1
|
Lv WQ, Gao J, Guo X. Molecular mechanism and therapeutic strategies for embryonal tumors with multilayered rosettes in children (Review). Mol Clin Oncol 2025; 22:30. [PMID: 39926370 PMCID: PMC11803348 DOI: 10.3892/mco.2025.2825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 01/03/2025] [Indexed: 02/11/2025] Open
Abstract
Embryonal tumors with multilayered rosettes (ETMR) are relatively rare but highly aggressive intracranial tumors that mainly occur in children under four years of age. Despite high-intensity and multi-modal treatment, the five-year overall survival rate of patients with ETMR remains <30%. Therefore, it is necessary to improve understanding of the molecular biological changes in ETMR. The present review presents an overview of the recent molecular and biological characteristics of ETMR in children, the current recommended treatments, and research into potential targeted strategies based on these findings. ETMR are molecularly characterized by distinct DNA methylation signatures and dysregulated expression of oncogenic miRNAs. Despite increased knowledge of the novel molecular characteristics of ETMR in children, treatment outcomes have only marginally improved. Thus, there is an urgent need to translate these new insights in ETMR biology into more effective treatment.
Collapse
Affiliation(s)
- Wen-Qiong Lv
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Ju Gao
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xia Guo
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
2
|
Qi L, Du Y, Huang Y, Kogiso M, Zhang H, Xiao S, Abdallah A, Suarez M, Niu L, Liu ZG, Lindsay H, Braun FK, Stephen C, Davies PJ, Teo WY, Adenkunle A, Baxter P, Su JM, Li XN. CD57 defines a novel cancer stem cell that drive invasion of diffuse pediatric-type high grade gliomas. Br J Cancer 2024; 131:258-270. [PMID: 38834745 PMCID: PMC11263392 DOI: 10.1038/s41416-024-02724-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 05/04/2024] [Accepted: 05/13/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND Diffuse invasion remains a primary cause of treatment failure in pediatric high-grade glioma (pHGG). Identifying cellular driver(s) of pHGG invasion is needed for anti-invasion therapies. METHODS Ten highly invasive patient-derived orthotopic xenograft (PDOX) models of pHGG were subjected to isolation of matching pairs of invasive (HGGINV) and tumor core (HGGTC) cells. RESULTS pHGGINV cells were intrinsically more invasive than their matching pHGGTC cells. CSC profiling revealed co-positivity of CD133 and CD57 and identified CD57+CD133- cells as the most abundant CSCs in the invasive front. In addition to discovering a new order of self-renewal capacities, i.e., CD57+CD133- > CD57+CD133+ > CD57-CD133+ > CD57-CD133- cells, we showed that CSC hierarchy was impacted by their spatial locations, and the highest self-renewal capacities were found in CD57+CD133- cells in the HGGINV front (HGGINV/CD57+CD133- cells) mediated by NANOG and SHH over-expression. Direct implantation of CD57+ (CD57+/CD133- and CD57+/CD133+) cells into mouse brains reconstituted diffusely invasion, while depleting CD57+ cells (i.e., CD57-CD133+) abrogated pHGG invasion. CONCLUSION We revealed significantly increased invasive capacities in HGGINV cells, confirmed CD57 as a novel glioma stem cell marker, identified CD57+CD133- and CD57+CD133+ cells as a new cellular driver of pHGG invasion and suggested a new dual-mode hierarchy of HGG stem cells.
Collapse
Affiliation(s)
- Lin Qi
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, 510080, China
- Program of Precision Medicine PDOX Modeling of Pediatric Tumors, Ann & Robert H. Lurie Children's Hospital of Chicago, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yuchen Du
- Program of Precision Medicine PDOX Modeling of Pediatric Tumors, Ann & Robert H. Lurie Children's Hospital of Chicago, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yulun Huang
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Neurosurgery and Brain and Nerve Research Laboratory, the First Affiliated Hospital, and Dushu Lake Hospital, Soochow University Medical School, Suzhou, 215007, China
| | - Mari Kogiso
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Huiyuan Zhang
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Sophie Xiao
- Program of Precision Medicine PDOX Modeling of Pediatric Tumors, Ann & Robert H. Lurie Children's Hospital of Chicago, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Aalaa Abdallah
- Program of Precision Medicine PDOX Modeling of Pediatric Tumors, Ann & Robert H. Lurie Children's Hospital of Chicago, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Milagros Suarez
- Program of Precision Medicine PDOX Modeling of Pediatric Tumors, Ann & Robert H. Lurie Children's Hospital of Chicago, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Long Niu
- Program of Precision Medicine PDOX Modeling of Pediatric Tumors, Ann & Robert H. Lurie Children's Hospital of Chicago, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Zhi-Gang Liu
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
- Cancer Center, Affiliated Dongguan Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Holly Lindsay
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Frank K Braun
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Clifford Stephen
- Center for Epigenetics & Disease Prevention, Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA
| | - Peter J Davies
- Center for Epigenetics & Disease Prevention, Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA
| | - Wan Yee Teo
- The Laboratory of Pediatric Brain Tumor Research Office, SingHealth Duke-NUS Academic Medical Center, Singapore, 169856, Singapore
| | - Adesina Adenkunle
- Department of Pathology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Patricia Baxter
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jack Mf Su
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Xiao-Nan Li
- Program of Precision Medicine PDOX Modeling of Pediatric Tumors, Ann & Robert H. Lurie Children's Hospital of Chicago, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA.
- Robert H. Laurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| |
Collapse
|
3
|
Sheriff A, Takami H, Takayanagi S, Kitagawa Y, Tanaka S, Ikemura M, Matsuura R, Matsushita Y, Ichimura K, Saito N. Embryonal tumor with multilayered rosettes arising from the internal auditory canal of an adult: Illustrative case with molecular investigations. Neuropathology 2024; 44:208-215. [PMID: 37920133 DOI: 10.1111/neup.12951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/06/2023] [Accepted: 10/15/2023] [Indexed: 11/04/2023]
Abstract
Embryonal tumors with multilayered rosettes (ETMRs) are aggressive central nervous system (CNS) tumors that usually occur in young children. Here, we describe the first incidence of ETMR in an adult patient that also originated in the novel location of the internal auditory canal (IAC). The 36-year-old patient initially presented with unsteadiness, diplopia, and tinnitus. The tumor in the IAC was discovered on brain magnetic resonance imaging, and gross total resection was performed followed by pathological and molecular diagnosis. The patient received whole brain and spinal cord radiotherapy after an intracranial recurrence and adjuvant chemotherapy consisting of four cycles of ifosfamide, cisplatin, and etoposide. Progression was rapid; however, the patient survived for 22 months after diagnosis before succumbing to the disease. Molecular investigation revealed a DICER1 mutation at exon 25, and methylation classification categorized the tumor as ETMR, non-C19MC-altered. This case underscores the diverse possible presentations of ETMR, DICER1-mutated and the importance of molecular techniques to characterize and promptly treat atypical ETMR.
Collapse
Affiliation(s)
- Adam Sheriff
- Guy's, King's and St Thomas' (GKT), King's College London, London, UK
| | - Hirokazu Takami
- Department of Neurosurgery, The University of Tokyo Hospital, Tokyo, Japan
| | | | - Yosuke Kitagawa
- Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Shota Tanaka
- Department of Neurosurgery, The University of Tokyo Hospital, Tokyo, Japan
| | - Masako Ikemura
- Department of Pathology, The University of Tokyo Hospital, Tokyo, Japan
| | - Reiko Matsuura
- Department of Neurosurgery, The University of Tokyo Hospital, Tokyo, Japan
| | - Yuko Matsushita
- Department of Brain Disease Translational Research, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Koichi Ichimura
- Department of Brain Disease Translational Research, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Nobuhito Saito
- Department of Neurosurgery, The University of Tokyo Hospital, Tokyo, Japan
| |
Collapse
|
4
|
Dottermusch M, Biabani A, Lempertz T, Schumann Y, Navolic J, Godbole S, Obrecht D, Frank S, Dorostkar MM, Voß H, Schlüter H, Rutkowski S, Schüller U, Neumann JE. Integrated proteomics spotlight the proteasome as a therapeutic vulnerability in embryonal tumors with multilayered rosettes. Neuro Oncol 2024; 26:935-949. [PMID: 38158710 PMCID: PMC11066909 DOI: 10.1093/neuonc/noad265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND Embryonal tumors with multilayered rosettes (ETMR) are rare malignant embryonal brain tumors. The prognosis of ETMR is poor and novel therapeutic approaches are desperately needed. Comprehension of ETMR tumor biology is currently based on only few previous molecular studies, which mainly focused on the analyses of nucleic acids. In this study, we explored integrated ETMR proteomics. METHODS Using mass spectrometry, proteome data were acquired from 16 ETMR and the ETMR cell line BT183. Proteome data were integrated with case-matched global DNA methylation data, publicly available transcriptome data, and proteome data of further embryonal and pediatric brain tumors. RESULTS Proteome-based cluster analyses grouped ETMR samples according to histomorphology, separating neuropil-rich tumors with neuronal signatures from primitive tumors with signatures relating to stemness and chromosome organization. Integrated proteomics showcased that ETMR and BT183 cells harbor proteasome regulatory proteins in abundance, implicating their strong dependency on the proteasome machinery to safeguard proteostasis. Indeed, in vitro assays using BT183 highlighted that ETMR tumor cells are highly vulnerable toward treatment with the CNS penetrant proteasome inhibitor Marizomib. CONCLUSIONS In summary, histomorphology stipulates the proteome signatures of ETMR, and proteasome regulatory proteins are pervasively abundant in these tumors. As validated in vitro, proteasome inhibition poses a promising therapeutic option in ETMR.
Collapse
Affiliation(s)
- Matthias Dottermusch
- Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ali Biabani
- Section of Mass Spectrometric Proteomics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tasja Lempertz
- Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yannis Schumann
- Chair for High Performance Computing, Helmut-Schmidt University, Hamburg, Germany
| | - Jelena Navolic
- Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Shweta Godbole
- Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Denise Obrecht
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stephan Frank
- Division of Neuropathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Mario M Dorostkar
- Center for Neuropathology and Prion Research, Ludwig Maximilian University, Munich, Germany
| | - Hannah Voß
- Section of Mass Spectrometric Proteomics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hartmut Schlüter
- Section of Mass Spectrometric Proteomics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Rutkowski
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ulrich Schüller
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Children’s Cancer Research Center Hamburg, Hamburg, Germany
| | - Julia E Neumann
- Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
5
|
Maklad A, Sedeeq M, Chan KM, Gueven N, Azimi I. Exploring Lin28 proteins: Unravelling structure and functions with emphasis on nervous system malignancies. Life Sci 2023; 335:122275. [PMID: 37984514 DOI: 10.1016/j.lfs.2023.122275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/07/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023]
Abstract
Cancer and stem cells share many characteristics related to self-renewal and differentiation. Both cell types express the same critical proteins that govern cellular stemness, which provide cancer cells with the growth and survival benefits of stem cells. LIN28 is an example of one such protein. LIN28 includes two main isoforms, LIN28A and LIN28B, with diverse physiological functions from tissue development to control of pluripotency. In addition to their physiological roles, LIN28A and LIN28B affect the progression of several cancers by regulating multiple cancer hallmarks. Altered expression levels of LIN28A and LIN28B have been proposed as diagnostic and/or prognostic markers for various malignancies. This review discusses the structure and modes of action of the different LIN28 proteins and examines their roles in regulating cancer hallmarks with a focus on malignancies of the nervous system. This review also highlights some gaps in the field that require further exploration to assess the potential of targeting LIN28 proteins for controlling cancer.
Collapse
Affiliation(s)
- Ahmed Maklad
- School of Pharmacy and Pharmacology, College of Health and Medicine, University of Tasmania, Hobart 7005, Tasmania, Australia
| | - Mohammed Sedeeq
- School of Pharmacy and Pharmacology, College of Health and Medicine, University of Tasmania, Hobart 7005, Tasmania, Australia
| | - Kai Man Chan
- School of Pharmacy and Pharmacology, College of Health and Medicine, University of Tasmania, Hobart 7005, Tasmania, Australia
| | - Nuri Gueven
- School of Pharmacy and Pharmacology, College of Health and Medicine, University of Tasmania, Hobart 7005, Tasmania, Australia
| | - Iman Azimi
- School of Pharmacy and Pharmacology, College of Health and Medicine, University of Tasmania, Hobart 7005, Tasmania, Australia; Monash Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton 3168, Victoria, Australia.
| |
Collapse
|
6
|
Doi A, Suarez GD, Droste R, Horvitz HR. A DEAD-box helicase drives the partitioning of a pro-differentiation NAB protein into nuclear foci. Nat Commun 2023; 14:6593. [PMID: 37852948 PMCID: PMC10584935 DOI: 10.1038/s41467-023-42345-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 10/06/2023] [Indexed: 10/20/2023] Open
Abstract
How cells regulate gene expression in a precise spatiotemporal manner during organismal development is a fundamental question in biology. Although the role of transcriptional condensates in gene regulation has been established, little is known about the function and regulation of these molecular assemblies in the context of animal development and physiology. Here we show that the evolutionarily conserved DEAD-box helicase DDX-23 controls cell fate in Caenorhabditis elegans by binding to and facilitating the condensation of MAB-10, the C. elegans homolog of mammalian NGFI-A-binding (NAB) protein. MAB-10 is a transcriptional cofactor that functions with the early growth response (EGR) protein LIN-29 to regulate the transcription of genes required for exiting the cell cycle, terminal differentiation, and the larval-to-adult transition. We suggest that DEAD-box helicase proteins function more generally during animal development to control the condensation of NAB proteins important in cell identity and that this mechanism is evolutionarily conserved. In mammals, such a mechanism might underlie terminal cell differentiation and when dysregulated might promote cancerous growth.
