1
|
Padhy A, Das P, Mahadik NS, Panda S, Anas M, Das S, Banerjee R, Sen Gupta S. Design and synthesis of a shikimoyl-functionalized cationic di-block copolypeptide for cancer cell specific gene transfection. J Mater Chem B 2024; 12:8952-8965. [PMID: 39171401 DOI: 10.1039/d4tb01233j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Targeted and efficient gene delivery systems hold tremendous potential for the improvement of cancer therapy by enabling appropriate modification of biological processes. Herein, we report the design and synthesis of a novel cationic di-block copolypeptide, incorporating homoarginine (HAG) and shikimoyl (LSA) functionalities (HDA-b-PHAGm-b-PLSAn), tailored for enhanced gene transfection specifically in cancer cells. The di-block copolypeptide was synthesized via sequential N-carboxyanhydride (NCA) ring-opening polymerization (ROP) techniques and its physicochemical properties were characterized, including molecular weight, dispersity, secondary conformation, size, morphology, and surface charge. In contrast to the cationic poly-L-homoarginine, we observed a significantly reduced cytotoxic effect of this di-block copolypeptide due to the inclusion of the shikimoyl glyco-polypeptide block, which also added selectivity in internalizing particular cells. This di-block copolypeptide was internalized via mannose-receptor-mediated endocytosis, which was investigated by competitive receptor blocking with mannan. We evaluated the transfection efficiency of the copolypeptide in HEK 293T (noncancerous cells), MDA-MB-231 (breast cancer cells), and RAW 264.7 (dendritic cells) and compared it with commonly employed transfection agents (Lipofectamine). Our findings demonstrate that the homoarginine and shikimoyl-functionalized cationic di-block copolypeptide exhibits potent gene transfection capabilities with minimal cytotoxic effects, particularly in cancer cells, while it is ineffective for normal cells, indicative of its potential as a promising platform for cancer cell-specific gene delivery systems. To evaluate this, we delivered an artificially designed miRNA-plasmid against Hsp90 (amiR-Hsp90) which upon successful transfection depleted the Hsp90 (a chaperone protein responsible for tumour growth) level specifically in cancerous cells and enforced apoptosis. This innovative approach offers a new avenue for the development of targeted therapeutics with an improved efficacy and safety profile in cancer treatment.
Collapse
Affiliation(s)
- Abinash Padhy
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246, India.
| | - Pritam Das
- Department of Oils, Lipids Science and Technology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India.
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad 201002, India
| | - Namita S Mahadik
- Department of Oils, Lipids Science and Technology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India.
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad 201002, India
| | - Sidharth Panda
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246, India.
| | - Mahammad Anas
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| | - Sabyasachi Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246, India.
| | - Rajkumar Banerjee
- Department of Oils, Lipids Science and Technology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India.
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad 201002, India
| | - Sayam Sen Gupta
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246, India.
| |
Collapse
|
2
|
Xie R, Li J, Zhao M, Wu F. Recent advances in the development of poly(ester amide)s-based carriers for drug delivery. Saudi Pharm J 2024; 32:102123. [PMID: 38911279 PMCID: PMC11190562 DOI: 10.1016/j.jsps.2024.102123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/31/2024] [Indexed: 06/25/2024] Open
Abstract
Biodegradable and biocompatible biomaterials have several important applications in drug delivery. The biomaterial family known as poly(ester amide)s (PEAs) has garnered considerable interest because it exhibits the benefits of both polyester and polyamide, as well as production from readily available raw ingredients and sophisticated synthesis techniques. Specifically, α-amino acid-based PEAs (AA-PEAs) are promising carriers because of their structural flexibility, biocompatibility, and biodegradability. Herein, we summarize the latest applications of PEAs in drug delivery systems, including antitumor, gene therapy, and protein drugs, and discuss the prospects of drug delivery based on PEAs, which provides a reference for designing safe and efficient drug delivery carriers.
Collapse
Affiliation(s)
- Rui Xie
- Department of Pharmacy, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China
| | - Jiang Li
- Department of Pharmacy, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China
| | - Min Zhao
- Department of Pharmacy, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China
| | - Fan Wu
- Department of Pharmacy, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China
| |
Collapse
|
3
|
Gu W, An J, Li Y, Yang Y, Wang S, Shan H, Li S, Li H, Liu G, Li K, Yin Y, Mu J, Chen X. Tuning the Organ Tropism of Polymersome for Spleen-Selective Nanovaccine Delivery to Boost Cancer Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301686. [PMID: 37165781 DOI: 10.1002/adma.202301686] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/08/2023] [Indexed: 05/12/2023]
Abstract
The past few decades have witnessed explosive development in drug delivery systems. However, in vivo delivery suffers from non-specific distribution in non-targeted organs or tissues, which may cause undesired side effects and even genotoxicity. Here, a general strategy that enables tuning the tropism of polymersomes for liver- and spleen-selective delivery is reported. By using a library screening approach, spleen-targeted polymersome PH9-Aln-8020 and liver-targeted polymersome PA9-ZP3-5050 are identified accordingly. Meanwhile, the second near-infrared (NIR-II) fluorescence imaging allows for in vivo dynamic evaluation of their spatial and temporal accumulation in specific tissues. O ur findings indicate that both polymer composition and protein corona on the surface are essential to determine the in vivo fate of polymersomes and tendency for specific organs. Importantly, PH9-Aln-8020 is employed as a systemic nanocarrier to co-deliver the antigen and adjuvant, which remarkably boost splenic immune responses in acute myeloid leukemia, melanoma, and melanoma lung metastasis mouse models. This study may open a new frontier for polymersomes in organ-selective delivery and other biomedical applications.
Collapse
Affiliation(s)
- Wenxing Gu
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036, P. R. China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, Biomedical Engineering, Yong Loo Lin School of Medicine, College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Jingnan An
- The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation of Soochow University, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215123, P. R. China
| | - Yaxi Li
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Yajie Yang
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036, P. R. China
| | - Shumin Wang
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036, P. R. China
| | - Hui Shan
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036, P. R. China
| | - Shenhua Li
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036, P. R. China
| | - Hui Li
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036, P. R. China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, Biomedical Engineering, Yong Loo Lin School of Medicine, College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Guoyong Liu
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036, P. R. China
| | - Kai Li
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Yuxin Yin
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036, P. R. China
| | - Jing Mu
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036, P. R. China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, Biomedical Engineering, Yong Loo Lin School of Medicine, College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| |
Collapse
|
4
|
Czuba-Wojnilowicz E, Klemm V, Cortez-Jugo C, Turville S, Aggarwal A, Caruso F, Kelleher AD, Ahlenstiel CL. Layer-by-Layer Particles Deliver Epigenetic Silencing siRNA to HIV-1 Latent Reservoir Cell Types. Mol Pharm 2023; 20:2039-2052. [PMID: 36848493 DOI: 10.1021/acs.molpharmaceut.2c01030] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
For over two decades, nanomaterials have been employed to facilitate intracellular delivery of small interfering RNA (siRNA), both in vitro and in vivo, to induce post-transcriptional gene silencing (PTGS) via RNA interference. Besides PTGS, siRNAs are also capable of transcriptional gene silencing (TGS) or epigenetic silencing, which targets the gene promoter in the nucleus and prevents transcription via repressive epigenetic modifications. However, silencing efficiency is hampered by poor intracellular and nuclear delivery. Here, polyarginine-terminated multilayered particles are reported as a versatile system for the delivery of TGS-inducing siRNA to potently suppress virus transcription in HIV-infected cells. siRNA is complexed with multilayered particles formed by layer-by-layer assembly of poly(styrenesulfonate) and poly(arginine) and incubated with HIV-infected cell types, including primary cells. Using deconvolution microscopy, uptake of fluorescently labeled siRNA is observed in the nuclei of HIV-1 infected cells. Viral RNA and protein are measured to confirm functional virus silencing from siRNA delivered using particles 16 days post-treatment. This work extends conventional particle-enabled PTGS siRNA delivery to the TGS pathway and paves the way for future studies on particle-delivered siRNA for efficient TGS of various diseases and infections, including HIV.
Collapse
Affiliation(s)
- Ewa Czuba-Wojnilowicz
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Vera Klemm
- Kirby Institute, UNSW Medicine, Sydney, New South Wales 2052, Australia
| | - Christina Cortez-Jugo
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Stuart Turville
- Kirby Institute, UNSW Medicine, Sydney, New South Wales 2052, Australia
| | - Anupriya Aggarwal
- Kirby Institute, UNSW Medicine, Sydney, New South Wales 2052, Australia
| | - Frank Caruso
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Anthony D Kelleher
- Kirby Institute, UNSW Medicine, Sydney, New South Wales 2052, Australia.,UNSW RNA Institute, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Chantelle L Ahlenstiel
- Kirby Institute, UNSW Medicine, Sydney, New South Wales 2052, Australia.,UNSW RNA Institute, UNSW Sydney, Sydney, New South Wales 2052, Australia
| |
Collapse
|
5
|
Gouveia MG, Wesseler JP, Ramaekers J, Weder C, Scholten PBV, Bruns N. Polymersome-based protein drug delivery - quo vadis? Chem Soc Rev 2023; 52:728-778. [PMID: 36537575 PMCID: PMC9890519 DOI: 10.1039/d2cs00106c] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Indexed: 12/24/2022]
Abstract
Protein-based therapeutics are an attractive alternative to established therapeutic approaches and represent one of the fastest growing families of drugs. While many of these proteins can be delivered using established formulations, the intrinsic sensitivity of proteins to denaturation sometimes calls for a protective carrier to allow administration. Historically, lipid-based self-assembled structures, notably liposomes, have performed this function. After the discovery of polymersome-based targeted drug-delivery systems, which offer manifold advantages over lipid-based structures, the scientific community expected that such systems would take the therapeutic world by storm. However, no polymersome formulations have been commercialised. In this review article, we discuss key obstacles for the sluggish translation of polymersome-based protein nanocarriers into approved pharmaceuticals, which include limitations imparted by the use of non-degradable polymers, the intricacies of polymersome production methods, and the complexity of the in vivo journey of polymersomes across various biological barriers. Considering this complex subject from a polymer chemist's point of view, we highlight key areas that are worthy to explore in order to advance polymersomes to a level at which clinical trials become worthwhile and translation into pharmaceutical and nanomedical applications is realistic.
