1
|
Combined PET and whole-tissue imaging of lymphatic-targeting vaccines in non-human primates. Biomaterials 2021; 275:120868. [PMID: 34091299 DOI: 10.1016/j.biomaterials.2021.120868] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 12/23/2022]
Abstract
Antigen accumulation in lymph nodes (LNs) is critical for vaccine efficacy, but understanding of vaccine biodistribution in humans or large animals remains limited. Using the rhesus macaque model, we employed a combination of positron emission tomography (PET) and fluorescence imaging to characterize the whole-animal to tissue-level biodistribution of a subunit vaccine comprised of an HIV envelope trimer protein nanoparticle (trimer-NP) and lipid-conjugated CpG adjuvant (amph-CpG). Following immunization in the thigh, PET imaging revealed vaccine uptake primarily in inguinal and iliac LNs, reaching distances up to 17 cm away from the injection site. Within LNs, trimer-NPs exhibited striking accumulation on the periphery of follicular dendritic cell (FDC) networks in B cell follicles. Comparative imaging of soluble Env trimers (not presented on nanoparticles) in naïve or previously-immunized animals revealed diffuse deposition of trimer antigens in LNs following primary immunization, but concentration on FDCs in pre-immunized animals with high levels of trimer-specific IgG. These data demonstrate the capacity of nanoparticle or "albumin hitchhiking" technologies to concentrate vaccines in genitourinary tract-draining LNs, which may be valuable for promoting mucosal immunity.
Collapse
|
2
|
Sauermann U, Radaelli A, Stolte-Leeb N, Raue K, Bissa M, Zanotto C, Krawczak M, Tenbusch M, Überla K, Keele BF, De Giuli Morghen C, Sopper S, Stahl-Hennig C. Vector Order Determines Protection against Pathogenic Simian Immunodeficiency Virus Infection in a Triple-Component Vaccine by Balancing CD4 + and CD8 + T-Cell Responses. J Virol 2017; 91:e01120-17. [PMID: 28904195 PMCID: PMC5686736 DOI: 10.1128/jvi.01120-17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 09/06/2017] [Indexed: 12/15/2022] Open
Abstract
An effective AIDS vaccine should elicit strong humoral and cellular immune responses while maintaining low levels of CD4+ T-cell activation to avoid the generation of target cells for viral infection. The present study investigated two prime-boost regimens, both starting vaccination with single-cycle immunodeficiency virus, followed by two mucosal boosts with either recombinant adenovirus (rAd) or fowlpox virus (rFWPV) expressing SIVmac239 or SIVmac251 gag/pol and env genes, respectively. Finally, vectors were switched and systemically administered to the reciprocal group of animals. Only mucosal rFWPV immunizations followed by systemic rAd boost significantly protected animals against a repeated low-dose intrarectal challenge with pathogenic SIVmac251, resulting in a vaccine efficacy (i.e., risk reduction per exposure) of 68%. Delayed viral acquisition was associated with higher levels of activated CD8+ T cells and Gag-specific gamma interferon (IFN-γ)-secreting CD8+ cells, low virus-specific CD4+ T-cell responses, and low Env antibody titers. In contrast, the systemic rFWPV boost induced strong virus-specific CD4+ T-cell activity. rAd and rFWPV also induced differential patterns of the innate immune responses, thereby possibly shaping the specific immunity. Plasma CXCL10 levels after final immunization correlated directly with virus-specific CD4+ T-cell responses and inversely with the number of exposures to infection. Also, the percentage of activated CD69+ CD8+ T cells correlated with the number of exposures to infection. Differential stimulation of the immune response likely provided the basis for the diverging levels of protection afforded by the vaccine regimen.IMPORTANCE A failed phase II AIDS vaccine trial led to the hypothesis that CD4+ T-cell activation can abrogate any potentially protective effects delivered by vaccination or promote acquisition of the virus because CD4+ T helper cells, required for an effective immune response, also represent the target cells for viral infection. We compared two vaccination protocols that elicited similar levels of Gag-specific immune responses in rhesus macaques. Only the animal group that had a low level of virus-specific CD4+ T cells in combination with high levels of activated CD8+ T cells was significantly protected from infection. Notably, protection was achieved despite the lack of appreciable Env antibody titers. Moreover, we show that both the vector and the route of immunization affected the level of CD4+ T-cell responses. Thus, mucosal immunization with FWPV-based vaccines should be considered a potent prime in prime-boost vaccination protocols.
Collapse
Affiliation(s)
- Ulrike Sauermann
- Unit of Infection Models, Deutsches Primatenzentrum GmbH, Goettingen, Germany
| | - Antonia Radaelli
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Nicole Stolte-Leeb
- Unit of Infection Models, Deutsches Primatenzentrum GmbH, Goettingen, Germany
| | - Katharina Raue
- Unit of Infection Models, Deutsches Primatenzentrum GmbH, Goettingen, Germany
| | - Massimiliano Bissa
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Carlo Zanotto
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Michael Krawczak
- Institute of Medical Informatics and Statistics, Christian-Albrechts University, Kiel, Germany
| | - Matthias Tenbusch
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Klaus Überla
- University Hospital Erlangen, Institute of Clinical and Molecular Virology, Erlangen, Germany
| | - Brandon F Keele
- AIDS and Cancer Virus Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Carlo De Giuli Morghen
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
- Catholic University Our Lady of Good Counsel, Tirana, Albania
| | - Sieghart Sopper
- Clinic for Hematology and Oncology, Medical University Innsbruck, Tyrolean Cancer Research Center, Innsbruck, Austria
| | | |
Collapse
|
3
|
A novel mechanism linking memory stem cells with innate immunity in protection against HIV-1 infection. Sci Rep 2017; 7:1057. [PMID: 28432326 PMCID: PMC5430909 DOI: 10.1038/s41598-017-01188-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 03/27/2017] [Indexed: 11/23/2022] Open
Abstract
HIV infection affects 37 million people and about 1.7 million are infected annually. Among the phase III clinical trials only the RV144 vaccine trial elicited significant protection against HIV-1 acquisition, but the efficacy and immune memory were inadequate. To boost these vaccine functions we studied T stem cell memory (TSCM) and innate immunity. TSCM cells were identified by phenotypic markers of CD4+ T cells and they were further characterised into 4 subsets. These expressed the common IL-2/IL-15 receptors and another subset of APOBEC3G anti-viral restriction factors, both of which were upregulated. In contrast, CD4+ TSCM cells expressing CCR5 co-receptors and α4β7 mucosal homing integrins were decreased. A parallel increase in CD4+ T cells was recorded with IL-15 receptors, APOBEC3G and CC chemokines, the latter downmodulating CCR5 molecules. We suggest a novel mechanism of dual memory stem cells; the established sequential memory pathway, TSCM →Central →Effector memory CD4+ T cells and the innate pathway consisting of the 4 subsets of TSCM. Both pathways are likely to be activated by endogenous HSP70. The TSCM memory stem cell and innate immunity pathways have to be optimised to boost the efficacy and immune memory of protection against HIV-1 in the clinical trial.
Collapse
|
4
|
Abstract
The appalling toll on the populations of developing countries as a result of the HIV epidemic shows no signs of abatement. While costly drug therapies are effective in developed nations, the sheer scale of the epidemic elsewhere makes the need for a vaccine an ever more urgent goal. The prevalent DNA prime-viral boost strategy aims to elicit cytotoxic lymphocytes (CTL) against HIV, but this approach is undermined by the rapid mutation of HIV, which thereby escapes CTL control. Alloimmunity has been found to be protective in vertical transmission from infected mothers to their babies, in alloimmunization of women with their partners’ mononuclear cells, and in monkeys immunized with SIV grown in human T-cells. Vaginal mucosal immunization, as a result of unprotected sex with a regular partner, induced in vitro protection against HIV infection, and this was confirmed in macaques. The second type of natural protection is found in persons with the homozygous Δ32 CCR5 mutation, a 32-base-pair deletion of the CCR5 gene, which results in a lack of cell-surface expression of CCR5, which is associated with an increase in CC chemokines and the development of CCR5 antibodies. These two ‘experiments of nature’ have been used to develop vaccine strategies—first, in vaginal immunization of macaques with CCR5 peptides, in addition to HIV envelope (env) and SIV core (gag) antigens, all of which were linked to the 70-kD heat-shock protein (HSP70); and second, in mucosal allo-immunization of macaques, which also gave rise to in vitro protection from infection. Immunization with this vaccine elicited serum and vaginal IgG and IgA antibodies, IFNγ- and IL-12-producing cells, and increased concentrations of CCL-3 and CCL-4. Vaginal challenge with a simian immunodeficiency virus engineered to carry a human envelope protein (SHIV 89.6) showed significant clearance of SHIV in the immunized macaques. This platform strategy will now be developed to activate the co-stimulatory pathways with the aim of enhancing the primary allogeneic and CCR5-directed responses which are involved in natural protection against HIV infection. Abbreviations: IFN-γ, gamma interferon; IL-12, interleukin 12; MIP-1 α,β, Macrophage inflammatory protein-1; RANTES, Regulated on activation normal T-cell expressed and secreted; SDF-1, stromal-derived factor 1; SIV, simian immunodeficiency virus; and SHIV, engineered SIV carrying a human envelope protein.
