1
|
Callery EL, Morais CLM, Taylor JV, Challen K, Rowbottom AW. Investigation of Long-Term CD4+ T Cell Receptor Repertoire Changes Following SARS-CoV-2 Infection in Patients with Different Severities of Disease. Diagnostics (Basel) 2024; 14:2330. [PMID: 39451653 PMCID: PMC11507081 DOI: 10.3390/diagnostics14202330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/04/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND The difference in the immune response to severe acute respiratory syndrome coro-navirus 2 (SARS-CoV-2) in patients with mild versus severe disease remains poorly understood. Recent scientific advances have recognised the vital role of both B cells and T cells; however, many questions remain unanswered, particularly for T cell responses. T cells are essential for helping the generation of SARS-CoV-2 antibody responses but have also been recognised in their own right as a major factor influencing COVID-19 disease outcomes. The examination of T cell receptor (TCR) family differences over a 12-month period in patients with varying COVID-19 disease severity is crucial for understanding T cell responses to SARS-CoV-2. METHODS We applied a machine learning approach to analyse TCR vb family responses in COVID-19 patients (n = 151) across multiple timepoints and disease severities alongside SARS-CoV-2 infection-naïve (healthy control) individ-uals (n = 62). RESULTS Blood samples from hospital in-patients with moderate, severe, or critical disease could be classified with an accuracy of 94%. Furthermore, we identified significant variances in TCR vb family specificities between disease and control subgroups. CONCLUSIONS Our findings suggest advantageous and disadvantageous TCR repertoire patterns in relation to disease severity. Following validation in larger cohorts, our methodology may be useful in detecting protective immunity and the assessment of long-term outcomes, particularly as we begin to unravel the immunological mechanisms leading to post-COVID complications.
Collapse
Affiliation(s)
- Emma L. Callery
- Department of Immunology, Lancashire Teaching Hospitals NHS Foundation, Preston PR2 9HT, UK;
| | - Camilo L. M. Morais
- Institute of Chemistry, Federal University of Rio Grande do Norte, Natal 59072-970, Brazil;
| | - Jemma V. Taylor
- Department of Immunology, Lancashire Teaching Hospitals NHS Foundation, Preston PR2 9HT, UK;
| | - Kirsty Challen
- Department of Emergency Medicine, Lancashire Teaching Hospitals NHS Foundation, Preston PR2 9HT, UK;
| | - Anthony W. Rowbottom
- Department of Immunology, Lancashire Teaching Hospitals NHS Foundation, Preston PR2 9HT, UK;
- School of Medicine, University of Central Lancashire, Preston PR1 2HE, UK
| |
Collapse
|
2
|
Falcon DM, Byrne KA, Sales MA, Erf GF. Spontaneous immunological activities in the target tissue of vitiligo-prone Smyth and vitiligo-susceptible Brown lines of chicken. Front Immunol 2024; 15:1386727. [PMID: 38720888 PMCID: PMC11076693 DOI: 10.3389/fimmu.2024.1386727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/11/2024] [Indexed: 05/12/2024] Open
Abstract
Introduction Vitiligo is an acquired de-pigmentation disorder characterized by the post-natal loss of epidermal melanocytes (pigment-producing cells) resulting in the appearance of white patches in the skin. The Smyth chicken is the only model for vitiligo that shares all the characteristics of the human condition including: spontaneous post-natal loss of epidermal melanocytes, interactions between genetic, environmental and immunological factors, and associations with other autoimmune diseases. In addition, an avian model for vitiligo has the added benefit of an easily accessible target tissue (a growing feather) that allows for the repeated sampling of an individual and thus the continuous monitoring of local immune responses over time. Methods Using a combination of flow cytometry and gene expression analyses, we sought to gain a comprehensive understanding of the initiating events leading to expression of vitiligo in growing feathers by monitoring the infiltration of leukocytes and concurrent immunological activities in the target tissue beginning prior to visual onset and continuing throughout disease development. Results Here, we document a sequence of immunologically significant events, including characteristic rises in infiltrating B and αβ T cells as well as evidence of active leukocyte recruitment and cell-mediated immune activities (CCL19, IFNG, GZMA) leading up to visual vitiligo onset. Examination of growing feathers from vitiligo-susceptible Brown line chickens revealed anti-inflammatory immune activities which may be responsible for preventing vitiligo (IL10, CTLA4, FOXP3). Furthermore, we detected positive correlations between infiltrating T cells and changes in their T cell receptor diversity supporting a T cell-specific immune response. Conclusion Collectively, these results further support the notion of cell-mediated immune destruction of epidermal melanocytes in the pulp of growing feathers and open new avenues of study in the vitiligo-prone Smyth and vitiligo-susceptible Brown line chickens.
Collapse
Affiliation(s)
| | | | | | - Gisela F. Erf
- Division of Agriculture, Department of Poultry Science, University of Arkansas System, Fayetteville, AR, United States
| |
Collapse
|
3
|
Hey S, Whyte D, Hoang MC, Le N, Natvig J, Wingfield C, Onyeama C, Howrylak J, Toby IT. Analysis of CDR3 Sequences from T-Cell Receptor β in Acute Respiratory Distress Syndrome. Biomolecules 2023; 13:biom13050825. [PMID: 37238695 DOI: 10.3390/biom13050825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/04/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Acute Respiratory Distress Syndrome (ARDS) is an illness that typically develops in people who are significantly ill or have serious injuries. ARDS is characterized by fluid build-up that occurs in the alveoli. T-cells are implicated as playing a role in the modulation of the aberrant response leading to excessive tissue damage and, eventually, ARDS. Complementarity Determining Region 3 (CDR3) sequences derived from T-cells are key players in the adaptive immune response. This response is governed by an elaborate specificity for distinct molecules and the ability to recognize and vigorously respond to repeated exposures to the same molecules. Most of the diversity in T-cell receptors (TCRs) is contained in the CDR3 regions of the heterodimeric cell-surface receptors. For this study, we employed the novel technology of immune sequencing to assess lung edema fluid. Our goal was to explore the landscape of CDR3 clonal sequences found within these samples. We obtained more than 3615 CDR3 sequences across samples in the study. Our data demonstrate that: (1) CDR3 sequences from lung edema fluid exhibit distinct clonal populations, and (2) CDR3 sequences can be further characterized based on biochemical features. Analysis of these CDR3 sequences offers insight into the CDR3-driven T-cell repertoire of ARDS. These findings represent the first step towards applications of this technology with these types of biological samples in the context of ARDS.
Collapse
Affiliation(s)
- Sara Hey
- Department of Biology, University of Dallas, Irving, TX 75062, USA
| | - Dayjah Whyte
- Department of Biology, University of Dallas, Irving, TX 75062, USA
| | - Minh-Chau Hoang
- Department of Biology, University of Dallas, Irving, TX 75062, USA
| | - Nick Le
- Department of Biology, University of Dallas, Irving, TX 75062, USA
| | - Joseph Natvig
- Department of Biology, University of Dallas, Irving, TX 75062, USA
| | - Claire Wingfield
- Department of Biology, University of Dallas, Irving, TX 75062, USA
| | | | - Judie Howrylak
- Pulmonary, Allergy and Critical Care Division, Penn State Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - Inimary T Toby
- Department of Biology, University of Dallas, Irving, TX 75062, USA
| |
Collapse
|
4
|
(5R)-5-hydroxytriptolide for HIV immunological non-responders receiving ART: a randomized, double-blinded, placebo-controlled phase II study. THE LANCET REGIONAL HEALTH - WESTERN PACIFIC 2023. [DOI: 10.1016/j.lanwpc.2023.100724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
5
|
T-Cell Receptor Repertoire Sequencing and Its Applications: Focus on Infectious Diseases and Cancer. Int J Mol Sci 2022; 23:ijms23158590. [PMID: 35955721 PMCID: PMC9369427 DOI: 10.3390/ijms23158590] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 11/17/2022] Open
Abstract
The immune system is a dynamic feature of each individual and a footprint of our unique internal and external exposures. Indeed, the type and level of exposure to physical and biological agents shape the development and behavior of this complex and diffuse system. Many pathological conditions depend on how our immune system responds or does not respond to a pathogen or a disease or on how the regulation of immunity is altered by the disease itself. T-cells are important players in adaptive immunity and, together with B-cells, define specificity and monitor the internal and external signals that our organism perceives through its specific receptors, TCRs and BCRs, respectively. Today, high-throughput sequencing (HTS) applied to the TCR repertoire has opened a window of opportunity to disclose T-cell repertoire development and behavior down to the clonal level. Although TCR repertoire sequencing is easily accessible today, it is important to deeply understand the available technologies for choosing the best fit for the specific experimental needs and questions. Here, we provide an updated overview of TCR repertoire sequencing strategies, providers and applications to infectious diseases and cancer to guide researchers’ choice through the multitude of available options. The possibility of extending the TCR repertoire to HLA characterization will be of pivotal importance in the near future to understand how specific HLA genes shape T-cell responses in different pathological contexts and will add a level of comprehension that was unthinkable just a few years ago.
Collapse
|
6
|
Pedicino D, Severino A, Di Sante G, De Rosa MC, Pirolli D, Vinci R, Pazzano V, Giglio AF, Trotta F, Russo G, Ruggio A, Pisano E, d’Aiello A, Canonico F, Ciampi P, Cianflone D, Cianfanelli L, Grimaldi MC, Filomia S, Luciani N, Glieca F, Bruno P, Massetti M, Ria F, Crea F, Liuzzo G. Restricted T-Cell Repertoire in the Epicardial Adipose Tissue of Non-ST Segment Elevation Myocardial Infarction Patients. Front Immunol 2022; 13:845526. [PMID: 35880176 PMCID: PMC9307872 DOI: 10.3389/fimmu.2022.845526] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 05/31/2022] [Indexed: 11/24/2022] Open
Abstract
Aims Human epicardial adipose tissue, a dynamic source of multiple bioactive factors, holds a close functional and anatomic relationship with the epicardial coronary arteries and communicates with the coronary artery wall through paracrine and vasocrine secretions. We explored the hypothesis that T-cell recruitment into epicardial adipose tissue (EAT) in patients with non-ST segment elevation myocardial infarction (NSTEMI) could be part of a specific antigen-driven response implicated in acute coronary syndrome onset and progression. Methods and Results We enrolled 32 NSTEMI patients and 34 chronic coronary syndrome (CCS) patients undergoing coronary artery bypass grafting (CABG) and 12 mitral valve disease (MVD) patients undergoing surgery. We performed EAT proteome profiling on pooled specimens from three NSTEMI and three CCS patients. We performed T-cell receptor (TCR) spectratyping and CDR3 sequencing in EAT and peripheral blood mononuclear cells of 29 NSTEMI, 31 CCS, and 12 MVD patients. We then used computational modeling studies to predict interactions of the TCR beta chain variable region (TRBV) and explore sequence alignments. The EAT proteome profiling displayed a higher content of pro-inflammatory molecules (CD31, CHI3L1, CRP, EMPRINN, ENG, IL-17, IL-33, MMP-9, MPO, NGAL, RBP-4, RETN, VDB) in NSTEMI as compared to CCS (P < 0.0001). CDR3-beta spectratyping showed a TRBV21 enrichment in EAT of NSTEMI (12/29 patients; 41%) as compared with CCS (1/31 patients; 3%) and MVD (none) (ANOVA for trend P < 0.001). Of note, 11/12 (92%) NSTEMI patients with TRBV21 perturbation were at their first manifestation of ACS. Four patients with the first event shared a distinctive TRBV21-CDR3 sequence of 178 bp length and 2/4 were carriers of the human leukocyte antigen (HLA)-A*03:01 allele. A 3D analysis predicted the most likely epitope able to bind HLA-A3*01 and interact with the TRBV21-CDR3 sequence of 178 bp length, while the alignment results were consistent with microbial DNA sequences. Conclusions Our study revealed a unique immune signature of the epicardial adipose tissue, which led to a 3D modeling of the TCRBV/peptide/HLA-A3 complex, in acute coronary syndrome patients at their first event, paving the way for epitope-driven therapeutic strategies.
Collapse
Affiliation(s)
- Daniela Pedicino
- Dipartimento di Scienze Cardiovascolari, Fondazione Policlinico Universitario A. Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
- *Correspondence: Daniela Pedicino, ; ; orcid.org/0000-0002-4218-3066
| | - Anna Severino
- Dipartimento di Scienze Cardiovascolari, Fondazione Policlinico Universitario A. Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
- Dipartimento di Scienze Cardiovascolari e Pneumologiche, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Gabriele Di Sante
- Dipartimento di Medicina e Chirurgia traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento di Medicina e Chirurgia, Sezione di Anatomia Umana, Clinica e Forense, Università di Perugia, Perugia, Italy
| | - Maria Cristina De Rosa
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” (SCITEC) - Consiglio Nazionale delle Ricerche (CNR), Rome, Italy
| | - Davide Pirolli
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” (SCITEC) - Consiglio Nazionale delle Ricerche (CNR), Rome, Italy
| | - Ramona Vinci
- Dipartimento di Scienze Cardiovascolari, Fondazione Policlinico Universitario A. Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
- Dipartimento di Scienze Cardiovascolari e Pneumologiche, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Vincenzo Pazzano
- Paediatric Cardiology and Cardiac Arrhythmia/Syncope Unit, Bambino Gesù Children’s Hospital Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Ada F. Giglio
- Dipartimento di Cardiologia, Aziende Socio Sanitarie Territoriali (ASST) Fatebenefratelli Sacco, Milano, Italy
| | | | - Giulio Russo
- Dipartimento di Scienze Cardiovascolari e Pneumologiche, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Aureliano Ruggio
- Dipartimento di Scienze Cardiovascolari, Fondazione Policlinico Universitario A. Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Eugenia Pisano
- Dipartimento di Scienze Cardiovascolari e Pneumologiche, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Alessia d’Aiello
- Dipartimento di Scienze Cardiovascolari, Fondazione Policlinico Universitario A. Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Francesco Canonico
- Dipartimento di Scienze Cardiovascolari, Fondazione Policlinico Universitario A. Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
- Dipartimento di Scienze Cardiovascolari e Pneumologiche, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Pellegrino Ciampi
- Dipartimento di Scienze Cardiovascolari e Pneumologiche, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Domenico Cianflone
- Cardiac Rehabilitation Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Università Vita-Salute San Raffaele, Milan, Italy
| | - Lorenzo Cianfanelli
- Cardiac Rehabilitation Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Università Vita-Salute San Raffaele, Milan, Italy
| | - Maria Chiara Grimaldi
- Dipartimento di Scienze Cardiovascolari e Pneumologiche, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Simone Filomia
- Dipartimento di Scienze Cardiovascolari e Pneumologiche, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Nicola Luciani
- Dipartimento di Scienze Cardiovascolari, Fondazione Policlinico Universitario A. Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
- Dipartimento di Scienze Cardiovascolari e Pneumologiche, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Franco Glieca
- Dipartimento di Scienze Cardiovascolari, Fondazione Policlinico Universitario A. Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
- Cardiac Rehabilitation Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Università Vita-Salute San Raffaele, Milan, Italy
| | - Piergiorgio Bruno
- Dipartimento di Scienze Cardiovascolari, Fondazione Policlinico Universitario A. Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
- Dipartimento di Scienze Cardiovascolari e Pneumologiche, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Massimo Massetti
- Dipartimento di Scienze Cardiovascolari, Fondazione Policlinico Universitario A. Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
- Dipartimento di Scienze Cardiovascolari e Pneumologiche, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Francesco Ria
- Dipartimento di Medicina e Chirurgia traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento di Scienze di Laboratorio ed Infettivologiche, Fondazione Policlinico Universitario A. Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Filippo Crea
- Dipartimento di Scienze Cardiovascolari, Fondazione Policlinico Universitario A. Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
- Dipartimento di Scienze Cardiovascolari e Pneumologiche, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giovanna Liuzzo
- Dipartimento di Scienze Cardiovascolari, Fondazione Policlinico Universitario A. Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
- Dipartimento di Scienze Cardiovascolari e Pneumologiche, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
7
|
Moreews M, Le Gouge K, Khaldi-Plassart S, Pescarmona R, Mathieu AL, Malcus C, Djebali S, Bellomo A, Dauwalder O, Perret M, Villard M, Chopin E, Rouvet I, Vandenesh F, Dupieux C, Pouyau R, Teyssedre S, Guerder M, Louazon T, Moulin-Zinsch A, Duperril M, Patural H, Giovannini-Chami L, Portefaix A, Kassai B, Venet F, Monneret G, Lombard C, Flodrops H, De Guillebon JM, Bajolle F, Launay V, Bastard P, Zhang SY, Dubois V, Thaunat O, Richard JC, Mezidi M, Allatif O, Saker K, Dreux M, Abel L, Casanova JL, Marvel J, Trouillet-Assant S, Klatzmann D, Walzer T, Mariotti-Ferrandiz E, Javouhey E, Belot A. Polyclonal expansion of TCR Vbeta 21.3 + CD4 + and CD8 + T cells is a hallmark of Multisystem Inflammatory Syndrome in Children. Sci Immunol 2021; 6:eabh1516. [PMID: 34035116 PMCID: PMC8815705 DOI: 10.1126/sciimmunol.abh1516] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/18/2021] [Indexed: 12/11/2022]
Abstract
Multiple Inflammatory Syndrome in Children (MIS-C) is a delayed and severe complication of SARS-CoV-2 infection that strikes previously healthy children. As MIS-C combines clinical features of Kawasaki disease and Toxic Shock Syndrome (TSS), we aimed to compare the immunological profile of pediatric patients with these different conditions. We analyzed blood cytokine expression, and the T cell repertoire and phenotype in 36 MIS-C cases, which were compared to 16 KD, 58 TSS, and 42 COVID-19 cases. We observed an increase of serum inflammatory cytokines (IL-6, IL-10, IL-18, TNF-α, IFNγ, CD25s, MCP1, IL-1RA) in MIS-C, TSS and KD, contrasting with low expression of HLA-DR in monocytes. We detected a specific expansion of activated T cells expressing the Vβ21.3 T cell receptor β chain variable region in both CD4 and CD8 subsets in 75% of MIS-C patients and not in any patient with TSS, KD, or acute COVID-19; this correlated with the cytokine storm detected. The T cell repertoire returned to baseline within weeks after MIS-C resolution. Vβ21.3+ T cells from MIS-C patients expressed high levels of HLA-DR, CD38 and CX3CR1 but had weak responses to SARS-CoV-2 peptides in vitro. Consistently, the T cell expansion was not associated with specific classical HLA alleles. Thus, our data suggested that MIS-C is characterized by a polyclonal Vβ21.3 T cell expansion not directed against SARS-CoV-2 antigenic peptides, which is not seen in KD, TSS and acute COVID-19.
