1
|
Kandoi S, Martinez C, Chen KX, Mehine M, Reddy LVK, Mansfield BC, Duncan JL, Lamba DA. Disease modeling and pharmacological rescue of autosomal dominant retinitis pigmentosa associated with RHO copy number variation. eLife 2024; 12:RP90575. [PMID: 38661530 PMCID: PMC11045220 DOI: 10.7554/elife.90575] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024] Open
Abstract
Retinitis pigmentosa (RP), a heterogenous group of inherited retinal disorder, causes slow progressive vision loss with no effective treatments available. Mutations in the rhodopsin gene (RHO) account for ~25% cases of autosomal dominant RP (adRP). In this study, we describe the disease characteristics of the first-ever reported mono-allelic copy number variation (CNV) in RHO as a novel cause of adRP. We (a) show advanced retinal degeneration in a male patient (68 years of age) harboring four transcriptionally active intact copies of rhodopsin, (b) recapitulated the clinical phenotypes using retinal organoids, and (c) assessed the utilization of a small molecule, Photoregulin3 (PR3), as a clinically viable strategy to target and modify disease progression in RP patients associated with RHO-CNV. Patient retinal organoids showed photoreceptors dysgenesis, with rod photoreceptors displaying stunted outer segments with occasional elongated cilia-like projections (microscopy); increased RHO mRNA expression (quantitative real-time PCR [qRT-PCR] and bulk RNA sequencing); and elevated levels and mislocalization of rhodopsin protein (RHO) within the cell body of rod photoreceptors (western blotting and immunohistochemistry) over the extended (300 days) culture time period when compared against control organoids. Lastly, we utilized PR3 to target NR2E3, an upstream regulator of RHO, to alter RHO expression and observed a partial rescue of RHO protein localization from the cell body to the inner/outer segments of rod photoreceptors in patient organoids. These results provide a proof-of-principle for personalized medicine and suggest that RHO expression requires precise control. Taken together, this study supports the clinical data indicating that RHO-CNV associated adRPdevelops as a result of protein overexpression, thereby overloading the photoreceptor post-translational modification machinery.
Collapse
Affiliation(s)
- Sangeetha Kandoi
- Department of Ophthalmology, University of California, San FranciscoSan FranciscoUnited States
- Eli and Edythe Broad Center of Regeneration Medicine & Stem Cell Research University of California, San FranciscoSan FranciscoUnited States
| | - Cassandra Martinez
- Department of Ophthalmology, University of California, San FranciscoSan FranciscoUnited States
- Eli and Edythe Broad Center of Regeneration Medicine & Stem Cell Research University of California, San FranciscoSan FranciscoUnited States
| | - Kevin Xu Chen
- Eli and Edythe Broad Center of Regeneration Medicine & Stem Cell Research University of California, San FranciscoSan FranciscoUnited States
| | | | - L Vinod K Reddy
- Department of Ophthalmology, University of California, San FranciscoSan FranciscoUnited States
- Eli and Edythe Broad Center of Regeneration Medicine & Stem Cell Research University of California, San FranciscoSan FranciscoUnited States
| | - Brian C Mansfield
- Section on Cellular Differentiation, Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| | - Jacque L Duncan
- Department of Ophthalmology, University of California, San FranciscoSan FranciscoUnited States
| | - Deepak A Lamba
- Department of Ophthalmology, University of California, San FranciscoSan FranciscoUnited States
- Eli and Edythe Broad Center of Regeneration Medicine & Stem Cell Research University of California, San FranciscoSan FranciscoUnited States
- Immunology and Regenerative Medicine, GenentechSouth San FranciscoUnited States
| |
Collapse
|
2
|
Du X, Butler AG, Chen HY. Cell-cell interaction in the pathogenesis of inherited retinal diseases. Front Cell Dev Biol 2024; 12:1332944. [PMID: 38500685 PMCID: PMC10944940 DOI: 10.3389/fcell.2024.1332944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/06/2024] [Indexed: 03/20/2024] Open
Abstract
The retina is part of the central nervous system specialized for vision. Inherited retinal diseases (IRD) are a group of clinically and genetically heterogenous disorders that lead to progressive vision impairment or blindness. Although each disorder is rare, IRD accumulatively cause blindness in up to 5.5 million individuals worldwide. Currently, the pathophysiological mechanisms of IRD are not fully understood and there are limited treatment options available. Most IRD are caused by degeneration of light-sensitive photoreceptors. Genetic mutations that abrogate the structure and/or function of photoreceptors lead to visual impairment followed by blindness caused by loss of photoreceptors. In healthy retina, photoreceptors structurally and functionally interact with retinal pigment epithelium (RPE) and Müller glia (MG) to maintain retinal homeostasis. Multiple IRD with photoreceptor degeneration as a major phenotype are caused by mutations of RPE- and/or MG-associated genes. Recent studies also reveal compromised MG and RPE caused by mutations in ubiquitously expressed ciliary genes. Therefore, photoreceptor degeneration could be a direct consequence of gene mutations and/or could be secondary to the dysfunction of their interaction partners in the retina. This review summarizes the mechanisms of photoreceptor-RPE/MG interaction in supporting retinal functions and discusses how the disruption of these processes could lead to photoreceptor degeneration, with an aim to provide a unique perspective of IRD pathogenesis and treatment paradigm. We will first describe the biology of retina and IRD and then discuss the interaction between photoreceptors and MG/RPE as well as their implications in disease pathogenesis. Finally, we will summarize the recent advances in IRD therapeutics targeting MG and/or RPE.
Collapse
Affiliation(s)
| | | | - Holly Y. Chen
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
3
|
Sechrest ER, Ma X, Cahill ME, Barbera RJ, Wang Y, Deng WT. Structural and functional rescue of cones carrying the most common cone opsin C203R missense mutation. JCI Insight 2024; 9:e172834. [PMID: 38060327 PMCID: PMC10906232 DOI: 10.1172/jci.insight.172834] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 12/05/2023] [Indexed: 01/24/2024] Open
Abstract
An arginine to cysteine substitution at amino acid position 203 (C203R) is the most common missense mutation in human cone opsin. Linked to color blindness and blue cone monochromacy (BCM), C203 is involved in a crucial disulfide bond required for proper folding. It has previously been postulated that expression of mutant C203R cone opsin exerts a toxic effect on cone photoreceptors, similar to some well-characterized missense mutations in rhodopsin that lead to protein misfolding. In this study, we generated and characterized a BCM mouse model carrying the equivalent C203R mutation (Opn1mwC198R Opn1sw-/-) to investigate the disease mechanism and develop a gene therapy approach for this disorder. Untreated Opn1mwC198R Opn1sw-/- cones phenocopied affected cones in human patients with the equivalent mutation, exhibiting shortened or absent cone outer segments and loss of function. We determined that gene augmentation targeting cones specifically yielded robust rescue of cone function and structure when Opn1mwC198R Opn1sw-/- mice were treated at early ages. Importantly, treated cones displayed elaborated outer segments and replenished expression of crucial cone phototransduction proteins. Interestingly, we were unable to detect OPN1MWC198R mutant opsin at any age. We believe this is the first proof-of-concept study exploring the efficacy of gene therapy in BCM associated with a C203R mutation.
Collapse
Affiliation(s)
- Emily R. Sechrest
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, West Virginia, USA
| | - Xiaojie Ma
- Department of Ophthalmology, University of Florida, Gainesville, Florida, USA
| | - Marion E. Cahill
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, West Virginia, USA
- Department of Biology and
| | - Robert J. Barbera
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, West Virginia, USA
| | - Yixiao Wang
- Department of Ophthalmology, University of Florida, Gainesville, Florida, USA
| | - Wen-Tao Deng
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, West Virginia, USA
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, USA
| |
Collapse
|
4
|
Burnight ER, Wiley LA, Mullin NK, Adur MK, Lang MJ, Cranston CM, Jiao C, Russell SR, Sohn EH, Han IC, Ross JW, Stone EM, Mullins RF, Tucker BA. CRISPRi-Mediated Treatment of Dominant Rhodopsin-Associated Retinitis Pigmentosa. CRISPR J 2023; 6:502-513. [PMID: 38108516 PMCID: PMC11304754 DOI: 10.1089/crispr.2023.0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/30/2023] [Indexed: 12/19/2023] Open
Abstract
Rhodopsin (RHO) mutations such as Pro23His are the leading cause of dominantly inherited retinitis pigmentosa in North America. As with other dominant retinal dystrophies, these mutations lead to production of a toxic protein product, and treatment will require knockdown of the mutant allele. The purpose of this study was to develop a CRISPR-Cas9-mediated transcriptional repression strategy using catalytically inactive Staphylococcus aureus Cas9 (dCas9) fused to the Krüppel-associated box (KRAB) transcriptional repressor domain. Using a reporter construct carrying green fluorescent protein (GFP) cloned downstream of the RHO promoter fragment (nucleotides -1403 to +73), we demonstrate a ∼74-84% reduction in RHO promoter activity in RHOpCRISPRi-treated versus plasmid-only controls. After subretinal transduction of human retinal explants and transgenic Pro23His mutant pigs, significant knockdown of rhodopsin protein was achieved. Suppression of mutant transgene in vivo was associated with a reduction in endoplasmic reticulum (ER) stress and apoptosis markers and preservation of photoreceptor cell layer thickness.
Collapse
Affiliation(s)
- Erin R. Burnight
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Luke A. Wiley
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Nathaniel K. Mullin
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Malavika K. Adur
- Department of Animal Science, Iowa State University, Ames, Iowa, USA
| | - Mallory J. Lang
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Cathryn M. Cranston
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Chunhua Jiao
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Stephen R. Russell
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Elliot H. Sohn
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Ian C. Han
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Jason W. Ross
- Department of Animal Science, Iowa State University, Ames, Iowa, USA
| | - Edwin M. Stone
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Robert F. Mullins
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Budd A. Tucker
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
5
|
Kandoi S, Martinez C, Chen KX, Reddy LVK, Mehine M, Mansfield BC, Duncan JL, Lamba DA. Disease modeling and pharmacological rescue of autosomal dominant Retinitis Pigmentosa associated with RHO copy number variation. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.02.27.23286248. [PMID: 36909455 PMCID: PMC10002783 DOI: 10.1101/2023.02.27.23286248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Retinitis pigmentosa (RP), a heterogenous group of inherited retinal disorder causes slow progressive vision loss with no effective treatments available. Mutations in the rhodopsin gene (RHO), account for ~25% cases of autosomal dominant RP (adRP). In this study, we describe the disease characteristics of the first ever reported mono-allelic copy number variation (CNV) in RHO as a novel cause of adRP. We (1) show advanced retinal degeneration in a male patient (60-70 year old) harboring four transcriptionally active intact copies of rhodopsin, (2) recapitulated the clinical phenotypes using retinal organoids, and (3) assessed the utilization of a small molecule, Photoregulin3 (PR3), as a clinically viable strategy to target and modify disease progression in RP patients associated with RHO-CNV. Patient retinal organoids showed photoreceptors dysgenesis, with rod photoreceptors displaying stunted outer segments with occasional elongated cilia-like projections (microscopy); increased RHO mRNA expression (qRT-PCR and bulk RNA-sequencing); and elevated levels and mislocalization of rhodopsin protein (RHO) within the cell body of rod photoreceptors (western blotting and immunohistochemistry) over the extended (300-days) culture time period when compared against control organoids. Lastly, we utilized PR3 to target NR2E3, an upstream regulator of RHO, to alter RHO expression and observed a partial rescue of RHO protein localization from the cell body to the inner/outer segments of rod photoreceptors in patient organoids. These results provide a proof-of-principle for personalized medicine and suggest that RHO expression requires precise control. Taken together, this study supports the clinical data indicating that adRP due to RHO-CNV develops due protein overexpression overloading the photoreceptor post-translational modification machinery.