Collapse
Affiliation(s)
- L A Bergmeier
- Mucosal Immunology Unit, Guy's King's and St Thomas' Medical and Dental School, Kings College London, London SE1 9RT, UK.
| | | |
Collapse
|
5
|
Wang Y, Yang GB. Alteration of Polymeric Immunoglobulin Receptor and Neonatal Fc Receptor Expression in the Gut Mucosa of Immunodeficiency Virus-Infected Rhesus Macaques. Scand J Immunol 2016; 83:235-43. [PMID: 26860548 DOI: 10.1111/sji.12416] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 01/27/2016] [Indexed: 12/15/2022]
Abstract
Polymeric immunoglobulin receptors (pIgR) and neonatal Fc receptors (FcRn) are crucial immunoglobulin (Ig) receptors for the transcytosis of immunoglobulins, that is IgA, IgM and IgG, the levels of which in mucosal secretions were altered in both HIV- and SIV-infected individuals. To gain an insight into the changes of pIgR and FcRn expression after immunodeficiency virus (SHIV/SIV) infection, real-time RT-PCR methods were established and the mRNA levels of pIgR and FcRn in normal and SHIV/SIV-infected rhesus macaques were quantitatively examined. It was found that the levels of pIgR mRNA were within a range of 10(7) copies per million copies of GAPDH mRNA in the gut mucosa of rhesus macaques, which were up to 55 times higher than that in the oral mucosa, the highest among the non-gut tissues examined. Levels of FcRn mRNA were generally lower than that of pIgR, and the levels of FcRn mRNA in the gut mucosa were also lower than that in most non-gut tissues examined. Notably, the levels of pIgR mRNA in the duodenal mucosa were positively correlated with that of IL-17A in normal rhesus macaques. Both pIgR and FcRn mRNA levels were significantly reduced in the duodenal mucosa during acute SHIV infection and in the jejunum and caecum during chronic SHIV/SIV infection. These data expanded our knowledge on the expression of pIgR and FcRn in the gastrointestinal tract of rhesus macaques and demonstrated altered expression of pIgR and FcRn in SHIV/SIV, and by extension HIV infections, which might have contributed to HIV/AIDS pathogenesis.
Collapse
Affiliation(s)
- Y Wang
- National Center for AIDS/STD Control and Prevention, Beijing, China.,Dalian Center for Disease Control and Prevention, Dalian, China
| | - G B Yang
- National Center for AIDS/STD Control and Prevention, Beijing, China
| |
Collapse
|
6
|
Leleux J, Atalis A, Roy K. Engineering immunity: Modulating dendritic cell subsets and lymph node response to direct immune-polarization and vaccine efficacy. J Control Release 2015; 219:610-621. [PMID: 26489733 DOI: 10.1016/j.jconrel.2015.09.063] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/25/2015] [Accepted: 09/28/2015] [Indexed: 12/23/2022]
Abstract
While successful vaccines have been developed against many pathogens, there are still many diseases and pathogenic infections that are highly evasive to current vaccination strategies. Thus, more sophisticated approaches to control the type and quality of vaccine-induced immune response must be developed. Dendritic cells (DCs) are the sentinels of the body and play a critical role in immune response generation and direction by bridging innate and adaptive immunity. It is now well recognized that DCs can be separated into many subgroups, each of which has a unique function. Better understanding of how various DC subsets, in lymphoid organs and in the periphery, can be targeted through controlled delivery; and how these subsets modulate and control the resulting immune response could greatly enhance our ability to develop new, effective vaccines against complex diseases. In this review, we provide an overview of DC subset biology and discuss current immunotherapeutic strategies that utilize DC targeting to modulate and control immune responses.
Collapse
Affiliation(s)
- Jardin Leleux
- The Wallace H. Coulter Dept. of Biomedical Engineering at Georgia Tech and Emory University and The Center for Immunoengineering at Georgia Tech, The Parker H. Petit Institute for Bioengineering and Biosciences Georgia Institute of Technology, Atlanta, GA 30332, United States
| | - Alexandra Atalis
- The Wallace H. Coulter Dept. of Biomedical Engineering at Georgia Tech and Emory University and The Center for Immunoengineering at Georgia Tech, The Parker H. Petit Institute for Bioengineering and Biosciences Georgia Institute of Technology, Atlanta, GA 30332, United States
| | - Krishnendu Roy
- The Wallace H. Coulter Dept. of Biomedical Engineering at Georgia Tech and Emory University and The Center for Immunoengineering at Georgia Tech, The Parker H. Petit Institute for Bioengineering and Biosciences Georgia Institute of Technology, Atlanta, GA 30332, United States.
| |
Collapse
|
7
|
Sholukh AM, Watkins JD, Vyas HK, Gupta S, Lakhashe SK, Thorat S, Zhou M, Hemashettar G, Bachler BC, Forthal DN, Villinger F, Sattentau QJ, Weiss RA, Agatic G, Corti D, Lanzavecchia A, Heeney JL, Ruprecht RM. Defense-in-depth by mucosally administered anti-HIV dimeric IgA2 and systemic IgG1 mAbs: complete protection of rhesus monkeys from mucosal SHIV challenge. Vaccine 2015; 33:2086-95. [PMID: 25769884 DOI: 10.1016/j.vaccine.2015.02.020] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 02/03/2015] [Accepted: 02/07/2015] [Indexed: 12/19/2022]
Abstract
Although IgA is the most abundantly produced immunoglobulin in humans, its role in preventing HIV-1 acquisition, which occurs mostly via mucosal routes, remains unclear. In our passive mucosal immunizations of rhesus macaques (RMs), the anti-HIV-1 neutralizing monoclonal antibody (nmAb) HGN194, given either as dimeric IgA1 (dIgA1) or dIgA2 intrarectally (i.r.), protected 83% or 17% of the RMs against i.r. simian-human immunodeficiency virus (SHIV) challenge, respectively. Data from the RV144 trial implied that vaccine-induced plasma IgA counteracted the protective effector mechanisms of IgG1 with the same epitope specificity. We thus hypothesized that mucosal dIgA2 might diminish the protection provided by IgG1 mAbs targeting the same epitope. To test our hypothesis, we administered HGN194 IgG1 intravenously (i.v.) either alone or combined with i.r. HGN194 dIgA2. We enrolled SHIV-exposed, persistently aviremic RMs protected by previously administered nmAbs; RM anti-human IgG responses were undetectable. However, low-level SIV Gag-specific proliferative T-cell responses were found. These animals resemble HIV-exposed, uninfected humans, in which local and systemic cellular immune responses have been observed. HGN194 IgG1 and dIgA2 used alone and the combination of the two neutralized the challenge virus equally well in vitro. All RMs given only i.v. HGN194 IgG1 became infected. In contrast, all RMs given HGN194 IgG1+dIgA2 were completely protected against high-dose i.r. SHIV-1157ipEL-p challenge. These data imply that combining suboptimal defenses at the mucosal and systemic levels can completely prevent virus acquisition. Consequently, active vaccination should focus on defense-in-depth, a strategy that seeks to build up defensive fall-back positions well behind the fortified frontline.
Collapse
Affiliation(s)
- Anton M Sholukh
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, TX, USA; Dana-Farber Cancer Institute, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Jennifer D Watkins
- Dana-Farber Cancer Institute, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Hemant K Vyas
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, TX, USA; Dana-Farber Cancer Institute, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Sandeep Gupta
- Division of Infectious Diseases, Department of Medicine, University of California, Irvine School of Medicine, Irvine, CA, USA
| | - Samir K Lakhashe
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, TX, USA; Dana-Farber Cancer Institute, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Swati Thorat
- Dana-Farber Cancer Institute, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Mingkui Zhou
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, TX, USA
| | | | | | - Donald N Forthal
- Division of Infectious Diseases, Department of Medicine, University of California, Irvine School of Medicine, Irvine, CA, USA
| | - Francois Villinger
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA; Yerkes National Primate Research Center, Atlanta, GA, USA
| | - Quentin J Sattentau
- The Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Robin A Weiss
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | | | - Davide Corti
- Humabs BioMed SA, Bellinzona 6500, Switzerland; Institute for Research in Biomedicine, Bellinzona 6500, Switzerland
| | - Antonio Lanzavecchia
- Institute for Research in Biomedicine, Bellinzona 6500, Switzerland; Eidgenoessische Technische Hochschule, Zurich CH-8093, Switzerland
| | - Jonathan L Heeney
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Ruth M Ruprecht
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, TX, USA; Southwest National Primate Research Center, San Antonio, TX, USA; Dana-Farber Cancer Institute, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
8
|
Abstract
Gold Standard allergen-specific immunotherapy is associated with low efficacy because it requires either many subcutaneous injections of allergen or even more numerous sublingual allergen administrations to achieve amelioration of symptoms. Intralymphatic vaccination can maximize immunogenicity and hence efficacy. We and others have demonstrated that as few as three low dose intralymphatic allergen administrations are sufficient to effectively alleviate symptoms. Results of recent prospective and controlled trials suggest that this strategy may be an effective form of allergen immunotherapy.
Collapse
Affiliation(s)
- Gabriela Senti
- Clinical Trials Center, University Hospital Zurich, Raemistrasse 100/MOU2, CH-8091 Zurich, Switzerland
| | - Thomas M Kündig
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
9
|
Induction of antibodies and T cell responses by a recombinant influenza virus carrying an HIV-1 TatΔ51-59 protein in mice. BIOMED RESEARCH INTERNATIONAL 2014; 2014:904038. [PMID: 24949479 PMCID: PMC4053076 DOI: 10.1155/2014/904038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 04/17/2014] [Accepted: 04/22/2014] [Indexed: 11/17/2022]
Abstract
Recombinant influenza viruses hold promise as vectors for vaccines to prevent transmission of mucosal pathogens. In this study, we generated a recombinant WSN/TatΔ(51-59) virus in which Tat protein lacking residues 51 to 59 of the basic domain was inserted into the N-terminus of the hemagglutinin (HA) of A/WSN/33 virus. The TatΔ(51-59) insertion into the viral HA caused a 2-log reduction in viral titers in cell culture, compared with the parental A/WSN/33 virus, and severely affected virus replication in vivo. Nevertheless, Tat-specific antibodies and T cell responses were elicited upon a single intranasal immunization of BALB/c mice with WSN/TatΔ(51-59) virus. Moreover, Tat-specific immune responses were also detected following vaccine administration via the vaginal route. These data provide further evidence that moderately large HIV antigens can be delivered by chimeric HA constructs and elicit specific immune responses, thus increasing the options for the potential use of recombinant influenza viruses, and their derivatives, for prophylactic and therapeutic vaccines.