Collapse
Affiliation(s)
- Micael G Gouveia
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, UK
| | - Justus P Wesseler
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, UK
| | - Jobbe Ramaekers
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, UK
| | - Christoph Weder
- Adolphe Merkle Institute, Chemin des Verdiers 4, 1700 Fribourg, Switzerland.
| | - Philip B V Scholten
- Adolphe Merkle Institute, Chemin des Verdiers 4, 1700 Fribourg, Switzerland.
| | - Nico Bruns
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, UK
- Department of Chemistry, Technical University of Darmstadt, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany.
| |
Collapse
|
6
|
Monte Carlo Simulation of Static and Dynamic Properties of Linear Polymer in a Crowded Environment. ADVANCES IN POLYMER TECHNOLOGY 2022. [DOI: 10.1155/2022/6707429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In this paper, we investigate the static and dynamic properties of linear polymer in the presence of obstacles. A Monte Carlo (MC) simulation method in two dimensions with a bond fluctuation model (BFM) was used to achieve this goal. To overcome the entropic barrier, we put the middle monomer of the polymer in the middle of the pore, which is placed between ordered and disordered obstacles. We probed the static properties of the polymer by calculating the mean square of the radius of gyration and the mean square end-to-end distance of the polymer, and we found that the scaling exponents of both the mean square end-to-end distance
and the mean square radius of gyration
as a function of the polymer length
vary with the area fraction of crowding agents,
. The dynamic properties have also been studied by exploring the translocation of the polymer. Our current research shows that the escape time
increases as
increases. Moreover, in the power-law relation of escape time
as a function of polymer length
, the scaling exponent (
) changes with
. Furthermore, the study has shown that the translocation of the polymer favors the disordered barriers.
Collapse
|
7
|
Dhawan S, Singh H, Dutta S, Haridas V. Designer peptides as versatile building blocks for functional materials. Bioorg Med Chem Lett 2022; 68:128733. [PMID: 35421579 DOI: 10.1016/j.bmcl.2022.128733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/04/2022] [Accepted: 04/08/2022] [Indexed: 11/02/2022]
Abstract
Peptides and pseudopeptides show distinct self-assembled nanostructures such as fibers, nanotubes, vesicles, micelles, toroids, helices and rods. The formation of such molecular communities through the collective behavior of molecules is not fully understood at a molecular level. All these self-assembled nanostructured materials have a wide range of applications such as drug delivery, gene delivery, biosensing, bioimaging, catalysis, tissue engineering, nano-electronics and sensing. Self-assembly is one of the most efficient and a simple strategy to generate complex functional materials. Owing to its significance, the last few decades witnessed a remarkable advancement in the field of self-assembling peptides with a plethora of new designer synthetic systems being discovered. These systems range from amphiphilic, cyclic, linear and polymeric peptides. This article presents only selected examples of such self-assembling peptides and pseudopeptides.
Collapse
Affiliation(s)
- Sameer Dhawan
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Hanuman Singh
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Souvik Dutta
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - V Haridas
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India.
| |
Collapse
|
8
|
Tanaka T, Kuroiwa K. Supramolecular Hybrids from Cyanometallate Complexes and Diblock Copolypeptide Amphiphiles in Water. Molecules 2022; 27:3262. [PMID: 35630738 PMCID: PMC9143414 DOI: 10.3390/molecules27103262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 11/20/2022] Open
Abstract
The self-assembly of discrete cyanometallates has attracted significant interest due to the potential of these materials to undergo soft metallophilic interactions as well as their optical properties. Diblock copolypeptide amphiphiles have also been investigated concerning their capacity for self-assembly into morphologies such as nanostructures. The present work combined these two concepts by examining supramolecular hybrids comprising cyanometallates with diblock copolypeptide amphiphiles in aqueous solutions. Discrete cyanometallates such as [Au(CN)2]-, [Ag(CN)2]-, and [Pt(CN)4]2- dispersed at the molecular level in water cannot interact with each other at low concentrations. However, the results of this work demonstrate that the addition of diblock copolypeptide amphiphiles such as poly-(L-lysine)-block-(L-cysteine) (Lysm-b-Cysn) to solutions of these complexes induces the supramolecular assembly of the discrete cyanometallates, resulting in photoluminescence originating from multinuclear complexes with metal-metal interactions. Electron microscopy images confirmed the formation of nanostructures of several hundred nanometers in size that grew to form advanced nanoarchitectures, including those resembling the original nanostructures. This concept of combining diblock copolypeptide amphiphiles with discrete cyanometallates allows the design of flexible and functional supramolecular hybrid systems in water.
Collapse
Affiliation(s)
| | - Keita Kuroiwa
- Department of Nanoscience, Faculty of Engineering, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan;
| |
Collapse
|
9
|
Micro- and Nanocapsules Based on Artificial Peptides. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27041373. [PMID: 35209164 PMCID: PMC8875475 DOI: 10.3390/molecules27041373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 02/03/2023]
Abstract
The encapsulation of active ingredients into solid capsules from biodegradable materials has received significant attention over the last decades. In this short review, we focus on the formation of micro- and nano-sized capsules and emulsions based on artificial peptides as a fully degradable material. It deals with various approaches for the preparation of peptide-based capsules as well as with their crucial properties such as size and stability. We categorize all preparation procedures into three basic approaches: self-assembly, polymerization and crosslinking, and layer-by-layer technology. This article is meant to offer a short overview over all successful methods suitable for obtaining access to these very promising carrier systems.
Collapse
|
10
|
Wu Y, Chen K, Wu X, Liu L, Zhang W, Ding Y, Liu S, Zhou M, Shao N, Ji Z, Chen J, Zhu M, Liu R. Superfast and Water-Insensitive Polymerization on α-Amino Acid N-Carboxyanhydrides to Prepare Polypeptides Using Tetraalkylammonium Carboxylate as the Initiator. Angew Chem Int Ed Engl 2021; 60:26063-26071. [PMID: 34569145 DOI: 10.1002/anie.202103540] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 09/23/2021] [Indexed: 01/16/2023]
Abstract
We design the tetraalkylammonium carboxylate-initiated superfast polymerization on α-amino acid N-carboxyanhydrides (NCA) for efficient synthesis of polypeptides. Carboxylates, as a new class of initiator for NCA polymerization, can initiate the superfast NCA polymerization without the need of extra catalysts and the polymerization can be operated in open vessels at ambient condition without the use of glove box. Tetraalkylammonium carboxylate-initiated polymerization on NCA easily affords block copolymers with at least 15 blocks. Moreover, this method avoids tedious purification steps and enables direct polymerization on crude NCAs in aqueous environments to prepare polypeptides and one-pot synthesis of polypeptide nanoparticles. These advantages and the mild polymerization condition of tetraalkylammonium carboxylate-initiated NCA polymerization imply its great potential in functional exploration and application of polypeptides.
Collapse
Affiliation(s)
- Yueming Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Kang Chen
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China
| | - Xue Wu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China
| | - Longqiang Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China
| | - Weiwei Zhang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China
| | - Yun Ding
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Shiqi Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China
| | - Min Zhou
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China
| | - Ning Shao
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhemin Ji
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China
| | - Jiacheng Chen
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Minghui Zhu
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Runhui Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.,Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
11
|
Wu Y, Chen K, Wu X, Liu L, Zhang W, Ding Y, Liu S, Zhou M, Shao N, Ji Z, Chen J, Zhu M, Liu R. Superfast and Water‐Insensitive Polymerization on α‐Amino Acid
N
‐Carboxyanhydrides to Prepare Polypeptides Using Tetraalkylammonium Carboxylate as the Initiator. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yueming Wu
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology Shanghai 200237 China
| | - Kang Chen
- Key Laboratory for Ultrafine Materials of Ministry of Education Frontiers Science Center for Materiobiology and Dynamic Chemistry Research Center for Biomedical Materials of Ministry of Education East China University of Science and Technology Shanghai 200237 China
| | - Xue Wu
- Key Laboratory for Ultrafine Materials of Ministry of Education Frontiers Science Center for Materiobiology and Dynamic Chemistry Research Center for Biomedical Materials of Ministry of Education East China University of Science and Technology Shanghai 200237 China
| | - Longqiang Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education Frontiers Science Center for Materiobiology and Dynamic Chemistry Research Center for Biomedical Materials of Ministry of Education East China University of Science and Technology Shanghai 200237 China
| | - Weiwei Zhang
- Key Laboratory for Ultrafine Materials of Ministry of Education Frontiers Science Center for Materiobiology and Dynamic Chemistry Research Center for Biomedical Materials of Ministry of Education East China University of Science and Technology Shanghai 200237 China
| | - Yun Ding
- Shanghai Key Laboratory of Advanced Polymeric Materials School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| | - Shiqi Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education Frontiers Science Center for Materiobiology and Dynamic Chemistry Research Center for Biomedical Materials of Ministry of Education East China University of Science and Technology Shanghai 200237 China
| | - Min Zhou
- Key Laboratory for Ultrafine Materials of Ministry of Education Frontiers Science Center for Materiobiology and Dynamic Chemistry Research Center for Biomedical Materials of Ministry of Education East China University of Science and Technology Shanghai 200237 China
| | - Ning Shao
- Key Laboratory for Ultrafine Materials of Ministry of Education Frontiers Science Center for Materiobiology and Dynamic Chemistry Research Center for Biomedical Materials of Ministry of Education East China University of Science and Technology Shanghai 200237 China
| | - Zhemin Ji
- Key Laboratory for Ultrafine Materials of Ministry of Education Frontiers Science Center for Materiobiology and Dynamic Chemistry Research Center for Biomedical Materials of Ministry of Education East China University of Science and Technology Shanghai 200237 China
| | - Jiacheng Chen
- School of Chemical Engineering East China University of Science and Technology Shanghai 200237 China
| | - Minghui Zhu
- School of Chemical Engineering East China University of Science and Technology Shanghai 200237 China
| | - Runhui Liu
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology Shanghai 200237 China
- Key Laboratory for Ultrafine Materials of Ministry of Education Frontiers Science Center for Materiobiology and Dynamic Chemistry Research Center for Biomedical Materials of Ministry of Education East China University of Science and Technology Shanghai 200237 China
| |
Collapse
|
12
|
Zheng Y, Wang Z, Li Z, Liu H, Wei J, Peng C, Zhou Y, Li J, Fu Q, Tan H, Ding M. Ordered Conformation‐Regulated Vesicular Membrane Permeability. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yi Zheng
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
| | - Zuojie Wang
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
| | - Zifen Li
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
| | - Hang Liu
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
| | - Jing Wei
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
| | - Chuan Peng
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
| | - Yeqiang Zhou
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
| | - Jianshu Li
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
| | - Qiang Fu
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
| | - Hong Tan
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
| | - Mingming Ding
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
| |
Collapse
|
13
|
Zheng Y, Wang Z, Li Z, Liu H, Wei J, Peng C, Zhou Y, Li J, Fu Q, Tan H, Ding M. Ordered Conformation-Regulated Vesicular Membrane Permeability. Angew Chem Int Ed Engl 2021; 60:22529-22536. [PMID: 34390299 DOI: 10.1002/anie.202109637] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Indexed: 11/07/2022]
Abstract
In nature, the folding and conformation of proteins can control the cell or organelle membrane permeability and regulate the life activities. Here we report the first example of synthetic polypeptide vesicles that regulate their permeability via ordered transition of secondary conformations, in a manner similar to biological systems. The polymersomes undergo a β-sheet to α-helix transition in response to reactive oxygen species (ROS), leading to wall thinning without loss of vesicular integrity. The change of membrane structure increases the vesicular permeability and enables specific transport of payloads with different molecular weights.The change of membrane structure increases the vesicular permeability. As a proof-of-concept, the polymersomes encapsulating enzymes could serve as nanoreactors and carries for glucose-stimulated insulin secretion in vivo inspired by human glucokinase, resulting in safe and effective treatment of type 1 diabetes mellitus in mouse models. This study will help understand the biology of biomembranes and facilitate the engineering of nanoplatforms for biomimicry, biosensing, and controlled delivery applications.