Collapse
Affiliation(s)
- Akiko Doi
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Gianmarco D Suarez
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Rita Droste
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - H Robert Horvitz
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
7
|
Kamenova M, Kaneva R, Genova K, Gabrovsky N. Embryonal Tumors of the Central Nervous System with Multilayered Rosettes and Atypical Teratoid/Rhabdoid Tumors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1405:225-252. [PMID: 37452940 DOI: 10.1007/978-3-031-23705-8_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
The 2016 WHO classification of tumors of the central nervous system affected importantly the group of CNS embryonal tumors. Molecular analysis on methylome, genome, and transcriptome levels allowed better classification, identification of specific molecular hallmarks of the different subtypes of CNS embryonal tumors, and their more precise diagnosis. Routine application of appropriate molecular testing and standardized reporting are of pivotal importance for adequate prognosis and treatment, but also for epidemiology studies and search for efficient targeted therapies. As a result of this approach, the term primitive neuroectodermal tumor-PNET was removed and a new clinic-pathological entity was introduced-Embryonal tumor with multilayered rosettes (ETMR). The group of CNS embryonal tumors include also medulloblastoma, medulloepithelioma, CNS neuroblastoma, CNS ganglioneuroblastoma, atypical teratoid/rhabdoid tumor (ATRT) and their subtypes. This chapter will focus mainly on ETMR and ATRT. Embryonal tumors with multilayered rosettes and the atypical teratoid/rhabdoid tumors are undifferentiated or poorly differentiated tumors of the nervous system that originate from primitive brain cells, develop exclusively in childhood or adolescence, and are characterized by a high degree of malignancy, aggressive evolution and a tendency to metastasize to the cerebrospinal fluid. Their clinical presentation is similar to other malignant, intracranial, neoplastic lesions and depends mainly on the localization of the tumor, the rise of the intracranial pressure, and eventually the obstruction of the cerebrospinal fluid pathways. The MRI image characteristics of these tumors are largely overlappingintra-axial, hypercellular, heterogeneous tumors, frequently with intratumoral necrosis and/or hemorrhages. Treatment options for ETMR and ATRT are very restricted. Surgery can seldom achieve radical excision. The rarity of the disease hampers the establishment of a chemotherapy protocol and the usual age of the patients limits severely the application of radiotherapy as a therapeutic option. Consequently, the prognosis of these undifferentiated, malignant, aggressive tumors remains dismal with a 5-year survival between 0 and 30%.
Collapse
Affiliation(s)
| | - Radka Kaneva
- Molecular Medicine Center, Department of Medical Chemistry and Biochemistry, Medical University, Sofia, Bulgaria
| | - Kamelia Genova
- Department of Image Diagnostic, University Hospital "Pirogov", Sofia, Bulgaria
| | - Nikolay Gabrovsky
- Department of Neurosurgery, University Hospital "Pirogov", Sofia, Bulgaria.
| |
Collapse
|
8
|
Chadda KR, Solano-Páez P, Khan S, Llempén-López M, Phyu P, Horan G, Trotman J, Tarpey P, Erker C, Lindsay H, Addy D, Jacques TS, Allinson K, Pizer B, Huang A, Murray MJ. Embryonal tumor with multilayered rosettes: Overview of diagnosis and therapy. Neurooncol Adv 2023; 5:vdad052. [PMID: 37727849 PMCID: PMC10506690 DOI: 10.1093/noajnl/vdad052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023] Open
Affiliation(s)
- Karan R Chadda
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Palma Solano-Páez
- Department of Pediatric Hematology and Oncology, Hospital Infantil Virgen del Rocio, Seville, Spain
| | - Sara Khan
- Arthur and Sonia Labatt Brain Tumor Research Centre, Hospital for Sick Children, Toronto, Ontario, Canada
- Monash Children’s Cancer Centre, Monash Children’s Hospital, Monash Health, Melbourne, Victoria, Australia
- Center for Cancer Research, Hudson Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Molecular and Translational Science, School of Medicine, Nursing and Health Science, Monash University, Melbourne, Victoria, Australia
| | - Mercedes Llempén-López
- Department of Pediatric Hematology and Oncology, Hospital Infantil Virgen del Rocio, Seville, Spain
| | - Poe Phyu
- Department of Radiology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Gail Horan
- Department of Oncology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Jamie Trotman
- East Genomics Laboratory Hub (GLH) Genetics Laboratory, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Patrick Tarpey
- East Genomics Laboratory Hub (GLH) Genetics Laboratory, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Craig Erker
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Dalhousie University and IWK Health Centre, Halifax, Nova Scotia, Canada
| | - Holly Lindsay
- Department of Pediatrics, Division of Hematology and Oncology, Baylor College of Medicine, Texas Children’s Hospital, Houston, Texas, USA
| | - Dilys Addy
- SIHMDS-Acquired Genomics Laboratory, NHS North Thames Genomic Laboratory Hub, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Thomas S Jacques
- Developmental Biology and Cancer Department, University College London Great Ormond Street Institute of Child Health, London, UK
- Department of Histopathology, Great Ormond Street Hospital for Children, NHS Foundation Trust, London, UK
| | - Kieren Allinson
- Department of Neuropathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Barry Pizer
- Department of Paediatric Oncology, Alder Hey Children’s NHS Foundation Trust, Liverpool, UK
| | - Annie Huang
- Arthur and Sonia Labatt Brain Tumor Research Centre, Hospital for Sick Children, Toronto, Ontario, Canada
- Division of Haematology/Oncology, Department of Pediatrics, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Matthew J Murray
- Department of Pathology, University of Cambridge, Cambridge, UK
- Department of Paediatric Haematology and Oncology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| |
Collapse
|
9
|
Gojo J, Kjaersgaard M, Zezschwitz BV, Capper D, Tietze A, Kool M, Haberler C, Pizer B, Hoff KV. Rare embryonal and sarcomatous central nervous system tumours: State-of-the art and future directions. Eur J Med Genet 2023; 66:104660. [PMID: 36356895 DOI: 10.1016/j.ejmg.2022.104660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 10/06/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022]
Abstract
The introduction of molecular methods into the diagnostics of central nervous system (CNS) tumours and the subsequent deciphering of their molecular heterogeneity has resulted in a significant impact on paediatric neurooncology. Particularly in the field of rare embryonal and sarcomatous CNS tumours, novel tumour types have been delineated and introduced in the recent 5th edition of the WHO classification of CNS tumours. The rarity and novelty of these tumour types result in diagnostic and therapeutic challenges. Apart from distinct histopathological and molecular features, these tumour types exhibit characteristic clinical properties and require different therapeutic approaches for optimal patient management. However, based on the limited availability of clinical data, current therapeutic recommendations have to be based on data from small, predominantly retrospective patient cohorts. Within this article, we provide guidance for diagnostic work-up and clinical management of rare CNS embryonal tumours ('embryonal tumour with multi-layered rosettes', ETMR; 'CNS neuroblastoma, FOXR2-activated', CNS NB-FOXR2; 'CNS tumour with BCOR-ITD, CNS BCOR-ITD) and rare CNS sarcomatous tumours ('primary intracranial sarcoma, DICER1-mutant', CNS DICER1; 'CIC-rearranged sarcoma', CNS CIC). By emphasizing the significant consequences on patient management in paediatric CNS tumours, we want to encourage wide implementation of comprehensive molecular diagnostics and stress the importance for joint international efforts to further collect and study these rare tumour types.
Collapse
Affiliation(s)
- Johannes Gojo
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria; Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany; Division of Pediatric Oncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany.
| | - Mimi Kjaersgaard
- Department of Paediatrics and Adolescent Medicine, Children and Adolescents with Cancer and Hematological Diseases, Rigshospitalet, Copenhagen, Denmark
| | - Barbara V Zezschwitz
- Department of Paediatric Oncology and Haematology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt, Universität zu Berlin, Germany
| | - David Capper
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany; German Cancer Consortium (DKTK), Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Anna Tietze
- Institute of Neuroradiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Marcel Kool
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany; Division of Pediatric Oncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany; Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Christine Haberler
- Division of Neuropathology and Neurochemistry, Department of Neurology and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | | | - Katja V Hoff
- Department of Paediatric Oncology and Haematology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt, Universität zu Berlin, Germany; Department of Paediatric and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark.
| |
Collapse
|
10
|
Chadda KR, Blakey EE, Coleman N, Murray MJ. The clinical utility of dysregulated microRNA expression in paediatric solid tumours. Eur J Cancer 2022; 176:133-154. [PMID: 36215946 DOI: 10.1016/j.ejca.2022.09.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/10/2022] [Indexed: 12/15/2022]
Abstract
MicroRNAs (miRNAs) are short, non-protein-coding genes that regulate the expression of numerous protein-coding genes. Their expression is dysregulated in cancer, where they may function as oncogenes or tumour suppressor genes. As miRNAs are highly resistant to degradation, they are ideal biomarker candidates to improve the diagnosis and clinical management of cancer, including prognostication. Furthermore, miRNAs dysregulated in malignancy represent potential therapeutic targets. The use of miRNAs for these purposes is a particularly attractive option to explore for paediatric malignancies, where the mutational burden is typically low, in contrast to cancers affecting adult patients. As childhood cancers are rare, it has taken time to accumulate the necessary body of evidence showing the potential for miRNAs to improve clinical management across this group of tumours. Here, we review the current literature regarding the potential clinical utility of miRNAs in paediatric solid tumours, which is now both timely and justified. Exploring such avenues is warranted to improve the management and outcomes of children affected by cancer.
Collapse
Affiliation(s)
- Karan R Chadda
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Ellen E Blakey
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Nicholas Coleman
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK; Department of Paediatric Histopathology, Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge, CB2 0QQ, UK.
| | - Matthew J Murray
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK; Department of Paediatric Haematology and Oncology, Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
11
|
Xu K, Sun Z, Wang L, Guan W. Embryonal tumors with multilayered rosettes, C19MC-altered or not elsewhere classified: Clinicopathological characteristics, prognostic factors, and outcomes of 17 children from 2018 to 2022. Front Oncol 2022; 12:1001959. [DOI: 10.3389/fonc.2022.1001959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 10/07/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveEmbryonal tumors with multilayered rosettes (ETMRs) are a histologically heterogeneous entity and gather embryonal tumors with abundant neuropil and true rosettes (ETANTRs), ependymoblastoma, and medulloepithelioma. ETMRs are highly aggressive and associated with poorer clinical courses. However, cases of this entity are rare, and advances in molecular genetics and therapy are minor. The purpose of our study was to retrospectively analyze the clinical, pathological features, and prognostic factors of ETMRs.MethodsOur cohort consisted of 17 patients diagnosed with ETMRs in our hospital from 2018 to 2022, and two of them were lost to follow-up. Clinical data were retrieved, and immunohistochemistry and genetic analyses were performed.ResultsAmong 17 cases, 16 were ETANTRs, and one was medulloepithelioma. Morphologically, tumor cells of ETANTRs could transform into anaplasia and lose the biphasic architecture during tumor progression. Immunohistochemistry of LIN28A revealed positive expression in 17 cases, and the expression of LIN28A was more intense and diffuse in the recurrent lesions than in primaries. The increased N-MYC copy numbers were detected in the primary tumor and recurrence of patient 8. Moreover, the incidence of metastatic disease was 100% in patients aged > 4 years and 18% in the younger group. For patients receiving chemotherapy, the median overall survival time was 7.4 months, while that of those who didn’t receive it was 1.2 months. Nevertheless, surgical approaches, radiotherapy, age at presentation, gender, tumor location, and metastatic status were not associated with independent prognosis.ConclusionETANTR might not present as the typical morphologies during tumor progression, so analyses of C19MC amplification and Lin28A antibody are indispensable for diagnosing ETMRs accurately. Children aged > 4 years tend to have a higher rate of metastasis in ETMRs. Chemotherapy is the only prognostic factor for ETMRs patients with a favorable prognosis. The biological nature and clinical patterns for recurrent diseases need to be further demonstrated to predict prognosis and guide treatment.
Collapse
|
12
|
Clinical Management of Embryonal Tumor with Multilayered Rosettes: The CCMC Experience. CHILDREN (BASEL, SWITZERLAND) 2022; 9:children9101560. [PMID: 36291496 PMCID: PMC9600658 DOI: 10.3390/children9101560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/01/2022] [Accepted: 10/11/2022] [Indexed: 01/24/2023]
Abstract
OBJECTIVE Embryonal tumors with multilayered rosettes (ETMRs) are highly aggressive pediatric brain tumors with poor prognosis. No standard treatment strategy for them exists because of their rarity. This study aimed to share experiences on the clinical diagnosis and treatment of ETMRs at China Children's Medical Center (CCMC). METHODS Patients who received a diagnosis of an ETMR between January 2017 and June 2020 were included. Clinical characteristics, such as age of onset, tumor size, stage, tumor site, treatment strategy, and clinical outcome, were retrospectively analyzed. RESULTS There were four boys and one girl within 4 years who received a diagnosis during this 4-year timeframe, and were thus included. The average age of morbidity was 29 months (range 16-66 months). The common clinical presentation was headaches and nausea caused by intracranial hypertension. All four patients were chromosome 19 microRNA cluster (C19MC) amplification positive. Two patients achieved complete remission, and one patient attained partial remission after multimodal treatment. Of the two deaths, one died from the rapid progression of the disease and another from tumor-related complications. CONCLUSION ETMRs are extremely rare brain tumors with a high, early mortality in children. Surgery is the mainstream treatment for ETMRs. Some patients may also benefit from postoperative adjuvant chemotherapy and radiotherapy.
