1
|
Wang T, Roach MJ, Harvey K, Morlanes JE, Kiedik B, Al-Eryani G, Greenwald A, Kalavros N, Dezem FS, Ma Y, Pita-Juarez YH, Wise K, Degletagne C, Elz A, Hadadianpour A, Johanneson J, Pakiam F, Ryu H, Newell EW, Tonon L, Kohlway A, Drennon T, Abousoud J, Stott R, Lund P, Durruthy J, Vallejo AF, Li W, Salomon R, Kaczorowski D, Warren J, Butler LM, O'Toole S, Plummer J, Vlachos IS, Lundeberg J, Swarbrick A, Martelotto LG. snPATHO-seq, a versatile FFPE single-nucleus RNA sequencing method to unlock pathology archives. Commun Biol 2024; 7:1340. [PMID: 39414943 PMCID: PMC11484811 DOI: 10.1038/s42003-024-07043-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 10/10/2024] [Indexed: 10/18/2024] Open
Abstract
Formalin-fixed paraffin-embedded (FFPE) samples are valuable but underutilized in single-cell omics research due to their low RNA quality. In this study, leveraging a recent advance in single-cell genomic technology, we introduce snPATHO-seq, a versatile method to derive high-quality single-nucleus transcriptomic data from FFPE samples. We benchmarked the performance of the snPATHO-seq workflow against existing 10x 3' and Flex assays designed for frozen or fresh samples and highlighted the consistency in snRNA-seq data produced by all workflows. The snPATHO-seq workflow also demonstrated high robustness when tested across a wide range of healthy and diseased FFPE tissue samples. When combined with FFPE spatial transcriptomic technologies such as FFPE Visium, the snPATHO-seq provides a multi-modal sampling approach for FFPE samples, allowing more comprehensive transcriptomic characterization.
Collapse
Affiliation(s)
- Taopeng Wang
- Cancer Ecosystems Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Michael J Roach
- Adelaide Centre for Epigenetics, University of Adelaide, Adelaide, SA, Australia
- South Australian Immunogenomics Cancer Institute, University of Adelaide, Adelaide, SA, Australia
- College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| | - Kate Harvey
- Cancer Ecosystems Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | | | - Beata Kiedik
- Cancer Ecosystems Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Ghamdan Al-Eryani
- Cancer Ecosystems Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Alissa Greenwald
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Nikolaos Kalavros
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Spatial Technologies Unit, Harvard Medical School Initiative for RNA Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Felipe Segato Dezem
- Center for Spatial Omics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yuling Ma
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Spatial Technologies Unit, Harvard Medical School Initiative for RNA Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Yered H Pita-Juarez
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kellie Wise
- Adelaide Centre for Epigenetics, University of Adelaide, Adelaide, SA, Australia
- South Australian Immunogenomics Cancer Institute, University of Adelaide, Adelaide, SA, Australia
| | - Cyril Degletagne
- CRCL Core facilities, Centre de Recherche en Cancérologie de Lyon (CRCL) INSERM U1052-CNRS UMR5286, Université de Lyon, Université Claude Bernard Lyon, Centre Léon Bérard, Lyon, France
| | - Anna Elz
- Fred Hutch Innovation Lab, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Azi Hadadianpour
- Fred Hutch Innovation Lab, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Jack Johanneson
- Fred Hutch Innovation Lab, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Fiona Pakiam
- Fred Hutch Innovation Lab, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Heeju Ryu
- Vaccine and Infectious Disease Division, Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Evan W Newell
- Fred Hutch Innovation Lab, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Vaccine and Infectious Disease Division, Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Laurie Tonon
- CRCL Core facilities, Centre de Recherche en Cancérologie de Lyon (CRCL) INSERM U1052-CNRS UMR5286, Université de Lyon, Université Claude Bernard Lyon, Centre Léon Bérard, Lyon, France
- Fondation Synergie Lyon Cancer, Plateforme de Bioinformatique Gilles Thomas, Centre Léon Bérard, Lyon, France
| | | | | | | | | | | | | | - Andres F Vallejo
- Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Wenyan Li
- Children's Cancer Institute, UNSW Lowy Cancer Research Centre, Kensington, NSW, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, NSW, Australia
| | - Robert Salomon
- Children's Cancer Institute, UNSW Lowy Cancer Research Centre, Kensington, NSW, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, NSW, Australia
| | - Dominik Kaczorowski
- Cellular Genomics Platform, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Joanna Warren
- Cellular Genomics Platform, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Lisa M Butler
- South Australian Immunogenomics Cancer Institute, University of Adelaide, Adelaide, SA, Australia
- Solid Tumour Program, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Sandra O'Toole
- Cancer Ecosystems Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
- Department of Tissue Pathology and Diagnostic Oncology, NSW Health Pathology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
- Sydney Medical School, University of Sydney, Sydney, NSW, Australia
- School of Medicine, University of Western Sydney, Sydney, NSW, Australia
| | - Jasmine Plummer
- Center for Spatial Omics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ioannis S Vlachos
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Spatial Technologies Unit, Harvard Medical School Initiative for RNA Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Joakim Lundeberg
- KTH Royal Institute of Technology, Science for Life Laboratory, Solna, Sweden
| | - Alexander Swarbrick
- Cancer Ecosystems Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia.
| | - Luciano G Martelotto
- Adelaide Centre for Epigenetics, University of Adelaide, Adelaide, SA, Australia.
- South Australian Immunogenomics Cancer Institute, University of Adelaide, Adelaide, SA, Australia.
| |
Collapse
|
2
|
Salgkamis D, Sifakis EG, Agartz S, Wirta V, Hartman J, Bergh J, Foukakis T, Matikas A, Zerdes I. Systematic review and feasibility study on pre-analytical factors and genomic analyses on archival formalin-fixed paraffin-embedded breast cancer tissue. Sci Rep 2024; 14:18275. [PMID: 39107471 PMCID: PMC11303707 DOI: 10.1038/s41598-024-69285-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024] Open
Abstract
Formalin-fixed paraffin-embedded (FFPE) tissue represents a valuable source for translational cancer research. However, the widespread application of various downstream methods remains challenging. Here, we aimed to assess the feasibility of a genomic and gene expression analysis workflow using FFPE breast cancer (BC) tissue. We conducted a systematic literature review for the assessment of concordance between FFPE and fresh-frozen matched tissue samples derived from patients with BC for DNA and RNA downstream applications. The analytical performance of three different nucleic acid extraction kits on FFPE BC clinical samples was compared. We also applied a newly developed targeted DNA Next-Generation Sequencing (NGS) 370-gene panel and the nCounter BC360® platform on simultaneously extracted DNA and RNA, respectively, using FFPE tissue from a phase II clinical trial. Of the 3701 initial search results, 40 articles were included in the systematic review. High degree of concordance was observed in various downstream application platforms. Moreover, the performance of simultaneous DNA/RNA extraction kit was demonstrated with targeted DNA NGS and gene expression profiling. Exclusion of variants below 5% variant allele frequency was essential to overcome FFPE-induced artefacts. Targeted genomic analyses were feasible in simultaneously extracted DNA/RNA from FFPE material, providing insights for their implementation in clinical trials/cohorts.
Collapse
Affiliation(s)
| | | | - Susanne Agartz
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Valtteri Wirta
- Department of Microbiology, Tumor and Cell Biology, Clinical Genomics Stockholm, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Johan Hartman
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden
| | - Jonas Bergh
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Breast Center, Theme Cancer, Karolinska University Hospital, Stockholm, Sweden
| | - Theodoros Foukakis
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Breast Center, Theme Cancer, Karolinska University Hospital, Stockholm, Sweden
| | - Alexios Matikas
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Breast Center, Theme Cancer, Karolinska University Hospital, Stockholm, Sweden
| | - Ioannis Zerdes
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Theme Cancer, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
3
|
Berry JL, Pike S, Shah R, Reid MW, Peng CC, Wang Y, Yellapantula V, Biegel J, Kuhn P, Hicks J, Xu L. Aqueous Humor Liquid Biopsy as a Companion Diagnostic for Retinoblastoma: Implications for Diagnosis, Prognosis, and Therapeutic Options: Five Years of Progress. Am J Ophthalmol 2024; 263:188-205. [PMID: 38040321 PMCID: PMC11148850 DOI: 10.1016/j.ajo.2023.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 12/03/2023]
Abstract
PURPOSE To define the prospective use of the aqueous humor (AH) as a molecular diagnostic and prognostic liquid biopsy for retinoblastoma (RB). METHODS This is a prospective, observational study wherein an AH liquid biopsy is performed at diagnosis and longitudinally through therapy for patients with RB. Tumor-derived cell-free DNA is isolated and sequenced for single nucleotide variant analysis of the RB1 gene and detection of somatic copy number alterations (SCNAs). The SCNAs are used to determine tumor fraction (TFx). Specific SCNAs, including 6p gain and focal MycN gain, along with TFx, are prospectively correlated with intraocular tumor relapse, response to therapy, and globe salvage. RESULTS A total of 26 eyes of 21 patients were included with AH taken at diagnosis. Successful ocular salvage was achieved in 19 of 26 (73.1%) eyes. Mutational analysis of 26 AH samples identified 23 pathogenic RB1 variants and 2 focal RB1 deletions; variant allele fraction ranged from 30.5% to 100% (median 93.2%). At diagnosis, SCNAs were detectable in 17 of 26 (65.4%) AH samples. Eyes with 6p gain and/or focal MycN gain had significantly greater odds of poor therapeutic outcomes (odds ratio = 6.75, 95% CI = 1.06-42.84, P = .04). Higher AH TFx was observed in eyes with vitreal progression (TFx = 46.0% ± 40.4) than regression (22.0 ± 29.1; difference: -24.0; P = .049). CONCLUSIONS Establishing an AH liquid biopsy for RB is aimed at addressing (1) our inability to biopsy tumor tissue and (2) the lack of molecular biomarkers for intraocular prognosis. Current management decisions for RB are made based solely on clinical features without objective molecular testing. This prognostic study shows great promise for using AH as a companion diagnostic. NOTE: Publication of this article is sponsored by the American Ophthalmological Society.
Collapse
Affiliation(s)
- Jesse L Berry
- From the Vision Center, Children's Hospital Los Angeles (J.L.B., S.P., M.W.R., C.-C.P., L.X.); USC Roski Eye Institute, Keck School of Medicine of the University of Southern California (J.L.B., S.P., M.W.R., C.-C.P., L.X.); the Saban Research Institute, Children's Hospital Los Angeles (J.L.B., V.Y., J.B., L.X.); Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California (J.L.B., P.K., J.H.).
| | - Sarah Pike
- From the Vision Center, Children's Hospital Los Angeles (J.L.B., S.P., M.W.R., C.-C.P., L.X.); USC Roski Eye Institute, Keck School of Medicine of the University of Southern California (J.L.B., S.P., M.W.R., C.-C.P., L.X.)
| | - Rachana Shah
- Cancer and Blood Disease Institute, Children's Hospital Los Angeles (R.S.)
| | - Mark W Reid
- From the Vision Center, Children's Hospital Los Angeles (J.L.B., S.P., M.W.R., C.-C.P., L.X.); USC Roski Eye Institute, Keck School of Medicine of the University of Southern California (J.L.B., S.P., M.W.R., C.-C.P., L.X.)
| | - Chen-Ching Peng
- From the Vision Center, Children's Hospital Los Angeles (J.L.B., S.P., M.W.R., C.-C.P., L.X.); USC Roski Eye Institute, Keck School of Medicine of the University of Southern California (J.L.B., S.P., M.W.R., C.-C.P., L.X.)
| | - Yingfei Wang
- Cancer and Blood Disease Institute, Children's Hospital Los Angeles (R.S.); Department of Quantitative and Computational Biology, University of Southern California (Y.W.)
| | - Venkata Yellapantula
- the Saban Research Institute, Children's Hospital Los Angeles (J.L.B., V.Y., J.B., L.X.); Center for Personalized Medicine, Children's Hospital Los Angeles (V.Y., J.B.)
| | - Jaclyn Biegel
- the Saban Research Institute, Children's Hospital Los Angeles (J.L.B., V.Y., J.B., L.X.)
| | - Peter Kuhn
- Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California (J.L.B., P.K., J.H.); USC Michelson Center for Convergent Biosciences and Department of Biological Sciences (P.K., J.H.), Los Angeles, California, USA
| | - James Hicks
- Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California (J.L.B., P.K., J.H.); USC Michelson Center for Convergent Biosciences and Department of Biological Sciences (P.K., J.H.), Los Angeles, California, USA
| | - Liya Xu
- From the Vision Center, Children's Hospital Los Angeles (J.L.B., S.P., M.W.R., C.-C.P., L.X.); USC Roski Eye Institute, Keck School of Medicine of the University of Southern California (J.L.B., S.P., M.W.R., C.-C.P., L.X.); the Saban Research Institute, Children's Hospital Los Angeles (J.L.B., V.Y., J.B., L.X.)
| |
Collapse
|
4
|
Lake KE, Colonnetta MM, Smith CA, Saunders K, Martinez-Algarin K, Mohta S, Pena J, McArthur HL, Reddy SM, Roussos Torres ET, Chen EH, Chan IS. Digital droplet PCR analysis of organoids generated from mouse mammary tumors demonstrates proof-of-concept capture of tumor heterogeneity. Front Cell Dev Biol 2024; 12:1358583. [PMID: 38827528 PMCID: PMC11140600 DOI: 10.3389/fcell.2024.1358583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/19/2024] [Indexed: 06/04/2024] Open
Abstract
Breast cancer metastases exhibit many different genetic alterations, including copy number amplifications (CNA). CNA are genetic alterations that are increasingly becoming relevant to breast oncology clinical practice. Here we identify CNA in metastatic breast tumor samples using publicly available datasets and characterize their expression and function using a metastatic mouse model of breast cancer. Our findings demonstrate that our organoid generation can be implemented to study clinically relevant features that reflect the genetic heterogeneity of individual tumors.