Collapse
|
10
|
Garulli B, Di Mario G, Stillitano MG, Kawaoka Y, Castrucci MR. Exploring mucosal immunization with a recombinant influenza virus carrying an HIV-polyepitope in mice with pre-existing immunity to influenza. Vaccine 2014; 32:2501-6. [DOI: 10.1016/j.vaccine.2014.02.077] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 02/07/2014] [Accepted: 02/25/2014] [Indexed: 12/12/2022]
|
11
|
Barrios CS, Castillo L, Zhi H, Giam CZ, Beilke MA. Human T cell leukaemia virus type 2 tax protein mediates CC-chemokine expression in peripheral blood mononuclear cells via the nuclear factor kappa B canonical pathway. Clin Exp Immunol 2014; 175:92-103. [PMID: 24116893 DOI: 10.1111/cei.12213] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2013] [Indexed: 12/22/2022] Open
Abstract
Retroviral co-infections with human immunodeficiency virus type-1 (HIV-1) and human T cell leukaemia virus type 1 (HTLV-1) or type 2 (HTLV-2) are prevalent in many areas worldwide. It has been observed that HIV-1/HTLV-2 co-infections are associated with slower rates of CD4(+) T cell decline and delayed progression to AIDS. This immunological benefit has been linked to the ability of Tax2, the transcriptional activating protein of HTLV-2, to induce the expression of macrophage inflammatory protein (MIP)-1α/CCL3, MIP-1β/CCL4 and regulated upon activation normal T cell expressed and secreted (RANTES)/CCL5 and to down-regulate the expression of the CCR5 co-receptor in peripheral blood mononuclear cells (PBMCs). This study aimed to assess the role of Tax2-mediated activation of the nuclear factor kappa B (NF-κB) signalling pathway on the production of the anti-viral CC-chemokines MIP-1α, MIP-1β and RANTES. Recombinant Tax1 and Tax2 proteins, or proteins expressed via adenoviral vectors used to infect cells, were tested for their ability to activate the NF-κB pathway in cultured PBMCs in the presence or absence of NF-κB pathway inhibitors. Results showed a significant release of MIP-1α, MIP-1β and RANTES by PBMCs after the activation of p65/RelA and p50. The secretion of these CC-chemokines was significantly reduced (P < 0·05) by canonical NF-κB signalling inhibitors. In conclusion, Tax2 protein may promote innate anti-viral immune responses through the activation of the canonical NF-κB pathway.
Collapse
Affiliation(s)
- C S Barrios
- Infectious Diseases Division, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA; Research Service 151-I, Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, WI, USA
| | | | | | | | | |
Collapse
|
12
|
Challacombe SJ. Professor Thomas Lehner: archetypal translational scientist. J Dent Res 2013; 92:393-6. [PMID: 23481587 DOI: 10.1177/0022034513482140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Professor Thomas Lehner is one of the most distinguished oral and dental researchers to have come out of the UK. Over the past 40 years, he has made an astonishing number of discoveries which have had an impact on our understanding of the pathogenesis of a variety of mucosal diseases. He has consistently practiced both basic and clinical research and built an integrated group of clinical and non-clinical researchers, which allowed him easy transition from the laboratory to the clinic. Tom Lehner was among the early scientists studying mucosal immunology, initially exploring oral diseases, with special emphasis on the immunobiology of Streptococcus mutans, leading to active and passive vaccination against dental caries. He was the first to demonstrate cellular immunity as the immunopathological basis of periodontal diseases, recurrent aphthous stomatitis, and candidiasis. Over the past 20 years, his expertise in mucosal immunobiology has been applied to the immunology of HIV/SIV infections. His seminal contributions include regional innate mucosal immunity, prevention of SIV infection in macaques by secretory IgA antibodies, up-regulation of CC chemokines, and the first demonstration of protective CCR5 antibodies. Arguably, his leadership, his students, and the establishment of immunology applied to oral mucosal diseases will be his greatest legacy. His contributions continue unabated.
Collapse
Affiliation(s)
- S J Challacombe
- King's College London Dental Institute at Guys Hospital, London SE1 9RT, UK.
| |
Collapse
|
13
|
Shen S, Pyo CW, Vu Q, Wang R, Geraghty DE. The Essential Detail: The Genetics and Genomics of the Primate Immune Response. ILAR J 2013; 54:181-95. [DOI: 10.1093/ilar/ilt043] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
14
|
Johansen P, von Moos S, Mohanan D, Kündig TM, Senti G. New routes for allergen immunotherapy. Hum Vaccin Immunother 2012; 8:1525-33. [PMID: 23095873 PMCID: PMC3660774 DOI: 10.4161/hv.21948] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 08/15/2012] [Accepted: 08/23/2012] [Indexed: 12/16/2022] Open
Abstract
IgE-mediated allergy is a highly prevalent disease in the industrialized world. Allergen-specific immunotherapy (SIT) should be the preferred treatment, as it has long lasting protective effects and can stop the progression of the disease. However, few allergic patients choose to undergo SIT, due to the long treatment time and potential allergic adverse events. Since the beneficial effects of SIT are mediated by antigen presenting cells inducing Th1, Treg and antibody responses, whereas the adverse events are caused by mast cells and basophils, the therapeutic window of SIT may be widened by targeting tissues rich in antigen presenting cells. Lymph nodes and the epidermis contain high density of dendritic cells and low numbers of mast cells and basophils. The epidermis has the added benefit of not being vascularised thereby reducing the chances of anaphylactic shock due to leakage of allergen. Hence, both these tissues represent highly promising routes for SIT and are the focus of discussion in this review.
Collapse
Affiliation(s)
- Pål Johansen
- Department of Dermatology; University Hospital Zurich; Zurich, Switzerland
| | - Seraina von Moos
- Clinical Trials Center; University Hospital Zurich; Zurich, Switzerland
| | - Deepa Mohanan
- Department of Dermatology; University Hospital Zurich; Zurich, Switzerland
| | - Thomas M. Kündig
- Department of Dermatology; University Hospital Zurich; Zurich, Switzerland
| | - Gabriela Senti
- Clinical Trials Center; University Hospital Zurich; Zurich, Switzerland
| |
Collapse
|
15
|
Large intestine-targeted, nanoparticle-releasing oral vaccine to control genitorectal viral infection. Nat Med 2012; 18:1291-6. [PMID: 22797811 PMCID: PMC3475749 DOI: 10.1038/nm.2866] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 01/11/2012] [Indexed: 12/27/2022]
Abstract
Both rectal and vaginal mucosal surfaces serve as transmission routes for pathogenic microorganisms. Vaccination through large intestinal mucosa, previously proven protective for both of these mucosal sites in animal studies, can be achieved successfully by direct intracolorectal (i.c.r.) administration, but this route is clinically impractical. Oral vaccine delivery seems preferable but runs the risk of the vaccine's destruction in the upper gastrointestinal tract. Therefore, we designed a large intestine-targeted oral delivery with pH-dependent microparticles containing vaccine nanoparticles, which induced colorectal immunity in mice comparably to colorectal vaccination and protected against rectal and vaginal viral challenge. Conversely, vaccine targeted to the small intestine induced only small intestinal immunity and provided no rectal or vaginal protection, demonstrating functional compartmentalization within the gut mucosal immune system. Therefore, using this oral vaccine delivery system to target the large intestine, but not the small intestine, may represent a feasible new strategy for immune protection of rectal and vaginal mucosa.
Collapse
|
16
|
Abstract
HIV-1 is predominantly transmitted through mucosal tissues, targeting CD4(+)CCR5(+) T cells, 50% of which are destroyed within 2 weeks of infection. Conventional vaccination strategies have so far failed to prevent HIV-1 infection. Neither antibodies nor cytotoxic lymphocytes are capable of mounting a sufficiently rapid immune response to prevent early destruction of these cells. However, innate immunity is an early-response system, largely independent of prior encounter with a pathogen. Innate immunity can be classified into cellular, extracellular, and intracellular components, each of which is exemplified in this review by γδ T cells, CC chemokines, and APOBEC3G, respectively. First, γδ T cells are found predominantly in mucosal tissues and produce cytokines, CC chemokines, and antiviral factors. Second, the CC chemokines CCL-3, CCL-4, and CCL-5 can be upregulated by immunization of macaques with SIVgp120 and gag p27, and these can bind and downmodulate CCR5, thereby inhibiting HIV-1 entry into the host cells. Third, APOBEC3G is generated and maintained following rectal mucosal immunization in rhesus macaques for over 17 weeks, and the innate anti-SIV factor is generated by CD4(+)CD95(+)CCR7(-) effector memory T cells. Thus, innate anti-HIV-1 or SIV immunity can be linked with immune memory, mediated by CD4(+) T cells generating APOBEC3G. The multiple innate functions may mount an early anti-HIV-1 response and either prevent viral transmission or contain the virus until an effective adaptive immune response develops.
Collapse
Affiliation(s)
- T Lehner
- Mucosal Immunology Unit, Kings College London at Guy's Hospital, London, UK.
| | | | | | | |
Collapse
|
17
|
von Moos S, Kündig TM, Senti G. Novel Administration Routes for Allergen-Specific Immunotherapy: A Review of Intralymphatic and Epicutaneous Allergen-Specific Immunotherapy. Immunol Allergy Clin North Am 2011; 31:391-406, xi. [DOI: 10.1016/j.iac.2011.02.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
18
|
Ranasinghe C, Eyers F, Stambas J, Boyle DB, Ramshaw IA, Ramsay AJ. A comparative analysis of HIV-specific mucosal/systemic T cell immunity and avidity following rDNA/rFPV and poxvirus-poxvirus prime boost immunisations. Vaccine 2011; 29:3008-20. [PMID: 21352941 PMCID: PMC3244379 DOI: 10.1016/j.vaccine.2011.01.106] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 01/19/2011] [Accepted: 01/30/2011] [Indexed: 11/25/2022]
Abstract
In this study we have firstly compared a range of recombinant DNA poxvirus prime-boost immunisation strategies and shown that combined intramuscular (i.m.) 2× DNA-HIV/intranasal (i.n.) 2× FPV-HIV prime-boost immunisation can generate high-level of HIV-specific systemic (spleen) and mucosal (genito-rectal nodes, vaginal tissues and lung tissues) T cell responses and HIV-1 p24 Gag-specific serum IgG1, IgG2a and mucosal IgG, SIgA responses in vaginal secretions in BALB/c mice. Data indicate that following rDNA priming, two rFPV booster immunisations were necessary to generate good antibody and mucosal T cell immunity. This data also revealed that mucosal uptake of recombinant fowl pox (rFPV) was far superior to plasmid DNA. To further evaluate CD8+ T cell immunity, i.m. 2× DNA-HIV/i.n. 1× FPV-HIV immunisation strategy was directly compared with single shot poxvirus/poxvirus, i.n. FPV-HIV/i.m. VV-HIV immunisation. Results indicate that the latter strategy was able to generate strong sustained HIV-specific CD8+ T cells with higher avidity, broader cytokine/chemokine profiles and better protection following influenza-K(d)Gag(197-205) challenge compared to rDNA poxvirus prime-boost strategy. Our findings further substantiate the importance of vector selection/combination, order and route of delivery when designing effective vaccines for HIV-1.