Collapse
Affiliation(s)
- Marion Moreews
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard, Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Kenz Le Gouge
- Sorbonne Université, UPMC Univ Paris 06, INSERM UMRS 959, Immunology Immunopathology-Immunotherapy (i3), Paris, France
| | - Samira Khaldi-Plassart
- (RAISE), France; Pediatric Nephrology, Rheumatology, Dermatology Unit, Hôpital Femme Mère Enfant, Hospices Civils de Lyon
- National Referee Centre for Rheumatic and AutoImmune and Systemic diseases in children
| | - Rémi Pescarmona
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard, Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
- National Referee Centre for Rheumatic and AutoImmune and Systemic diseases in children
- Immunology Laboratory, Hospices Civils de Lyon, Lyon Sud Hospital, Pierre-Bénite
| | - Anne-Laure Mathieu
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard, Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France.
| | - Christophe Malcus
- Hospices Civils de Lyon, Edouard Herriot Hospital, Immunology Laboratory, 69437 Lyon, France
- EA 7426 "Pathophysiology of Injury-Induced Immunosuppression" (Université Claude Bernard Lyon 1 - Hospices Civils de Lyon - bioMérieux), Joint Research Unit HCL-bioMérieux, 69003, Lyon, France
| | - Sophia Djebali
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard, Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Alicia Bellomo
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard, Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Olivier Dauwalder
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard, Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
- Centre National de Référence des Staphylocoques, Institut des Agents Infectieux, Hospices Civils de Lyon, F-69004, Lyon, France
| | - Magali Perret
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard, Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
- Immunology Laboratory, Hospices Civils de Lyon, Lyon Sud Hospital, Pierre-Bénite
| | - Marine Villard
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard, Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
- Immunology Laboratory, Hospices Civils de Lyon, Lyon Sud Hospital, Pierre-Bénite
| | - Emilie Chopin
- Cellular Biotechnology Department and Biobank, Hospices Civils de Lyon, Lyon, France
| | - Isabelle Rouvet
- Cellular Biotechnology Department and Biobank, Hospices Civils de Lyon, Lyon, France
| | - Francois Vandenesh
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard, Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
- Centre National de Référence des Staphylocoques, Institut des Agents Infectieux, Hospices Civils de Lyon, F-69004, Lyon, France
| | - Céline Dupieux
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard, Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
- Centre National de Référence des Staphylocoques, Institut des Agents Infectieux, Hospices Civils de Lyon, F-69004, Lyon, France
| | - Robin Pouyau
- Réanimation Pédiatrique Hôpital Femme-Mère-Enfant Hospices Civils de Lyon, Bron, France
| | - Sonia Teyssedre
- Réanimation Pédiatrique Hôpital Femme-Mère-Enfant Hospices Civils de Lyon, Bron, France
| | - Margaux Guerder
- Réanimation Pédiatrique Hôpital Femme-Mère-Enfant Hospices Civils de Lyon, Bron, France
| | | | - Anne Moulin-Zinsch
- Unité medico-chirurgicale des cardiopathies congénitales, hôpital Louis-Pradel, hospices civils de Lyon, 69677 Bron, France
| | - Marie Duperril
- Pediatric intensive care unit - University hospital of Saint-Étienne, France
| | - Hugues Patural
- Pediatric intensive care unit - University hospital of Saint-Étienne, France
- U1059 INSERM - SAINBIOSE - DVH - Université de Saint-Étienne - 42055, France
| | - Lisa Giovannini-Chami
- Pediatric Pulmonology and Allergology Department, Hôpitaux pédiatriques de Nice CHU-Lenval, Nice, France
- Université Côte d'Azur, France
| | - Aurélie Portefaix
- Center of Clinical Investigation, Lyon University Hospital, Bron, France
| | - Behrouz Kassai
- Center of Clinical Investigation, Lyon University Hospital, Bron, France
| | - Fabienne Venet
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard, Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
- Hospices Civils de Lyon, Edouard Herriot Hospital, Immunology Laboratory, 69437 Lyon, France
| | - Guillaume Monneret
- Hospices Civils de Lyon, Edouard Herriot Hospital, Immunology Laboratory, 69437 Lyon, France
- EA 7426 "Pathophysiology of Injury-Induced Immunosuppression" (Université Claude Bernard Lyon 1 - Hospices Civils de Lyon - bioMérieux), Joint Research Unit HCL-bioMérieux, 69003, Lyon, France
| | - Christine Lombard
- Immunology Laboratory, Hospices Civils de Lyon, Lyon Sud Hospital, Pierre-Bénite
| | - Hugues Flodrops
- Service de Pédiatrie, Groupe Hospitalier Sud Réunion, CHU de La Réunion, Saint Pierre, La Réunion, France
| | - Jean-Marie De Guillebon
- Service de Néphrologie, Rhumatologie pédiatrique, Hôpitaux pédiatriques de Nice CHU-Lenval, Nice, France
| | - Fanny Bajolle
- Hôpital Necker Enfants Malades, Centre de référence M3C, AP-HP, Paris, France
| | - Valérie Launay
- Urgences pédiatriques, Hôpital femme Mère Enfant, Hospices Civils de Lyon, Bron, France
| | - Paul Bastard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
| | - Shen-Ying Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Valérie Dubois
- EFS Auvergne Rhône Alpes, laboratoire Histocompatibilité, 111, rue Elisée-Reclus, 69150 Décines, France
| | - Olivier Thaunat
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard, Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
- EFS Auvergne Rhône Alpes, laboratoire Histocompatibilité, 111, rue Elisée-Reclus, 69150 Décines, France
- Department of Transplantation, Nephrology and Clinical Immunology, Edouard Herriot University Hospital, Lyon, France
- Lyon-Est Medical Faculty, Claude Bernard University (Lyon 1), 8, avenue Rockfeller, 69373, Lyon, France
| | - Jean-Christophe Richard
- Médecine Intensive-Réanimation, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France
- Lyon University, France
| | - Mehdi Mezidi
- Médecine Intensive-Réanimation, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France
- Lyon University, France
| | - Omran Allatif
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard, Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Kahina Saker
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard, Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
- Laboratoire de Virologie, Institut des Agents Infectieux, Laboratoire associé au Centre National de Référence des virus des infections respiratoires, Hospices Civils de Lyon, Lyon, France
| | - Marlène Dreux
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard, Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, NY, USA
| | - Jacqueline Marvel
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard, Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Sophie Trouillet-Assant
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard, Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
- Laboratoire de Virologie, Institut des Agents Infectieux, Laboratoire associé au Centre National de Référence des virus des infections respiratoires, Hospices Civils de Lyon, Lyon, France
| | - David Klatzmann
- Sorbonne Université, UPMC Univ Paris 06, INSERM UMRS 959, Immunology Immunopathology-Immunotherapy (i3), Paris, France
- Assistance Publique - Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Biotherapy and Département Hospitalo-Universitaire Inflammation-Immunopathology-Biotherapy (i2B), Paris, France
| | - Thierry Walzer
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard, Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Encarnita Mariotti-Ferrandiz
- Sorbonne Université, UPMC Univ Paris 06, INSERM UMRS 959, Immunology Immunopathology-Immunotherapy (i3), Paris, France
- Assistance Publique - Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Biotherapy and Département Hospitalo-Universitaire Inflammation-Immunopathology-Biotherapy (i2B), Paris, France
| | - Etienne Javouhey
- EA 7426 "Pathophysiology of Injury-Induced Immunosuppression" (Université Claude Bernard Lyon 1 - Hospices Civils de Lyon - bioMérieux), Joint Research Unit HCL-bioMérieux, 69003, Lyon, France
- Réanimation Pédiatrique Hôpital Femme-Mère-Enfant Hospices Civils de Lyon, Bron, France
| | - Alexandre Belot
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard, Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France.
- Hospices Civils de Lyon, Edouard Herriot Hospital, Immunology Laboratory, 69437 Lyon, France
| |
Collapse
|
8
|
Manuel M, Tredan O, Bachelot T, Clapisson G, Courtier A, Parmentier G, Rabeony T, Grives A, Perez S, Mouret JF, Perol D, Chabaud S, Ray-Coquard I, Labidi-Galy I, Heudel P, Pierga JY, Caux C, Blay JY, Pasqual N, Ménétrier-Caux C. Lymphopenia combined with low TCR diversity (divpenia) predicts poor overall survival in metastatic breast cancer patients. Oncoimmunology 2021; 1:432-440. [PMID: 22754761 PMCID: PMC3382902 DOI: 10.4161/onci.19545] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Lymphopenia (< 1Giga/L) detected before initiation of chemotherapy is a predictive factor for death in metastatic solid tumors. Combinatorial T cell repertoire (TCR) diversity was investigated and tested either alone or in combination with lymphopenia as a prognostic factor at diagnosis for overall survival (OS) in metastatic breast cancer (MBC) patients. The combinatorial TCR diversity was measured by semi quantitative multi-N-plex PCR on blood samples before the initiation of the first line chemotherapy in a development (n = 66) and validation (n = 67) MBC patient cohorts. A prognostic score, combining lymphocyte count and TCR diversity was evaluated. Univariate and multivariate analyses of prognostic factors for OS were performed in both cohorts. Lymphopenia and severe restriction of TCR diversity called “divpenia” (diversity ≤ 33%) were independently associated with shorter OS. Lympho-divpenia combining lymphopenia and severe divpenia accurately identified patients with poor OS in both cohorts (7.6 and 10.6 vs 24.5 and 22.9 mo). In multivariate analysis including other prognostic clinical factors, lympho-divpenia was found to be an independent prognostic factor in the pooled cohort (p = 0.005) along with lack of HER2 and hormonal receptors expression (p = 0.011) and anemia (p = 0.009). Lympho-divpenia is a novel prognostic factor that will be used to improve quality of MBC patients’ medical care.
Collapse
Affiliation(s)
- Manuarii Manuel
- ImmunID Technologies; CEA; Grenoble, France ; Université Lyon 1; ISPB; Lyon, France ; Team 11; CRCL INSERM U-1052/CNRS 5286; Lyon, France ; LabEx DEVweCAN; Centre Léon Bérard; Lyon, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Schreiber TH, Wolf D, Bodero M, Podack E. Tumor antigen specific iTreg accumulate in the tumor microenvironment and suppress therapeutic vaccination. Oncoimmunology 2021; 1:642-648. [PMID: 22934256 PMCID: PMC3429568 DOI: 10.4161/onci.20298] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Tumor specific antigens (TSA) provide an opportunity to mobilize therapeutic immune responses against cancer. To evade such responses, tumor development in immunocompetent hosts is accompanied by acquisition of both active and passive mechanisms of immune suppression, including recruitment of CD4+FoxP3+ regulatory T cells (Treg). Thymic derived Treg (nTreg) may recognize self-antigens in the tumor microenvironment, while peripherally induced Treg (iTreg) may preferentially recognize the same TSA which provide an opportunity for therapeutic immunity from peripheral T cells. In this study we provide a systematic analysis of nTreg and iTreg accumulation in the tumor microenvironment (TME) at the cellular level. iTreg accumulation to the TME was influenced by the abundance of a known TSA, and in the absence of a known TSA intratumoral Treg displayed a unique TCR repertoire from peripheral Treg. In vivo suppression assays demonstrate that cognate-antigen matched iTreg are more potent suppressors of CD4+ than are polyclonal iTreg or nTreg, but were unable to suppress CD8+ T cell proliferation. Suppression occurred only locally at the site of immunization, and correlated with decreased expression of CD80 and CD86 on CD11c positive cells. Although established tumors facilitated the induction of TSA-specific iTreg, these iTreg suppressed CD4+ T cell accumulation only locally to the TME. Tumor mediated suppression of CD8+ T cell immunity appeared independent of TSA-specific iTreg.
Collapse
Affiliation(s)
- Taylor H Schreiber
- Department of Microbiology and Immunology; University of Miami Miller School of Medicine; Miami, FL USA
| | | | | | | |
Collapse
|
10
|
Kervevan J, Chakrabarti LA. Role of CD4+ T Cells in the Control of Viral Infections: Recent Advances and Open Questions. Int J Mol Sci 2021; 22:E523. [PMID: 33430234 PMCID: PMC7825705 DOI: 10.3390/ijms22020523] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/23/2020] [Accepted: 12/30/2020] [Indexed: 12/26/2022] Open
Abstract
CD4+ T cells orchestrate adaptive immune responses through their capacity to recruit and provide help to multiple immune effectors, in addition to exerting direct effector functions. CD4+ T cells are increasingly recognized as playing an essential role in the control of chronic viral infections. In this review, we present recent advances in understanding the nature of CD4+ T cell help provided to antiviral effectors. Drawing from our studies of natural human immunodeficiency virus (HIV) control, we then focus on the role of high-affinity T cell receptor (TCR) clonotypes in mediating antiviral CD4+ T cell responses. Last, we discuss the role of TCR affinity in determining CD4+ T cell differentiation, reviewing the at times divergent studies associating TCR signal strength to the choice of a T helper 1 (Th1) or a T follicular helper (Tfh) cell fate.
Collapse
Affiliation(s)
- Jérôme Kervevan
- Control of Chronic Viral Infections Group (CIVIC), Virus and Immunity Unit, Institut Pasteur, 75724 Paris, France;
- CNRS UMR, 3569 Paris, France
| | - Lisa A. Chakrabarti
- Control of Chronic Viral Infections Group (CIVIC), Virus and Immunity Unit, Institut Pasteur, 75724 Paris, France;
- CNRS UMR, 3569 Paris, France
| |
Collapse
|
11
|
Chiarini M, Paghera S, Moratto D, Rossi ND, Giacomelli M, Badolato R, Capra R, Imberti L. Immunologic characterization of a immunosuppressed multiple sclerosis patient that recovered from SARS-CoV-2 infection. J Neuroimmunol 2020; 345:577282. [PMID: 32505908 PMCID: PMC7256606 DOI: 10.1016/j.jneuroim.2020.577282] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/06/2020] [Accepted: 05/27/2020] [Indexed: 01/02/2023]
Abstract
A multiple sclerosis patient infected by SARS-CoV-2 during fingolimod therapy was hospitalized with moderate clinical features, and recovered in 15 days. High levels of CCL5 and CCL10 chemokines and of antibody-secreting B cells were detected, while the levels other B- and T-cell subsets were comparable to that of appropriate controls. However, CD4+ and CD8+ cells were oligoclonally expanded and prone to apoptosis when stimulated in vitro. This study suggests that fingolimod-immunosuppressed patients, despite the low circulating lymphocytes, may rapidly expand antibody-secreting cells and mount an effective immune response that favors COVID-19 recovery after drug discontinuation.