Collapse
Affiliation(s)
- Sangeetha Kandoi
- Department of Ophthalmology, University of California San Francisco, CA, USA
- Eli and Edythe Broad Center of Regeneration Medicine & Stem Cell Research, University of California San Francisco, CA, USA
| | - Cassandra Martinez
- Department of Ophthalmology, University of California San Francisco, CA, USA
- Eli and Edythe Broad Center of Regeneration Medicine & Stem Cell Research, University of California San Francisco, CA, USA
| | - Kevin Xu Chen
- Eli and Edythe Broad Center of Regeneration Medicine & Stem Cell Research, University of California San Francisco, CA, USA
| | - L Vinod K. Reddy
- Department of Ophthalmology, University of California San Francisco, CA, USA
- Eli and Edythe Broad Center of Regeneration Medicine & Stem Cell Research, University of California San Francisco, CA, USA
| | | | - Brian C. Mansfield
- Section on Cellular Differentiation, Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD USA
| | - Jacque L. Duncan
- Department of Ophthalmology, University of California San Francisco, CA, USA
| | - Deepak A. Lamba
- Department of Ophthalmology, University of California San Francisco, CA, USA
- Eli and Edythe Broad Center of Regeneration Medicine & Stem Cell Research, University of California San Francisco, CA, USA
| |
Collapse
|
6
|
Richard I. Basic notions about gene therapy from the nucleic acid perspective and applications in a pediatric disease: Duchenne muscular dystrophy. Arch Pediatr 2023; 30:8S2-8S11. [PMID: 38043979 DOI: 10.1016/s0929-693x(23)00221-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Gene therapy involves the introduction of genetic material into cells as a therapeutic molecule to cure a disease. Through the transfer of specific nucleic acid to the target tissue, gene expression can be downregulated, augmented, or corrected thanks to the nucleic acid sequence as a support of gene expression. This is achieved through molecular interactions according to the sequence arrangement or the secondary structure of the molecules or through their catalytic properties. Over the past two decades, the rapid advances of knowledge and technologies in gene therapy have led to the development of different strategies and to the extension of its use to numerous indications, including certain cancers. Major success has been achieved in clinical trials and the field of gene therapy is booming. Several gene therapy products are now on the market in Europe, the United States, and China. In this review, we cover the basic principles of gene therapy and the characteristics of the main vectors used to transfer genetic material into the cell. As an example of applications, we address the various strategies applied to a rare pediatric muscle disease: Duchenne muscular dystrophy. © 2023 Published by Elsevier Masson SAS on behalf of French Society of Pediatrics.
Collapse
Affiliation(s)
- Isabelle Richard
- Genethon, 91000, Evry, France; Université Paris-Saclay, Univ. Evry, Inserm, Integrare research unit UMR_S951, 91000, Evry-Courcouronnes, France; Atamyo Therapeutics, 1, bis rue de l'internationale, Evry, France.
| |
Collapse
|
7
|
Hashida N, Nishida K. Recent advances and future prospects: current status and challenges of the intraocular injection of drugs for vitreoretinal diseases. Adv Drug Deliv Rev 2023; 198:114870. [PMID: 37172783 DOI: 10.1016/j.addr.2023.114870] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 04/07/2023] [Accepted: 05/07/2023] [Indexed: 05/15/2023]
Abstract
Effective drug therapy for vitreoretinal disease is a major challenge in the field of ophthalmology; various protective systems, including anatomical and physiological barriers, complicate drug delivery to precise targets. However, as the eye is a closed cavity, it is an ideal target for local administration. Various types of drug delivery systems have been investigated that take advantage of this aspect of the eye, enhancing ocular permeability and optimizing local drug concentrations. Many drugs, mainly anti-VEGF drugs, have been evaluated in clinical trials and have provided clinical benefit to many patients. In the near future, innovative drug delivery systems will be developed to avoid frequent intravitreal administration of drugs and maintain effective drug concentrations for a long period of time. Here, we review the published literature on various drugs and administration routes and current clinical applications. Recent advances in drug delivery systems are discussed along with future prospects.
Collapse
Affiliation(s)
- Noriyasu Hashida
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Osaka, Japan.
| | - Kohji Nishida
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Osaka, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
8
|
Network biology analysis of P23H rhodopsin interactome identifies protein and mRNA quality control mechanisms. Sci Rep 2022; 12:17405. [PMID: 36258031 PMCID: PMC9579138 DOI: 10.1038/s41598-022-22316-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/12/2022] [Indexed: 02/05/2023] Open
Abstract
Rhodopsin is essential for phototransduction, and many rhodopsin mutations cause heritable retinal degenerations. The P23H rhodopsin variant generates a misfolded rhodopsin protein that photoreceptors quickly target for degradation by mechanisms that are incompletely understood. To gain insight into how P23H rhodopsin is removed from rods, we used mass spectrometry to identify protein interaction partners of P23H rhodopsin immunopurified from RhoP23H/P23H mice and compared them with protein interaction partners of wild-type rhodopsin from Rho+/+ mice. We identified 286 proteins associated with P23H rhodopsin and 276 proteins associated with wild-type rhodopsin. 113 proteins were shared between wild-type and mutant rhodopsin protein interactomes. In the P23H rhodopsin protein interactome, we saw loss of phototransduction, retinal cycle, and rhodopsin protein trafficking proteins but gain of ubiquitin-related proteins when compared with the wild-type rhodopsin protein interactome. In the P23H rhodopsin protein interactome, we saw enrichment of gene ontology terms related to ER-associated protein degradation, ER stress, and translation. Protein-protein interaction network analysis revealed that translational and ribosomal quality control proteins were significant regulators in the P23H rhodopsin protein interactome. The protein partners identified in our study may provide new insights into how photoreceptors recognize and clear mutant rhodopsin, offering possible novel targets involved in retinal degeneration pathogenesis.
Collapse
|
9
|
Martinez-Galan JR, Garcia-Belando M, Cabanes-Sanchis JJ, Caminos E. Pre- and postsynaptic alterations in the visual cortex of the P23H-1 retinal degeneration rat model. Front Neuroanat 2022; 16:1000085. [PMID: 36312296 PMCID: PMC9608761 DOI: 10.3389/fnana.2022.1000085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/29/2022] [Indexed: 11/24/2022] Open
Abstract
P23H rats express a variant of rhodopsin with a mutation that leads to loss of visual function with similar properties as human autosomal dominant retinitis pigmentosa (RP). The advances made in different therapeutic strategies to recover visual system functionality reveal the need to know whether progressive retina degeneration affects the visual cortex structure. Here we are interested in detecting cortical alterations in young rats with moderate retinal degeneration, and in adulthood when degeneration is severer. For this purpose, we studied the synaptic architecture of the primary visual cortex (V1) by analyzing a series of pre- and postsynaptic elements related to excitatory glutamatergic transmission. Visual cortices from control Sprague Dawley (SD) and P23H rats at postnatal days 30 (P30) and P230 were used to evaluate the distribution of vesicular glutamate transporters VGLUT1 and VGLUT2 by immunofluorescence, and to analyze the expression of postsynaptic density protein-95 (PSD-95) by Western blot. The amount and dendritic spine distribution along the apical shafts of the layer V pyramidal neurons, stained by the Golgi-Cox method, were also studied. We observed that at P30, RP does not significantly affect any of the studied markers and structures, which suggests in young P23H rats that visual cortex connectivity seems preserved. However, in adult rats, although VGLUT1 immunoreactivity and PSD-95 expression were similar between both groups, a narrower and stronger VGLUT2-immunoreactive band in layer IV was observed in the P23H rats. Furthermore, RP significantly decreased the density of dendritic spines and altered their distribution along the apical shafts of pyramidal neurons, which remained in a more immature state compared to the P230 SD rats. Our results indicate that the most notable changes in the visual cortex structure take place after a prolonged retinal degeneration period that affected the presynaptic thalamocortical VGLUT2-immunoreactive terminals and postsynaptic dendritic spines from layer V pyramidal cells. Although plasticity is more limited at these ages, future studies will determine how reversible these changes are and to what extent they can affect the visual system's functionality.
Collapse
Affiliation(s)
- Juan R. Martinez-Galan
- Facultad de Medicina, Instituto de Investigación en Discapacidades Neurológicas, Universidad de Castilla-La Mancha, Albacete, Spain
| | | | | | | |
Collapse
|
10
|
Robichaux MA, Nguyen V, Chan F, Kailasam L, He F, Wilson JH, Wensel TG. Subcellular localization of mutant P23H rhodopsin in an RFP fusion knock-in mouse model of retinitis pigmentosa. Dis Model Mech 2022; 15:274688. [PMID: 35275162 PMCID: PMC9092655 DOI: 10.1242/dmm.049336] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 02/28/2022] [Indexed: 12/15/2022] Open
Abstract
The P23H mutation in rhodopsin (Rho), the rod visual pigment, is the most common allele associated with autosomal-dominant retinitis pigmentosa (adRP). The fate of misfolded mutant Rho in rod photoreceptors has yet to be elucidated. We generated a new mouse model, in which the P23H-Rho mutant allele is fused to the fluorescent protein Tag-RFP-T (P23HhRhoRFP). In heterozygotes, outer segments formed, and wild-type (WT) rhodopsin was properly localized, but mutant P23H-Rho protein was mislocalized in the inner segments. Heterozygotes exhibited slowly progressing retinal degeneration. Mislocalized P23HhRhoRFP was contained in greatly expanded endoplasmic reticulum (ER) membranes. Quantification of mRNA for markers of ER stress and the unfolded protein response revealed little or no increases. mRNA levels for both the mutant human rhodopsin allele and the WT mouse rhodopsin were reduced, but protein levels revealed selective degradation of the mutant protein. These results suggest that the mutant rods undergo an adaptative process that prolongs survival despite unfolded protein accumulation in the ER. The P23H-Rho-RFP mouse may represent a useful tool for the future study of the pathology and treatment of P23H-Rho and adRP. This article has an associated First Person interview with the first author of the paper. Summary: A mouse line with a knock-in of the human rhodopsin gene altered to contain the P23H mutation and a red fluorescent protein fusion provides a new model for autosomal-dominant retinitis pigmentosa.