Collapse
Affiliation(s)
- Charani Ranasinghe
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia.
| | | | | | | | | | | |
Collapse
|
19
|
Senti G, Johansen P, Kündig TM. Intralymphatic immunotherapy: from the rationale to human applications. Curr Top Microbiol Immunol 2011; 352:71-84. [PMID: 21725898 DOI: 10.1007/82_2011_133] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Allergen specific immunotherapy (SIT) is the only treatment of IgE mediated allergies that is causative and has a long-term effect. Classically, SIT requires numerous subcutaneous injections of the allergen during 3-5 years. Over the last decade sublingual allergen applications have established as an alternative, but treatment duration could not be shortened. This review focuses on direct administration of vaccines in general and of allergens in particular into lymph nodes with the aim to enhance immunotherapy. Several studies have found that direct injection of antigens into lymph nodes enhanced immune responses. Recently we have focused on intralymphatic allergen administration in order to enhance SIT. Data in mouse models and in clinical trials showed that intralymphatic allergen administration strongly enhanced SIT, so that the number of allergen injections could be reduced to three, and the allergen dose could be reduced 10-100 fold. Intralymphatic injections proved easy, practically painless and safe. In mice and men, intralymphatic immunotherapy injecting allergens into a subcutaneous lymph node markedly enhances the protective immune response, so that both the dose and number of allergen injections can be reduced, making SIT safer and faster, which enhances patient convenience and compliance.
Collapse
Affiliation(s)
- Gabriela Senti
- Clinical Trials Center, Center for Clinical Research, University and University Hospital of Zurich, Rämistrasse 100, 8091 Zurich, Switzerland.
| | | | | |
Collapse
|
20
|
Antibody responses after intravaginal immunisation with trimeric HIV-1 CN54 clade C gp140 in Carbopol gel are augmented by systemic priming or boosting with an adjuvanted formulation. Vaccine 2010; 29:1421-30. [PMID: 21187177 PMCID: PMC3060343 DOI: 10.1016/j.vaccine.2010.12.034] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 11/24/2010] [Accepted: 12/13/2010] [Indexed: 12/03/2022]
Abstract
Optimum strategies to elicit and maintain antibodies at mucosal portals of virus entry are critical for the development of vaccines against human immunodeficiency virus (HIV). Here we show in non-human primates that a novel regimen of repeated intravaginal delivery of a non-adjuvanted, soluble recombinant trimeric HIV-1CN54 clade C envelope glycoprotein (gp140) administered in Carbopol gel can prime for B-cell responses even in the absence of seroconversion. Following 3 cycles of repeated intravaginal administration, throughout each intermenses interval, 3 of 4 macaques produced or boosted systemic and mucosally-detected antibodies upon intramuscular immunisation with gp140 formulated in AS01 adjuvant. Reciprocally, a single intramuscular immunisation primed 3 of 4 macaques for antibody boosting after a single cycle of intravaginal immunisation. Virus neutralising activity was detected against clade C and clade B HIV-1 envelopes but was restricted to highly neutralisation sensitive pseudoviruses.
Collapse
|
21
|
Abstract
Mucosal surfaces are exploited as a portal of entry into hosts by a wide variety of microorganisms. Over the past decade, an advanced understanding of the immune system of the gastrointestinal and the respiratory mucosae has been gained. However, despite the fact that many viruses are transmitted sexually through the genital tract, the immune system of the male and female genital mucosae has received much less attention. Here, I describe and highlight differences in the innate and adaptive immune systems of the genital and intestinal mucosae, and discuss some of the challenges we face in the development of successful vaccines against sexually transmitted viral pathogens.
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW IgE-mediated allergy can be treated by subcutaneous allergen-specific immunotherapy (SCIT). However, the percentage of allergic patients undergoing SCIT is low, mainly due to the long duration of the therapy and the risk of severe systemic allergic reactions associated with the allergen administration. Typically, SCIT requires dozens of subcutaneous allergen injections that stretch over 3-5 years. Over the last decade, sublingual immunotherapy has been established as an alternative to SCIT, but treatment duration and dosing frequencies could not be reduced. Recently, immunotherapy by direct administration of the allergen into lymph nodes [intralymphatic immunotherapy (ILIT)] has proven a promising alternative and this method is the focus of the present review. RECENT FINDINGS Several studies on animals and on humans have shown that direct injection into lymph nodes enhanced immune responses to protein, peptide, and naked DNA vaccines. Moreover, ILIT strongly improved allergen immunotherapy, so that the number of allergen administrations as well as the allergen dose could be reduced. As ILIT was also well tolerated, practically painless, and easy to perform, patient compliance was improved as compared with SCIT. SUMMARY Direct ILIT into a subcutaneous lymph node markedly enhances protective immune responses, so that both the dose and the number of allergen injections can be reduced, making ILIT safer and faster than other forms of immunotherapy, and most importantly, this enhances patient convenience and compliance.
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW The purpose of this article is to review some of the recent progress in the development of HIV vaccines that induce immune responses in mucosal tissues that may correlate with protection of the mucosal CD4 T cell compartment. RECENT FINDINGS Mucosal tissues are the primary sites for viral entry and the resident CD4 T cells serve as readily available target cells for active infection. Viral entry is associated with a massive destruction of these cells. The resident CD4 cells are memory T cells and hence play an important role in the generation of secondary immune responses. Protecting these CD4 T cells is critical for controlling viral infection and for preserving immune competence. Numerous mucosal vaccine regimens currently under development have been shown to induce both B and T cell responses in mucosal tissues. Though induction of neutralizing antibodies still remains an elusive goal, the demonstration that antibodies can have a protective role through alternative mechanisms offers hope that humoral responses can be harnessed to yield a protective response in mucosal tissues. SUMMARY The mucosal immune system is highly compartmentalized and hence immunization regimens need to target mucosal tissues to be successful in inducing protective immune responses in mucosal tissues.
Collapse
|
24
|
Li J, Srivastava T, Rawal R, Manuel E, Isbell D, Tsark W, La Rosa C, Wang Z, Li Z, Barry PA, Hagen KD, Longmate J, Diamond DJ. Mamu-A01/K(b) transgenic and MHC Class I knockout mice as a tool for HIV vaccine development. Virology 2009; 387:16-28. [PMID: 19249807 DOI: 10.1016/j.virol.2009.01.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Revised: 09/23/2008] [Accepted: 01/26/2009] [Indexed: 01/09/2023]
Abstract
We have developed a murine model expressing the rhesus macaque (RM) Mamu-A01 MHC allele to characterize immune responses and vaccines based on antigens of importance to human disease processes. Towards that goal, transgenic (Tg) mice expressing chimeric RM (alpha1 and alpha2 Mamu-A01 domains) and murine (alpha3, transmembrane, and cytoplasmic H-2K(b) domains) MHC Class I molecules were derived by transgenesis of the H-2K(b)D(b) double MHC Class I knockout strain. After immunization of Mamu-A01/K(b) Tg mice with rVV-SIVGag-Pol, the mice generated CD8(+) T-cell IFN-gamma responses to several known Mamu-A01 restricted epitopes from the SIV Gag and Pol antigen sequence. Fusion peptides of highly recognized CTL epitopes from SIV Pol and Gag and a strong T-help epitope were shown to be immunogenic and capable of limiting an rVV-SIVGag-Pol challenge. Mamu-A01/K(b) Tg mice provide a model system to study the Mamu-A01 restricted T-cell response for various infectious diseases which are applicable to a study in RM.
Collapse
Affiliation(s)
- Jinliang Li
- Division of Translational Vaccine Research, Fox South, 1000B, Beckman Research Institute of the City of Hope, 1500 E. Duarte Rd., Comprehensive Cancer Center, Duarte, CA 91010, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Chemokines are small chemoattractant cytokines involved in homeostatic and inflammatory immune cell migration. These small proteins have multiple functional properties that extend beyond their most recognized role in controlling cellular migration. The complex immunobiology of chemokines, coupled with the use of subsets of chemokine receptors as HIV-1 and SIV entry co-receptors, suggests that these immunomodulators could play important roles in the pathogenesis associated with infection by HIV-1 or SIV. This review provides an overview of the effects of pathogenic infection on chemokine expression in the SIV/macaque model system, and outlines potential mechanisms by which changes in these expression profiles could contribute to development of disease. Key challenges faced in studying chemokine function in vivo and new opportunities for further study and development of therapeutic interventions are discussed. Continued growth in our understanding of the effects of pathogenic SIV infection on chemokine expression and function and the continuing development of chemokine receptor targeted therapeutics will provide the tools and the systems necessary for future studies of the roles of chemokines in HIV-1 pathogenesis.