Collapse
Affiliation(s)
- Marco Chiarini
- Flow Cytometry Laboratory, Diagnostic Department, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Simone Paghera
- Centro di Ricerca Emato-oncologica AIL (CREA), Diagnostic Department, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Daniele Moratto
- Flow Cytometry Laboratory, Diagnostic Department, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Nicola De Rossi
- Multiple Sclerosis Center, ASST Spedali Civili di Brescia, Montichiari, Brescia, Italy
| | - Mauro Giacomelli
- Molecular Medicine Institute "Angelo Nocivelli", Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Raffaele Badolato
- Molecular Medicine Institute "Angelo Nocivelli", Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Ruggero Capra
- Multiple Sclerosis Center, ASST Spedali Civili di Brescia, Montichiari, Brescia, Italy
| | - Luisa Imberti
- Centro di Ricerca Emato-oncologica AIL (CREA), Diagnostic Department, ASST Spedali Civili di Brescia, Brescia, Italy.
| |
Collapse
|
12
|
Silva-Freitas ML, Corrêa-Castro G, Cota GF, Giacoia-Gripp C, Rabello A, Teixeira Dutra J, de Vasconcelos ZFM, Savino W, Da-Cruz AM, Santos-Oliveira JR. Impaired Thymic Output Can Be Related to the Low Immune Reconstitution and T Cell Repertoire Disturbances in Relapsing Visceral Leishmaniasis Associated HIV/AIDS Patients. Front Immunol 2020; 11:953. [PMID: 32508833 PMCID: PMC7251171 DOI: 10.3389/fimmu.2020.00953] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/23/2020] [Indexed: 12/20/2022] Open
Abstract
Background: Visceral leishmaniasis/HIV-co-infected patients (VL/HIV) accounts for around 8% of VL reported cases in Brazil. Relapses of Leishmania infection after anti-leishmanial treatment constitute a great challenge in the clinical practice because of the disease severity and drug resistance. We have shown that non-relapsing-VL/HIV (NR-) evolved with increase of CD4+ T-cell counts and reduction of activated CD4+ and CD8+ T cells after anti-leishmanial treatment. This immune profile was not observed in relapsing-VL/HIV patients (R-), indicating a more severe immunological compromising degree. Elevated activation status may be related to a deficient immune reconstitution and could help to explain the frequent relapses in VL/HIV co-infection. Our aim was to evaluate if this gain of T cells was related to changes in the peripheral TCRVβ repertoire and inflammatory status, as well as the possible thymus involvement in the replenishment of these newly formed T lymphocytes. Methods: VL/HIV patients, grouped into non-relapsing (NR- = 6) and relapsing (R- = 12) were evaluated from the active phase up to 12 months post-treatment (mpt). HIV-infected patients (non-VL) and healthy subjects (HS) were included. The TCRVβ repertoire was evaluated ex vivo by flow cytometry, whereas the plasmatic cytokine levels were assessed by Luminex assay. To evaluate the thymic output, DNA was extracted from PBMCs for TCR rearrangement excision circles (TREC) quantification by qPCR. Results: VL/HIV cases presented an altered mobilization profile (expansions or retractions) of the TCRVβ families when compared to HS independent of the follow-up phase (p < 0.05). TCRVβ repertoire on CD4+ T-cells was more homogeneous in the NR-VL/HIV cases, but heterogeneous on CD8+ T-cells, since different Vβ-families were mobilized. NR-VL/HIV had the inflammatory pattern reduced after 6 mpt. Importantly, VL/HIV patients showed number of TREC copies lower than controls during all follow-up. An increase of recent thymic emigrants was observed in NR-VL/HIV individuals at 10 mpt compared to R- patients (p < 0.01), who maintained lower TREC contents than the HIV controls. Conclusions: VL/HIV patients that maintain the thymic function, thus generating new T-cells, seem able to replenish the T lymphocyte compartment with effector cells, then enabling parasite control.
Collapse
Affiliation(s)
- Maria Luciana Silva-Freitas
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Gabriela Corrêa-Castro
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil.,Núcleo de Ciências Biomédicas Aplicadas, Instituto Federal de Educação, Ciência e Tecnologia Do Rio de Janeiro (IFRJ), Rio de Janeiro, Brazil
| | - Glaucia Fernandes Cota
- Centro de Referência em Leishmanioses, Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, Brazil
| | - Carmem Giacoia-Gripp
- Laboratório de AIDS e Imunologia Molecular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Ana Rabello
- Centro de Referência em Leishmanioses, Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, Brazil
| | - Juliana Teixeira Dutra
- Laboratório de Alta Complexidade, Instituto Nacional de Saúde da Mulher, da Criança e Do Adolescente Fernandes Figueira (IFF), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Zilton Farias Meira de Vasconcelos
- Laboratório de Alta Complexidade, Instituto Nacional de Saúde da Mulher, da Criança e Do Adolescente Fernandes Figueira (IFF), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Wilson Savino
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil.,National Institute of Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil.,Rede de Pesquisas em Saúde Do Estado Do Rio de Janeiro/FAPERJ, Rio de Janeiro, Brazil
| | - Alda Maria Da-Cruz
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil.,National Institute of Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil.,Rede de Pesquisas em Saúde Do Estado Do Rio de Janeiro/FAPERJ, Rio de Janeiro, Brazil.,Disciplina de Parasitologia/DMIP, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | - Joanna Reis Santos-Oliveira
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil.,Núcleo de Ciências Biomédicas Aplicadas, Instituto Federal de Educação, Ciência e Tecnologia Do Rio de Janeiro (IFRJ), Rio de Janeiro, Brazil.,National Institute of Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| |
Collapse
|
13
|
Cordes M, Pike-Overzet K, van Eggermond M, Vloemans S, Baert MR, Garcia-Perez L, Staal FJT, Reinders MJT, van den Akker EB. ImSpectR - R package to quantify immune repertoire diversity in spectratype and repertoire sequencing data. Bioinformatics 2019; 36:btz804. [PMID: 31665245 PMCID: PMC7703782 DOI: 10.1093/bioinformatics/btz804] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 09/29/2019] [Accepted: 10/24/2019] [Indexed: 11/29/2022] Open
Abstract
SUMMARY An effective immune system is characterized by a diverse immune repertoire. There is a strong demand for accurate and quantitative methods to assess the diversity of the immune repertoire for various (pre-)clinical applications, including the diagnosis and prognosis of primary immune deficiencies, or to assess the response to therapy. Current strategies for immune diversity assessment generally comprise the visual inspection of the length distribution of rearranged T- and B-cell receptors. Visual inspections, however, are prone to subjective assessments and thus lead to biases. Here, we introduce ImSpectR, a unified approach to quantify immunodiversity using either spectratype, repertoire sequencing or single cell RNA sequencing data. ImSpectR scores various types of deviations from the expected length distribution and integrates these into one measure, allowing for robust quantitative comparisons of immune diversity across individuals or conditions. AVAILABILITY R-package is available for download on GitHub at https://github.com/martijn-cordes/ImSpectR. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Martijn Cordes
- Department of Immunohematology & Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
- Leiden Computational Biology Center, Leiden University Medical Center, Leiden, The Netherlands
| | - Karin Pike-Overzet
- Department of Immunohematology & Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Marja van Eggermond
- Department of Immunohematology & Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Sandra Vloemans
- Department of Immunohematology & Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Miranda R Baert
- Department of Immunohematology & Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Laura Garcia-Perez
- Department of Immunohematology & Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Frank J T Staal
- Department of Immunohematology & Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Marcel J T Reinders
- Leiden Computational Biology Center, Leiden University Medical Center, Leiden, The Netherlands
- The Delft Bioinformatics Lab, Delft University of Technology, Delft, The Netherlands
| | - Erik B van den Akker
- Leiden Computational Biology Center, Leiden University Medical Center, Leiden, The Netherlands
- The Delft Bioinformatics Lab, Delft University of Technology, Delft, The Netherlands
- Department of Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
14
|
Paghera S, Quiros-Roldan E, Sottini A, Properzi M, Castelli F, Imberti L. Lymphocyte homeostasis is maintained in perinatally HIV-infected patients after three decades of life. IMMUNITY & AGEING 2019; 16:26. [PMID: 31636688 PMCID: PMC6791008 DOI: 10.1186/s12979-019-0166-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 09/25/2019] [Indexed: 12/15/2022]
Abstract
Background While immunosenescence, defined as reduced production of new lymphocytes, restriction of T-cell receptor repertoire and telomeres shortening, has been extensively evaluated in HIV-infected children and adults, no data about these parameters are available in perinatally-infected patients with very long-lasting HIV infection. Methods We compared thymic and bone marrow output, telomere length (measured by Real-Time PCR) and T-cell receptor repertoire (determined by spectratyping) of 21 perinatally HIV-infected subjects (with a median of 27 years of infection) with those of 19 age-matched non-perinatally HIV-infected patients and 40 healthy controls. All patients received a combined antiretroviral therapy. Results While thymic and bone marrow output were not different among the analyzed groups, telomere length in peripheral blood cells and T-cell receptor diversity were significantly lower in HIV-perinatally and non-perinatally infected individuals compared to healthy controls. Conclusions In HIV-infected subjects, a normal thymic output together with a reduced telomere length and a restricted T-cell receptor repertoire could be explained by the shift of newly produced cells into memory subsets. This phenomenon may allow to control viral infection and maintain peripheral homeostasis.
Collapse
Affiliation(s)
- S Paghera
- 1Centro di Ricerca Emato-oncologica AIL (CREA), Diagnostic Department, ASST Spedali Civili, Brescia, Italy
| | - E Quiros-Roldan
- 2Department of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili, Brescia, Italy
| | - A Sottini
- 1Centro di Ricerca Emato-oncologica AIL (CREA), Diagnostic Department, ASST Spedali Civili, Brescia, Italy
| | - M Properzi
- 2Department of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili, Brescia, Italy
| | - F Castelli
- 2Department of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili, Brescia, Italy
| | - L Imberti
- 1Centro di Ricerca Emato-oncologica AIL (CREA), Diagnostic Department, ASST Spedali Civili, Brescia, Italy
| |
Collapse
|
15
|
Warren JA, Clutton G, Goonetilleke N. Harnessing CD8 + T Cells Under HIV Antiretroviral Therapy. Front Immunol 2019; 10:291. [PMID: 30863403 PMCID: PMC6400228 DOI: 10.3389/fimmu.2019.00291] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 02/04/2019] [Indexed: 12/16/2022] Open
Abstract
Antiretroviral therapy (ART) has transformed HIV from a fatal disease to a chronic condition. In recent years there has been considerable interest in strategies to enable HIV-infected individuals to cease ART without viral rebound, either by purging all cells infected harboring replication-competent virus (HIV eradication), or by boosting immune responses to allow durable suppression of virus without rebound (HIV remission). Both of these approaches may need to harness HIV-specific CD8+ T cells to eliminate infected cells and/or prevent viral spread. In untreated infection, both HIV-specific and total CD8+ T cells are dysfunctional. Here, we review our current understanding of both global and HIV-specific CD8+ T cell immunity in HIV-infected individuals with durably suppressed viral load under ART, and its implications for HIV cure, eradication or remission. Overall, the literature indicates significant normalization of global T cell parameters, including CD4/8 ratio, activation status, and telomere length. Global characteristics of CD8+ T cells from HIV+ART+ individuals align more closely with those of HIV-seronegative individuals than of viremic HIV-infected individuals. However, markers of senescence remain elevated, leading to the hypothesis that immune aging is accelerated in HIV-infected individuals on ART. This phenomenon could have implications for attempts to prime de novo, or boost existing HIV-specific CD8+ T cell responses. A major challenge for both HIV cure and remission strategies is to elicit HIV-specific CD8+ T cell responses superior to that elicited by natural infection in terms of response kinetics, magnitude, breadth, viral suppressive capacity, and tissue localization. Addressing these issues will be critical to the success of HIV cure and remission attempts.
Collapse
Affiliation(s)
- Joanna A Warren
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, United States
| | - Genevieve Clutton
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, United States
| | - Nilu Goonetilleke
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, United States.,UNC HIV Cure Center, University of North Carolina, Chapel Hill, NC, United States
| |
Collapse
|
16
|
van den Brom RRH, van der Geest KSM, Brouwer E, Hospers GAP, Boots AMH. Enhanced expression of PD-1 and other activation markers by CD4+ T cells of young but not old patients with metastatic melanoma. Cancer Immunol Immunother 2018; 67:925-933. [PMID: 29546435 PMCID: PMC5951899 DOI: 10.1007/s00262-018-2148-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 03/07/2018] [Indexed: 11/30/2022]
Abstract
The biological behavior of melanoma is unfavorable in the elderly when compared to young subjects. We hypothesized that differences in T-cell responses might underlie the distinct behavior of melanoma in young and old melanoma patients. Therefore, we investigated the circulating T-cell compartment of 34 patients with metastatic melanoma and 42 controls, which were classified as either young or old. Absolute numbers of CD4+ T cells were decreased in young and old melanoma patients when compared to the age-matched control groups. Percentages of naive and memory CD4+ T cells were not different when comparing old melanoma patients to age-matched controls. Percentages of memory CD4+ T cells tended to be increased in young melanoma patients compared to young controls. Proportions of naive CD4+ T cells were lower in young patients than in age-matched controls, and actually comparable to those in old patients and controls. This was accompanied with increased percentages of memory CD4+ T cells expressing HLA-DR, Ki-67, and PD-1 in young melanoma patients in comparison to the age-matched controls, but not in old patients. Proportions of CD45RA−FOXP3high memory regulatory T cells were increased in young and old melanoma patients when compared to their age-matched controls, whereas those of CD45RA+FOXP3low naive regulatory T cells were similar. We observed no clear modulation of the circulating CD8+ T-cell repertoire in melanoma patients. In conclusion, we show that CD4+ T cells of young melanoma patients show signs of activation, whereas these signs are less clear in CD4+ T cells of old patients.
Collapse
Affiliation(s)
- Rob R H van den Brom
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Kornelis S M van der Geest
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB, Groningen, The Netherlands
| | - Elisabeth Brouwer
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB, Groningen, The Netherlands
| | - Geke A P Hospers
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Annemieke M H Boots
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB, Groningen, The Netherlands.
| |
Collapse
|
17
|
Mukhopadhyay M, Galperin M, Patgaonkar M, Vasan S, Ho DD, Nouël A, Claireaux M, Benati D, Lambotte O, Huang Y, Chakrabarti LA. DNA Vaccination by Electroporation Amplifies Broadly Cross-Restricted Public TCR Clonotypes Shared with HIV Controllers. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 199:3437-3452. [PMID: 28993513 PMCID: PMC5675813 DOI: 10.4049/jimmunol.1700953] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 09/07/2017] [Indexed: 01/20/2023]
Abstract
Rare patients who spontaneously control HIV replication provide a useful model to inform HIV vaccine development. HIV controllers develop particularly efficient antiviral CD4+ T cell responses mediated by shared high-affinity TCRs. To determine whether the candidate DNA vaccine ADVAX could induce similar responses, we analyzed Gag-specific primary CD4+ T cells from healthy volunteers who received ADVAX DNA by electroporation. Vaccinated volunteers had an immunodominant response to the Gag293 epitope with a functional avidity intermediate between that of controllers and treated patients. The TCR repertoire of Gag293-specific CD4+ T cells proved highly biased, with a predominant usage of the TCRβ variable gene 2 (TRBV2) in vaccinees as well as controllers. TCRα variable gene (TRAV) gene usage was more diverse, with the dominance of TRAV29 over TRAV24 genes in vaccinees, whereas TRAV24 predominated in controllers. Sequence analysis revealed an unexpected degree of overlap between the specific repertoires of vaccinees and controllers, with the sharing of TRAV24 and TRBV2 public motifs (>30%) and of public clonotypes characteristic of high-affinity TCRs. MHC class II tetramer binding revealed a broad HLA-DR cross-restriction, explaining how Gag293-specific public clonotypes could be selected in individuals with diverse genetic backgrounds. TRAV29 clonotypes also proved cross-restricted, but conferred responses of lower functional avidity upon TCR transfer. In conclusion, DNA vaccination by electroporation primed for TCR clonotypes that were associated with HIV control, highlighting the potential of this vaccine delivery method. To our knowledge, this study provides the first proof-of-concept that clonotypic analysis may be used as a tool to monitor the quality of vaccine-induced responses and modulate these toward "controller-like" responses.