Collapse
|
13
|
Ghafouri-Fard S, Khoshbakht T, Hussen BM, Taheri M, Samsami M. Emerging role of non-coding RNAs in the regulation of Sonic Hedgehog signaling pathway. Cancer Cell Int 2022; 22:282. [PMID: 36100906 PMCID: PMC9469619 DOI: 10.1186/s12935-022-02702-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 09/04/2022] [Indexed: 12/04/2022] Open
Abstract
Sonic Hedgehog (Shh) signaling cascade is one of the complex signaling pathways that control the accurately organized developmental processes in multicellular organisms. This pathway has fundamental roles in the tumor formation and induction of resistance to conventional therapies. Numerous non-coding RNAs (ncRNAs) have been found to interact with Shh pathway to induce several pathogenic processes, including malignant and non-malignant disorders. Many of the Shh-interacting ncRNAs are oncogenes whose expressions have been increased in diverse malignancies. A number of Shh-targeting miRNAs such as miR-26a, miR-1471, miR-129-5p, miR-361-3p, miR-26b-5p and miR-361-3p have been found to be down-regulated in tumor tissues. In addition to malignant conditions, Shh-interacting ncRNAs can affect tissue regeneration and development of neurodegenerative disorders. XIST, LOC101930370, lncRNA-Hh, circBCBM1, SNHG6, LINC‐PINT, TUG1 and LINC01426 are among long non-coding RNAs/circular RNAs that interact with Shh pathway. Moreover, miR-424, miR-26a, miR-1471, miR-125a, miR-210, miR-130a-5p, miR-199b, miR-155, let-7, miR-30c, miR-326, miR-26b-5p, miR-9, miR-132, miR-146a and miR-425-5p are among Shh-interacting miRNAs. The current review summarizes the interactions between ncRNAs and Shh in these contexts.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tayyebeh Khoshbakht
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq.,Center of Research and Strategic Studies, Lebanese French University, Erbil, Kurdistan Region,, Iraq
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany. .,Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Majid Samsami
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Ou Y, Zhou M, Che M, Gong H, Wu G, Peng J, Li K, Yang R, Wang X, Zhang X, Liu Y, Feng Z, Qi S. Adult neurogenesis of the median eminence contributes to structural reconstruction and recovery of body fluid metabolism in hypothalamic self-repair after pituitary stalk lesion. Cell Mol Life Sci 2022; 79:458. [PMID: 35907165 PMCID: PMC11073094 DOI: 10.1007/s00018-022-04457-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 01/25/2023]
Abstract
Body fluid homeostasis is critical to survival. The integrity of the hypothalamo-neurohypophysial system (HNS) is an important basis of the precise regulation of body fluid metabolism and arginine vasopressin (AVP) hormone release. Clinically, some patients with central diabetes insipidus (CDI) due to HNS lesions can experience recovery compensation of body fluid metabolism. However, whether the hypothalamus has the potential for structural plasticity and self-repair under pathological conditions remains unclear. Here, we report the repair and reconstruction of a new neurohypophysis-like structure in the hypothalamic median eminence (ME) after pituitary stalk electrical lesion (PEL). We show that activated and proliferating adult neural progenitor cells differentiate into new mature neurons, which then integrate with remodeled AVP fibers to reconstruct the local AVP hormone release neural circuit in the ME after PEL. We found that the transcription factor of NK2 homeobox 1 (NKX2.1) and the sonic hedgehog signaling pathway, mediated by NKX2.1, are the key regulators of adult hypothalamic neurogenesis. Taken together, our study provides evidence that adult ME neurogenesis is involved in the structural reconstruction of the AVP release circuit and eventually restores body fluid metabolic homeostasis during hypothalamic self-repair.
Collapse
Affiliation(s)
- Yichao Ou
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Laboratory of Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Mingfeng Zhou
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Laboratory of Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Mengjie Che
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Laboratory of Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Haodong Gong
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Guangsen Wu
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Junjie Peng
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Laboratory of Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Kai Li
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Runwei Yang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Xingqin Wang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Laboratory of Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Xian Zhang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Laboratory of Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Yawei Liu
- Laboratory of Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Zhanpeng Feng
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.
- Laboratory of Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| | - Songtao Qi
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.
- Laboratory of Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
15
|
Wang W, Su L, Ji F, Zhang D, Wang Y, Zhao J, Jiao RD, Zhang M, Huang E, Jiang H, Zhang J, Jiao J. The human FOXM1 homolog promotes basal progenitor cell proliferation and cortical folding in mouse. EMBO Rep 2022; 23:e53602. [PMID: 34935271 PMCID: PMC8892259 DOI: 10.15252/embr.202153602] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 11/29/2021] [Accepted: 12/13/2021] [Indexed: 11/09/2022] Open
Abstract
Cortical expansion and folding are key processes in human brain development and evolution and are considered to be principal elements of intellectual ability. How cortical folding has evolved and is induced during embryo development is not well understood. Here, we show that the expression of human FOXM1 promotes basal progenitor cell proliferation and induces cortical thickening and folding in mice. Human-specific protein sequences further promote the generation of basal progenitor cells. Human FOXM1 increases the proliferation of neural progenitors by binding to the Lin28a promoter and increasing Lin28a expression. Furthermore, overexpression of LIN28A rescues the proliferation of human FOXM1 knockout neural progenitor cells. Together, our findings demonstrate that a human gene can increase the number of basal progenitor cells in mice, leading to brain size increase and gyrification, and may thus contribute to evolutionary brain development and cortical expansion.
Collapse
Affiliation(s)
- Wenwen Wang
- School of Life SciencesUniversity of Science and Technology of ChinaHefeiChina,State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijingChina
| | - Libo Su
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijingChina,University of Chinese Academy of SciencesBeijingChina
| | - Fen Ji
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijingChina,University of Chinese Academy of SciencesBeijingChina
| | - Dongming Zhang
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijingChina,University of Chinese Academy of SciencesBeijingChina
| | - Yanyan Wang
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijingChina,University of Chinese Academy of SciencesBeijingChina
| | - Jinyue Zhao
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijingChina,University of Chinese Academy of SciencesBeijingChina
| | | | - Mengtian Zhang
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijingChina,University of Chinese Academy of SciencesBeijingChina
| | - Enyu Huang
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical UniversityZhanjiangChina
| | - Hong Jiang
- Department of PhysiologyShandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: PhysiologySchool of Basic MedicineMedical CollegeQingdao UniversityQingdaoChina
| | - Jingjing Zhang
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical UniversityZhanjiangChina
| | - Jianwei Jiao
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijingChina,University of Chinese Academy of SciencesBeijingChina,Co‐Innovation Center of NeuroregenerationNantong UniversityNantongChina,Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina
| |
Collapse
|
16
|
Overexpression of Lin28A in neural progenitor cells in vivo does not lead to brain tumor formation but results in reduced spine density. Acta Neuropathol Commun 2021; 9:185. [PMID: 34801069 PMCID: PMC8606090 DOI: 10.1186/s40478-021-01289-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/02/2021] [Indexed: 11/10/2022] Open
Abstract
LIN28A overexpression has been identified in malignant brain tumors called embryonal tumors with multilayered rosettes (ETMR) but its specific role during brain development remains largely unknown. Radial glia cells of the ventricular zone (VZ) are proposed as a cell of origin for ETMR. We asked whether an overexpression of LIN28A in such cells might affect brain development or result in the formation of brain tumors.Constitutive overexpression of LIN28A in hGFAP-cre::lsl-Lin28A (GL) mice led to a transient increase of proliferation in the cortical VZ at embryonic stages but no postnatal brain tumor formation. Postnatally, GL mice displayed a pyramidal cell layer dispersion of the hippocampus and altered spine and dendrite morphology, including reduced dendritic spine densities in the hippocampus and cortex. GL mice displayed hyperkinetic activity and differential quantitative MS-based proteomics revealed altered time dependent molecular functions regarding mRNA processing and spine morphogenesis. Phosphoproteomic analyses indicated a downregulation of mTOR pathway modulated proteins such as Map1b being involved in microtubule dynamics.In conclusion, we show that Lin28A overexpression transiently increases proliferation of neural precursor cells but it is not sufficient to drive brain tumors in vivo. In contrast, Lin28A impacts on protein abundancy patterns related to spine morphogenesis and phosphorylation levels of proteins involved in microtubule dynamics, resulting in decreased spine densities of neurons in the hippocampus and cortex as well as in altered behavior. Our work provides new insights into the role of LIN28A for neuronal morphogenesis and development and may reveal future targets for treatment of ETMR patients.
Collapse
|
17
|
Co-activation of Sonic hedgehog and Wnt signaling in murine retinal precursor cells drives ocular lesions with features of intraocular medulloepithelioma. Oncogenesis 2021; 10:78. [PMID: 34785636 PMCID: PMC8595639 DOI: 10.1038/s41389-021-00369-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/19/2021] [Accepted: 10/28/2021] [Indexed: 11/12/2022] Open
Abstract
Intraocular medulloepithelioma (IO-MEPL) is a rare embryonal ocular neoplasm, prevalently occurring in children. IO-MEPLs share histomorphological features with CNS embryonal tumors with multilayered rosettes (ETMRs), referred to as intracranial medulloepitheliomas. While Sonic hedgehog (SHH) and WNT signaling pathways are crucial for ETMR pathogenesis, the impact of these pathways on human IO-MEPL development is unclear. Gene expression analyses of human embryonal tumor samples revealed similar gene expression patterns and significant overrepresentation of SHH and WNT target genes in both IO-MEPL and ETMR. In order to unravel the function of Shh and Wnt signaling for IO-MEPL pathogenesis in vivo, both pathways were activated in retinal precursor cells in a time point specific manner. Shh and Wnt co-activation in early Sox2- or Rax-expressing precursor cells resulted in infiltrative ocular lesions that displayed extraretinal expansion. Histomorphological, immunohistochemical, and molecular features showed a strong concordance with human IO-MEPL. We demonstrate a relevant role of WNT and SHH signaling in IO-MEPL and report the first mouse model to generate tumor-like lesions with features of IO-MEPL. The presented data may be fundamental for comprehending IO-MEPL initiation and developing targeted therapeutic approaches.
Collapse
|
18
|
Zheng T, Ghasemi DR, Okonechnikov K, Korshunov A, Sill M, Maass KK, Benites Goncalves da Silva P, Ryzhova M, Gojo J, Stichel D, Arabzade A, Kupp R, Benzel J, Taya S, Adachi T, Shiraishi R, Gerber NU, Sturm D, Ecker J, Sievers P, Selt F, Chapman R, Haberler C, Figarella-Branger D, Reifenberger G, Fleischhack G, Rutkowski S, Donson AM, Ramaswamy V, Capper D, Ellison DW, Herold-Mende CC, Schüller U, Brandner S, Driever PH, Kros JM, Snuderl M, Milde T, Grundy RG, Hoshino M, Mack SC, Gilbertson RJ, Jones DTW, Kool M, von Deimling A, Pfister SM, Sahm F, Kawauchi D, Pajtler KW. Cross-Species Genomics Reveals Oncogenic Dependencies in ZFTA/C11orf95 Fusion-Positive Supratentorial Ependymomas. Cancer Discov 2021; 11:2230-2247. [PMID: 33879448 DOI: 10.1158/2159-8290.cd-20-0963] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 02/16/2021] [Accepted: 04/16/2021] [Indexed: 11/16/2022]
Abstract
Molecular groups of supratentorial ependymomas comprise tumors with ZFTA-RELA or YAP1-involving fusions and fusion-negative subependymoma. However, occasionally supratentorial ependymomas cannot be readily assigned to any of these groups due to lack of detection of a typical fusion and/or ambiguous DNA methylation-based classification. An unbiased approach with a cohort of unprecedented size revealed distinct methylation clusters composed of tumors with ependymal but also various other histologic features containing alternative translocations that shared ZFTA as a partner gene. Somatic overexpression of ZFTA-associated fusion genes in the developing cerebral cortex is capable of inducing tumor formation in vivo, and cross-species comparative analyses identified GLI2 as a key downstream regulator of tumorigenesis in all tumors. Targeting GLI2 with arsenic trioxide caused extended survival of tumor-bearing animals, indicating a potential therapeutic vulnerability in ZFTA fusion-positive tumors. SIGNIFICANCE: ZFTA-RELA fusions are a hallmark feature of supratentorial ependymoma. We find that ZFTA acts as a partner for alternative transcriptional activators in oncogenic fusions of supratentorial tumors with various histologic characteristics. Establishing representative mouse models, we identify potential therapeutic targets shared by ZFTA fusion-positive tumors, such as GLI2.This article is highlighted in the In This Issue feature, p. 2113.
Collapse
Affiliation(s)
- Tuyu Zheng
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - David R Ghasemi
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Konstantin Okonechnikov
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Andrey Korshunov
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Martin Sill
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Kendra K Maass
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, and Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Patricia Benites Goncalves da Silva
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Marina Ryzhova
- Department of Neuropathology, NN Burdenko Neurosurgical Institute, Moscow, Russia
| | - Johannes Gojo
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Department of Pediatrics and Adolescent Medicine and Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Damian Stichel
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Amir Arabzade
- Department of Pediatrics, Division of Hematology and Oncology, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas
| | - Robert Kupp
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, United Kingdom
| | - Julia Benzel
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Shinichiro Taya
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Tokyo, Japan
| | - Toma Adachi
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Tokyo, Japan
| | - Ryo Shiraishi
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Tokyo, Japan
| | - Nicolas U Gerber
- Department of Oncology, University Children's Hospital, Zurich, Switzerland
| | - Dominik Sturm
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, and Immunology, Heidelberg University Hospital, Heidelberg, Germany
- Pediatric Glioma Research Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jonas Ecker
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, and Immunology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Philipp Sievers
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Florian Selt
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, and Immunology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Rebecca Chapman
- Children's Brain Tumour Research Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Christine Haberler
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | | | - Guido Reifenberger
- Institute of Neuropathology, Heinrich Heine University, Medical Faculty, Duesseldorf, Germany
- German Cancer Consortium (DKTK), Partner Site Essen/Duesseldorf, Germany
| | - Gudrun Fleischhack
- Pediatric Oncology and Hematology, Pediatrics III, University Hospital of Essen, Essen, Germany
| | - Stefan Rutkowski
- Department of Paediatric Haematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andrew M Donson
- University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Vijay Ramaswamy
- Department of Paediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - David Capper
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - David W Ellison
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | | | - Ulrich Schüller
- Department of Paediatric Haematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute, Children's Cancer Center Hamburg, Hamburg, Germany
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sebastian Brandner
- Division of Neuropathology, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, United Kingdom
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Pablo Hernáiz Driever
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Johan M Kros
- Department of Pathology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Matija Snuderl
- Division of Neuropathology, Department of Pathology, NYU Langone Health, New York, New York
| | - Till Milde
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, and Immunology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Richard G Grundy
- Children's Brain Tumour Research Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Mikio Hoshino
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Tokyo, Japan
| | - Stephen C Mack
- Department of Pediatrics, Division of Hematology and Oncology, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas
| | - Richard J Gilbertson
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, United Kingdom
- Department of Oncology, University of Cambridge, Hutchison/MRC Research Centre, Cambridge, United Kingdom
| | - David T W Jones
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Pediatric Glioma Research Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marcel Kool
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Princess Máxima Centre for Paediatric Oncology, Utrecht, the Netherlands
| | - Andreas von Deimling
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Stefan M Pfister
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, and Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Felix Sahm
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Daisuke Kawauchi
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Tokyo, Japan
| | - Kristian W Pajtler
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, and Immunology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
19
|
Abele M, Müller SL, Schleicher S, Hartmann U, Döring M, Queudeville M, Lang P, Handgretinger R, Ebinger M. Arsenic trioxide in pediatric cancer - a case series and review of literature. Pediatr Hematol Oncol 2021; 38:471-485. [PMID: 33635158 DOI: 10.1080/08880018.2021.1872748] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Arsenic trioxide (ATO) has become an established component of treatment protocols for acute promyelocytic leukemia (APL) with excellent efficacy and no relevant sustained toxicity. Part of its action has been attributed to the inhibition of Hedgehog signaling (Hh) which enables a possible therapeutic approach as many pediatric tumor entities have been associated with increased Hh activity. We retrospectively analyzed 31 patients with refractory and relapsed pediatric cancer who were treated with ATO at the University Children's Hospital of Tuebingen. Additionally a literature review on the clinical and preclinical use of ATO in pediatric cancer treatment was performed.ATO alone as well as combinations with other drugs have proven effective in vitro and in mouse models of various pediatric malignancies. However, only few data on the clinical use of ATO in pediatric patients besides APL exist. In our patient sample, ATO was overall well tolerated in the treatment of various pediatric cancers, even in combination with other cytostatic drugs. Due to distinct tumor entities, differently progressed disease stages and varying co-medication, no clear statement can be made regarding the efficacy of ATO treatment. However, patients with proven Hh activation in molecular tumor profiling surpassed all other patients, who received ATO in an experimental treatment setting, in terms of survival. As molecular profiling of tumors increases and enhanced Hh activity can be detected at an early stage, ATO might expand its clinical use to other pediatric malignancies beyond APL depending on further clinical studies.