Collapse
Affiliation(s)
- Todd A Reinhart
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, USA.
| | | | | |
Collapse
|
26
|
|
27
|
Excretion of human immunodeficiency virus type 1 through polarized epithelium by immunoglobulin A. J Virol 2008; 82:11526-35. [PMID: 18829757 DOI: 10.1128/jvi.01111-08] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Human immunodeficiency virus (HIV) is transmitted primarily sexually across mucosal surfaces. After infection, HIV propagates initially in the lamina propria below the polarized epithelium and causes extensive destruction of mucosal T cells. Immunoglobulin A (IgA) antibodies, produced in the lamina propria and then transcytosed across the mucosal epithelium into the lumen, can be the first line of immune defense against HIV. Here, we used IgA monoclonal antibodies against HIV envelope proteins to investigate the abilities of polarized primate and human epithelial cells to excrete HIV virions from the basolateral to the apical surface via polymeric Ig receptor (pIgR)-mediated binding and the internalization of HIV-IgA immune complexes. African green monkey kidney cells expressing pIgR demonstrated HIV excretion that was dependent on the IgA concentration and the exposure time. Matched IgG antibodies with the same variable regions as the IgA antibodies and IgA antibodies to non-HIV antigens had no HIV excretory function. A mixture of two IgA anti-bodies against gp120 and gp41 showed a synergistic increase in the level of HIV excreted. The capacity for HIV excretion correlated with the ability of IgA antibodies to bind HIV and of the resulting immune complexes to bind pIgR. Consistent with the epithelial transcytosis of HIV-IgA immune complexes, the colocalization of HIV proteins and HIV-specific IgA was detected intracellularly by confocal microscopy. Our results suggest the potential of IgA antibodies to excrete HIV from mucosal lamina propria, thereby decreasing the viral burden, access to susceptible cells, and the chronic activation of the immune system.
Collapse
|
28
|
Cranage M, Sharpe S, Herrera C, Cope A, Dennis M, Berry N, Ham C, Heeney J, Rezk N, Kashuba A, Anton P, McGowan I, Shattock R. Prevention of SIV rectal transmission and priming of T cell responses in macaques after local pre-exposure application of tenofovir gel. PLoS Med 2008; 5:e157; discussion e157. [PMID: 18684007 PMCID: PMC2494562 DOI: 10.1371/journal.pmed.0050157] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Accepted: 06/09/2008] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The rectum is particularly vulnerable to HIV transmission having only a single protective layer of columnar epithelium overlying tissue rich in activated lymphoid cells; thus, unprotected anal intercourse in both women and men carries a higher risk of infection than other sexual routes. In the absence of effective prophylactic vaccines, increasing attention is being given to the use of microbicides and preventative antiretroviral (ARV) drugs. To prevent mucosal transmission of HIV, a microbicide/ARV should ideally act locally at and near the virus portal of entry. As part of an integrated rectal microbicide development programme, we have evaluated rectal application of the nucleotide reverse transcriptase (RT) inhibitor tenofovir (PMPA, 9-[(R)-2-(phosphonomethoxy) propyl] adenine monohydrate), a drug licensed for therapeutic use, for protective efficacy against rectal challenge with simian immunodeficiency virus (SIV) in a well-established and standardised macaque model. METHODS AND FINDINGS A total of 20 purpose-bred Indian rhesus macaques were used to evaluate the protective efficacy of topical tenofovir. Nine animals received 1% tenofovir gel per rectum up to 2 h prior to virus challenge, four macaques received placebo gel, and four macaques remained untreated. In addition, three macaques were given tenofovir gel 2 h after virus challenge. Following intrarectal instillation of 20 median rectal infectious doses (MID50) of a noncloned, virulent stock of SIVmac251/32H, all animals were analysed for virus infection, by virus isolation from peripheral blood mononuclear cells (PBMC), quantitative proviral DNA load in PBMC, plasma viral RNA (vRNA) load by sensitive quantitative competitive (qc) RT-PCR, and presence of SIV-specific serum antibodies by ELISA. We report here a significant protective effect (p = 0.003; Fisher exact probability test) wherein eight of nine macaques given tenofovir per rectum up to 2 h prior to virus challenge were protected from infection (n = 6) or had modified virus outcomes (n = 2), while all untreated macaques and three of four macaques given placebo gel were infected, as were two of three animals receiving tenofovir gel after challenge. Moreover, analysis of lymphoid tissues post mortem failed to reveal sequestration of SIV in the protected animals. We found a strong positive association between the concentration of tenofovir in the plasma 15 min after rectal application of gel and the degree of protection in the six animals challenged with virus at this time point. Moreover, colorectal explants from non-SIV challenged tenofovir-treated macaques were resistant to infection ex vivo, whereas no inhibition was seen in explants from the small intestine. Tissue-specific inhibition of infection was associated with the intracellular detection of tenofovir. Intriguingly, in the absence of seroconversion, Gag-specific gamma interferon (IFN-gamma)-secreting T cells were detected in the blood of four of seven protected animals tested, with frequencies ranging from 144 spot forming cells (SFC)/10(6) PBMC to 261 spot forming cells (SFC)/10(6) PBMC. CONCLUSIONS These results indicate that colorectal pretreatment with ARV drugs, such as tenofovir, has potential as a clinically relevant strategy for the prevention of HIV transmission. We conclude that plasma tenofovir concentration measured 15 min after rectal administration may serve as a surrogate indicator of protective efficacy. This may prove to be useful in the design of clinical studies. Furthermore, in vitro intestinal explants served as a model for drug distribution in vivo and susceptibility to virus infection. The finding of T cell priming following exposure to virus in the absence of overt infection is provocative. Further studies would reveal if a combined modality microbicide and vaccination strategy is feasible by determining the full extent of local immune responses induced and their protective potential.
Collapse
Affiliation(s)
- Martin Cranage
- Centre for Infection, Division of Cellular & Molecular Medicine, St George's University of London, London, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Thompson JM, Nicholson MG, Whitmore AC, Zamora M, West A, Iwasaki A, Staats HF, Johnston RE. Nonmucosal alphavirus vaccination stimulates a mucosal inductive environment in the peripheral draining lymph node. THE JOURNAL OF IMMUNOLOGY 2008; 181:574-85. [PMID: 18566424 DOI: 10.4049/jimmunol.181.1.574] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The strongest mucosal immune responses are induced following mucosal Ag delivery and processing in the mucosal lymphoid tissues, and much is known regarding the immunological parameters which regulate immune induction via this pathway. Recently, experimental systems have been identified in which mucosal immune responses are induced following nonmucosal Ag delivery. One such system, footpad delivery of Venezuelan equine encephalitis virus replicon particles (VRP), led to the local production of IgA Abs directed against both expressed and codelivered Ags at multiple mucosal surfaces in mice. In contrast to the mucosal delivery pathway, little is known regarding the lymphoid structures and immunological components that are responsible for mucosal immune induction following nonmucosal delivery. In this study, we have used footpad delivery of VRP to probe the constituents of this alternative pathway for mucosal immune induction. Following nonmucosal VRP delivery, J chain-containing, polymeric IgA Abs were detected in the peripheral draining lymph node (DLN), at a time before IgA detection at mucosal surfaces. Further analysis of the VRP DLN revealed up-regulated alpha4beta7 integrin expression on DLN B cells, expression of mucosal addressin cell adhesion molecule 1 on the DLN high endothelia venules, and production of IL-6 and CC chemokines, all characteristics of mucosal lymphoid tissues. Taken together, these results implicate the peripheral DLN as an integral component of an alternative pathway for mucosal immune induction. A further understanding of the critical immunological and viral components of this pathway may significantly improve both our knowledge of viral-induced immunity and the efficacy of viral-based vaccines.
Collapse
Affiliation(s)
- Joseph M Thompson
- Department of Microbiology and Immunology, Carolina Vaccine Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Anton PA, Ibarrondo FJ, Boscardin WJ, Zhou Y, Schwartz EJ, Ng HL, Hausner MA, Shih R, Elliott J, Hultin PM, Hultin LE, Price C, Fuerst M, Adler A, Wong JT, Yang OO, Jamieson BD. Differential immunogenicity of vaccinia and HIV-1 components of a human recombinant vaccine in mucosal and blood compartments. Vaccine 2008; 26:4617-23. [PMID: 18621451 DOI: 10.1016/j.vaccine.2008.05.084] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2007] [Revised: 05/07/2008] [Accepted: 05/14/2008] [Indexed: 12/16/2022]
Abstract
Mucosal immune responses induced by HIV-1 vaccines are likely critical for prevention. We report a Phase 1 safety and immunogenicity trial in eight participants using the vaccinia-based TBC-3B vaccine given subcutaneously to determine the relationship between HIV-1 specific systemic and gastrointestinal mucosal responses. Across all subjects, detectable levels of blood vaccinia- and HIV-1-specific antibodies were elicited but none were seen mucosally. While the vaccinia component was immunogenic for CD8(+) T lymphocyte (CTL) responses in both blood and mucosa, it was greater in blood. The HIV-1 component of the vaccine was poorly immunogenic in both blood and mucosa. Although only eight volunteers were studied intensively, the discordance between mucosal and blood responses may highlight mechanisms contributing to recent vaccine failures.