Collapse
Affiliation(s)
- Madhura Mukhopadhyay
- Institut Pasteur, Unité de Pathogénie Virale, 75724 Paris, France
- INSERM U1108, 75015 Paris, France
| | - Moran Galperin
- Institut Pasteur, Unité de Pathogénie Virale, 75724 Paris, France
- INSERM U1108, 75015 Paris, France
| | - Mandar Patgaonkar
- Institut Pasteur, Unité de Pathogénie Virale, 75724 Paris, France
- INSERM U1108, 75015 Paris, France
| | - Sandhya Vasan
- Aaron Diamond AIDS Research Center, New York, NY 10016
| | - David D Ho
- Aaron Diamond AIDS Research Center, New York, NY 10016
| | - Alexandre Nouël
- Institut Pasteur, Unité de Pathogénie Virale, 75724 Paris, France
- INSERM U1108, 75015 Paris, France
| | - Mathieu Claireaux
- Institut Pasteur, Unité de Pathogénie Virale, 75724 Paris, France
- INSERM U1108, 75015 Paris, France
| | - Daniela Benati
- Institut Pasteur, Unité de Pathogénie Virale, 75724 Paris, France
- INSERM U1108, 75015 Paris, France
| | - Olivier Lambotte
- Assistance Publique Hôpitaux de Paris, Hôpital Bicêtre, Service de Médecine Interne et Immunologie Clinique, 94275 Le Kremlin-Bicêtre, France
- Université Paris Sud, UMR 1184, 94276 Le Kremlin-Bicêtre, France
- DSV/iMETI, IDMIT, Commissariat à l'Energie Atomique, 92260 Fontenay-aux-Roses, France; and
- INSERM U1184, Centre d'Immunologie des Infections Virales et Maladies Autoimmunes, 94276 Le Kremlin-Bicêtre, France
| | - Yaoxing Huang
- Aaron Diamond AIDS Research Center, New York, NY 10016
| | - Lisa A Chakrabarti
- Institut Pasteur, Unité de Pathogénie Virale, 75724 Paris, France;
- INSERM U1108, 75015 Paris, France
| |
Collapse
|
18
|
Koivula TT, Laakso SM, Niemi HJ, Kekäläinen E, Laine P, Paulin L, Auvinen P, Arstila TP. Clonal Analysis of Regulatory T Cell Defect in Patients with Autoimmune Polyendocrine Syndrome Type 1 Suggests Intrathymic Impairment. Scand J Immunol 2017; 86:221-228. [PMID: 28736829 DOI: 10.1111/sji.12586] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 07/14/2017] [Indexed: 01/28/2023]
Abstract
Mutations in the autoimmune regulator gene disrupt thymic T cell development and negative selection, leading to the recessively inherited polyendocrine autoimmune disease autoimmune polyendocrine syndrome type 1 (APS-1). The patients also have a functional defect in the FOXP3+ regulatory T cell population, but its origin is unclear. Here, we have used T cell receptor sequencing to analyse the clonal relationship of major CD4+ T cell subsets in three patients and three healthy controls. The naive regulatory T cells showed little overlap with helper T cell subsets, supporting divergence in the thymus. The activated/memory regulatory T cell subset displayed more sharing with helper T cells, but was mainly recruited from the naive regulatory T cell population. These clonal patterns were very similar in both patients and controls. However, naive regulatory T cells isolated from the patients had a significantly longer T cell receptor complementarity-determining region 3 than any other population, suggesting failure of thymic selection. These data indicate that the peripheral differentiation of regulatory T cells in APS-1 patients is not different from that in healthy controls. Rather, the patients' naive regulatory T cells may have an intrinsic defect imprinted already in the thymus.
Collapse
Affiliation(s)
- T-T Koivula
- Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland
- Research Programs Unit, Immunobiology, University of Helsinki, Helsinki, Finland
| | - S M Laakso
- Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland
- Research Programs Unit, Immunobiology, University of Helsinki, Helsinki, Finland
| | - H J Niemi
- Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland
- Research Programs Unit, Immunobiology, University of Helsinki, Helsinki, Finland
| | - E Kekäläinen
- Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland
- Research Programs Unit, Immunobiology, University of Helsinki, Helsinki, Finland
- HUSLAB, Division of Clinical Microbiology, Helsinki University Hospital, HUS, Helsinki, Finland
| | - P Laine
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - L Paulin
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - P Auvinen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - T P Arstila
- Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland
- Research Programs Unit, Immunobiology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
19
|
Vidya Vijayan KK, Karthigeyan KP, Tripathi SP, Hanna LE. Pathophysiology of CD4+ T-Cell Depletion in HIV-1 and HIV-2 Infections. Front Immunol 2017; 8:580. [PMID: 28588579 PMCID: PMC5440548 DOI: 10.3389/fimmu.2017.00580] [Citation(s) in RCA: 162] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 05/01/2017] [Indexed: 12/20/2022] Open
Abstract
The hall mark of human immunodeficiency virus (HIV) infection is a gradual loss of CD4+ T-cells and imbalance in CD4+ T-cell homeostasis, with progressive impairment of immunity that leads ultimately to death. HIV infection in humans is caused by two related yet distinct viruses: HIV-1 and HIV-2. HIV-2 is typically less virulent than HIV-1 and permits the host to mount a more effective and sustained T-cell immunity. Although both infections manifest the same clinical spectrum, the much lower rate of CD4+ T-cell decline and slower progression of disease in HIV-2 infected individuals have grabbed the attention of several researchers. Here, we review the most recent findings on the differential rate of decline of CD4+ T-cell in HIV-1 and HIV-2 infections and provide plausible reasons for the observed differences between the two groups.
Collapse
Affiliation(s)
- K K Vidya Vijayan
- Division of HIV/AIDS, Department of Clinical Research, National Institute for Research in Tuberculosis (ICMR), Chennai, India
| | | | - Srikanth P Tripathi
- Division of HIV/AIDS, Department of Clinical Research, National Institute for Research in Tuberculosis (ICMR), Chennai, India
| | - Luke Elizabeth Hanna
- Division of HIV/AIDS, Department of Clinical Research, National Institute for Research in Tuberculosis (ICMR), Chennai, India
| |
Collapse
|
20
|
T follicular helper and T follicular regulatory cells have different TCR specificity. Nat Commun 2017; 8:15067. [PMID: 28429709 PMCID: PMC5413949 DOI: 10.1038/ncomms15067] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 02/24/2017] [Indexed: 12/27/2022] Open
Abstract
Immunization leads to the formation of germinal centres (GCs) that contain both T follicular helper (Tfh) and T follicular regulatory (Tfr) cells. Whether T-cell receptor (TCR) specificity defines the differential functions of Tfh and Tfr cells is unclear. Here we show that antigen-specific T cells after immunization are preferentially recruited to the GC to become Tfh cells, but not Tfr cells. Tfh cells, but not Tfr cells, also proliferate efficiently on restimulation with the same immunizing antigen in vitro. Ex vivo TCR repertoire analysis shows that immunization induces oligoclonal expansion of Tfh cells. By contrast, the Tfr pool has a TCR repertoire that more closely resembles that of regulatory T (Treg) cells. Our data thus indicate that the GC Tfh and Tfr pools are generated from distinct TCR repertoires, with Tfh cells expressing antigen-responsive TCRs to promote antibody responses, and Tfr cells expressing potentially autoreactive TCRs to suppress autoimmunity. T follicular helper and regulatory cells are generated in the germinal centre; however, whether antigen specificity defines their differential functions is unclear. Here the authors show that T cells with distinct antigen specificity spectra are recruited to the germinal centre to establish these two populations.
Collapse
|
21
|
Yu A, Dee MJ, Adeegbe D, Dwyer CJ, Altman NH, Malek TR. The Lower Limit of Regulatory CD4 + Foxp3 + TCRβ Repertoire Diversity Required To Control Autoimmunity. THE JOURNAL OF IMMUNOLOGY 2017; 198:3127-3135. [PMID: 28264971 DOI: 10.4049/jimmunol.1601966] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 02/13/2017] [Indexed: 01/18/2023]
Abstract
The TCR repertoire of regulatory T cells (Tregs) is highly diverse. The relevance of this diversity to maintain self-tolerance remains unknown. We established a model where the TCR repertoire of normal polyclonal Tregs was limited by serial transfers into IL-2Rβ-/- mice, which lack functional Tregs. After a primary transfer, the donor Treg TCR repertoire was substantially narrowed, yet the recipients remained autoimmune-free. Importantly, upon purification and transfer of donor-derived Tregs from an individual primary recipient into neonatal IL-2Rβ-/- mice, the secondary recipients developed autoimmunity. In this study, the Treg TCRβ repertoire was reshaped and further narrowed. In contrast, secondary IL-2Rβ recipients showed fewer symptoms of autoimmunity when they received donor Tregs that were premixed from several primary recipients to increase their TCRβ repertoire diversity. About 8-11% of the Treg TCRβ repertoire was estimated to be the minimum required to establish and maintain tolerance in primary IL-2Rβ-/- recipients. Collectively, these data quantify where limitations imposed on the Treg TCRβ repertoire results in a population of Tregs that cannot fully suppress polyclonal autoreactive T cells. Our data favor a model where the high diversity of the Treg TCR provides a mechanism for Tregs to actively adapt and effectively suppress autoreactive T cells, which are not fixed, but are evolving as they encounter self-antigens.
Collapse
Affiliation(s)
- Aixin Yu
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Michael J Dee
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Dennis Adeegbe
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Connor J Dwyer
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Norman H Altman
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, FL 33136; and
| | - Thomas R Malek
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136; .,Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL 33136
| |
Collapse
|
22
|
Serious Non-AIDS Events: Therapeutic Targets of Immune Activation and Chronic Inflammation in HIV Infection. Drugs 2016; 76:533-49. [PMID: 26915027 DOI: 10.1007/s40265-016-0546-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In the antiretroviral therapy (ART) era, serious non-AIDS events (SNAEs) have become the major causes of morbidity and mortality in HIV-infected persons. Early ART initiation has the strongest evidence for reducing SNAEs and mortality. Biomarkers of immune activation, inflammation and coagulopathy do not fully normalize despite virologic suppression and persistent immune activation is an important contributor to SNAEs. A number of strategies aimed to reduce persistent immune activation including ART intensification to reduce residual viremia; treatment of co-infections to reduce chronic antigen stimulation; the use of anti-inflammatory agents, reducing microbial translocation as well as interventions to improve immune recovery through cytokine administration and reducing lymphoid tissue fibrosis, have been investigated. To date, there is little conclusive evidence on which strategies beyond treatment of hepatitis B and C co-infections and reducing cardiovascular risk factors will result in clinical benefits in patients already on ART with viral suppression. The use of statins seems to show early promise and larger clinical trials are underway to confirm their efficacy. At this stage, clinical care of HIV-infected patients should therefore focus on early diagnosis and prompt ART initiation, treatment of active co-infections and the aggressive management of co-morbidities until further data are available.
Collapse
|
23
|
Bertoli D, Re A, Chiarini M, Sottini A, Serana F, Giustini V, Roccaro AM, Cattaneo C, Caimi L, Rossi G, Imberti L. B- and T-lymphocyte number and function in HIV +/HIV - lymphoma patients treated with high-dose chemotherapy and autologous bone marrow transplantation. Sci Rep 2016; 6:37995. [PMID: 27905485 PMCID: PMC5131356 DOI: 10.1038/srep37995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 11/02/2016] [Indexed: 01/24/2023] Open
Abstract
Combination of anti-retroviral therapy, high-dose chemotherapy (HCT) and autologous stem cell transplantation (ASCT) has led to an improved survival of HIV+ non-Hodgkin lymphoma (NHL) patients. We compared T- and B-cell subset recovery and related capability to respond to in-vitro stimulation, as well as T-cell repertoire modifications of HIV+ and HIV− NHL patients undergoing HCT and ASCT as first-line consolidation or salvage treatment, using sequential blood samples obtained before and at 3, 6, 12 and 24 months after ASCT. B lymphocyte recovery occurred earlier, reaching higher levels in HIV+ patients as compared to HIV− patients and healthy controls; in particular, immature and naïve B cells were significantly higher in HIV+ patients who had received rituximab in the pre-ASCT period. These lymphocytes equally responded to in-vitro stimulation. Newly produced T cells similarly increased in HIV+ and HIV− NHL patients, but their levels remained constantly lower than in healthy controls. T lymphocytes showed a reduced proliferative capacity, but their repertoire was reassorted by the treatment. The functional and numeric B-cell recovery and the qualitative modifications of T-cell receptor repertoire may explain, at least in part, the success of this aggressive therapeutic approach in HIV+ patients.
Collapse
Affiliation(s)
- Diego Bertoli
- Centro di Ricerca Emato-oncologica AIL (CREA), ASST Spedali Civili, Brescia, Italy
| | | | - Marco Chiarini
- Centro di Ricerca Emato-oncologica AIL (CREA), ASST Spedali Civili, Brescia, Italy
| | - Alessandra Sottini
- Centro di Ricerca Emato-oncologica AIL (CREA), ASST Spedali Civili, Brescia, Italy
| | - Federico Serana
- Centro di Ricerca Emato-oncologica AIL (CREA), ASST Spedali Civili, Brescia, Italy
| | - Viviana Giustini
- Centro di Ricerca Emato-oncologica AIL (CREA), ASST Spedali Civili, Brescia, Italy
| | - Aldo M Roccaro
- Centro di Ricerca Emato-oncologica AIL (CREA), ASST Spedali Civili, Brescia, Italy
| | | | - Luigi Caimi
- Centro di Ricerca Emato-oncologica AIL (CREA), ASST Spedali Civili, Brescia, Italy
| | | | - Luisa Imberti
- Centro di Ricerca Emato-oncologica AIL (CREA), ASST Spedali Civili, Brescia, Italy
| |
Collapse
|
24
|
Fozza C, Barraqueddu F, Corda G, Contini S, Virdis P, Dore F, Bonfigli S, Longinotti M. Study of the T-cell receptor repertoire by CDR3 spectratyping. J Immunol Methods 2016; 440:1-11. [PMID: 27823906 DOI: 10.1016/j.jim.2016.11.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 09/26/2016] [Accepted: 11/02/2016] [Indexed: 11/28/2022]
Abstract
The T-cell receptor (TCR) is the key player within the so called immunological synapse and the analysis of its repertoire offers a picture of both versatility and wideness of the whole immune T-cell compartment. Among the different approaches applied to its study the so-called spectratyping identifies the pattern of the third complementarity determining region (CDR3) length distribution in each one of the beta variable (TRBV) subfamilies encoded by the corresponding genes. This technique consists in a CDR3 fragment analysis through capillary electrophoresis, performed after cell separation, RNA extraction and reverse transcriptase PCR. This review will run through the most relevant studies which have tried to dissect the TCR repertoire usage in patients with different immune-mediated and infective diseases as well as solid or haematologic malignancies.