Collapse
Affiliation(s)
- Michael A Robichaux
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA.,Departments of Ophthalmology and Biochemistry, West Virginia University, 108 Biomedical Road, Morgantown, WV 26506, USA
| | - Vy Nguyen
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Fung Chan
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Lavanya Kailasam
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Feng He
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - John H Wilson
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Theodore G Wensel
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| |
Collapse
|
11
|
Liu W, Liu S, Li P, Yao K. Retinitis Pigmentosa: Progress in Molecular Pathology and Biotherapeutical Strategies. Int J Mol Sci 2022; 23:ijms23094883. [PMID: 35563274 PMCID: PMC9101511 DOI: 10.3390/ijms23094883] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 12/13/2022] Open
Abstract
Retinitis pigmentosa (RP) is genetically heterogeneous retinopathy caused by photoreceptor cell death and retinal pigment epithelial atrophy that eventually results in blindness in bilateral eyes. Various photoreceptor cell death types and pathological phenotypic changes that have been disclosed in RP demand in-depth research of its pathogenic mechanism that may account for inter-patient heterogeneous responses to mainstream drug treatment. As the primary method for studying the genetic characteristics of RP, molecular biology has been widely used in disease diagnosis and clinical trials. Current technology iterations, such as gene therapy, stem cell therapy, and optogenetics, are advancing towards precise diagnosis and clinical applications. Specifically, technologies, such as effective delivery vectors, CRISPR/Cas9 technology, and iPSC-based cell transplantation, hasten the pace of personalized precision medicine in RP. The combination of conventional therapy and state-of-the-art medication is promising in revolutionizing RP treatment strategies. This article provides an overview of the latest research on the pathogenesis, diagnosis, and treatment of retinitis pigmentosa, aiming for a convenient reference of what has been achieved so far.
Collapse
|
12
|
Shahin S, Xu H, Lu B, Mercado A, Jones MK, Bakondi B, Wang S. AAV-CRISPR/Cas9 Gene Editing Preserves Long-Term Vision in the P23H Rat Model of Autosomal Dominant Retinitis Pigmentosa. Pharmaceutics 2022; 14:pharmaceutics14040824. [PMID: 35456659 PMCID: PMC9026811 DOI: 10.3390/pharmaceutics14040824] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 02/04/2023] Open
Abstract
Retinitis pigmentosa (RP) consists of a group of inherited, retinal degenerative disorders and is characterized by progressive loss of rod photoreceptors and eventual degeneration of cones in advanced stages, resulting in vision loss or blindness. Gene therapy has been effective in treating autosomal recessive RP (arRP). However, limited options are available for patients with autosomal dominant RP (adRP). In vivo gene editing may be a therapeutic option to treat adRP. We previously rescued vision in neonatal adRP rats by the selective ablation of the Rhodopsin S334ter transgene following electroporation of a CRISPR/Cas9 vector. However, the translational feasibility and long-term safety and efficacy of ablation therapy is unclear. To this end, we show that AAV delivery of a CRISPR/Cas9 construct disrupted the Rhodopsin P23H transgene in postnatal rats, which rescued long-term vision and retinal morphology.
Collapse
|
13
|
Vázquez-Domínguez I, Garanto A. Considerations for Generating Humanized Mouse Models to Test Efficacy of Antisense Oligonucleotides. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2434:267-279. [PMID: 35213024 DOI: 10.1007/978-1-0716-2010-6_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Over the last decades, animal models have become increasingly important in therapeutic drug development and assessment. The use of these models, mainly mice and rats, allow evaluating drugs in the real-organism environment and context. However, several molecular therapeutic approaches are sequence-dependent, and therefore, the humanization of such models is required to assess the efficacy. The generation of genetically modified humanized mouse models is often an expensive and laborious process that may not always recapitulate the human molecular and/or physiological phenotype. In this chapter, we summarize basic aspects to consider before designing and generating humanized models, especially when they are aimed to test antisense-based therapies.
Collapse
Affiliation(s)
- Irene Vázquez-Domínguez
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Alejandro Garanto
- Department of Pediatrics, Amalia Children's Hospital, Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
14
|
Xi Y, Chen Y. Pharmacological strategies for treating misfolded rhodopsin-associated autosomal dominant retinitis pigmentosa. Neural Regen Res 2022; 17:110-112. [PMID: 34100444 PMCID: PMC8451548 DOI: 10.4103/1673-5374.314306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Yibo Xi
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yuanyuan Chen
- Department of Pharmacology and Chemical Biology; McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
15
|
Amato A, Arrigo A, Aragona E, Manitto MP, Saladino A, Bandello F, Battaglia Parodi M. Gene Therapy in Inherited Retinal Diseases: An Update on Current State of the Art. Front Med (Lausanne) 2021; 8:750586. [PMID: 34722588 PMCID: PMC8553993 DOI: 10.3389/fmed.2021.750586] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/20/2021] [Indexed: 12/11/2022] Open
Abstract
Background: Gene therapy cannot be yet considered a far perspective, but a tangible therapeutic option in the field of retinal diseases. Although still confined in experimental settings, the preliminary results are promising and provide an overall scenario suggesting that we are not so far from the application of gene therapy in clinical settings. The main aim of this review is to provide a complete and updated overview of the current state of the art and of the future perspectives of gene therapy applied on retinal diseases. Methods: We carefully revised the entire literature to report all the relevant findings related to the experimental procedures and the future scenarios of gene therapy applied in retinal diseases. A clinical background and a detailed description of the genetic features of each retinal disease included are also reported. Results: The current literature strongly support the hope of gene therapy options developed for retinal diseases. Although being considered in advanced stages of investigation for some retinal diseases, such as choroideremia (CHM), retinitis pigmentosa (RP), and Leber's congenital amaurosis (LCA), gene therapy is still quite far from a tangible application in clinical practice for other retinal diseases. Conclusions: Gene therapy is an extremely promising therapeutic tool for retinal diseases. The experimental data reported in this review offer a strong hope that gene therapy will be effectively available in clinical practice in the next years.
Collapse
Affiliation(s)
- Alessia Amato
- Department of Ophthalmology, Scientific Institute San Raffaele Hospital, Milan, Italy
| | - Alessandro Arrigo
- Department of Ophthalmology, Scientific Institute San Raffaele Hospital, Milan, Italy
| | - Emanuela Aragona
- Department of Ophthalmology, Scientific Institute San Raffaele Hospital, Milan, Italy
| | - Maria Pia Manitto
- Department of Ophthalmology, Scientific Institute San Raffaele Hospital, Milan, Italy
| | - Andrea Saladino
- Department of Ophthalmology, Scientific Institute San Raffaele Hospital, Milan, Italy
| | - Francesco Bandello
- Department of Ophthalmology, Scientific Institute San Raffaele Hospital, Milan, Italy
| | | |
Collapse
|
16
|
Kakavand K, Jobling AI, Greferath U, Vessey KA, de Iongh RU, Fletcher EL. Photoreceptor Degeneration in Pro23His Transgenic Rats (Line 3) Involves Autophagic and Necroptotic Mechanisms. Front Neurosci 2020; 14:581579. [PMID: 33224023 PMCID: PMC7670078 DOI: 10.3389/fnins.2020.581579] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/02/2020] [Indexed: 01/09/2023] Open
Abstract
Photoreceptor death contributes to 50% of irreversible vision loss in the western world. Pro23His (P23H) transgenic albino rat strains are widely used models for the most common rhodopsin gene mutation associated with the autosomal dominant form of retinitis pigmentosa. However, the mechanism(s) by which photoreceptor death occurs are not well understood and were the principal aim of this study. We first used electroretinogram recording and optical coherence tomography to confirm the time course of functional and structural loss. Electroretinogram analyses revealed significantly decreased rod photoreceptor (a-wave), bipolar cell (b-wave) and amacrine cell responses (oscillatory potentials) from P30 onward. The cone-mediated b-wave was also decreased from P30. TUNEL analysis showed extensive cell death at P18, with continued labeling detected until P30. Focused gene expression arrays indicated activation of, apoptosis, autophagy and necroptosis in whole retina from P14-18. However, analysis of mitochondrial permeability changes (ΔΨm) using JC-1 dye, combined with immunofluorescence markers for caspase-dependent (cleaved caspase-3) and caspase-independent (AIF) cell death pathways, indicated mitochondrial-mediated cell death was not a major contributor to photoreceptor death. By contrast, reverse-phase protein array data combined with RIPK3 and phospho-MLKL immunofluorescence indicated widespread necroptosis as the predominant mechanism of photoreceptor death. These findings highlight the complexity of mechanisms involved in photoreceptor death in the Pro23His rat model of degeneration and suggest therapies that target necroptosis should be considered for their potential to reduce photoreceptor death.
Collapse
Affiliation(s)
- Kiana Kakavand
- Visual Neuroscience Laboratory, Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, Australia
| | - Andrew I Jobling
- Visual Neuroscience Laboratory, Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, Australia
| | - Ursula Greferath
- Visual Neuroscience Laboratory, Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, Australia
| | - Kirstan A Vessey
- Visual Neuroscience Laboratory, Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, Australia
| | - Robb U de Iongh
- Ocular Development Laboratory, Department Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, Australia
| | - Erica L Fletcher
- Visual Neuroscience Laboratory, Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
17
|
Santhanam A, Shihabeddin E, Atkinson JA, Nguyen D, Lin YP, O’Brien J. A Zebrafish Model of Retinitis Pigmentosa Shows Continuous Degeneration and Regeneration of Rod Photoreceptors. Cells 2020; 9:E2242. [PMID: 33036185 PMCID: PMC7599532 DOI: 10.3390/cells9102242] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/25/2020] [Accepted: 10/02/2020] [Indexed: 01/17/2023] Open
Abstract
More than 1.5 million people suffer from Retinitis Pigmentosa, with many experiencing partial to complete vision loss. Regenerative therapies offer some hope, but their development is challenged by the limited regenerative capacity of mammalian model systems. As a step toward investigating regenerative therapies, we developed a zebrafish model of Retinitis Pigmentosa that displays ongoing regeneration. We used Tol2 transgenesis to express mouse rhodopsin carrying the P23H mutation and an epitope tag in zebrafish rod photoreceptors. Adult and juvenile fish were examined by immunofluorescence, TUNEL and BrdU incorporation assays. P23H transgenic fish expressed the transgene in rods from 3 days post fertilization onward. Rods expressing the mutant rhodopsin formed very small or no outer segments and the mutant protein was delocalized over the entire cell. Adult fish displayed thinning of the outer nuclear layer (ONL) and loss of rod outer segments, but retained a single, sparse row of rods. Adult fish displayed ongoing apoptotic cell death in the ONL and an abundance of proliferating cells, predominantly in the ONL. There was a modest remodeling of bipolar and Müller glial cells. This transgenic fish will provide a useful model system to study rod photoreceptor regeneration and integration.
Collapse
Affiliation(s)
- Abirami Santhanam
- Ruiz Department of Ophthalmology & Visual Science, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (E.S.); (J.A.A.); (D.N.); (Y.-P.L.)
| | - Eyad Shihabeddin
- Ruiz Department of Ophthalmology & Visual Science, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (E.S.); (J.A.A.); (D.N.); (Y.-P.L.)