Collapse
Affiliation(s)
- Peter A Anton
- Center for Prevention Research and the UCLA AIDS Institute, David Geffen School of Medicine at UCLA, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Lee AY, Chang SY, Kim JI, Cha HR, Jang M, Yamamoto M, Kweon MN. Dendritic cells in colonic patches and iliac lymph nodes are essential in mucosal IgA induction following intrarectal administrationvia CCR7 interaction. Eur J Immunol 2008; 38:1127-37. [DOI: 10.1002/eji.200737442] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
32
|
Chang SY, Cha HR, Uematsu S, Akira S, Igarashi O, Kiyono H, Kweon MN. Colonic patches direct the cross-talk between systemic compartments and large intestine independently of innate immunity. THE JOURNAL OF IMMUNOLOGY 2008; 180:1609-18. [PMID: 18209057 DOI: 10.4049/jimmunol.180.3.1609] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Although the mucosal and the systemic immune compartments are structurally and functionally independent, they engage in cross-talk under specific conditions. To investigate this cross-talk, we vaccinated mice with tetanus toxoid together with cholera toxin with s.c. priming followed by intrarectal (IR) boosting. Interestingly, higher numbers of Ag-specific IgA and IgG Ab-secreting cells (ASCs) were detected in the lamina propria of the large intestine of mice vaccinated s.c.-IR. Ag-specific ASCs from the colon migrated to SDF-1alpha/CXCL12 and mucosae-associated epithelial chemokine/CCL28, suggesting that CXCR4(+) and/or CCR10(+) IgA ASCs found in the large intestine after s.c.-IR are of systemic origin. In the colonic patches-null mice, IgA ASCs in the large intestine were completely depleted. Furthermore, the accumulation of IgA ASCs in the colonic patches by inhibition of their migration with FTY720 revealed that colonic patches are the IgA class-switching site after s.c.-IR. Most interestingly, s.c.-IR induced numbers of Ag-specific IgA ASCs in the large intestine of TLR2(-/-), TLR4(-/-), MyD88(-/-), and TRIF(-/-) mice that were comparable with those of wild-type mice. Taken together, our results suggest the possibility that cross-talk could occur between the large intestine and the systemic immune compartments via the colonic patches without the assistance of innate immunity.
Collapse
Affiliation(s)
- Sun-Young Chang
- Mucosal Immunology Section, Laboratory Science Division, International Vaccine Institute, Seoul, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
33
|
Manrique M, Micewicz E, Kozlowski PA, Wang SW, Aurora D, Wilson RL, Ghebremichael M, Mazzara G, Montefiori D, Carville A, Mansfield KG, Aldovini A. DNA-MVA vaccine protection after X4 SHIV challenge in macaques correlates with day-of-challenge antiviral CD4+ cell-mediated immunity levels and postchallenge preservation of CD4+ T cell memory. AIDS Res Hum Retroviruses 2008; 24:505-19. [PMID: 18373436 PMCID: PMC2677999 DOI: 10.1089/aid.2007.0191] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The ability of vaccines to induce immunity both in mucosal and systemic compartments may be required for prevention of HIV infection and AIDS. We compared DNA-MVA vaccination regimens adjuvanted by IL-12 DNA, administered intramuscularly and nasally or only nasally. Most of the vaccinated Rhesus macaques developed mucosal and systemic humoral and cell-mediated SHIV-specific immune responses. Stimulation of mucosal anti-Env IgA responses was limited. After rectal challenge with SHIV 89.6P, all vaccinated and naive animals became infected. However, most of the vaccinated animals showed significant control of viremia and protection from CD4(+) T cell loss and AIDS progression compared to the control animals. The levels of CD4(+) and CD8(+) T cell virus-specific responses measured on the day of challenge correlated with the level of viremia control observed later during the chronic infection. Postchallenge viremia levels inversely correlated with the preservation of SHIV-specific CD4(+)/IL-2(+) and CD8(+)/TNF-alpha(+) T cells but not with CD4(+)/IFN-gamma(+) T cells measured over time after challenge. We also found that during the early chronic infection SHIV vaccination permitted a more significant preservation of both naive and memory CD4(+) T cells compared to controls. In addition, we observed a more significant and prolonged preservation of memory CD4(+) T cells after SHIV vaccination and challenge than that observed after SIV vaccination and challenge. As the antiviral immunity stimulated by vaccination is present in the memory CD4(+) T cell subpopulations, its more limited targeting by SHIV compared to SIV may explain the better control of X4 tropic SHIV than R5 tropic SIVs by vaccination.
Collapse
Affiliation(s)
- Mariana Manrique
- Department of Medicine, Children's Hospital Boston, Department of Pediatrics, Harvard Medical School, Dana Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Complement-HIV interactions during all steps of viral pathogenesis. Vaccine 2007; 26:3046-54. [PMID: 18191309 DOI: 10.1016/j.vaccine.2007.12.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Revised: 11/27/2007] [Accepted: 12/01/2007] [Indexed: 01/24/2023]
Abstract
Upon crossing the endothelial barrier of the host, HIV initiates immediate responses of the immunity system. Among its components, the complement system is one of the first the first elements, which are activated to affect HIV propagation. Complement participates not only in the early phase of the immune response, but its effects can be observed continuously and also concern the induction and modification of the adaptive immune response. Here we discuss the role of complement in early and late stages of HIV pathogenesis and review the escape mechanisms, which protect HIV from destruction by the complement system.
Collapse
|
35
|
The emerging role of innate immunity in protection against HIV-1 infection. Vaccine 2007; 26:2997-3001. [PMID: 18180080 DOI: 10.1016/j.vaccine.2007.11.060] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Revised: 11/19/2007] [Accepted: 11/23/2007] [Indexed: 11/23/2022]
Abstract
Preventive immunization against HIV-1 infection requires a rapid immune response that does not rely exclusively on B or T cell memory. Innate immunity may fulfill this function as it may be activated directly at the time of HIV-1 transmission, inhibit early HIV-1 replication, stimulate adaptive immunity and enable specific antibodies followed by CD8(+) T cells to deal with the virus effectively. The three components of innate immunity - cellular, extracellular and intracellular - are presented, with an example given for each of these components; gammadelta T cells, CC chemokines and APOBEC3G. This brief account is presented to highlight the immuno-virological concept of coordinating activated innate immunity with adaptive antibody and T cell responses in preventive vaccination against HIV-1 infection.
Collapse
|
36
|
Berry N, Stebbings R, Brown S, Christian P, Thorstensson R, Ahmed RK, Davis L, Ferguson D, D'Arcy N, Elsley W, Hull R, Lines J, Wade-Evans A, Stott J, Almond N. Immunological responses and viral modulatory effects of vaccination with recombinant modified vaccinia virus Ankara (rMVA) expressing structural and regulatory transgenes of simian immunodeficiency virus (SIVmac32H/J5M). J Med Primatol 2007; 36:80-94. [PMID: 17493138 DOI: 10.1111/j.1600-0684.2007.00216.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND The immunogenicity and protective efficacy of recombinant modified vaccinia virus Ankara (rMVA) vectors expressing structural (gag/pol, env) and regulatory (tat, rev, nef) genes of SIVmac251/32H-J5 (rMVA-J5) were assessed. METHODS Immunization with rMVA constructs (2.5 x 10(7) IU) 32, 20 and 8 weeks pre-challenge was compared with 32 and 20 weeks but with a final boost 8 weeks pre-challenge with 2 x 10(6) fixed-inactivated HSC-F4 cells infected with SIVmac32H. Controls received rMVA vectors expressing an irrelevant transgene or were naïve challenge controls. All received 10 MID(50) SIVmac32H/J5 intravenously. RESULTS Vaccinates immunized with rMVA-J5 exhibited significant, albeit transient, control of peak primary viraemia despite inconsistent and variable immune responses elicted by vaccination. Humoral and cellular responses to Env were most consistent, with lower responses to Nef, Rev and Tat. Increasing titres of anti-vaccinia neutralizing antibodies reflected the number and dose of rMVA inoculations. CONCLUSIONS Improved combinations of viral vectors are required to elicit appropriate immune responses to control viral replication.
Collapse
Affiliation(s)
- N Berry
- Division of Retrovirology, National Institute for Biological Standards and Control, South Mimms, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Koopman G, Bogers WMJM, van Gils M, Koornstra W, Barnett S, Morein B, Lehner T, Heeney JL. Comparison of intranasal with targeted lymph node immunization using PR8-Flu ISCOM adjuvanted HIV antigens in macaques. J Med Virol 2007; 79:474-82. [PMID: 17385685 DOI: 10.1002/jmv.20860] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The rapidly spreading HIV epidemic requires a vaccine that elicits potent mucosal immunity to halt or slow transmission. Induction of these responses will depend on the use of appropriate adjuvants and targeting of the mucosal immune system. Previously, immune stimulating complexes (ISCOM) have shown great potency as adjuvant in the induction of mucosal responses in mice and systemic responses in non-human primates. In this study, HIV formulated in PR8-Flu ISCOM adjuvant was applied to immunize rhesus macaques against HIV; targeting the mucosa either via intranasal (IN) application or via targeted lymph node immunization (TLNI). While, strong systemic, HIV specific, cytokine, lymphoproliferative, and antibody responses were induced via the TLNI route, the IN application generated only low responses. Furthermore, all four animals immunized via TLNI developed vaginal IgA antibodies against gp120. In conclusion, in contrast to what has been demonstrated in mice, the IN application of PR8-Flu ISCOM did not induce strong immune responses in rhesus macaques unlike those immunized by the TLNI route.
Collapse
Affiliation(s)
- G Koopman
- Department of Virology, Biomedical Primate Research Centre, Rijswijk, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Hinkula J. Clarification of how HIV-1 DNA and protein immunizations may be better used to obtain HIV-1-specific mucosal and systemic immunity. Expert Rev Vaccines 2007; 6:203-12. [PMID: 17408370 DOI: 10.1586/14760584.6.2.203] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
More focused research on a mucosal HIV-1 vaccine is needed urgently. An increasing amount of collected data, using heterologous multimodality prime-booster strategies, suggest that an efficient and protective HIV-1 vaccine must generate broad, long-lasting HIV-specific CD8(+) cytotoxic T-lymphocyte and neutralizing antibody responses. In the mucosa, these responses would be most effective if a preferential stimulus of HIV-1 neutralizing secretory immunoglobulin A and G were obtained. The attractive property of mucosal immunization is the obtained mucosal and systemic immunity, whereas systemic immunization induces a more limited immunity, predominantly in systemic sites. These objectives will require new vaccine regimens, such as multiclade HIV DNA and protein vaccines (nef, tat, gag and env expressed in DNA plasmids) delivered onto mucosal surfaces with needle-free delivery methods, such as nasal drop, as well as oral and rectal/vaginal delivery, and should merit clinical trials.