Collapse
Affiliation(s)
- Yi Zheng
- Sichuan University, College of Polymer Science and Engineering, 5805, CHINA
| | - Zuojie Wang
- Sichuan University, College of Polymer Science and Engineering, CHINA
| | - Zifen Li
- Sichuan University, College of Polymer Science and Engineering, CHINA
| | - Hang Liu
- Sichuan University, College of Polymer Science and Engineering, CHINA
| | - Jing Wei
- Sichuan University, College of Polymer Science and Engineering, CHINA
| | - Chuan Peng
- Sichuan University, College of Polymer Science and Engineering, CHINA
| | - Yeqiang Zhou
- Sichuan University, College of Polymer Science and Engineering, CHINA
| | - Jianshu Li
- Sichuan University, College of Polymer Science and Engineering, CHINA
| | - Qiang Fu
- Sichuan University, College of Polymer Science and Engineering, CHINA
| | - Hong Tan
- Sichuan University, College of Polymer Science and Engineering, CHINA
| | - Mingming Ding
- Sichuan University, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, 610065, Chengdu, CHINA
| |
Collapse
|
14
|
Pei X, Liu J, Rao W, Ma X, Li Z. CO 2-Switchable Reversible Phase Transfer of Carbon Dots. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c01287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Xiaoyan Pei
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, P. R. China
| | - Jiang Liu
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, P. R. China
| | - Weihao Rao
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, P. R. China
| | - Xiantao Ma
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, P. R. China
| | - Zhiyong Li
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| |
Collapse
|
15
|
Hango CR, Backlund CM, Davis HC, Posey ND, Minter LM, Tew GN. Non-Covalent Carrier Hydrophobicity as a Universal Predictor of Intracellular Protein Activity. Biomacromolecules 2021; 22:2850-2863. [PMID: 34156837 DOI: 10.1021/acs.biomac.1c00242] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Over the past decade, extensive optimization of polymeric cell-penetrating peptide (CPP) mimics (CPPMs) by our group has generated a substantial library of broadly effective carriers which circumvent the need for covalent conjugation often required by CPPs. In this study, design rules learned from CPPM development were applied to reverse-engineer the first library of simple amphiphilic block copolypeptides for non-covalent protein delivery, namely, poly(alanine-block-arginine), poly(phenylalanine-block-arginine), and poly(tryptophan-block-arginine). This new CPP library was screened for enhanced green fluorescent protein and Cre recombinase delivery alongside a library of CPPMs featuring equivalent side-chain configurations. Due to the added hydrophobicity imparted by the polymer backbone as compared to the polypeptide backbone, side-chain functionality was not a universal predictor of carrier performance. Rather, overall carrier hydrophobicity predicted the top performers for both internalization and activity of protein cargoes, regardless of backbone identity. Furthermore, comparison of protein uptake and function revealed carriers which facilitated high gene recombination despite remarkably low Cre internalization, leading us to formalize the concept of intracellular availability (IA) of the delivered cargo. IA, a measure of cargo activity per quantity of cargo internalized, provides valuable insight into the physical relationship between cellular internalization and bioavailability, which can be affected by bottlenecks such as endosomal escape and cargo release. Importantly, carriers with maximal IA existed within a narrow hydrophobicity window, more hydrophilic than those exhibiting maximal cargo uptake. Hydrophobicity may be used as a scaffold-independent predictor of protein uptake, function, and IA, enabling identification of new, effective carriers which would be overlooked by uptake-based screening methods.
Collapse
Affiliation(s)
- Christopher R Hango
- Department of Polymer Science & Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Coralie M Backlund
- Department of Polymer Science & Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Hazel C Davis
- Department of Polymer Science & Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Nicholas D Posey
- Department of Polymer Science & Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Lisa M Minter
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States.,Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, Untied States
| | - Gregory N Tew
- Department of Polymer Science & Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States.,Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States.,Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, Untied States
| |
Collapse
|
16
|
Fujita S, Tsuchiya K, Numata K. All-Peptide-Based Polyion Complex Vesicles: Facile Preparation and Encapsulation of the Protein in Active Form. ACS POLYMERS AU 2021; 1:30-38. [PMID: 36855555 PMCID: PMC9954412 DOI: 10.1021/acspolymersau.1c00008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The polyion complex vesicle (PICsome) is a promising platform for bioactive molecule delivery as well as nanoreactor systems. In addition to anionic and cationic charged blocks, a hydrophilic poly(ethylene glycol) (PEG) block is mostly employed for PICsome formation; however, the long-term safety of the PEG component in vivo is yet to be clarified. In this study, we developed novel PEG-free PICsome comprising all peptide components. Instead of the PEG block, we selected the sarcosine (Sar) oligomer as a hydrophilic block and fused it with anionic oligo(l-glutamic acid). Mixing the Sar-containing anionic peptide with cationic oligo(l-lysine) resulted in the formation of stable vesicles. The peptide-based PICsome was able to encapsulate a model protein in its hollow structure. After modification of the surface with a cell-penetrating peptide, the protein-encapsulated PICsome was successfully delivered into plant cells, indicating its promised for application as a biocompatible carrier for protein delivery.
Collapse
Affiliation(s)
- Seiya Fujita
- Department
of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kousuke Tsuchiya
- Department
of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan,
| | - Keiji Numata
- Department
of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan,Biomacromolecules
Research Team, RIKEN Center for Sustainable
Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan,
| |
Collapse
|
17
|
Yu H, Tong Z, Bai T, Mao Z, Ni X, Ling J. Self‐crosslinked
poly‐L
‐ornithine and
poly‐L
‐arginine networks: Synthesis, characterization,
pH
‐responsibility, biocompatibility, and
AIE
‐functionality. J Appl Polym Sci 2021. [DOI: 10.1002/app.50802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Haixiang Yu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| | - Zongrui Tong
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| | - Tianwen Bai
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| | - Xufeng Ni
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| | - Jun Ling
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| |
Collapse
|
18
|
Wang Y, Zavradashvili N, Wang Y, Pietropaolo A, Song Z, Bando M, Katsarava R, Nakano T. Optically Active Polymers with Cationic Units Connected through Neutral Spacers: Helical Conformation and Chirality Transfer to External Molecules. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c02199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yuting Wang
- Institute for Catalysis (ICAT), Hokkaido University, N21W10, Kita-ku, Sapporo 001-0021, Japan
| | - Nino Zavradashvili
- Institute for Catalysis (ICAT), Hokkaido University, N21W10, Kita-ku, Sapporo 001-0021, Japan
- Institute of Chemistry & Molecular Engineering, Agricultural University of Georgia, K. Bendukidze Campus at Digomi, 240, David Aghmashenebeli Alley, Tbilisi 0159, Georgia
| | - Yue Wang
- Institute for Catalysis (ICAT), Hokkaido University, N21W10, Kita-ku, Sapporo 001-0021, Japan
| | - Adriana Pietropaolo
- Dipartimento di Scienze della Salute, Università di Catanzaro, Catanzaro 88100, Italy
| | - Zhiyi Song
- Institute for Catalysis (ICAT), Hokkaido University, N21W10, Kita-ku, Sapporo 001-0021, Japan
| | - Masayoshi Bando
- Institute for Catalysis (ICAT), Hokkaido University, N21W10, Kita-ku, Sapporo 001-0021, Japan
| | - Ramaz Katsarava
- Institute of Chemistry & Molecular Engineering, Agricultural University of Georgia, K. Bendukidze Campus at Digomi, 240, David Aghmashenebeli Alley, Tbilisi 0159, Georgia
| | - Tamaki Nakano
- Institute for Catalysis (ICAT), Hokkaido University, N21W10, Kita-ku, Sapporo 001-0021, Japan
- Integrated Research Consortium on Chemical Sciences (IRCCS), Institute for Catalysis, Hokkaido University, N21W10, Kita-ku, Sapporo 001-0021, Japan
| |
Collapse
|
19
|
Designing peptide nanoparticles for efficient brain delivery. Adv Drug Deliv Rev 2020; 160:52-77. [PMID: 33031897 DOI: 10.1016/j.addr.2020.10.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/28/2020] [Accepted: 10/01/2020] [Indexed: 12/12/2022]
Abstract
The targeted delivery of therapeutic compounds to the brain is arguably the most significant open problem in drug delivery today. Nanoparticles (NPs) based on peptides and designed using the emerging principles of molecular engineering show enormous promise in overcoming many of the barriers to brain delivery faced by NPs made of more traditional materials. However, shortcomings in our understanding of peptide self-assembly and blood-brain barrier (BBB) transport mechanisms pose significant obstacles to progress in this area. In this review, we discuss recent work in engineering peptide nanocarriers for the delivery of therapeutic compounds to the brain: from synthesis, to self-assembly, to in vivo studies, as well as discussing in detail the biological hurdles that a nanoparticle must overcome to reach the brain.