Collapse
Affiliation(s)
- Michael Abele
- Pediatric Hematology/Oncology, Department of Pediatrics, University Hospital Tuebingen, Tuebingen, Germany
| | - Sara-Lena Müller
- Clinic for Anaesthesiology, Critical Care, Emergency Medicine and Pain Management, Klinikum Ludwigsburg, Germany
| | - Sabine Schleicher
- Pediatric Hematology/Oncology, Department of Pediatrics, University Hospital Tuebingen, Tuebingen, Germany
| | | | - Michaela Döring
- Pediatric Hematology/Oncology, Department of Pediatrics, University Hospital Tuebingen, Tuebingen, Germany
| | - Manon Queudeville
- Pediatric Hematology/Oncology, Department of Pediatrics, University Hospital Tuebingen, Tuebingen, Germany
| | - Peter Lang
- Pediatric Hematology/Oncology, Department of Pediatrics, University Hospital Tuebingen, Tuebingen, Germany
| | - Rupert Handgretinger
- Pediatric Hematology/Oncology, Department of Pediatrics, University Hospital Tuebingen, Tuebingen, Germany
| | - Martin Ebinger
- Pediatric Hematology/Oncology, Department of Pediatrics, University Hospital Tuebingen, Tuebingen, Germany
| |
Collapse
|
20
|
von Hoff K, Haberler C, Schmitt-Hoffner F, Schepke E, de Rojas T, Jacobs S, Zapotocky M, Sumerauer D, Perek-Polnik M, Dufour C, van Vuurden D, Slavc I, Gojo J, Pickles JC, Gerber NU, Massimino M, Gil-da-Costa MJ, Garami M, Kumirova E, Sehested A, Scheie D, Cruz O, Moreno L, Cho J, Zeller B, Bovenschen N, Grotzer M, Alderete D, Snuderl M, Zheludkova O, Golanov A, Okonechnikov K, Mynarek M, Juhnke BO, Rutkowski S, Schüller U, Pizer B, Zezschwitz BV, Kwiecien R, Wechsung M, Konietschke F, Hwang EI, Sturm D, Pfister SM, von Deimling A, Rushing EJ, Ryzhova M, Hauser P, Łastowska M, Wesseling P, Giangaspero F, Hawkins C, Figarella-Branger D, Eberhart C, Burger P, Gessi M, Korshunov A, Jacques TS, Capper D, Pietsch T, Kool M. Therapeutic implications of improved molecular diagnostics for rare CNS-embryonal tumor entities: results of an international, retrospective study. Neuro Oncol 2021; 23:1597-1611. [PMID: 34077956 DOI: 10.1093/neuonc/noab136] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Only few data are available on treatment-associated behavior of distinct rare CNS-embryonal tumor entities previously treated as "CNS-primitive neuroectodermal tumors" (CNS-PNET). Respective data on specific entities, including CNS neuroblastoma, FOXR2 activated (CNS NB-FOXR2), and embryonal tumor with multi-layered rosettes (ETMR) are needed for development of differentiated treatment strategies. METHODS Within this retrospective, international study, tumor samples of clinically well-annotated patients with the original diagnosis of CNS-PNET were analyzed using DNA methylation arrays (n=307). Additional cases (n=66) with DNA methylation pattern of CNS NB-FOXR2 were included irrespective of initial histological diagnosis. Pooled clinical data (n=292) were descriptively analyzed. RESULTS DNA methylation profiling of "CNS-PNET" classified 58(19%) cases as ETMR, 57(19%) as HGG, 36(12%) as CNS NB-FOXR2, and 89(29%) cases were classified into 18 other entities. Sixty-seven (22%) cases did not show DNA methylation patterns similar to established CNS tumor reference classes. Best treatment results were achieved for CNS NB-FOXR2 patients (5-year PFS: 63%±7%, OS: 85%±5%, n=63), with 35/42 progression-free survivors after upfront craniospinal irradiation (CSI) and chemotherapy. The worst outcome was seen for ETMR and HGG patients with 5-year PFS of 18%±6% and 22%±7%, and 5-year OS of 24%±6% and 25%±7%, respectively. CONCLUSION The historically reported poor outcome of CNS-PNET patients becomes highly variable when tumors are molecularly classified based on DNA methylation profiling. Patients with CNS NB-FOXR2 responded well to current treatments and a standard-risk-CSI based regimen may be prospectively evaluated. The poor outcome of ETMR across applied treatment strategies substantiates the necessity for evaluation of novel treatments.
Collapse
Affiliation(s)
- Katja von Hoff
- Department of Pediatric Oncology and Hematology, Charité University Medicine, Berlin, Germany
| | - Christine Haberler
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Austria
| | - Felix Schmitt-Hoffner
- Hopp Children´s Cancer Center (KiTZ), Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Elizabeth Schepke
- The Queen Silvia Children's Hospital, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Teresa de Rojas
- Pediatric OncoGenomics Unit, Children's University Hospital Niño Jesús, Madrid, Spain
| | - Sandra Jacobs
- Department of Pediatrics, KU Leuven and University Hospitals Leuven, Leuven, Belgium
| | - Michal Zapotocky
- Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - David Sumerauer
- Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Marta Perek-Polnik
- Department of Oncology, The Children's Memorial Health Institute, University of Warsaw, Warsaw, Poland
| | - Christelle Dufour
- Gustave Roussy Cancer Center, Department of Pediatric and Adolescent Oncology, Villejuif, France.,Paris-Saclay University, INSERM, Molecular predictors and New targets in Oncology, Villejuif, France
| | | | - Irene Slavc
- Department of Pediatrics and Adolescent Medicine and Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Johannes Gojo
- Department of Pediatrics and Adolescent Medicine and Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Jessica C Pickles
- Developmental Biology and Cancer Research & Teaching Department, UCL Great Ormond Street Institute of Child Health, London, UK.,Department of Histopathology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Nicolas U Gerber
- Department of Oncology, University Children's Hospital, Zurich, Switzerland
| | - Maura Massimino
- Pediatric Unit, Fondazione IRCCS Istituto Nazionale die Tumori, Milan, Italy
| | | | - Miklos Garami
- 2nd Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Ella Kumirova
- Department of Neuro-Oncology, Dmitry Rogachev National Medical Research Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Astrid Sehested
- Department of Pediatrics and Adolescent Medicine, Rigshospitalet, Copenhagen, Denmark
| | - David Scheie
- Department of Pathology, Rigshospitalet, Copenhagen University Hospital, Frederik Vs vej 11, 2100 Copenhagen, Denmark
| | - Ofelia Cruz
- Pediatric Oncology Department. Hospital Sant Joan de Deu. Barcelona, Spain
| | - Lucas Moreno
- Paediatric Haematology & Oncology Division, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Jaeho Cho
- Dept. of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea
| | - Bernward Zeller
- Division of Pediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Niels Bovenschen
- Department of Pathology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Michael Grotzer
- Department of Oncology, University Children's Hospital, Zurich, Switzerland
| | - Daniel Alderete
- Service of Hematology/Oncology, Hospital JP Garrahan, Buenos Aires, Argentina
| | - Matija Snuderl
- Department of Pathology, NYU Langone Health and School of Medicine, New York, NY, USA
| | - Olga Zheludkova
- Department of Neurooncology, Russian Scientific Center of Radiology, Moscow, Russia
| | - Andrey Golanov
- Department of Neuroradiology, Burdenko Neurosurgical Institute, Moscow, Russia
| | - Konstantin Okonechnikov
- Hopp Children´s Cancer Center (KiTZ), Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Martin Mynarek
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg
| | - B Ole Juhnke
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg
| | - Stefan Rutkowski
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg
| | - Ulrich Schüller
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg.,Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Research Institute Children's Cancer Center Hamburg, Hamburg, Germany
| | - Barry Pizer
- Institute of Translational Research, University of Liverpool, UK
| | - Barbara V Zezschwitz
- Department of Pediatric Oncology and Hematology, Charité University Medicine, Berlin, Germany
| | - Robert Kwiecien
- Institute of Biostatistics and Clinical Research, University of Muenster, Muenster, Germany
| | - Maximilian Wechsung
- Institute of Biometry and Clinical Epidemiology, Charité University Medicine and Berlin Institute of Health, Berlin, Germany
| | - Frank Konietschke
- Institute of Biometry and Clinical Epidemiology, Charité University Medicine and Berlin Institute of Health, Berlin, Germany
| | - Eugene I Hwang
- Department of Pediatric Hematology-Oncology, Center for Cancer and Immunology Research and Neuroscience Research, Children's National Medical Center, Washington DC, USA
| | - Dominik Sturm
- Hopp Children´s Cancer Center (KiTZ), Heidelberg, Germany.,Pediatric Glioma Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany.,Department of Pediatric Oncology, Hematology & Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Stefan M Pfister
- Hopp Children´s Cancer Center (KiTZ), Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany.,Department of Pediatric Oncology, Hematology & Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Andreas von Deimling
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany.,Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Elisabeth J Rushing
- Institute of Neuropathology, University Medical Center Zurich, Zurich, Switzerland
| | - Marina Ryzhova
- Department of Neuropathology, Burdenko Neurosurgical Institute, Moscow, Russia
| | - Peter Hauser
- 2nd Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Maria Łastowska
- Department of Pathomorphology, Children's Memorial Health Institute, Warsaw, Poland
| | - Pieter Wesseling
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands.,Amsterdam University Medical Center / VUmc, Amsterdam, The Netherlands
| | - Felice Giangaspero
- Department of Radiological, Oncological and Anatomopathological Sciences, Sapienza University of Rome, Rome, Italy.,IRCCS Neuromed, Pozzilli (IS), Italy
| | - Cynthia Hawkins
- Division of Pathology, The Hospital for Sick Children, Toronto, Canada
| | - Dominique Figarella-Branger
- Aix-Marseille Univ, APHM, CNRS, INP, Inst Neurophysiopathol, CHU Timone, Service d'Anatomie Pathologique et de Neuropathologie, Marseille, France
| | - Charles Eberhart
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - Peter Burger
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - Marco Gessi
- Neuropathology Unit, Division of Pathology, Fondazione Policlinico Universitario "A.Gemelli" IRCCS, Università Cattolica S.Cuore, Rome, Italy
| | - Andrey Korshunov
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany.,Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Tom S Jacques
- Department of Histopathology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - David Capper
- Department of Neuropathology, Charité University Medicine, and Berlin Institute of Health, Berlin, Germany.,German Cancer Consortium (DKTK), partner site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Torsten Pietsch
- Department of Neuropathology, DGNN Brain Tumor Reference Center, University of Bonn, DZNE German Center for Neurodegenerative Diseases, Bonn, Germany
| | - Marcel Kool
- Hopp Children´s Cancer Center (KiTZ), Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany.,Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| |
Collapse
|
21
|
Prieto-Colomina A, Fernández V, Chinnappa K, Borrell V. MiRNAs in early brain development and pediatric cancer: At the intersection between healthy and diseased embryonic development. Bioessays 2021; 43:e2100073. [PMID: 33998002 DOI: 10.1002/bies.202100073] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/12/2021] [Accepted: 04/15/2021] [Indexed: 12/15/2022]
Abstract
The size and organization of the brain are determined by the activity of progenitor cells early in development. Key mechanisms regulating progenitor cell biology involve miRNAs. These small noncoding RNA molecules bind mRNAs with high specificity, controlling their abundance and expression. The role of miRNAs in brain development has been studied extensively, but their involvement at early stages remained unknown until recently. Here, recent findings showing the important role of miRNAs in the earliest phases of brain development are reviewed, and it is discussed how loss of specific miRNAs leads to pathological conditions, particularly adult and pediatric brain tumors. Let-7 miRNA downregulation and the initiation of embryonal tumors with multilayered rosettes (ETMR), a novel link recently discovered by the laboratory, are focused upon. Finally, it is discussed how miRNAs may be used for the diagnosis and therapeutic treatment of pediatric brain tumors, with the hope of improving the prognosis of these devastating diseases.