- The MD Anderson Cancer Center/UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Joshua A. Atkinson
- Ruiz Department of Ophthalmology & Visual Science, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (E.S.); (J.A.A.); (D.N.); (Y.-P.L.)
| | - Duc Nguyen
- Ruiz Department of Ophthalmology & Visual Science, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (E.S.); (J.A.A.); (D.N.); (Y.-P.L.)
| | - Ya-Ping Lin
- Ruiz Department of Ophthalmology & Visual Science, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (E.S.); (J.A.A.); (D.N.); (Y.-P.L.)
| | - John O’Brien
- Ruiz Department of Ophthalmology & Visual Science, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (E.S.); (J.A.A.); (D.N.); (Y.-P.L.)
- The MD Anderson Cancer Center/UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
18
|
Liu X, Feng B, Vats A, Tang H, Seibel W, Swaroop M, Tawa G, Zheng W, Byrne L, Schurdak M, Chen Y. Pharmacological clearance of misfolded rhodopsin for the treatment of RHO-associated retinitis pigmentosa. FASEB J 2020; 34:10146-10167. [PMID: 32536017 DOI: 10.1096/fj.202000282r] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/07/2020] [Accepted: 05/15/2020] [Indexed: 01/20/2023]
Abstract
Rhodopsin mutation and misfolding is a common cause of autosomal dominant retinitis pigmentosa (RP). Using a luciferase reporter assay, we undertook a small-molecule high-throughput screening (HTS) of 68, 979 compounds and identified nine compounds that selectively reduced the misfolded P23H rhodopsin without an effect on the wild type (WT) rhodopsin protein. Further, we found five of these compounds, including methotrexate (MTX), promoted P23H rhodopsin degradation that also cleared out other misfolded rhodopsin mutant proteins. We showed MTX increased P23H rhodopsin degradation via the lysosomal but not the proteasomal pathway. Importantly, one intravitreal injection (IVI) of 25 pmol MTX increased electroretinogram (ERG) response and rhodopsin level in the retinae of RhoP23H/+ knock-in mice at 1 month of age. Additionally, four weekly IVIs increased the photoreceptor cell number in the retinae of RhoP23H/+ mice compared to vehicle control. Our study indicates a therapeutic potential of repurposing MTX for the treatment of rhodopsin-associated RP.
Collapse
Affiliation(s)
- Xujie Liu
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA.,McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bing Feng
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA.,McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Abhishek Vats
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA.,McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hong Tang
- Drug Discovery Center, University of Cincinnati, Cincinnati, OH, USA
| | - William Seibel
- Drug Discovery Center, University of Cincinnati, Cincinnati, OH, USA.,Oncology Department, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Manju Swaroop
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Gregory Tawa
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Wei Zheng
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Leah Byrne
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA.,McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mark Schurdak
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yuanyuan Chen
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA.,McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
19
|
Aguilà M, Bellingham J, Athanasiou D, Bevilacqua D, Duran Y, Maswood R, Parfitt DA, Iwawaki T, Spyrou G, Smith AJ, Ali RR, Cheetham ME. AAV-mediated ERdj5 overexpression protects against P23H rhodopsin toxicity. Hum Mol Genet 2020; 29:1310-1318. [PMID: 32196553 PMCID: PMC7254845 DOI: 10.1093/hmg/ddaa049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/17/2020] [Accepted: 03/17/2020] [Indexed: 02/06/2023] Open
Abstract
Rhodopsin misfolding caused by the P23H mutation is a major cause of autosomal dominant retinitis pigmentosa (adRP). To date, there are no effective treatments for adRP. The BiP co-chaperone and reductase ERdj5 (DNAJC10) is part of the endoplasmic reticulum (ER) quality control machinery, and previous studies have shown that overexpression of ERdj5 in vitro enhanced the degradation of P23H rhodopsin, whereas knockdown of ERdj5 increased P23H rhodopsin ER retention and aggregation. Here, we investigated the role of ERdj5 in photoreceptor homeostasis in vivo by using an Erdj5 knockout mouse crossed with the P23H knock-in mouse and by adeno-associated viral (AAV) vector-mediated gene augmentation of ERdj5 in P23H-3 rats. Electroretinogram (ERG) and optical coherence tomography of Erdj5-/- and P23H+/-:Erdj5-/- mice showed no effect of ERdj5 ablation on retinal function or photoreceptor survival. Rhodopsin levels and localization were similar to those of control animals at a range of time points. By contrast, when AAV2/8-ERdj5-HA was subretinally injected into P23H-3 rats, analysis of the full-field ERG suggested that overexpression of ERdj5 reduced visual function loss 10 weeks post-injection (PI). This correlated with a significant preservation of photoreceptor cells at 4 and 10 weeks PI. Assessment of the outer nuclear layer (ONL) morphology showed preserved ONL thickness and reduced rhodopsin retention in the ONL in the injected superior retina. Overall, these data suggest that manipulation of the ER quality control and ER-associated degradation factors to promote mutant protein degradation could be beneficial for the treatment of adRP caused by mutant rhodopsin.
Collapse
Affiliation(s)
| | | | | | | | - Yanai Duran
- UCL Institute of Ophthalmology, London EC1V 9EL, UK
| | - Ryea Maswood
- UCL Institute of Ophthalmology, London EC1V 9EL, UK
| | | | - Takao Iwawaki
- Division of Cell Medicine, Department of Life Science, Medical Research Institute, Kanazawa Medical University, Uchinada, 920-0293, Japan
| | - Giannis Spyrou
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, 581 83, Sweden
| | | | - Robin R Ali
- UCL Institute of Ophthalmology, London EC1V 9EL, UK
| | | |
Collapse
|
20
|
Metabolic and Redox Signaling of the Nucleoredoxin-Like-1 Gene for the Treatment of Genetic Retinal Diseases. Int J Mol Sci 2020; 21:ijms21051625. [PMID: 32120883 PMCID: PMC7084304 DOI: 10.3390/ijms21051625] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/24/2020] [Accepted: 02/26/2020] [Indexed: 02/06/2023] Open
Abstract
The loss of cone photoreceptor function in retinitis pigmentosa (RP) severely impacts the central and daily vision and quality of life of patients affected by this disease. The loss of cones follows the degeneration of rods, in a manner independent of the causing mutations in numerous genes associated with RP. We have explored this phenomenon and proposed that the loss of rods triggers a reduction in the expression of rod-derived cone viability factor (RdCVF) encoded by the nucleoredoxin-like 1 (NXNL1) gene which interrupts the metabolic and redox signaling between rods and cones. After providing scientific evidence supporting this mechanism, we propose a way to restore this lost signaling and prevent the cone vision loss in animal models of RP. We also explain how we could restore this signaling to prevent cone vision loss in animal models of the disease and how we plan to apply this therapeutic strategy by the administration of both products of NXNL1 encoding the trophic factor RdCVF and the thioredoxin enzyme RdCVFL using an adeno-associated viral vector. We describe in detail all the steps of this translational program, from the design of the drug, its production, biological validation, and analytical and preclinical qualification required for a future clinical trial that would, if successful, provide a treatment for this incurable disease.
Collapse
|
21
|
Moore SM, Skowronska-Krawczyk D, Chao DL. Emerging Concepts for RNA Therapeutics for Inherited Retinal Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1185:85-89. [PMID: 31884593 DOI: 10.1007/978-3-030-27378-1_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Inherited retinal diseases (IRD) encompass a wide spectrum of hereditary blindness with significant genetic heterogeneity. Therapeutics regulating gene expression on an RNA level have significant promise for treating IRD. In this review, we review the molecular basis of oligonucleotide therapeutics such as ribozymes, RNA interference (RNAi), antisense oligonucleotides (ASO), CRISPRi/a, and their applications to treatments of IRD.
Collapse
Affiliation(s)
- Spencer M Moore
- Medical Scientist Training Program, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Dorota Skowronska-Krawczyk
- Department of Ophthalmology, Shiley Eye Institute, University of California, San Diego, La Jolla, CA, USA
| | - Daniel L Chao
- Department of Ophthalmology, Shiley Eye Institute, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
22
|
Gene Therapy in Retinal Dystrophies. Int J Mol Sci 2019; 20:ijms20225722. [PMID: 31739639 PMCID: PMC6888000 DOI: 10.3390/ijms20225722] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/13/2019] [Accepted: 11/13/2019] [Indexed: 12/12/2022] Open
Abstract
Inherited retinal dystrophies (IRDs) are a group of clinically and genetically heterogeneous degenerative disorders. To date, mutations have been associated with IRDs in over 270 disease genes, but molecular diagnosis still remains elusive in about a third of cases. The methodologic developments in genome sequencing techniques that we have witnessed in this last decade have represented a turning point not only in diagnosis and prognosis but, above all, in the identification of new therapeutic perspectives. The discovery of new disease genes and pathogenetic mechanisms underlying IRDs has laid the groundwork for gene therapy approaches. Several clinical trials are ongoing, and the recent approval of Luxturna, the first gene therapy product for Leber congenital amaurosis, marks the beginning of a new era. Due to its anatomical and functional characteristics, the retina is the organ of choice for gene therapy, although there are quite a few difficulties in the translational approaches from preclinical models to humans. In the first part of this review, an overview of the current knowledge on methodological issues and future perspectives of gene therapy applied to IRDs is discussed; in the second part, the state of the art of clinical trials on the gene therapy approach in IRDs is illustrated.
Collapse
|
23
|
Blond F, Léveillard T. Functional Genomics of the Retina to Elucidate its Construction and Deconstruction. Int J Mol Sci 2019; 20:E4922. [PMID: 31590277 PMCID: PMC6801968 DOI: 10.3390/ijms20194922] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 10/01/2019] [Indexed: 12/20/2022] Open
Abstract
The retina is the light sensitive part of the eye and nervous tissue that have been used extensively to characterize the function of the central nervous system. The retina has a central position both in fundamental biology and in the physiopathology of neurodegenerative diseases. We address the contribution of functional genomics to the understanding of retinal biology by reviewing key events in their historical perspective as an introduction to major findings that were obtained through the study of the retina using genomics, transcriptomics and proteomics. We illustrate our purpose by showing that most of the genes of interest for retinal development and those involved in inherited retinal degenerations have a restricted expression to the retina and most particularly to photoreceptors cells. We show that the exponential growth of data generated by functional genomics is a future challenge not only in terms of storage but also in terms of accessibility to the scientific community of retinal biologists in the future. Finally, we emphasize on novel perspectives that emerge from the development of redox-proteomics, the new frontier in retinal biology.