Collapse
|
20
|
Castelletto V, Seitsonen J, Ruokolainen J, Piras C, Cramer R, Edwards-Gayle CJC, Hamley IW. Peptide nanotubes self-assembled from leucine-rich alpha helical surfactant-like peptides. Chem Commun (Camb) 2020; 56:11977-11980. [PMID: 33033814 DOI: 10.1039/d0cc04299d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The designed arginine-rich surfactant-like peptide R3L12 (arginine3-leucine12) is shown to form a remarkable diversity of self-assembled nanostructures in aqueous solution, depending on pH, including nanotubes, mesh-like tubular networks in three-dimensions and square planar arrays in two-dimensions. These structures are built from α-helical antiparallel coiled-coil peptide dimers arranged perpendicular to the nanotube axis, in a "cross-α" nanotube structure. The aggregation behavior is rationalized based on the effects of dimensionality, and the balance of hydrophobic and electrostatic interactions. The nanotube and nanomesh structures display arginine at high density on their surfaces, which may be valuable for future applications.
Collapse
Affiliation(s)
- Valeria Castelletto
- Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, UK.
| | | | | | | | | | | | | |
Collapse
|
21
|
Liu X, Zhang Q, Knoll W, Liedberg B, Wang Y. Rational Design of Functional Peptide-Gold Hybrid Nanomaterials for Molecular Interactions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2000866. [PMID: 32743897 DOI: 10.1002/adma.202000866] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/21/2020] [Indexed: 05/12/2023]
Abstract
Gold nanoparticles (AuNPs) have been extensively used for decades in biosensing-related development due to outstanding optical properties. Peptides, as newly realized functional biomolecules, are promising candidates of replacing antibodies, receptors, and substrates for specific molecular interactions. Both peptides and AuNPs are robust and easily synthesized at relatively low cost. Hence, peptide-AuNP-based bio-nano-technological approaches have drawn increasing interest, especially in the field of molecular targeting, cell imaging, drug delivery, and therapy. Many excellent works in these areas have been reported: demonstrating novel ideas, exploring new targets, and facilitating advanced diagnostic and therapeutic technologies. Importantly, some of them also have been employed to address real practical problems, especially in remote and less privileged areas. This contribution focuses on the application of peptide-gold hybrid nanomaterials for various molecular interactions, especially in biosensing/diagnostics and cell targeting/imaging, as well as for the development of highly active antimicrobial/antifouling coating strategies. Rationally designed peptide-gold nanomaterials with functional properties are discussed along with future challenges and opportunities.
Collapse
Affiliation(s)
- Xiaohu Liu
- School of Biomedical Engineering, School of Ophthalmology & Optometry, Wenzhou Medical University, Xueyuan Road 270, Wenzhou, 325027, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Xinsan Road 16, Wenzhou, 325001, China
| | - Qingwen Zhang
- School of Biomedical Engineering, School of Ophthalmology & Optometry, Wenzhou Medical University, Xueyuan Road 270, Wenzhou, 325027, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Xinsan Road 16, Wenzhou, 325001, China
| | - Wolfgang Knoll
- Austrian Institute of Technology, Giefinggasse 4, Vienna, 1210, Austria
| | - Bo Liedberg
- Centre for Biomimetic Sensor Science, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Yi Wang
- School of Biomedical Engineering, School of Ophthalmology & Optometry, Wenzhou Medical University, Xueyuan Road 270, Wenzhou, 325027, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Xinsan Road 16, Wenzhou, 325001, China
| |
Collapse
|
22
|
Nisoh N, Jarerattanachat V, Karttunen M, Wong-Ekkabut J. Formation of aggregates, icosahedral structures and percolation clusters of fullerenes in lipids bilayers: The key role of lipid saturation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183328. [PMID: 32343957 DOI: 10.1016/j.bbamem.2020.183328] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/17/2020] [Accepted: 04/22/2020] [Indexed: 02/07/2023]
Abstract
Carbon nanoparticles (CNPs) are attractive materials for a great number of applications but there are serious concerns regarding their influence on health and environment. Here, our focus is on the behavior of fullerenes in lipid bilayers with varying lipid saturations, chain lengths and fullerene concentrations using coarse-grained molecular dynamics (CG-MD) simulations. Our findings show that the lipid saturation level is a key factor in determining how fullerenes behave and where the fullerenes are located inside a lipid bilayer. In saturated and monounsaturated bilayers fullerenes aggregated and formed clusters with some of them showing icosahedral structures. In polyunsaturated lipid bilayers, no such structures were observed: In polyunsaturated lipid bilayers at high fullerene concentrations, connected percolation-like networks of fullerenes spanning the whole lateral area emerged at the bilayer center. In other systems only separate isolated aggregates were observed. The effects of fullerenes on lipid bilayers depend strongly on fullerene aggregation. When fullerenes aggregate, their interactions with the lipid tails change.
Collapse
Affiliation(s)
- Nililla Nisoh
- Department of Physics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; Computational Biomodelling Laboratory for Agricultural Science and Technology (CBLAST), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; Thailand Center of Excellence in Physics (ThEP Center), Ministry of Higher Education, Science, Research and Innovation, Bangkok 10400, Thailand
| | - Viwan Jarerattanachat
- Computational Biomodelling Laboratory for Agricultural Science and Technology (CBLAST), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; Specialized Center of Rubber and Polymer Materials for Agriculture and Industry (RPM), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; NSTDA Supercomputer Center (ThaiSC), National Electronics and Computer Technology Center (NECTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathumthani 12120, Thailand
| | - Mikko Karttunen
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 3K7, Canada; Department of Applied Mathematics, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7, Canada; The Centre for Advanced Materials Research (CAMBR), The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7, Canada
| | - Jirasak Wong-Ekkabut
- Department of Physics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; Computational Biomodelling Laboratory for Agricultural Science and Technology (CBLAST), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; Thailand Center of Excellence in Physics (ThEP Center), Ministry of Higher Education, Science, Research and Innovation, Bangkok 10400, Thailand; Specialized Center of Rubber and Polymer Materials for Agriculture and Industry (RPM), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand.
| |
Collapse
|
23
|
Abstract
Cell-penetrating peptides present huge biomedical applications in a variety of pathologies, thanks to their ability to penetrate membranes and carry a variety of cargoes inside cells. Progress in peptide synthesis has produced a greater availability of virtually any synthetic peptide, increasing their attractiveness. Most molecules when associated to a cell-penetrating peptides can be delivered into a cell, however, understanding of the critical factors influencing the uptake mechanism is of paramount importance to construct nanoplatforms for effective delivery in vitro and in vivo in medical applications. Focus is now on the state-of-art of the mechanisms enabling therapeutics/diagnostics to reach the site target of their activities, and in support of scientists developing platforms for drug delivery and personalized therapies.
Collapse
|
24
|
Mukwaya V, Zhang P, Guo H, Dang-I AY, Hu Q, Li M, Mann S, Dou H. Lectin-Glycan-Mediated Nanoparticle Docking as a Step toward Programmable Membrane Catalysis and Adhesion in Synthetic Protocells. ACS NANO 2020; 14:7899-7910. [PMID: 32383850 DOI: 10.1021/acsnano.0c02127] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The spontaneous assembly of nanoscale building blocks into continuous semipermeable membranes is a key requirement for the structuration of synthetic protocells. Engineering the functionality and programmability of these building units provides a step toward more complex cell-like entities with adaptive membrane properties. Inspired by the central role of protein (lectin)-carbohydrate interactions in cellular recognition and adhesion, we fabricate semipermeable polysaccharide-polymer microcapsules (polysaccharidosomes) with intrinsic lectin-binding properties. We employ amphiphilic polysaccharide-polymer membrane building blocks endowed with intrinsic bio-orthogonal lectin-glycan recognition sites to facilitate the reversible noncovalent docking of functionalized polymer or zeolitic nanoparticles on the polysaccharidosomes. We show that the programmed attachment of enzyme-loaded nanoparticles gives rise to a membrane-gated spatially localized cascade reaction within the protocells due to the thermoresponsiveness of the polysaccharidosome membrane, and we demonstrate that extended closely packed networks are produced via reversible lectin-mediated adhesion between the protocells. Our results provide a step toward nanoscale engineering of bioinspired cell-like materials and could have longer-term applications in synthetic virology, protobiology, and microbiosensor and microbioreactor technologies.
Collapse
Affiliation(s)
- Vincent Mukwaya
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Peipei Zhang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Heze Guo
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Auphedeous Yinme Dang-I
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Qiangqiang Hu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Mei Li
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K
| | - Stephen Mann
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K
| | - Hongjing Dou
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
25
|
Islam Y, Khalid A, Pluchino S, Sivakumaran M, Teixidò M, Leach A, Fatokun AA, Downing J, Coxon C, Ehtezazi T. Development of Brain Targeting Peptide Based MMP-9 Inhibiting Nanoparticles for the Treatment of Brain Diseases with Elevated MMP-9 Activity. J Pharm Sci 2020; 109:3134-3144. [PMID: 32621836 DOI: 10.1016/j.xphs.2020.06.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/10/2020] [Accepted: 06/23/2020] [Indexed: 12/16/2022]
Abstract
Latent and active levels of cerebral matrix metalloproteinase 9 (MMP-9) are elevated in neurological diseases and brain injuries, contributing to neurological damage and poor clinical outcomes. This study aimed developing peptide-based nanoparticles with ability to cross the blood-brain-barrier (BBB) and inhibit MMP-9. Three amphiphilic peptides were synthesised containing brain-targeting ligands (HAIYPRH or CKAPETALC) conjugated with MMP-9 inhibiting peptide (CTTHWGFTLC) linked by glycine (spacer) at the N-terminus, and the peptide sequences were conjugated at the N- terminus to cholesterol. 19F NMR assay was developed to measure MMP-9 inhibition. Cell toxicity was evaluated by the LDH assay, and dialysis studies were conducted with/without fetal bovine serum. An in vitro model was employed to evaluate the ability of nanoparticles crossing the BBB. The amphiphilic peptide (Cholesterol-GGGCTTHWGFTLCHAIYPRH) formed nanoparticles (average size of 202.8 nm) with ability to cross the BBB model. MMP-9 inhibiting nanoparticles were non-toxic to cells, and reduced MMP-9 activity from kobs of 4.5 × 10-6s-1 to complete inhibition. Dialysis studies showed that nanoparticles did not disassemble by extreme dilution (40 folds), but gradually hydrolysed by serum enzymes. In conclusion, the MMP-9 inhibiting nanoparticles reduced the activity of MMP-9, with acceptable serum stability, minimal cell toxicity and ability to cross the in vitro BBB model.