Collapse
Affiliation(s)
- Claudio Fozza
- Hematology, Department of Clinical and Experimental Medicine, University of Sassari, Viale San Pietro 12, 07100 Sassari, Italy.
| | - Francesca Barraqueddu
- Hematology, Department of Clinical and Experimental Medicine, University of Sassari, Viale San Pietro 12, 07100 Sassari, Italy
| | - Giovanna Corda
- Hematology, Department of Clinical and Experimental Medicine, University of Sassari, Viale San Pietro 12, 07100 Sassari, Italy
| | - Salvatore Contini
- Hematology, Department of Clinical and Experimental Medicine, University of Sassari, Viale San Pietro 12, 07100 Sassari, Italy
| | - Patrizia Virdis
- Hematology, Department of Clinical and Experimental Medicine, University of Sassari, Viale San Pietro 12, 07100 Sassari, Italy
| | - Fausto Dore
- Hematology, Department of Clinical and Experimental Medicine, University of Sassari, Viale San Pietro 12, 07100 Sassari, Italy
| | - Silvana Bonfigli
- Hematology, Department of Clinical and Experimental Medicine, University of Sassari, Viale San Pietro 12, 07100 Sassari, Italy
| | - Maurizio Longinotti
- Hematology, Department of Clinical and Experimental Medicine, University of Sassari, Viale San Pietro 12, 07100 Sassari, Italy
| |
Collapse
|
25
|
Flint SR, Tappuni A, Leigh J, Schmidt-Westhausen AM, MacPhail L. (B3) Markers of Immunodeficiency and Mechanisms of HAART Therapy on Oral Lesions. Adv Dent Res 2016; 19:146-51. [PMID: 16672565 DOI: 10.1177/154407370601900126] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Highly active anti-retroviral therapy (HAART) has revolutionized the treatment and prognosis of HIV disease and AIDS in those who can take advantage of the treatment. There are currently 20 different anti-retroviral drugs in 4 different classes that are used in specific combinations. Suppression of HIV replication and immune reconstitution are goals of therapy. Since the prevalence of some easily detectable oral manifestations of HIV/AIDS (OMHIV/AIDS) decreases with HAART, it has been suggested that they might be clinically useful surrogate markers of HAART efficacy and immune status. This might be particularly useful if their recurrence presaged or accompanied HAART failure. To date, there has been little work in this area, but its potential value to the clinical management of HIV/AIDS is apparent, especially if frequent measures of viral load and CD4 cell counts are not readily available. However, the usefulness of OMHIV/AIDS as signals for HAART failure is complicated by three phenomena: the immune reconstitution syndrome, the similarity of some adverse reactions of HAART to OMHIV/AIDS, and the direct inhibitory effect of HAART medications on some OMHIV/AIDS ( e.g., inhibition of oral candidosis by protease inhibitors). This workshop considered the current evidence and proposed pertinent research questions.
Collapse
Affiliation(s)
- S R Flint
- Department of Oral and Maxillofacial Surgery, Oral Medicine and Oral Pathology, Dublin Dental School and Hospital, Trinity College Dublin, Lincoln Place, Dublin 2, Ireland.
| | | | | | | | | |
Collapse
|
26
|
Benati D, Galperin M, Lambotte O, Gras S, Lim A, Mukhopadhyay M, Nouël A, Campbell KA, Lemercier B, Claireaux M, Hendou S, Lechat P, de Truchis P, Boufassa F, Rossjohn J, Delfraissy JF, Arenzana-Seisdedos F, Chakrabarti LA. Public T cell receptors confer high-avidity CD4 responses to HIV controllers. J Clin Invest 2016; 126:2093-108. [PMID: 27111229 DOI: 10.1172/jci83792] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 03/08/2016] [Indexed: 12/14/2022] Open
Abstract
The rare patients who are able to spontaneously control HIV replication in the absence of therapy show signs of a particularly efficient cellular immune response. To identify the molecular determinants that underlie this response, we characterized the T cell receptor (TCR) repertoire directed at Gag293, the most immunoprevalent CD4 epitope in the HIV-1 capsid. HIV controllers from the ANRS CODEX cohort showed a highly skewed TCR repertoire that was characterized by a predominance of TRAV24 and TRBV2 variable genes, shared CDR3 motifs, and a high frequency of public clonotypes. The most prevalent public clonotypes generated TCRs with affinities at the higher end of values reported for naturally occurring TCRs. The high-affinity Gag293-specific TCRs were cross-restricted by up to 5 distinct HLA-DR alleles, accounting for the expression of these TCRs in HIV controllers of diverse genetic backgrounds. Transfer of these TCRs to healthy donor CD4+ T cells conferred high antigen sensitivity and polyfunctionality, thus recapitulating key features of the controller CD4 response. Transfer of a high-affinity Gag293-specific TCR also redirected CD8+ T cells to target HIV-1 capsid via nonconventional MHC II restriction. Together, these findings indicate that TCR clonotypes with superior functions are associated with HIV control. Amplification or transfer of such clonotypes may contribute to immunotherapeutic approaches aiming at a functional HIV cure.
Collapse
|
27
|
TCR clonotypes: molecular determinants of T-cell efficacy against HIV. Curr Opin Virol 2016; 16:77-85. [PMID: 26874617 DOI: 10.1016/j.coviro.2016.01.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 01/22/2016] [Accepted: 01/25/2016] [Indexed: 01/02/2023]
Abstract
Because of the enormous complexity and breadth of the overall HIV-specific CD8(+) T-cell response, invaluable information regarding important aspects of T-cell efficacy against HIV can be sourced from studies performed on individual clonotypes. Data gathered from ex vivo and in vitro analyses of T-cell responses and viral evolution bring us one step closer towards deciphering the correlates of protection against HIV. HIV-responsive CD8(+) T-cell populations are characterized by specific clonotypic immunodominance patterns and public TCRs. The TCR endows T-cells with two key features, important for the effective control of HIV: avidity and crossreactivity. While TCR avidity is a major determinant of CD8(+) T-cell functional efficacy against the virus, crossreactivity towards wildtype and mutant viral epitopes is crucial for adaptation to HIV evolution. The properties of CD4(+) T-cell responses in HIV controllers appear also to be shaped by high avidity public TCR clonotypes. The molecular nature of the TCR, together with the clonotypic composition of the HIV-specific T-cell response, emerge as major determinants of anti-viral efficacy.
Collapse
|
28
|
A TCRβ Repertoire Signature Can Predict Experimental Cerebral Malaria. PLoS One 2016; 11:e0147871. [PMID: 26844551 PMCID: PMC4742225 DOI: 10.1371/journal.pone.0147871] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 12/04/2015] [Indexed: 11/19/2022] Open
Abstract
Cerebral Malaria (CM) is associated with a pathogenic T cell response. Mice infected by P. berghei ANKA clone 1.49 (PbA) developing CM (CM+) present an altered PBL TCR repertoire, partly due to recurrently expanded T cell clones, as compared to non-infected and CM- infected mice. To analyse the relationship between repertoire alteration and CM, we performed a kinetic analysis of the TRBV repertoire during the course of the infection until CM-related death in PbA-infected mice. The repertoires of PBL, splenocytes and brain lymphocytes were compared between infected and non-infected mice using a high-throughput CDR3 spectratyping method. We observed a modification of the whole TCR repertoire in the spleen and blood of infected mice, from the fifth and the sixth day post-infection, respectively, while only three TRBV were significantly perturbed in the brain of infected mice. Using multivariate analysis and statistical modelling, we identified a unique TCRβ signature discriminating CM+ from CTR mice, enriched during the course of the infection in the spleen and the blood and predicting CM onset. These results highlight a dynamic modification and compartmentalization of the TCR diversity during the course of PbA infection, and provide a novel method to identify disease-associated TCRβ signature as diagnostic and prognostic biomarkers.
Collapse
|
29
|
Younas M, Psomas C, Reynes J, Corbeau P. Immune activation in the course of HIV-1 infection: Causes, phenotypes and persistence under therapy. HIV Med 2015; 17:89-105. [PMID: 26452565 DOI: 10.1111/hiv.12310] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2015] [Indexed: 12/31/2022]
Abstract
Systemic immune activation is a striking consequence of HIV-1 infection. Even in virologically suppressed patients, some hyperactivity of the immune system and even of the endothelium and of the coagulation pathway may persist. Apart from immune deficiency, this chronic activation may contribute to various morbidities including atherothrombosis, neurocognitive disorders, liver steatosis and osteoporosis, which are currently main challenges. It is therefore of major importance to better understand the causes and the phenotypes of immune activation in the course of HIV-1 infection. In this review we will discuss the various causes of immune activation in HIV-1 infected organisms: the presence of the virus together with other microbes, eventually coming from the gut, CD4+ T cell lymphopenia, senescence and dysregulation of the immune system, and/or genetic factors. We will also describe the activation of the immune system: CD4+ and CD8+ T cells, B cells, NKT and NK cells, dendritic cells, monocytes and macrophages, and neutrophils of the inflammation cascade, as well as of the endothelium and the coagulation system. Finally, we will see that antiretroviral therapy reduces the hyperactivity of the immune and coagulation systems and the endothelial dysfunction, but often does not abolish it. A better knowledge of this phenomenon might help us to identify biomarkers predictive of non AIDS-linked comorbidities, and to define new strategies aiming at preventing their emergence.
Collapse
Affiliation(s)
- M Younas
- Institute of Human Genetics, CNRS UPR1142, Montpellier Cedex 5, France
| | - C Psomas
- Infectious Diseases Department, University Hospital, Montpellier Cedex 5, France.,UMI 233, IRD-Montpellier University, Montpellier Cedex 5, France
| | - J Reynes
- Infectious Diseases Department, University Hospital, Montpellier Cedex 5, France.,UMI 233, IRD-Montpellier University, Montpellier Cedex 5, France.,Montpellier University, Montpellier, France
| | - P Corbeau
- Institute of Human Genetics, CNRS UPR1142, Montpellier Cedex 5, France.,Montpellier University, Montpellier, France.,Immunology Department, University Hospital, Nîmes Cedex, France
| |
Collapse
|
30
|
Geest KSM, Abdulahad WH, Teteloshvili N, Tete SM, Peters JH, Horst G, Lorencetti PG, Bos NA, Lambeck A, Roozendaal C, Kroesen B, Koenen HJPM, Joosten I, Brouwer E, Boots AMH. Low-affinity TCR engagement drives IL-2-dependent post-thymic maintenance of naive CD4+ T cells in aged humans. Aging Cell 2015; 14:744-53. [PMID: 26010129 PMCID: PMC4568962 DOI: 10.1111/acel.12353] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2015] [Indexed: 12/18/2022] Open
Abstract
Insight into the maintenance of naive T cells is essential to understand defective immune responses in the context of aging and other immune compromised states. In humans, naive CD4+ T cells, in contrast to CD8+ T cells, are remarkably well retained with aging. Here, we show that low-affinity TCR engagement is the main driving force behind the emergence and accumulation of naive-like CD4+ T cells with enhanced sensitivity to IL-2 in aged humans. In vitro, we show that these CD45RA(+) CD25(dim) CD4(+) T cells can develop from conventional naive CD25(-) CD4+ T cells upon CD3 cross-linking alone, in the absence of costimulation, rather than via stimulation by the homeostatic cytokines IL-2, IL-7, or IL-15. In vivo, TCR engagement likely occurs in secondary lymphoid organs as these cells were detected in lymph nodes and spleen where they showed signs of recent activation. CD45RA(+) CD25(dim) CD4+ T cells expressed a broad TCRVβ repertoire and could readily differentiate into functional T helper cells. Strikingly, no expansion of CD45RA(+) CD25(dim) CD8+ T cells was detected with aging, thereby implying that maintenance of naive CD4+ T cells is uniquely regulated. Our data provide novel insight into the homeostasis of naive T cells and may guide the development of therapies to preserve or restore immunity in the elderly.
Collapse
Affiliation(s)
- Kornelis S. M. Geest
- Department of Rheumatology and Clinical Immunology University of Groningen University Medical Center Groningen Hanzeplein 1 9713 GZ Groningen The Netherlands
| | - Wayel H. Abdulahad
- Department of Rheumatology and Clinical Immunology University of Groningen University Medical Center Groningen Hanzeplein 1 9713 GZ Groningen The Netherlands
| | - Nato Teteloshvili
- Department of Pathology and Medical Biology University of Groningen University Medical Center Groningen Hanzeplein 19713 GZ Groningen The Netherlands
| | - Sarah M. Tete
- Department of Rheumatology and Clinical Immunology University of Groningen University Medical Center Groningen Hanzeplein 1 9713 GZ Groningen The Netherlands
| | - Jorieke H. Peters
- Department of Laboratory Medicine – Medical Immunology Radboud University Medical Centre Postbus 9101 6500 HB Nijmegen The Netherlands
| | - Gerda Horst
- Department of Rheumatology and Clinical Immunology University of Groningen University Medical Center Groningen Hanzeplein 1 9713 GZ Groningen The Netherlands
| | - Pedro G. Lorencetti
- Department of Rheumatology and Clinical Immunology University of Groningen University Medical Center Groningen Hanzeplein 1 9713 GZ Groningen The Netherlands
| | - Nicolaas A. Bos
- Department of Rheumatology and Clinical Immunology University of Groningen University Medical Center Groningen Hanzeplein 1 9713 GZ Groningen The Netherlands
| | - Annechien Lambeck
- Department of Laboratory Medicine University of Groningen University Medical Center Groningen Hanzeplein 1 9713 GZ Groningen The Netherlands
| | - Caroline Roozendaal
- Department of Laboratory Medicine University of Groningen University Medical Center Groningen Hanzeplein 1 9713 GZ Groningen The Netherlands
| | - Bart‐Jan Kroesen
- Department of Laboratory Medicine University of Groningen University Medical Center Groningen Hanzeplein 1 9713 GZ Groningen The Netherlands
| | - Hans J. P. M. Koenen
- Department of Laboratory Medicine – Medical Immunology Radboud University Medical Centre Postbus 9101 6500 HB Nijmegen The Netherlands
| | - Irma Joosten
- Department of Laboratory Medicine – Medical Immunology Radboud University Medical Centre Postbus 9101 6500 HB Nijmegen The Netherlands
| | - Elisabeth Brouwer
- Department of Rheumatology and Clinical Immunology University of Groningen University Medical Center Groningen Hanzeplein 1 9713 GZ Groningen The Netherlands
| | - Annemieke M. H. Boots
- Department of Rheumatology and Clinical Immunology University of Groningen University Medical Center Groningen Hanzeplein 1 9713 GZ Groningen The Netherlands
| |
Collapse
|
31
|
van der Geest KSM, Abdulahad WH, Horst G, Lorencetti PG, Bijzet J, Arends S, van der Heiden M, Buisman AM, Kroesen BJ, Brouwer E, Boots AMH. Quantifying Distribution of Flow Cytometric TCR-Vβ Usage with Economic Statistics. PLoS One 2015; 10:e0125373. [PMID: 25923356 PMCID: PMC4414620 DOI: 10.1371/journal.pone.0125373] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 03/23/2015] [Indexed: 11/19/2022] Open
Abstract
Measuring changes of the T cell receptor (TCR) repertoire is important to many fields of medicine. Flow cytometry is a popular technique to study the TCR repertoire, as it quickly provides insight into the TCR-Vβ usage among well-defined populations of T cells. However, the interpretation of the flow cytometric data remains difficult, and subtle TCR repertoire changes may go undetected. Here, we introduce a novel means for analyzing the flow cytometric data on TCR-Vβ usage. By applying economic statistics, we calculated the Gini-TCR skewing index from the flow cytometric TCR-Vβ analysis. The Gini-TCR skewing index, which is a direct measure of TCR-Vβ distribution among T cells, allowed us to track subtle changes of the TCR repertoire among distinct populations of T cells. Application of the Gini-TCR skewing index to the flow cytometric TCR-Vβ analysis will greatly help to gain better understanding of the TCR repertoire in health and disease.
Collapse
Affiliation(s)
- Kornelis S. M. van der Geest
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- * E-mail:
| | - Wayel H. Abdulahad
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Gerda Horst
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Pedro G. Lorencetti
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Johan Bijzet
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Suzanne Arends
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marieke van der Heiden
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Center for Immunology of Infectious Diseases and Vaccines, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Anne-Marie Buisman
- Center for Immunology of Infectious Diseases and Vaccines, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Bart-Jan Kroesen
- Department Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Elisabeth Brouwer
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Annemieke M. H. Boots
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
32
|
Bergot AS, Chaara W, Ruggiero E, Mariotti-Ferrandiz E, Dulauroy S, Schmidt M, von Kalle C, Six A, Klatzmann D. TCR sequences and tissue distribution discriminate the subsets of naïve and activated/memory Treg cells in mice. Eur J Immunol 2015; 45:1524-34. [PMID: 25726757 DOI: 10.1002/eji.201445269] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 01/08/2015] [Accepted: 02/24/2015] [Indexed: 12/12/2022]
Abstract
Analyses of the regulatory T (Treg) cell TCR repertoire should help elucidate the nature and diversity of their cognate antigens and thus how Treg cells protect us from autoimmune diseases. We earlier identified CD44(hi) CD62L(low) activated/memory (am) Treg cells as a Treg-cell subset with a high turnover and possible self-specificity. We now report that amTreg cells are predominantly distributed in lymph nodes (LNs) draining deep tissues. Multivariate analyses of CDR3 spectratyping first revealed that amTreg TCR repertoire is different from that of naïve Treg cells (nTreg cells) and effector T (Teff) cells. Furthermore, in deep- versus superficial LNs, TCR-β deep sequencing further revealed diversified nTreg-cell and amTreg-cell repertoires, although twofold less diverse than that of Teff cells, and with repertoire richness significantly lower in deep-LN versus superficial-LN Treg cells. Importantly, expanded clonotypes were mostly detected in deep-LN amTreg cells, some accounting for 20% of the repertoire. Strikingly, these clonotypes were absent from nTreg cells, but found at low frequency in Teff cells. Our results, obtained in nonmanipulated mice, indicate different antigenic targets for naïve and amTreg cells and that amTreg cells are self-specific. The data we present are consistent with an instructive component in Treg-cell differentiation.
