
Collapse
|
48
|
SOHO State of the Art and Next Questions: Management of Myelodysplastic Syndromes With Deletion 5q. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2018; 18:629-635. [DOI: 10.1016/j.clml.2018.07.293] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 07/25/2018] [Indexed: 12/17/2022]
|
49
|
Seijkens TTP, Lutgens E. Cardiovascular oncology: exploring the effects of targeted cancer therapies on atherosclerosis. Curr Opin Lipidol 2018; 29:381-388. [PMID: 30074493 DOI: 10.1097/mol.0000000000000538] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW Targeted cancer therapies have revolutionized the treatment of cancer in the past decade, but cardiovascular toxicity is a rising problem in cancer patients. Here we discuss the effects of targeted cancer therapies on atherosclerosis. Increasing the awareness of these adverse effects will promote the development of evidence-based preventive strategies in the emerging field of cardiovascular oncology. RECENT FINDINGS Vascular endothelial growth factor inhibitors, immunomodulatory imide drugs, tyrosine kinase inhibitors and immune checkpoint inhibitors are successfully used as treatment for many types of solid and hematologic malignancies. However, clinical and experimental studies have demonstrated that these drugs can drive atherosclerosis, thereby causing adverse cardiovascular events such as myocardial infarction, stroke and peripheral arterial occlusive diseases. SUMMARY In this review, we discuss how on-target and off-target effects of novel cancer drugs may affect atherosclerosis and we postulate how these cardiovascular adverse events can be prevented in the future.
Collapse
Affiliation(s)
- Tom T P Seijkens
- Department of Medical Biochemistry, Subdivision Experimental Vascular Biology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
- Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilians University, Munich, Germany
| | - Esther Lutgens
- Department of Medical Biochemistry, Subdivision Experimental Vascular Biology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
- Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilians University, Munich, Germany
| |
Collapse
|
50
|
Sievers QL, Gasser JA, Cowley GS, Fischer ES, Ebert BL. Genome-wide screen identifies cullin-RING ligase machinery required for lenalidomide-dependent CRL4 CRBN activity. Blood 2018; 132:1293-1303. [PMID: 30042095 PMCID: PMC6148446 DOI: 10.1182/blood-2018-01-821769] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 07/02/2018] [Indexed: 12/20/2022] Open
Abstract
Lenalidomide mediates the ubiquitination and degradation of Ikaros family zinc finger protein 1 (IKZF1), IKZF3, and casein kinase 1α (CK1α) by facilitating their interaction with cereblon (CRBN), the substrate receptor for the CRL4CRBN E3 ubiquitin ligase. Through this mechanism, lenalidomide is a clinically effective treatment of multiple myeloma and myelodysplastic syndrome (MDS) with deletion of chromosome 5q [del(5q) MDS]. To identify the cellular machinery required for lenalidomide-induced CRL4CRBN activity, we performed a positive selection, genome-scale clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) screen in a lenalidomide-sensitive myeloma cell line. CRBN was the top-ranking gene, with all CRBN-targeting guide RNAs (gRNAs) ranking as the 6 highest-scoring gRNAs. A counterscreen using an IKZF3 degron reporter to assay lenalidomide-induced protein degradation highlighted regulators of cullin-RING ligase neddylation and 2 E2 ubiquitin-conjugating enzymes as necessary for efficient lenalidomide-induced protein degradation. We demonstrated that loss of UBE2M or members of the constitutive photomorphogenesis 9 (COP9) signalosome results in altered neddylation of cullin 4A and impairs lenalidomide-dependent CRL4CRBN activity. Additionally, we established that UBE2D3 and UBE2G1 play distinct roles in substrate ubiquitination by CRL4CRBN, with UBE2D3 acting to prime targets via monoubiquitination and UBE2G1 functioning to extend polyubiquitin chains with lysine 48 linkages. The validation of UBE2D3 and UBE2G1 highlights the functional capacity of CRISPR-Cas9 screening to identify E2 ubiquitin-conjugating enzyme and E3 ubiquitin ligase complex pairings. More broadly, these findings establish key proteins required for lenalidomide-dependent CRL4CRBN function in myeloma and inform potential mechanisms of drug resistance.
Collapse
Affiliation(s)
- Quinlan L Sievers
- Broad Institute of MIT and Harvard, Cambridge, MA
- Division of Hematology, Brigham and Women's Hospital, and
- MD/PhD Program, Harvard Medical School, Boston, MA
| | - Jessica A Gasser
- Broad Institute of MIT and Harvard, Cambridge, MA
- Division of Hematology, Brigham and Women's Hospital, and
| | | | - Eric S Fischer
- Department of Chemical Biology, Dana-Farber Cancer Institute, Boston, MA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA; and
| | - Benjamin L Ebert
- Broad Institute of MIT and Harvard, Cambridge, MA
- Division of Hematology, Brigham and Women's Hospital, and
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| |
Collapse
|