Collapse
Affiliation(s)
- Yamir Islam
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Aneesa Khalid
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Stefano Pluchino
- Department of Clinical Neurosciences, Clifford Allbutt Building - Cambridge Biosciences Campus and NIHR Biomedical Research Centre, University of Cambridge, Hills Road, CB2 0HA Cambridge, UK
| | - Muttuswamy Sivakumaran
- Department of Haematology, Peterborough City Hospital, Edith Cavell Campus, Bretton Gate Peterborough, PE3 9GZ Peterborough, UK
| | - Meritxell Teixidò
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, Barcelona 08028, Spain
| | - Andrew Leach
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Amos A Fatokun
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - James Downing
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Christopher Coxon
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Touraj Ehtezazi
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK.
| |
Collapse
|
26
|
Kale NR, Dutta D, Carstens W, Mallik S, Quadir M. Functional Applications of Polyarginine-Hyaluronic Acid-Based Electrostatic Complexes. Bioelectricity 2020; 2:158-166. [PMID: 32856018 DOI: 10.1089/bioe.2020.0011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background: Electrostatic complexes of poly (l-Arginine) (pArg) and hyaluronic acid (HA) have been investigated for their functional applications to supply free or polymeric form of l-Arginine (Arg) to target cells. As a vital amino acid, Arg plays significant role in multitude of pathophysiological processes ranging from wound healing to cancer. However, serum arginase expression and toxicity of Arg at cellular level renders exogenous delivery of this amino acid a challenging task. We showed that polyarginine-hyaluronic acid ionic nanocomplexes (pArg-HA iNCs) could be an effective way to deliver Arg to target cell populations. Materials and Methods: These electrostatic complexes were prepared by mixing HA (average m.w. of 200 kDa) with pArg (m.w. 5-15 kDa; Sigma) in aqueous solutions and purifying over glycerol. Nanocomplexes were characterized for their particle size, surface charge, capacity to release l-Arg, and intracellular uptake of complexes. Results: Synthesized nanocomplexes showed hydrodynamic diameter ranging from 140-306 nm depending on the content of pArg or HA within the formulation. With surface charge (ζ-potential) of -29 mV, the nanocomplexes showed pH-dependent release of Arg. At pH 7.4, pArg-HA iNCs released 30% of the total Arg-content, while at pH 5.0, 60% of Arg was released after 24 h. These electrostatically stabilized complexes were found to promote growth of human dermal fibroblasts (HDF) in wound-healing assay and increased nitric oxide (NO) activity in these cells in a time-dependent manner. Nanocomplexes also showed cellular uptake and enhanced dose-dependent toxicity against two pancreatic cancer cell lines, i.e. MIA PaCa-2 and Panc-1. Interestingly, the cytotoxic effect was synergized upon pre-treatment of the cells with a frontline chemotherapeutic agent, gemcitabine (GEM), and was not observed when the cells were treated with Arg alone. Conclusion: As such, this communication shows the prospect of pArg-HA iNC electrostatic nanocomplexes to interact and interfere with intracellular Arg metabolic machinery conducive to rescuing different pathological conditions.
Collapse
Affiliation(s)
- Narendra R Kale
- School of Pharmacy, Maharashtra Institute of Technology-WPU, School of Pharmacy, Pune, India
| | - Debasmita Dutta
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota, USA
| | - William Carstens
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota, USA
| | - Sanku Mallik
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota, USA
| | - Mohiuddin Quadir
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota, USA
| |
Collapse
|
27
|
|
28
|
Leigh T, Fernandez-Trillo P. Helical polymers for biological and medical applications. Nat Rev Chem 2020; 4:291-310. [PMID: 37127955 DOI: 10.1038/s41570-020-0180-5] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2020] [Indexed: 12/14/2022]
Abstract
Helices are the most prevalent secondary structure in biomolecules and play vital roles in their activity. Chemists have been fascinated with mimicking this molecular conformation with synthetic materials. Research has now been devoted to the synthesis and characterization of helical materials, and to understand the design principles behind this molecular architecture. In parallel, work has been done to develop synthetic polymers for biological and medical applications. We now have access to materials with controlled size, molecular conformation, multivalency or functionality. As a result, synthetic polymers are being investigated in areas such as drug and gene delivery, tissue engineering, imaging and sensing, or as polymer therapeutics. Here, we provide a critical view of where these two fields, helical polymers and polymers for biological and medical applications, overlap. We have selected relevant polymer families and examples to illustrate the range of applications that can be targeted and the impact of the helical conformation on the performance. For each family of polymers, we briefly describe how they can be prepared, what helical conformations are observed and what parameters control helicity. We close this Review with an outlook of the challenges ahead, including the characterization of helicity through the process and the identification of biocompatibility.
Collapse
|
29
|
Cheng G, Perez-Mercader J. Dissipative Self-Assembly of Dynamic Multicompartmentalized Microsystems with Light-Responsive Behaviors. Chem 2020. [DOI: 10.1016/j.chempr.2020.02.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
30
|
Poreba M. Protease-activated prodrugs: strategies, challenges, and future directions. FEBS J 2020; 287:1936-1969. [PMID: 31991521 DOI: 10.1111/febs.15227] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/14/2020] [Accepted: 01/23/2020] [Indexed: 02/06/2023]
Abstract
Proteases play critical roles in virtually all biological processes, including proliferation, cell death and survival, protein turnover, and migration. However, when dysregulated, these enzymes contribute to the progression of multiple diseases, with cancer, neurodegenerative disorders, inflammation, and blood disorders being the most prominent examples. For a long time, disease-associated proteases have been used for the activation of various prodrugs due to their well-characterized catalytic activity and ability to selectively cleave only those substrates that strictly correspond with their active site architecture. To date, versatile peptide sequences that are cleaved by proteases in a site-specific manner have been utilized as bioactive linkers for the targeted delivery of multiple types of cargo, including fluorescent dyes, photosensitizers, cytotoxic drugs, antibiotics, and pro-antibodies. This platform is highly adaptive, as multiple protease-labile conjugates have already been developed, some of which are currently in clinical use for cancer treatment. In this review, recent advancements in the development of novel protease-cleavable linkers for selective drug delivery are described. Moreover, the current limitations regarding the selectivity of linkers are discussed, and the future perspectives that rely on the application of unnatural amino acids for the development of highly selective peptide linkers are also presented.
Collapse
Affiliation(s)
- Marcin Poreba
- Department of Chemical Biology and Bioimaging, Wroclaw University of Science and Technology, Poland
| |
Collapse
|
31
|
Pastore A, Raimondi F, Rajendran L, Temussi PA. Why does the Aβ peptide of Alzheimer share structural similarity with antimicrobial peptides? Commun Biol 2020; 3:135. [PMID: 32193491 PMCID: PMC7081199 DOI: 10.1038/s42003-020-0865-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 03/02/2020] [Indexed: 12/11/2022] Open
Abstract
The Aβ peptides causally associated with Alzheimer disease have been seen as seemingly purposeless species produced by intramembrane cleavage under both physiological and pathological conditions. However, it has been increasingly suggested that they could instead constitute an ancient, highly conserved effector component of our innate immune system, dedicated to protecting the brain against microbial attacks. In this antimicrobial protection hypothesis, Aβ aggregation would switch from an abnormal stochastic event to a dysregulated innate immune response. In this perspective, we approach the problem from a different and complementary perspective by comparing the structure and sequence of Aβ(1-42) with those of bona fide antimicrobial peptides. We demonstrate that Aβ(1-42) bears convincing structural similarities with both viral fusion domains and antimicrobial peptides, as well as sequence similarities with a specific family of bacterial bacteriocins. We suggest a model of the mechanism by which Aβ peptides could elicit the immune response against microbes. Pastore et al. provide independent evidence that the Alzheimer Aβ peptides could function as antimicrobial peptides based on convincing structural and sequence similarities with viral fusion domains and established antimicrobial peptides. Aβ could dispatch an antimicrobial function through a mechanism that involves membrane pore formation.
Collapse
Affiliation(s)
- Annalisa Pastore
- UK-Dementia Research Institute (UK-DRI) at King's College London, London, UK. .,The Maurice Wohl Institute of King's College London, 5 Cutcombe Road, SE5 9RT, London, UK.
| | | | - Lawrence Rajendran
- UK-Dementia Research Institute (UK-DRI) at King's College London, London, UK.,The Maurice Wohl Institute of King's College London, 5 Cutcombe Road, SE5 9RT, London, UK
| | - Piero Andrea Temussi
- UK-Dementia Research Institute (UK-DRI) at King's College London, London, UK. .,The Maurice Wohl Institute of King's College London, 5 Cutcombe Road, SE5 9RT, London, UK. .,Dipartimento di Scienze Chimiche, Universita' di Napoli Federico II, Napoli, Italy.
| |
Collapse
|
32
|
Khan S, McCabe J, Hill K, Beales PA. Biodegradable hybrid block copolymer – lipid vesicles as potential drug delivery systems. J Colloid Interface Sci 2020; 562:418-428. [DOI: 10.1016/j.jcis.2019.11.101] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 11/12/2019] [Accepted: 11/23/2019] [Indexed: 11/16/2022]
|
33
|
Kepiro IE, Marzuoli I, Hammond K, Ba X, Lewis H, Shaw M, Gunnoo SB, De Santis E, Łapińska U, Pagliara S, Holmes MA, Lorenz CD, Hoogenboom BW, Fraternali F, Ryadnov MG. Engineering Chirally Blind Protein Pseudocapsids into Antibacterial Persisters. ACS NANO 2020; 14:1609-1622. [PMID: 31794180 DOI: 10.1021/acsnano.9b06814] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Antimicrobial resistance stimulates the search for antimicrobial forms that may be less subject to acquired resistance. Here we report a conceptual design of protein pseudocapsids exhibiting a broad spectrum of antimicrobial activities. Unlike conventional antibiotics, these agents are effective against phenotypic bacterial variants, while clearing "superbugs" in vivo without toxicity. The design adopts an icosahedral architecture that is polymorphic in size, but not in shape, and that is available in both l and d epimeric forms. Using a combination of nanoscale and single-cell imaging we demonstrate that such pseudocapsids inflict rapid and irreparable damage to bacterial cells. In phospholipid membranes they rapidly convert into nanopores, which remain confined to the binding positions of individual pseudocapsids. This mechanism ensures precisely delivered influxes of high antimicrobial doses, rendering the design a versatile platform for engineering structurally diverse and functionally persistent antimicrobial agents.