Collapse
Affiliation(s)
- Katherine E. Lake
- Department of Internal Medicine, Division of Hematology and Oncology, University of Texas Southwestern, Dallas, TX, United States
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Megan M. Colonnetta
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Department of Molecular Biology, University of Texas Southwestern, Dallas, TX, United States
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Clayton A. Smith
- Department of Internal Medicine, Division of Hematology and Oncology, University of Texas Southwestern, Dallas, TX, United States
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Kaitlyn Saunders
- Department of Internal Medicine, Division of Hematology and Oncology, University of Texas Southwestern, Dallas, TX, United States
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Kenneth Martinez-Algarin
- Department of Internal Medicine, Division of Hematology and Oncology, University of Texas Southwestern, Dallas, TX, United States
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Sakshi Mohta
- Department of Internal Medicine, Division of Hematology and Oncology, University of Texas Southwestern, Dallas, TX, United States
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Jacob Pena
- Department of Internal Medicine, Division of Hematology and Oncology, University of Texas Southwestern, Dallas, TX, United States
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Heather L. McArthur
- Department of Internal Medicine, Division of Hematology and Oncology, University of Texas Southwestern, Dallas, TX, United States
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Sangeetha M. Reddy
- Department of Internal Medicine, Division of Hematology and Oncology, University of Texas Southwestern, Dallas, TX, United States
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Evanthia T. Roussos Torres
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Elizabeth H. Chen
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Department of Molecular Biology, University of Texas Southwestern, Dallas, TX, United States
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Isaac S. Chan
- Department of Internal Medicine, Division of Hematology and Oncology, University of Texas Southwestern, Dallas, TX, United States
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Department of Molecular Biology, University of Texas Southwestern, Dallas, TX, United States
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
5
|
Wang J, Li B, Luo M, Huang J, Zhang K, Zheng S, Zhang S, Zhou J. Progression from ductal carcinoma in situ to invasive breast cancer: molecular features and clinical significance. Signal Transduct Target Ther 2024; 9:83. [PMID: 38570490 PMCID: PMC10991592 DOI: 10.1038/s41392-024-01779-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 02/14/2024] [Accepted: 02/26/2024] [Indexed: 04/05/2024] Open
Abstract
Ductal carcinoma in situ (DCIS) represents pre-invasive breast carcinoma. In untreated cases, 25-60% DCIS progress to invasive ductal carcinoma (IDC). The challenge lies in distinguishing between non-progressive and progressive DCIS, often resulting in over- or under-treatment in many cases. With increasing screen-detected DCIS in these years, the nature of DCIS has aroused worldwide attention. A deeper understanding of the biological nature of DCIS and the molecular journey of the DCIS-IDC transition is crucial for more effective clinical management. Here, we reviewed the key signaling pathways in breast cancer that may contribute to DCIS initiation and progression. We also explored the molecular features of DCIS and IDC, shedding light on the progression of DCIS through both inherent changes within tumor cells and alterations in the tumor microenvironment. In addition, valuable research tools utilized in studying DCIS including preclinical models and newer advanced technologies such as single-cell sequencing, spatial transcriptomics and artificial intelligence, have been systematically summarized. Further, we thoroughly discussed the clinical advancements in DCIS and IDC, including prognostic biomarkers and clinical managements, with the aim of facilitating more personalized treatment strategies in the future. Research on DCIS has already yielded significant insights into breast carcinogenesis and will continue to pave the way for practical clinical applications.
Collapse
Affiliation(s)
- Jing Wang
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Breast Surgery and Oncology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, China
| | - Baizhou Li
- Department of Pathology, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Meng Luo
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, China
- Department of Plastic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jia Huang
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, China
| | - Kun Zhang
- Department of Breast Surgery and Oncology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shu Zheng
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, China
| | - Suzhan Zhang
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, China.
| | - Jiaojiao Zhou
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Department of Breast Surgery and Oncology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, China.
- Cancer Center, Zhejiang University, Hangzhou, China.
| |
Collapse
|
6
|
Andel D, Viergever BJ, Peters NA, Elisabeth Raats DA, Schenning-van Schelven SJ, Willem Intven MP, Zandvliet M, Hagendoorn J, Max Borel Rinkes IH, Kranenburg O. Pre-existing subclones determine radioresistance in rectal cancer organoids. Cell Rep 2024; 43:113735. [PMID: 38310513 DOI: 10.1016/j.celrep.2024.113735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/05/2023] [Accepted: 01/17/2024] [Indexed: 02/06/2024] Open
Abstract
More than half of all patients with cancer receive radiation therapy, but resistance is commonly observed. Currently, it is unknown whether resistance to radiation therapy is acquired or inherently present. Here, we employed organoids derived from rectal cancer and single-cell whole-genome sequencing to investigate the long-term evolution of subclones in response to radiation. Comparing single-cell whole-genome karyotypes between in-vitro-unirradiated and -irradiated organoids revealed three patterns of subclonal evolution: (1) subclonal persistence, (2) subclonal extinction, and (3) subclonal expansion. Organoids in which subclonal shifts occurred (i.e., expansion or extinction) became more resistant to radiation. Although radioresistant subclones did not share recurrent copy-number alterations that could explain their radioresistance, resistance was associated with reduced chromosomal instability, an association that was also observed in 529 human cancer cell lines. These data suggest that resistance to radiation is inherently present and associated with reduced chromosomal instability.
Collapse
Affiliation(s)
- Daan Andel
- Department of Surgical Oncology, University Medical Center Utrecht, Cancer Center, Utrecht, the Netherlands; Laboratory for Translational Oncology, University Medical Center Utrecht, Cancer Center, Utrecht, the Netherlands
| | - Bas Jeroen Viergever
- Laboratory for Translational Oncology, University Medical Center Utrecht, Cancer Center, Utrecht, the Netherlands
| | - Niek Alexander Peters
- Department of Surgical Oncology, University Medical Center Utrecht, Cancer Center, Utrecht, the Netherlands; Laboratory for Translational Oncology, University Medical Center Utrecht, Cancer Center, Utrecht, the Netherlands
| | | | | | - Martijn Peter Willem Intven
- Department of Radiation Oncology, University Medical Center Utrecht, Cancer Center, Utrecht, the Netherlands
| | - Maurice Zandvliet
- Department of Clinical Sciences - Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Jeroen Hagendoorn
- Department of Surgical Oncology, University Medical Center Utrecht, Cancer Center, Utrecht, the Netherlands; Laboratory for Translational Oncology, University Medical Center Utrecht, Cancer Center, Utrecht, the Netherlands
| | - Inne Hilbrand Max Borel Rinkes
- Department of Surgical Oncology, University Medical Center Utrecht, Cancer Center, Utrecht, the Netherlands; Laboratory for Translational Oncology, University Medical Center Utrecht, Cancer Center, Utrecht, the Netherlands.
| | - Onno Kranenburg
- Department of Surgical Oncology, University Medical Center Utrecht, Cancer Center, Utrecht, the Netherlands; Laboratory for Translational Oncology, University Medical Center Utrecht, Cancer Center, Utrecht, the Netherlands; Utrecht Platform for Organoid Technology, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
7
|
Dopeso H, Gazzo AM, Derakhshan F, Brown DN, Selenica P, Jalali S, Da Cruz Paula A, Marra A, da Silva EM, Basili T, Gusain L, Colon-Cartagena L, Bhaloo SI, Green H, Vanderbilt C, Oesterreich S, Grabenstetter A, Kuba MG, Ross D, Giri D, Wen HY, Zhang H, Brogi E, Weigelt B, Pareja F, Reis-Filho JS. Genomic and epigenomic basis of breast invasive lobular carcinomas lacking CDH1 genetic alterations. NPJ Precis Oncol 2024; 8:33. [PMID: 38347189 PMCID: PMC10861500 DOI: 10.1038/s41698-024-00508-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 12/14/2023] [Indexed: 02/15/2024] Open
Abstract
CDH1 (E-cadherin) bi-allelic inactivation is the hallmark alteration of breast invasive lobular carcinoma (ILC), resulting in its discohesive phenotype. A subset of ILCs, however, lack CDH1 genetic/epigenetic inactivation, and their genetic underpinning is unknown. Through clinical targeted sequencing data reanalysis of 364 primary ILCs, we identified 25 ILCs lacking CDH1 bi-allelic genetic alterations. CDH1 promoter methylation was frequent (63%) in these cases. Targeted sequencing reanalysis revealed 3 ILCs harboring AXIN2 deleterious fusions (n = 2) or loss-of-function mutation (n = 1). Whole-genome sequencing of 3 cases lacking bi-allelic CDH1 genetic/epigenetic inactivation confirmed the AXIN2 mutation and no other cell-cell adhesion genetic alterations but revealed a new CTNND1 (p120) deleterious fusion. AXIN2 knock-out in MCF7 cells resulted in lobular-like features, including increased cellular migration and resistance to anoikis. Taken together, ILCs lacking CDH1 genetic/epigenetic alterations are driven by inactivating alterations in other cell adhesion genes (CTNND1 or AXIN2), endorsing a convergent phenotype in ILC.
Collapse
Affiliation(s)
- Higinio Dopeso
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andrea M Gazzo
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Fatemeh Derakhshan
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - David N Brown
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Pier Selenica
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sahar Jalali
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Arnaud Da Cruz Paula
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Antonio Marra
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Edaise M da Silva
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Thais Basili
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Laxmi Gusain
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lorraine Colon-Cartagena
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Shirin Issa Bhaloo
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hunter Green
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Chad Vanderbilt
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Steffi Oesterreich
- Department of Pharmacology & Chemical Biology, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Anne Grabenstetter
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - M Gabriela Kuba
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dara Ross
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dilip Giri
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hannah Y Wen
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hong Zhang
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Edi Brogi
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Britta Weigelt
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Fresia Pareja
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Jorge S Reis-Filho
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
8
|
Tyagi A, Jaggupilli A, Ly S, Yuan B, El-Dana F, Hegde VL, Anand V, Kumar B, Puppala M, Yin Z, Wong STC, Mollard A, Vankayalapati H, Foulks JM, Warner SL, Daver N, Borthakur G, Battula VL. TP-0184 inhibits FLT3/ACVR1 to overcome FLT3 inhibitor resistance and hinder AML growth synergistically with venetoclax. Leukemia 2024; 38:82-95. [PMID: 38007585 DOI: 10.1038/s41375-023-02086-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/30/2023] [Accepted: 11/10/2023] [Indexed: 11/27/2023]
Abstract
We identified activin A receptor type I (ACVR1), a member of the TGF-β superfamily, as a factor favoring acute myeloid leukemia (AML) growth and a new potential therapeutic target. ACVR1 is overexpressed in FLT3-mutated AML and inhibition of ACVR1 expression sensitized AML cells to FLT3 inhibitors. We developed a novel ACVR1 inhibitor, TP-0184, which selectively caused growth arrest in FLT3-mutated AML cell lines. Molecular docking and in vitro kinase assays revealed that TP-0184 binds to both ACVR1 and FLT3 with high affinity and inhibits FLT3/ACVR1 downstream signaling. Treatment with TP-0184 or in combination with BCL2 inhibitor, venetoclax dramatically inhibited leukemia growth in FLT3-mutated AML cell lines and patient-derived xenograft models in a dose-dependent manner. These findings suggest that ACVR1 is a novel biomarker and plays a role in AML resistance to FLT3 inhibitors and that FLT3/ACVR1 dual inhibitor TP-0184 is a novel potential therapeutic tool for AML with FLT3 mutations.
Collapse
Affiliation(s)
- Anudishi Tyagi
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Appalaraju Jaggupilli
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Stanley Ly
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bin Yuan
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Fouad El-Dana
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Venkatesh L Hegde
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vivek Anand
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bijender Kumar
- Department of Stem Cell Transplantation, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mamta Puppala
- Department of Systems Medicine and Bioengineering, Houston Methodist Neal Cancer Center, Weill Cornell Medicine, Houston, TX, USA
| | - Zheng Yin
- Department of Systems Medicine and Bioengineering, Houston Methodist Neal Cancer Center, Weill Cornell Medicine, Houston, TX, USA
| | - Stephen T C Wong
- Department of Systems Medicine and Bioengineering, Houston Methodist Neal Cancer Center, Weill Cornell Medicine, Houston, TX, USA
| | - Alexis Mollard
- University of Utah, Huntsman Cancer Institute, Salt Lake City, UT, USA
| | | | | | | | - Naval Daver
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gautam Borthakur
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - V Lokesh Battula
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
9
|
Guo Y, Ma J, Li Z, Dang K, Ge Q, Huang Y, Wang GZ, Zhao X. Transcriptomic profiling of nuclei from paraformaldehyde-fixed and formalin-fixed paraffin-embedded brain tissues. Anal Chim Acta 2023; 1281:341861. [PMID: 38783731 DOI: 10.1016/j.aca.2023.341861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 05/25/2024]
Abstract
BACKGROUND Paraformaldehyde (PFA) fixation is necessary for histochemical staining, and formalin-fixed and paraffin-embedded (FFPE) tissue archives are the largest repository of clinically annotated specimens. Single-cell gene expression workflows have recently been developed for PFA-fixed and FFPE tissue specimens. However, for tissues where intact cells are hard to recover, including tissues containing highly interconnected neurons, single-nuclear transcriptomics is beneficial. Moreover, since RNA is very unstable, the effects of standard pathological practice on the transcriptome of samples obtained from such archived specimens like FFPE samples are largely anecdotal. RESULTS We evaluated the effects of polyformaldehyde (PFA) fixation and paraffin-embedding on transcriptional profiles of the mouse hippocampus obtained by RNA sequencing (RNA-seq). The transcriptomic signatures of nuclei isolated from fresh PFA-fixed and fresh FFPE tissues were comparable to those of cryopreserved samples. However, more differentially expressed genes were obtained for brains after PFA fixation for more than 3 days than in fresh PFA-fixed samples, especially genes involved in spliceosome and synaptic-related pathways. Importantly, the real cell states were destroyed, with oligodendrocyte precursor cells depleted in the 1day fixed hippocampus. After fixation for 3 days, the proportions of neuronal cells and oligodendrocytes decreased and microglia increased; however, relative frequencies remained constant for longer fixation durations. The storage time of FFPE samples had a negligible effect on the cell composition. SIGNIFICANCE This represents the first work to investigate the effects of fixation and storage time of brains on its nuclear transcriptome signatures in detail. The fixation time had more influences on the nuclear transcriptomic profiles than FFPE retention time, and the cliff-like effects appeared to occur over a fixed period of 1-3 days. These findings are expected to guide sample preparation for single-nucleus RNA-seq of FFPE samples, particularly in transcriptomic studies focused on brain diseases.