Collapse
Affiliation(s)
- Anna Prieto-Colomina
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d'Alacant, Spain
| | - Virginia Fernández
- Neurobiology of miRNA, Fondazione Istituto Italiano di Tecnologia (IIT), Genoa, Italy
| | - Kaviya Chinnappa
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d'Alacant, Spain
| | - Víctor Borrell
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d'Alacant, Spain
| |
Collapse
|
22
|
Juhnke BO, Gessi M, Gerber NU, Friedrich C, Mynarek M, von Bueren AO, Haberler C, Schüller U, Kortmann RD, Timmermann B, Bison B, Warmuth-Metz M, Kwiecien R, Pfister SM, Spix C, Pietsch T, Kool M, Rutkowski S, von Hoff K. Treatment of Embryonal Tumours with Multilayered Rosettes with Carboplatin/Etoposide Induction and High-dose Chemotherapy within the Prospective P-HIT Trial. Neuro Oncol 2021; 24:127-137. [PMID: 33908610 DOI: 10.1093/neuonc/noab100] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Embryonal tumours with multilayered rosettes (ETMR) are highly aggressive tumours occurring in early childhood. Published clinical data refer to retrospective, heterogeneously treated cohorts. Here, we describe the outcome of patients treated according to the prospective P-HIT trial and subsequent HIT2000-interim-registry. PATIENTS AND METHODS Age-stratified treatment included carboplatin/etoposide-induction, tandem-high-dose chemotherapy ("CARBO/ETO+HDCT") and response-stratified radiotherapy. Patients with centrally reviewed neuropathological and molecularly confirmed diagnosis of ETMR recruited within the P-HIT trial (2001-2011; n=19), the HIT2000-interim-registry (2012-2014; n=12) and earlier HIT-trials (n=4) were selected for analysis. RESULTS Age-adjusted incidence rate was 1.35 per 1 million children (aged 1-4 years) in the years 2012-2014. Median age at diagnosis for 35 patients was 2.9 years. Metastases at diagnosis were detected in 9 patients. One patient died due to postoperative complications. For 30 patients with non-brainstem tumour location, 5-year progression-free (PFS) and overall survival (OS) were 35% and 47% after treatment with CARBO/ETO+HDCT (n=17), compared to 0% and 8% with other treatments (n=13, p[OS]=0.011). All 4 patients with brainstem tumour died within 10 months after diagnosis. By multivariable analysis, supratentorial location: (HR[PFS]:0.07 [95%CI:0.01-0.38], p=0.003), localised disease (M0): (HR[OS] M0, no residual tumor:0.30 [95%CI:0.009-1.09], p=0.068; M0, residual tumor:0.18 [95%CI: 0.04-0.76], p=0.020) and CARBO/ETO+HDCT treatment (HR[OS]:0.16 [95%CI:0.05-054], p=0.003) were identified as independent prognostic factors. Of 9 survivors, 6 were treated with radiotherapy (craniospinal 4; local 2). CONCLUSIONS Our data indicate improved survival with intensified chemotherapy (CARBO/ETO+HDCT). However, despite intensive treatment, the outcome was poor. Thus, innovative therapies need to be evaluated urgently in an upfront setting.
Collapse
Affiliation(s)
- B-Ole Juhnke
- HIT-MED Study Centre, Clinic for Paediatric Haematology and Oncology, University Medical Centre Hamburg-Eppendorf, Germany
| | - Marco Gessi
- Neuropathology Unit, Division of Pathology, Fondazione Policlinico Universitario "A Gemelli" IRCCS, Catholic University Rome, Italy
| | - Nicolas U Gerber
- Department of Oncology, University Children's Hospital Zürich, Switzerland
| | - Carsten Friedrich
- Department of Paediatrics and Paediatric Haematology/Oncology, University Children's Hospital, Klinikum Oldenburg AöR, Germany
| | - Martin Mynarek
- HIT-MED Study Centre, Clinic for Paediatric Haematology and Oncology, University Medical Centre Hamburg-Eppendorf, Germany
| | - André O von Bueren
- Department of Paediatrics, Obstetrics and Gynaecology, Division of Paediatric Haematology and Oncology, University Hospital of Geneva, Switzerland
| | - Christine Haberler
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Austria
| | - Ulrich Schüller
- Institute of Neuropathology, University Medical Centre Hamburg-Eppendorf, and Research Institute Children's Cancer Center Hamburg, Germany
| | - Rolf-Dieter Kortmann
- HIT Radiotherapy Reference Centre, Clinic for Radiotherapy, Leipzig University Medicine, Germany
| | - Beate Timmermann
- Department of Particle Therapy, University Hospital Essen, West German Proton Therapy Centre Essen (WPE), West German Cancer Centre (WTZ) and German Cancer Consortium (DKTK), Germany
| | - Brigitte Bison
- Institute for Diagnostic and Interventional Neuroradiology, University Hospital Augsburg, Germany
| | - Monika Warmuth-Metz
- HIT Neuroradiology Reference Centre, Institute for Diagnostic and Interventional Neuroradiology, University Hospital Augsburg, Germany
| | - Robert Kwiecien
- Institute of Biostatistics and Clinical Research, Faculty of Medicine, University of Münster, Germany
| | - Stefan M Pfister
- Hopp Children's Cancer Center (KITZ), Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Claudia Spix
- Division of Childhood Cancer Epidemiology, Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center of the Johannes Gutenberg University Mainz, Germany
| | - Torsten Pietsch
- DGNN Brain Tumour Reference Centre, Institute of Neuropathology, University Hospital Bonn, Germany
| | - Marcel Kool
- Hopp Children's Cancer Center (KITZ), Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Stefan Rutkowski
- HIT-MED Study Centre, Clinic for Paediatric Haematology and Oncology, University Medical Centre Hamburg-Eppendorf, Germany
| | - Katja von Hoff
- Division of Oncology and Haematology, Department of Paediatrics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany
| |
Collapse
|
23
|
Garcia-Moure M, Gonzalez-Huarriz M, Labiano S, Guruceaga E, Bandres E, Zalacain M, Marrodan L, de Andrea C, Villalba M, Martinez-Velez N, Laspidea V, Puigdelloses M, Gallego Perez-Larraya J, Iñigo-Marco I, Stripecke R, Chan JA, Raabe EH, Kool M, Gomez-Manzano C, Fueyo J, Patiño-García A, Alonso MM. Delta-24-RGD, an Oncolytic Adenovirus, Increases Survival and Promotes Proinflammatory Immune Landscape Remodeling in Models of AT/RT and CNS-PNET. Clin Cancer Res 2021; 27:1807-1820. [PMID: 33376098 PMCID: PMC7617079 DOI: 10.1158/1078-0432.ccr-20-3313] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/14/2020] [Accepted: 12/22/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Atypical teratoid/rhabdoid tumors (AT/RT) and central nervous system primitive neuroectodermal tumors (CNS-PNET) are pediatric brain tumors with poor survival and life-long negative side effects. Here, the aim was to characterize the efficacy and safety of the oncolytic adenovirus, Delta-24-RGD, which selectively replicates in and kills tumor cells. EXPERIMENTAL DESIGN Delta-24-RGD determinants for infection and replication were evaluated in patient expression datasets. Viral replication and cytotoxicity were assessed in vitro in a battery of CNS-PNET and AT/RT cell lines. In vivo, efficacy was determined in different orthotopic mouse models, including early and established tumor models, a disseminated AT/RT lesion model, and immunocompetent humanized mouse models (hCD34+-NSG-SGM3). RESULTS Delta-24-RGD infected and replicated efficiently in all the cell lines tested. In addition, the virus induced dose-dependent cytotoxicity [IC50 value below 1 plaque-forming unit (PFU)/cell] and the release of immunogenic markers. In vivo, a single intratumoral Delta-24-RGD injection (107 or 108 PFU) significantly increased survival and led to long-term survival in AT/RT and PNET models. Delta-24-RGD hindered the dissemination of AT/RTs and increased survival, leading to 70% of long-term survivors. Of relevance, viral administration to established tumor masses (30 days after engraftment) showed therapeutic benefit. In humanized immunocompetent models, Delta-24-RGD significantly extended the survival of mice bearing AT/RTs or PNETs (ranging from 11 to 27 days) and did not display any toxicity associated with inflammation. Immunophenotyping of Delta-24-RGD-treated tumors revealed increased CD8+ T-cell infiltration. CONCLUSIONS Delta-24-RGD is a feasible therapeutic option for AT/RTs and CNS-PNETs. This work constitutes the basis for potential translation to the clinical setting.
Collapse
Affiliation(s)
- Marc Garcia-Moure
- Health Research Institute of Navarra (IdiSNA), Pamplona, Navarra, Spain.
- Program in Solid Tumors, Foundation for the Applied Medical Research, Pamplona, Navarra, Spain
- Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Navarra, Spain
| | - Marisol Gonzalez-Huarriz
- Health Research Institute of Navarra (IdiSNA), Pamplona, Navarra, Spain
- Program in Solid Tumors, Foundation for the Applied Medical Research, Pamplona, Navarra, Spain
- Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Navarra, Spain
| | - Sara Labiano
- Health Research Institute of Navarra (IdiSNA), Pamplona, Navarra, Spain
- Program in Solid Tumors, Foundation for the Applied Medical Research, Pamplona, Navarra, Spain
- Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Navarra, Spain
| | - Elizabeth Guruceaga
- Health Research Institute of Navarra (IdiSNA), Pamplona, Navarra, Spain
- Bioinformatics Platform, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Navarra, Spain
| | - Eva Bandres
- Health Research Institute of Navarra (IdiSNA), Pamplona, Navarra, Spain
- Immunology Unit, Department of Hematology, Complejo Hospitalario de Navarra, Pamplona, Navarra, Spain
| | - Marta Zalacain
- Health Research Institute of Navarra (IdiSNA), Pamplona, Navarra, Spain
- Program in Solid Tumors, Foundation for the Applied Medical Research, Pamplona, Navarra, Spain
- Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Navarra, Spain
| | - Lucia Marrodan
- Health Research Institute of Navarra (IdiSNA), Pamplona, Navarra, Spain
- Program in Solid Tumors, Foundation for the Applied Medical Research, Pamplona, Navarra, Spain
- Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Navarra, Spain
| | - Carlos de Andrea
- Health Research Institute of Navarra (IdiSNA), Pamplona, Navarra, Spain
- Department of Pathology, Clínica Universidad de Navarra, Pamplona, Navarra, Spain
| | - Maria Villalba
- Health Research Institute of Navarra (IdiSNA), Pamplona, Navarra, Spain
- Department of Pathology, Clínica Universidad de Navarra, Pamplona, Navarra, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Naiara Martinez-Velez
- Health Research Institute of Navarra (IdiSNA), Pamplona, Navarra, Spain
- Program in Solid Tumors, Foundation for the Applied Medical Research, Pamplona, Navarra, Spain
- Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Navarra, Spain
| | - Virginia Laspidea
- Health Research Institute of Navarra (IdiSNA), Pamplona, Navarra, Spain
- Program in Solid Tumors, Foundation for the Applied Medical Research, Pamplona, Navarra, Spain
- Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Navarra, Spain
| | - Montse Puigdelloses
- Health Research Institute of Navarra (IdiSNA), Pamplona, Navarra, Spain
- Program in Solid Tumors, Foundation for the Applied Medical Research, Pamplona, Navarra, Spain
- Department of Neurology, Clínica Universidad de Navarra, Pamplona, Navarra, Spain
| | - Jaime Gallego Perez-Larraya
- Health Research Institute of Navarra (IdiSNA), Pamplona, Navarra, Spain
- Program in Solid Tumors, Foundation for the Applied Medical Research, Pamplona, Navarra, Spain
- Department of Neurology, Clínica Universidad de Navarra, Pamplona, Navarra, Spain
| | - Ignacio Iñigo-Marco
- Health Research Institute of Navarra (IdiSNA), Pamplona, Navarra, Spain
- Program in Solid Tumors, Foundation for the Applied Medical Research, Pamplona, Navarra, Spain
- Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Navarra, Spain
| | - Renata Stripecke
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Laboratory of Regenerative Immune Therapies Applied of the Research Network REBIRTH, German Centre for Infection Research (DZIF), partner site Hannover, Hannover, Germany
| | - Jennifer A Chan
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Eric H Raabe
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
- Division of Pediatric Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Marcel Kool
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Hopp Children's Cancer Center (KITZ), Heidelberg, Germany
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Candelaria Gomez-Manzano
- Department of NeuroOncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Juan Fueyo
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ana Patiño-García
- Health Research Institute of Navarra (IdiSNA), Pamplona, Navarra, Spain
- Program in Solid Tumors, Foundation for the Applied Medical Research, Pamplona, Navarra, Spain
- Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Navarra, Spain
| | - Marta M Alonso
- Health Research Institute of Navarra (IdiSNA), Pamplona, Navarra, Spain.
- Program in Solid Tumors, Foundation for the Applied Medical Research, Pamplona, Navarra, Spain
- Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Navarra, Spain
| |
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW This review aims to give an update on histopathological, molecular and clinical features of central nervous system (CNS) 'embryonal' tumors. RECENT FINDINGS The taxonomy of previously called 'CNS primitive neuroectodermal tumor' (CNS PNET) has been deeply modified since the discovery of specific molecular profiles for each various sub-entity of these rare, mainly pediatric, tumors. The term 'embryonal tumors' now refers to medulloblastomas, atypical teratoid rhabdoid tumors (AT/RT) and other rare entities, defined by their specific histopathological features together with expression-based or methylation-based profiling; specific gene mutations or fusions characterize some tumor types. In addition, the compilation of large series of molecular data has allowed to dissecting several of these tumor types in molecular subgroups, increasing the number of tumor entities, and leading to an amazingly complex nosology of rare-to-extremely rare malignancies. This rarity precludes from having strong evidence-based therapeutic recommendations, although international efforts are conducted to define the best treatment strategies. SUMMARY Embryonal tumors now correspond to molecularly well defined entities, which deserve further international collaborations to specify their biology and the appropriate burden of treatment, in order to minimize the long-term side-effects of treatment of these overall rare and severe diseases of childhood.
Collapse
|
25
|
Mills WT, Nassar NN, Ravindra D, Li X, Meffert MK. Multi-Level Regulatory Interactions between NF-κB and the Pluripotency Factor Lin28. Cells 2020; 9:E2710. [PMID: 33348917 PMCID: PMC7767241 DOI: 10.3390/cells9122710] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 12/22/2022] Open
Abstract
An appreciation for the complex interactions between the NF-κB transcription factor and the Lin28 RNA binding protein/let-7 microRNA pathways has grown substantially over the past decade. Both the NF-κB and Lin28/let-7 pathways are master regulators impacting cell survival, growth and proliferation, and an understanding of how interfaces between these pathways participate in governing pluripotency, progenitor differentiation, and neuroplastic responses remains an emerging area of research. In this review, we provide a concise summary of the respective pathways and focus on the function of signaling interactions at both the transcriptional and post-transcriptional levels. Regulatory loops capable of providing both reinforcing and extinguishing feedback have been described. We highlight convergent findings in disparate biological systems and indicate future directions for investigation.