Collapse
Affiliation(s)
- Ibolya E Kepiro
- National Physical Laboratory , Hampton Road , Teddington , TW11 0LW , U.K
| | - Irene Marzuoli
- National Physical Laboratory , Hampton Road , Teddington , TW11 0LW , U.K
- Randall Centre for Cell and Molecular Biophysics , King's College London , London , SE1 1UL , U.K
| | - Katharine Hammond
- National Physical Laboratory , Hampton Road , Teddington , TW11 0LW , U.K
- Department of Physics and Astronomy , University College London , London , WC1E 6BT , U.K
- London Centre for Nanotechnology , University College London , London , WC1H 0AH , U.K
| | - Xiaoliang Ba
- Department of Veterinary Medicine , University of Cambridge , Cambridge , CB3 0ES , U.K
| | - Helen Lewis
- National Physical Laboratory , Hampton Road , Teddington , TW11 0LW , U.K
| | - Michael Shaw
- National Physical Laboratory , Hampton Road , Teddington , TW11 0LW , U.K
- Department of Computer Science , University College London , London , WC1 6BT , U.K
| | - Smita B Gunnoo
- National Physical Laboratory , Hampton Road , Teddington , TW11 0LW , U.K
| | - Emiliana De Santis
- National Physical Laboratory , Hampton Road , Teddington , TW11 0LW , U.K
| | - Urszula Łapińska
- Living Systems Institute , University of Exeter , Exeter , EX4 4QD , U.K
| | - Stefano Pagliara
- Living Systems Institute , University of Exeter , Exeter , EX4 4QD , U.K
| | - Mark A Holmes
- Department of Veterinary Medicine , University of Cambridge , Cambridge , CB3 0ES , U.K
| | - Christian D Lorenz
- Department of Physics , King's College London , Strand Lane , London , WC2R 2LS , U.K
| | - Bart W Hoogenboom
- Department of Physics and Astronomy , University College London , London , WC1E 6BT , U.K
- London Centre for Nanotechnology , University College London , London , WC1H 0AH , U.K
| | - Franca Fraternali
- Randall Centre for Cell and Molecular Biophysics , King's College London , London , SE1 1UL , U.K
| | - Maxim G Ryadnov
- National Physical Laboratory , Hampton Road , Teddington , TW11 0LW , U.K
- Department of Physics , King's College London , Strand Lane , London , WC2R 2LS , U.K
| |
Collapse
|
34
|
Yao F, Peng X, Su Z, Tian L, Guo Y, Kang XF. Crowding-Induced DNA Translocation through a Protein Nanopore. Anal Chem 2020; 92:3827-3833. [PMID: 32048508 DOI: 10.1021/acs.analchem.9b05249] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A crowded cellular environment is highly associated with many significant biological processes. However, the effect of molecular crowding on the translocation behavior of DNA through a pore has not been explored. Here, we use nanopore single-molecule analytical technique to quantify the thermodynamics and kinetics of DNA transport under heterogeneous cosolute PEGs. The results demonstrate that the frequency of the translocation event exhibits a nonmonotonic dependence on the crowding agent size, while both the event frequency and translocation time increase monotonically with increasing crowder concentration. In the presence of PEGs, the rate of DNA capture into the nanopore elevates 118.27-fold, and at the same time the translocation velocity decreases from 20 to 120 μs/base. Interestingly, the impact of PEG 4k on the DNA-nanopore interaction is the most notable, with up to ΔΔG = 16.27 kJ mol-1 change in free energy and 764.50-fold increase in the binding constant at concentration of 40% (w/v). The molecular crowding effect will has broad applications in nanopore biosensing and nanopore DNA sequencing in which the strategy to capture analyte and to control the transport is urgently required.
Collapse
Affiliation(s)
- Fujun Yao
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Xiao Peng
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Zhuoqun Su
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Lei Tian
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Yanli Guo
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Xiao-Feng Kang
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| |
Collapse
|
35
|
Catalytic processing in ruthenium-based polyoxometalate coacervate protocells. Nat Commun 2020; 11:41. [PMID: 31900396 PMCID: PMC6941959 DOI: 10.1038/s41467-019-13759-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 11/19/2019] [Indexed: 01/26/2023] Open
Abstract
The development of programmable microscale materials with cell-like functions, dynamics and collective behaviour is an important milestone in systems chemistry, soft matter bioengineering and synthetic protobiology. Here, polymer/nucleotide coacervate micro-droplets are reconfigured into membrane-bounded polyoxometalate coacervate vesicles (PCVs) in the presence of a bio-inspired Ru-based polyoxometalate catalyst to produce synzyme protocells (Ru4PCVs) with catalase-like activity. We exploit the synthetic protocells for the implementation of multi-compartmentalized cell-like models capable of collective synzyme-mediated buoyancy, parallel catalytic processing in individual horseradish peroxidase-containing Ru4PCVs, and chemical signalling in distributed or encapsulated multi-catalytic protocell communities. Our results highlight a new type of catalytic micro-compartment with multi-functional activity and provide a step towards the development of protocell reaction networks. The development of microscale materials with cell-like functions and collective behaviors is an important milestone in bottom-up synthetic biology. Here the authors employ a bio-inspired inorganic synzyme to construct a micro-compartment with multi-functional activity providing a step towards the development of protocell reaction networks.
Collapse
|
36
|
Mansouri N, Jalal R, Akhlaghinia B, Abnous K, Jahanshahi R. Design and synthesis of aptamer AS1411-conjugated EG@TiO2@Fe2O3nanoparticles as a drug delivery platform for tumor-targeted therapy. NEW J CHEM 2020. [DOI: 10.1039/c9nj06445a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
AS1411@GMBS@EG@TiO2@Fe2O3nanoparticle is an effective and safe pH-responsive sustained release system for targeted drug delivery into nucleolin-positive cells.
Collapse
Affiliation(s)
- Nahid Mansouri
- Department of Chemistry
- Faculty of Science
- Ferdowsi University of Mashhad
- Mashhad
- Iran
| | - Razieh Jalal
- Department of Chemistry
- Faculty of Science
- Ferdowsi University of Mashhad
- Mashhad
- Iran
| | - Batool Akhlaghinia
- Department of Chemistry
- Faculty of Science
- Ferdowsi University of Mashhad
- Mashhad
- Iran
| | - Khalil Abnous
- Pharmaceutical Research Center
- School of Pharmacy
- Mashhad University of Medical Sciences
- Mashhad
- Iran
| | - Roya Jahanshahi
- Department of Chemistry
- Faculty of Science
- Ferdowsi University of Mashhad
- Mashhad
- Iran
| |
Collapse
|
37
|
van Rijt MMJ, Ciaffoni A, Ianiro A, Moradi MA, Boyle AL, Kros A, Friedrich H, Sommerdijk NAJM, Patterson JP. Designing stable, hierarchical peptide fibers from block co-polypeptide sequences. Chem Sci 2019; 10:9001-9008. [PMID: 32874486 PMCID: PMC7449534 DOI: 10.1039/c9sc00800d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 08/02/2019] [Indexed: 02/06/2023] Open
Abstract
Here we report the pH induced self-assembly of equilibrium zwitterionically charged block co-polypeptide nanotubes into hierarchical nanotube fibers.
Natural materials, such as collagen, can assemble with multiple levels of organization in solution. Achieving a similar degree of control over morphology, stability and hierarchical organization with equilibrium synthetic materials remains elusive. For the assembly of peptidic materials the process is controlled by a complex interplay between hydrophobic interactions, electrostatics and secondary structure formation. Consequently, fine tuning the thermodynamics and kinetics of assembly remains extremely challenging. Here, we synthesized a set of block co polypeptides with varying hydrophobicity and ability to form secondary structure. From this set we select a sequence with balanced interactions that results in the formation of high-aspect ratio thermodynamically favored nanotubes, stable between pH 2 and 12 and up to 80 °C. This stability permits their hierarchical assembly into bundled nanotube fibers by directing the pH and inducing complementary zwitterionic charge behavior. This block co-polypeptide design strategy, using defined sequences, provides a straightforward approach to creating complex hierarchical peptide-based assemblies with tunable interactions.