Collapse
Affiliation(s)
- Yunxia Guo
- State Key Laboratory of Digital Medical Engineering, School of Biological Science & Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Junjie Ma
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Zhengyue Li
- State Key Laboratory of Digital Medical Engineering, School of Biological Science & Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Kaitong Dang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science & Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Qinyu Ge
- State Key Laboratory of Digital Medical Engineering, School of Biological Science & Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yan Huang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science & Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Guang-Zhong Wang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Xiangwei Zhao
- State Key Laboratory of Digital Medical Engineering, School of Biological Science & Medical Engineering, Southeast University, Nanjing, 210096, China.
| |
Collapse
|
10
|
Guo Y, Wang W, Ye K, He L, Ge Q, Huang Y, Zhao X. Single-Nucleus RNA-Seq: Open the Era of Great Navigation for FFPE Tissue. Int J Mol Sci 2023; 24:13744. [PMID: 37762049 PMCID: PMC10530744 DOI: 10.3390/ijms241813744] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/28/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Single-cell sequencing (scRNA-seq) has revolutionized our ability to explore heterogeneity and genetic variations at the single-cell level, opening up new avenues for understanding disease mechanisms and cell-cell interactions. Single-nucleus RNA-sequencing (snRNA-seq) is emerging as a promising solution to scRNA-seq due to its reduced ionized transcription bias and compatibility with richer samples. This approach will provide an exciting opportunity for in-depth exploration of billions of formalin-fixed paraffin-embedded (FFPE) tissues. Recent advancements in single-cell/nucleus gene expression workflows tailored for FFPE tissues have demonstrated their feasibility and provided crucial guidance for future studies utilizing FFPE specimens. In this review, we provide a broad overview of the nuclear preparation strategies, the latest technologies of snRNA-seq applicable to FFPE samples. Finally, the limitations and potential technical developments of snRNA-seq in FFPE samples are summarized. The development of snRNA-seq technologies for FFPE samples will lay a foundation for transcriptomic studies of valuable samples in clinical medicine and human sample banks.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiangwei Zhao
- State Key Laboratory of Digital Medical Engineering, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China; (Y.G.); (W.W.); (K.Y.); (L.H.); (Q.G.); (Y.H.)
| |
Collapse
|
11
|
Wang K, Kumar T, Wang J, Minussi DC, Sei E, Li J, Tran TM, Thennavan A, Hu M, Casasent AK, Xiao Z, Bai S, Yang L, King LM, Shah V, Kristel P, van der Borden CL, Marks JR, Zhao Y, Zurita AJ, Aparicio A, Chapin B, Ye J, Zhang J, Gibbons DL, Sawyer E, Thompson AM, Futreal A, Hwang ES, Wesseling J, Lips EH, Navin NE. Archival single-cell genomics reveals persistent subclones during DCIS progression. Cell 2023; 186:3968-3982.e15. [PMID: 37586362 DOI: 10.1016/j.cell.2023.07.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 05/09/2023] [Accepted: 07/17/2023] [Indexed: 08/18/2023]
Abstract
Ductal carcinoma in situ (DCIS) is a common precursor of invasive breast cancer. Our understanding of its genomic progression to recurrent disease remains poor, partly due to challenges associated with the genomic profiling of formalin-fixed paraffin-embedded (FFPE) materials. Here, we developed Arc-well, a high-throughput single-cell DNA-sequencing method that is compatible with FFPE materials. We validated our method by profiling 40,330 single cells from cell lines, a frozen tissue, and 27 FFPE samples from breast, lung, and prostate tumors stored for 3-31 years. Analysis of 10 patients with matched DCIS and cancers that recurred 2-16 years later show that many primary DCIS had already undergone whole-genome doubling and clonal diversification and that they shared genomic lineages with persistent subclones in the recurrences. Evolutionary analysis suggests that most DCIS cases in our cohort underwent an evolutionary bottleneck, and further identified chromosome aberrations in the persistent subclones that were associated with recurrence.
Collapse
Affiliation(s)
- Kaile Wang
- Department of Systems Biology, UT MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Genetics, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Tapsi Kumar
- Department of Systems Biology, UT MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Genetics, UT MD Anderson Cancer Center, Houston, TX 77030, USA; MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA; Department of Genomic Medicine, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Junke Wang
- Department of Systems Biology, UT MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Genetics, UT MD Anderson Cancer Center, Houston, TX 77030, USA; MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Darlan Conterno Minussi
- Department of Systems Biology, UT MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Genetics, UT MD Anderson Cancer Center, Houston, TX 77030, USA; MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Emi Sei
- Department of Systems Biology, UT MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Genetics, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jianzhuo Li
- Department of Systems Biology, UT MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Genetics, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Tuan M Tran
- Department of Systems Biology, UT MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Genetics, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Aatish Thennavan
- Department of Systems Biology, UT MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Genetics, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Min Hu
- Department of Systems Biology, UT MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Genetics, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Anna K Casasent
- Department of Systems Biology, UT MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Genetics, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zhenna Xiao
- Department of Systems Biology, UT MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Genetics, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shanshan Bai
- Department of Systems Biology, UT MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Genetics, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lei Yang
- Department of Systems Biology, UT MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Genetics, UT MD Anderson Cancer Center, Houston, TX 77030, USA; MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Lorraine M King
- Department of Surgery, Duke University School of Medicine, Durham, NC 27707, USA
| | - Vandna Shah
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, Guy's Cancer Centre, King's College London, London WC2R 2LS, UK
| | - Petra Kristel
- Division of Molecular Pathology, the Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Carolien L van der Borden
- Division of Molecular Pathology, the Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Jeffrey R Marks
- Department of Surgery, Duke University School of Medicine, Durham, NC 27707, USA
| | - Yuehui Zhao
- Department of Systems Biology, UT MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Genetics, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Amado J Zurita
- Department of Genitourinary Medical Oncology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Ana Aparicio
- Department of Genitourinary Medical Oncology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Brian Chapin
- Department of Urology, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jie Ye
- Department of Systems Biology, UT MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Genetics, UT MD Anderson Cancer Center, Houston, TX 77030, USA; MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA; Department of Thoracic/Head and Neck Medical Oncology, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jianjun Zhang
- Department of Genomic Medicine, UT MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Thoracic/Head and Neck Medical Oncology, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Don L Gibbons
- Department of Thoracic/Head and Neck Medical Oncology, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ellinor Sawyer
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, Guy's Cancer Centre, King's College London, London WC2R 2LS, UK
| | - Alastair M Thompson
- Department of Surgery, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Andrew Futreal
- Department of Genomic Medicine, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - E Shelley Hwang
- Department of Surgery, Duke University School of Medicine, Durham, NC 27707, USA
| | - Jelle Wesseling
- Department of Pathology, the Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam 1066 CX, the Netherlands; Department of Pathology, Leiden University Medical Center, Leiden 2333 ZC, the Netherlands
| | - Esther H Lips
- Department of Pathology, the Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam 1066 CX, the Netherlands; Department of Pathology, Leiden University Medical Center, Leiden 2333 ZC, the Netherlands
| | - Nicholas E Navin
- Department of Systems Biology, UT MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Genetics, UT MD Anderson Cancer Center, Houston, TX 77030, USA; MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA; Department of Bioinformatics, UT MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
12
|
Martino F, Lupi M, Giraudo E, Lanzetti L. Breast cancers as ecosystems: a metabolic perspective. Cell Mol Life Sci 2023; 80:244. [PMID: 37561190 PMCID: PMC10415483 DOI: 10.1007/s00018-023-04902-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/18/2023] [Accepted: 07/28/2023] [Indexed: 08/11/2023]
Abstract
Breast cancer (BC) is the most frequently diagnosed cancer and one of the major causes of cancer death. Despite enormous progress in its management, both from the therapeutic and early diagnosis viewpoints, still around 700,000 patients succumb to the disease each year, worldwide. Late recurrency is the major problem in BC, with many patients developing distant metastases several years after the successful eradication of the primary tumor. This is linked to the phenomenon of metastatic dormancy, a still mysterious trait of the natural history of BC, and of several other types of cancer, by which metastatic cells remain dormant for long periods of time before becoming reactivated to initiate the clinical metastatic disease. In recent years, it has become clear that cancers are best understood if studied as ecosystems in which the impact of non-cancer-cell-autonomous events-dependent on complex interaction between the cancer and its environment, both local and systemic-plays a paramount role, probably as significant as the cell-autonomous alterations occurring in the cancer cell. In adopting this perspective, a metabolic vision of the cancer ecosystem is bound to improve our understanding of the natural history of cancer, across space and time. In BC, many metabolic pathways are coopted into the cancer ecosystem, to serve the anabolic and energy demands of the cancer. Their study is shedding new light on the most critical aspect of BC management, of metastatic dissemination, and that of the related phenomenon of dormancy and fostering the application of the knowledge to the development of metabolic therapies.
Collapse
Affiliation(s)
- Flavia Martino
- Department of Oncology, University of Torino Medical School, Turin, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
| | - Mariadomenica Lupi
- Department of Oncology, University of Torino Medical School, Turin, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
| | - Enrico Giraudo
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
- Department of Science and Drug Technology, University of Torino, Turin, Italy
| | - Letizia Lanzetti
- Department of Oncology, University of Torino Medical School, Turin, Italy.
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy.
| |
Collapse
|
13
|
Thakur S, Haider S, Natrajan R. Implications of tumour heterogeneity on cancer evolution and therapy resistance: lessons from breast cancer. J Pathol 2023; 260:621-636. [PMID: 37587096 DOI: 10.1002/path.6158] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/11/2023] [Accepted: 06/14/2023] [Indexed: 08/18/2023]
Abstract
Tumour heterogeneity is pervasive amongst many cancers and leads to disease progression, and therapy resistance. In this review, using breast cancer as an exemplar, we focus on the recent advances in understanding the interplay between tumour cells and their microenvironment using single cell sequencing and digital spatial profiling technologies. Further, we discuss the utility of lineage tracing methodologies in pre-clinical models of breast cancer, and how these are being used to unravel new therapeutic vulnerabilities and reveal biomarkers of breast cancer progression. © 2023 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Shefali Thakur
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Syed Haider
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Rachael Natrajan
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| |
Collapse
|
14
|
Grody EI, Abraham A, Shukla V, Goyal Y. Toward a systems-level probing of tumor clonality. iScience 2023; 26:106574. [PMID: 37192968 PMCID: PMC10182304 DOI: 10.1016/j.isci.2023.106574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023] Open
Abstract
Cancer has been described as a genetic disease that clonally evolves in the face of selective pressures imposed by cell-intrinsic and extrinsic factors. Although classical models based on genetic data predominantly propose Darwinian mechanisms of cancer evolution, recent single-cell profiling of cancers has described unprecedented heterogeneity in tumors providing support for alternative models of branched and neutral evolution through both genetic and non-genetic mechanisms. Emerging evidence points to a complex interplay between genetic, non-genetic, and extrinsic environmental factors in shaping the evolution of tumors. In this perspective, we briefly discuss the role of cell-intrinsic and extrinsic factors that shape clonal behaviors during tumor progression, metastasis, and drug resistance. Taking examples of pre-malignant states associated with hematological malignancies and esophageal cancer, we discuss recent paradigms of tumor evolution and prospective approaches to further enhance our understanding of this spatiotemporally regulated process.
Collapse
Affiliation(s)
- Emanuelle I. Grody
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Center for Synthetic Biology, Northwestern University, Chicago, IL 60208, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Ajay Abraham
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Center for Human Immunobiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Vipul Shukla
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Center for Human Immunobiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Yogesh Goyal
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Center for Synthetic Biology, Northwestern University, Chicago, IL 60208, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
15
|
Hutten SJ, de Bruijn R, Lutz C, Badoux M, Eijkman T, Chao X, Ciwinska M, Sheinman M, Messal H, Herencia-Ropero A, Kristel P, Mulder L, van der Waal R, Sanders J, Almekinders MM, Llop-Guevara A, Davies HR, van Haren MJ, Martin NI, Behbod F, Nik-Zainal S, Serra V, van Rheenen J, Lips EH, Wessels LFA, Wesseling J, Scheele CLGJ, Jonkers J. A living biobank of patient-derived ductal carcinoma in situ mouse-intraductal xenografts identifies risk factors for invasive progression. Cancer Cell 2023; 41:986-1002.e9. [PMID: 37116492 PMCID: PMC10171335 DOI: 10.1016/j.ccell.2023.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 02/21/2023] [Accepted: 04/04/2023] [Indexed: 04/30/2023]
Abstract
Ductal carcinoma in situ (DCIS) is a non-obligate precursor of invasive breast cancer (IBC). Due to a lack of biomarkers able to distinguish high- from low-risk cases, DCIS is treated similar to early IBC even though the minority of untreated cases eventually become invasive. Here, we characterized 115 patient-derived mouse-intraductal (MIND) DCIS models reflecting the full spectrum of DCIS observed in patients. Utilizing the possibility to follow the natural progression of DCIS combined with omics and imaging data, we reveal multiple prognostic factors for high-risk DCIS including high grade, HER2 amplification, expansive 3D growth, and high burden of copy number aberrations. In addition, sequential transplantation of xenografts showed minimal phenotypic and genotypic changes over time, indicating that invasive behavior is an intrinsic phenotype of DCIS and supporting a multiclonal evolution model. Moreover, this study provides a collection of 19 distributable DCIS-MIND models spanning all molecular subtypes.
Collapse
Affiliation(s)
- Stefan J Hutten
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands; Oncode Institute, Amsterdam, the Netherlands
| | - Roebi de Bruijn
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands; Oncode Institute, Amsterdam, the Netherlands; Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Catrin Lutz
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands; Oncode Institute, Amsterdam, the Netherlands
| | - Madelon Badoux
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands; Oncode Institute, Amsterdam, the Netherlands
| | - Timo Eijkman
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands; Oncode Institute, Amsterdam, the Netherlands
| | - Xue Chao
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands; Oncode Institute, Amsterdam, the Netherlands
| | - Marta Ciwinska
- Center for Cancer Biology, VIB, Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Michael Sheinman
- Oncode Institute, Amsterdam, the Netherlands; Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Hendrik Messal
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands; Oncode Institute, Amsterdam, the Netherlands
| | - Andrea Herencia-Ropero
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, 08035 Barcelona, Spain; Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona, Barcelona, Spain
| | - Petra Kristel
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Lennart Mulder
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Rens van der Waal
- Core Facility Molecular Pathology & Biobanking, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Joyce Sanders
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Mathilde M Almekinders
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Alba Llop-Guevara
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, 08035 Barcelona, Spain
| | - Helen R Davies
- Academic Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, CB2 0QQ Cambridge, UK; Early Cancer Institute, University of Cambridge, CB2 0XZ Cambridge, UK
| | - Matthijs J van Haren
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, 2302 BH Leiden, the Netherlands
| | - Nathaniel I Martin
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, 2302 BH Leiden, the Netherlands
| | - Fariba Behbod
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS 66103, USA
| | - Serena Nik-Zainal
- Academic Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, CB2 0QQ Cambridge, UK; Early Cancer Institute, University of Cambridge, CB2 0XZ Cambridge, UK
| | - Violeta Serra
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, 08035 Barcelona, Spain
| | - Jacco van Rheenen
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands; Oncode Institute, Amsterdam, the Netherlands
| | - Esther H Lips
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Lodewyk F A Wessels
- Oncode Institute, Amsterdam, the Netherlands; Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Jelle Wesseling
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands; Division of Diagnostic Oncology, Netherlands Cancer Institute - Antonie van Leeuwenhoek Hospital, 1066 CX Amsterdam, the Netherlands; Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Colinda L G J Scheele
- Center for Cancer Biology, VIB, Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Jos Jonkers
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands; Oncode Institute, Amsterdam, the Netherlands.
| |
Collapse
|
16
|
Walentynowicz KA, Engelhardt D, Cristea S, Yadav S, Onubogu U, Salatino R, Maerken M, Vincentelli C, Jhaveri A, Geisberg J, McDonald TO, Michor F, Janiszewska M. Single-cell heterogeneity of EGFR and CDK4 co-amplification is linked to immune infiltration in glioblastoma. Cell Rep 2023; 42:112235. [PMID: 36920905 PMCID: PMC10114292 DOI: 10.1016/j.celrep.2023.112235] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/20/2022] [Accepted: 02/23/2023] [Indexed: 03/15/2023] Open
Abstract
Glioblastoma (GBM) is the most aggressive brain tumor, with a median survival of ∼15 months. Targeted approaches have not been successful in this tumor type due to the large extent of intratumor heterogeneity. Mosaic amplification of oncogenes suggests that multiple genetically distinct clones are present in each tumor. To uncover the relationships between genetically diverse subpopulations of GBM cells and their native tumor microenvironment, we employ highly multiplexed spatial protein profiling coupled with single-cell spatial mapping of fluorescence in situ hybridization (FISH) for EGFR, CDK4, and PDGFRA. Single-cell FISH analysis of a total of 35,843 single nuclei reveals that tumors in which amplifications of EGFR and CDK4 more frequently co-occur in the same cell exhibit higher infiltration of CD163+ immunosuppressive macrophages. Our results suggest that high-throughput assessment of genomic alterations at the single-cell level could provide a measure for predicting the immune state of GBM.