Collapse
Affiliation(s)
- Anne-Sophie Bergot
- Sorbonne Universités, UPMC Univ Paris 06, UMRS 959, Immunology-Immunopathology-Immunotherapy (i3), Paris, France.,INSERM, UMRS 959, Immunology-Immunopathology-Immunotherapy (i3), Paris, France
| | - Wahiba Chaara
- Sorbonne Universités, UPMC Univ Paris 06, UMRS 959, Immunology-Immunopathology-Immunotherapy (i3), Paris, France.,INSERM, UMRS 959, Immunology-Immunopathology-Immunotherapy (i3), Paris, France.,AP-HP, Hôpital Pitié-Salpêtrière, Biotherapy and Département Hospitalo-Universitaire Inflammation-Immunopathology-Biotherapy (i2B), Paris, France
| | - Eliana Ruggiero
- Department of Translational Oncology, National Center for Tumor Diseases and German Cancer Research Center, Heidelberg, Germany
| | - Encarnita Mariotti-Ferrandiz
- Sorbonne Universités, UPMC Univ Paris 06, UMRS 959, Immunology-Immunopathology-Immunotherapy (i3), Paris, France.,INSERM, UMRS 959, Immunology-Immunopathology-Immunotherapy (i3), Paris, France.,AP-HP, Hôpital Pitié-Salpêtrière, Biotherapy and Département Hospitalo-Universitaire Inflammation-Immunopathology-Biotherapy (i2B), Paris, France
| | - Sophie Dulauroy
- CNRS, URA 1961 UPMC, Immunophysiopathologie Infectieuse, Institut Pasteur, Paris, France
| | - Manfred Schmidt
- Department of Translational Oncology, National Center for Tumor Diseases and German Cancer Research Center, Heidelberg, Germany
| | - Christof von Kalle
- Department of Translational Oncology, National Center for Tumor Diseases and German Cancer Research Center, Heidelberg, Germany
| | - Adrien Six
- Sorbonne Universités, UPMC Univ Paris 06, UMRS 959, Immunology-Immunopathology-Immunotherapy (i3), Paris, France.,INSERM, UMRS 959, Immunology-Immunopathology-Immunotherapy (i3), Paris, France.,AP-HP, Hôpital Pitié-Salpêtrière, Biotherapy and Département Hospitalo-Universitaire Inflammation-Immunopathology-Biotherapy (i2B), Paris, France
| | - David Klatzmann
- Sorbonne Universités, UPMC Univ Paris 06, UMRS 959, Immunology-Immunopathology-Immunotherapy (i3), Paris, France.,INSERM, UMRS 959, Immunology-Immunopathology-Immunotherapy (i3), Paris, France.,AP-HP, Hôpital Pitié-Salpêtrière, Biotherapy and Département Hospitalo-Universitaire Inflammation-Immunopathology-Biotherapy (i2B), Paris, France
| |
Collapse
|
33
|
Walmsley SL, Raboud J, Angel JB, Mazzulli T, Shen S, Casciaro L, Young CD, Moussa G, Gough K, Rachlis A, Hopkins J. Long-Term Follow-up of a Cohort of HIV-Infected Patients Who Discontinued Maintenance Therapy for Cytomegalovirus Retinitis. HIV CLINICAL TRIALS 2015; 7:1-9. [PMID: 16632459 DOI: 10.1310/9m23-qn0x-w6n8-80jd] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE To determine the long-term safety of discontinuation of maintenance therapy for cytomegalovirus retinitis (CMVR) and to identify predictors for relapse. METHOD This was a prospective cohort study. Patients with treated CMVR who responded to HAART were followed by ophthalmologic assessment, markers for CMV replication (blood and urine cultures, CMV antigenemia, CMV DNA by PCR), and in vitro lymphoproliferative responses to CMV and other antigens after discontinuation of CMVR maintenance therapy. RESULTS 23 patients were followed a median of 34 (range, 5-61) months. Median CD4 count was 321/mm3 at enrollment and 395/mm3 at last follow-up. HIV RNA was <50 copies/mL in 78% of patients at enrollment and 65% at last follow-up. One CMVR reactivation occurred at 12 months at a CD4 count of 395/mm3 (21%) and HIV RNA <50 copies/mL. Urine cultures were a poor predictive marker for reactivation. Other CMV replication markers had good negative predictive value. 96% of patients had a good lymphoproliferative response to CMV antigen in vitro. CONCLUSION Maintenance therapy for CMVR can safely be discontinued in patients who have responded to HAART. Combining our results with the published literature, the risk of reactivation is estimated at 0.016 per person year of follow-up. Markers to predict relapse and the need for re-initiation of maintenance therapy are not yet identified.
Collapse
Affiliation(s)
- Sharon L Walmsley
- Department of Medicine, Toronto Hospital, University Health Network, University of Toronto, Canada.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Imberti L, Scarsi M, Zanotti C, Chiarini M, Bertoli D, Tincani A, Airò P. Reduced T-cell repertoire restrictions in abatacept-treated rheumatoid arthritis patients. J Transl Med 2015; 13:12. [PMID: 25592982 PMCID: PMC4310138 DOI: 10.1186/s12967-014-0363-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 12/15/2014] [Indexed: 12/22/2022] Open
Abstract
Background CD28neg T cells, which display functional characteristic of oligoclonally expanded cytotoxic memory T lymphocytes, are believed to be pathologically relevant in rheumatoid arthritis manifestation. The CD28 co-stimulation blockade by abatacept can prevent the generation of CD28neg T-cell populations in these patients. Methods Samples were obtained before and after 12 months of abatacept therapy. T-cell phenotype and T-cell receptor diversity were evaluated by flow cytometry and complementarity-determining region-3 spectratyping, respectively, while telomerase reverse-transcriptase gene level was measured by real-time PCR. Results Abatacept induces a decrease of the percentage and number of CD4+CD28neg T cells and a reduction of T-cell repertoire restrictions; these features are directly correlated. Thymic output and telomerase activity are not modified by the therapy. Conclusions Abatacept-induced decrease of peripheral T-cell repertoire restrictions can due to a reduced generation of senescent, chronically stimulated CD4+CD28neg T cells. Electronic supplementary material The online version of this article (doi:10.1186/s12967-014-0363-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Luisa Imberti
- Centro Ricerca Emato-oncologica AIL (CREA), Diagnostics Department, Spedali Civili of Brescia, p.le Spedali Civili di Brescia, 1, 25123, Brescia, Italy.
| | - Mirko Scarsi
- Rheumatology and Clinical Immunology, Spedali Civili of Brescia, Brescia, Italy.
| | - Cinzia Zanotti
- Centro Ricerca Emato-oncologica AIL (CREA), Diagnostics Department, Spedali Civili of Brescia, p.le Spedali Civili di Brescia, 1, 25123, Brescia, Italy.
| | - Marco Chiarini
- Centro Ricerca Emato-oncologica AIL (CREA), Diagnostics Department, Spedali Civili of Brescia, p.le Spedali Civili di Brescia, 1, 25123, Brescia, Italy.
| | - Diego Bertoli
- Centro Ricerca Emato-oncologica AIL (CREA), Diagnostics Department, Spedali Civili of Brescia, p.le Spedali Civili di Brescia, 1, 25123, Brescia, Italy.
| | - Angela Tincani
- Rheumatology and Clinical Immunology, Spedali Civili of Brescia, Brescia, Italy.
| | - Paolo Airò
- Rheumatology and Clinical Immunology, Spedali Civili of Brescia, Brescia, Italy.
| |
Collapse
|
35
|
Smith KN, Mailliard RB, Rinaldo CR. Programming T cell Killers for an HIV Cure: Teach the New Dogs New Tricks and Let the Sleeping Dogs Lie. ACTA ACUST UNITED AC 2015; 6:67-77. [PMID: 28344852 DOI: 10.1615/forumimmundisther.2016014160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Despite the success of combination antiretroviral therapy (cART), a latent viral reservoir persists in HIV-1-infected persons. Unfortunately, endogenous cytotoxic T lymphocytes (CTLs) are unable to control viral rebound when patients are removed from cART. A "kick and kill" strategy has been proposed to eradicate this reservoir, whereby infected T cells are induced to express viral proteins via latency-inducing drugs followed by their elimination by CTLs. It has yet to be determined if stimulation of existing HIV-1-specific CTL will be sufficient, or if new CTLs should be primed from naïve T cells. In this review, we propose that dendritic cells (DCs), the most potent antigen presenting cells, act as dog trainers and can induce T cells (the dogs) to do magnificent tricks. We propose the hypothesis that an HIV-1 cure will require targeting of naïve T cells and will necessitate "teaching new dogs new tricks" while avoiding activation of potentially dysfunctional endogenous memory CTLs (letting the sleeping dogs lie).
Collapse
Affiliation(s)
- Kellie N Smith
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA; Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA
| | - Robbie B Mailliard
- Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA
| | - Charles R Rinaldo
- Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA; Pathology, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
36
|
Chiarini M, Sottini A, Bertoli D, Serana F, Caimi L, Rasia S, Capra R, Imberti L. Newly produced T and B lymphocytes and T-cell receptor repertoire diversity are reduced in peripheral blood of fingolimod-treated multiple sclerosis patients. Mult Scler 2014; 21:726-34. [PMID: 25392322 DOI: 10.1177/1352458514551456] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 08/17/2014] [Indexed: 01/21/2023]
Abstract
BACKGROUND Fingolimod inhibits lymphocyte egress from lymphoid tissues, thus altering the composition of the peripheral lymphocyte pool of multiple sclerosis patients. OBJECTIVE The objective of this paper is to evaluate whether fingolimod determines a decrease of newly produced T- and B-lymphocytes in the blood and a reduction in the T-cell receptor repertoire diversity that may affect immune surveillance. METHODS Blood samples were obtained from multiple sclerosis patients before fingolimod therapy initiation and then after six and 12 months. Newly produced T and B lymphocytes were measured by quantifying T-cell receptor excision circles and K-deleting recombination excision circles by real-time PCR, while recent thymic emigrants, naive CD8(+) lymphocytes, immature and naive B cells were determined by immune phenotyping. T-cell receptor repertoire was analyzed by complementarity determining region 3 spectratyping. RESULTS Newly produced T and B lymphocytes were significantly reduced in peripheral blood of fingolimod-treated patients. The decrease was particularly evident in the T-cell compartment. T-cell repertoire restrictions, already present before therapy, significantly increased after 12 months of treatment. CONCLUSIONS These results do not have direct clinical implications but they may be useful for further understanding the mode of action of this immunotherapy for multiple sclerosis patients.
Collapse
Affiliation(s)
| | | | | | | | - L Caimi
- CREA, Diagnostics Department
| | - S Rasia
- Multiple Sclerosis Center, Spedali Civili of Brescia, Italy
| | - R Capra
- Multiple Sclerosis Center, Spedali Civili of Brescia, Italy
| | | |
Collapse
|
37
|
Trott DW, Thabet SR, Kirabo A, Saleh MA, Itani H, Norlander AE, Wu J, Goldstein A, Arendshorst WJ, Madhur MS, Chen W, Li CI, Shyr Y, Harrison DG. Oligoclonal CD8+ T cells play a critical role in the development of hypertension. Hypertension 2014; 64:1108-15. [PMID: 25259750 DOI: 10.1161/hypertensionaha.114.04147] [Citation(s) in RCA: 188] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Recent studies have emphasized a role of adaptive immunity, and particularly T cells, in the genesis of hypertension. We sought to determine the T-cell subtypes that contribute to hypertension and renal inflammation in angiotensin II-induced hypertension. Using T-cell receptor spectratyping to examine T-cell receptor usage, we demonstrated that CD8(+) cells, but not CD4(+) cells, in the kidney exhibited altered T-cell receptor transcript lengths in Vβ3, 8.1, and 17 families in response to angiotensin II-induced hypertension. Clonality was not observed in other organs. The hypertension caused by angiotensin II in CD4(-/-) and MHCII(-/-) mice was similar to that observed in wild-type mice, whereas CD8(-/-) mice and OT1xRAG-1(-/-) mice, which have only 1 T-cell receptor, exhibited a blunted hypertensive response to angiotensin II. Adoptive transfer of pan T cells and CD8(+) T cells but not CD4(+)/CD25(-) cells conferred hypertension to RAG-1(-/-) mice. In contrast, transfer of CD4(+)/CD25(+) cells to wild-type mice receiving angiotensin II decreased blood pressure. Mice treated with angiotensin II exhibited increased numbers of kidney CD4(+) and CD8(+) T cells. In response to a sodium/volume challenge, wild-type and CD4(-/-) mice infused with angiotensin II retained water and sodium, whereas CD8(-/-) mice did not. CD8(-/-) mice were also protected against angiotensin-induced endothelial dysfunction and vascular remodeling in the kidney. These data suggest that in the development of hypertension, an oligoclonal population of CD8(+) cells accumulates in the kidney and likely contributes to hypertension by contributing to sodium and volume retention and vascular rarefaction.
Collapse
Affiliation(s)
- Daniel W Trott
- From the Division of Clinical Pharmacology, Department of Medicine (D.W.T., S.R.T., A.K., M.A.S., H.I., J.W., A.G., M.S.M., W.C., D.G.H.) and Department of Pharmacology and Toxicology, Faculty of Pharmacy (M.A.S.), Mansoura University, Mansoura, Egypt; Departments of Molecular Physiology and Biophysics (A.E.N.) and Biostatistics (C.-I.L., Y.S.), Vanderbilt University School of Medicine, Nashville, TN; and Department of Cell and Molecular Physiology, University of North Carolina, Chapel Hill (W.J.A.)
| | - Salim R Thabet
- From the Division of Clinical Pharmacology, Department of Medicine (D.W.T., S.R.T., A.K., M.A.S., H.I., J.W., A.G., M.S.M., W.C., D.G.H.) and Department of Pharmacology and Toxicology, Faculty of Pharmacy (M.A.S.), Mansoura University, Mansoura, Egypt; Departments of Molecular Physiology and Biophysics (A.E.N.) and Biostatistics (C.-I.L., Y.S.), Vanderbilt University School of Medicine, Nashville, TN; and Department of Cell and Molecular Physiology, University of North Carolina, Chapel Hill (W.J.A.)
| | - Annet Kirabo
- From the Division of Clinical Pharmacology, Department of Medicine (D.W.T., S.R.T., A.K., M.A.S., H.I., J.W., A.G., M.S.M., W.C., D.G.H.) and Department of Pharmacology and Toxicology, Faculty of Pharmacy (M.A.S.), Mansoura University, Mansoura, Egypt; Departments of Molecular Physiology and Biophysics (A.E.N.) and Biostatistics (C.-I.L., Y.S.), Vanderbilt University School of Medicine, Nashville, TN; and Department of Cell and Molecular Physiology, University of North Carolina, Chapel Hill (W.J.A.)
| | - Mohamed A Saleh
- From the Division of Clinical Pharmacology, Department of Medicine (D.W.T., S.R.T., A.K., M.A.S., H.I., J.W., A.G., M.S.M., W.C., D.G.H.) and Department of Pharmacology and Toxicology, Faculty of Pharmacy (M.A.S.), Mansoura University, Mansoura, Egypt; Departments of Molecular Physiology and Biophysics (A.E.N.) and Biostatistics (C.-I.L., Y.S.), Vanderbilt University School of Medicine, Nashville, TN; and Department of Cell and Molecular Physiology, University of North Carolina, Chapel Hill (W.J.A.)
| | - Hana Itani
- From the Division of Clinical Pharmacology, Department of Medicine (D.W.T., S.R.T., A.K., M.A.S., H.I., J.W., A.G., M.S.M., W.C., D.G.H.) and Department of Pharmacology and Toxicology, Faculty of Pharmacy (M.A.S.), Mansoura University, Mansoura, Egypt; Departments of Molecular Physiology and Biophysics (A.E.N.) and Biostatistics (C.-I.L., Y.S.), Vanderbilt University School of Medicine, Nashville, TN; and Department of Cell and Molecular Physiology, University of North Carolina, Chapel Hill (W.J.A.)