Collapse
Affiliation(s)
- William T. Mills
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (W.T.M.IV); (N.N.N.); (D.R.); (X.L.)
| | - Noor N. Nassar
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (W.T.M.IV); (N.N.N.); (D.R.); (X.L.)
| | - Deepa Ravindra
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (W.T.M.IV); (N.N.N.); (D.R.); (X.L.)
| | - Xinbei Li
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (W.T.M.IV); (N.N.N.); (D.R.); (X.L.)
| | - Mollie K. Meffert
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (W.T.M.IV); (N.N.N.); (D.R.); (X.L.)
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
26
|
Raghuram N, Khan S, Mumal I, Bouffet E, Huang A. Embryonal tumors with multi-layered rosettes: a disease of dysregulated miRNAs. J Neurooncol 2020; 150:63-73. [PMID: 33090313 DOI: 10.1007/s11060-020-03633-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/23/2020] [Indexed: 01/01/2023]
Abstract
INTRODUCTION ETMRs are highly lethal, pediatric embryonal brain tumors, previously classified as various histologic diagnoses including supratentorial primitive neuroectodermal tumors (sPNET) and CNS PNET. With recognition that these tumors harbor recurrent amplification of a novel oncogenic miRNA cluster on chr19, C19MC, ETMRs were designated as a distinct biological and molecular entity with a spectrum of histologic and clinical manifestations. METHODS We reviewed published literature describing clinical presentation, the genetic and epigenetic drivers of oncogenesis, and recent therapeutic strategies adopted to combat these aggressive tumors. RESULTS As a consequence of C19MC amplification, ETMRs upregulate several oncogenic and pluripotency proteins, including LIN28A, DNMT3B and MYCN, that confer a unique epigenetic signature reminiscent of nascent embryonic stem cells. In this review, we focus on the dysregulation of miRNAs in ETMR, the major pathogenic mechanism identified in this disease. CONCLUSION Despite the use of multi-modal therapeutic regimens, ETMR patients have dismal survival. Understanding the unique biology of these tumors has provided new insights towards novel therapeutic targets.
Collapse
Affiliation(s)
- Nikhil Raghuram
- Division of Hematology-Oncology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, 555 University Ave, Toronto, ON, M5G1X8, Canada
| | - Sara Khan
- Monash Children's Cancer Centre, Monash Children's Hospital. Monash Health. Center for Cancer Research, Hudson Institute of Medical Research, and Department of Molecular and Translational Science, School of Medicine, Nursing and Health Science, Monash University, Clayton, VIC, 3168, Australia.,Division of Hematology/Oncology, Arthur and Sonia Labatt Brain Tumor Research Centre, Hospital for Sick Children, Toronto, ON, M5G0A4, Canada
| | - Iqra Mumal
- Division of Hematology/Oncology, Arthur and Sonia Labatt Brain Tumor Research Centre, Hospital for Sick Children, Toronto, ON, M5G0A4, Canada.,Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, M5S1A8, Canada
| | - Eric Bouffet
- Division of Hematology-Oncology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, 555 University Ave, Toronto, ON, M5G1X8, Canada
| | - Annie Huang
- Division of Hematology-Oncology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, 555 University Ave, Toronto, ON, M5G1X8, Canada. .,Division of Hematology/Oncology, Arthur and Sonia Labatt Brain Tumor Research Centre, Hospital for Sick Children, Toronto, ON, M5G0A4, Canada. .,Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, M5S1A8, Canada. .,Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, ON, M5G1L7, Canada.
| |
Collapse
|
27
|
Tandon I, Waghmode A, Sharma NK. Cancer Stem Cells Equipped with Powerful Hedgehog Signaling and Better Epigenetic Memory: Avenues to Look for Cancer Therapeutics. Curr Cancer Drug Targets 2020; 19:877-884. [PMID: 31393247 DOI: 10.2174/1568009619666190808155432] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/16/2019] [Accepted: 07/01/2019] [Indexed: 12/13/2022]
Abstract
Complex nature of the tumor is depicted at the cellular landscape by showing heterogeneity in the presence of cancer cells, cancer-associated stromal cells, mesenchymal stem cells and cancer stem cells (CSCs). One of the plausible views in cancer formation is suggested as the theory of cancer CSCs that is known as a source of initiation of tumorigenesis. In essence, these powerful CSCs are equipped with high Sonic Hedgehog (SHH) signaling and epigenetic memory power that support various tumor hallmarks. Truly, nature justifies its intent by limiting these stem cells with a potential to turn into CSCs and in turn suppressing the high risk of humans and other organisms. In short, this mini-review addresses the contribution of SHH signaling to allow reprogramming of epigenetic memory within CSCs that support tumor hallmarks. Besides, this paper explores therapeutic approaches to mitigate SHH signaling that may lead to a blockade of the pro-tumor potential of CSCs.
Collapse
Affiliation(s)
- Ishita Tandon
- Cancer and Translational Research Lab, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune, Maharashtra, 411033, India
| | - Asawari Waghmode
- Cancer and Translational Research Lab, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune, Maharashtra, 411033, India
| | - Nilesh Kumar Sharma
- Cancer and Translational Research Lab, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune, Maharashtra, 411033, India
| |
Collapse
|
28
|
Lambo S, von Hoff K, Korshunov A, Pfister SM, Kool M. ETMR: a tumor entity in its infancy. Acta Neuropathol 2020; 140:249-266. [PMID: 32601913 PMCID: PMC7423804 DOI: 10.1007/s00401-020-02182-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/04/2020] [Accepted: 06/18/2020] [Indexed: 12/18/2022]
Abstract
Embryonal tumor with Multilayered Rosettes (ETMR) is a relatively rare but typically deadly type of brain tumor that occurs mostly in infants. Since the discovery of the characteristic chromosome 19 miRNA cluster (C19MC) amplification a decade ago, the methods for diagnosing this entity have improved and many new insights in the molecular landscape of ETMRs have been acquired. All ETMRs, despite their highly heterogeneous histology, are characterized by specific high expression of the RNA-binding protein LIN28A, which is, therefore, often used as a diagnostic marker for these tumors. ETMRs have few recurrent genetic aberrations, mainly affecting the miRNA pathway and including amplification of C19MC (embryonal tumor with multilayered rosettes, C19MC-altered) and mutually exclusive biallelic DICER1 mutations of which the first hit is typically inherited through the germline (embryonal tumor with multilayered rosettes, DICER1-altered). Identification of downstream pathways affected by the deregulated miRNA machinery has led to several proposed potential therapeutical vulnerabilities including targeting the WNT, SHH, or mTOR pathways, MYCN or chromosomal instability. However, despite those findings, treatment outcomes have only marginally improved, since the initial description of this tumor entity. Many patients do not survive longer than a year after diagnosis and the 5-year overall survival rate is still lower than 30%. Thus, there is an urgent need to translate the new insights in ETMR biology into more effective treatments. Here, we present an overview of clinical and molecular characteristics of ETMRs and the current progress on potential targeted therapies.
Collapse
Affiliation(s)
- Sander Lambo
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Katja von Hoff
- Department of Pediatric Oncology/Hematology, Charité University Medicine, Berlin, Germany
| | - Andrey Korshunov
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefan M Pfister
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg, Heidelberg, Germany
| | - Marcel Kool
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany.
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany.
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.
| |
Collapse
|
29
|
Liu P, Dodson M, Fang D, Chapman E, Zhang DD. NRF2 negatively regulates primary ciliogenesis and hedgehog signaling. PLoS Biol 2020; 18:e3000620. [PMID: 32053600 PMCID: PMC7043785 DOI: 10.1371/journal.pbio.3000620] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 02/26/2020] [Accepted: 01/22/2020] [Indexed: 01/24/2023] Open
Abstract
Primary cilia are lost during cancer development, but the mechanism regulating cilia degeneration is not determined. While transcription factor nuclear factor-erythroid 2-like 2 (NRF2) protects cells from oxidative, proteotoxic, and metabolic stress in normal cells, hyperactivation of NRF2 is oncogenic, although the detailed molecular mechanisms by which uncontrolled NRF2 activation promotes cancer progression remain unclear. Here, we report that NRF2 suppresses hedgehog (Hh) signaling through Patched 1 (PTCH1) and primary ciliogenesis via p62/sequestosome 1 (SQSTM1). PTCH1, a negative regulator of Hh signaling, is an NRF2 target gene, and as such, hyperactivation of NRF2 impairs Hh signaling. NRF2 also suppresses primary cilia formation through p62-dependent inclusion body formation and blockage of Bardet-Biedl syndrome 4 (BBS4) entrance into cilia. Simultaneous ablation of PTCH1 and p62 completely abolishes NRF2-mediated inhibition of both primary ciliogenesis and Hh signaling. Our findings reveal a previously unidentified role of NRF2 in controlling a cellular organelle, the primary cilium, and its associated Hh signaling pathway and also uncover a mechanism by which NRF2 hyperactivation promotes tumor progression via primary cilia degeneration and aberrant Hh signaling. A better understanding of the crosstalk between NRF2 and primary cilia/Hh signaling could not only open new avenues for cancer therapeutic discovery but could also have significant implications regarding pathologies other than cancer, including developmental disorders, in which improper primary ciliogenesis and Hh signaling play a major role.
Collapse
Affiliation(s)
- Pengfei Liu
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, United States of America
| | - Matthew Dodson
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, United States of America
| | - Deyu Fang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Eli Chapman
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, United States of America
| | - Donna D. Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, United States of America
- The University of Arizona Cancer Center, University of Arizona, Tucson, Arizona, United States of America
| |
Collapse
|
30
|
Lambo S, Gröbner SN, Rausch T, Waszak SM, Schmidt C, Gorthi A, Romero JC, Mauermann M, Brabetz S, Krausert S, Buchhalter I, Koster J, Zwijnenburg DA, Sill M, Hübner JM, Mack N, Schwalm B, Ryzhova M, Hovestadt V, Papillon-Cavanagh S, Chan JA, Landgraf P, Ho B, Milde T, Witt O, Ecker J, Sahm F, Sumerauer D, Ellison DW, Orr BA, Darabi A, Haberler C, Figarella-Branger D, Wesseling P, Schittenhelm J, Remke M, Taylor MD, Gil-da-Costa MJ, Łastowska M, Grajkowska W, Hasselblatt M, Hauser P, Pietsch T, Uro-Coste E, Bourdeaut F, Masliah-Planchon J, Rigau V, Alexandrescu S, Wolf S, Li XN, Schüller U, Snuderl M, Karajannis MA, Giangaspero F, Jabado N, von Deimling A, Jones DTW, Korbel JO, von Hoff K, Lichter P, Huang A, Bishop AJR, Pfister SM, Korshunov A, Kool M. The molecular landscape of ETMR at diagnosis and relapse. Nature 2019; 576:274-280. [PMID: 31802000 PMCID: PMC6908757 DOI: 10.1038/s41586-019-1815-x] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 10/16/2019] [Indexed: 12/18/2022]
Abstract
Embryonal tumours with multilayered rosettes (ETMRs) are aggressive paediatric embryonal brain tumours with a universally poor prognosis1. Here we collected 193 primary ETMRs and 23 matched relapse samples to investigate the genomic landscape of this distinct tumour type. We found that patients with tumours in which the proposed driver C19MC2-4 was not amplified frequently had germline mutations in DICER1 or other microRNA-related aberrations such as somatic amplification of miR-17-92 (also known as MIR17HG). Whole-genome sequencing revealed that tumours had an overall low recurrence of single-nucleotide variants (SNVs), but showed prevalent genomic instability caused by widespread occurrence of R-loop structures. We show that R-loop-associated chromosomal instability can be induced by the loss of DICER1 function. Comparison of primary tumours and matched relapse samples showed a strong conservation of structural variants, but low conservation of SNVs. Moreover, many newly acquired SNVs are associated with a mutational signature related to cisplatin treatment. Finally, we show that targeting R-loops with topoisomerase and PARP inhibitors might be an effective treatment strategy for this deadly disease.