Collapse
Affiliation(s)
- Kacper A Walentynowicz
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technologies, Jupiter, FL, USA; Department of Molecular Medicine, Scripps Research, Jupiter, FL, USA
| | - Dalit Engelhardt
- Center for Cancer Evolution, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Simona Cristea
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA; Department of Medical Oncology, Harvard Medical School, Boston, MA, USA
| | - Shreya Yadav
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technologies, Jupiter, FL, USA; Department of Molecular Medicine, Scripps Research, Jupiter, FL, USA
| | - Ugoma Onubogu
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technologies, Jupiter, FL, USA; Department of Molecular Medicine, Scripps Research, Jupiter, FL, USA; The Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, La Jolla, CA, USA
| | - Roberto Salatino
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technologies, Jupiter, FL, USA; Department of Molecular Medicine, Scripps Research, Jupiter, FL, USA; The Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, La Jolla, CA, USA
| | - Melanie Maerken
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technologies, Jupiter, FL, USA; Department of Molecular Medicine, Scripps Research, Jupiter, FL, USA
| | | | - Aashna Jhaveri
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jacob Geisberg
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Thomas O McDonald
- Center for Cancer Evolution, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Franziska Michor
- Center for Cancer Evolution, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA; The Broad Institute of MIT and Harvard, Cambridge, MA, USA; The Ludwig Center at Harvard, Boston, MA, USA.
| | - Michalina Janiszewska
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technologies, Jupiter, FL, USA; Department of Molecular Medicine, Scripps Research, Jupiter, FL, USA; The Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
17
|
Villaruz LC, Socinski MA, Weiss J. Guidance for clinicians and patients with non-small cell lung cancer in the time of precision medicine. Front Oncol 2023; 13:1124167. [PMID: 37077826 PMCID: PMC10107372 DOI: 10.3389/fonc.2023.1124167] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/17/2023] [Indexed: 02/04/2023] Open
Abstract
Major advances in the diagnosis and treatment of non-small cell lung cancer (NSCLC) have resulted in a sharp decline in associated mortality rates, thereby propelling NSCLC to the forefront of precision medicine. Current guidelines recommend upfront comprehensive molecular testing for all known and actionable driver alterations/biomarkers (EGFR, ALK, ROS1, BRAF, KRAS, NTRK, MET, RET, HER2 [ERBB2], and PD-L1), especially in advanced disease stages, as they significantly influence response to therapy. In particular, hybrid capture-based next-generation sequencing (HC-NGS) with an RNA fusion panel to detect gene fusions is a veritable requirement at both diagnosis and progression (resistance) of any-stage non-squamous adenocarcinoma NSCLCs. This testing modality ensures selection of the most timely, appropriate, and personalized treatment, maximization of therapeutic efficacy, and prevention of use of suboptimal/contraindicated therapy. As a complement to clinical testing and treatment, patient, family, and caregiver education is also key to early screening and diagnosis, access to care, coping strategies, positive outcomes, and survival. The advent of social media and increased internet access has amplified the volume of educational and support resources, consequently changing the dynamics of patient care. This review provides guidance on integration of comprehensive genomic testing with an RNA fusion panel as a global diagnostic standard for all adenocarcinoma NSCLC disease stages and provides key information on patient and caregiver education and resources.
Collapse
Affiliation(s)
- Liza C. Villaruz
- Hillman Cancer Center, Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | | | - Jared Weiss
- Division of Oncology, Lineberger Comprehensive Cancer at the University of North Carolina, Chapel Hill, NC, United States
| |
Collapse
|
18
|
Lake KE, Colonetta MM, Smith CA, Martinez-Algarin K, Saunders K, Mohta S, Pena J, McArthur HL, Reddy SM, Roussos-Torres ET, Chen EH, Chan IS. Organoid generation from mouse mammary tumors captures the genetic heterogeneity of clinically relevant copy number alterations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.29.526141. [PMID: 36778256 PMCID: PMC9915482 DOI: 10.1101/2023.01.29.526141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Breast cancer metastases exhibit many different genetic alterations, including copy number amplifications. Using publicly available datasets, we identify copy number amplifications in metastatic breast tumor samples and using our organoid-based metastasis assays, and we validate FGFR1 is amplified in collectively migrating organoids. Because the heterogeneity of breast tumors is increasingly becoming relevant to clinical practice, we demonstrate our organoid method captures genetic heterogeneity of individual tumors.
Collapse
|
19
|
Mohamed HT, Kamel G, El-Husseiny N, El-Sharkawy AA, El-Sherif AA, El-Shinawi M, Mohamed MM. Synchrotron Fourier-Transform Infrared Microspectroscopy: Characterization of in vitro polarized tumor-associated macrophages stimulated by the secretome of inflammatory and non-inflammatory breast cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119367. [PMID: 36202317 DOI: 10.1016/j.bbamcr.2022.119367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/13/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022]
Abstract
Studies suggested that the pathogenesis of inflammatory breast cancer (IBC) is related to inflammatory manifestations accompanied by specific cellular and molecular mechanisms in the IBC tumor microenvironment (TME). IBC is characterized by significantly higher infiltration of tumor-associated macrophages (TAMs) that contribute to its metastatic process via secreting many cytokines such as TNF, IL-6, IL-8, and IL-10 that enhance invasion and angiogenesis. Thus, there is a need to first understand how IBC-TME modulates the polarization of TAMs to better understand the role of TAMs in IBC. Herein, we used gene expression signature and Synchrotron Fourier-Transform Infrared Microspectroscopy (SR-μFTIR) to study the molecular and biochemical changes, respectively of in vitro polarized TAMs stimulated by the secretome of IBC and non-IBC cells. The gene expression signature showed significant differences in the macrophage's polarization-related genes between stimulated TAMs. FTIR spectra showed absorption bands in the region of 1700-1500 cm-1 attributed to the amide I ν(C=O), & νAS (CN), δ (NH), and amide II ν(CN), δ (NH) proteins bands. Moreover, three peaks of different intensities and areas were detected in the lipid region of the νCH2 and νCH3 stretching modes positioned within the 3000-2800 cm-1 range. The PCA analysis for the second derivative spectra of the amide regions discriminates between stimulated IBC and non-IBC TAMs. This study showed that IBC and non-IBC TMEs differentially modulate the polarization of TAMs and SR-μFTIR can determine these biochemical changes which will help to better understand the potential role of TAMs in IBC.
Collapse
Affiliation(s)
- Hossam Taha Mohamed
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt; Faculty of Biotechnology, October University for Modern Sciences and Arts, Giza 12451, Egypt.
| | - Gihan Kamel
- Synchrotron-light for Experimental Science and Applications in the Middle East (SESAME), Allan, Jordan; Department of Physics, Faculty of Science, Helwan University, Cairo 11795, Egypt
| | - Noura El-Husseiny
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | | | - Ahmed A El-Sherif
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Mohamed El-Shinawi
- Department of General Surgery, Faculty of Medicine, Ain Shams University, Cairo, 11566, Egypt; Faculty of Medicine, Galala University, Suez 43511, Egypt
| | - Mona Mostafa Mohamed
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt; Faculty of Science, Galala University, Suez 43511, Egypt
| |
Collapse
|
20
|
Udayasiri RI, Luo T, Gorringe KL, Fox SB. Identifying recurrences and metastasis after ductal carcinoma in situ (DCIS) of the breast. Histopathology 2023; 82:106-118. [PMID: 36482277 PMCID: PMC10953414 DOI: 10.1111/his.14804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/06/2022] [Accepted: 09/11/2022] [Indexed: 12/13/2022]
Abstract
Ductal carcinoma in situ (DCIS) of the breast is a non-invasive tumour that has the potential to progress to invasive ductal carcinoma (IDC). Thus, it represents a treatment dilemma: alone it does not present a risk to life, however, left untreated it may progress to a life-threatening condition. Current clinico-pathological features cannot accurately predict which patients with DCIS have invasive potential, and therefore clinicians are unable to quantify the risk of progression for an individual patient. This leads to many women being over-treated, while others may not receive sufficient treatment to prevent invasive recurrence. A better understanding of the molecular features of DCIS, both tumour-intrinsic and the microenvironment, could offer the ability to better predict which women need aggressive treatment, and which can avoid therapies carrying significant side-effects and such as radiotherapy. In this review, we summarise the current knowledge of DCIS, and consider future research directions.
Collapse
Affiliation(s)
- Ruwangi I Udayasiri
- Peter MacCallum Cancer Centre and the Sir Peter MacCallum Department of OncologyThe University of MelbourneMelbourneVICAustralia
| | - Tongtong Luo
- Peter MacCallum Cancer Centre and the Sir Peter MacCallum Department of OncologyThe University of MelbourneMelbourneVICAustralia
| | - Kylie L Gorringe
- Peter MacCallum Cancer Centre and the Sir Peter MacCallum Department of OncologyThe University of MelbourneMelbourneVICAustralia
| | - Stephen B Fox
- Peter MacCallum Cancer Centre and the Sir Peter MacCallum Department of OncologyThe University of MelbourneMelbourneVICAustralia
| |
Collapse
|
21
|
Casasent AK, Almekinders MM, Mulder C, Bhattacharjee P, Collyar D, Thompson AM, Jonkers J, Lips EH, van Rheenen J, Hwang ES, Nik-Zainal S, Navin NE, Wesseling J. Learning to distinguish progressive and non-progressive ductal carcinoma in situ. Nat Rev Cancer 2022; 22:663-678. [PMID: 36261705 DOI: 10.1038/s41568-022-00512-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/07/2022] [Indexed: 02/07/2023]
Abstract
Ductal carcinoma in situ (DCIS) is a non-invasive breast neoplasia that accounts for 25% of all screen-detected breast cancers diagnosed annually. Neoplastic cells in DCIS are confined to the ductal system of the breast, although they can escape and progress to invasive breast cancer in a subset of patients. A key concern of DCIS is overtreatment, as most patients screened for DCIS and in whom DCIS is diagnosed will not go on to exhibit symptoms or die of breast cancer, even if left untreated. However, differentiating low-risk, indolent DCIS from potentially progressive DCIS remains challenging. In this Review, we summarize our current knowledge of DCIS and explore open questions about the basic biology of DCIS, including those regarding how genomic events in neoplastic cells and the surrounding microenvironment contribute to the progression of DCIS to invasive breast cancer. Further, we discuss what information will be needed to prevent overtreatment of indolent DCIS lesions without compromising adequate treatment for high-risk patients.
Collapse
Affiliation(s)
- Anna K Casasent
- Department of Genetics, MD Anderson Cancer Center, Houston, TX, USA
| | | | - Charlotta Mulder
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | | | | | | | - Jos Jonkers
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Esther H Lips
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Jacco van Rheenen
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | | | - Serena Nik-Zainal
- Department of Medical Genetics, University of Cambridge, Cambridge, UK
| | - Nicholas E Navin
- Department of Genetics, MD Anderson Cancer Center, Houston, TX, USA
- Department of Bioinformatics, MD Anderson Cancer Center, Houston, TX, USA
| | - Jelle Wesseling
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, Netherlands.
- Department of Pathology, Leiden University Medical Center, Leiden, Netherlands.
| |
Collapse
|
22
|
Kaufmann TL, Petkovic M, Watkins TBK, Colliver EC, Laskina S, Thapa N, Minussi DC, Navin N, Swanton C, Van Loo P, Haase K, Tarabichi M, Schwarz RF. MEDICC2: whole-genome doubling aware copy-number phylogenies for cancer evolution. Genome Biol 2022; 23:241. [PMID: 36376909 PMCID: PMC9661799 DOI: 10.1186/s13059-022-02794-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
Aneuploidy, chromosomal instability, somatic copy-number alterations, and whole-genome doubling (WGD) play key roles in cancer evolution and provide information for the complex task of phylogenetic inference. We present MEDICC2, a method for inferring evolutionary trees and WGD using haplotype-specific somatic copy-number alterations from single-cell or bulk data. MEDICC2 eschews simplifications such as the infinite sites assumption, allowing multiple mutations and parallel evolution, and does not treat adjacent loci as independent, allowing overlapping copy-number events. Using simulations and multiple data types from 2780 tumors, we use MEDICC2 to demonstrate accurate inference of phylogenies, clonal and subclonal WGD, and ancestral copy-number states.
Collapse
Affiliation(s)
- Tom L Kaufmann
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, 13125, Berlin, Germany.
- Department of Electrical Engineering & Computer Science, Technische Universität Berlin, Marchstr. 23, 10587, Berlin, Germany.
- BIFOLD, Berlin Institute for the Foundations of Learning and Data, Berlin, Germany.
| | - Marina Petkovic
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, 13125, Berlin, Germany
- Department of Biology, Humboldt University of Berlin, Unter den Linden 6, 10099, Berlin, Germany
- Division of Oncology and Hematology, Department of Pediatrics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | | | | | - Sofya Laskina
- Department of Mathematics and Computer Science, Free University of Berlin, Berlin, Germany
| | - Nisha Thapa
- UCL Medical School, University College London, London, UK
| | - Darlan C Minussi
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nicholas Navin
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Charles Swanton
- The Francis Crick Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Department of Medical Oncology, University College London Hospitals, London, UK
| | - Peter Van Loo
- The Francis Crick Institute, London, UK
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kerstin Haase
- Division of Oncology and Hematology, Department of Pediatrics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Maxime Tarabichi
- The Francis Crick Institute, London, UK
- Institute for Interdisciplinary Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Roland F Schwarz
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, 13125, Berlin, Germany.
- BIFOLD, Berlin Institute for the Foundations of Learning and Data, Berlin, Germany.
- Institute for Computational Cancer Biology, Center for Integrated Oncology (CIO) and Cancer Research Center Cologne Essen (CCCE), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
| |
Collapse
|
23
|
Li PH, Kong XY, He YZ, Liu Y, Peng X, Li ZH, Xu H, Luo H, Park J. Recent developments in application of single-cell RNA sequencing in the tumour immune microenvironment and cancer therapy. Mil Med Res 2022; 9:52. [PMID: 36154923 PMCID: PMC9511789 DOI: 10.1186/s40779-022-00414-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 08/20/2022] [Indexed: 11/10/2022] Open
Abstract
The advent of single-cell RNA sequencing (scRNA-seq) has provided insight into the tumour immune microenvironment (TIME). This review focuses on the application of scRNA-seq in investigation of the TIME. Over time, scRNA-seq methods have evolved, and components of the TIME have been deciphered with high resolution. In this review, we first introduced the principle of scRNA-seq and compared different sequencing approaches. Novel cell types in the TIME, a continuous transitional state, and mutual intercommunication among TIME components present potential targets for prognosis prediction and treatment in cancer. Thus, we concluded novel cell clusters of cancer-associated fibroblasts (CAFs), T cells, tumour-associated macrophages (TAMs) and dendritic cells (DCs) discovered after the application of scRNA-seq in TIME. We also proposed the development of TAMs and exhausted T cells, as well as the possible targets to interrupt the process. In addition, the therapeutic interventions based on cellular interactions in TIME were also summarized. For decades, quantification of the TIME components has been adopted in clinical practice to predict patient survival and response to therapy and is expected to play an important role in the precise treatment of cancer. Summarizing the current findings, we believe that advances in technology and wide application of single-cell analysis can lead to the discovery of novel perspectives on cancer therapy, which can subsequently be implemented in the clinic. Finally, we propose some future directions in the field of TIME studies that can be aided by scRNA-seq technology.
