1
|
Huijben TA, Mahajan S, Fahim M, Zijlstra P, Marie R, Mortensen KI. Point-Spread Function Deformations Unlock 3D Localization Microscopy on Spherical Nanoparticles. ACS NANO 2024; 18:29832-29845. [PMID: 39411831 PMCID: PMC11526427 DOI: 10.1021/acsnano.4c09719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 10/30/2024]
Abstract
Nanoparticles (NPs) have proven their applicability in biosensing, drug delivery, and photothermal therapy, but their performance depends critically on the distribution and number of functional groups on their surface. When studying surface functionalization using super-resolution microscopy, the NP modifies the fluorophore's point-spread function (PSF). This leads to systematic mislocalizations in conventional analyses employing Gaussian PSFs. Here, we address this shortcoming by deriving the analytical PSF model for a fluorophore near a spherical NP. Its calculation is four orders of magnitude faster than numerical approaches and thus feasible for direct use in localization algorithms. We fit this model to individual 2D images from DNA-PAINT experiments on DNA-coated gold NPs and demonstrate extraction of the 3D positions of functional groups with <5 nm precision, revealing inhomogeneous surface coverage. Our method is exact, fast, accessible, and poised to become the standard in super-resolution imaging of NPs for biosensing and drug delivery applications.
Collapse
Affiliation(s)
- Teun A.P.M. Huijben
- Department
of Health Technology, Technical University
of Denmark (DTU), Kongens
Lyngby 2800, Denmark
| | - Sarojini Mahajan
- Department
of Applied Physics and Science Education, Eindhoven University of Technology (TU/e), Eindhoven 5600 MB, The Netherlands
| | - Masih Fahim
- Department
of Health Technology, Technical University
of Denmark (DTU), Kongens
Lyngby 2800, Denmark
| | - Peter Zijlstra
- Department
of Applied Physics and Science Education, Eindhoven University of Technology (TU/e), Eindhoven 5600 MB, The Netherlands
| | - Rodolphe Marie
- Department
of Health Technology, Technical University
of Denmark (DTU), Kongens
Lyngby 2800, Denmark
| | - Kim I. Mortensen
- Department
of Health Technology, Technical University
of Denmark (DTU), Kongens
Lyngby 2800, Denmark
| |
Collapse
|
2
|
Elibol K, Burghard M, Heil T, van Aken PA. Unlocking Unexpected Charge Transfer Pathways in Interconnected Nanostructures. ACS APPLIED MATERIALS & INTERFACES 2024; 16:57501-57511. [PMID: 39402723 PMCID: PMC11503614 DOI: 10.1021/acsami.4c12205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024]
Abstract
Accurate control of charge transfer pathways is critical to unlocking the full potential of charge transfer plasmons (CTPs) and exploring their diverse applications. We show that the intentional manipulation of junctions in Al nanocrosses on graphene induces asymmetry, unlocking unexpected charge transfer pathways and facilitating the generation of coupled resonators. The junction asymmetry, which is induced by nanotrench formation facilitated by focused electron beam irradiation, provides a versatile means to achieve precise and controlled interconnect manipulation. We find that tuning the nanotrench dimensions in nanocrosses allows for the tailored modulation of the charge transfer speed and the energies of CTPs. Furthermore, CTPs excited in our experimental nanocrosses, featuring nanotrenches, exhibit weak coupling. This crucial insight underscores the importance of controlled trench formation in unlocking various functionalities of CTPs for use in sensing, catalysis, and energy conversion applications. The controlled manipulation of interconnects in Al nanocrosses thus emerges as a promising avenue for advancing the device performance in these fields.
Collapse
Affiliation(s)
- Kenan Elibol
- Max Planck Institute for
Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany
| | - Marko Burghard
- Max Planck Institute for
Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany
| | - Tobias Heil
- Max Planck Institute for
Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany
| | - Peter A. van Aken
- Max Planck Institute for
Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany
| |
Collapse
|
3
|
Lu Z, Ji J, Ye H, Zhang H, Zhang S, Xu H. Quantifying the ultimate limit of plasmonic near-field enhancement. Nat Commun 2024; 15:8803. [PMID: 39394215 PMCID: PMC11470092 DOI: 10.1038/s41467-024-53210-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 10/07/2024] [Indexed: 10/13/2024] Open
Abstract
Quantitatively probing the ultimate limit of near-field enhancement around plasmonic nanostructures remains elusive, despite more than five decades since the discovery of surface-enhanced Raman scattering. Theoretical calculations have predicted an ultimate near-field enhancement exceeding 1000 using the best plasmonic material silver, but experimental estimations disperse by orders of magnitude. Here, we design a high-quality silver plasmonic nanocavity with atomic precision and precisely quantify the upper limit of near-field enhancement in ~1 nm junctions. A hot-spot averaged Raman enhancement of 4.27 × 1010 is recorded with a small fluctuation, corresponding to an averaged electric field enhancement larger than 1000 times. This result quantitatively delineates the ultimate limit of plasmonic field enhancement around plasmonic nanostructures, establishing a foundation for diverse plasmon-enhanced processes and strong light-matter interactions at the atomic scale.
Collapse
Affiliation(s)
- Zhengyi Lu
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Jiamin Ji
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Haiming Ye
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Hao Zhang
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Shunping Zhang
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China.
- Wuhan Institute of Quantum Technology, Wuhan, China.
| | - Hongxing Xu
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China
- Wuhan Institute of Quantum Technology, Wuhan, China
- School of Microelectronics, Wuhan University, Wuhan, China
- Henan Academy of Sciences, Zhengzhou, China
| |
Collapse
|
4
|
Liu Y, Yu H, Zeng Q, Wang B, Peng Q. Thickness-dependent optical properties of low-loss transdimensional plasmonic Sr 0.82NbO 3 thin films. OPTICS LETTERS 2024; 49:5591-5594. [PMID: 39353013 DOI: 10.1364/ol.538013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/11/2024] [Indexed: 10/04/2024]
Abstract
To develop alternative plasmonic materials for nanophotonic applications, the thickness-dependent optical properties of ultrathin plasmonic Sr0.82NbO3 (SNO) films deposited on MgO are investigated. As the thickness decreases from 10 to 2 nm, the film exhibits less metallic, epsilon-near-zero (ENZ) wavelength redshift and higher optical loss due to increased scattering. Nevertheless, the thinnest film still has a high carrier concentration of 1022 cm-3, and the real part of the dielectric functions of all films is less than zero in the near-infrared (NIR) wavelength region, indicating that the samples possess relatively high metallicity and plasmonic characteristics in the NIR. It is found that the carrier concentration dominates the electron effective mass and Drude plasma frequency. Although Au is a commonly used plasmonic material, at a wavelength of 1550 nm, the loss of SNO is 85.8% lower than that of Au, and its plasmonic performance metrics is significantly higher than TiN, Al:ZnO and Sn:In2O3, demonstrating the great potential of SNO in NIR plasmonic device applications.
Collapse
|
5
|
Verma R, Sharma G, Polshettiwar V. The paradox of thermal vs. non-thermal effects in plasmonic photocatalysis. Nat Commun 2024; 15:7974. [PMID: 39266509 PMCID: PMC11393361 DOI: 10.1038/s41467-024-51916-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 08/16/2024] [Indexed: 09/14/2024] Open
Abstract
The debate surrounding the roles of thermal and non-thermal pathways in plasmonic catalysis has captured the attention of researchers and sparked vibrant discussions within the scientific community. In this review, we embark on a thorough exploration of this intriguing discourse, starting from fundamental principles and culminating in a detailed understanding of the divergent viewpoints. We probe into the core of the debate by elucidating the behavior of excited charge carriers in illuminated plasmonic nanostructures, which serves as the foundation for the two opposing schools of thought. We present the key arguments and evidence put forth by proponents of both the non-thermal and thermal pathways, providing a perspective on their respective positions. Beyond the theoretical divide, we discussed the evolving methodologies used to unravel these mechanisms. We discuss the use of Arrhenius equations and their variations, shedding light on the ensuing debates about their applicability. Our review emphasizes the significance of localized surface plasmon resonance (LSPR), investigating its role in collective charge oscillations and the decay dynamics that influence catalytic processes. We also talked about the nuances of activation energy, exploring its relationship with the nonlinearity of temperature and light intensity dependence on reaction rates. Additionally, we address the intricacies of catalyst surface temperature measurements and their implications in understanding light-triggered reaction dynamics. The review further discusses wavelength-dependent reaction rates, kinetic isotope effects, and competitive electron transfer reactions, offering an all-inclusive view of the field. This review not only maps the current landscape of plasmonic photocatalysis but also facilitates future explorations and innovations to unlock the full potential of plasmon-mediated catalysis, where synergistic approaches could lead to different vistas in chemical transformations.
Collapse
Affiliation(s)
- Rishi Verma
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai, 400005, India
| | - Gunjan Sharma
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai, 400005, India
| | - Vivek Polshettiwar
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai, 400005, India.
| |
Collapse
|
6
|
Foltýn M, Patočka M, Řepa R, Šikola T, Horák M. Influence of Deposition Parameters on the Plasmonic Properties of Gold Nanoantennas Fabricated by Focused Ion Beam Lithography. ACS OMEGA 2024; 9:37408-37416. [PMID: 39246469 PMCID: PMC11375715 DOI: 10.1021/acsomega.4c06598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 07/30/2024] [Accepted: 08/15/2024] [Indexed: 09/10/2024]
Abstract
The behavior of plasmonic antennas is influenced by a variety of factors, including their size, shape, and material. Even minor changes in the deposition parameters during the thin film preparation process may have a significant impact on the dielectric function of the film, and thus on the plasmonic properties of the resulting antenna. In this work, we deposited gold thin films with thicknesses of 20, 30, and 40 nm at various deposition rates using an ion-beam-assisted deposition. We evaluate their morphology and crystallography by atomic force microscopy, X-ray diffraction, and transmission electron microscopy. Next, we examined the ease of fabricating plasmonic antennas using focused-ion-beam lithography. Finally, we evaluate their plasmonic properties by electron energy loss spectroscopy measurements of individual antennas. Our results show that the optimal gold thin film for plasmonic antenna fabrication of a thickness of 20 and 30 nm should be deposited at the deposition rate of around 0.1 nm/s. The thicker 40 nm film should be deposited at a higher deposition rate like 0.3 nm/s.