| | - Allison E Norlander
- From the Division of Clinical Pharmacology, Department of Medicine (D.W.T., S.R.T., A.K., M.A.S., H.I., J.W., A.G., M.S.M., W.C., D.G.H.) and Department of Pharmacology and Toxicology, Faculty of Pharmacy (M.A.S.), Mansoura University, Mansoura, Egypt; Departments of Molecular Physiology and Biophysics (A.E.N.) and Biostatistics (C.-I.L., Y.S.), Vanderbilt University School of Medicine, Nashville, TN; and Department of Cell and Molecular Physiology, University of North Carolina, Chapel Hill (W.J.A.)
| | - Jing Wu
- From the Division of Clinical Pharmacology, Department of Medicine (D.W.T., S.R.T., A.K., M.A.S., H.I., J.W., A.G., M.S.M., W.C., D.G.H.) and Department of Pharmacology and Toxicology, Faculty of Pharmacy (M.A.S.), Mansoura University, Mansoura, Egypt; Departments of Molecular Physiology and Biophysics (A.E.N.) and Biostatistics (C.-I.L., Y.S.), Vanderbilt University School of Medicine, Nashville, TN; and Department of Cell and Molecular Physiology, University of North Carolina, Chapel Hill (W.J.A.)
| | - Anna Goldstein
- From the Division of Clinical Pharmacology, Department of Medicine (D.W.T., S.R.T., A.K., M.A.S., H.I., J.W., A.G., M.S.M., W.C., D.G.H.) and Department of Pharmacology and Toxicology, Faculty of Pharmacy (M.A.S.), Mansoura University, Mansoura, Egypt; Departments of Molecular Physiology and Biophysics (A.E.N.) and Biostatistics (C.-I.L., Y.S.), Vanderbilt University School of Medicine, Nashville, TN; and Department of Cell and Molecular Physiology, University of North Carolina, Chapel Hill (W.J.A.)
| | - William J Arendshorst
- From the Division of Clinical Pharmacology, Department of Medicine (D.W.T., S.R.T., A.K., M.A.S., H.I., J.W., A.G., M.S.M., W.C., D.G.H.) and Department of Pharmacology and Toxicology, Faculty of Pharmacy (M.A.S.), Mansoura University, Mansoura, Egypt; Departments of Molecular Physiology and Biophysics (A.E.N.) and Biostatistics (C.-I.L., Y.S.), Vanderbilt University School of Medicine, Nashville, TN; and Department of Cell and Molecular Physiology, University of North Carolina, Chapel Hill (W.J.A.)
| | - Meena S Madhur
- From the Division of Clinical Pharmacology, Department of Medicine (D.W.T., S.R.T., A.K., M.A.S., H.I., J.W., A.G., M.S.M., W.C., D.G.H.) and Department of Pharmacology and Toxicology, Faculty of Pharmacy (M.A.S.), Mansoura University, Mansoura, Egypt; Departments of Molecular Physiology and Biophysics (A.E.N.) and Biostatistics (C.-I.L., Y.S.), Vanderbilt University School of Medicine, Nashville, TN; and Department of Cell and Molecular Physiology, University of North Carolina, Chapel Hill (W.J.A.)
| | - Wei Chen
- From the Division of Clinical Pharmacology, Department of Medicine (D.W.T., S.R.T., A.K., M.A.S., H.I., J.W., A.G., M.S.M., W.C., D.G.H.) and Department of Pharmacology and Toxicology, Faculty of Pharmacy (M.A.S.), Mansoura University, Mansoura, Egypt; Departments of Molecular Physiology and Biophysics (A.E.N.) and Biostatistics (C.-I.L., Y.S.), Vanderbilt University School of Medicine, Nashville, TN; and Department of Cell and Molecular Physiology, University of North Carolina, Chapel Hill (W.J.A.)
| | - Chung-I Li
- From the Division of Clinical Pharmacology, Department of Medicine (D.W.T., S.R.T., A.K., M.A.S., H.I., J.W., A.G., M.S.M., W.C., D.G.H.) and Department of Pharmacology and Toxicology, Faculty of Pharmacy (M.A.S.), Mansoura University, Mansoura, Egypt; Departments of Molecular Physiology and Biophysics (A.E.N.) and Biostatistics (C.-I.L., Y.S.), Vanderbilt University School of Medicine, Nashville, TN; and Department of Cell and Molecular Physiology, University of North Carolina, Chapel Hill (W.J.A.)
| | - Yu Shyr
- From the Division of Clinical Pharmacology, Department of Medicine (D.W.T., S.R.T., A.K., M.A.S., H.I., J.W., A.G., M.S.M., W.C., D.G.H.) and Department of Pharmacology and Toxicology, Faculty of Pharmacy (M.A.S.), Mansoura University, Mansoura, Egypt; Departments of Molecular Physiology and Biophysics (A.E.N.) and Biostatistics (C.-I.L., Y.S.), Vanderbilt University School of Medicine, Nashville, TN; and Department of Cell and Molecular Physiology, University of North Carolina, Chapel Hill (W.J.A.)
| | - David G Harrison
- From the Division of Clinical Pharmacology, Department of Medicine (D.W.T., S.R.T., A.K., M.A.S., H.I., J.W., A.G., M.S.M., W.C., D.G.H.) and Department of Pharmacology and Toxicology, Faculty of Pharmacy (M.A.S.), Mansoura University, Mansoura, Egypt; Departments of Molecular Physiology and Biophysics (A.E.N.) and Biostatistics (C.-I.L., Y.S.), Vanderbilt University School of Medicine, Nashville, TN; and Department of Cell and Molecular Physiology, University of North Carolina, Chapel Hill (W.J.A.).
| |
Collapse
|
38
|
Lu I, Eberhard J, Ahmad F, Bhatnagar N, Behrens G, Jacobs R, Schmidt R, Meyer-Olson D. Elevated CD57 and CD95 expressions are associated with lower numbers of CD4+ recent thymic emigrants in HIV-1 infected immune responders following antiretroviral treatment. Immunol Lett 2014; 158:1-6. [DOI: 10.1016/j.imlet.2013.11.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Revised: 11/13/2013] [Accepted: 11/20/2013] [Indexed: 10/26/2022]
|
39
|
Six A, Mariotti-Ferrandiz ME, Chaara W, Magadan S, Pham HP, Lefranc MP, Mora T, Thomas-Vaslin V, Walczak AM, Boudinot P. The past, present, and future of immune repertoire biology - the rise of next-generation repertoire analysis. Front Immunol 2013; 4:413. [PMID: 24348479 PMCID: PMC3841818 DOI: 10.3389/fimmu.2013.00413] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 11/12/2013] [Indexed: 01/09/2023] Open
Abstract
T and B cell repertoires are collections of lymphocytes, each characterized by its antigen-specific receptor. We review here classical technologies and analysis strategies developed to assess immunoglobulin (IG) and T cell receptor (TR) repertoire diversity, and describe recent advances in the field. First, we describe the broad range of available methodological tools developed in the past decades, each of which answering different questions and showing complementarity for progressive identification of the level of repertoire alterations: global overview of the diversity by flow cytometry, IG repertoire descriptions at the protein level for the identification of IG reactivities, IG/TR CDR3 spectratyping strategies, and related molecular quantification or dynamics of T/B cell differentiation. Additionally, we introduce the recent technological advances in molecular biology tools allowing deeper analysis of IG/TR diversity by next-generation sequencing (NGS), offering systematic and comprehensive sequencing of IG/TR transcripts in a short amount of time. NGS provides several angles of analysis such as clonotype frequency, CDR3 diversity, CDR3 sequence analysis, V allele identification with a quantitative dimension, therefore requiring high-throughput analysis tools development. In this line, we discuss the recent efforts made for nomenclature standardization and ontology development. We then present the variety of available statistical analysis and modeling approaches developed with regards to the various levels of diversity analysis, and reveal the increasing sophistication of those modeling approaches. To conclude, we provide some examples of recent mathematical modeling strategies and perspectives that illustrate the active rise of a "next-generation" of repertoire analysis.
Collapse
Affiliation(s)
- Adrien Six
- UPMC University Paris 06, UMR 7211, Immunology-Immunopathology-Immunotherapy (I3) , Paris , France ; CNRS, UMR 7211, Immunology-Immunopathology-Immunotherapy (I3) , Paris , France ; INSERM, UMR_S 959, Immunology-Immunopathology-Immunotherapy (I3) , Paris , France ; AP-HP, Hôpital Pitié-Salpêtrière, CIC-BTi Biotherapy , Paris , France ; AP-HP, Hôpital Pitié-Salpêtrière, Département Hospitalo-Universitaire (DHU), Inflammation-Immunopathology-Biotherapy (i2B) , Paris , France
| | - Maria Encarnita Mariotti-Ferrandiz
- UPMC University Paris 06, UMR 7211, Immunology-Immunopathology-Immunotherapy (I3) , Paris , France ; CNRS, UMR 7211, Immunology-Immunopathology-Immunotherapy (I3) , Paris , France ; INSERM, UMR_S 959, Immunology-Immunopathology-Immunotherapy (I3) , Paris , France ; AP-HP, Hôpital Pitié-Salpêtrière, Département Hospitalo-Universitaire (DHU), Inflammation-Immunopathology-Biotherapy (i2B) , Paris , France
| | - Wahiba Chaara
- UPMC University Paris 06, UMR 7211, Immunology-Immunopathology-Immunotherapy (I3) , Paris , France ; CNRS, UMR 7211, Immunology-Immunopathology-Immunotherapy (I3) , Paris , France ; INSERM, UMR_S 959, Immunology-Immunopathology-Immunotherapy (I3) , Paris , France ; AP-HP, Hôpital Pitié-Salpêtrière, CIC-BTi Biotherapy , Paris , France ; AP-HP, Hôpital Pitié-Salpêtrière, Département Hospitalo-Universitaire (DHU), Inflammation-Immunopathology-Biotherapy (i2B) , Paris , France
| | - Susana Magadan
- Institut National de la Recherche Agronomique, Unité de Virologie et Immunologie Moléculaires , Jouy-en-Josas , France
| | - Hang-Phuong Pham
- UPMC University Paris 06, UMR 7211, Immunology-Immunopathology-Immunotherapy (I3) , Paris , France ; CNRS, UMR 7211, Immunology-Immunopathology-Immunotherapy (I3) , Paris , France
| | - Marie-Paule Lefranc
- IMGT®, The International ImMunoGeneTics Information System®, Institut de Génétique Humaine, UPR CNRS 1142, Université Montpellier 2 , Montpellier , France
| | - Thierry Mora
- Laboratoire de Physique Statistique, UMR8550, CNRS and Ecole Normale Supérieure , Paris , France
| | - Véronique Thomas-Vaslin
- UPMC University Paris 06, UMR 7211, Immunology-Immunopathology-Immunotherapy (I3) , Paris , France ; CNRS, UMR 7211, Immunology-Immunopathology-Immunotherapy (I3) , Paris , France ; INSERM, UMR_S 959, Immunology-Immunopathology-Immunotherapy (I3) , Paris , France ; AP-HP, Hôpital Pitié-Salpêtrière, Département Hospitalo-Universitaire (DHU), Inflammation-Immunopathology-Biotherapy (i2B) , Paris , France
| | - Aleksandra M Walczak
- Laboratoire de Physique Théorique, UMR8549, CNRS and Ecole Normale Supérieure , Paris , France
| | - Pierre Boudinot
- Institut National de la Recherche Agronomique, Unité de Virologie et Immunologie Moléculaires , Jouy-en-Josas , France
| |
Collapse
|
40
|
González-Serna A, Abad-Fernández M, Soriano-Sarabia N, Leal M, Vallejo A. CD8 TCR β chain repertoire expansions and deletions are related with immunologic markers in HIV-1-infected patients during treatment interruption. J Clin Virol 2013; 58:703-9. [PMID: 24210957 DOI: 10.1016/j.jcv.2013.10.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 08/27/2013] [Accepted: 10/06/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND HIV-1-infected individuals progressively loss CD4(+) T cells leading to immunosuppression and raising the risk of opportunistic infections. CD8(+) T-cells play an important role in the immune response against virus infections through their TCR. OBJECTIVE To evaluate the CD8-TCR repertoire and immunologic markers in HIV-1-infected patients. STUDY DESIGN Ten chronic HIV-1-infected individuals on prolonged effective antiretroviral treatment (ART) were analyzed at baseline (before treatment interruption), after at least one year of treatment interruption (TI) and after at least one year from ART resume (TR). Twenty-four TCR-Vβ gene families were analyzed by a modified CDR3 spectratyping method in isolated CD8(+) T-cells. Immune activation, exhaustion and subpopulation markers were analyzed by flow cytometry. RESULTS Expansion of Vβ10, Vβ14 and Vβ15 families, associated with low cell activation and stable exhaustion markers, were found at TI. Moreover, an increment of effector memory cells was found. Besides, depletion of Vβ20, Vβ28, and Vβ29 families, associated with an increase in cell activation and exhaustion markers, at TI were also found. These alterations seemed to be more pronounced in patients who had longer time from diagnosis. ART seemed to restore altered CD8(+) T-cell repertoire and most of the immunologic markers. CONCLUSIONS During TI (that was more pronounced in patients with longer HIV-1 infection) it was observed the expansion of Vβ families correlated with decreased cell activation, while Vβ families correlated with cell activation and exhaustion were depleted. These specific repertoire alterations reverted after ART resume.
Collapse
Affiliation(s)
- Alejandro González-Serna
- Laboratory of Immunovirology, Department of Infectious Diseases, Hospital Virgen del Rocio, IBIS, Seville 41013, Spain
| | | | | | | | | |
Collapse
|
41
|
Pickman Y, Dunn-Walters D, Mehr R. BCR CDR3 length distributions differ between blood and spleen and between old and young patients, and TCR distributions can be used to detect myelodysplastic syndrome. Phys Biol 2013; 10:056001. [PMID: 23965732 DOI: 10.1088/1478-3975/10/5/056001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Complementarity-determining region 3 (CDR3) is the most hyper-variable region in B cell receptor (BCR) and T cell receptor (TCR) genes, and the most critical structure in antigen recognition and thereby in determining the fates of developing and responding lymphocytes. There are millions of different TCR Vβ chain or BCR heavy chain CDR3 sequences in human blood. Even now, when high-throughput sequencing becomes widely used, CDR3 length distributions (also called spectratypes) are still a much quicker and cheaper method of assessing repertoire diversity. However, distribution complexity and the large amount of information per sample (e.g. 32 distributions of the TCRα chain, and 24 of TCRβ) calls for the use of machine learning tools for full exploration. We have examined the ability of supervised machine learning, which uses computational models to find hidden patterns in predefined biological groups, to analyze CDR3 length distributions from various sources, and distinguish between experimental groups. We found that (a) splenic BCR CDR3 length distributions are characterized by low standard deviations and few local maxima, compared to peripheral blood distributions; (b) healthy elderly people's BCR CDR3 length distributions can be distinguished from those of the young; and (c) a machine learning model based on TCR CDR3 distribution features can detect myelodysplastic syndrome with approximately 93% accuracy. Overall, we demonstrate that using supervised machine learning methods can contribute to our understanding of lymphocyte repertoire diversity.
Collapse
Affiliation(s)
- Yishai Pickman
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | | | | |
Collapse
|
42
|
Russi S, Lauletta G, Serviddio G, Sansonno S, Conteduca V, Sansonno L, De Re V, Sansonno D. T cell receptor variable β gene repertoire in liver and peripheral blood lymphocytes of chronically hepatitis C virus-infected patients with and without mixed cryoglobulinaemia. Clin Exp Immunol 2013; 172:254-62. [PMID: 23574322 DOI: 10.1111/cei.12035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2012] [Indexed: 12/20/2022] Open
Abstract
To characterize the repertoire of T lymphocytes in chronically hepatitis C virus (HCV)-infected patients with and without mixed cryoglobulinaemia (MC). T cell receptor (TCR) variable (V) β clonalities in portal tracts isolated from liver biopsy sections with a laser capture microdissection technique in 30 HCV-positive MC patients were studied by size spectratyping. Complementarity-determining region 3 (CDR3) profiles of liver-infiltrating lymphocytes (LIL) were also compared with those circulating in the blood. The representative results of TCR Vβ by CDR3 were also obtained from liver tissues and peripheral blood lymphocytes (PBL) of 21 chronically HCV-infected patients without MC. LIL were highly restricted, with evidence of TCR Vβ clonotypic expansions in 23 of 30 (77%) and in 15 of 21 (71%) MC and non-MC patients, respectively. The blood compartment contained TCR Vβ expanded clones in 19 (63%) MC and 12 (57%) non-MC patients. The occurrence of LIL clonalities was detected irrespective of the degree of liver damage or circulating viral load, whereas it correlated positively with higher levels of intrahepatic HCV RNA. These results support the notion that TCR Vβ repertoire is clonally expanded in HCV-related MC with features comparable to those found in chronically HCV-infected patients without MC.