Collapse
Affiliation(s)
- Pei-Heng Li
- Department of Thyroid and Parathyroid Surgery, Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Centre for Disease-Related Molecular Network, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610044, China
| | - Xiang-Yu Kong
- Department of Thyroid and Parathyroid Surgery, Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Centre for Disease-Related Molecular Network, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610044, China
| | - Ya-Zhou He
- Department of Oncology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610044, China
| | - Yi Liu
- Department of Rheumatology and Immunology, Rare Diseases Centre, West China Hospital, Sichuan University, Chengdu, 610044, China
| | - Xi Peng
- College of Computer Science, Sichuan University, Chengdu, 610065, China
| | - Zhi-Hui Li
- Department of Thyroid and Parathyroid Surgery, Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Centre for Disease-Related Molecular Network, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610044, China
| | - Heng Xu
- State Key Laboratory of Biotherapy and Cancer Centre, West China Hospital, Sichuan University and Collaborative Innovation Centre, Chengdu, 610044, China
| | - Han Luo
- Department of Thyroid and Parathyroid Surgery, Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Centre for Disease-Related Molecular Network, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610044, China.
| | - Jihwan Park
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea.
| |
Collapse
|
24
|
Feng X, Chen L. SCSilicon: a tool for synthetic single-cell DNA sequencing data generation. BMC Genomics 2022; 23:359. [PMID: 35546390 PMCID: PMC9092674 DOI: 10.1186/s12864-022-08566-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 11/25/2022] Open
Abstract
Background Single-cell DNA sequencing is getting indispensable in the study of cell-specific cancer genomics. The performance of computational tools that tackle single-cell genome aberrations may be nevertheless undervalued or overvalued, owing to the insufficient size of benchmarking data. In silicon simulation is a cost-effective approach to generate as many single-cell genomes as possible in a controlled manner to make reliable and valid benchmarking. Results This study proposes a new tool, SCSilicon, which efficiently generates single-cell in silicon DNA reads with minimum manual intervention. SCSilicon automatically creates a set of genomic aberrations, including SNP, SNV, Indel, and CNV. Besides, SCSilicon yields the ground truth of CNV segmentation breakpoints and subclone cell labels. We have manually inspected a series of synthetic variations. We conducted a sanity check of the start-of-the-art single-cell CNV callers and found SCYN was the most robust one. Conclusions SCSilicon is a user-friendly software package for users to develop and benchmark single-cell CNV callers. Source code of SCSilicon is available at https://github.com/xikanfeng2/SCSilicon. Supplementary Information The online version contains supplementary material available at (10.1186/s12864-022-08566-w).
Collapse
Affiliation(s)
- Xikang Feng
- School of Software, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China.
| | - Lingxi Chen
- Department of Computer Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| |
Collapse
|
25
|
Bowes A, Tarabichi M, Pillay N, Van Loo P. Leveraging single cell sequencing to unravel intra-tumour heterogeneity and tumour evolution in human cancers. J Pathol 2022; 257:466-478. [PMID: 35438189 PMCID: PMC9322001 DOI: 10.1002/path.5914] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 11/11/2022]
Abstract
Intra-tumour heterogeneity and tumour evolution are well-documented phenomena in human cancers. While the advent of next-generation sequencing technologies has facilitated the large-scale capture of genomic data, the field of single cell genomics is nascent but rapidly advancing and generating many new insights into the complex molecular mechanisms of tumour biology. In this review, we provide an overview of current single cell DNA sequencing technologies, exploring how recent methodological advancements have enumerated new insights into intra-tumour heterogeneity and tumour evolution. Areas highlighted include the potential power of single cell genome sequencing studies to explore evolutionary dynamics contributing to tumourigenesis through to progression, metastasis and therapy resistance. We also explore the use of in-situ sequencing technologies to study intra-tumour heterogeneity in a spatial context, as well as examining the use of single cell genomics to perform lineage tracing in both normal and malignant tissues. Finally, we consider the use of multi-modal single cell sequencing technologies. Taken together, it is hoped that these many facets of single cell genome sequencing will improve our understanding of tumourigenesis, progression and lethality in cancer leading to the development of novel therapies. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Amy Bowes
- Cancer Genomics Group, The Francis Crick Institute, London, UK.,Sarcoma Biology and Genomics Group, UCL Cancer Institute, London, UK
| | - Maxime Tarabichi
- Cancer Genomics Group, The Francis Crick Institute, London, UK.,Institute for Interdisciplinary Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Nischalan Pillay
- Sarcoma Biology and Genomics Group, UCL Cancer Institute, London, UK.,Department of Histopathology, The Royal National Orthopaedic Hospital NHS Trust, London, UK
| | - Peter Van Loo
- Cancer Genomics Group, The Francis Crick Institute, London, UK.,Department of Genetics, The University of Texas MD Anderson Cancer Centre, Houston, USA.,Department of Genomic Medicine, The University of Texas MD Anderson Cancer Centre, Houston, USA
| |
Collapse
|
26
|
Wang X, Liu Y, Liu H, Pan W, Ren J, Zheng X, Tan Y, Chen Z, Deng Y, He N, Chen H, Li S. Recent advances and application of whole genome amplification in molecular diagnosis and medicine. MedComm (Beijing) 2022; 3:e116. [PMID: 35281794 PMCID: PMC8906466 DOI: 10.1002/mco2.116] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 11/30/2022] Open
Abstract
Whole genome amplification (WGA) is a technology for non-selective amplification of the whole genome sequence, first appearing in 1992. Its primary purpose is to amplify and reflect the whole genome of trace tissues and single cells without sequence bias and to provide sufficient DNA template for subsequent multigene and multilocus analysis, along with comprehensive genome research. WGA provides a method to obtain a large amount of genetic information from a small amount of DNA and provides a valuable tool for preserving limited samples in molecular biology. WGA technology is especially suitable for forensic identification and genetic disease research, along with new technologies such as next-generation sequencing (NGS). In addition, WGA is also widely used in single-cell sequencing. Due to the small amount of DNA in a single cell, it is often unable to meet the amount of samples needed for sequencing, so WGA is generally used to achieve the amplification of trace samples. This paper reviews WGA methods based on different principles, summarizes both amplification principle and amplification quality, and discusses the application prospects and challenges of WGA technology in molecular diagnosis and medicine.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Hunan Key Laboratory of Biomedical Nanomaterials and DevicesHunan University of TechnologyZhuzhouChina
| | - Yapeng Liu
- School of Early‐Childhood Education, Nanjing Xiaozhuang UniversityNanjingChina
| | - Hongna Liu
- Hunan Key Laboratory of Biomedical Nanomaterials and DevicesHunan University of TechnologyZhuzhouChina
| | - Wenjing Pan
- Hunan Key Laboratory of Biomedical Nanomaterials and DevicesHunan University of TechnologyZhuzhouChina
| | - Jie Ren
- Hunan Key Laboratory of Biomedical Nanomaterials and DevicesHunan University of TechnologyZhuzhouChina
| | - Xiangming Zheng
- Hunan Key Laboratory of Biomedical Nanomaterials and DevicesHunan University of TechnologyZhuzhouChina
| | - Yimin Tan
- Hunan Key Laboratory of Biomedical Nanomaterials and DevicesHunan University of TechnologyZhuzhouChina
| | - Zhu Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and DevicesHunan University of TechnologyZhuzhouChina
| | - Yan Deng
- Hunan Key Laboratory of Biomedical Nanomaterials and DevicesHunan University of TechnologyZhuzhouChina
| | - Nongyue He
- Hunan Key Laboratory of Biomedical Nanomaterials and DevicesHunan University of TechnologyZhuzhouChina
- State Key Laboratory of BioelectronicsSoutheast UniversityNanjingChina
| | - Hui Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and DevicesHunan University of TechnologyZhuzhouChina
| | - Song Li
- Hunan Key Laboratory of Biomedical Nanomaterials and DevicesHunan University of TechnologyZhuzhouChina
| |
Collapse
|
27
|
Abstract
Bladder cancer is the most common malignant tumour of the urinary system that is characterised by significant intra-tumoural heterogeneity. While large-scale sequencing projects have provided a preliminary understanding of tumour heterogeneity, these findings are based on the average signals obtained from the pooled populations of diverse cells. Recent advances in single-cell sequencing (SCS) technologies have been critical in this regard, opening up new ways of understanding the nuanced tumour biology by identifying distinct cellular subpopulations, dissecting the tumour microenvironment, and characterizing cellular genomic mutations. By integrating these novel insights, SCS technologies are expected to make powerful and meaningful changes to the current diagnosis and treatment of bladder cancer through the identification and usage of novel biomarkers as well as targeted therapeutics. SCS can discriminate complex heterogeneity in a large population of tumour cells and determine the key molecular properties that influence clinical outcomes. Here, we review the advances in single-cell technologies and discuss their applications in cancer research and clinical practice, with a specific focus on bladder cancer.
Collapse
|
28
|
Abstract
Triple-negative breast cancer (TNBC) encompasses a heterogeneous group of fundamentally different diseases with different histologic, genomic, and immunologic profiles, which are aggregated under this term because of their lack of estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 expression. Massively parallel sequencing and other omics technologies have demonstrated the level of heterogeneity in TNBCs and shed light into the pathogenesis of this therapeutically challenging entity in breast cancer. In this review, we discuss the histologic and molecular classifications of TNBC, the genomic alterations these different tumor types harbor, and the potential impact of these alterations on the pathogenesis of these tumors. We also explore the role of the tumor microenvironment in the biology of TNBCs and its potential impact on therapeutic response. Dissecting the biology and understanding the therapeutic dependencies of each TNBC subtype will be essential to delivering on the promise of precision medicine for patients with triple-negative disease.
Collapse
Affiliation(s)
- Fatemeh Derakhshan
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA;
| | - Jorge S Reis-Filho
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA;
| |
Collapse
|
29
|
Shi Q, Shao K, Jia H, Cao B, Li W, Dong S, Liu J, Wu K, Liu M, Liu F, Zhou H, Lv J, Gu F, Li L, Zhu S, Li S, Li G, Fu L. Genomic alterations and evolution of cell clusters in metastatic invasive micropapillary carcinoma of the breast. Nat Commun 2022; 13:111. [PMID: 35013309 PMCID: PMC8748639 DOI: 10.1038/s41467-021-27794-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 10/25/2021] [Indexed: 11/09/2022] Open
Abstract
Invasive micropapillary carcinoma (IMPC) has very high rates of lymphovascular invasion and lymph node metastasis and has been reported in several organs. However, the genomic mechanisms underlying its metastasis are unclear. Here, we perform whole-genome sequencing of tumor cell clusters from primary IMPC and paired axillary lymph node metastases. Cell clusters in multiple lymph node foci arise from a single subclone of the primary tumor. We find evidence that the monoclonal metastatic ancestor in primary IMPC shares high frequency copy-number loss of PRDM16 and IGSF9 and the copy number gain of ALDH2. Immunohistochemistry analysis further shows that low expression of IGSF9 and PRDM16 and high expression of ALDH2 are associated with lymph node metastasis and poor survival of patients with IMPC. We expect these genomic and evolutionary profiles to contribute to the accurate diagnosis of IMPC.
Collapse
Affiliation(s)
- Qianqian Shi
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, 300060, Tianjin, China
| | - Kang Shao
- BGI-Shenzhen, 518120, Shenzhen, China.,BGl College & Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, 450000, Zhengzhou, China
| | - Hongqin Jia
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, 300060, Tianjin, China.,National Clinical Research Center for Cancer, 300060, Tianjin, China
| | - Boyang Cao
- BGI-Shenzhen, 518120, Shenzhen, China.,BGl College & Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, 450000, Zhengzhou, China
| | - Weidong Li
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, 300060, Tianjin, China.,National Clinical Research Center for Cancer, 300060, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, 300060, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, 300060, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, 300060, Tianjin, China
| | - Shichen Dong
- BGI-Shenzhen, 518120, Shenzhen, China.,BGl College & Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, 450000, Zhengzhou, China
| | - Jian Liu
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, 300060, Tianjin, China.,National Clinical Research Center for Cancer, 300060, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, 300060, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, 300060, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, 300060, Tianjin, China
| | - Kailiang Wu
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, 300060, Tianjin, China.,National Clinical Research Center for Cancer, 300060, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, 300060, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, 300060, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, 300060, Tianjin, China
| | - Meng Liu
- BGI-Shenzhen, 518120, Shenzhen, China.,BGl College & Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, 450000, Zhengzhou, China
| | - Fangfang Liu
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, 300060, Tianjin, China.,National Clinical Research Center for Cancer, 300060, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, 300060, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, 300060, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, 300060, Tianjin, China
| | - Hanlin Zhou
- BGI-Shenzhen, 518120, Shenzhen, China.,BGl College & Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, 450000, Zhengzhou, China
| | - Jianke Lv
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, 300060, Tianjin, China.,National Clinical Research Center for Cancer, 300060, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, 300060, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, 300060, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, 300060, Tianjin, China
| | - Feng Gu
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, 300060, Tianjin, China.,National Clinical Research Center for Cancer, 300060, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, 300060, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, 300060, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, 300060, Tianjin, China
| | - Luyuan Li
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, 300071, Tianjin, China
| | - Shida Zhu
- BGI-Shenzhen, 518120, Shenzhen, China.,BGl College & Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, 450000, Zhengzhou, China
| | - Shuai Li
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, 300060, Tianjin, China. .,National Clinical Research Center for Cancer, 300060, Tianjin, China. .,Key Laboratory of Cancer Prevention and Therapy, 300060, Tianjin, China. .,Tianjin's Clinical Research Center for Cancer, 300060, Tianjin, China. .,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, 300060, Tianjin, China.
| | - Guibo Li
- BGI-Shenzhen, 518120, Shenzhen, China. .,BGl College & Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, 450000, Zhengzhou, China. .,Shenzhen Key Laboratory of Single-Cell Omics, 518120, Shenzhen, China.
| | - Li Fu
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, 300060, Tianjin, China. .,National Clinical Research Center for Cancer, 300060, Tianjin, China. .,Key Laboratory of Cancer Prevention and Therapy, 300060, Tianjin, China. .,Tianjin's Clinical Research Center for Cancer, 300060, Tianjin, China. .,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, 300060, Tianjin, China.
| |
Collapse
|
30
|
Mavrommati I, Johnson F, Echeverria GV, Natrajan R. Subclonal heterogeneity and evolution in breast cancer. NPJ Breast Cancer 2021; 7:155. [PMID: 34934048 PMCID: PMC8692469 DOI: 10.1038/s41523-021-00363-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 11/26/2021] [Indexed: 12/11/2022] Open
Abstract
Subclonal heterogeneity and evolution are characteristics of breast cancer that play a fundamental role in tumour development, progression and resistance to current therapies. In this review, we focus on the recent advances in understanding the epigenetic and transcriptomic changes that occur within breast cancer and their importance in terms of cancer development, progression and therapy resistance with a particular focus on alterations at the single-cell level. Furthermore, we highlight the utility of using single-cell tracing and molecular barcoding methodologies in preclinical models to assess disease evolution and response to therapy. We discuss how the integration of single-cell profiling from patient samples can be used in conjunction with results from preclinical models to untangle the complexities of this disease and identify biomarkers of disease progression, including measures of intra-tumour heterogeneity themselves, and how enhancing this understanding has the potential to uncover new targetable vulnerabilities in breast cancer.