Collapse
Affiliation(s)
- Frédéric Blond
- Department of Genetics, Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France.
| | - Thierry Léveillard
- Department of Genetics, Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France.
| |
Collapse
|
24
|
Lin WV, Stout JT, Weng CY. CRISPR-Cas9 and Its Therapeutic Applications for Retinal Diseases. Int Ophthalmol Clin 2019; 59:3-13. [PMID: 30585915 DOI: 10.1097/iio.0000000000000252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
25
|
N-Methyl- N-Nitrosourea-Induced Photoreceptor Degeneration Is Inhibited by Nicotinamide via the Blockade of Upstream Events before the Phosphorylation of Signalling Proteins. BIOMED RESEARCH INTERNATIONAL 2019; 2019:3238719. [PMID: 31179317 PMCID: PMC6507250 DOI: 10.1155/2019/3238719] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/09/2019] [Accepted: 04/15/2019] [Indexed: 01/12/2023]
Abstract
N-methyl-N-nitrosourea (MNU), a known carcinogen, is generally used in animal models to chemically induce photoreceptor degeneration. It has been reported that nicotinamide (NAM) exerts a protective effect on MNU-induced photoreceptor degeneration. We investigated the molecular mechanisms on MNU-induced photoreceptor degeneration. Intraperitoneal MNU injection (75 mg/kg) in rats induced selective photoreceptor degeneration in 7 days. NAM administration completely inhibited photoreceptor degeneration. Photoreceptor layer abnormality was observed within 6 hours after MNU injection, whereas it was restored in the NAM-treated retina, as detected by optical coherence tomography. One day following MNU administration, phosphorylation of the cell death-associated signalling proteins c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38) increased, while the apoptosis-related proteins, full-length poly(ADP-ribose) polymerase (PARP) and apoptosis-inducing factor (AIF), were depleted. These changes were not observed in the NAM-treated retinas. Cell survival signalling, such as extracellular signal-regulated kinase (ERK), Akt, and cAMP response element binding protein (CREB) phosphorylation, increased in the MNU- but not in the NAM-treated rat retinas. Increased phosphorylated ERK (p-ERK) levels were observed within 6 hours after MNU administration, suggestive of cell survival signalling activation. This did not occur in NAM-treated retinas. These results indicate that NAM regulates upstream cellular events prior to the activation of cell death-related signalling events, such as JNK and p38 phosphorylation.
Collapse
|
26
|
Di Pierdomenico J, Scholz R, Valiente-Soriano FJ, Sánchez-Migallón MC, Vidal-Sanz M, Langmann T, Agudo-Barriuso M, García-Ayuso D, Villegas-Pérez MP. Neuroprotective Effects of FGF2 and Minocycline in Two Animal Models of Inherited Retinal Degeneration. Invest Ophthalmol Vis Sci 2019; 59:4392-4403. [PMID: 30193320 DOI: 10.1167/iovs.18-24621] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose The purpose of this study was to study the effect of minocycline and several neurotrophic factors, alone or in combination, on photoreceptor survival and macro/microglial reactivity in two rat models of retinal degeneration. Methods P23H-1 (rhodopsin mutation), Royal College of Surgeon (RCS, pigment epithelium malfunction), and age-matched control rats (Sprague-Dawley and Pievald Viro Glaxo, respectively) were divided into three groups that received at P10 for P23H-1 rats or P33 for RCS rats: (1) one intravitreal injection (IVI) of one of the following neurotrophic factors: ciliary neurotrophic factor (CNTF), pigment epithelium-derived factor (PEDF), or basic fibroblast growth factor (FGF2); (2) daily intraperitoneal administration of minocycline; or (3) a combination of IVI of FGF2 and intraperitoneal minocycline. All animals were processed 12 days after treatment initiation. Retinal microglial cells and cone photoreceptors were immunodetected and analyzed qualitatively in cross sections. The numbers of microglial cells in the different retinal layers and number of nuclei rows in the outer nuclear layer (ONL) were quantified. Results IVI of CNTF, PEDF, or FGF2 improved the morphology of the photoreceptors outer segment, but only FGF2 rescued a significant number of photoreceptors. None of the trophic factors had qualitative or quantitative effects on microglial cells. Minocycline treatment reduced activation and migration of microglia and produced a significant rescue of photoreceptors. Combined treatment with minocycline and FGF2 had higher neuroprotective effects than each of the treatments alone. Conclusions In two animal models of photoreceptor degeneration with different etiologies, minocycline reduces microglial activation and migration, and FGF2 and minocycline increase photoreceptor survival. The combination of FGF2 and minocycline show greater neuroprotective effects than their isolated effects.
Collapse
Affiliation(s)
- Johnny Di Pierdomenico
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia and Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - Rebecca Scholz
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, Cologne, Germany
| | - F Javier Valiente-Soriano
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia and Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - Maria C Sánchez-Migallón
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia and Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - Manuel Vidal-Sanz
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia and Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - Thomas Langmann
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, Cologne, Germany
| | - Marta Agudo-Barriuso
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia and Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - Diego García-Ayuso
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia and Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - María Paz Villegas-Pérez
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia and Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| |
Collapse
|
27
|
Wang W, Guo DY, Tao YX. Therapeutic strategies for diseases caused by loss-of-function mutations in G protein-coupled receptors. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 161:181-210. [DOI: 10.1016/bs.pmbts.2018.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
28
|
Progress in Gene Therapy for Rhodopsin Autosomal Dominant Retinitis Pigmentosa. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1185:113-118. [PMID: 31884598 DOI: 10.1007/978-3-030-27378-1_19] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This brief review summarizes the major proof-of-concept gene therapy studies for autosomal dominant retinitis pigmentosa (RP) caused by mutations in the rhodopsin gene (RHO-adRP) that have been conducted over the past 20 years in various animal models. We have listed in tabular form the various approaches, gene silencing reagents, gene delivery strategies, and salient results from these studies.
Collapse
|
29
|
Mutation-independent rhodopsin gene therapy by knockdown and replacement with a single AAV vector. Proc Natl Acad Sci U S A 2018; 115:E8547-E8556. [PMID: 30127005 DOI: 10.1073/pnas.1805055115] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Inherited retinal degenerations are caused by mutations in >250 genes that affect photoreceptor cells or the retinal pigment epithelium and result in vision loss. For autosomal recessive and X-linked retinal degenerations, significant progress has been achieved in the field of gene therapy as evidenced by the growing number of clinical trials and the recent commercialization of the first gene therapy for a form of congenital blindness. However, despite significant efforts to develop a treatment for the most common form of autosomal dominant retinitis pigmentosa (adRP) caused by >150 mutations in the rhodopsin (RHO) gene, translation to the clinic has stalled. Here, we identified a highly efficient shRNA that targets human (and canine) RHO in a mutation-independent manner. In a single adeno-associated viral (AAV) vector we combined this shRNA with a human RHO replacement cDNA made resistant to RNA interference and tested this construct in a naturally occurring canine model of RHO-adRP. Subretinal vector injections led to nearly complete suppression of endogenous canine RHO RNA, while the human RHO replacement cDNA resulted in up to 30% of normal RHO protein levels. Noninvasive retinal imaging showed photoreceptors in treated areas were completely protected from retinal degeneration. Histopathology confirmed retention of normal photoreceptor structure and RHO expression in rod outer segments. Long-term (>8 mo) follow-up by retinal imaging and electroretinography indicated stable structural and functional preservation. The efficacy of this gene therapy in a clinically relevant large-animal model paves the way for treating patients with RHO-adRP.
Collapse
|
30
|
Trapani I, Auricchio A. Seeing the Light after 25 Years of Retinal Gene Therapy. Trends Mol Med 2018; 24:669-681. [PMID: 29983335 DOI: 10.1016/j.molmed.2018.06.006] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 05/31/2018] [Accepted: 06/11/2018] [Indexed: 12/25/2022]
Abstract
The retina has been at the forefront of translational gene therapy. Proof-of-concept that gene therapy could restore vision in a large animal led to the initiation of the first successful clinical trials and, in turn, to the recent approval of the first gene therapy product for an ocular disease. As dozens of clinical trials of retinal gene therapy have begun, new challenges are identified, which include delivery of large genes, counteracting gain-of-function mutations, and safe and effective gene transfer to diseased retinas. Advancements in vector design, improvements of delivery routes, and selection of optimal timing for intervention will contribute to extend the initial success of retinal gene therapy to an increasing number of inherited blinding conditions.
Collapse
Affiliation(s)
- Ivana Trapani
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy; Medical Genetics, Department of Translational Medicine, Federico II University, Naples, Italy.
| | - Alberto Auricchio
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy; Department of Advanced Biomedicine, Federico II University, Naples, Italy.
| |
Collapse
|
31
|
Hif1a inactivation rescues photoreceptor degeneration induced by a chronic hypoxia-like stress. Cell Death Differ 2018; 25:2071-2085. [PMID: 29666476 PMCID: PMC6261999 DOI: 10.1038/s41418-018-0094-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 02/13/2018] [Accepted: 02/21/2018] [Indexed: 12/11/2022] Open
Abstract
Reduced choroidal blood flow and tissue changes in the ageing human eye impair oxygen delivery to photoreceptors and the retinal pigment epithelium. As a consequence, mild but chronic hypoxia may develop and disturb cell metabolism, function and ultimately survival, potentially contributing to retinal pathologies such as age-related macular degeneration (AMD). Here, we show that several hypoxia-inducible genes were expressed at higher levels in the aged human retina suggesting increased activity of hypoxia-inducible transcription factors (HIFs) during the physiological ageing process. To model chronically elevated HIF activity and investigate ensuing consequences for photoreceptors, we generated mice lacking von Hippel Lindau (VHL) protein in rods. This activated HIF transcription factors and led to a slowly progressing retinal degeneration in the ageing mouse retina. Importantly, this process depended mainly on HIF1 with only a minor contribution of HIF2. A gene therapy approach using AAV-mediated RNA interference through an anti-Hif1a shRNA significantly mitigated the degeneration suggesting a potential intervention strategy that may be applicable to human patients.
Collapse
|
32
|
Giannelli SG, Luoni M, Castoldi V, Massimino L, Cabassi T, Angeloni D, Demontis GC, Leocani L, Andreazzoli M, Broccoli V. Cas9/sgRNA selective targeting of the P23H Rhodopsin mutant allele for treating retinitis pigmentosa by intravitreal AAV9.PHP.B-based delivery. Hum Mol Genet 2018; 27:761-779. [PMID: 29281027 DOI: 10.1093/hmg/ddx438] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 12/18/2017] [Indexed: 01/05/2024] Open
Abstract
P23H is the most common mutation in the RHODOPSIN (RHO) gene leading to a dominant form of retinitis pigmentosa (RP), a rod photoreceptor degeneration that invariably causes vision loss. Specific disruption of the disease P23H RHO mutant while preserving the wild-type (WT) functional allele would be an invaluable therapy for this disease. However, various technologies tested in the past failed to achieve effective changes and consequently therapeutic benefits. We validated a CRISPR/Cas9 strategy to specifically inactivate the P23H RHO mutant, while preserving the WT allele in vitro. We, then, translated this approach in vivo by delivering the CRISPR/Cas9 components in murine Rho+/P23H mutant retinae. Targeted retinae presented a high rate of cleavage in the P23H but not WT Rho allele. This gene manipulation was sufficient to slow photoreceptor degeneration and improve retinal functions. To improve the translational potential of our approach, we tested intravitreal delivery of this system by means of adeno-associated viruses (AAVs). To this purpose, the employment of the AAV9-PHP.B resulted the most effective in disrupting the P23H Rho mutant. Finally, this approach was translated successfully in human cells engineered with the homozygous P23H RHO gene mutation. Overall, this is a significant proof-of-concept that gene allele specific targeting by CRISPR/Cas9 technology is specific and efficient and represents an unprecedented tool for treating RP and more broadly dominant genetic human disorders affecting the eye, as well as other tissues.