Collapse
Affiliation(s)
- Jorma Hinkula
- Department of Molecular Virology, Linkoping University, Linkoping, Sweden.
| |
Collapse
|
39
|
Pido-Lopez J, Whittall T, Wang Y, Bergmeier LA, Babaahmady K, Singh M, Lehner T. Stimulation of cell surface CCR5 and CD40 molecules by their ligands or by HSP70 up-regulates APOBEC3G expression in CD4(+) T cells and dendritic cells. THE JOURNAL OF IMMUNOLOGY 2007; 178:1671-9. [PMID: 17237417 DOI: 10.4049/jimmunol.178.3.1671] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Apolipoprotein B mRNA-editing, enzyme-catalytic, polypeptide-like-3G (A3G) is an intracellular innate antiviral factor that deaminates retroviral cytidine to uridine. In an attempt to harness the anti-HIV effect of A3G, we searched for an agent that would up-regulate A3G and identify the receptors involved. Stimulation of cell surface CCR5 with CCL3 and CD40 with CD40L or both molecules with microbial 70-kDa heat shock protein (HSP)70 up-regulated A3G mRNA and protein expression in human CD4(+) T cells and monocyte-derived dendritic cells (DC), demonstrated by real-time PCR and Western blots, respectively. The specificity of CCR5 and CD40 stimulation was established by inhibition with TAK 779 and mAb to CD40, as well as using human embryonic kidney 293 cells transfected with CCR5 and CD40, respectively. A dose-dependent increase of A3G in CCL3- or HSP70-stimulated CD4(+) T cells was associated with inhibition in HIV-1 infectivity. To differentiate between the inhibitory effect of HSP70-induced CCR5 binding and that of A3G, GFP-labeled pseudovirions were used to infect human embryonic kidney 293 cells, which showed inhibition of pseudovirion uptake, consistent with A3G being responsible for the inhibitory effect. Ligation of cell surface CCR5 receptors by CCL3 or CD40 by CD40L activated the ERK1/2 and p38 MAPK signaling pathways that induced A3G mRNA expression and production of the A3G protein. These in vitro results were corroborated by in vivo studies in rhesus macaques in which A3G was significantly up-regulated following immunization with SIVgp120 and p27 linked to HSP70. This novel preventive approach may in addition to adaptive immunity use the intracellular innate antiviral effect of A3G.
Collapse
|
40
|
Baroncelli S, Negri DRM, Rovetto C, Belli R, Ciccozzi M, Catone S, Michelini Z, Borghi M, Leone P, Fagrouch Z, Heeney J, Cara A. Characterization of alpha-defensins plasma levels in Macaca fascicularis and correlations with virological parameters during SHIV89.6Pcy11 experimental infection. AIDS Res Hum Retroviruses 2007; 23:287-96. [PMID: 17331035 DOI: 10.1089/aid.2006.0142] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Alpha-defensins have been shown to inhibit HIV-1 replication in vitro and may contribute to the overall control of viral replication in vivo. In the present work, we quantitatively measured the levels of alpha-defensins in the plasma of healthy and experimentally SHIV-infected Macaca fascicularis (cynomolgus monkeys), an animal model of AIDS pathogenesis and vaccine development. Characterization of physiological plasma alpha-defensins levels was performed in 12 healthy monkeys following longitudinal analysis using an alpha-defensins ELISA kit currently validated for macaque use. Subsequently, alpha-defensins levels were quantitatively measured in 23 cynomolgus monkeys during titration protocols following both the mucosal and systemic routes of infection with the pathogenic SHIV89.6P(cy11). A significant increase in plasma alpha-defensins levels was consistently observed at early time points in all infected animals, regardless of the infection route. Moreover, a positive correlation was observed between viral replication and levels of alpha-defensins during the acute phase of infection. Interestingly, in the animals infected through the mucosal route, alpha-defensins levels remained significantly higher at later time points, up to 19 weeks from the infection, while in cynomolgus infected intravenously, alpha-defensins levels returned to baseline levels by 4 weeks from infection, suggesting that the different route of infection may differently activate the innate immune response.
Collapse
Affiliation(s)
- Silvia Baroncelli
- Department of Drug Research and Evaluation, National AIDS Center, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Babaahmady K, Oehlmann W, Singh M, Lehner T. Inhibition of human immunodeficiency virus type 1 infection of human CD4+ T cells by microbial HSP70 and the peptide epitope 407-426. J Virol 2007; 81:3354-60. [PMID: 17251296 PMCID: PMC1866028 DOI: 10.1128/jvi.02320-06] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) virions contain heat shock proteins (HSP), but these proteins have received limited attention. The objectives of this study were to establish if the microbial 70-kDa HSP exerts an inhibitory effect on the HIV-1 infection of human CD4+ T cells, to identify an inhibitory peptide epitope within the sequence of HSP70, and to evaluate the kinetic features of any inhibitory activity. The results of these studies suggest that microbial HSP70 exerts dose-dependent inhibition on CCR5 (R5) strains of clades B, C, and D of HIV-1 infecting human CD4+ T cells. The site of the HIV-1-inhibitory function was identified within the C-terminal peptide binding domain of HSP70, and the function is expressed by the peptide epitope comprising amino acids 407 to 426. The mechanism of inhibition of HIV-1 infectivity by HSP70 is blocking of the CCR5 coreceptors directly and indirectly by inducing CC chemokines and APOBEC3G. The inhibitory effect of HSP70, its C-terminal fragment, or peptide 407-426 may make HSP70 useful as a microbicidal agent. A potentiating noncognate inhibition of HIV-1 infectivity by combined treatment with HSP70 and monoclonal or polyclonal antibody to CCR5 was demonstrated. This novel strategy may be utilized in therapeutic immunization against HIV-1 infection.
Collapse
Affiliation(s)
- Kaboutar Babaahmady
- Guy's Hospital, Guy's Tower Floor 28, St. Thomas' Street, London SE1 9RT, England
| | | | | | | |
Collapse
|
42
|
Lori F, Weiner DB, Calarota SA, Kelly LM, Lisziewicz J. Cytokine-adjuvanted HIV-DNA vaccination strategies. ACTA ACUST UNITED AC 2006; 28:231-8. [PMID: 17053912 DOI: 10.1007/s00281-006-0047-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2006] [Accepted: 09/25/2006] [Indexed: 10/24/2022]
Abstract
This review highlights some of the most common cytokines currently being tested as adjuvants in HIV-1-DNA vaccine regimens. We discuss their use in both the prophylactic and therapeutic setting. Finally, we describe a novel dendritic cell-targeted vaccine candidate for HIV-1 treatment and prevention called DermaVir and explore the combination of the DermaVir technology with the cytokine adjuvants interleukin-7 and interleukin-15.
Collapse
Affiliation(s)
- Franco Lori
- Research Institute for Genetic and Human Therapy (RIGHT), Pavia, Italy.
| | | | | | | | | |
Collapse
|
43
|
Meddows-Taylor S, Donninger SL, Paximadis M, Schramm DB, Anthony FS, Gray GE, Kuhn L, Tiemessen CT. Reduced ability of newborns to produce CCL3 is associated with increased susceptibility to perinatal human immunodeficiency virus 1 transmission. J Gen Virol 2006; 87:2055-2065. [PMID: 16760409 PMCID: PMC2365885 DOI: 10.1099/vir.0.81709-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The role of CC chemokines in protection against mother-to-child human immunodeficiency virus type 1 (HIV-1) transmission is not well understood. It was observed that mitogen-induced production of CCL3 and CCL4 by cord-blood mononuclear cells was increased among infants born to HIV-positive compared with HIV-negative mothers, and that a deficiency in production of CCL3 was associated with increased susceptibility to intrapartum HIV-1 infection. CCL3-L1 gene copy number was associated with CCL3 production and with vertical transmission. However, at equivalent CCL3-L1 gene copy numbers, infants who acquired HIV-1 infection relative to their exposed but uninfected counterparts had lower production of CCL3, suggesting that they may harbour some non-functional copies of this gene. Nucleotide changes that may influence CCL3 production were evident in the CCL3 and CCL3-L1 genes upstream of exon 2. Our findings suggest that infants who display a deficient-production phenotype of CCL3 are at increased risk of acquiring HIV-1, indicating that this chemokine in particular plays an essential role in protective immunity.
Collapse
Affiliation(s)
- Stephen Meddows-Taylor
- AIDS Virus Research Unit, National Institute for Communicable Diseases, and Department of Virology, University of the Witwatersrand, Private Bag X4, Sandringham, Johannesburg 2131, South Africa
| | - Samantha L. Donninger
- AIDS Virus Research Unit, National Institute for Communicable Diseases, and Department of Virology, University of the Witwatersrand, Private Bag X4, Sandringham, Johannesburg 2131, South Africa
| | - Maria Paximadis
- AIDS Virus Research Unit, National Institute for Communicable Diseases, and Department of Virology, University of the Witwatersrand, Private Bag X4, Sandringham, Johannesburg 2131, South Africa
| | - Diana B. Schramm
- AIDS Virus Research Unit, National Institute for Communicable Diseases, and Department of Virology, University of the Witwatersrand, Private Bag X4, Sandringham, Johannesburg 2131, South Africa
| | - Fiona S. Anthony
- AIDS Virus Research Unit, National Institute for Communicable Diseases, and Department of Virology, University of the Witwatersrand, Private Bag X4, Sandringham, Johannesburg 2131, South Africa
| | - Glenda E. Gray
- Perinatal HIV Research Unit, Chris Hani Baragwanath Hospital, Soweto, South Africa
| | - Louise Kuhn
- Gertrude H. Sergievsky Centre, College of Physicians and Surgeons, and Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, USA
| | - Caroline T. Tiemessen
- AIDS Virus Research Unit, National Institute for Communicable Diseases, and Department of Virology, University of the Witwatersrand, Private Bag X4, Sandringham, Johannesburg 2131, South Africa
| |
Collapse
|
44
|
Tachedjian M, Yu M, Lew AM, Rockman S, Boyle JS, Andrew ME, Wang L. Molecular cloning and characterization of pig, cow and sheep MAdCAM-1 cDNA and the demonstration of cross-reactive epitopes amongst mammalian homologues. ACTA ACUST UNITED AC 2006; 67:419-26. [PMID: 16671951 DOI: 10.1111/j.1399-0039.2006.00587.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Full-length cDNA clones for the pig, cow and sheep mucosal addressin cellular adhesion molecule (MAdCAM)-1 homologues were isolated from Peyer's patches by a combination of reverse transcription (RT)-polymerase chain reaction and 5' and 3' RACE strategies. Degenerate primers based on conserved amino acid (aa) sequences within the N-terminal immunoglobulin (Ig)-like domains of the human and rodent MAdCAM-1 molecules were used for initial sequencing of the Ig-like domains. MAdCAM-1 transcripts of 1425 bp, 1525 bp and 1510 bp obtained for the pig, cow and sheep contained an open-reading frame for proteins of 390, 424 and 418 aa, respectively. The pig and ruminant MAdCAM-1 had two N-terminal Ig-like domains, a mucin-like region and a third Ig-like domain found in rodent but not human MAdCAM-1. Antibodies raised against bacterially expressed N-terminal Ig-like domains of pig, human and sheep MAdCAM-1 demonstrated the existence of cross-reactive epitopes, raising the possibility of producing monoclonal antibodies which can be used as multi-species MAdCAM-1-targeting reagent for the development of mucosal vaccines.