Collapse
Affiliation(s)
- Ioanna Mavrommati
- grid.18886.3fThe Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Flora Johnson
- grid.18886.3fThe Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Gloria V. Echeverria
- grid.39382.330000 0001 2160 926XLester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX USA ,grid.39382.330000 0001 2160 926XDepartment of Medicine, Baylor College of Medicine, Houston, TX USA ,grid.39382.330000 0001 2160 926XDan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX USA ,grid.39382.330000 0001 2160 926XDepartment of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX USA
| | - Rachael Natrajan
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK.
| |
Collapse
|
31
|
Feng X, Chen L, Qing Y, Li R, Li C, Li SC. SCYN: single cell CNV profiling method using dynamic programming. BMC Genomics 2021; 22:651. [PMID: 34789142 PMCID: PMC8596905 DOI: 10.1186/s12864-021-07941-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Copy number variation is crucial in deciphering the mechanism and cure of complex disorders and cancers. The recent advancement of scDNA sequencing technology sheds light upon addressing intratumor heterogeneity, detecting rare subclones, and reconstructing tumor evolution lineages at single-cell resolution. Nevertheless, the current circular binary segmentation based approach proves to fail to efficiently and effectively identify copy number shifts on some exceptional trails. RESULTS Here, we propose SCYN, a CNV segmentation method powered with dynamic programming. SCYN resolves the precise segmentation on in silico dataset. Then we verified SCYN manifested accurate copy number inferring on triple negative breast cancer scDNA data, with array comparative genomic hybridization results of purified bulk samples as ground truth validation. We tested SCYN on two datasets of the newly emerged 10x Genomics CNV solution. SCYN successfully recognizes gastric cancer cells from 1% and 10% spike-ins 10x datasets. Moreover, SCYN is about 150 times faster than state of the art tool when dealing with the datasets of approximately 2000 cells. CONCLUSIONS SCYN robustly and efficiently detects segmentations and infers copy number profiles on single cell DNA sequencing data. It serves to reveal the tumor intra-heterogeneity. The source code of SCYN can be accessed in https://github.com/xikanfeng2/SCYN .
Collapse
Affiliation(s)
- Xikang Feng
- School of Software, Northwestern Polytechnical University, Xi’an Shaanxi, 710072 China
- Department of Computer Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Lingxi Chen
- Department of Computer Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Yuhao Qing
- Department of Computer Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Ruikang Li
- Department of Computer Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Chaohui Li
- Department of Computer Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Shuai Cheng Li
- Department of Computer Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
- Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| |
Collapse
|
32
|
Benchmarking pipelines for subclonal deconvolution of bulk tumour sequencing data. Nat Commun 2021; 12:6396. [PMID: 34737285 PMCID: PMC8569188 DOI: 10.1038/s41467-021-26698-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 10/20/2021] [Indexed: 11/09/2022] Open
Abstract
Intratumour heterogeneity provides tumours with the ability to adapt and acquire treatment resistance. The development of more effective and personalised treatments for cancers, therefore, requires accurate characterisation of the clonal architecture of tumours, enabling evolutionary dynamics to be tracked. Many methods exist for achieving this from bulk tumour sequencing data, involving identifying mutations and performing subclonal deconvolution, but there is a lack of systematic benchmarking to inform researchers on which are most accurate, and how dataset characteristics impact performance. To address this, we use the most comprehensive tumour genome simulation tool available for such purposes to create 80 bulk tumour whole exome sequencing datasets of differing depths, tumour complexities, and purities, and use these to benchmark subclonal deconvolution pipelines. We conclude that i) tumour complexity does not impact accuracy, ii) increasing either purity or purity-corrected sequencing depth improves accuracy, and iii) the optimal pipeline consists of Mutect2, FACETS and PyClone-VI. We have made our benchmarking datasets publicly available for future use.
Collapse
|
33
|
Chen L, Qing Y, Li R, Li C, Li H, Feng X, Li SC. Somatic variant analysis suite: copy number variation clonal visualization online platform for large-scale single-cell genomics. Brief Bioinform 2021; 23:6406714. [PMID: 34671807 DOI: 10.1093/bib/bbab452] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/01/2021] [Accepted: 10/01/2021] [Indexed: 11/15/2022] Open
Abstract
The recent advance of single-cell copy number variation (CNV) analysis plays an essential role in addressing intratumor heterogeneity, identifying tumor subgroups and restoring tumor-evolving trajectories at single-cell scale. Informative visualization of copy number analysis results boosts productive scientific exploration, validation and sharing. Several single-cell analysis figures have the effectiveness of visualizations for understanding single-cell genomics in published articles and software packages. However, they almost lack real-time interaction, and it is hard to reproduce them. Moreover, existing tools are time-consuming and memory-intensive when they reach large-scale single-cell throughputs. We present an online visualization platform, single-cell Somatic Variant Analysis Suite (scSVAS), for real-time interactive single-cell genomics data visualization. scSVAS is specifically designed for large-scale single-cell genomic analysis that provides an arsenal of unique functionalities. After uploading the specified input files, scSVAS deploys the online interactive visualization automatically. Users may conduct scientific discoveries, share interactive visualizations and download high-quality publication-ready figures. scSVAS provides versatile utilities for managing, investigating, sharing and publishing single-cell CNV profiles. We envision this online platform will expedite the biological understanding of cancer clonal evolution in single-cell resolution. All visualizations are publicly hosted at https://sc.deepomics.org.
Collapse
Affiliation(s)
- Lingxi Chen
- Department of Computer Science, City University of Hong Kong, Kowloon Tong, Hong Kong, China
| | - Yuhao Qing
- Department of Computer Science, City University of Hong Kong, Kowloon Tong, Hong Kong, China
| | - Ruikang Li
- Department of Computer Science, City University of Hong Kong, Kowloon Tong, Hong Kong, China
| | - Chaohui Li
- Department of Computer Science, City University of Hong Kong, Kowloon Tong, Hong Kong, China
| | - Hechen Li
- Department of Computer Science, City University of Hong Kong, Kowloon Tong, Hong Kong, China.,School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta GA 30332, USA
| | - Xikang Feng
- School of Software, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Shuai Cheng Li
- Department of Computer Science, City University of Hong Kong, Kowloon Tong, Hong Kong, China
| |
Collapse
|
34
|
Lin S, Liu Y, Zhang M, Xu X, Chen Y, Zhang H, Yang C. Microfluidic single-cell transcriptomics: moving towards multimodal and spatiotemporal omics. LAB ON A CHIP 2021; 21:3829-3849. [PMID: 34541590 DOI: 10.1039/d1lc00607j] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Cells are the basic units of life with vast heterogeneity. Single-cell transcriptomics unveils cell-to-cell gene expression variabilities, discovers novel cell types, and uncovers the critical roles of cellular heterogeneity in biological processes. The recent advances in microfluidic technologies have greatly accelerated the development of single-cell transcriptomics with regard to throughput, sensitivity, cost, and automation. In this article, we review state-of-the-art microfluidic single-cell transcriptomics, with a focus on the methodologies. We first summarize six typical microfluidic platforms for isolation and transcriptomic analysis of single cells. Then the on-going trend of microfluidic transcriptomics towards multimodal omics, which integrates transcriptomics with other omics to provide more comprehensive pictures of gene expression networks, is discussed. We also highlight single-cell spatial transcriptomics and single-cell temporal transcriptomics that provide unprecedented spatiotemporal resolution to reveal transcriptomic dynamics in space and time, respectively. The emerging applications of microfluidic single-cell transcriptomics are also discussed. Finally, we discuss the current challenges to be tackled and provide perspectives on the future development of microfluidic single-cell transcriptomics.
Collapse
Affiliation(s)
- Shichao Lin
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Yilong Liu
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Mingxia Zhang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Xing Xu
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Yingwen Chen
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Huimin Zhang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| | - Chaoyong Yang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| |
Collapse
|
35
|
An Epigenetic Perspective on Intra-Tumour Heterogeneity: Novel Insights and New Challenges from Multiple Fields. Cancers (Basel) 2021; 13:cancers13194969. [PMID: 34638453 PMCID: PMC8508087 DOI: 10.3390/cancers13194969] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Although research on cancer biology in recent decades has unveiled the main genetic perturbations driving the onset of tumorigenesis, we are still far from properly treating this disease without the occurrence of drug resistance and metastatic burden. This achievement is hampered by the onset of intra-tumour heterogeneity (ITH), which increases cancer cell fitness and plasticity, thereby fostering cell adaptation to foreign environments and stimuli. In this review, we discuss the contribution of the epigenetic factors in sustaining ITH and their interplay with the tumour microenvironment. We also highlight the recent technological advancements that are contributing to defining the epigenetic mechanisms governing tumour heterogeneity at the single-cell level. Abstract Cancer is a group of heterogeneous diseases that results from the occurrence of genetic alterations combined with epigenetic changes and environmental stimuli that increase cancer cell plasticity. Indeed, multiple cancer cell populations coexist within the same tumour, favouring cancer progression and metastatic dissemination as well as drug resistance, thereby representing a major obstacle for treatment. Epigenetic changes contribute to the onset of intra-tumour heterogeneity (ITH) as they facilitate cell adaptation to perturbation of the tumour microenvironment. Despite being its central role, the intrinsic multi-layered and reversible epigenetic pattern limits the possibility to uniquely determine its contribution to ITH. In this review, we first describe the major epigenetic mechanisms involved in tumourigenesis and then discuss how single-cell-based approaches contribute to dissecting the key role of epigenetic changes in tumour heterogeneity. Furthermore, we highlight the importance of dissecting the interplay between genetics, epigenetics, and tumour microenvironments to decipher the molecular mechanisms governing tumour progression and drug resistance.
Collapse
|
36
|
Abstract
Over the past decade, genomic analyses of single cells-the fundamental units of life-have become possible. Single-cell DNA sequencing has shed light on biological questions that were previously inaccessible across diverse fields of research, including somatic mutagenesis, organismal development, genome function, and microbiology. Single-cell DNA sequencing also promises significant future biomedical and clinical impact, spanning oncology, fertility, and beyond. While single-cell approaches that profile RNA and protein have greatly expanded our understanding of cellular diversity, many fundamental questions in biology and important biomedical applications require analysis of the DNA of single cells. Here, we review the applications and biological questions for which single-cell DNA sequencing is uniquely suited or required. We include a discussion of the fields that will be impacted by single-cell DNA sequencing as the technology continues to advance.
Collapse
Affiliation(s)
- Gilad D Evrony
- Center for Human Genetics and Genomics, Grossman School of Medicine, New York University, New York, NY 10016, USA;
| | - Anjali Gupta Hinch
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom;
| | - Chongyuan Luo
- Department of Human Genetics, University of California, Los Angeles, California 90095, USA;
| |
Collapse
|
37
|
Ganz HM, Buchmann B, Engelbrecht LK, Jesinghaus M, Eichelberger L, Gabka CJ, Schmidt GP, Muckenhuber A, Weichert W, Bausch AR, Scheel CH. Generation of ductal organoids from normal mammary luminal cells reveals invasive potential. J Pathol 2021; 255:451-463. [PMID: 34467523 DOI: 10.1002/path.5790] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 08/12/2021] [Accepted: 08/28/2021] [Indexed: 11/09/2022]
Abstract
Here we present an experimental model for human luminal progenitor cells that enables single, primary cells isolated from normal tissue to generate complex branched structures resembling the ductal morphology of low-grade carcinoma of no special type. Thereby, we find that ductal structures are generated through invasive branching morphogenesis via matrix remodeling and identify reduced actomyosin contractility as a prerequisite for invasion. In addition, we show that knockout of E-cadherin causes a dissolution of duct formation as observed in invasive lobular carcinoma, a subtype of invasive carcinomas where E-cadherin function is frequently lost. Thus, our model shows that invasive capacity can be elicited from normal luminal cells in specific environments, which results in low-grade no special type morphology. This assay offers a platform to investigate the dynamics of luminal cell invasion and unravel the impact of genetic and non-genetic aberrations on invasive morphology. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Hilary M Ganz
- Institute of Stem Cell Research, Helmholtz Center for Health and Environmental Research Munich, Neuherberg, Germany
| | - Benedikt Buchmann
- Chair of Cellular Biophysics E27, Technical University Munich, Garching, Germany
| | - Lisa K Engelbrecht
- Chair of Cellular Biophysics E27, Technical University Munich, Garching, Germany
| | - Moritz Jesinghaus
- Institute of Pathology, Technical University of Munich, Munich, Germany.,Institute of Pathology, University Hospital Marburg, Marburg, Germany
| | - Laura Eichelberger
- Center for Functional Protein Assemblies, Technical University of Munich, Munich, Germany.,Clinic and Polyclinic for Internal Medicine II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Christian J Gabka
- Nymphenburg Clinic for Plastic and Aesthetic Surgery, Munich, Germany
| | - Georg P Schmidt
- Department of Obstetrics and Gynecology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | | | - Wilko Weichert
- Institute of Pathology, Technical University of Munich, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Andreas R Bausch
- Chair of Cellular Biophysics E27, Technical University Munich, Garching, Germany
| | - Christina H Scheel
- Institute of Stem Cell Research, Helmholtz Center for Health and Environmental Research Munich, Neuherberg, Germany.,Department of Dermatology, St. Josef Hospital, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
38
|
Li X, Liu L, Zhang J, Ma M, Sun L, Li X, Zhang H, Wang J, Huang Y, Li T. Improvement in the risk assessment of oral leukoplakia through morphology-related copy number analysis. SCIENCE CHINA-LIFE SCIENCES 2021; 64:1379-1391. [PMID: 34351567 DOI: 10.1007/s11427-021-1965-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 06/08/2021] [Indexed: 10/20/2022]
Abstract
Oral leukoplakia is the most common type of oral potentially malignant disorders and considered a precursor lesion to oral squamous cell carcinoma. However, a predictor of oral leukoplakia prognosis has not yet been identified. We investigated whether copy number alteration patterns may effectively predict the prognostic outcomes of oral leukoplakia using routinely processed paraffin sections. Comparison of copy number alteration patterns between oral leukoplakia with hyperplasia (HOL, n=22) and dysplasia (DOL, n=21) showed that oral leukoplakia with dysplasia had a higher copy number alteration rate (86%) than oral leukoplakia with hyperplasia (46%). Oral leukoplakia with dysplasia exhibited a wider range of genomic variations across all chromosomes compared with oral leukoplakia with hyperplasia. We also examined a retrospective cohort of 477 patients with oral leukoplakia with hyperplasia with detailed follow-up information. The malignant transformation (MT, n=19) and leukoplakia recurrence (LR, n=253) groups had higher frequencies of aneuploidy events and copy number loss rate than the free of disease (FD, n=205) group. Together, our results revealed the association between the degree of copy number alterations and the histological grade of oral leukoplakia and demonstrated that copy number alteration may be effective for prognosis prediction in oral leukoplakia patients with hyperplasia.