Collapse
Affiliation(s)
- Serena G Giannelli
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Mirko Luoni
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Valerio Castoldi
- Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE), San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Luca Massimino
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
- Institute of Neuroscience, National Research Council (CNR), 20129 Milan, Italy
| | - Tommaso Cabassi
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
- Institute of Neuroscience, National Research Council (CNR), 20129 Milan, Italy
| | - Debora Angeloni
- Institute of Life Sciences, Scuola Superiore Sant'Anna, 56124 Pisa, Italy
| | | | - Letizia Leocani
- Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE), San Raffaele Scientific Institute, 20132 Milan, Italy
| | | | - Vania Broccoli
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
- Institute of Neuroscience, National Research Council (CNR), 20129 Milan, Italy
| |
Collapse
|
33
|
LaVail MM, Nishikawa S, Steinberg RH, Naash MI, Duncan JL, Trautmann N, Matthes MT, Yasumura D, Lau-Villacorta C, Chen J, Peterson WM, Yang H, Flannery JG. Phenotypic characterization of P23H and S334ter rhodopsin transgenic rat models of inherited retinal degeneration. Exp Eye Res 2018; 167:56-90. [PMID: 29122605 PMCID: PMC5811379 DOI: 10.1016/j.exer.2017.10.023] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 10/25/2017] [Accepted: 10/31/2017] [Indexed: 02/07/2023]
Abstract
We produced 8 lines of transgenic (Tg) rats expressing one of two different rhodopsin mutations in albino Sprague-Dawley (SD) rats. Three lines were generated with a proline to histidine substitution at codon 23 (P23H), the most common autosomal dominant form of retinitis pigmentosa in the United States. Five lines were generated with a termination codon at position 334 (S334ter), resulting in a C-terminal truncated opsin protein lacking the last 15 amino acid residues and containing all of the phosphorylation sites involved in rhodopsin deactivation, as well as the terminal QVAPA residues important for rhodopsin deactivation and trafficking. The rates of photoreceptor (PR) degeneration in these models vary in proportion to the ratio of mutant to wild-type rhodopsin. The models have been widely studied, but many aspects of their phenotypes have not been described. Here we present a comprehensive study of the 8 Tg lines, including the time course of PR degeneration from the onset to one year of age, retinal structure by light and electron microscopy (EM), hemispheric asymmetry and gradients of rod and cone degeneration, rhodopsin content, gene dosage effect, rapid activation and invasion of the outer retina by presumptive microglia, rod outer segment disc shedding and phagocytosis by the retinal pigmented epithelium (RPE), and retinal function by the electroretinogram (ERG). The biphasic nature of PR cell death was noted, as was the lack of an injury-induced protective response in the rat models. EM analysis revealed the accumulation of submicron vesicular structures in the interphotoreceptor space during the peak period of PR outer segment degeneration in the S334ter lines. This is likely due to the elimination of the trafficking consensus domain as seen before as with other rhodopsin mutants lacking the C-terminal QVAPA. The 8 rhodopsin Tg lines have been, and will continue to be, extremely useful models for the experimental study of inherited retinal degenerations.
Collapse
Affiliation(s)
- Matthew M LaVail
- Beckman Vision Center, University of California, San Francisco, San Francisco, CA 94143-0730, USA.
| | - Shimpei Nishikawa
- Beckman Vision Center, University of California, San Francisco, San Francisco, CA 94143-0730, USA.
| | - Roy H Steinberg
- Beckman Vision Center, University of California, San Francisco, San Francisco, CA 94143-0730, USA
| | - Muna I Naash
- Department of Biomedical Engineering, University of Houston, 3517 Cullen Blvd., Room 2011, Houston, TX 77204-5060, USA.
| | - Jacque L Duncan
- Beckman Vision Center, University of California, San Francisco, San Francisco, CA 94143-0730, USA.
| | - Nikolaus Trautmann
- Beckman Vision Center, University of California, San Francisco, San Francisco, CA 94143-0730, USA.
| | - Michael T Matthes
- Beckman Vision Center, University of California, San Francisco, San Francisco, CA 94143-0730, USA.
| | - Douglas Yasumura
- Beckman Vision Center, University of California, San Francisco, San Francisco, CA 94143-0730, USA
| | - Cathy Lau-Villacorta
- Beckman Vision Center, University of California, San Francisco, San Francisco, CA 94143-0730, USA.
| | - Jeannie Chen
- Zilka Neurogenetic Institute, USC Keck School of Medicine, Los Angeles, CA 90089-2821, USA.
| | - Ward M Peterson
- Beckman Vision Center, University of California, San Francisco, San Francisco, CA 94143-0730, USA.
| | - Haidong Yang
- Beckman Vision Center, University of California, San Francisco, San Francisco, CA 94143-0730, USA.
| | - John G Flannery
- School of Optometry, UC Berkeley, Berkeley, CA 94720-2020, USA.
| |
Collapse
|
34
|
Zelinger L, Swaroop A. RNA Biology in Retinal Development and Disease. Trends Genet 2018; 34:341-351. [PMID: 29395379 DOI: 10.1016/j.tig.2018.01.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 12/28/2017] [Accepted: 01/03/2018] [Indexed: 02/06/2023]
Abstract
For decades, RNA has served in a supporting role between the genetic carrier (DNA) and the functional molecules (proteins). It is finally time for RNA to take center stage in all aspects of biology. The retina provides a unique opportunity to dissect the molecular underpinnings of neuronal diversity and disease. Transcriptome profiles of the retina and its resident cell types have unraveled unique features of the RNA landscape. The discovery of distinct RNA molecules and the recognition that RNA processing is a major cause of retinal neurodegeneration have prompted the design of biomarkers and novel therapeutic paradigms. We review here RNA biology as it pertains to the retina, emphasizing new avenues for investigations in development and disease.
Collapse
Affiliation(s)
- Lina Zelinger
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anand Swaroop
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
35
|
Roddy GW, Yasumura D, Matthes MT, Alavi MV, Boye SL, Rosa RH, Fautsch MP, Hauswirth WW, LaVail MM. Long-term photoreceptor rescue in two rodent models of retinitis pigmentosa by adeno-associated virus delivery of Stanniocalcin-1. Exp Eye Res 2017; 165:175-181. [PMID: 28974356 PMCID: PMC5788186 DOI: 10.1016/j.exer.2017.09.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 08/31/2017] [Accepted: 09/25/2017] [Indexed: 02/07/2023]
Abstract
Retinal degenerations, including age-related macular degeneration and the retinitis pigmentosa family of diseases, are among the leading causes of legal blindness in the United States. We previously found that Stanniocalcin-1 (STC-1) reduced photoreceptor loss in the S334ter-3 and Royal College of Surgeons rat models of retinal degeneration. The results were attributed in part to a reduction in oxidative stress. Herein, we tested the hypothesis that long-term delivery of STC-1 would provide therapeutic rescue in more chronic models of retinal degeneration. To achieve sustained delivery, we produced an adeno-associated virus (AAV) construct to express STC-1 (AAV-STC-1) under the control of a retinal ganglion cell targeting promoter human synapsin 1 (hSYN1). AAV-STC-1 was injected intravitreally into the P23H-1 and S334ter-4 rhodopsin transgenic rats at postnatal day 10. Tissues were collected at postnatal day 120 for confirmation of STC-1 overexpression and histologic and molecular analysis. Electroretinography (ERG) was performed in a cohort of animals at that time. Overexpression of STC-1 resulted in a significant preservation of photoreceptors as assessed by outer nuclear thickness in the P23H-1 (P < 0.05) and the S334ter-4 (P < 0.005) models compared to controls. Additionally, retinal function was significantly improved in the P23H-1 model with overexpressed STC-1 as assessed by ERG analysis (scotopic b-wave P < 0.005 and photopic b-wave P < 0.05). Microarray analysis identified common downstream gene expression changes that occurred in both models. Genes of interest based on their function were selected for validation by quantitative real-time PCR and were significantly increased in the S334ter-4 model.
Collapse
Affiliation(s)
- Gavin W Roddy
- Department of Ophthalmology, Mayo Clinic, Rochester, MN 55905, USA.
| | - Douglas Yasumura
- Department of Ophthalmology, University of California, San Francisco, CA 94143, USA
| | - Michael T Matthes
- Department of Ophthalmology, University of California, San Francisco, CA 94143, USA.
| | - Marcel V Alavi
- Department of Ophthalmology, University of California, San Francisco, CA 94143, USA.
| | - Sanford L Boye
- Department of Ophthalmology, University of Florida, Gainesville, FL 32610, USA.
| | - Robert H Rosa
- Department of Ophthalmology, Scott & White Medical Center, Temple, TX 76508, USA.
| | | | - William W Hauswirth
- Department of Ophthalmology, University of Florida, Gainesville, FL 32610, USA.
| | - Matthew M LaVail
- Department of Ophthalmology, University of California, San Francisco, CA 94143, USA.
| |
Collapse
|
36
|
Öner A. Recent Advancements in Gene Therapy for Hereditary Retinal Dystrophies. Turk J Ophthalmol 2017; 47:338-343. [PMID: 29326851 PMCID: PMC5758769 DOI: 10.4274/tjo.41017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Accepted: 04/20/2017] [Indexed: 12/01/2022] Open
Abstract
Hereditary retinal dystrophies (HRDs) are degenerative diseases of the retina which have marked clinical and genetic heterogeneity. Common presentations among these disorders include night or colour blindness, tunnel vision, and subsequent progression to complete blindness. The known causative disease genes have a variety of developmental and functional roles, with mutations in more than 120 genes shown to be responsible for the phenotypes. In addition, mutations within the same gene have been shown to cause different disease phenotypes, even amongst affected individuals within the same family, highlighting further levels of complexity. The known disease genes encode proteins involved in retinal cellular structures, phototransduction, the visual cycle, and photoreceptor structure or gene regulation. Significant advancements have been made in understanding the genetic pathogenesis of ocular diseases, and gene replacement and gene silencing have been proposed as potentially efficacious therapies. Because of its favorable anatomical and immunological characteristics, the eye has been at the forefront of translational gene therapy. Recent improvements have been made in the safety and specificity of vector-based ocular gene transfer methods. Dozens of promising proofs of concept have been obtained in animal models of HRDs and some of them have been relayed to the clinic. The results from the first clinical trials for a congenital form of blindness have generated great interest and have demonstrated the safety and efficacy of intraocular administrations of viral vectors in humans. This review summarizes the clinical development of retinal gene therapy.