Collapse
Affiliation(s)
- Mark M J van Rijt
- Laboratory of Materials and Interface Chemistry , Centre for Multiscale Electron Microscopy , Department of Chemical Engineering and Chemistry , Eindhoven University of Technology , P. O. Box 513 , 5600 MB Eindhoven , The Netherlands . ; .,Institute for Complex Molecular Systems , Eindhoven University of Technology , P. O. Box 513 , 5600 MB Eindhoven , The Netherlands
| | - Adriano Ciaffoni
- Department of Supramolecular & Biomaterials Chemistry , Leiden Institute of Chemistry , Leiden University , P. O. Box 9502, 2300 RA , Leiden , The Netherlands
| | - Alessandro Ianiro
- Institute for Complex Molecular Systems , Eindhoven University of Technology , P. O. Box 513 , 5600 MB Eindhoven , The Netherlands.,Laboratory of Physical Chemistry , Department of Chemical Engineering and Chemistry , Eindhoven University of Technology , P. O. Box 513 , 5600 MB Eindhoven , The Netherlands
| | - Mohammad-Amin Moradi
- Laboratory of Materials and Interface Chemistry , Centre for Multiscale Electron Microscopy , Department of Chemical Engineering and Chemistry , Eindhoven University of Technology , P. O. Box 513 , 5600 MB Eindhoven , The Netherlands . ; .,Institute for Complex Molecular Systems , Eindhoven University of Technology , P. O. Box 513 , 5600 MB Eindhoven , The Netherlands
| | - Aimee L Boyle
- Department of Supramolecular & Biomaterials Chemistry , Leiden Institute of Chemistry , Leiden University , P. O. Box 9502, 2300 RA , Leiden , The Netherlands
| | - Alexander Kros
- Department of Supramolecular & Biomaterials Chemistry , Leiden Institute of Chemistry , Leiden University , P. O. Box 9502, 2300 RA , Leiden , The Netherlands
| | - Heiner Friedrich
- Laboratory of Materials and Interface Chemistry , Centre for Multiscale Electron Microscopy , Department of Chemical Engineering and Chemistry , Eindhoven University of Technology , P. O. Box 513 , 5600 MB Eindhoven , The Netherlands . ; .,Institute for Complex Molecular Systems , Eindhoven University of Technology , P. O. Box 513 , 5600 MB Eindhoven , The Netherlands
| | - Nico A J M Sommerdijk
- Laboratory of Materials and Interface Chemistry , Centre for Multiscale Electron Microscopy , Department of Chemical Engineering and Chemistry , Eindhoven University of Technology , P. O. Box 513 , 5600 MB Eindhoven , The Netherlands . ; .,Institute for Complex Molecular Systems , Eindhoven University of Technology , P. O. Box 513 , 5600 MB Eindhoven , The Netherlands
| | - Joseph P Patterson
- Laboratory of Materials and Interface Chemistry , Centre for Multiscale Electron Microscopy , Department of Chemical Engineering and Chemistry , Eindhoven University of Technology , P. O. Box 513 , 5600 MB Eindhoven , The Netherlands . ; .,Institute for Complex Molecular Systems , Eindhoven University of Technology , P. O. Box 513 , 5600 MB Eindhoven , The Netherlands
| |
Collapse
|
38
|
Li S, Xu Q, Li K, Wang Y, Yu C, Zhou Y. Multigeometry Nanoparticles from the Orthogonal Self-Assembly of Block Alternating Copolymers via Simulation. J Phys Chem B 2019; 123:8333-8340. [DOI: 10.1021/acs.jpcb.9b07685] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Shanlong Li
- School of Chemistry & Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Qingsong Xu
- School of Chemistry & Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Ke Li
- School of Chemistry & Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yuling Wang
- School of Chemistry & Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Chunyang Yu
- School of Chemistry & Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yongfeng Zhou
- School of Chemistry & Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
39
|
Augustine R, Kalva N, Kim HA, Zhang Y, Kim I. pH-Responsive Polypeptide-Based Smart Nano-Carriers for Theranostic Applications. Molecules 2019; 24:E2961. [PMID: 31443287 PMCID: PMC6719039 DOI: 10.3390/molecules24162961] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/12/2019] [Accepted: 08/13/2019] [Indexed: 02/07/2023] Open
Abstract
Smart nano-carriers have attained great significance in the biomedical field due to their versatile and interesting designs with different functionalities. The initial stages of the development of nanocarriers mainly focused on the guest loading efficiency, biocompatibility of the host and the circulation time. Later the requirements of less side effects with more efficacy arose by attributing targetability and stimuli-responsive characteristics to nano-carriers along with their bio- compatibility. Researchers are utilizing many stimuli-responsive polymers for the better release of the guest molecules at the targeted sites. Among these, pH-triggered release achieves increasing importance because of the pH variation in different organ and cancer cells of acidic pH. This specific feature is utilized to release the guest molecules more precisely in the targeted site by designing polymers having specific functionality with the pH dependent morphology change characteristics. In this review, we mainly concert on the pH-responsive polypeptides and some interesting nano-carrier designs for the effective theranostic applications. Also, emphasis is made on pharmaceutical application of the different nano-carriers with respect to the organ, tissue and cellular level pH environment.
Collapse
Affiliation(s)
- Rimesh Augustine
- BK 21 PLUS Center for Advanced Chemical Technology, Department of Polymer Science and Engineering, Pusan National University, Geumjeong-gu, Busan 46241, Korea
| | - Nagendra Kalva
- BK 21 PLUS Center for Advanced Chemical Technology, Department of Polymer Science and Engineering, Pusan National University, Geumjeong-gu, Busan 46241, Korea
| | - Ho An Kim
- BK 21 PLUS Center for Advanced Chemical Technology, Department of Polymer Science and Engineering, Pusan National University, Geumjeong-gu, Busan 46241, Korea
| | - Yu Zhang
- BK 21 PLUS Center for Advanced Chemical Technology, Department of Polymer Science and Engineering, Pusan National University, Geumjeong-gu, Busan 46241, Korea
| | - Il Kim
- BK 21 PLUS Center for Advanced Chemical Technology, Department of Polymer Science and Engineering, Pusan National University, Geumjeong-gu, Busan 46241, Korea.
| |
Collapse
|
40
|
Carvalho IC, Mansur AA, Carvalho SM, Florentino RM, Mansur HS. L-cysteine and poly-L-arginine grafted carboxymethyl cellulose/Ag-In-S quantum dot fluorescent nanohybrids for in vitro bioimaging of brain cancer cells. Int J Biol Macromol 2019; 133:739-753. [DOI: 10.1016/j.ijbiomac.2019.04.140] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/15/2019] [Accepted: 04/18/2019] [Indexed: 12/13/2022]
|
41
|
Deprey K, Becker L, Kritzer J, Plückthun A. Trapped! A Critical Evaluation of Methods for Measuring Total Cellular Uptake versus Cytosolic Localization. Bioconjug Chem 2019; 30:1006-1027. [PMID: 30882208 PMCID: PMC6527423 DOI: 10.1021/acs.bioconjchem.9b00112] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Biomolecules have many properties that make them promising for intracellular therapeutic applications, but delivery remains a key challenge because large biomolecules cannot easily enter the cytosol. Furthermore, quantification of total intracellular versus cytosolic concentrations remains demanding, and the determination of delivery efficiency is thus not straightforward. In this review, we discuss strategies for delivering biomolecules into the cytosol and briefly summarize the mechanisms of uptake for these systems. We then describe commonly used methods to measure total cellular uptake and, more selectively, cytosolic localization, and discuss the major advantages and drawbacks of each method. We critically evaluate methods of measuring "cell penetration" that do not adequately distinguish total cellular uptake and cytosolic localization, which often lead to inaccurate interpretations of a molecule's cytosolic localization. Finally, we summarize the properties and components of each method, including the main caveats of each, to allow for informed decisions about method selection for specific applications. When applied correctly and interpreted carefully, methods for quantifying cytosolic localization offer valuable insight into the bioactivity of biomolecules and potentially the prospects for their eventual development into therapeutics.
Collapse
Affiliation(s)
- Kirsten Deprey
- Department of Chemistry, Tufts University, 62 Talbot Avenue, Medford, Massachusetts 02155, United States
| | - Lukas Becker
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Joshua Kritzer
- Department of Chemistry, Tufts University, 62 Talbot Avenue, Medford, Massachusetts 02155, United States
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
42
|
Jang JD, Do C, Bang J, Han YS, Kim TH. Self-Assembly of Temperature Sensitive Unilamellar Vesicles by a Blend of Block Copolymers in Aqueous Solution. Polymers (Basel) 2019; 11:E63. [PMID: 30960047 PMCID: PMC6402003 DOI: 10.3390/polym11010063] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/07/2018] [Accepted: 12/27/2018] [Indexed: 12/13/2022] Open
Abstract
A self-assembled unilamellar vesicle, which can be used as a drug delivery system, was easily and simply fabricated using a blended system of Pluronic block copolymers. Controlling the hydrophilic mass fraction of block copolymers (by blending the block copolymer with a different hydrophilic mass fraction) and temperature (i.e., the hydrophobic interaction is controlled), a vesicular structure was formed. Small angle neutron scattering measurements showed that the vesicular structure had diameters of empty cores from 13.6 nm to 79.6 nm, and thicknesses of the bilayers from 2.2 nm to 8.7 nm when the hydrophobic interaction was changed. Therefore, considering that the temperature of the vesicle formation is controllable by the concentration of the blended block copolymers, it is possible for them to be applied in a wide range of potential applications, for example, as nanoreactors and nanovehicles.
Collapse
Affiliation(s)
- Jong Dae Jang
- Neutron Science Research Center, Korea Atomic Energy Research Institute, 1045 Daedeok-daero, Yuseong-gu, Daejeon 34057, Korea.
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Sungbuk-gu, Seoul 02841, Korea.
| | - Changwoo Do
- Biology and Soft Matter Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
| | - Joona Bang
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Sungbuk-gu, Seoul 02841, Korea.
| | - Young Soo Han
- Neutron Science Research Center, Korea Atomic Energy Research Institute, 1045 Daedeok-daero, Yuseong-gu, Daejeon 34057, Korea.
| | - Tae-Hwan Kim
- Neutron Science Research Center, Korea Atomic Energy Research Institute, 1045 Daedeok-daero, Yuseong-gu, Daejeon 34057, Korea.
- Department of Quantum System Engineering, Chonbuk National University, 567 Baekjei-daero, Deokjin-gu, Jeonju 54896, Korea.
| |
Collapse
|
43
|
Jang JD, Jeon SW, Yoon YJ, Bang J, Han YS, Kim TH. Self-assembly of gold nanoparticles in a block copolymer aggregate template driven by hydrophobic interactions. Polym Chem 2019. [DOI: 10.1039/c9py01266d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report various self-assembled structures of gold nanoparticles in a block copolymer aggregate template, which are easily driven by hydrophobic interactions.
Collapse
Affiliation(s)
- Jong Dae Jang
- Neutron Science Division
- Korea Atomic Energy Research Institute
- Daejeon
- Republic of Korea
- Department of Chemical and Biological Engineering
| | - Sang-Woo Jeon
- Department of Applied Plasma & Quantum Beam Engineering
- Jeonbuk National University
- Jeonju
- Republic of Korea
| | - Young-Jin Yoon
- Department of Quantum System Engineering
- Jeonbuk National University
- Jeonju
- Republic of Korea
| | - Joona Bang
- Department of Chemical and Biological Engineering
- Korea University
- Seoul
- Republic of Korea
| | - Young Soo Han
- Neutron Science Division
- Korea Atomic Energy Research Institute
- Daejeon
- Republic of Korea
| | - Tae-Hwan Kim
- Department of Applied Plasma & Quantum Beam Engineering
- Jeonbuk National University
- Jeonju
- Republic of Korea
- Department of Quantum System Engineering
| |
Collapse
|
44
|
Li Z, Yang Z, Bai T, Ling J. One-step synthesis and regioselective polymerization of Nα,Nδ-bisphenoxycarbonyl-l-ornithine. Polym Chem 2019. [DOI: 10.1039/c8py01425f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Nα,Nδ-Bisphenoxycarbonyl-l-ornithine is synthesized by a one-step protection of l-ornithine, and it acts as a monomer for regioselective and controlled polymerization to yield poly(Nδ-phenoxycarbonyl-l-ornithine).