Collapse
Affiliation(s)
- Michael Foltýn
- Faculty of Mechanical Engineering, Institute of Physical Engineering, Brno University of Technology, Technická 2, 616 69 Brno, Czech Republic
| | - Marek Patočka
- Faculty of Mechanical Engineering, Institute of Physical Engineering, Brno University of Technology, Technická 2, 616 69 Brno, Czech Republic
- NenoVision, Purkyňova 127, 612 00 Brno, Czech Republic
| | - Rostislav Řepa
- Faculty of Mechanical Engineering, Institute of Physical Engineering, Brno University of Technology, Technická 2, 616 69 Brno, Czech Republic
| | - Tomáš Šikola
- Faculty of Mechanical Engineering, Institute of Physical Engineering, Brno University of Technology, Technická 2, 616 69 Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 612 00 Brno, Czech Republic
| | - Michal Horák
- Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 612 00 Brno, Czech Republic
| |
Collapse
|
7
|
Dolia V, Balch HB, Dagli S, Abdollahramezani S, Carr Delgado H, Moradifar P, Chang K, Stiber A, Safir F, Lawrence M, Hu J, Dionne JA. Very-large-scale-integrated high quality factor nanoantenna pixels. NATURE NANOTECHNOLOGY 2024; 19:1290-1298. [PMID: 38961248 DOI: 10.1038/s41565-024-01697-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 05/15/2024] [Indexed: 07/05/2024]
Abstract
Metasurfaces precisely control the amplitude, polarization and phase of light, with applications spanning imaging, sensing, modulation and computing. Three crucial performance metrics of metasurfaces and their constituent resonators are the quality factor (Q factor), mode volume (Vm) and ability to control far-field radiation. Often, resonators face a trade-off between these parameters: a reduction in Vm leads to an equivalent reduction in Q, albeit with more control over radiation. Here we demonstrate that this perceived compromise is not inevitable: high quality factor, subwavelength Vm and controlled dipole-like radiation can be achieved simultaneously. We design high quality factor, very-large-scale-integrated silicon nanoantenna pixels (VINPix) that combine guided mode resonance waveguides with photonic crystal cavities. With optimized nanoantennas, we achieve Q factors exceeding 1,500 with Vm less than 0.1( λ / n air ) 3 . Each nanoantenna is individually addressable by free-space light and exhibits dipole-like scattering to the far-field. Resonator densities exceeding a million nanoantennas per cm2 can be achieved. As a proof-of-concept application, we show spectrometer-free, spatially localized, refractive-index sensing, and fabrication of an 8 mm × 8 mm VINPix array. Our platform provides a foundation for compact, densely multiplexed devices such as spatial light modulators, computational spectrometers and in situ environmental sensors.
Collapse
Affiliation(s)
- Varun Dolia
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA.
| | - Halleh B Balch
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Sahil Dagli
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | | | - Hamish Carr Delgado
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Parivash Moradifar
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Kai Chang
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Ariel Stiber
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | | | - Mark Lawrence
- Department of Electrical and Systems Engineering, Washington University in St. Louis, St. Louis, MO, USA.
| | - Jack Hu
- Pumpkinseed Technologies, Palo Alto, CA, USA.
| | - Jennifer A Dionne
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
8
|
Matter M, Tagnon C, Stache EE. Recent Applications of Photothermal Conversion in Organic Synthesis. ACS CENTRAL SCIENCE 2024; 10:1460-1472. [PMID: 39220710 PMCID: PMC11363323 DOI: 10.1021/acscentsci.4c00545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 09/04/2024]
Abstract
Photothermal conversion is a novel heating method that has emerged in recent years, wherein certain species can convert light to heat with great efficiency. These photothermal agents have shown immense promise for generating nanoscale thermal gradients under mild, visible light irradiation, providing a pathway for combining photochemistry with thermally driven reactivity. While this novel heating mechanism has been leveraged to great effect for applications such as photothermal therapeutics and steam water purification, it has seen limited use in organic synthesis. This outlook explores instances wherein the photothermal effect was used directly or as a synergistic component to drive organic reactions and postulates how it may be used moving forward.
Collapse
Affiliation(s)
- Megan
E. Matter
- Department
of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Clotilde Tagnon
- Department
of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Erin E. Stache
- Department
of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
9
|
Rusu AN, Dumitrascu DI, Dumitrascu AE. The Electromagnetic Noise Level Influence on the Laser Micro-Perforation Process Specific to Automotive Components. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4131. [PMID: 39203309 PMCID: PMC11356014 DOI: 10.3390/ma17164131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/03/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024]
Abstract
This article focuses on the influence of generated electromagnetic noise (energy) during the micro-perforation process. This study aims to investigate the critical parameters and effects of using laser technology in the processing of textile materials for airbags. Different levels of electromagnetic noise and material thicknesses were investigated to ensure the quality of manufactured parts and the best component performance. A factorial analysis (DOE) was developed to evaluate the influence of electromagnetic noise levels over pull test results and its effect on the micro-perforation process. The overall inferential analysis concludes a significant influence of the noise levels on micro-perforation processing. The detailed analysis suggests that 1.2 V is an optimal level of electromagnetic noise where the material maintains its mechanical properties in a more predictable and consistent manner. Additionally, the factorial design provides significant evidence for an interaction and main effects' influences of analyzed factors. The obtained results in this study have demonstrated that monitoring and controlling the noise level have beneficial effects over the laser processing. This ensures that the safety aspect of the produced parts is entirely upheld and protected. Also, this research contributes to improving the manufacturing process and ensures that high-quality products are obtained, being suitable for use in sensitive applications such as automotive airbags.
Collapse
Affiliation(s)
- Alexandru-Nicolae Rusu
- Department of Manufacturing Engineering, Transilvania University of Brasov, 5 Mihai Viteazul, 500036 Brasov, Romania; (A.-N.R.); (A.-E.D.)
| | - Dorin-Ion Dumitrascu
- Department of Automotive and Transport Engineering, Transilvania University of Brasov, 1 Politehnicii, 500036 Brasov, Romania
| | - Adela-Eliza Dumitrascu
- Department of Manufacturing Engineering, Transilvania University of Brasov, 5 Mihai Viteazul, 500036 Brasov, Romania; (A.-N.R.); (A.-E.D.)
| |
Collapse
|
10
|
Huang W, Tang J, Hao G, Zhang S, Li Q, Wu L, Xu H. Revealing the Properties of Electrically Driven Optical Antennas via Conductive Atomic Force Microscope. ACS NANO 2024; 18:22495-22502. [PMID: 39107106 DOI: 10.1021/acsnano.4c07928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
Light emission from ultracompact electrically driven optical antennas (EDOAs) has garnered significant attention due to its terahertz modulation bandwidth. Typically, the EDOAs are fixed and nonadjustable once fabricated, thus hindering the attempts to investigate the influence of structural geometry on light emission properties. Here, we propose and demonstrate that the EDOAs can be constructed by carefully manipulating the gold-coated tips of atomic force microscopy operated in conductive mode into contact with the optical antennas covered by insulating film, where the position of the tunnel junction on the antenna surface can be controlled with high accuracy and flexibility. Taking gold nanorod antennas covered by HfO2 film as an example, we found that the highest light generation efficiency is obtained when the tunnel junction is located at the shoulder edge of the nanorod antenna, where the bonding dipolar surface plasmon mode in the junction is spectrally and spatially coupled with the longitudinal radiation mode of the EDOAs. Besides, position variation of the tunnel junction on the nanorod surface also strongly influences the far-field radiation angular distribution and emission spectrum. Numerical simulations are in good agreement with the experimental results. Our findings offer fundamental insights into the influence of structural parameters on the light emission performance of EDOAs, thus leading to better design of EDOAs with high light generation efficiency and powerful functionality.
Collapse
Affiliation(s)
- Weiwei Huang
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China
| | - Jibo Tang
- School of Physics and Technology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Guodong Hao
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China
| | - Shunping Zhang
- School of Physics and Technology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Qiang Li
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China
| | - Lijun Wu
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China
| | - Hongxing Xu
- School of Physics and Technology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072, China
| |
Collapse
|
11
|
Ansari B, Nighat Kalhoro A, Shah S, Memon F. Optical axis-driven field enhancement in a hyperbolic medium. OPTICS LETTERS 2024; 49:4254-4257. [PMID: 39090907 DOI: 10.1364/ol.527902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 05/22/2024] [Indexed: 08/04/2024]
Abstract
Field enhancement of applied electric field is the foundation for the variety of applied domains at a nanoscale level. Traditionally, efforts to achieve field enhancement have required the use of complicated metamaterial-based structures with a transition behavior. Here, the electromagnetic field solution of the TM-polarized wave that interacts with an optical-axis-driven hyperbolic medium with a transition behavior is established. Detailed calculations reveal that such field enhancement can be achieved over a broad range of incident angles (i.e., near critical angle). Definitely, such flexibility of the incident angle for achieving the field enhancement enriches the understanding and provides novel prospective toward its practical realization.
Collapse
|
12
|
Ouyang YH, Luan HY, Zhao ZW, Mao WZ, Ma RM. Singular dielectric nanolaser with atomic-scale field localization. Nature 2024; 632:287-293. [PMID: 39020170 DOI: 10.1038/s41586-024-07674-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/05/2024] [Indexed: 07/19/2024]
Abstract
Compressing the optical field to the atomic scale opens up possibilities for directly observing individual molecules, offering innovative imaging and research tools for both physical and life sciences. However, the diffraction limit imposes a fundamental constraint on how much the optical field can be compressed, based on the achievable photon momentum1,2. In contrast to dielectric structures, plasmonics offer superior field confinement by coupling the light field with the oscillations of free electrons in metals3-6. Nevertheless, plasmonics suffer from inherent ohmic loss, leading to heat generation, increased power consumption and limitations on the coherence time of plasmonic devices7,8. Here we propose and demonstrate singular dielectric nanolasers showing a mode volume that breaks the optical diffraction limit. Derived from Maxwell's equations, we discover that the electric-field singularity sustained in a dielectric bowtie nanoantenna originates from divergence of momentum. The singular dielectric nanolaser is constructed by integrating a dielectric bowtie nanoantenna into the centre of a twisted lattice nanocavity. The synergistic integration surpasses the diffraction limit, enabling the singular dielectric nanolaser to achieve an ultrasmall mode volume of about 0.0005 λ3 (λ, free-space wavelength), along with an exceptionally small feature size at the 1-nanometre scale. To fabricate the required dielectric bowtie nanoantenna with a single-nanometre gap, we develop a two-step process involving etching and atomic deposition. Our research showcases the ability to achieve atomic-scale field localization in laser devices, paving the way for ultra-precise measurements, super-resolution imaging, ultra-efficient computing and communication, and the exploration of light-matter interactions within the realm of extreme optical field localization.