Collapse
Affiliation(s)
- Sander Lambo
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Susanne N Gröbner
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Tobias Rausch
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Sebastian M Waszak
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Christin Schmidt
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Aparna Gorthi
- Department of Cell Systems and Anatomy, University of Texas Health at San Antonio, San Antonio, TX, USA
- Greehey Children's Cancer Research Institute, University of Texas Health at San Antonio, San Antonio, TX, USA
| | - July Carolina Romero
- Department of Cell Systems and Anatomy, University of Texas Health at San Antonio, San Antonio, TX, USA
- Greehey Children's Cancer Research Institute, University of Texas Health at San Antonio, San Antonio, TX, USA
| | - Monika Mauermann
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sebastian Brabetz
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sonja Krausert
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ivo Buchhalter
- Omics IT and Data Management Core Facility, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jan Koster
- Department of Oncogenomics, Academic Medical Center, Amsterdam, The Netherlands
| | - Danny A Zwijnenburg
- Department of Oncogenomics, Academic Medical Center, Amsterdam, The Netherlands
| | - Martin Sill
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jens-Martin Hübner
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Norman Mack
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Benjamin Schwalm
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marina Ryzhova
- Department of Neuropathology, NN Burdenko Neurosurgical Institute, Moscow, Russia
| | - Volker Hovestadt
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Simon Papillon-Cavanagh
- Department of Pediatrics, McGill University Health Center, McGill University, Montreal, Quebec, Canada
| | - Jennifer A Chan
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Pablo Landgraf
- Department of Pediatrics, Pediatric Oncology and Hematology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Ben Ho
- Division of Hematology/Oncology Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Till Milde
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Olaf Witt
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Jonas Ecker
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Felix Sahm
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - David Sumerauer
- Department of Pediatric Hematology and Oncology, University Hospital Motol, Prague, Czech Republic
| | - David W Ellison
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Brent A Orr
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Anna Darabi
- Department of Clinical Sciences Lund, Section of Neurosurgery, Faculty of Medicine, Lund University, Lund, Sweden
| | | | - Dominique Figarella-Branger
- Aix-Marseille University, Neurophysiopathology Institute (INP), CNRS, Marseille, France
- Department of Pathology, APHM, Marseille, France
| | - Pieter Wesseling
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Pathology, Amsterdam University Medical Centers/location VUmc, Amsterdam, The Netherlands
| | - Jens Schittenhelm
- Department of Neuropathology, Institute of Pathology and Neuropathology, University Hospital of Tübingen, Tübingen, Germany
- Center for CNS Tumors, Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital of Tübingen, Tübingen, Germany
| | - Marc Remke
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
- Division of Neurosurgery, Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Michael D Taylor
- Division of Neurosurgery, Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Maria J Gil-da-Costa
- Pediatric Hematology and Oncology Division, University Hospital São João Alameda Hernani Monteiro, Porto, Portugal
| | - Maria Łastowska
- Department of Pathology, Children's Memorial Health Institute, Warsaw, Poland
| | - Wiesława Grajkowska
- Department of Pathology, Children's Memorial Health Institute, Warsaw, Poland
| | - Martin Hasselblatt
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Peter Hauser
- 2nd Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Torsten Pietsch
- Institute of Neuropathology, Brain Tumor Reference Center of the German Society of Neuropathology and Neuroanatomy, University of Bonn Medical Center, Bonn, Germany
| | - Emmanuelle Uro-Coste
- Department of Pathology, Toulouse University Hospital, Toulouse, France
- INSERM U1037, Cancer Research Center of Toulouse (CRCT), Toulouse, France
| | - Franck Bourdeaut
- INSERM U830, Laboratory of Translational Research in Pediatric Oncology, SIREDO Pediatric Oncology Center, Paris Sciences Lettres Research University, Curie Institute, Paris, France
| | - Julien Masliah-Planchon
- Pediatric Oncology Department, SIREDO Pediatric Oncology Centre, Curie Institute, Paris, France
- Paris Sciences et Lettres Research University, Institut Curie Hospital, Laboratory of Somatic Genetics, Paris, France
| | - Valérie Rigau
- Department of Pathology, Montpellier University Medical Center, Montpellier, France
- Institute for Neuroscience of Montpellier (INM), INSERM U1051, Montpellier University Hospital, Montpellier, France
| | - Sanda Alexandrescu
- Department of Pathology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Stephan Wolf
- Genomics and Proteomics Core Facility, High Throughput Sequencing Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Xiao-Nan Li
- Brain Tumor Program, Texas Children's Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Ulrich Schüller
- Institute of Neuropathology, University Medical Center, Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children's Cancer Center, Hamburg, Germany
- Department of Pediatric Hematology and Oncology, University Medical Center, Hamburg-Eppendorf, Hamburg, Germany
| | - Matija Snuderl
- Department of Pathology, NYU Langone Health, New York, NY, USA
| | - Matthias A Karajannis
- Division of Pediatric Hematology/Oncology, NYU Langone Medical Center, The Stephen D. Hassenfeld Children's Center for Cancer and Blood Disorders, New York, NY, USA
| | - Felice Giangaspero
- Department of Radiological, Oncological and Anatomopathological Sciences, Sapienza University of Rome, Rome, Italy
- IRCCS Neuromed-Mediterranean Neurological Institute, Pozzilli, Italy
| | - Nada Jabado
- Department of Pediatrics, McGill University Health Center, McGill University, Montreal, Quebec, Canada
| | - Andreas von Deimling
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - David T W Jones
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Pediatric Glioma Research Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jan O Korbel
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Katja von Hoff
- Department of Pediatric Oncology/Hematology, Charité University Medicine, Berlin, Germany
- Department for Pediatric Hematology and Oncology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Peter Lichter
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Annie Huang
- Division of Hematology/Oncology Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Pediatrics, Medical Biophysics, Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Alexander J R Bishop
- Department of Cell Systems and Anatomy, University of Texas Health at San Antonio, San Antonio, TX, USA
- Greehey Children's Cancer Research Institute, University of Texas Health at San Antonio, San Antonio, TX, USA
- Mays Cancer Center, University of Texas Health at San Antonio, San Antonio, TX, USA
| | - Stefan M Pfister
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Andrey Korshunov
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marcel Kool
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany.
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
31
|
Jessa S, Blanchet-Cohen A, Krug B, Vladoiu M, Coutelier M, Faury D, Poreau B, De Jay N, Hébert S, Monlong J, Farmer WT, Donovan LK, Hu Y, McConechy MK, Cavalli FMG, Mikael LG, Ellezam B, Richer M, Allaire A, Weil AG, Atkinson J, Farmer JP, Dudley RWR, Larouche V, Crevier L, Albrecht S, Filbin MG, Sartelet H, Lutz PE, Nagy C, Turecki G, Costantino S, Dirks PB, Murai KK, Bourque G, Ragoussis J, Garzia L, Taylor MD, Jabado N, Kleinman CL. Stalled developmental programs at the root of pediatric brain tumors. Nat Genet 2019; 51:1702-1713. [PMID: 31768071 PMCID: PMC6885128 DOI: 10.1038/s41588-019-0531-7] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 10/18/2019] [Indexed: 02/08/2023]
Abstract
Childhood brain tumors have suspected prenatal origins. To identify vulnerable developmental states, we generated a single-cell transcriptome atlas of >65,000 cells from embryonal pons and forebrain, two major tumor locations. We derived signatures for 191 distinct cell populations and defined regional cellular diversity and differentiation dynamics. Projection of bulk tumor transcriptomes onto this dataset shows that WNT medulloblastomas match the rhombic lip-derived mossy fiber neuronal lineage, embryonal tumors with multilayered rosettes fully recapitulate a neuronal lineage, while Group 2a/b atypical teratoid/rhabdoid tumors may originate outside of the neuroectoderm. Importantly, single-cell tumor profiles reveal highly defined cell hierarchies mirroring transcriptional programs of the corresponding normal lineages. Our findings identify impaired differentiation of specific neural progenitors as a common mechanism underlying these pediatric cancers and provide a rational framework for future modeling and therapeutic interventions.
Collapse
Affiliation(s)
- Selin Jessa
- Quantitative Life Sciences, McGill University, Montreal, Quebec, Canada.,Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Alexis Blanchet-Cohen
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada.,Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Brian Krug
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Maria Vladoiu
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada.,The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Marie Coutelier
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada.,Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Damien Faury
- Department of Pediatrics, McGill University, Montreal, Quebec, Canada.,The Research Institute of the McGill University Health Center, Montreal, Quebec, Canada
| | - Brice Poreau
- Department of Pediatrics, McGill University, Montreal, Quebec, Canada.,The Research Institute of the McGill University Health Center, Montreal, Quebec, Canada.,Service de Génétique et Procréation, Centre Hospitalier Universitaire, Grenoble-Alpes, Grenoble, France
| | - Nicolas De Jay
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada.,Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Steven Hébert
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada.,Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Jean Monlong
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada.,UC Santa Cruz Genomics Institute, University of California, Santa Cruz, CA, USA
| | - W Todd Farmer
- Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, Quebec, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Laura K Donovan
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada.,The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Yixing Hu
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada.,Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | | | - Florence M G Cavalli
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada.,The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Leonie G Mikael
- Department of Pediatrics, McGill University, Montreal, Quebec, Canada.,The Research Institute of the McGill University Health Center, Montreal, Quebec, Canada
| | - Benjamin Ellezam
- Department of Pathology, Centre Hospitalier Universitaire Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada
| | - Maxime Richer
- Department of Pathology, Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Andréa Allaire
- Department of Pathology, Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Alexander G Weil
- Department of Pediatric Neurosurgery, Centre Hospitalier Universitaire Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada
| | - Jeffrey Atkinson
- Department of Pediatric Surgery, Division of Neurosurgery, Montreal Children's Hospital, McGill University, Montreal, Querbec, Canada
| | - Jean-Pierre Farmer
- Department of Pediatric Surgery, Division of Neurosurgery, Montreal Children's Hospital, McGill University, Montreal, Querbec, Canada
| | - Roy W R Dudley
- Department of Pediatric Surgery, Division of Neurosurgery, Montreal Children's Hospital, McGill University, Montreal, Querbec, Canada
| | - Valerie Larouche
- Department of Pediatrics, Centre mère-enfant Soleil du CHU de Québec-Université Laval, Quebec City, Quebec, Canada
| | - Louis Crevier
- Department of Surgery, Université de Laval, Quebec City, Quebec, Canada
| | - Steffen Albrecht
- Department of Pathology, Montreal Children's Hospital, McGill University Health Center, Montreal, Quebec, Canada
| | - Mariella G Filbin
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorder Center, Boston, MA, USA
| | - Hervé Sartelet
- Department of Pathology, Centre Hospitalier Universitaire de Grenoble, Grenoble, France
| | - Pierre-Eric Lutz
- Centre National de la Recherche Scientifique, Institut des Neurosciences Cellulaires et Intégratives, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, France.,Department of Psychiatry, McGill University, Montreal, Quebec, Canada.,Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada
| | - Corina Nagy
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada.,Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada
| | - Gustavo Turecki
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada.,Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada
| | - Santiago Costantino
- Maisonneuve-Rosemont Hospital Research Center, Montreal, Quebec, Canada.,Department of Ophthalmology, Université de Montréal, Montreal, Quebec, Canada
| | - Peter B Dirks
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Keith K Murai
- Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, Quebec, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Guillaume Bourque
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada.,McGill University and Genome Quebec Innovation Centre, Montreal, Quebec, Canada.,Canadian Center for Computational Genomics, Montreal, Quebec, Canada
| | - Jiannis Ragoussis
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada.,McGill University and Genome Quebec Innovation Centre, Montreal, Quebec, Canada
| | - Livia Garzia
- Cancer Research Program, The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.,Division of Orthopedic Surgery, Faculty of Surgery, McGill University, Montreal, Quebec, Canada
| | - Michael D Taylor
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada. .,The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada. .,Department of Surgery, University of Toronto, Toronto, Ontario, Canada. .,Division of Neurosurgery, The Hospital for Sick Children, Toronto, Ontario, Canada. .,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada. .,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
| | - Nada Jabado
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada. .,Department of Pediatrics, McGill University, Montreal, Quebec, Canada. .,The Research Institute of the McGill University Health Center, Montreal, Quebec, Canada.
| | - Claudia L Kleinman
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada. .,Department of Human Genetics, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
32
|
Sin-Chan P, Mumal I, Suwal T, Ho B, Fan X, Singh I, Du Y, Lu M, Patel N, Torchia J, Popovski D, Fouladi M, Guilhamon P, Hansford JR, Leary S, Hoffman LM, Mulcahy Levy JM, Lassaletta A, Solano-Paez P, Rivas E, Reddy A, Gillespie GY, Gupta N, Van Meter TE, Nakamura H, Wong TT, Ra YS, Kim SK, Massimi L, Grundy RG, Fangusaro J, Johnston D, Chan J, Lafay-Cousin L, Hwang EI, Wang Y, Catchpoole D, Michaud J, Ellezam B, Ramanujachar R, Lindsay H, Taylor MD, Hawkins CE, Bouffet E, Jabado N, Singh SK, Kleinman CL, Barsyte-Lovejoy D, Li XN, Dirks PB, Lin CY, Mack SC, Rich JN, Huang A. A C19MC-LIN28A-MYCN Oncogenic Circuit Driven by Hijacked Super-enhancers Is a Distinct Therapeutic Vulnerability in ETMRs: A Lethal Brain Tumor. Cancer Cell 2019; 36:51-67.e7. [PMID: 31287992 DOI: 10.1016/j.ccell.2019.06.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/26/2019] [Accepted: 06/03/2019] [Indexed: 12/26/2022]
Abstract
Embryonal tumors with multilayered rosettes (ETMRs) are highly lethal infant brain cancers with characteristic amplification of Chr19q13.41 miRNA cluster (C19MC) and enrichment of pluripotency factor LIN28A. Here we investigated C19MC oncogenic mechanisms and discovered a C19MC-LIN28A-MYCN circuit fueled by multiple complex regulatory loops including an MYCN core transcriptional network and super-enhancers resulting from long-range MYCN DNA interactions and C19MC gene fusions. Our data show that this powerful oncogenic circuit, which entraps an early neural lineage network, is potently abrogated by bromodomain inhibitor JQ1, leading to ETMR cell death.