Collapse
Affiliation(s)
- Zehua Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Zhening Yang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Tianwen Bai
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Jun Ling
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| |
Collapse
|
45
|
Otter R, Besenius P. Supramolecular assembly of functional peptide–polymer conjugates. Org Biomol Chem 2019; 17:6719-6734. [DOI: 10.1039/c9ob01191a] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The following review gives an overview about synthetic peptide–polymer conjugates as macromolecular building blocks and their self-assembly into a variety of supramolecular architectures, from supramolecular polymer chains, to anisotropic 1D arrays, 2D layers, and more complex 3D networks.
Collapse
Affiliation(s)
- Ronja Otter
- Institute of Organic Chemistry
- Johannes Gutenberg-University Mainz
- 55128 Mainz
- Germany
| | - Pol Besenius
- Institute of Organic Chemistry
- Johannes Gutenberg-University Mainz
- 55128 Mainz
- Germany
| |
Collapse
|
46
|
Chae CG, Bak IG, Lee JS. Propagation-Inspired Initiation of an Aliphatic Sodium Amidate for the Living Anionic Homo- and Copolymerization of Isocyanates: Access to the Multiblocky Sequence Distribution of Binary Comonomers. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b02052] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Chang-Geun Chae
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - In-Gyu Bak
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Jae-Suk Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| |
Collapse
|
47
|
Alapure BV, Lu Y, He M, Chu CC, Peng H, Muhale F, Brewerton YL, Bunnell B, Hong S. Accelerate Healing of Severe Burn Wounds by Mouse Bone Marrow Mesenchymal Stem Cell-Seeded Biodegradable Hydrogel Scaffold Synthesized from Arginine-Based Poly(ester amide) and Chitosan. Stem Cells Dev 2018; 27:1605-1620. [PMID: 30215325 PMCID: PMC6276600 DOI: 10.1089/scd.2018.0106] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 09/12/2018] [Indexed: 12/20/2022] Open
Abstract
Severe burns are some of the most challenging problems in clinics and still lack ideal modalities. Mesenchymal stem cells (MSCs) incorporated with biomaterial coverage of burn wounds may offer a viable solution. In this report, we seeded MSCs to a biodegradable hybrid hydrogel, namely ACgel, that was synthesized from unsaturated arginine-based poly(ester amide) (UArg-PEA) and chitosan derivative. MSC adhered to ACgels. ACgels maintained a high viability of MSCs in culture for 6 days. MSC seeded to ACgels presented well in third-degree burn wounds of mice at 8 days postburn (dpb) after the necrotic full-thickness skin of burn wounds was debrided and filled and covered by MSC-carrying ACgels. MSC-seeded ACgels promoted the closure, reepithelialization, granulation tissue formation, and vascularization of the burn wounds. ACgels alone can also promote vascularization but less effectively compared with MSC-seeded ACgels. The actions of MSC-seeded ACgels or ACgels alone involve the induction of reparative, anti-inflammatory interleukin-10, and M2-like macrophages, as well as the reduction of inflammatory cytokine TNFα and M1-like macrophages at the late inflammatory phase of burn wound healing, which provided the mechanistic insights associated with inflammation and macrophages in burn wounds. For the studied regimens of these treatments, no toxicity was identified to MSCs or mice. Our results indicate that MSC-seeded ACgels have potential use as a novel adjuvant therapy for severe burns to complement commonly used skin grafting and, thus, minimize the downsides of grafting.
Collapse
Affiliation(s)
- Bhagwat V. Alapure
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Yan Lu
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Mingyu He
- Department of Fiber Science and Apparel Design, Cornell University, Ithaca, New York
| | - Chih-Chang Chu
- Department of Fiber Science and Apparel Design, Cornell University, Ithaca, New York
- Department of Biomedical Engineering, Cornell University, Ithaca, New York
| | - Hongying Peng
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Filipe Muhale
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | | | - Bruce Bunnell
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Song Hong
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
- Department of Ophthalmology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| |
Collapse
|
48
|
Gobbo P, Patil AJ, Li M, Harniman R, Briscoe WH, Mann S. Programmed assembly of synthetic protocells into thermoresponsive prototissues. NATURE MATERIALS 2018; 17:1145-1153. [PMID: 30297813 DOI: 10.1038/s41563-018-0183-5] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 08/30/2018] [Indexed: 06/08/2023]
Abstract
Although several new types of synthetic cell-like entities are now available, their structural integration into spatially interlinked prototissues that communicate and display coordinated functions remains a considerable challenge. Here we describe the programmed assembly of synthetic prototissue constructs based on the bio-orthogonal adhesion of a spatially confined binary community of protein-polymer protocells, termed proteinosomes. The thermoresponsive properties of the interlinked proteinosomes are used collectively to generate prototissue spheroids capable of reversible contractions that can be enzymatically modulated and exploited for mechanochemical transduction. Overall, our methodology opens up a route to the fabrication of artificial tissue-like materials capable of collective behaviours, and addresses important emerging challenges in bottom-up synthetic biology and bioinspired engineering.
Collapse
Affiliation(s)
- Pierangelo Gobbo
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, UK
| | - Avinash J Patil
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, UK
| | - Mei Li
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, UK
| | - Robert Harniman
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, UK
| | - Wuge H Briscoe
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, UK
| | - Stephen Mann
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, UK.
| |
Collapse
|
49
|
Zhang X, Li Y, Hu C, Wu Y, Zhong D, Xu X, Gu Z. Engineering Anticancer Amphipathic Peptide-Dendronized Compounds for Highly-Efficient Plasma/Organelle Membrane Perturbation and Multidrug Resistance Reversal. ACS APPLIED MATERIALS & INTERFACES 2018; 10:30952-30962. [PMID: 30088909 DOI: 10.1021/acsami.8b07917] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Discovering new strategies for combating drug-resistant tumors becomes a worldwide challenge. Thereinto, stubborn drug-resistant tumor membrane is a leading obstacle on chemotherapy. Herein, we report a novel tumor-activatable amphipathic peptide-dendronized compound, which could form nanoaggregates in aqueous solutions, for perturbing tumor plasma/organelle membrane and reversing multidrug resistance. Distinguished from classical linear amphipathic peptide drugs for membrane disturbance, dendritic lysine-based architecture is designed as a multivalent scaffold to amplify the supramolecular interactions of cationic compound with drug-resistant tumor membrane. Moreover, arginine-rich residues as terminal groups are hopeful to generate multiple hydrogen bonding and electrostatic interactions with tumor membrane. On the other hand, antitumor molecule (doxorubicin) is devised as a hydrophobic moiety to intensify the membrane-inserting ability owing to the prominent interactions with hydrophobic domains of drug-resistant tumor membrane. As expected, these amphipathic peptide-dendronized compounds within the nanoaggregates could severely disturb both the structures and functions of tumor plasma/organelle membrane system, thereby resulting in the rapid leakage of many critical biomolecules, highly efficient apoptotic activation and antiapoptotic inhibition. This strategy on tumor membrane perturbation demonstrates a bran-new antitumor activity with high contributions to cell cycle arrest (at the S phase), strong apoptosis-inducing ability and satisfying cytotoxicity to a variety of drug-resistant tumor cell lines.
Collapse
Affiliation(s)
- Xiao Zhang
- College of Materials Science and Engineering , Nanjing Tech University , Nanjing , Jiangsu 210009 , P.R. China
- National Engineering Research Center for Biomaterials , Sichuan University , Chengdu , Sichuan 610064 , P.R. China
| | - Yachao Li
- National Engineering Research Center for Biomaterials , Sichuan University , Chengdu , Sichuan 610064 , P.R. China
| | - Cheng Hu
- National Engineering Research Center for Biomaterials , Sichuan University , Chengdu , Sichuan 610064 , P.R. China
| | - Yahui Wu
- National Engineering Research Center for Biomaterials , Sichuan University , Chengdu , Sichuan 610064 , P.R. China
| | - Dan Zhong
- National Engineering Research Center for Biomaterials , Sichuan University , Chengdu , Sichuan 610064 , P.R. China
| | - Xianghui Xu
- College of Materials Science and Engineering , Nanjing Tech University , Nanjing , Jiangsu 210009 , P.R. China
- National Engineering Research Center for Biomaterials , Sichuan University , Chengdu , Sichuan 610064 , P.R. China
| | - Zhongwei Gu
- College of Materials Science and Engineering , Nanjing Tech University , Nanjing , Jiangsu 210009 , P.R. China
- National Engineering Research Center for Biomaterials , Sichuan University , Chengdu , Sichuan 610064 , P.R. China
| |
Collapse
|
50
|
Lu S, Cui W, Li J, Sheng Y, Chen P. Functional Control of Peptide Amphiphile Assemblies via Modulation of Internal Cohesion and Surface Chemistry Switch. Chemistry 2018; 24:13931-13937. [PMID: 29974535 DOI: 10.1002/chem.201803026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Indexed: 01/01/2023]
Abstract
Understanding the impacts of the internal cohesion and surface chemistry of supramolecular systems on the collective behaviors in the contacts between the systems and biomolecules can greatly expand the functional diversity and adaptivity of supramolecular nanostructures. Here we show how the tuned molecular interactions modulate the morphologies and internal cohesion of peptide amphiphile (PA) self-assemblies and their resultant functions. Circular dichroism spectroscopy, fluorescence probing, atomic force and electron microscopy, along with molecular dynamics simulations, revealed that the PA self-assembly formed compact long fibers when surface charge repulsion was screened, but formed loose short fibers or micelle-like assemblies when hydrogen bonding was disrupted or hydrophobic core was enhanced. More importantly, depending on the strength of the phospholipid affinity for the cationic segment of the PA, the same internal cohesion of PA nanostructures can lead to either cell death or cell survival, providing unique insights into the design of supramolecular materials.
Collapse
Affiliation(s)
- Sheng Lu
- Department of Chemical Engineering and Waterloo Institute for, Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Weijia Cui
- Department of Chemical Engineering and Waterloo Institute for, Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Jason Li
- Department of Chemical Engineering and Waterloo Institute for, Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Yuebiao Sheng
- Department of Physics and High Performance Computing Center, Nanjing University, Nanjing, 210093, China
| | - Pu Chen
- Department of Chemical Engineering and Waterloo Institute for, Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| |
Collapse
|