Collapse
Affiliation(s)
- M Tachedjian
- Cooperative Research Center for Vaccine Technology, CSIRO Livestock Industries, Australian Animal Health Laboratory (AAHL), Private Bag 24, Geelong, Victoria 3220, Australia.
| | | | | | | | | | | | | |
Collapse
|
45
|
Preclinical primate studies of HIV-1-envelope-based vaccines: towards human clinical trials. Curr Opin HIV AIDS 2006; 1:336-43. [DOI: 10.1097/01.coh.0000232350.61650.f0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
46
|
Abstract
Vertical exposure to HIV occurs at a time when functional capacity of the infant's immune system is attenuated through immaturity. Immune response capability is rooted in host genetic makeup, and the broad and fine specificity of innate and adaptive immune responses, respectively, shape the outcomes of HIV encounter in some instances and imprint viral changes through selective immune pressure in others. Findings from recent studies have profound implications for understanding immune pathogenesis of pediatric HIV infection and, in particular, highlight the importance of host genetics of both mother and child in determining whether an exposed child acquires HIV infection or not and, if infected, the rate of disease progression. This review focuses on the key host molecules, the CC chemokine CCL3 and HLA, which have taken center stage in these new developments.
Collapse
Affiliation(s)
- CAROLINE T. TIEMESSEN
- C.T. Tiemessen, AIDS Virus Research Unit, National Institute for Communicable Diseases and University of the Witwatersand, Private Bag X4, Sandringham, 2131, South Africa. Phone: (+27-11) 386-6366/6400; Fax: (+27-11) 386-6465 E-mail:
| | - LOUISE KUHN
- L. Kuhn, Gertrude H. Sergievsky Centre, College of Physicians and Surgeons; and Department of Epidemiology, Mailman School of Public Health, Columbia University, 630 West 168 Street, New York, NY 10032. Phone: (212) 305-2398; Fax: (212) 305-2426 E-mail;
| |
Collapse
|
47
|
Abstract
The unexpected encounter, 10 years ago, between human immunodeficiency virus (HIV) and the chemokine system has dramatically advanced our understanding of the pathogenesis of AIDS, opening new perspectives for the development of effective prophylactic and therapeutic measures. To initiate infection, the HIV-1 external envelope glycoprotein, gp120, sequentially interacts with two cellular receptors, CD4 and a chemokine receptor (or coreceptor) like CCR5 or CXCR4. This peculiar two-stage receptor-interaction strategy allows gp120 to maintain the highly conserved coreceptor-binding site in a cryptic conformation, protected from neutralizing antibodies. The differential use of CCR5 and CXCR4 defines three HIV-1 biological variants (R5, R5X4, X4), which vary in their prevalence during the disease course. The evolutionary choice of HIV-1 to exploit chemokine receptors as cellular entry gateways has turned their chemokine ligands into endogenous antiviral factors that variably modulate viral transmission, disease progression and vaccine responses. Likewise, the natural history of HIV-1 infection is influenced by specific polymorphisms of chemokine and chemokine-receptor genes. The imminent clinical availability of coreceptor-targeted viral entry inhibitors raises new hope for bridging the gap towards a definitive cure of HIV infection.
Collapse
Affiliation(s)
- Paolo Lusso
- Unit of Human Virology, San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
48
|
Shimizu Y, Okoba M, Yamazaki N, Goto Y, Miura T, Hayami M, Hoshino H, Haga T. Construction and in vitro characterization of a chimeric simian and human immunodeficiency virus with the RANTES gene. Microbes Infect 2006; 8:105-13. [PMID: 16203167 DOI: 10.1016/j.micinf.2005.06.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2005] [Revised: 05/31/2005] [Accepted: 06/01/2005] [Indexed: 10/25/2022]
Abstract
Chimeric simian-human immunodeficiency virus (SHIV) containing the env gene of HIV-1 infects macaque monkeys and provides basic information that is useful for the development of HIV-1 vaccines. Regulated-on-activation-normal-T-cell-expressed-and-secreted (RANTES), a CC-chemokine, enhances antigen-specific T helper type-1 responses against HIV-1. With the final goal of testing the adjuvant effects of RANTES in SHIV-macaque models, we constructed a SHIV having the RANTES gene (SHIV-RANTES) and characterized its properties in vitro. SHIV-RANTES replicated both in human and monkey T cell lines. Along with SHIV-RANTES replication, RANTES was detected in the supernatant of human and monkey cell cultures, at maximal levels of 98.5 and 4.1 ng/ml, respectively. A flow cytometric analysis showed that the expressed RANTES down-modulated CC-chemokine receptor 5 (CCR5) on PM1 cells, which was restored by adding anti-RANTES antibody. UV-irradiated culture supernatants from the SHIV-RANTES-infected cells suppressed replication of CCR5-tropic HIV-1 BaL in PM-1 cells. Differentiating real-time RT-PCR showed that pre-infection of SHIV-RANTES in C8166 cells expressing CCR5 suppressed the replication of HIV-1 BaL. Biological activity of the expressed RANTES and the inserted RANTES gene in SHIV-RANTES remained stable after 10 passages. These results suggest that SHIV-RANTES is worth testing in macaque models.
Collapse
Affiliation(s)
- Yuya Shimizu
- Department of Veterinary Microbiology, University of Miyazaki, 1-1 Kibanadai Nishi, Miyazaki 889-2192, Japan
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Ami Y, Izumi Y, Matsuo K, Someya K, Kanekiyo M, Horibata S, Yoshino N, Sakai K, Shinohara K, Matsumoto S, Yamada T, Yamazaki S, Yamamoto N, Honda M. Priming-boosting vaccination with recombinant Mycobacterium bovis bacillus Calmette-Guérin and a nonreplicating vaccinia virus recombinant leads to long-lasting and effective immunity. J Virol 2005; 79:12871-9. [PMID: 16188989 PMCID: PMC1235843 DOI: 10.1128/jvi.79.20.12871-12879.2005] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Virus-specific T-cell responses can limit immunodeficiency virus type 1 (HIV-1) transmission and prevent disease progression and so could serve as the basis for an affordable, safe, and effective vaccine in humans. To assess their potential for a vaccine, we used Mycobacterium bovis bacillus Calmette-Guérin (BCG)-Tokyo and a replication-deficient vaccinia virus strain (DIs) as vectors to express full-length gag from simian immunodeficiency viruses (SIVs) (rBCG-SIVgag and rDIsSIVgag). Cynomolgus macaques were vaccinated with either rBCG-SIVgag dermally as a single modality or in combination with rDIsSIVgag intravenously. When cynomologus macaques were primed with rBCG-SIVgag and then boosted with rDIsSIVgag, high levels of gamma interferon (IFN-gamma) spot-forming cells specific for SIV Gag were induced. This combination regimen elicited effective protective immunity against mucosal challenge with pathogenic simian-human immunodeficiency virus for the 1 year the macaques were under observation. Antigen-specific intracellular IFN-gamma activity was similarly induced in each of the macaques with the priming-boosting regimen. Other groups receiving the opposite combination or the single-modality vaccines were not effectively protected. These results suggest that a recombinant M. bovis BCG-based vector may have potential as an HIV/AIDS vaccine when administered in combination with a replication-deficient vaccinia virus DIs vector in a priming-boosting strategy.
Collapse
Affiliation(s)
- Yasushi Ami
- Division of Experimental Animal Research, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Miller CJ, Abel K. Immune mechanisms associated with protection from vaginal SIV challenge in rhesus monkeys infected with virulence-attenuated SHIV 89.6. J Med Primatol 2005; 34:271-81. [PMID: 16128922 PMCID: PMC11934050 DOI: 10.1111/j.1600-0684.2005.00125.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Although live-attenuated human immunodeficiency virus-1 (HIV) vaccines may never be used clinically, these vaccines have provided the most durable protection from intravenous (IV) challenge in the simian immunodeficiency virus (SIV)/rhesus macaque model. Systemic infection with virulence attenuated-simian-human immunodeficiency virus (SHIV) 89.6 provides protection against vaginal SIV challenge. This paper reviews the findings related to the innate and adaptive immune responses and the role of inflammation associated with protection in the SHIV 89.6/SIVmac239 model. By an as yet undefined mechanism, most monkeys vaccinated with live-attenuated SHIV 89.6 mounted effective anti-viral CD8+ T cell responses while avoiding the self-destructive inflammatory cycle found in the lymphoid tissues of unprotected and unvaccinated monkeys.
Collapse
Affiliation(s)
- Christopher J. Miller
- California National Primate Research Center
- Center for Comparative Medicine
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine
- Division of Infectious Diseases, School of Medicine, University of California, Davis, CA, USA
| | - Kristina Abel
- California National Primate Research Center
- Center for Comparative Medicine
| |
Collapse
|