Collapse
Affiliation(s)
- Xiaotian Li
- Department of Oral Pathology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, 100081, China.,Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing, 100081, China
| | - Lu Liu
- Beijing Advanced Innovation Center for Genomics (ICG), Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, 100871, China
| | - Jianyun Zhang
- Department of Oral Pathology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, 100081, China.,Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing, 100081, China
| | - Ming Ma
- Department of Oral Pathology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, 100081, China.,Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing, 100081, China
| | - Lisha Sun
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, 100081, China.,Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing, 100081, China
| | - Xuefen Li
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, 100081, China.,Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing, 100081, China
| | - Heyu Zhang
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, 100081, China. .,Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing, 100081, China.
| | - Jianbin Wang
- School of Life Sciences and Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100084, China.
| | - Yanyi Huang
- Beijing Advanced Innovation Center for Genomics (ICG), Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, 100871, China. .,College of Chemistry and Molecular Engineering and Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, 100871, China. .,Institute for Cell Analysis, Shenzhen Bay Laboratory, Shenzhen, 528107, China.
| | - Tiejun Li
- Department of Oral Pathology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, 100081, China. .,Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing, 100081, China.
| |
Collapse
|
39
|
Inter-eye genomic heterogeneity in bilateral retinoblastoma via aqueous humor liquid biopsy. NPJ Precis Oncol 2021; 5:73. [PMID: 34316014 PMCID: PMC8316348 DOI: 10.1038/s41698-021-00212-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 06/04/2021] [Indexed: 01/08/2023] Open
Abstract
Germline alterations in the RB1 tumor suppressor gene predispose patients to develop retinoblastoma (RB) in both eyes. While similar treatment is given for each eye, there is often a variable therapeutic response between the eyes. Herein, we use the aqueous humor (AH) liquid biopsy to evaluate the cell-free tumor DNA (ctDNA) from each eye in a patient with bilateral RB. Despite the same predisposing germline RB1 mutation, AH analysis identified a different somatic RB1 mutation as well as separate and distinct chromosomal alterations in each eye. The longitudinal alterations in tumor fraction (TFx) corresponded to therapeutic responses in each eye. This case demonstrates that bilateral RB tumors develop separate genomic alterations, which may play a role in tumorigenesis and prognosis for eye salvage. Identifying these inter-eye differences without the need for enucleated tumor tissue may help direct active management of RB, with particular usefulness in bilateral cases.
Collapse
|
40
|
Polavarapu VK, Xing P, Zhang H, Zhao M, Mathot L, Zhao L, Rosen G, Swartling FJ, Sjöblom T, Chen X. Profiling chromatin accessibility in formalin-fixed paraffin-embedded samples. Genome Res 2021; 32:150-161. [PMID: 34261731 PMCID: PMC8744681 DOI: 10.1101/gr.275269.121] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 07/08/2021] [Indexed: 11/25/2022]
Abstract
Archived formalin-fixed paraffin-embedded (FFPE) samples are the global standard format for preservation of the majority of biopsies in both basic research and translational cancer studies, and profiling chromatin accessibility in the archived FFPE tissues is fundamental to understanding gene regulation. Accurate mapping of chromatin accessibility from FFPE specimens is challenging because of the high degree of DNA damage. Here, we first showed that standard ATAC-seq can be applied to purified FFPE nuclei but yields lower library complexity and a smaller proportion of long DNA fragments. We then present FFPE-ATAC, the first highly sensitive method for decoding chromatin accessibility in FFPE tissues that combines Tn5-mediated transposition and T7 in vitro transcription. The FFPE-ATAC generates high-quality chromatin accessibility profiles with 500 nuclei from a single FFPE tissue section, enables the dissection of chromatin profiles from the regions of interest with the aid of hematoxylin and eosin (H&E) staining, and reveals disease-associated chromatin regulation from the human colorectal cancer FFPE tissue archived for more than 10 years. In summary, the approach allows decoding of the chromatin states that regulate gene expression in archival FFPE tissues, thereby permitting investigators, to better understand epigenetic regulation in cancer and precision medicine.
Collapse
|
41
|
Liegmann AS, Heselmeyer-Haddad K, Lischka A, Hirsch D, Chen WD, Torres I, Gemoll T, Rody A, Thorns C, Gertz EM, Alkemade H, Hu Y, Habermann JK, Ried T. Single Cell Genetic Profiling of Tumors of Breast Cancer Patients Aged 50 Years and Older Reveals Enormous Intratumor Heterogeneity Independent of Individual Prognosis. Cancers (Basel) 2021; 13:3366. [PMID: 34282768 PMCID: PMC8267950 DOI: 10.3390/cancers13133366] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/25/2021] [Accepted: 06/30/2021] [Indexed: 02/07/2023] Open
Abstract
PURPOSE Older breast cancer patients are underrepresented in cancer research even though the majority (81.4%) of women dying of breast cancer are 55 years and older. Here we study a common phenomenon observed in breast cancer which is a large inter- and intratumor heterogeneity; this poses a tremendous clinical challenge, for example with respect to treatment stratification. To further elucidate genomic instability and tumor heterogeneity in older patients, we analyzed the genetic aberration profiles of 39 breast cancer patients aged 50 years and older (median 67 years) with either short (median 2.4 years) or long survival (median 19 years). The analysis was based on copy number enumeration of eight breast cancer-associated genes using multiplex interphase fluorescence in situ hybridization (miFISH) of single cells, and by targeted next-generation sequencing of 563 cancer-related genes. RESULTS We detected enormous inter- and intratumor heterogeneity, yet maintenance of common cancer gene mutations and breast cancer specific chromosomal gains and losses. The gain of COX2 was most common (72%), followed by MYC (69%); losses were most prevalent for CDH1 (74%) and TP53 (69%). The degree of intratumor heterogeneity did not correlate with disease outcome. Comparing the miFISH results of diploid with aneuploid tumor samples significant differences were found: aneuploid tumors showed significantly higher average signal numbers, copy number alterations (CNAs) and instability indices. Mutations in PIKC3A were mostly restricted to luminal A tumors. Furthermore, a significant co-occurrence of CNAs of DBC2/MYC, HER2/DBC2 and HER2/TP53 and mutual exclusivity of CNAs of HER2 and PIK3CA mutations and CNAs of CCND1 and PIK3CA mutations were revealed. CONCLUSION Our results provide a comprehensive picture of genome instability profiles with a large variety of inter- and intratumor heterogeneity in breast cancer patients aged 50 years and older. In most cases, the distribution of chromosomal aneuploidies was consistent with previous results; however, striking exceptions, such as tumors driven by exclusive loss of chromosomes, were identified.
Collapse
Affiliation(s)
- Anna-Sophie Liegmann
- Section of Translational Surgical Oncology and Biobanking, Department of Surgery, University of Lübeck and University Medical Center Schleswig-Holstein, 23562 Lübeck, Germany; (A.-S.L.); (A.L.); (T.G.); (H.A.)
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (K.H.-H.); (D.H.); (W.-D.C.); (I.T.); (Y.H.)
| | - Kerstin Heselmeyer-Haddad
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (K.H.-H.); (D.H.); (W.-D.C.); (I.T.); (Y.H.)
| | - Annette Lischka
- Section of Translational Surgical Oncology and Biobanking, Department of Surgery, University of Lübeck and University Medical Center Schleswig-Holstein, 23562 Lübeck, Germany; (A.-S.L.); (A.L.); (T.G.); (H.A.)
| | - Daniela Hirsch
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (K.H.-H.); (D.H.); (W.-D.C.); (I.T.); (Y.H.)
- Institute of Pathology, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Wei-Dong Chen
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (K.H.-H.); (D.H.); (W.-D.C.); (I.T.); (Y.H.)
| | - Irianna Torres
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (K.H.-H.); (D.H.); (W.-D.C.); (I.T.); (Y.H.)
| | - Timo Gemoll
- Section of Translational Surgical Oncology and Biobanking, Department of Surgery, University of Lübeck and University Medical Center Schleswig-Holstein, 23562 Lübeck, Germany; (A.-S.L.); (A.L.); (T.G.); (H.A.)
| | - Achim Rody
- Department of Gynecology and Obstetrics, Campus Lübeck, University Hospital of Schleswig-Holstein, 23562 Lübeck, Germany;
| | - Christoph Thorns
- Institute of Pathology, Marienkrankenhaus Hamburg, 22087 Hamburg, Germany;
- Institute of Pathology, University of Lübeck and University Medical Center Schleswig-Holstein, 23562 Lübeck, Germany
| | - Edward Michael Gertz
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Hendrik Alkemade
- Section of Translational Surgical Oncology and Biobanking, Department of Surgery, University of Lübeck and University Medical Center Schleswig-Holstein, 23562 Lübeck, Germany; (A.-S.L.); (A.L.); (T.G.); (H.A.)
| | - Yue Hu
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (K.H.-H.); (D.H.); (W.-D.C.); (I.T.); (Y.H.)
| | - Jens K. Habermann
- Section of Translational Surgical Oncology and Biobanking, Department of Surgery, University of Lübeck and University Medical Center Schleswig-Holstein, 23562 Lübeck, Germany; (A.-S.L.); (A.L.); (T.G.); (H.A.)
- Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Thomas Ried
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (K.H.-H.); (D.H.); (W.-D.C.); (I.T.); (Y.H.)
| |
Collapse
|
42
|
Selenica P, Alemar B, Matrai C, Talia KL, Veras E, Hussein Y, Oliva E, Beets-Tan RGH, Mikami Y, McCluggage WG, Kiyokawa T, Weigelt B, Park KJ, Murali R. Massively parallel sequencing analysis of 68 gastric-type cervical adenocarcinomas reveals mutations in cell cycle-related genes and potentially targetable mutations. Mod Pathol 2021; 34:1213-1225. [PMID: 33318584 PMCID: PMC8154628 DOI: 10.1038/s41379-020-00726-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/20/2022]
Abstract
Gastric-type cervical adenocarcinoma (GCA) is an aggressive type of endocervical adenocarcinoma characterized by mucinous morphology, gastric-type mucin, lack of association with human papillomavirus (HPV) and resistance to chemo/radiotherapy. We characterized the landscape of genetic alterations in a large cohort of GCAs, and compared it with that of usual-type HPV-associated endocervical adenocarcinomas (UEAs), pancreatic adenocarcinomas (PAs) and intestinal-type gastric adenocarcinomas (IGAs). GCAs (n = 68) were subjected to massively parallel sequencing targeting 410-468 cancer-related genes. Somatic mutations and copy number alterations (CNAs) were determined using validated bioinformatics methods. Mutational data for UEAs (n = 21), PAs (n = 178), and IGAs (n = 148) from The Cancer Genome Atlas (TCGA) were obtained from cBioPortal. GCAs most frequently harbored somatic mutations in TP53 (41%), CDKN2A (18%), KRAS (18%), and STK11 (10%). Potentially targetable mutations were identified in ERBB3 (10%), ERBB2 (8%), and BRAF (4%). GCAs displayed low levels of CNAs with no recurrent amplifications or homozygous deletions. In contrast to UEAs, GCAs harbored more frequent mutations affecting cell cycle-related genes including TP53 (41% vs 5%, p < 0.01) and CDKN2A (18% vs 0%, p = 0.01), and fewer PIK3CA mutations (7% vs 33%, p = 0.01). TP53 mutations were less prevalent in GCAs compared to PAs (41% vs 56%, p < 0.05) and IGAs (41% vs 57%, p < 0.05). GCAs showed a higher frequency of STK11 mutations than PAs (10% vs 2%, p < 0.05) and IGAs (10% vs 1%, p < 0.05). GCAs harbored more frequent mutations in ERBB2 and ERBB3 (9% vs 1%, and 10% vs 0.5%, both p < 0.01) compared to PAs, and in CDKN2A (18% vs 1%, p < 0.05) and KRAS (18% vs 6%, p < 0.05) compared to IGAs. GCAs harbor recurrent somatic mutations in cell cycle-related genes and in potentially targetable genes, including ERBB2/3. Mutations in genes such as STK11 may be used as supportive evidence to help distinguish GCAs from other adenocarcinomas with similar morphology in metastatic sites.
Collapse
Affiliation(s)
- Pier Selenica
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- GROW School for Oncology and Developmental Biology, University of Maastricht, Maastricht, The Netherlands
| | - Barbara Alemar
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Cathleen Matrai
- Department of Pathology and Laboratory Medicine, Weill-Cornell Medicine, New York, NY, USA
| | - Karen L Talia
- Department of Pathology, Royal Women's Hospital and VCS Foundation, Melbourne, VIC, Australia
| | - Emanuela Veras
- Department of Pathology, Sibley Memorial Hospital, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Yaser Hussein
- Department of Pathology, Morristown Medical Center, Morristown, NJ, USA
| | - Esther Oliva
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Regina G H Beets-Tan
- GROW School for Oncology and Developmental Biology, University of Maastricht, Maastricht, The Netherlands
| | - Yoshiki Mikami
- Department of Diagnostic Pathology, Kumamoto University Hospital, Kumamoto, Japan
| | - W Glenn McCluggage
- Department of Pathology, Belfast Health and Social Care Trust, Belfast, Northern Ireland, UK
| | | | - Britta Weigelt
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kay J Park
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rajmohan Murali
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
43
|
Wu B, Shang H, Liu J, Liang X, Yuan Y, Chen Y, Wang C, Jing H, Cheng W. Quantitative Proteomics Analysis of FFPE Tumor Samples Reveals the Influences of NET-1 siRNA Nanoparticles and Sonodynamic Therapy on Tetraspanin Protein Involved in HCC. Front Mol Biosci 2021; 8:678444. [PMID: 34041269 PMCID: PMC8141748 DOI: 10.3389/fmolb.2021.678444] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/26/2021] [Indexed: 12/16/2022] Open
Abstract
Hepatocellular carcinoma (HCC) poses a severe threat to human health. The NET-1 protein has been proved to be strongly associated with HCC proliferation and metastasis in our previous study. Here, we established and validated the NET-1 siRNA nanoparticles system to conduct targeted gene therapy of HCC xenograft in vivo with the aid of sonodynamic therapy. Then, we conducted a label-free proteome mass spectrometry workflow to analyze formalin-fixed and paraffin-embedded HCC xenograft samples collected in this study. The result showed that 78 proteins were differentially expressed after NET-1 protein inhibited. Among them, the expression of 17 proteins upregulated and the expression of 61 proteins were significantly downregulated. Of the protein abundance, the vast majority of Gene Ontology enrichment terms belong to the biological process. The KEGG pathway enrichment analysis showed that the 78 differentially expressed proteins significantly enriched in 45 pathways. We concluded that the function of the NET-1 gene is not only to regulate HCC but also to participate in a variety of biochemical metabolic pathways in the human body. Furthermore, the protein–protein interaction analysis indicated that the interactions of differentially expressed proteins are incredibly sophisticated. All the protein–protein interactions happened after the NET-1 gene has been silenced. Finally, our study also provides a useful proposal for targeted therapy based on tetraspanin proteins to treat HCC, and further mechanism investigations are needed to reveal a more detailed mechanism of action for NET-1 protein regulation of HCC.