Collapse
Affiliation(s)
- Yun-Hao Ouyang
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, China
| | - Hong-Yi Luan
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, China
| | - Zi-Wei Zhao
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, China
| | - Wen-Zhi Mao
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, China
| | - Ren-Min Ma
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, China.
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, China.
- National Biomedical Imaging Center, Peking University, Beijing, China.
| |
Collapse
|
13
|
Schirato A, Sanders SK, Proietti Zaccaria R, Nordlander P, Della Valle G, Alabastri A. Quantifying Ultrafast Energy Transfer from Plasmonic Hot Carriers for Pulsed Photocatalysis on Nanostructures. ACS NANO 2024; 18:18933-18947. [PMID: 38990155 DOI: 10.1021/acsnano.4c01802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Photocatalysis with plasmonic nanostructures has lately emerged as a transformative paradigm to drive and alter chemical reactions using light. At the surface of metallic nanoparticles, photoexcitation results in strong near fields, short-lived high-energy "hot" carriers, and light-induced heating, thus creating a local environment where reactions can occur with enhanced efficiencies. In this context, it is critical to understand how to manipulate the nonequilibrium processes triggered by light, as their ultrafast (femto- to picoseconds) relaxation dynamics compete with the process of energy transfer toward the reactants. Accurate predictions of the plasmon photocatalytic activity can lead to optimized nanophotonic architectures with enhanced selectivity and rates, operating beyond the intrinsic limitations of the steady state. Here, we report on an original modeling approach to quantify, with space, time, and energy resolution, the ultrafast energy exchange from plasmonic hot carriers (HCs) to molecular systems adsorbed on the metal nanoparticle surface while consistently accounting for photothermal bond activation. Our analysis, illustrated for a few typical cases, reveals that the most energetic nonequilibrium carriers (i.e., with energies well far from the Fermi level) may introduce a wavelength-dependence of the reaction rates, and it elucidates on the role of the carriers closer to the Fermi energy and the photothermally heated lattice, suggesting ways to enhance and optimize each contribution. We show that the overall reaction rates can benefit strongly from using pulsed illumination with the optimal pulse width determined by the properties of the system. Taken together, these results contribute to the rational design of nanoreactors for pulsed catalysis, which calls for predictive modeling of the ultrafast HC-hot adsorbate energy transfer.
Collapse
Affiliation(s)
- Andrea Schirato
- Department of Physics, Politecnico di Milano, Milano 20133, Italy
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
- Istituto Italiano di Tecnologia, Genoa 16163, Italy
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, United States
| | - Stephen Keith Sanders
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
| | | | - Peter Nordlander
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, United States
- Laboratory for Nanophotonics, Rice University, Houston, Texas 77005, United States
| | - Giuseppe Della Valle
- Department of Physics, Politecnico di Milano, Milano 20133, Italy
- Istituto di Fotonica e Nanotecnologie─Consiglio Nazionale delle Ricerche, Piazza Leonardo da Vinci 32, Milano I-20133, Italy
| | - Alessandro Alabastri
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
- Laboratory for Nanophotonics, Rice University, Houston, Texas 77005, United States
- Smalley-Curl Institute, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
14
|
Hitzelhammer F, Dostálová A, Zykov I, Platzer B, Conrad-Billroth C, Juffmann T, Hohenester U. Unified Simulation Platform for Interference Microscopy. ACS PHOTONICS 2024; 11:2745-2756. [PMID: 39036062 PMCID: PMC11258784 DOI: 10.1021/acsphotonics.4c00621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 07/23/2024]
Abstract
Interferometric scattering microscopy is a powerful technique that enables various applications, such as mass photometry and particle tracking. Here, we present a numerical toolbox to simulate images obtained in interferometric scattering, coherent bright-field, and dark-field microscopies. The scattered fields are calculated using a boundary element method, facilitating the simulation of arbitrary sample geometries and substrate layer structures. A fully vectorial model is used for simulating the imaging setup. We demonstrate excellent agreement between our simulations and experiments for different shapes of scatterers and excitation angles. Notably, for angles near the Brewster angle, we observe a contrast enhancement which may be beneficial for nanosensing applications. The software is available as a matlab toolbox.
Collapse
Affiliation(s)
- Felix Hitzelhammer
- Institute
of Physics, University of Graz Universitätsplatz
5, 8010 Graz, Austria
- University
of Vienna, Faculty of Physics, VCQ, 1090 Vienna, Austria
- University
of Vienna, Max Perutz Laboratories, Department of Structural and Computational
Biology, 1030 Vienna, Austria
| | - Anežka Dostálová
- University
of Vienna, Faculty of Physics, VCQ, 1090 Vienna, Austria
- University
of Vienna, Max Perutz Laboratories, Department of Structural and Computational
Biology, 1030 Vienna, Austria
- Department
of Optics Faculty of Science, Palacký
University, 17. Listopadu
12, 77900 Olomouc, Czech Republic
| | - Ilia Zykov
- University
of Vienna, Faculty of Physics, VCQ, 1090 Vienna, Austria
- University
of Vienna, Max Perutz Laboratories, Department of Structural and Computational
Biology, 1030 Vienna, Austria
| | - Barbara Platzer
- University
of Vienna, Faculty of Physics, VCQ, 1090 Vienna, Austria
- University
of Vienna, Max Perutz Laboratories, Department of Structural and Computational
Biology, 1030 Vienna, Austria
| | - Clara Conrad-Billroth
- University
of Vienna, Faculty of Physics, VCQ, 1090 Vienna, Austria
- University
of Vienna, Max Perutz Laboratories, Department of Structural and Computational
Biology, 1030 Vienna, Austria
| | - Thomas Juffmann
- University
of Vienna, Faculty of Physics, VCQ, 1090 Vienna, Austria
- University
of Vienna, Max Perutz Laboratories, Department of Structural and Computational
Biology, 1030 Vienna, Austria
| | - Ulrich Hohenester
- Institute
of Physics, University of Graz Universitätsplatz
5, 8010 Graz, Austria
| |
Collapse
|
15
|
Dalal K, Sharma Y. Multi-wavelength and broadband plasmonic switching with V-shaped plasmonic nanostructures on a VO 2coated plasmonic substrate. NANOTECHNOLOGY 2024; 35:395203. [PMID: 38955143 DOI: 10.1088/1361-6528/ad5dc2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/02/2024] [Indexed: 07/04/2024]
Abstract
In this paper, periodic arrays of identicalV-shaped gold nanostructures and variableV-shaped gold nanostructures are designed on top of a gold-coated silicon dioxide (SiO2) substrate with a thin spacer layer of vanadium dioxide (VO2) to realize multi-wavelength and broadband plasmonic switches, respectively. The periodic array of identicalV-shaped nanostructures (IVNSs) with small inter-particle separation leads to coupled interactions of the elementary plasmons of aV-shaped nanostructure (VNS), resulting in a hybridized plasmon response with two longitudinal plasmonic modes in the reflectance spectra of the proposed switches when the incident light is polarized in thex-direction. Thex-direction is oriented along the axis that joins theV-junctions of all VNSs in one unit cell of the periodic array. On exposure to temperature, electric field, or optical stimulus, the VO2layer transforms from its monoclinic semiconducting state to its rutile metallic state, leading to an overall change in the reflectance spectra obtained from the proposed nanostructures and resulting in an efficient multi-wavelength switching action. Finite difference time domain modelling is employed to demonstrate that an extinction ratio (ER) >12 dB at two wavelengths can be achieved by employing the proposed switches based on periodic arrays of IVNSs. Further, plasmonic switches based on variableV-shaped nanostructures-i.e. multiple VNSs with variable arm lengths in one unit cell of a periodic array-are proposed for broadband switching. In the broadband operation mode, we report an ER >5 dB over an operational wavelength range >1400 nm in the near-IR spectral range spanning over all optical communication bands, i.e. theO, E, S, C, LandUbands. Further, it is also demonstrated that the wavelength of operation for these switches can be tuned by varying the geometrical parameters of the proposed switches. These switches have the potential to be employed in communication networks where ultrasmall and ultrafast switches with multi-wavelength operation or switching over a wide operational bandwidth are inevitably required.
Collapse
Affiliation(s)
- Kirti Dalal
- Department of Electronics and Communication Engineering, Delhi Technological University, Delhi, India
| | - Yashna Sharma
- Department of Electronics and Communication Engineering, Delhi Technological University, Delhi, India
| |
Collapse
|
16
|
Sándor P, Lovász B, Budai J, Pápa Z, Dombi P. Ultrafast Surface Plasmon Probing of Interband and Intraband Hot Electron Excitations. NANO LETTERS 2024; 24:8024-8029. [PMID: 38833525 PMCID: PMC11229057 DOI: 10.1021/acs.nanolett.4c01669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/31/2024] [Accepted: 05/31/2024] [Indexed: 06/06/2024]
Abstract
Upon the interaction of light with metals, nonthermal electrons are generated with intriguing transient behavior. Here, we present femtosecond hot electron probing in a noveloptical pump/plasmon probe scheme. With this, we probed ultrafast interband and intraband dynamics with 15 nm interface selectivity, observing a two-component-decay of hot electron populations. Results are in good agreement with a three-temperature model of the metal; thus, we could attribute the fast (∼100 fs) decay to the thermalization of hot electrons and the slow (picosecond) decay to electron-lattice thermalization. Moreover, we could modulate the transmission of our plasmonic channel with ∼40% depth, hinting at the possibility of ultrafast information processing applications with plasmonic signals.