Collapse
Affiliation(s)
- S Russi
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine and Clinical Oncology, University of Bari Medical School, Bari, Italy
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Tuulasvaara A, Baussand J, Laine P, Paulin L, Salminen J, Auvinen P, Gorochov G, Arstila TP. High-sequence diversity and structural conservation in the human T-cell receptor β junctional region during thymic development. Eur J Immunol 2013; 43:2185-93. [DOI: 10.1002/eji.201343360] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Revised: 03/28/2013] [Accepted: 05/08/2013] [Indexed: 11/11/2022]
Affiliation(s)
- Anni Tuulasvaara
- Department of Bacteriology and Immunology; Haartman Institute; University of Helsinki; Helsinki; Finland
| | | | - Pia Laine
- Institute of Biotechnology; University of Helsinki; Helsinki; Finland
| | - Lars Paulin
- Institute of Biotechnology; University of Helsinki; Helsinki; Finland
| | - Jukka Salminen
- Department of Surgery; Hospital for Children and Adolescents; Helsinki University Hospital; Helsinki; Finland
| | - Petri Auvinen
- Institute of Biotechnology; University of Helsinki; Helsinki; Finland
| | | | - T. Petteri Arstila
- Department of Bacteriology and Immunology; Haartman Institute; University of Helsinki; Helsinki; Finland
| |
Collapse
|
44
|
Viallard JF, Ruiz C, Guillet M, Pellegrin JL, Moreau JF. Perturbations of the CD8(+) T-cell repertoire in CVID patients with complications. RESULTS IN IMMUNOLOGY 2013; 3:122-8. [PMID: 24600567 DOI: 10.1016/j.rinim.2013.05.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 05/16/2013] [Accepted: 05/17/2013] [Indexed: 02/06/2023]
Abstract
A higher chronic expansion of effector cytotoxic CD8(+)DR(+) T-lymphocytes has been reported in common variable immunodeficiency (CVID) patients with complications such as splenomegaly, autoimmune disease and/or granulomatous disease. In order to document the features associated with this T cell activation involving the CD8(+) T-compartment, we examined the diversity of the alpha/beta TCR repertoire of the patient's CD8(+) T-lymphocytes using the qualitative analysis of the CDR3 lengths (Immunoscope). Ten CIVD patients were enrolled in this study, four without complications (Group 1), six with complications (Group 2). All patients exhibited non-gaussian altered CDR3 length distributions, albeit to different extent within the different Vβ families. CVID patients with activated CD8(+) T-cells show a reduction of their TCR repertoire diversity which is more severe in patients with complications. Viral reactivations such as CMV are suspected to be part of the mechanisms underlying immunosenescence.
Collapse
Affiliation(s)
- Jean-François Viallard
- University of Bordeaux 2, Bordeaux, France ; Department of Internal Medicine, Centre Hospitalier Universitaire of Bordeaux, Bordeaux, France
| | | | | | - Jean-Luc Pellegrin
- University of Bordeaux 2, Bordeaux, France ; Department of Internal Medicine, Centre Hospitalier Universitaire of Bordeaux, Bordeaux, France
| | - Jean-François Moreau
- University of Bordeaux 2, Bordeaux, France ; Laboratory of Immunology, Centre Hospitalier Universitaire of Bordeaux, Bordeaux, France ; The Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5164, Bordeaux, France
| |
Collapse
|
45
|
Krell PFI, Reuther S, Fischer U, Keller T, Weber S, Gombert M, Schuster FR, Asang C, Stepensky P, Strahm B, Meisel R, Stoye J, Borkhardt A. Next-generation-sequencing-spectratyping reveals public T-cell receptor repertoires in pediatric very severe aplastic anemia and identifies a β chain CDR3 sequence associated with hepatitis-induced pathogenesis. Haematologica 2013; 98:1388-96. [PMID: 23716544 DOI: 10.3324/haematol.2012.069708] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Current diagnostic approaches that characterize T-cell deficiency by analyzing diversity of T-cell receptor sequences effectuate limited informational gain about the actual restrictiveness. For deeper insight into T-cell receptor repertoires we developed next-generation-sequencing-spectratyping, which employs high coverage Roche/454 sequencing of T-cell receptor (β)-chain amplicons. For automated analysis of high-throughput-sequencing data, we developed a freely available software, the TCR profiler. Gene usage, length, encoded amino acid sequence and sequence diversity of the complementarity determining region 3 were determined and comprehensively integrated into a novel complexity score. Repertoires of CD8(+) T cells from children with idiopathic or hepatitis-induced very severe aplastic anemia (n=7), children two months after bone marrow transplantation (n=7) and healthy controls (children n=5, adults n=5) were analyzed. Complexity scores clearly distinguished between healthy and diseased, and even between different immune deficiency states. The repertoire of aplastic anemia patients was dominated by public (i.e. present in more than one person) T-cell receptor clonotypes, whereas only 0.2% or 1.9% were public in normal children and adults, respectively. The CDR3 sequence ASSGVGFSGANVLT was highly prevalent in 3 cases of hepatitis-induced anemia (15-32% of all sequences), but was only low expressed in idiopathic aplastic anemia (2-5%, n=4) or healthy controls (<1%). Fifteen high frequent sequences were present exclusively in aplastic anemia patients. Next-generation-sequencing-spectratyping allows in-depth analysis of T-cell receptor repertoires and their restriction in clinical samples. A dominating clonotype was identified in hepatitis-induced anemia that may be associated with disease pathogenesis and several aplastic-anemia-associated, putatively autoreactive clonotypes were sequenced.
Collapse
Affiliation(s)
- Pina F I Krell
- Department of Pediatric Oncology, Hematology and Clinical Immunology, University Children’s Hospital, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Castro R, Takizawa F, Chaara W, Lunazzi A, Dang TH, Koellner B, Quillet E, Six A, Fischer U, Boudinot P. Contrasted TCRβ diversity of CD8+ and CD8- T cells in rainbow trout. PLoS One 2013; 8:e60175. [PMID: 23565199 PMCID: PMC3615082 DOI: 10.1371/journal.pone.0060175] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 02/23/2013] [Indexed: 12/18/2022] Open
Abstract
Teleost fish express highly diverse naive TCRβ (TRB) repertoires and mount strong public and private clonal responses upon infection with pathogens. Fish T cells express typical markers such as CD8, CD4-1 and CD4-2, CD3, CD28 and CTLA4. Fish CD8+ T cells have been shown to be responsible for antigen-specific cell-mediated cytotoxicity in in vitro systems using histo-compatible effector and target cells. We compare here the complexity of TRB repertoires between FACS sorted CD8+ and CD8− T cells from spleen and pronephros of rainbow trout. In contrast to human, while the TRB repertoire is highly diverse and polyclonal in CD8+ T cells of naïve fish, it appeared very different in CD8− lymphocytes with irregular CDR3 length distributions suggesting a dominance of activated clones already in naïve fish or the presence of non conventional T cells. After infection with a systemic virus, CD8+ T cells mount a typical response with significant skewing of CDR3 length profiles. The infection also induces significant modifications of the TRB repertoire expressed by the CD8− fraction, but for a different set of V/J combinations. In this fraction, the antiviral response results in an increase of the peak diversity of spectratypes. This unusual observation reflects the presence of a number of T cell expansions that rise the relative importance of minor peaks of the highly skewed distributions observed in unchallenged animals. These results suggest that the diversity of TRB expressed by CD8+ and CD8− αβ T cells may be subjected to different regulatory patterns in fish and in mammals.
Collapse
Affiliation(s)
- Rosario Castro
- Institut National de la Recherche Agronomique, Virologie et Immunologie Moléculaires, Jouy-en-Josas, France
| | - Fumio Takizawa
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute for Infectiology, Greifswald-Insel Riems, Germany
| | - Wahiba Chaara
- UPMC Univ Paris 06, UMR 7211, Paris, France
- Centre National de la Recherche Scientifique, UMR 7211, Paris, France
- Assistance Publique - Hôpitaux de Paris, Hopital Pitié Salpêtrière, Service de Biothérapie, Paris, France
| | - Aurélie Lunazzi
- Institut National de la Recherche Agronomique, Virologie et Immunologie Moléculaires, Jouy-en-Josas, France
| | - Thi Huong Dang
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute for Infectiology, Greifswald-Insel Riems, Germany
| | - Bernd Koellner
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute for Infectiology, Greifswald-Insel Riems, Germany
| | - Edwige Quillet
- Institut National de la Recherche Agronomique, UMR1313 Génétique Animale et Biologie Intégrative, Jouy-en-Josas, France
| | - Adrien Six
- UPMC Univ Paris 06, UMR 7211, Paris, France
- Centre National de la Recherche Scientifique, UMR 7211, Paris, France
| | - Uwe Fischer
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute for Infectiology, Greifswald-Insel Riems, Germany
- * E-mail: (UF); (PB)
| | - Pierre Boudinot
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute for Infectiology, Greifswald-Insel Riems, Germany
- * E-mail: (UF); (PB)
| |
Collapse
|
47
|
Maier DA, Brennan AL, Jiang S, Binder-Scholl GK, Lee G, Plesa G, Zheng Z, Cotte J, Carpenito C, Wood T, Spratt SK, Ando D, Gregory P, Holmes MC, Perez EE, Riley JL, Carroll RG, June CH, Levine BL. Efficient clinical scale gene modification via zinc finger nuclease-targeted disruption of the HIV co-receptor CCR5. Hum Gene Ther 2013; 24:245-58. [PMID: 23360514 DOI: 10.1089/hum.2012.172] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Since HIV requires CD4 and a co-receptor, most commonly C-C chemokine receptor 5 (CCR5), for cellular entry, targeting CCR5 expression is an attractive approach for therapy of HIV infection. Treatment of CD4(+) T cells with zinc-finger protein nucleases (ZFNs) specifically disrupting chemokine receptor CCR5 coding sequences induces resistance to HIV infection in vitro and in vivo. A chimeric Ad5/F35 adenoviral vector encoding CCR5-ZFNs permitted efficient delivery and transient expression following anti-CD3/anti-CD28 costimulation of T lymphocytes. We present data showing CD3/CD28 costimulation substantially improved transduction efficiency over reported methods for Ad5/F35 transduction of T lymphocytes. Modifications to the laboratory scale process, incorporating clinically compatible reagents and methods, resulted in a robust ex vivo manufacturing process capable of generating >10(10) CCR5 gene-edited CD4+ T cells from healthy and HIV+ donors. CD4+ T-cell phenotype, cytokine production, and repertoire were comparable between ZFN-modified and control cells. Following consultation with regulatory authorities, we conducted in vivo toxicity studies that showed no detectable ZFN-specific toxicity or T-cell transformation. Based on these findings, we initiated a clinical trial testing the safety and feasibility of CCR5 gene-edited CD4+ T-cell transfer in study subjects with HIV-1 infection.
Collapse
Affiliation(s)
- Dawn A Maier
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
OBJECTIVE Septic syndromes are the leading causes of mortality in intensive care units. In patients, the occurrence of sepsis-induced immune suppression is associated with delayed mortality, although the exact role of lymphocyte dysfunctions is not well established. The objective of this study was to investigate T-cell receptor diversity, an important feature of T-cell response, in patients with septic shock. DESIGN Preliminary prospective observational study. SETTING Adult intensive care units in a university hospital. SUBJECTS Patients with septic shock (n = 41) sampled twice after the onset of shock (early after inclusion [day 1] and at the end of the first week [day 7]). MEASUREMENTS AND MAIN RESULTS Using a novel molecular biology technique, the combinatorial diversity of human T-cell receptor β-chain (TRB locus) was measured in peripheral blood. Patients with septic shock presented with a marked decreased T-cell receptor diversity after the onset of shock in comparison with normal values. Importantly, in paired samples, a very steep recovery slope of T-cell receptor diversity, never described in other clinical situations, was observed between day 1 and day 7 (p < 0.0001, Wilcoxon's paired test). Decreased T-cell receptor diversity was associated with mortality (log-rank test, p = 0.0058; hazard ratio = 4.48; 95% confidence interval 1.96-53.32), and the development of nosocomial infections (p < 0.05, Mann-Whitney U test). CONCLUSION Our results show for the first time that septic patients present with a marked decreased T-cell receptor diversity that returned rapidly toward normal values over time. This opens novel cognitive research perspectives that deserve to be investigated in experimental models of sepsis. After confirmation in larger cohorts of these preliminary results, T-cell receptor diversity measurements may become a crucial tool to monitor immune functions in ICU patients.
Collapse
|
49
|
Fillatreau S, Six A, Magadan S, Castro R, Sunyer JO, Boudinot P. The astonishing diversity of Ig classes and B cell repertoires in teleost fish. Front Immunol 2013; 4:28. [PMID: 23408183 PMCID: PMC3570791 DOI: 10.3389/fimmu.2013.00028] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 01/24/2013] [Indexed: 12/17/2022] Open
Abstract
With lymphoid tissue anatomy different than mammals, and diverse adaptations to all aquatic environments, fish constitute a fascinating group of vertebrate to study the biology of B cell repertoires in a comparative perspective. Fish B lymphocytes express immunoglobulin (Ig) on their surface and secrete antigen-specific antibodies in response to immune challenges. Three antibody classes have been identified in fish, namely IgM, IgD, and IgT, while IgG, IgA, and IgE are absent. IgM and IgD have been found in all fish species analyzed, and thus seem to be primordial antibody classes. IgM and IgD are normally co-expressed from the same mRNA through alternative splicing, as in mammals. Tetrameric IgM is the main antibody class found in serum. Some species of fish also have IgT, which seems to exist only in fish and is specialized in mucosal immunity. IgM/IgD and IgT are expressed by two different sub-populations of B cells. The tools available to investigate B cell responses at the cellular level in fish are limited, but the progress of fish genomics has started to unravel a rich diversity of IgH and immunoglobulin light chain locus organization, which might be related to the succession of genome remodelings that occurred during fish evolution. Moreover, the development of deep sequencing techniques has allowed the investigation of the global features of the expressed fish B cell repertoires in zebrafish and rainbow trout, in steady state or after infection. This review provides a description of the organization of fish Ig loci, with a particular emphasis on their heterogeneity between species, and presents recent data on the structure of the expressed Ig repertoire in healthy and infected fish.
Collapse
Affiliation(s)
- Simon Fillatreau
- Deutsches Rheuma-Forschungszentrum, Leibniz Institute Berlin, Germany
| | | | | | | | | | | |
Collapse
|
50
|
Depletion and dysfunction of Vγ2Vδ2 T cells in HIV disease: mechanisms, impacts and therapeutic implications. Cell Mol Immunol 2012; 10:42-9. [PMID: 23241900 DOI: 10.1038/cmi.2012.50] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Infection with human immunodeficiency virus (HIV) disrupts the balance among γδ T cell subsets, with increasing Vδ1+ cells and substantial depletion of circulating Vδ2+ cells. Depletion is an indirect effect of HIV in CD4-negative Vδ2 cells, but is specific for phosphoantigen-responsive subpopulations identified by the Vγ2-Jγ1.2 (also called Vγ9-JγP) T cell receptor rearrangement. The extent of cell loss and recovery is related closely to clinical status, with highest levels of functional Vδ2 cells present in virus controllers (undetectable viremia in the absence of antiretroviral therapy). We review the mechanisms and clinical consequences for Vδ2 cell depletion in HIV disease. We address the question of whether HIV-mediated Vδ2 cell depletion, despite being an indirect effect of infection, is an important part of the immune evasion strategy for this virus. The important roles for Vδ2 cells, as effectors and immune regulators, identify key mechanisms affected by HIV and show the strong relationships between Vδ2 cell loss and immunodeficiency disease. This field is moving toward immune therapies based on targeting Vδ2 cells and we now have clear goals and expectations to guide interventional clinical trials.
Collapse
|