Collapse
Affiliation(s)
- Ayşe Öner
- Erciyes University Faculty of Medicine, Department of Ophthalmology, Kayseri, Turkey
| |
Collapse
|
37
|
Campochiaro PA, Mir TA. The mechanism of cone cell death in Retinitis Pigmentosa. Prog Retin Eye Res 2017; 62:24-37. [PMID: 28962928 DOI: 10.1016/j.preteyeres.2017.08.004] [Citation(s) in RCA: 185] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 08/31/2017] [Accepted: 08/31/2017] [Indexed: 12/16/2022]
Abstract
Retinitis Pigmentosa (RP) is a group of diseases in which one of a large number of mutations causes death of rod photoreceptors. After rods die, cone photoreceptors slowly degenerate in a characteristic pattern. The mechanism of rod cell death varies depending upon the gene that is mutated and the rate that rods degenerate is an important prognostic feature, because cones do not begin to degenerate until almost all rods have been eliminated. Rod cell death causes night blindness, but visual disability and blindness result from cone degeneration and therefore it is critical to determine the mechanisms by which it occurs. The death of rods reduces oxygen consumption resulting in high tissue levels of oxygen in the outer retina. The excess oxygen stimulates superoxide radical production by mismatches in the electron transport chain in mitochondria and by stimulation of NADPH oxidase activity in cytoplasm. The high levels of superoxide radicals overwhelm the antioxidant defense system and generate more reactive species including peroxynitrite which is extremely damaging and difficult to detoxify. This results in progressive oxidative damage in cones which contributes to cone cell death and loss of function because drugs or gene transfer that reduce oxidative stress promote cone survival and maintenance of function. Compared with aqueous humor samples from control patients, those from patients with RP show significant elevation of carbonyl content on proteins indicating oxidative damage and a reduction in the ratio of reduced to oxidized glutathione indicating depletion of a major component of the antioxidant defense system from ongoing oxidative stress. The first step in clinical trials will be to identify doses of therapeutic agents that reverse these biomarkers of disease to assist in design of much longer trials with functional and anatomic endpoints.
Collapse
Affiliation(s)
- Peter A Campochiaro
- Departments of Ophthalmology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| | - Tahreem A Mir
- Departments of Ophthalmology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
38
|
de Solis CA, Hosek MP, Holehonnur R, Ho A, Banerjee A, Luong JA, Jones LE, Chaturvedi D, Ploski JE. Adeno-associated viral serotypes differentially transduce inhibitory neurons within the rat amygdala. Brain Res 2017; 1672:148-162. [PMID: 28764932 DOI: 10.1016/j.brainres.2017.07.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 07/21/2017] [Accepted: 07/26/2017] [Indexed: 11/18/2022]
Abstract
Recombinant adeno-associated viruses (AAV) are frequently used to make localized genetic manipulations within the rodent brain. It is accepted that the different viral serotypes possess differing affinities for particular cell types, but it is not clear how these properties affect their ability to transduce specific neuronal cell sub-types. Here, we examined ten AAV serotypes for their ability to transduce neurons within the rat basal and lateral nuclei of the amygdala (BLA) and the central nucleus of the amygdala (CeA). AAV2 based viral genomes designed to express either green fluorescent protein (GFP) from a glutamate decarboxylase (GAD65) promoter or the far-red fluorescent protein (E2-Crimson) from a phosphate-activated glutaminase (PAG) promoter were created and pseudotyped as AAV2/1, AAV2/4, AAV2/5, AAV2/6, AAV2/7, AAV 2/8, AAV2/9, AAV2/rh10, AAV2/DJ and AAV2/DJ8. These viruses were infused into the BLA and CeA at equal titers and twenty-one days later tissue within the amygdala was examined for viral transduction efficiency. These serotypes transduced neurons with similar efficiency, except for AAV4 and AAV5, which exhibited significantly less efficient neuronal transduction. Notably, AAV4 and AAV5 possess the most divergent capsid protein sequences compared to the other commonly available serotypes. We found that the Gad65-GFP virus did not exclusively express GFP within inhibitory neurons, as assessed by fluorescent in situ hybridization (FISH), but when this virus was used to transduce CeA neurons, the majority of the neurons that expressed GFP were in fact inhibitory neurons and this was likely due to the fact that this nucleus contains a very high percentage of inhibitory neurons.
Collapse
Affiliation(s)
- C A de Solis
- School of Behavioral and Brain Sciences and the Department of Molecular & Cell Biology, The University of Texas at Dallas, United States
| | - M P Hosek
- School of Behavioral and Brain Sciences and the Department of Molecular & Cell Biology, The University of Texas at Dallas, United States
| | - R Holehonnur
- School of Behavioral and Brain Sciences and the Department of Molecular & Cell Biology, The University of Texas at Dallas, United States
| | - A Ho
- School of Behavioral and Brain Sciences and the Department of Molecular & Cell Biology, The University of Texas at Dallas, United States
| | - A Banerjee
- School of Behavioral and Brain Sciences and the Department of Molecular & Cell Biology, The University of Texas at Dallas, United States
| | - J A Luong
- School of Behavioral and Brain Sciences and the Department of Molecular & Cell Biology, The University of Texas at Dallas, United States
| | - L E Jones
- School of Behavioral and Brain Sciences and the Department of Molecular & Cell Biology, The University of Texas at Dallas, United States
| | - D Chaturvedi
- School of Behavioral and Brain Sciences and the Department of Molecular & Cell Biology, The University of Texas at Dallas, United States
| | - J E Ploski
- School of Behavioral and Brain Sciences and the Department of Molecular & Cell Biology, The University of Texas at Dallas, United States.
| |
Collapse
|
39
|
Nrl knockdown by AAV-delivered CRISPR/Cas9 prevents retinal degeneration in mice. Nat Commun 2017; 8:14716. [PMID: 28291770 PMCID: PMC5355895 DOI: 10.1038/ncomms14716] [Citation(s) in RCA: 213] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 01/25/2017] [Indexed: 12/21/2022] Open
Abstract
In retinitis pigmentosa, loss of cone photoreceptors leads to blindness, and preservation of cone function is a major therapeutic goal. However, cone loss is thought to occur as a secondary event resulting from degeneration of rod photoreceptors. Here we report a genome editing approach in which adeno-associated virus (AAV)-mediated CRISPR/Cas9 delivery to postmitotic photoreceptors is used to target the Nrl gene, encoding for Neural retina-specific leucine zipper protein, a rod fate determinant during photoreceptor development. Following Nrl disruption, rods gain partial features of cones and present with improved survival in the presence of mutations in rod-specific genes, consequently preventing secondary cone degeneration. In three different mouse models of retinal degeneration, the treatment substantially improves rod survival and preserves cone function. Our data suggest that CRISPR/Cas9-mediated NRL disruption in rods may be a promising treatment option for patients with retinitis pigmentosa. Retinitis pigmentosa is mainly caused by mutations that initially affect survival of rod photoreceptors, leading to secondary loss of cones. Here the authors use gene editing to prevent rod degeneration, leading to survival of cones and improved vision in mice.
Collapse
|
40
|
Di Pierdomenico J, García-Ayuso D, Pinilla I, Cuenca N, Vidal-Sanz M, Agudo-Barriuso M, Villegas-Pérez MP. Early Events in Retinal Degeneration Caused by Rhodopsin Mutation or Pigment Epithelium Malfunction: Differences and Similarities. Front Neuroanat 2017; 11:14. [PMID: 28321183 PMCID: PMC5337514 DOI: 10.3389/fnana.2017.00014] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 02/17/2017] [Indexed: 01/13/2023] Open
Abstract
To study the course of photoreceptor cell death and macro and microglial reactivity in two rat models of retinal degeneration with different etiologies. Retinas from P23H-1 (rhodopsin mutation) and Royal College of Surgeon (RCS, pigment epithelium malfunction) rats and age-matched control animals (Sprague-Dawley and Pievald Viro Glaxo, respectively) were cross-sectioned at different postnatal ages (from P10 to P60) and rhodopsin, L/M- and S-opsin, ionized calcium-binding adapter molecule 1 (Iba1), glial fibrillary acid protein (GFAP), and proliferating cell nuclear antigen (PCNA) proteins were immunodetected. Photoreceptor nuclei rows and microglial cells in the different retinal layers were quantified. Photoreceptor degeneration starts earlier and progresses quicker in P23H-1 than in RCS rats. In both models, microglial cell activation occurs simultaneously with the initiation of photoreceptor death while GFAP over-expression starts later. As degeneration progresses, the numbers of microglial cells increase in the retina, but decreasing in the inner retina and increasing in the outer retina, more markedly in RCS rats. Interestingly, and in contrast with healthy animals, microglial cells reach the outer nuclei and outer segment layers. The higher number of microglial cells in dystrophic retinas cannot be fully accounted by intraretinal migration and PCNA immunodetection revealed microglial proliferation in both models but more importantly in RCS rats. The etiology of retinal degeneration determines the initiation and pattern of photoreceptor cell death and simultaneously there is microglial activation and migration, while the macroglial response is delayed. The actions of microglial cells in the degeneration cannot be explained only in the basis of photoreceptor death because they participate more actively in the RCS model. Thus, the retinal degeneration caused by pigment epithelium malfunction is more inflammatory and would probably respond better to interventions by inhibiting microglial cells.
Collapse
Affiliation(s)
- Johnny Di Pierdomenico
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia and Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca Murcia, Spain
| | - Diego García-Ayuso
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia and Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca Murcia, Spain
| | - Isabel Pinilla
- Instituto de Investigación Sanitaria Aragón, Aragon Health Sciences Institute, Lozano Blesa University Hospital Zaragoza, Spain
| | - Nicolás Cuenca
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante Alicante, Spain
| | - Manuel Vidal-Sanz
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia and Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca Murcia, Spain
| | - Marta Agudo-Barriuso
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia and Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca Murcia, Spain
| | - María P Villegas-Pérez
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia and Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca Murcia, Spain
| |
Collapse
|
41
|
Abstract
Two therapeutic paths have been proposed to treat inherited retinal dystrophy using clustered regularly interspaced short palindromic repeats (CRISPR). One strategy is to genetically correct patient cells ex vivo for autologous transplant, whereas the second is to modify cells in vivo by delivering CRISPR effectors to the retina. The feasibility of both editing strategies has been demonstrated within three years of CRISPR's adaptation to mammalian systems. However, the functional integration of transplanted cells into host retinae has been a long-standing challenge that currently represents the 2025 moonshot of the National Eye Institute's Audacious Goals Initiative. The clinical translatability of each path is discussed with regard to current investigations and whether cell replacement can be circumvented by in vivo editing.
Collapse
Affiliation(s)
- Benjamin Bakondi
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
42
|
Gragg M, Kim TG, Howell S, Park PSH. Wild-type opsin does not aggregate with a misfolded opsin mutant. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:1850-9. [PMID: 27117643 DOI: 10.1016/j.bbamem.2016.04.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 04/06/2016] [Accepted: 04/13/2016] [Indexed: 10/21/2022]
Affiliation(s)
- Megan Gragg
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Tae Gyun Kim
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Scott Howell
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - P S-H Park
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
43
|
Yu-Wai-Man P. Genetic manipulation for inherited neurodegenerative diseases: myth or reality? Br J Ophthalmol 2016; 100:1322-31. [PMID: 27002113 PMCID: PMC5050284 DOI: 10.1136/bjophthalmol-2015-308329] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 02/28/2016] [Indexed: 12/22/2022]
Abstract
Rare genetic diseases affect about 7% of the general population and over 7000 distinct clinical syndromes have been described with the majority being due to single gene defects. This review will provide a critical overview of genetic strategies that are being pioneered to halt or reverse disease progression in inherited neurodegenerative diseases. This field of research covers a vast area and only the most promising treatment paradigms will be discussed with a particular focus on inherited eye diseases, which have paved the way for innovative gene therapy paradigms, and mitochondrial diseases, which are currently generating a lot of debate centred on the bioethics of germline manipulation.