Collapse
Affiliation(s)
- Péter Sándor
- HUN-REN Wigner Research Centre for Physics, 1121 Budapest, Hungary
| | - Béla Lovász
- HUN-REN Wigner Research Centre for Physics, 1121 Budapest, Hungary
| | - Judit Budai
- ELI-ALPS Research Institute, 6728 Szeged, Hungary
| | - Zsuzsanna Pápa
- HUN-REN Wigner Research Centre for Physics, 1121 Budapest, Hungary
- ELI-ALPS Research Institute, 6728 Szeged, Hungary
| | - Péter Dombi
- HUN-REN Wigner Research Centre for Physics, 1121 Budapest, Hungary
- ELI-ALPS Research Institute, 6728 Szeged, Hungary
| |
Collapse
|
17
|
Mandal I, Gangareddy J, Sethurajaperumal A, Nk M, Majji M, Bera S, Rudra P, Ravichandran V, Bysakh S, Jacob N, Rao KDM, Singh RK, Krishnan NMA, Chirumamilla M, Palanisamy T, Motapothula M, Varrla E, Ghosh S, Allu AR. H-Glass Supported Hybrid Gold Nano-Islands for Visible-Light-Driven Hydrogen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401131. [PMID: 38563587 DOI: 10.1002/smll.202401131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/16/2024] [Indexed: 04/04/2024]
Abstract
Flat panel reactors, coated with photocatalytic materials, offer a sustainable approach for the commercial production of hydrogen (H2) with zero carbon footprint. Despite this, achieving high solar-to-hydrogen (STH) conversion efficiency with these reactors is still a significant challenge due to the low utilization efficiency of solar light and rapid charge recombination. Herein, hybrid gold nano-islands (HGNIs) are developed on transparent glass support to improve the STH efficiency. Plasmonic HGNIs are grown on an in-house developed active glass sheet composed of sodium aluminum phosphosilicate oxide glass (H-glass) using the thermal dewetting method at 550 °C under an ambient atmosphere. HGNIs with various oxidation states (Au0, Au+, and Au-) and multiple interfaces are obtained due to the diffusion of the elements from the glass structure, which also facilitates the lifetime of the hot electron to be ≈2.94 ps. H-glass-supported HGNIs demonstrate significant STH conversion efficiency of 0.6%, without any sacrificial agents, via water dissociation. This study unveils the specific role of H-glass-supported HGNIs in facilitating light-driven chemical conversions, offering new avenues for the development of high-performance photocatalysts in various chemical conversion reactions for large-scale commercial applications.
Collapse
Affiliation(s)
- Indrajeet Mandal
- CSIR-Central Glass and Ceramic Research Institute, 196 Raja S C Mullick Road, Kolkata, 700 032, India
| | - Jagannath Gangareddy
- CSIR-Central Glass and Ceramic Research Institute, 196 Raja S C Mullick Road, Kolkata, 700 032, India
| | - Abimannan Sethurajaperumal
- Sustainable Nanomaterials and Technologies Lab, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India
| | - Murugasenapathi Nk
- Electrodics and Electrocatalysis Division (EEC), CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu, 630003, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Manikanta Majji
- Department of Physics, SRM University AP, Amaravati, Andhra Pradesh, 522502, India
| | - Susmita Bera
- Research Institute for Sustainable Energy (RISE), TCG Centres for Research and Education in Science and Technology (TCG CREST), Sector V, Salt Lake, Kolkata, 700091, India
| | - Pratyasha Rudra
- CSIR-Central Glass and Ceramic Research Institute, 196 Raja S C Mullick Road, Kolkata, 700 032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Vanmathi Ravichandran
- Sustainable Nanomaterials and Technologies Lab, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India
| | - Sandip Bysakh
- CSIR-Central Glass and Ceramic Research Institute, 196 Raja S C Mullick Road, Kolkata, 700 032, India
| | - Noah Jacob
- Department of Physics, SRM University AP, Amaravati, Andhra Pradesh, 522502, India
| | - K D M Rao
- School of Applied & Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Rajiv K Singh
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Photovoltaic Metrology Section, Advanced Material and Devices Metrology Division, CSIR-National Physical Laboratory, New Delhi, 110012, India
| | - N M Anoop Krishnan
- Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Manohar Chirumamilla
- Department of Materials and Production, Aalborg University, Skjernvej 4A, Aalborg, 9220, Denmark
- Institute of Optical and Electronic Materials, Hamburg University of Technology, Eissendorfer Strasse 38, 21073, Hamburg, Germany
| | - Tamilarasan Palanisamy
- Electrodics and Electrocatalysis Division (EEC), CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu, 630003, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - M Motapothula
- Department of Physics, SRM University AP, Amaravati, Andhra Pradesh, 522502, India
| | - Eswaraiah Varrla
- Sustainable Nanomaterials and Technologies Lab, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India
| | - Srabanti Ghosh
- CSIR-Central Glass and Ceramic Research Institute, 196 Raja S C Mullick Road, Kolkata, 700 032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Amarnath R Allu
- CSIR-Central Glass and Ceramic Research Institute, 196 Raja S C Mullick Road, Kolkata, 700 032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
18
|
Huang X, Liang W. Real-Time Simulation of Ultrafast Electronic Dynamics of Nanoscale Systems Involving an Organic Molecule and a Nanoparticle Dimer. J Phys Chem Lett 2024; 15:6592-6597. [PMID: 38885450 DOI: 10.1021/acs.jpclett.4c01337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Understanding and predicting the behavior of nanomaterials composed of plasmons interacting with quantum emitters at ultrafast timescales is crucial for the better manipulation of light at the nanoscale and advancing technologies like ultrafast communication and computing. Here we perform a simulation of the "real-time" electronic dynamics of a coupled molecule-metal nanoparticle dimer interacting with an ultrashort resonant laser pulse by combining the real-time time-dependent density functional theory (RT-TDDFT) approach with the time-domain frequency-dependent fluctuating charge (TD-ωFQ) model, an atomistic electromagnetic (AEM) model for the dynamic plasmonic response of nanoparticles. It is shown that the induced dipoles evolve from an exponential decay pattern to a beat pattern with an increase in coupling strength, which is altered by changing the molecular orientation relative to the dimer axis. It is further shown that in the strong coupling regime, both the excited molecule and the plasmon relax rapidly due to the molecule-plasmon interaction, and the efficient coherent energy exchange between the interacting molecule and plasmon modes occurs on a femtosecond (fs) timescale. This work provides guidance on manipulating light-matter interaction and studying molecular plasmonics at extremely fast timescales.
Collapse
Affiliation(s)
- Xunkun Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, People's Republic of China
| | - WanZhen Liang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, People's Republic of China
| |
Collapse
|
19
|
Qiao T, Hu M, Wang Q, Xiao M, Zhu S, Liu H. Suppressing the radiation loss by hybrid Tamm-surface plasmon BIC modes. OPTICS EXPRESS 2024; 32:21497-21505. [PMID: 38859502 DOI: 10.1364/oe.525338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/19/2024] [Indexed: 06/12/2024]
Abstract
Tamm plasmon polaritons (TPPs), localized near the boundary of a dielectric Bragg reflector (DBR) and a thin metal film, have attracted much attention for the lower ohm loss and flexible excitation. However, the radiation loss resulting from the direct coupling to the surroundings hinders their applications. Here, we propose and experimentally demonstrate a new type of hybrid plasmonic quasi-bound state in the continuum (BIC) in a Tamm-surface plasmon polariton system to suppress the radiation loss. Leveraging the scattering of the periodic metal array, the TPP interacts with the surface plasmon polariton (SPP) mode and form a Friedrich-Wintgen type quasi-BIC state that originated from the interference of two surface waves with different natures. Through angle resolved reflectance spectrum measurement, the hybrid plasmonic quasi-BIC was observed in the experiment. Our work proposes a new method to design a high Q mode in plasmonic systems, and thus holds promise for applications in the field of light matter interactions.
Collapse
|
20
|
Yang J, Fang C, Li T, Wang Y, Li X, Zeng X, Liu Y, Hao Y, Han G. Hybrid mode for absorption enhancement in the Ga 2O 3 nanocavity photodetector with grating electrodes. APPLIED OPTICS 2024; 63:4414-4420. [PMID: 38856622 DOI: 10.1364/ao.524563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 04/30/2024] [Indexed: 06/11/2024]
Abstract
Gallium oxide (G a 2 O 3) photodetectors have drawn increased interest for their widespread applications ranging from military to civil. Due to the inherent oxygen vacancy defects, they seriously suffer from trade-offs that make them incompetent for high-responsivity, quick-response detection. Herein, a G a 2 O 3 nanocavity photodetector assisted with grating electrodes is designed to break the constraint. The proposed structure supports both the plasmonic mode and the Fabry-Perot (F-P) mode. Numerical calculations show that the absorption of 99.8% is realized for ultra-thin G a 2 O 3 (30 nm), corresponding to a responsivity of 12.35 A/W. Benefiting from optical mechanisms, the external quantum efficiency (EQE) reaches 6040%, which is 466 times higher than that of bare G a 2 O 3 film. Furthermore, the proposed photodetector achieves a polarization-dependent dichroism ratio of 9.1, enabling polarization photodetection. The grating electrodes also effectively reduce the transit time of the photo-generated carriers. Our work provides a sophisticated platform for developing high-performance G a 2 O 3 photodetectors with the advantages of simplified fabrication processes and multidimensional detection.
Collapse
|
21
|
Chen M, Hao Q. Colloidal Quantum Dots for Nanophotonic Devices. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2471. [PMID: 38893735 PMCID: PMC11172753 DOI: 10.3390/ma17112471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 06/21/2024]
Abstract
Colloidal quantum dots (CQDs) have unique advantages in the wide tunability of visible-to-infrared emission wavelength and low-cost solution processibility [...].