Collapse
MESH Headings
- Biomarkers, Tumor
- Brain Neoplasms/diagnosis
- Brain Neoplasms/etiology
- Brain Neoplasms/therapy
- Cell Cycle/genetics
- Cell Transformation, Neoplastic/drug effects
- Cell Transformation, Neoplastic/genetics
- Chromosomes, Human, Pair 19
- Chromosomes, Human, Pair 2
- DNA Copy Number Variations
- Enhancer Elements, Genetic
- Epigenesis, Genetic
- Gene Expression Regulation
- Gene Regulatory Networks
- Genetic Association Studies
- Genetic Predisposition to Disease
- Humans
- MicroRNAs/genetics
- Models, Biological
- Multigene Family
- N-Myc Proto-Oncogene Protein/genetics
- Neoplasms, Germ Cell and Embryonal/diagnosis
- Neoplasms, Germ Cell and Embryonal/etiology
- Neoplasms, Germ Cell and Embryonal/therapy
- Oncogenes
- RNA-Binding Proteins/genetics
Collapse
Affiliation(s)
- Patrick Sin-Chan
- Arthur and Sonia Labatt Brain Tumor Research Centre, Division of Haematology/Oncology, Hospital for Sick Children, Toronto, ON M5G0A4, Canada
| | - Iqra Mumal
- Arthur and Sonia Labatt Brain Tumor Research Centre, Division of Haematology/Oncology, Hospital for Sick Children, Toronto, ON M5G0A4, Canada; Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S1A8, Canada
| | - Tannu Suwal
- Arthur and Sonia Labatt Brain Tumor Research Centre, Division of Haematology/Oncology, Hospital for Sick Children, Toronto, ON M5G0A4, Canada; Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S1A8, Canada
| | - Ben Ho
- Arthur and Sonia Labatt Brain Tumor Research Centre, Division of Haematology/Oncology, Hospital for Sick Children, Toronto, ON M5G0A4, Canada
| | - Xiaolian Fan
- Arthur and Sonia Labatt Brain Tumor Research Centre, Division of Haematology/Oncology, Hospital for Sick Children, Toronto, ON M5G0A4, Canada
| | - Irtisha Singh
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yuchen Du
- Department of Pediatrics, Division of Hematology and Oncology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX 77030, USA
| | - Mei Lu
- Arthur and Sonia Labatt Brain Tumor Research Centre, Division of Haematology/Oncology, Hospital for Sick Children, Toronto, ON M5G0A4, Canada
| | - Neilket Patel
- Arthur and Sonia Labatt Brain Tumor Research Centre, Division of Haematology/Oncology, Hospital for Sick Children, Toronto, ON M5G0A4, Canada
| | - Jonathon Torchia
- Princess Margaret Cancer Center-OICR Translational Genomics Laboratory, Ontario Institute for Cancer Research, Toronto, ON M5G0A3, Canada
| | - Dean Popovski
- Arthur and Sonia Labatt Brain Tumor Research Centre, Division of Haematology/Oncology, Hospital for Sick Children, Toronto, ON M5G0A4, Canada
| | - Maryam Fouladi
- Division of Oncology, Department of Cancer and Blood Diseases, Cincinnati Children's Hospital, Cincinnati, OH 45229, USA
| | - Paul Guilhamon
- Developmental and Stem Cell Biology Program and Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada
| | - Jordan R Hansford
- Children's Cancer Centre, Royal Children's Hospital, Murdoch Children's Research Institute, Department of Pediatrics, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Sarah Leary
- Department of Hematology-Oncology, Seattle Children's Hospital, Seattle, WA 98105, USA
| | - Lindsey M Hoffman
- Department of Pediatrics, University of Colorado Denver, Aurora, CO 80045, USA
| | - Jean M Mulcahy Levy
- Department of Pediatrics, University of Colorado Denver, Aurora, CO 80045, USA
| | - Alvaro Lassaletta
- Pediatric Hematology and Oncology Department, Hospital Infantil Universitario Niño Jesús, Madrid 28009, Spain
| | - Palma Solano-Paez
- Department of Pediatric Oncology, Hospital Infantil Virgen del Rocio, Seville 41013, Spain
| | - Eloy Rivas
- Department of Pathology, Neuropathology Division, Hospital Universitario Virgen del Rocio, Seville 41013, Spain
| | - Alyssa Reddy
- University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - G Yancey Gillespie
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham AL 35294, USA
| | - Nalin Gupta
- Department of Neurological Surgery, University of California, San Francisco, CA 94143-0112, USA
| | - Timothy E Van Meter
- Department of Pediatrics, Virginia Commonwealth University, Richmond, VA 23298-0631, USA
| | - Hideo Nakamura
- Department of Neurosurgery, Kurume University, Fukuoka 830-0011, Japan
| | - Tai-Tong Wong
- Pediatric Brain Tumor Program, Taipei Cancer Center, Taipei Medical University, Taipei 11031, Taiwan
| | - Young-Shin Ra
- Department of Neurosurgery, Asan Medical Center, Seoul 138-736, Korea
| | - Seung-Ki Kim
- Division of Pediatric Neurosurgery, Seoul National University Children's Hospital, Seoul 03080, Korea
| | - Luca Massimi
- Department of Neurosurgery, Fondazione Policlinico A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Richard G Grundy
- Children's Brain Tumor Research Centre, Queen's Medical Centre University of Nottingham, Nottingham NG72UH, UK
| | - Jason Fangusaro
- Department of Pediatric Hematology and Oncology at Children's Healthcare of Atlanta and the Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Donna Johnston
- Division of Hematology/Oncology, Children's Hospital of Eastern Ontario, Ottawa, ON K1H8L1, Canada
| | - Jennifer Chan
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, AB T2N1N4, Canada
| | - Lucie Lafay-Cousin
- Department of Pediatric Oncology, Alberta Children's Hospital, Calgary, AB T3B6A8, Canada
| | - Eugene I Hwang
- Center for Cancer and Blood Disorders, Children's National Medical Center, Washington, DC 20010, USA
| | - Yin Wang
- Department of Neuropathology Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Daniel Catchpoole
- The Tumor Bank, Children's Cancer Research Unit, Kids Research, the Children's Hospital at Westmead, Westmead, NSW 2145, Australia
| | - Jean Michaud
- Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, ON K1H8M5, Canada
| | - Benjamin Ellezam
- Department of Pathology, CHU Sainte-Justine Research Center, Université de Montréal, Montréal, QC H3T1C5, Canada
| | - Ramya Ramanujachar
- Paediatric Haematology and Oncology, Southampton Children's Hospital, Southampton SO166YD, UK
| | - Holly Lindsay
- Department of Pediatrics, Division of Hematology and Oncology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX 77030, USA
| | - Michael D Taylor
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S1A8, Canada; Arthur and Sonia Labatt Brain Tumor Research Centre, Division of Neurosurgery, Hospital for Sick Children, Toronto, ON M5G0A4, Canada
| | - Cynthia E Hawkins
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S1A8, Canada; Department of Pathology, The Hospital for Sick Children, Toronto, ON M5G1X8, Canada
| | - Eric Bouffet
- Division of Hematology-Oncology, The Hospital for Sick Children, Department of Pediatrics, University of Toronto, Toronto, ON M5G0A4, Canada
| | - Nada Jabado
- Departments of Pediatrics and Human Genetics, McGill University, Montréal, QC H3A0C7, Canada
| | - Sheila K Singh
- McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON L8S4K1, Canada
| | - Claudia L Kleinman
- Departments of Pediatrics and Human Genetics, McGill University, Montréal, QC H3A0C7, Canada
| | | | - Xiao-Nan Li
- Department of Pediatrics, Division of Hematology and Oncology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX 77030, USA; Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Peter B Dirks
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S1A8, Canada; Arthur and Sonia Labatt Brain Tumor Research Centre, Division of Neurosurgery, Hospital for Sick Children, Toronto, ON M5G0A4, Canada
| | - Charles Y Lin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Stephen C Mack
- Department of Pediatrics, Division of Hematology and Oncology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX 77030, USA
| | - Jeremy N Rich
- Department of Medicine, Division of Regenerative Medicine, University of California, San Diego, CA 92093, USA
| | - Annie Huang
- Arthur and Sonia Labatt Brain Tumor Research Centre, Division of Haematology/Oncology, Hospital for Sick Children, Toronto, ON M5G0A4, Canada; Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S1A8, Canada; Division of Hematology-Oncology, The Hospital for Sick Children, Department of Pediatrics, University of Toronto, Toronto, ON M5G0A4, Canada; Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, ON M5G1L7, Canada.
| |
Collapse
|
33
|
Carpenter RL, Ray H. Safety and Tolerability of Sonic Hedgehog Pathway Inhibitors in Cancer. Drug Saf 2019; 42:263-279. [PMID: 30649745 DOI: 10.1007/s40264-018-0777-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The hedgehog pathway, for which sonic hedgehog (Shh) is the most prominent ligand, is highly conserved and is tightly associated with embryonic development in a number of species. This pathway is also tightly associated with the development of several types of cancer, including basal cell carcinoma (BCC) and acute promyelocytic leukemia, among many others. Inactivating mutations in Patched-1 (PTCH1), leading to ligand-independent pathway activation, are frequent in several cancer types, but most prominent in BCC. This has led to the development of several compounds targeting this pathway as a cancer therapeutic. These compounds target the inducers of this pathway in Smoothened (SMO) and the GLI transcription factors, although targeting SMO has had the most success. Despite the many attempts at targeting this pathway, only three US FDA-approved drugs for cancers affect the Shh pathway. Two of these compounds, vismodegib and sonidegib, target SMO to suppress signaling from either PTCH1 or SMO mutations that lead to upregulation of the pathway. The other approved compound is arsenic trioxide, which can suppress this pathway at the level of the GLI proteins, although current evidence suggests it also has other targets. This review focuses on the safety and tolerability of these clinically approved drugs targeting the Shh pathway, along with a discussion on other Shh pathway inhibitors being developed.
Collapse
Affiliation(s)
- Richard L Carpenter
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 1001 E. 3rd St, Bloomington, IN, 47405, USA. .,Medical Sciences, Indiana University School of Medicine, 1001 E. 3rd St, Bloomington, IN, 47405, USA. .,Simon Cancer Center, Indiana University School of Medicine, 535 Barnhill Dr., Indianapolis, IN, 46202, USA.
| | - Haimanti Ray
- Medical Sciences, Indiana University School of Medicine, 1001 E. 3rd St, Bloomington, IN, 47405, USA
| |
Collapse
|
34
|
Collins JE, White RJ, Staudt N, Sealy IM, Packham I, Wali N, Tudor C, Mazzeo C, Green A, Siragher E, Ryder E, White JK, Papatheodoru I, Tang A, Füllgrabe A, Billis K, Geyer SH, Weninger WJ, Galli A, Hemberger M, Stemple DL, Robertson E, Smith JC, Mohun T, Adams DJ, Busch-Nentwich EM. Common and distinct transcriptional signatures of mammalian embryonic lethality. Nat Commun 2019; 10:2792. [PMID: 31243271 PMCID: PMC6594971 DOI: 10.1038/s41467-019-10642-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 05/22/2019] [Indexed: 12/20/2022] Open
Abstract
The Deciphering the Mechanisms of Developmental Disorders programme has analysed the morphological and molecular phenotypes of embryonic and perinatal lethal mouse mutant lines in order to investigate the causes of embryonic lethality. Here we show that individual whole-embryo RNA-seq of 73 mouse mutant lines (>1000 transcriptomes) identifies transcriptional events underlying embryonic lethality and associates previously uncharacterised genes with specific pathways and tissues. For example, our data suggest that Hmgxb3 is involved in DNA-damage repair and cell-cycle regulation. Further, we separate embryonic delay signatures from mutant line-specific transcriptional changes by developing a baseline mRNA expression catalogue of wild-type mice during early embryogenesis (4-36 somites). Analysis of transcription outside coding sequence identifies deregulation of repetitive elements in Morc2a mutants and a gene involved in gene-specific splicing. Collectively, this work provides a large scale resource to further our understanding of early embryonic developmental disorders.
Collapse
Affiliation(s)
- John E Collins
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - Richard J White
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Nicole Staudt
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - Ian M Sealy
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Ian Packham
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - Neha Wali
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - Catherine Tudor
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - Cecilia Mazzeo
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - Angela Green
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - Emma Siragher
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - Edward Ryder
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - Jacqueline K White
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| | - Irene Papatheodoru
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, CB10 1SD, UK
| | - Amy Tang
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, CB10 1SD, UK
| | - Anja Füllgrabe
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, CB10 1SD, UK
| | - Konstantinos Billis
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, CB10 1SD, UK
| | - Stefan H Geyer
- Division of Anatomy, MIC, Medical University of Vienna, Waehringerstr. 13, 1090, Wien, Austria
| | - Wolfgang J Weninger
- Division of Anatomy, MIC, Medical University of Vienna, Waehringerstr. 13, 1090, Wien, Austria
| | - Antonella Galli
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - Myriam Hemberger
- The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK
- Centre for Trophoblast Research, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK
- Departments of Biochemistry & Molecular Biology and Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Derek L Stemple
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
- Camena Bioscience, The Science Village, Chesterford Research Park, Cambridge, CB10 1XL, UK
| | - Elizabeth Robertson
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - James C Smith
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Timothy Mohun
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - David J Adams
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - Elisabeth M Busch-Nentwich
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK.
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK.
| |
Collapse
|
35
|
Pang S, Yang J, Zhao Y, Li Y, Wang J. Computational prediction and functional analysis of arsenic-binding proteins in human cells. QUANTITATIVE BIOLOGY 2019. [DOI: 10.1007/s40484-019-0169-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
36
|
Robinton DA, Chal J, Lummertz da Rocha E, Han A, Yermalovich AV, Oginuma M, Schlaeger TM, Sousa P, Rodriguez A, Urbach A, Pourquié O, Daley GQ. The Lin28/let-7 Pathway Regulates the Mammalian Caudal Body Axis Elongation Program. Dev Cell 2019; 48:396-405.e3. [DOI: 10.1016/j.devcel.2018.12.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 08/13/2018] [Accepted: 12/17/2018] [Indexed: 02/09/2023]
|
37
|
Embryonal Tumors of the Central Nervous System in Children: The Era of Targeted Therapeutics. Bioengineering (Basel) 2018; 5:bioengineering5040078. [PMID: 30249036 PMCID: PMC6315657 DOI: 10.3390/bioengineering5040078] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 09/12/2018] [Accepted: 09/12/2018] [Indexed: 02/07/2023] Open
Abstract
Embryonal tumors (ET) of the central nervous system (CNS) in children encompass a wide clinical spectrum of aggressive malignancies. Until recently, the overlapping morphological features of these lesions posed a diagnostic challenge and undermined discovery of optimal treatment strategies. However, with the advances in genomic technology and the outpouring of biological data over the last decade, clear insights into the molecular heterogeneity of these tumors are now well delineated. The major subtypes of ETs of the CNS in children include medulloblastoma, atypical teratoid rhabdoid tumor (ATRT), and embryonal tumors with multilayered rosettes (ETMR), which are now biologically and clinically characterized as different entities. These important developments have paved the way for treatments guided by risk stratification as well as novel targeted therapies in efforts to improve survival and reduce treatment burden.
Collapse
|
38
|
|
39
|
Mastrangelo E, Milani M. Role and inhibition of GLI1 protein in cancer. LUNG CANCER-TARGETS AND THERAPY 2018; 9:35-43. [PMID: 29628779 PMCID: PMC5877502 DOI: 10.2147/lctt.s124483] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
GLI1 is a transcriptional regulator involved in the development of different types of cancer. GLI1 transcriptional activity is regulated within the Hedgehog pathway (canonical activity), but can also be controlled independently (non-canonical activity) in the context of other signaling pathways. Experimental evidences show GLI1 involvement in both small- and non–small-cell lung cancers. Direct inhibition of the protein, in combination with other chemotherapeutic agents, represents a promising strategy for the treatment of different malignancies.
Collapse
Affiliation(s)
- Eloise Mastrangelo
- CNR - Biophysics Institute, c/o Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Mario Milani
- CNR - Biophysics Institute, c/o Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|