Collapse
Affiliation(s)
- Patrick Yu-Wai-Man
- Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK Newcastle Eye Centre, Royal Victoria Infirmary, Newcastle upon Tyne, UK NIHR Biomedical Research Centre at Moorfields Eye Hospital and UCL Institute of Ophthalmology, London, UK
| |
Collapse
|
44
|
Bakondi B, Lv W, Lu B, Jones MK, Tsai Y, Kim KJ, Levy R, Akhtar AA, Breunig JJ, Svendsen CN, Wang S. In Vivo CRISPR/Cas9 Gene Editing Corrects Retinal Dystrophy in the S334ter-3 Rat Model of Autosomal Dominant Retinitis Pigmentosa. Mol Ther 2016; 24:556-63. [PMID: 26666451 PMCID: PMC4786918 DOI: 10.1038/mt.2015.220] [Citation(s) in RCA: 217] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 12/05/2015] [Indexed: 11/09/2022] Open
Abstract
Reliable genome editing via Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)/Cas9 may provide a means to correct inherited diseases in patients. As proof of principle, we show that CRISPR/Cas9 can be used in vivo to selectively ablate the rhodopsin gene carrying the dominant S334ter mutation (Rho(S334)) in rats that model severe autosomal dominant retinitis pigmentosa. A single subretinal injection of guide RNA/Cas9 plasmid in combination with electroporation generated allele-specific disruption of Rho(S334), which prevented retinal degeneration and improved visual function.
Collapse
Affiliation(s)
- Benjamin Bakondi
- Board of Governors Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Wenjian Lv
- Board of Governors Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Current address: Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Bin Lu
- Board of Governors Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Melissa K Jones
- Board of Governors Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Yuchun Tsai
- Board of Governors Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Kevin J Kim
- Board of Governors Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Rachelle Levy
- Board of Governors Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Aslam Abbasi Akhtar
- Board of Governors Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Joshua J Breunig
- Board of Governors Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Clive N Svendsen
- Board of Governors Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Shaomei Wang
- Board of Governors Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
45
|
Trapani I, Banfi S, Simonelli F, Surace EM, Auricchio A. Gene therapy of inherited retinal degenerations: prospects and challenges. Hum Gene Ther 2016; 26:193-200. [PMID: 25762209 DOI: 10.1089/hum.2015.030] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Because of its favorable anatomical and immunological characteristics, the eye has been at the forefront of translational gene therapy. Dozens of promising proofs of concept have been obtained in animal models of inherited retinal degenerations (IRDs), and some of them have been relayed to the clinic. The results from the first clinical trials for a congenital form of blindness have generated great interest and have demonstrated the safety and efficacy of intraocular administrations of viral vectors in humans. However, this progress has also generated new questions and posed challenges that need to be addressed to further expand the applicability of gene therapy in the eye, including safe delivery of viral vectors to the outer retina, treatment of dominant IRDs as well as of IRDs caused by mutations in large genes, and, finally, selection of the appropriate IRDs and patients to maximize the efficacy of gene transfer. This review summarizes the strategies that are currently being exploited to overcome these challenges and drive the clinical development of retinal gene therapy.
Collapse
Affiliation(s)
- Ivana Trapani
- 1 Telethon Institute of Genetics and Medicine (TIGEM) , Pozzuoli, Naples 80078, Italy
| | | | | | | | | |
Collapse
|
46
|
Murray SF, Jazayeri A, Matthes MT, Yasumura D, Yang H, Peralta R, Watt A, Freier S, Hung G, Adamson PS, Guo S, Monia BP, LaVail MM, McCaleb ML. Allele-Specific Inhibition of Rhodopsin With an Antisense Oligonucleotide Slows Photoreceptor Cell Degeneration. Invest Ophthalmol Vis Sci 2016; 56:6362-75. [PMID: 26436889 DOI: 10.1167/iovs.15-16400] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
PURPOSE To preserve photoreceptor cell structure and function in a rodent model of retinitis pigmentosa with P23H rhodopsin by selective inhibition of the mutant rhodopsin allele using a second generation antisense oligonucleotide (ASO). METHODS Wild-type mice and rats were treated with ASO by intravitreal (IVT) injection and rhodopsin mRNA and protein expression were measured. Transgenic rats expressing the murine P23H rhodopsin gene (P23H transgenic rat Line 1) were administered either a mouse-specific P23H ASO or a control ASO. The contralateral eye was injected with PBS and used as a comparator control. Electroretinography (ERG) measurements and analyses of the retinal outer nuclear layer were conducted and correlated with rhodopsin mRNA levels. RESULTS Rhodopsin mRNA and protein expression was reduced after a single ASO injection in wild-type mice with a rhodopsin-specific ASO. Transgenic rat eyes that express a murine P23H rhodopsin gene injected with a murine P23H ASO had a 181 ± 39% better maximum amplitude response (scotopic a-wave) as compared with contralateral PBS-injected eyes; the response in control ASO eyes was not significantly different from comparator contralateral eyes. Morphometric analysis of the outer nuclear layer showed a significantly thicker nuclear layer in eyes injected with murine P23H ASO (18%) versus contralateral PBS-injected eyes. CONCLUSIONS Allele-specific ASO-mediated knockdown of mutant P23H rhodopsin expression slowed the rate of photoreceptor degeneration and preserved the function of photoreceptor cells in eyes of the P23H rhodopsin transgenic rat. Our data indicate that ASO treatment is a potentially effective therapy for the treatment of retinitis pigmentosa.
Collapse
Affiliation(s)
- Susan F Murray
- Isis Pharmaceuticals Carlsbad, California, United States
| | - Ali Jazayeri
- Isis Pharmaceuticals Carlsbad, California, United States
| | - Michael T Matthes
- University of California at San Francisco School of Medicine, Beckman Vision Center, San Francisco, California, United States
| | - Douglas Yasumura
- University of California at San Francisco School of Medicine, Beckman Vision Center, San Francisco, California, United States
| | - Haidong Yang
- University of California at San Francisco School of Medicine, Beckman Vision Center, San Francisco, California, United States
| | | | - Andy Watt
- Isis Pharmaceuticals Carlsbad, California, United States
| | - Sue Freier
- Isis Pharmaceuticals Carlsbad, California, United States
| | - Gene Hung
- Isis Pharmaceuticals Carlsbad, California, United States
| | | | - Shuling Guo
- Isis Pharmaceuticals Carlsbad, California, United States
| | - Brett P Monia
- Isis Pharmaceuticals Carlsbad, California, United States
| | - Matthew M LaVail
- University of California at San Francisco School of Medicine, Beckman Vision Center, San Francisco, California, United States
| | | |
Collapse
|
47
|
Conley SM, Whalen P, Lewin AS, Naash MI. Characterization of Ribozymes Targeting a Congenital Night Blindness Mutation in Rhodopsin Mutation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 854:509-15. [PMID: 26427453 DOI: 10.1007/978-3-319-17121-0_68] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The G90D mutation in the rhodopsin gene leads to autosomal dominant congenital stationary night blindness (CSNB) in patients. This occurs because the G90D mutant protein cannot efficiently bind chromophore and is constitutively active. To combat this mutation, we designed and characterized two different hammerhead ribozymes to cleave G90D transcript. In vitro testing showed that the G90D1 ribozyme efficiently and specifically cleaved the mutant transcript while G90D2 cleaved both WT and mutant transcript. AAV-mediated delivery of G90D1 under the control of the mouse opsin promoter (MOP500) to G90D transgenic eyes showed that the ribozyme partially retarded the functional degeneration (as measured by electroretinography [ERG]) associated with this mutation. These results suggest that with additional optimization, ribozymes may be a useful part of the gene therapy knockdown strategy for dominant retinal disease.
Collapse
Affiliation(s)
- Shannon M Conley
- Department of Cell Biology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd. BMSB 781, 73104, Oklahoma City, OK, USA.
| | - Patrick Whalen
- Department of Molecular Genetics and Microbiology, University of Florida, 32611, Gainesville, FL, USA
| | - Alfred S Lewin
- Department of Molecular Genetics and Microbiology, University of Florida, 32611, Gainesville, FL, USA.
| | - Muna I Naash
- Department of Cell Biology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd. BMSB 781, 73104, Oklahoma City, OK, USA.
| |
Collapse
|
48
|
Gene Therapy for MERTK-Associated Retinal Degenerations. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 854:487-93. [PMID: 26427450 DOI: 10.1007/978-3-319-17121-0_65] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
MERTK-associated retinal degenerations are thought to have defects in phagocytosis of shed outer segment membranes by the retinal pigment epithelium (RPE), as do the rodent models of these diseases. We have subretinally injected an RPE-specific AAV2 vector, AAV2-VMD2-hMERTK, to determine whether this would provide long-term photoreceptor rescue in the RCS rat, which it did for up to 6.5 months, the longest time point examined. Moreover, we found phagosomes in the RPE in the rescued regions of RCS retinas soon after the onset of light. The same vector also had a major protective effect in Mertk-null mice, with a concomitant increase in ERG response amplitudes in the vector-injected eyes. These findings suggest that planned clinical trials with this vector will have a favorable outcome.
Collapse
|
49
|
Long time remodeling during retinal degeneration evaluated by optical coherence tomography, immunocytochemistry and fundus autofluorescence. Exp Eye Res 2015; 150:122-34. [PMID: 26521765 DOI: 10.1016/j.exer.2015.10.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 10/13/2015] [Accepted: 10/15/2015] [Indexed: 01/16/2023]
Abstract
PURPOSE To characterize the relationship between fundus autofluorescence (FAF), Optical Coherence Tomography (OCT) and immunohistochemistry (IHC) over the course of chronic retinal degeneration in the P23H rat. METHODS Homozygous albino P23H rats, Sprague-Dawley (SD) rats as controls and pigmented Long Evans (LE) rats were used. A Spectralis HRA OCT system was used for scanning laser ophthalmoscopy (SLO) imaging OCT and angiography. To determine FAF, fluorescence was excited using diode laser at 488 nm. A fast retina map OCT was performed using the optic nerve as a landmark. IHC was performed to correlate with the findings of OCT and FAF changes. RESULTS During the course of retinal degeneration, the FAF pattern evolved from some spotting at 2 months old to a mosaic of hyperfluorescent dots in rats 6 months and older. Retinal thicknesses progressively diminished over the course of the disease. At later stages of degeneration, OCT documented changes in the retinal layers, however, IHC better identified the cell loss and remodeling changes. Angiography revealed attenuation of the retinal vascular plexus with time. CONCLUSION We provide for the first time a detailed long-term analysis of the course of retinal degeneration in P23H rats using a combination of SLO and OCT imaging, angiography, FAF and IHC. Although, the application of noninvasive methods enables longitudinal studies and will decrease the number of animals needed for a study, IHC is still an essential tool to identify retinal changes at the cellular level.
Collapse
|
50
|
Retinal gene delivery by adeno-associated virus (AAV) vectors: Strategies and applications. Eur J Pharm Biopharm 2015; 95:343-52. [DOI: 10.1016/j.ejpb.2015.01.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 01/10/2015] [Accepted: 01/12/2015] [Indexed: 11/20/2022]
|