Collapse
Affiliation(s)
- Menglu Chen
- School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China;
| | - Qun Hao
- School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China;
- Physics Department, Changchun University of Science and Technology, Changchun 130022, China
| |
Collapse
|
22
|
Xiong J, Wang J, Liu X, Zhang H, Wang Q, Sun J, Zhang B. Enhanced spontaneous radiation of quantum dots based on modulated anapole states in dielectric metamaterial. OPTICS EXPRESS 2024; 32:19910-19923. [PMID: 38859113 DOI: 10.1364/oe.519699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/14/2024] [Indexed: 06/12/2024]
Abstract
Dielectric nanostructures exhibit low-loss electrical and magnetic resonance, making them ideal for quantum information processing. In this study, the periodic double-groove silicon nanodisk (DGSND) is used to support the anapole state. Based on the distribution properties of the electromagnetic field in anapole states, the anapoles are manipulated by cutting the dielectric metamaterial. Quantum dots (QDs) are used to stimulate the anapole and control the amplification of the photoluminescence signal within the QDs. By opening symmetrical holes in the long axis of the nanodisk in the dielectric metamaterial, the current distribution of Mie resonance can be adjusted. As a result, the toroidal dipole moment is altered, leading to an enhanced electric field (E-field) and Purcell factor. When the dielectric metamaterial is deposited on the Ag substrate separated by the silicon dioxide (SiO2) layer, the structure exhibits ultra-narrow perfect absorption with even higher E-field and Purcell factor enhancement compared to silicon (Si) nanodisks.
Collapse
|
23
|
Zhu C, Ekinci H, Pan A, Cui B, Zhu X. Electron beam lithography on nonplanar and irregular surfaces. MICROSYSTEMS & NANOENGINEERING 2024; 10:52. [PMID: 38646064 PMCID: PMC11031580 DOI: 10.1038/s41378-024-00682-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/19/2024] [Accepted: 02/23/2024] [Indexed: 04/23/2024]
Abstract
E-beam lithography is a powerful tool for generating nanostructures and fabricating nanodevices with fine features approaching a few nanometers in size. However, alternative approaches to conventional spin coating and development processes are required to optimize the lithography procedure on irregular surfaces. In this review, we summarize the state of the art in nanofabrication on irregular substrates using e-beam lithography. To overcome these challenges, unconventional methods have been developed. For instance, polymeric and nonpolymeric materials can be sprayed or evaporated to form uniform layers of electron-sensitive materials on irregular substrates. Moreover, chemical bonds can be applied to help form polymer brushes or self-assembled monolayers on these surfaces. In addition, thermal oxides can serve as resists, as the etching rate in solution changes after e-beam exposure. Furthermore, e-beam lithography tools can be combined with cryostages, evaporation systems, and metal deposition chambers for sample development and lift-off while maintaining low temperatures. Metallic nanopyramids can be fabricated on an AFM tip by utilizing ice as a positive resistor. Additionally, Ti/Au caps can be patterned around a carbon nanotube. Moreover, 3D nanostructures can be formed on irregular surfaces by exposing layers of anisole on organic ice surfaces with a focused e-beam. These advances in e-beam lithography on irregular substrates, including uniform film coating, instrumentation improvement, and new pattern transferring method development, substantially extend its capabilities in the fabrication and application of nanoscale structures.
Collapse
Affiliation(s)
- Chenxu Zhu
- Department of Electrical and Computer Engineering and Waterloo Institute for Nanotechnology (WIN), University of Waterloo, Waterloo, ON Canada
| | - Huseyin Ekinci
- Department of Electrical and Computer Engineering and Waterloo Institute for Nanotechnology (WIN), University of Waterloo, Waterloo, ON Canada
| | - Aixi Pan
- Department of Electrical and Computer Engineering and Waterloo Institute for Nanotechnology (WIN), University of Waterloo, Waterloo, ON Canada
| | - Bo Cui
- Department of Electrical and Computer Engineering and Waterloo Institute for Nanotechnology (WIN), University of Waterloo, Waterloo, ON Canada
| | - Xiaoli Zhu
- Department of Electrical and Computer Engineering and Waterloo Institute for Nanotechnology (WIN), University of Waterloo, Waterloo, ON Canada
| |
Collapse
|
24
|
Wang X, Lin Z, Watanabe K, Taniguchi T, Yao W, Zhang S, Cui X. Near-field coupling of interlayer excitons in MoSe2/WSe2 heterobilayers to surface plasmon polaritons. J Chem Phys 2024; 160:141103. [PMID: 38606736 DOI: 10.1063/5.0201383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/25/2024] [Indexed: 04/13/2024] Open
Abstract
Two-dimensional (2D) transition metal dichalcogenides have emerged as promising quantum functional blocks benefitting from their unique combination of spin, valley, and layer degrees of freedom, particularly for the tremendous flexibility of moiré superlattices formed by van der Waals stacking. These degrees of freedom coupled with the enhanced Coulomb interaction in 2D structures allow excitons to serve as on-chip information carriers. However, excitons are spatially circumscribed due to their low mobility and limited lifetime. One way to overcome these limitations is through the coupling of excitons with surface plasmon polaritons (SPPs), which facilitates an interaction between remote quantum states. Here, we showcase the successful coupling of SPPs with interlayer excitons in molybdenum diselenide/tungsten diselenide heterobilayers. Our results indicate that the valley polarization can be efficiently transferred to SPPs, enabling preservation of polarization information even after propagating tens of micrometers.
Collapse
Affiliation(s)
- Xiong Wang
- Physics Department, University of Hong Kong, Hong Kong, SAR, China
| | - Zemeng Lin
- Physics Department, University of Hong Kong, Hong Kong, SAR, China
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Takashi Taniguchi
- International Center for Materials Nano architectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Wang Yao
- Physics Department, University of Hong Kong, Hong Kong, SAR, China
| | - Shuang Zhang
- Physics Department, University of Hong Kong, Hong Kong, SAR, China
| | - Xiaodong Cui
- Physics Department, University of Hong Kong, Hong Kong, SAR, China
| |
Collapse
|
25
|
Ayala-Orozco C, Li G, Li B, Vardanyan V, Kolomeisky AB, Tour JM. How to Build Plasmon-Driven Molecular Jackhammers that Disassemble Cell Membranes and Cytoskeletons in Cancer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309910. [PMID: 38183304 DOI: 10.1002/adma.202309910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/19/2023] [Indexed: 01/08/2024]
Abstract
Plasmon-driven molecular machines with ultrafast motion at the femtosecond scale are effective for the treatment of cancer and other diseases. It is recently shown that cyanine dyes act as molecular jackhammers (MJH) through vibronic (vibrational and electronic mode coupling) driven activation that causes the molecule to stretch longitudinally and axially through concerted whole molecule vibrations. However, the theoretical and experimental underpinnings of these plasmon-driven motions in molecules are difficult to assess. Here the use of near-infrared (NIR) light-activated plasmons in a broad array of MJH that mechanically disassemble membranes and cytoskeletons in human melanoma A375 cells is described. The characteristics of plasmon-driven molecular mechanical disassembly of supramolecular biological structures are observed and recorded using real-time fluorescence confocal microscopy. Molecular plasmon resonances in MJH are quantified through a new experimental plasmonicity index method. This is done through the measurement of the UV-vis-NIR spectra in various solvents, and quantification of the optical response as a function of the solvent polarity. Structure-activity relationships are used to optimize the synthesis of plasmon-driven MJH, applying them to eradicate human melanoma A375 cells at low lethal concentrations of 75 nm and 80 mW cm-2 of 730 nm NIR-light for 10 min.
Collapse
Affiliation(s)
| | - Gang Li
- Department of Chemistry, Rice University, Houston, TX, 77005, USA
| | - Bowen Li
- Department of Chemistry, Rice University, Houston, TX, 77005, USA
| | - Vardan Vardanyan
- Department of Chemistry, Rice University, Houston, TX, 77005, USA
| | | | - James M Tour
- Department of Chemistry, Rice University, Houston, TX, 77005, USA
- Department of Materials Science and Nano Engineering, the Smalley-Curl Institute, the Nano Carbon Center, and the Rice Advanced Materials Institute, Rice University, 6100 Main St., Houston, TX, 77005, USA
| |
Collapse
|
26
|
Herzig Sheinfux H, Orsini L, Jung M, Torre I, Ceccanti M, Marconi S, Maniyara R, Barcons Ruiz D, Hötger A, Bertini R, Castilla S, Hesp NCH, Janzen E, Holleitner A, Pruneri V, Edgar JH, Shvets G, Koppens FHL. High-quality nanocavities through multimodal confinement of hyperbolic polaritons in hexagonal boron nitride. NATURE MATERIALS 2024; 23:499-505. [PMID: 38321241 DOI: 10.1038/s41563-023-01785-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 12/05/2023] [Indexed: 02/08/2024]
Abstract
Compressing light into nanocavities substantially enhances light-matter interactions, which has been a major driver for nanostructured materials research. However, extreme confinement generally comes at the cost of absorption and low resonator quality factors. Here we suggest an alternative optical multimodal confinement mechanism, unlocking the potential of hyperbolic phonon polaritons in isotopically pure hexagonal boron nitride. We produce deep-subwavelength cavities and demonstrate several orders of magnitude improvement in confinement, with estimated Purcell factors exceeding 108 and quality factors in the 50-480 range, values approaching the intrinsic quality factor of hexagonal boron nitride polaritons. Intriguingly, the quality factors we obtain exceed the maximum predicted by impedance-mismatch considerations, indicating that confinement is boosted by higher-order modes. We expect that our multimodal approach to nanoscale polariton manipulation will have far-reaching implications for ultrastrong light-matter interactions, mid-infrared nonlinear optics and nanoscale sensors.
Collapse
Affiliation(s)
- Hanan Herzig Sheinfux
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
- Department of Physics, Bar-Ilan University, Ramat Gan, Israel
| | - Lorenzo Orsini
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
| | - Minwoo Jung
- Department of Physics, Cornell University, Ithaca, NY, USA
| | - Iacopo Torre
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
| | - Matteo Ceccanti
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
| | - Simone Marconi
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
| | - Rinu Maniyara
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
| | - David Barcons Ruiz
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
| | - Alexander Hötger
- Walter Schottky Institut and Physik Department, Technische Universitat Munchen, Garching, Germany
| | - Ricardo Bertini
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
| | - Sebastián Castilla
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
| | - Niels C H Hesp
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
| | - Eli Janzen
- Tim Taylor Department of Chemical Engineering, Kansas State University, Durland Hall, Manhattan, KS, USA
| | - Alexander Holleitner
- Walter Schottky Institut and Physik Department, Technische Universitat Munchen, Garching, Germany
| | - Valerio Pruneri
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
- ICREA-Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - James H Edgar
- Tim Taylor Department of Chemical Engineering, Kansas State University, Durland Hall, Manhattan, KS, USA
| | - Gennady Shvets
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA
| | - Frank H L Koppens
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain.