Collapse
Affiliation(s)
- Bolin Wu
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, China.,Department of Interventional Ultrasound, Harbin Medical University Cancer Hospital, Harbin, China.,Institute of Cancer Prevention and Treatment, Heilongjiang Academy of Medical Science, Harbin Medical University, Harbin, China
| | - Haitao Shang
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jiayin Liu
- Institute of Cancer Prevention and Treatment, Heilongjiang Academy of Medical Science, Harbin Medical University, Harbin, China.,Department of Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xitian Liang
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yanchi Yuan
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, China.,Institute of Cancer Prevention and Treatment, Heilongjiang Academy of Medical Science, Harbin Medical University, Harbin, China
| | - Yichi Chen
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, China.,Institute of Cancer Prevention and Treatment, Heilongjiang Academy of Medical Science, Harbin Medical University, Harbin, China
| | - Chunyue Wang
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, China.,Institute of Cancer Prevention and Treatment, Heilongjiang Academy of Medical Science, Harbin Medical University, Harbin, China
| | - Hui Jing
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, China
| | - Wen Cheng
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, China.,Department of Interventional Ultrasound, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
44
|
Kaneko S, Mitsuyama T, Shiraishi K, Ikawa N, Shozu K, Dozen A, Machino H, Asada K, Komatsu M, Kukita A, Sone K, Yoshida H, Motoi N, Hayami S, Yoneoka Y, Kato T, Kohno T, Natsume T, von Keudell G, Saloura V, Yamaue H, Hamamoto R. Genome-Wide Chromatin Analysis of FFPE Tissues Using a Dual-Arm Robot with Clinical Potential. Cancers (Basel) 2021; 13:cancers13092126. [PMID: 33924956 PMCID: PMC8125448 DOI: 10.3390/cancers13092126] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 12/24/2022] Open
Abstract
Although chromatin immunoprecipitation and next-generation sequencing (ChIP-seq) using formalin-fixed paraffin-embedded tissue (FFPE) has been reported, it remained elusive whether they retained accurate transcription factor binding. Here, we developed a method to identify the binding sites of the insulator transcription factor CTCF and the genome-wide distribution of histone modifications involved in transcriptional activation. Importantly, we provide evidence that the ChIP-seq datasets obtained from FFPE samples are similar to or even better than the data for corresponding fresh-frozen samples, indicating that FFPE samples are compatible with ChIP-seq analysis. H3K27ac ChIP-seq analyses of 69 FFPE samples using a dual-arm robot revealed that driver mutations in EGFR were distinguishable from pan-negative cases and were relatively homogeneous as a group in lung adenocarcinomas. Thus, our results demonstrate that FFPE samples are an important source for epigenomic research, enabling the study of histone modifications, nuclear chromatin structure, and clinical data.
Collapse
Affiliation(s)
- Syuzo Kaneko
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, Tokyo 104-0045, Japan; (N.I.); (K.S.); (A.D.); (H.M.); (K.A.); (M.K.)
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, Tokyo 103-0027, Japan
- Correspondence: (S.K.); (R.H.); Tel.: +81-3-3547-5271 (R.H.)
| | - Toutai Mitsuyama
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology, Tokyo 135-0064, Japan;
| | - Kouya Shiraishi
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo 104-0045, Japan; (K.S.); (T.K.)
| | - Noriko Ikawa
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, Tokyo 104-0045, Japan; (N.I.); (K.S.); (A.D.); (H.M.); (K.A.); (M.K.)
| | - Kanto Shozu
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, Tokyo 104-0045, Japan; (N.I.); (K.S.); (A.D.); (H.M.); (K.A.); (M.K.)
| | - Ai Dozen
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, Tokyo 104-0045, Japan; (N.I.); (K.S.); (A.D.); (H.M.); (K.A.); (M.K.)
| | - Hidenori Machino
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, Tokyo 104-0045, Japan; (N.I.); (K.S.); (A.D.); (H.M.); (K.A.); (M.K.)
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, Tokyo 103-0027, Japan
| | - Ken Asada
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, Tokyo 104-0045, Japan; (N.I.); (K.S.); (A.D.); (H.M.); (K.A.); (M.K.)
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, Tokyo 103-0027, Japan
| | - Masaaki Komatsu
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, Tokyo 104-0045, Japan; (N.I.); (K.S.); (A.D.); (H.M.); (K.A.); (M.K.)
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, Tokyo 103-0027, Japan
| | - Asako Kukita
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan; (A.K.); (K.S.)
| | - Kenbun Sone
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan; (A.K.); (K.S.)
| | - Hiroshi Yoshida
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo 104-0045, Japan; (H.Y.); (N.M.)
| | - Noriko Motoi
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo 104-0045, Japan; (H.Y.); (N.M.)
| | - Shinya Hayami
- Second Department of Surgery, School of Medicine, Wakayama Medical University, Wakayama 641-0011, Japan; (S.H.); (H.Y.)
| | - Yutaka Yoneoka
- Department of Gynecology, National Cancer Center Hospital, Tokyo 104-0045, Japan; (Y.Y.); (T.K.)
| | - Tomoyasu Kato
- Department of Gynecology, National Cancer Center Hospital, Tokyo 104-0045, Japan; (Y.Y.); (T.K.)
| | - Takashi Kohno
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo 104-0045, Japan; (K.S.); (T.K.)
| | - Toru Natsume
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tokyo 100-8921, Japan;
- Robotic Biology Institute, Inc., Tokyo 135-0064, Japan
| | | | - Vassiliki Saloura
- Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA;
| | - Hiroki Yamaue
- Second Department of Surgery, School of Medicine, Wakayama Medical University, Wakayama 641-0011, Japan; (S.H.); (H.Y.)
| | - Ryuji Hamamoto
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, Tokyo 104-0045, Japan; (N.I.); (K.S.); (A.D.); (H.M.); (K.A.); (M.K.)
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, Tokyo 103-0027, Japan
- Correspondence: (S.K.); (R.H.); Tel.: +81-3-3547-5271 (R.H.)
| |
Collapse
|
45
|
Affiliation(s)
- Roy Rabbie
- Cambridge Cancer Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Experimental Cancer Genetics, The Wellcome Sanger Institute, Hinxton, Cambridge, Cambridgeshire UK
| | - Doreen Lau
- Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, CB2 0RE UK
- Department of Radiology, School of Clinical Medicine, University of Cambridge, Box 218, Cambridge Biomedical Campus, Cambridge, UK
| | - Richard M. White
- Department of Cancer Biology & Genetics and Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - David J. Adams
- Experimental Cancer Genetics, The Wellcome Sanger Institute, Hinxton, Cambridge, Cambridgeshire UK
| |
Collapse
|
46
|
Single-cell sequencing technology in tumor research. Clin Chim Acta 2021; 518:101-109. [PMID: 33766554 DOI: 10.1016/j.cca.2021.03.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 03/13/2021] [Accepted: 03/15/2021] [Indexed: 12/24/2022]
Abstract
Tumor heterogeneity is a key characteristic of malignant tumors and a significant obstacle in cancer treatment and research. Although bulk tissue sequencing has wide coverage and high accuracy, it can only represent the dominant cell signal information of each sample, while masking the unique gene expression of rare cells; therefore it cannot represent genes that are unstable within a subgroup, but unchanged in a majority of cells. With the progress of genomic technology, the emergence of single-cell sequencing (SCS) has effectively solved the above problem. Genetic, transcriptomic and epigenetic sequencing at the single-cell level provides an important basis for us to correctly classify the cell subsets of heterogeneous tumor populations and to reveal the process of complex changes in tumor cells at the molecular level. Single-cell sequencing technology has been applied to the field of cancer, revealing exciting discoveries in the potential mechanisms of tumor driver gene mutation, clonal evolution, invasion and metastasis. It also provides favorable conditions for developing new tumor biomarkers and providing more accurate and individualized targeted tumor therapy. Herein, we review the steps and methods of single-cell sequencing and highlight the application of SCS in tumor diagnosis and clinical treatment.
Collapse
|
47
|
Qin C, Pan Y, Li Y, Li Y, Long W, Liu Q. Novel Molecular Hallmarks of Group 3 Medulloblastoma by Single-Cell Transcriptomics. Front Oncol 2021; 11:622430. [PMID: 33816256 PMCID: PMC8013995 DOI: 10.3389/fonc.2021.622430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/01/2021] [Indexed: 12/21/2022] Open
Abstract
Medulloblastoma (MB) is a highly heterogeneous and one of the most malignant pediatric brain tumors, comprising four subgroups: Sonic Hedgehog, Wingless, Group 3, and Group 4. Group 3 MB has the worst prognosis of all MBs. However, the molecular and cellular mechanisms driving the maintenance of malignancy are poorly understood. Here, we employed high-throughput single-cell and bulk RNA sequencing to identify novel molecular features of Group 3 MB, and found that a specific cell cluster displayed a highly malignant phenotype. Then, we identified the glutamate receptor metabotropic 8 (GRM8), and AP-1 complex subunit sigma-2 (AP1S2) genes as two critical markers of Group 3 MB, corresponding to its poor prognosis. Information on 33 clinical cases was further utilized for validation. Meanwhile, a global map of the molecular cascade downstream of the MYC oncogene in Group 3 MB was also delineated using single-cell RNA sequencing. Our data yields new insights into Group 3 MB molecular characteristics and provides novel therapeutic targets for this relentless disease.
Collapse
Affiliation(s)
- Chaoying Qin
- Department of Neurosurgery in Xiangya Hospital, Central South University, Changsha, China
| | - Yimin Pan
- Department of Neurosurgery in Xiangya Hospital, Central South University, Changsha, China
| | - Yuzhe Li
- Department of Neurosurgery in Xiangya Hospital, Central South University, Changsha, China
| | - Yue Li
- Department of Neurosurgery in Xiangya Hospital, Central South University, Changsha, China
| | - Wenyong Long
- Department of Neurosurgery in Xiangya Hospital, Central South University, Changsha, China
| | - Qing Liu
- Department of Neurosurgery in Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
48
|
A P53-Independent DNA Damage Response Suppresses Oncogenic Proliferation and Genome Instability. Cell Rep 2021; 30:1385-1399.e7. [PMID: 32023457 DOI: 10.1016/j.celrep.2020.01.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 10/30/2019] [Accepted: 01/03/2020] [Indexed: 12/20/2022] Open
Abstract
The Mre11-Rad50-Nbs1 complex is a DNA double-strand break sensor that mediates a tumor-suppressive DNA damage response (DDR) in cells undergoing oncogenic stress, yet the mechanisms underlying this effect are poorly understood. Using a genetically inducible primary mammary epithelial cell model, we demonstrate that Mre11 suppresses proliferation and DNA damage induced by diverse oncogenic drivers through a p53-independent mechanism. Breast tumorigenesis models engineered to express a hypomorphic Mre11 allele exhibit increased levels of oncogene-induced DNA damage, R-loop accumulation, and chromosomal instability with a characteristic copy number loss phenotype. Mre11 complex dysfunction is identified in a subset of human triple-negative breast cancers and is associated with increased sensitivity to DNA-damaging therapy and inhibitors of ataxia telangiectasia and Rad3 related (ATR) and poly (ADP-ribose) polymerase (PARP). Thus, deficiencies in the Mre11-dependent DDR drive proliferation and genome instability patterns in p53-deficient breast cancers and represent an opportunity for therapeutic exploitation.
Collapse
|
49
|
Wang H, Meng D, Guo H, Sun C, Chen P, Jiang M, Xu Y, Yu J, Fang Q, Zhu J, Zhao W, Wu S, Zhao S, Li W, Chen B, Wang L, He Y. Single-Cell Sequencing, an Advanced Technology in Lung Cancer Research. Onco Targets Ther 2021; 14:1895-1909. [PMID: 33758510 PMCID: PMC7981160 DOI: 10.2147/ott.s295102] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/16/2021] [Indexed: 12/28/2022] Open
Abstract
Single-cell sequencing (SCS) which has an unprecedentedly high resolution is an advanced technique for cancer research. Lung cancer still has a high mortality and morbidity. For further understanding the lung cancer, SCS is also been applied to lung cancer research to investigate its heterogeneity, metastasis, drug resistance, tumor microenvironment and many other issues. In this review, we summarized lung cancer research using SCS and their research achievements.
Collapse
Affiliation(s)
- Hao Wang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, 200433, People's Republic of China.,Tongji University, School of Medicine, Shanghai, 200433, People's Republic of China
| | - Die Meng
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, 200433, People's Republic of China.,Tongji University, School of Medicine, Shanghai, 200433, People's Republic of China
| | - Haoyue Guo
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, 200433, People's Republic of China.,Tongji University, School of Medicine, Shanghai, 200433, People's Republic of China
| | - Chenglong Sun
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, 200433, People's Republic of China.,Tongji University, School of Medicine, Shanghai, 200433, People's Republic of China
| | - Peixin Chen
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, 200433, People's Republic of China.,Tongji University, School of Medicine, Shanghai, 200433, People's Republic of China
| | - Minlin Jiang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, 200433, People's Republic of China.,Tongji University, School of Medicine, Shanghai, 200433, People's Republic of China
| | - Yi Xu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, 200433, People's Republic of China.,Tongji University, School of Medicine, Shanghai, 200433, People's Republic of China
| | - Jia Yu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, 200433, People's Republic of China.,Tongji University, School of Medicine, Shanghai, 200433, People's Republic of China
| | - Qiyu Fang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, 200433, People's Republic of China.,Tongji University, School of Medicine, Shanghai, 200433, People's Republic of China
| | - Jun Zhu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, 200433, People's Republic of China.,Tongji University, School of Medicine, Shanghai, 200433, People's Republic of China
| | - Wencheng Zhao
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, 200433, People's Republic of China.,Tongji University, School of Medicine, Shanghai, 200433, People's Republic of China
| | - Shengyu Wu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, 200433, People's Republic of China.,Tongji University, School of Medicine, Shanghai, 200433, People's Republic of China
| | - Sha Zhao
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, 200433, People's Republic of China
| | - Wei Li
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, 200433, People's Republic of China
| | - Bin Chen
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, 200433, People's Republic of China
| | - Lei Wang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, 200433, People's Republic of China
| | - Yayi He
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, 200433, People's Republic of China
| |
Collapse
|
50
|
Caswell-Jin JL, Lorenz C, Curtis C. Molecular Heterogeneity and Evolution in Breast Cancer. ANNUAL REVIEW OF CANCER BIOLOGY-SERIES 2021. [DOI: 10.1146/annurev-cancerbio-060220-014137] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Breast cancer comprises a heterogeneous group of tumor subtypes, whether defined by immunohistochemistry of key proteins, RNA expression profiles, or genetic alterations, and each of these subtypes may benefit from a distinct treatment approach. However, there can be striking heterogeneity within tumors, which may pose challenges to the development of personalized approaches to therapy. Intratumor heterogeneity can be divided into three main categories: genetic, phenotypic, and microenvironmental. Here, we review technologies to interrogate these three categories of heterogeneity in patient samples, as well as the current state of understanding of these categories in breast cancer, from cell to cell, across different regions of the same tumor mass, across treatment, and across metastasis. Efforts to characterize tumor heterogeneity longitudinally will be crucial to the development of personalized oncology for breast cancer.
Collapse
Affiliation(s)
- Jennifer L. Caswell-Jin
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Carina Lorenz
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Christina Curtis
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| |
Collapse
|