- ICREA-Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain.
| |
Collapse
|
27
|
Doroshina NV, Streletskiy OA, Zavidovskiy IA, Tatmyshevskiy MK, Tselikov GI, Kapitanova OO, Syuy AV, Romanov R, Mishra P, Bobrovs V, Markeev AM, Yakubovsky DI, Veselova IA, Arsenin AV, Volkov VS, Novikov SM. Crystallinity as a factor of SERS stability of silver nanoparticles formed by Ar + irradiation. Heliyon 2024; 10:e27538. [PMID: 38509939 PMCID: PMC10951503 DOI: 10.1016/j.heliyon.2024.e27538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/20/2024] [Accepted: 03/01/2024] [Indexed: 03/22/2024] Open
Abstract
The plasmonic sensors based on silver nanoparticles are limited in application due to their relatively fast degradation in the ambient atmosphere. The technology of ion-beam modification for the creation of monocrystalline silver nanoparticles (NPs) with stable plasmonic properties will expand the application of silver nanostructures. In the present study, highly-stable monocrystalline NPs were formed on the basis of a thin silver film by low-energy ion irradiation. Combined with lithography, this technique allows the creation of nanoparticle ensembles in variant forms. The characterization of the nanoparticles formed by ion-beam modification showed long-term outstanding for Ag nanoparticles stability of their plasmonic properties due to their monocrystalline structure. According to optical spectroscopy data, the reliable plasmonic properties in the ambient atmosphere are preserved for up to 39 days. The mapping of crystal violet dye via surface-enhanced Raman spectroscopy (SERS) revealed a strong amplification factor sustaining at least thrice as long as the one of similarly sized polycrystalline silver NPs formed by annealing. The plasmonic properties sustain more than a month of storage in the ambient atmosphere. Thus, ion-beam modification of silver film makes it possible to fabricate NPs with stable plasmonic properties and form clusters of NPs for sensor technology and SERS applications.
Collapse
Affiliation(s)
| | - Oleg A. Streletskiy
- Faculty of Physics, M.V. Lomonosov Moscow State University, 119991, Moscow, Russia
| | | | | | - Gleb I. Tselikov
- Emerging Technologies Research Center, XPANCEO, Dubai, 00000, United Arab Emirates
| | - Olesya O. Kapitanova
- Moscow Center for Advanced Studies, Kulakova Str. 20, Moscow, Russia
- Faculty of Chemistry, M.V. Lomonosov Moscow State University, 119991, Moscow, Russia
| | - Alexander V. Syuy
- Moscow Center for Advanced Studies, Kulakova Str. 20, Moscow, Russia
| | - Roman Romanov
- Moscow Center for Advanced Studies, Kulakova Str. 20, Moscow, Russia
| | - Prabhash Mishra
- Quantum Materials and Devices Laboratory, Faculty of Engineering and Technology, Jamia Millia Islamia (Central University), 110025, New Delhi, India
| | - Vjaceslavs Bobrovs
- Institute of Photonics, Electronics and Telecommunications, Riga, 1048, Latvia
| | - Andrey M. Markeev
- Moscow Center for Advanced Studies, Kulakova Str. 20, Moscow, Russia
| | | | - Irina A. Veselova
- Faculty of Chemistry, M.V. Lomonosov Moscow State University, 119991, Moscow, Russia
| | - Aleksey V. Arsenin
- Moscow Center for Advanced Studies, Kulakova Str. 20, Moscow, Russia
- Yerevan State University, 0025, Yerevan, Armenia
| | - Valentyn S. Volkov
- Emerging Technologies Research Center, XPANCEO, Dubai, 00000, United Arab Emirates
- Yerevan State University, 0025, Yerevan, Armenia
| | - Sergey M. Novikov
- Moscow Center for Advanced Studies, Kulakova Str. 20, Moscow, Russia
| |
Collapse
|
28
|
Wang C, Guo X, Wu X. Electrically tunable virtual image Luneburg lens using graphene. OPTICS EXPRESS 2024; 32:12609-12619. [PMID: 38571079 DOI: 10.1364/oe.517397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/13/2024] [Indexed: 04/05/2024]
Abstract
Virtual image lenses play essential roles in various optical devices and applications, including vision correction, photography, and scientific instruments. Here, we introduce an approach for creating virtual image Luneburg lenses (LL) on graphene. Remarkably, the graphene plasmonic lens (GPL) exhibits electrically tunable virtual focusing capabilities. The design principle of the tunability is based on the nonlinear relationship between surface plasmon polariton (SPP) wave mode index and chemical potential of graphene. By controlling the gate voltage of graphene, we can achieve continuous tuning of virtual focus. A ray-tracing technique is employed to determine the required gate voltages for various virtual focal lengths. The proposed GPL facilitates adjustable virtual focusing, promising advancements in highly adaptive and transformative nanophotonic devices.
Collapse
|
29
|
Juma MW, Birech Z, Mwenze NM, Ondieki AM, Maaza M, Mokhotjwa SD. Localized surface plasmon resonance sensing of Trenbolone acetate dopant using silver nanoparticles. Sci Rep 2024; 14:5721. [PMID: 38459089 PMCID: PMC10923944 DOI: 10.1038/s41598-024-56456-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 03/06/2024] [Indexed: 03/10/2024] Open
Abstract
In this work, localized surface plasmon resonance (LSPR) sensing as applicable in the detection of Trenbolone acetate dopant is demonstrated. We show that the LSPR of the Trenbolone acetate/silver nanoparticle (Tren Ac/AgNPs) complex is sensitive to changes in the adsorbent concentration. The results show an average redshift of + 18 nm in the LSPR peak with variations in intensity and broadening behavior of the LSPR band of the Tren Ac/AgNPs complex. AgNPs were synthesized using laser ablation in liquid (LAL) technique with water as the solvent. UV-Vis spectroscopy was used for absorbance measurements and particle size and morphology were monitored using scanning electron microscopy (SEM). The aggregation behavior of the Tren Ac/AgNPs complex was monitored using energy-dispersive X-ray spectroscopy (EDS). Molecular Electrostatic Potential (MEP) and the HOMO-LUMO orbitals of the optimized Trenbolone acetate structure were obtained using Density Function Theory (DFT). The molecule was optimized at the B3LYP level of theory using the 6-311 basis set carried out using the Gaussian 09 software package. The results showed that O2- is Trenbolone acetate's active site that would interact with Ag+ to form a complex that would influence the plasmon behavior. The results presented in this work demonstrate the feasibility of LSPR for anabolic androgenic steroid detection.
Collapse
Affiliation(s)
- Moses Wabwile Juma
- UNESCO-UNISA Africa Chair in Nanoscience and Nanotechnology (U2ACN2), College of Graduate Studies, University of South Africa (UNISA), Pretoria, South Africa.
- NANOAFNET, iThemba LABS-National Research Foundation of South Africa, 1 Old Faure Road, Cape Town, 7129, Western Cape, South Africa.
- Department of Physics, University of South Africa, Muckleneuk Ridge, Pretoria, 0001, South Africa.
- Laser Physics and Spectroscopy Research Group, Department of Physics, University of Nairobi, P.O Box 30197-00100, Nairobi, Kenya.
| | - Zephania Birech
- Laser Physics and Spectroscopy Research Group, Department of Physics, University of Nairobi, P.O Box 30197-00100, Nairobi, Kenya
| | - Nancy Mwikali Mwenze
- UNESCO-UNISA Africa Chair in Nanoscience and Nanotechnology (U2ACN2), College of Graduate Studies, University of South Africa (UNISA), Pretoria, South Africa
- NANOAFNET, iThemba LABS-National Research Foundation of South Africa, 1 Old Faure Road, Cape Town, 7129, Western Cape, South Africa
- Department of Physics, University of South Africa, Muckleneuk Ridge, Pretoria, 0001, South Africa
- Laser Physics and Spectroscopy Research Group, Department of Physics, University of Nairobi, P.O Box 30197-00100, Nairobi, Kenya
| | - Annah Moraa Ondieki
- Laser Physics and Spectroscopy Research Group, Department of Physics, University of Nairobi, P.O Box 30197-00100, Nairobi, Kenya
| | - Malik Maaza
- UNESCO-UNISA Africa Chair in Nanoscience and Nanotechnology (U2ACN2), College of Graduate Studies, University of South Africa (UNISA), Pretoria, South Africa
- NANOAFNET, iThemba LABS-National Research Foundation of South Africa, 1 Old Faure Road, Cape Town, 7129, Western Cape, South Africa
- Department of Physics, University of South Africa, Muckleneuk Ridge, Pretoria, 0001, South Africa
| | - Simon Dhlamini Mokhotjwa
- Department of Physics, University of South Africa, Muckleneuk Ridge, Pretoria, 0001, South Africa
| |
Collapse
|
30
|
Mokkath JH. Plasmon induced hot carrier distribution in Ag 20 -CO composite. Chemphyschem 2024; 25:e202300602. [PMID: 38185742 DOI: 10.1002/cphc.202300602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/14/2023] [Accepted: 01/05/2024] [Indexed: 01/09/2024]
Abstract
The interaction between plasmons and the molecules leads to the transfer of plasmon-induced hot carriers, presenting innovative opportunities for controlling chemical reactions on sub-femtosecond timescales. Through real-time time-dependent density functional theory simulations, we have investigated the enhancement of the electric field due to plasmon excitation and the subsequent generation and transfer of plasmon-induced hot carriers in a linear atomic chain of Ag20 and an Ag20 -CO composite system. By applying a Gaussian laser pulse tuned to align with the plasmon frequency, we observe a plasmon-induced transfer of hot electrons from the occupied states of Ag to the unoccupied molecular orbitals of CO. Remarkably, there is a pronounced accumulation of hot electrons and hot holes on the C and O atoms. This phenomenon arises from the electron migration from the inter-nuclear regions of the C-O bond towards the individual C and O atoms. The insights garnered from our study hold the potential to drive advancements in the development of more efficient systems for catalytic processes empowered by plasmonic interactions.
Collapse
Affiliation(s)
- Junais Habeeb Mokkath
- Quantum Nanophotonics Simulations Lab, Department of Physics, Kuwait College of Science And Technology, Doha Area, 7th Ring Road, P.O. Box, 27235, Kuwait
| |
Collapse
|
31
|
Yunusa U, Warren N, Schauer D, Srivastava P, Sprague-Klein E. Plasmon resonance dynamics and enhancement effects in tris(2,2'-bipyridine)ruthenium(II) gold nanosphere oligomers. NANOSCALE 2024. [PMID: 38411615 DOI: 10.1039/d3nr06129a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Ruthenium-based metal complexes are one of the most widely studied dyes because of their rich photochemistry and light-harvesting properties. Significant attention has been paid to the energy and charge transfer dynamics of these dyes on semiconductor substrates. However, studies on photophysical and photochemical properties of these dyes in plasmonic environments are rare. In this study, we report a plasmon-mediated resonance energy transfer in an optimized oligomer system that enhances the photoexcited population of the well known dye, tris(2,2'-bipyridine)ruthenium(II), [Ru(BPY)3]2+ adsorbed on gold nanosphere surfaces with a defluorescenced Raman signal. Structural and chemical information is collected using a range of techniques that include in situ time-resolved UV/VIS, DLS, SERS, and TA. The findings have great potential to impact nanoscience broadly with special emphasis on surface photocatalysis, redox chemistry, and solar energy harvesting.
Collapse
Affiliation(s)
- Umar Yunusa
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA.
| | - Natalie Warren
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA.
| | - David Schauer
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA.
- ETH Zurich, Department of Chemistry and Applied Biosciences, LPC, Vladimir-Prelog-Weg 2, 8049 Zürich, Switzerland
| | | | - Emily Sprague-Klein
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA.
| |
Collapse
|
32
|
Song J, Ji CY, Ma X, Li J, Zhao W, Wang RY. Key Role of Asymmetric Photothermal Effect in Selectively Chiral Switching of Plasmonic Dimer Driven by Circularly Polarized Light. J Phys Chem Lett 2024; 15:975-982. [PMID: 38252465 DOI: 10.1021/acs.jpclett.3c03387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Strong interaction between circularly polarized light and chiral plasmonic nanostructures can enable controllable asymmetric photophysical processes, such as selective chiral switching of a plasmonic nanorod-dimer. Here, we uncover the underlying physics that governs this chiral switching by theoretically investigating the interplay between asymmetric photothermal and optomechanical effects. We find that the photothermally induced local temperature rises could play a key role in activating the dynamic chiral configurations of a plasmonic dimer due to the temperature-sensitive molecular linkages located at the gap region. Importantly, different temperature rises caused by the opposite handedness of light could facilitate selective chiral switching of the plasmonic dimer driven by asymmetric optical torques. Our analyses on the wavelength-dependent selectively chiral switching behaviors are in good agreement with the experimental observations. This work contributes to a comprehensive understanding of the physical mechanism involved in the experimentally designed photoresponsive plasmonic nanosystems for practical applications.
Collapse
Affiliation(s)
- Jian Song
- School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Chang-Yin Ji
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaoyun Ma
- School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Jiafang Li
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Wenjing Zhao
- College of Math and Physics, Beijing University of Chemical Technology, Beijing 100029, China
| | - Rong-Yao Wang
- School of Physics, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
33
|
Tang J, Guo Q, Wu Y, Ge J, Zhang S, Xu H. Light-Emitting Plasmonic Tunneling Junctions: Current Status and Perspectives. ACS NANO 2024; 18:2541-2551. [PMID: 38227821 DOI: 10.1021/acsnano.3c08628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Quantum tunneling, in which electrons can tunnel through a finite potential barrier while simultaneously interacting with other matter excitation, is one of the most fascinating phenomena without classical correspondence. In an extremely thin metallic nanogap, the deep-subwavelength-confined plasmon modes can be directly excited by the inelastically tunneling electrons driven by an externally applied voltage. Light emission via inelastic tunneling possesses a great potential application for next-generation light sources, with great superiority of ultracompact integration, large bandwidth, and ultrafast response. In this Perspective, we first briefly introduce the mechanism of plasmon generation in the inelastic electron tunneling process. Then the state of the art in plasmonic tunneling junctions will be reviewed, particularly emphasizing efficiency improvement, precise construction, active control, and electrically driven optical antenna integration. Ultimately, we forecast some promising and critical prospects that require further investigation.
Collapse
Affiliation(s)
- Jibo Tang
- School of Physics and Technology and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Quanbing Guo
- Wuhan Institute of Quantum Technology, Wuhan 430206, China
| | - Yu Wu
- School of Physics and Technology and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Junhao Ge
- School of Physics and Technology and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Shunping Zhang
- School of Physics and Technology and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072, China
- Wuhan Institute of Quantum Technology, Wuhan 430206, China
| | - Hongxing Xu
- School of Physics and Technology and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072, China
- Wuhan Institute of Quantum Technology, Wuhan 430206, China
- School of Microelectronics, Wuhan University, Wuhan 430072, China
- Henan Academy of Sciences, Zhengzhou, Henan 450046 China
| |
Collapse
|
34
|
Anoshkin SS, Shishkin II, Markina DI, Logunov LS, Demir HV, Rogach AL, Pushkarev AP, Makarov SV. Photoinduced Transition from Quasi-Two-Dimensional Ruddlesden-Popper to Three-Dimensional Halide Perovskites for the Optical Writing of Multicolor and Light-Erasable Images. J Phys Chem Lett 2024; 15:540-548. [PMID: 38197909 DOI: 10.1021/acs.jpclett.3c03151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Optical data storage, information encryption, and security labeling technologies require materials that exhibit local, pronounced, and diverse modifications of their structure-dependent optical properties under external excitation. Herein, we propose and develop a novel platform relying on lead halide Ruddlesden-Popper phases that undergo a light-induced transition toward bulk perovskite and employ this phenomenon for the direct optical writing of multicolor patterns. This transition causes the weakening of quantum confinement and hence a reduction in the band gap. To extend the color gamut of photoluminescence, we use mixed-halide compositions that exhibit photoinduced halide segregation. The emission of the films can be tuned across the range of 450-600 nm. Laser irradiation provides high-resolution direct writing, whereas continuous-wave ultraviolet exposure is suitable for recording on larger scales. The luminescent images created on such films can be erased during the visualization process. This makes the proposed writing/erasing platform suitable for the manufacturing of optical data storage devices and light-erasable security labels.
Collapse
Affiliation(s)
| | - Ivan I Shishkin
- ITMO University, Kronverkskiy pr. 49, 197101 St. Petersburg, Russia
| | - Daria I Markina
- ITMO University, Kronverkskiy pr. 49, 197101 St. Petersburg, Russia
| | - Lev S Logunov
- ITMO University, Kronverkskiy pr. 49, 197101 St. Petersburg, Russia
| | - Hilmi Volkan Demir
- UNAM-Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center, Department of Electrical and Electronics Engineering, Department of Physics, Bilkent University, Ankara 06800, Turkey
- LUMINOUS! Center of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, School of Physical and Materials Sciences, School of Materials Science and Nanotechnology, Nanyang Technological University, Singapore 639798
| | - Andrey L Rogach
- Department of Materials Science and Engineering and Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, P. R. China
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao 266000, Shandong, P. R. China
| | | | - Sergey V Makarov
- ITMO University, Kronverkskiy pr. 49, 197101 St. Petersburg, Russia
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao 266000, Shandong, P. R. China
| |
Collapse
|
35
|
Dalal K, Sharma Y. Plasmonic switches based on VO 2as the phase change material. NANOTECHNOLOGY 2024; 35:142001. [PMID: 38100839 DOI: 10.1088/1361-6528/ad1642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 12/15/2023] [Indexed: 12/17/2023]
Abstract
In this paper, a comprehensive review of the recent advancements in the design and development of plasmonic switches based on vanadium dioxide (VO2) is presented. Plasmonic switches are employed in applications such as integrated photonics, plasmonic logic circuits and computing networks for light routing and switching, and are based on the switching of the plasmonic properties under the effect of an external stimulus. In the last few decades, plasmonic switches have seen a significant growth because of their ultra-fast switching speed, wide spectral tunability, ultra-compact size, and low losses. In this review, first, the mechanism of the semiconductor to metal phase transition in VO2is discussed and the reasons for employing VO2over other phase change materials for plasmonic switching are described. Subsequently, an exhaustive review and comparison of the current state-of-the-art plasmonic switches based on VO2proposed in the last decade is carried out. As the phase transition in VO2can be activated by application of temperature, voltage or optical light pulses, this review paper has been categorized into thermally-activated, electrically-activated, and optically-activated plasmonic switches based on VO2operating in the visible, near-infrared, infrared and terahertz frequency regions.
Collapse
Affiliation(s)
- Kirti Dalal
- Department of Electronics and Communication Engineering, Delhi Technological University, Bawana Road, Delhi, 110042, India
| | - Yashna Sharma
- Department of Electronics and Communication Engineering, Delhi Technological University, Bawana Road, Delhi, 110042, India
| |
Collapse
|
36
|
Kang M, Kim SJ, Joo H, Koo Y, Lee H, Lee HS, Suh YD, Park KD. Nanoscale Manipulation of Exciton-Trion Interconversion in a MoSe 2 Monolayer via Tip-Enhanced Cavity-Spectroscopy. NANO LETTERS 2024; 24:279-286. [PMID: 38117534 DOI: 10.1021/acs.nanolett.3c03920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Emerging light-matter interactions in metal-semiconductor hybrid platforms have attracted considerable attention due to their potential applications in optoelectronic devices. Here, we demonstrate plasmon-induced near-field manipulation of trionic responses in a MoSe2 monolayer using tip-enhanced cavity-spectroscopy (TECS). The surface plasmon-polariton mode on the Au nanowire can locally manipulate the exciton (X0) and trion (X-) populations of MoSe2. Furthermore, we reveal that surface charges significantly influence the emission and interconversion processes of X0 and X-. In the TECS configuration, the localized plasmon significantly affects the distributions of X0 and X- due to the modified radiative decay rate. Additionally, within the TECS cavity, the electric doping effect and hot electron generation enable dynamic interconversion between X0 and X- at the nanoscale. This work advances our understanding of plasmon-exciton-hot electron interactions in metal-semiconductor-metal hybrid structures, providing a foundation for an optimal trion-based nano-optoelectronic platform.
Collapse
Affiliation(s)
- Mingu Kang
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Su Jin Kim
- Department of Physics, Research Institute for Nanoscale Science and Technology, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Huitae Joo
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Yeonjeong Koo
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Hyeongwoo Lee
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Hyun Seok Lee
- Department of Physics, Research Institute for Nanoscale Science and Technology, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Yung Doug Suh
- Department of Chemistry and School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 Republic of Korea
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Kyoung-Duck Park
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| |
Collapse
|
37
|
Wongpanya K, Pijitrojana W. Optical characterization of mass-productive metal-insulator-metal plasmonic waveguide with a linear taper for nanofocusing. OPTICS EXPRESS 2024; 32:677-690. [PMID: 38175091 DOI: 10.1364/oe.488141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/11/2023] [Indexed: 01/05/2024]
Abstract
This paper conducts an experimental evaluation of the optical properties of mass-productive metal-insulator-metal linear taper waveguides for nanofocusing. The vertical linear tapers, with controlled angles in the 12-51 degrees range, were realized with dry etching and mixed gas, while tip-thickness was precisely controlled with atomic layer deposition. The transmission efficiency of the linear taper was measured employing an input grating and a single output slit. The maximum transmission efficiency was estimated at 64% at a taper angle of 30 degrees, which aligned with the calculations. This experimental evaluation provides guidance for the design of practical nanofocusing components.
Collapse
|
38
|
Liu G, Zong S, Liu X, Chen J, Liu Z. High-performance etchless lithium niobate layer electro-optic modulator enabled by quasi-BICs. OPTICS LETTERS 2024; 49:113-116. [PMID: 38134165 DOI: 10.1364/ol.505351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023]
Abstract
A facile strategy is proposed for a high-performance electro-optic modulator with an etchless lithium niobate (LN) layer assisted by the silicon resonator metasurface, which pioneers the way to engineer an ultra-sharp spectral line shape via the excitation of quasi-bound states in the continuum (BICs). Meanwhile, strong out-of-plane electric/magnetic fields within the proximity area to the electro-optic layer lead to ultra-sensitive modulations. As a result, only a slight voltage change of 0.2 V is needed to fully shift the resonances and then realize switching modulation between the "off" and "on" states. The findings pave new, to the best of our knowledge, insights in reconfiguration of spatial optical fields and offer prospects for functional optoelectronic devices.
Collapse
|
39
|
Yang JW, Peng TY, Clarke DDA, Bello FD, Chen JW, Yeh HC, Syong WR, Liang CT, Hess O, Lu YJ. Nanoscale Gap-Plasmon-Enhanced Superconducting Photon Detectors at Single-Photon Level. NANO LETTERS 2023; 23:11387-11394. [PMID: 37906586 DOI: 10.1021/acs.nanolett.3c01703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
With a growing demand for detecting light at the single-photon level in various fields, researchers are focused on optimizing the performance of superconducting single-photon detectors (SSPDs) by using multiple approaches. However, input light coupling for visible light has remained a challenge in the development of efficient SSPDs. To overcome these limitations, we developed a novel system that integrates NbN superconducting microwire photon detectors (SMPDs) with gap-plasmon resonators to improve the photon detection efficiency to 98% while preserving all detector performance features, such as polarization insensitivity. The plasmonic SMPDs exhibit a hot-belt effect that generates a nonlinear photoresponse in the visible range operated at 9 K (∼0.64Tc), resulting in a 233-fold increase in phonon-electron interaction factor (γ) compared to pristine SMPDs at resonance under CW illumination. These findings open up new opportunities for ultrasensitive single-photon detection in areas like quantum information processing, quantum optics, imaging, and sensing at visible wavelengths.
Collapse
Affiliation(s)
- Jing-Wei Yang
- Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
- Graduate Institute of Applied Physics, National Taiwan University, Taipei 10617, Taiwan
| | - Tzu-Yu Peng
- Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
- Graduate Institute of Applied Physics, National Taiwan University, Taipei 10617, Taiwan
| | - Daniel D A Clarke
- School of Physics and CRANN Institute, Trinity College Dublin, Dublin 2 D02 PN40, Ireland
| | - Frank Daniel Bello
- School of Physics and CRANN Institute, Trinity College Dublin, Dublin 2 D02 PN40, Ireland
| | - Jia-Wern Chen
- Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Hao-Chen Yeh
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
| | - Wei-Ren Syong
- Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Chi-Te Liang
- Graduate Institute of Applied Physics, National Taiwan University, Taipei 10617, Taiwan
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
| | - Ortwin Hess
- School of Physics and CRANN Institute, Trinity College Dublin, Dublin 2 D02 PN40, Ireland
- Blackett Laboratory, Imperial College London, South Kensington Campus, SW7 2AZ London, United Kingdom
| | - Yu-Jung Lu
- Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
- Graduate Institute of Applied Physics, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
40
|
Bai X, Lam SH, Hu J, Chui KK, Zhu XM, Shao L, Chow TH, Wang J. Colloidal Plasmonic TiN Nanoparticles for Efficient Solar Seawater Desalination. ACS APPLIED MATERIALS & INTERFACES 2023; 15:55856-55869. [PMID: 37983103 DOI: 10.1021/acsami.3c13479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Transferring traditional plasmonic noble metal nanomaterials from the laboratory to industrial production has remained challenging due to the high price of noble metals. The development of cost-effective non-noble-metal alternatives with outstanding plasmonic properties has therefore become essential. Herein, we report on the gram-scale production of differently shaped TiN nanoparticles with strong plasmon-enabled broadband light absorption, including differently sized TiN nanospheres, nanobipyramids, and nanorod arrays. The TiN nanospheres and nanobipyramids are further coembedded in highly porous poly(vinyl alcohol) films to function as a photothermal material for solar seawater desalination. A seawater evaporation rate of 3.8 kg m-2 h-1 is achieved, which marks the record performance among all plasmonic solar seawater desalination systems reported so far. The removal percentage of phenol reaches 98.3%, which is attributed to the joint action of the excellent photocatalytic ability and the superhydrophilicity of the porous TiN-based composite film.
Collapse
Affiliation(s)
- Xiaopeng Bai
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Shiu Hei Lam
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Jingtian Hu
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Ka Kit Chui
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Xiao-Ming Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao SAR 999078, China
| | - Lei Shao
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Tsz Him Chow
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| |
Collapse
|
41
|
Weight BM, Li X, Zhang Y. Theory and modeling of light-matter interactions in chemistry: current and future. Phys Chem Chem Phys 2023; 25:31554-31577. [PMID: 37842818 DOI: 10.1039/d3cp01415k] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Light-matter interaction not only plays an instrumental role in characterizing materials' properties via various spectroscopic techniques but also provides a general strategy to manipulate material properties via the design of novel nanostructures. This perspective summarizes recent theoretical advances in modeling light-matter interactions in chemistry, mainly focusing on plasmon and polariton chemistry. The former utilizes the highly localized photon, plasmonic hot electrons, and local heat to drive chemical reactions. In contrast, polariton chemistry modifies the potential energy curvatures of bare electronic systems, and hence their chemistry, via forming light-matter hybrid states, so-called polaritons. The perspective starts with the basic background of light-matter interactions, molecular quantum electrodynamics theory, and the challenges of modeling light-matter interactions in chemistry. Then, the recent advances in modeling plasmon and polariton chemistry are described, and future directions toward multiscale simulations of light-matter interaction-mediated chemistry are discussed.
Collapse
Affiliation(s)
- Braden M Weight
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
- Department of Physics and Astronomy, University of Rochester, Rochester, NY, 14627, USA
| | - Xinyang Li
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
| | - Yu Zhang
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
| |
Collapse
|
42
|
Sun L, Qu S, Xu W. A retinomorphic neuron for artificial vision and iris accommodation. MATERIALS HORIZONS 2023; 10:5753-5762. [PMID: 37807818 DOI: 10.1039/d3mh01036h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
The iris of an eye automatically optimizes the amount of light that strikes the retina by accommodating the intensity of ambient light. Here, we describe a retinomorphic neuron using neuromorphic photoreceptors for artificial vision and iris accommodation that mimics the biological structure and processing functions of retinal neurons for light sensing and signal transduction. The system consists of a neuromorphic photoreceptor, an electrochromic device as a light filter, and a spike-generation unit. In particular, the Au nanoparticle (NP) decorated ITO fiber photoreceptor with a well-aligned array structure is able to rely on its own light-tunable synaptic plasticity and the plasmon-enhanced light absorption. Therefore, it allows real-time feedback about light intensity, emits a higher-frequency electrical stimulus to stronger light, flash, or prolonged light illumination time, and drives the electrochromic filter to work, allowing mild light to pass through. Compared with traditional artificial irises or artificial photoreceptors, our design introduces neural pathways and neuromorphic devices, which are closer to biological functions in simulation. To our knowledge, this is the first time that a retinal neuron with neuromorphic photoreceptors has been used for artificial iris vision. Furthermore, we demonstrate direct and consensual pupillary light reflexes. The design of artificial iris vision has potential applications in biomimetic engineering, smart interaction, and visual prostheses.
Collapse
Affiliation(s)
- Lin Sun
- Institute of Photoelectronic Thin Film Devices and Technology, Key Laboratory of Optoelectronic Thin Film Devices and Technology of Tianjin, College of Electrical Information and Optical Engineering, Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China.
- Shenzhen Research Institute of Nankai University, Shenzhen 518000, China
| | - Shangda Qu
- Institute of Photoelectronic Thin Film Devices and Technology, Key Laboratory of Optoelectronic Thin Film Devices and Technology of Tianjin, College of Electrical Information and Optical Engineering, Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China.
- Shenzhen Research Institute of Nankai University, Shenzhen 518000, China
| | - Wentao Xu
- Institute of Photoelectronic Thin Film Devices and Technology, Key Laboratory of Optoelectronic Thin Film Devices and Technology of Tianjin, College of Electrical Information and Optical Engineering, Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China.
- Shenzhen Research Institute of Nankai University, Shenzhen 518000, China
| |
Collapse
|
43
|
Ghasemi L, Ahmadi A, Abedini R, Kazemi F, Kaboudin B. Practical photocatalytic and sonophotocatalytic reduction of nitroarenes in water under blue LED irradiation using β-CD modified TiO 2 as a green nest photocatalyst. RSC Adv 2023; 13:34733-34738. [PMID: 38035234 PMCID: PMC10683045 DOI: 10.1039/d3ra06530h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/20/2023] [Indexed: 12/02/2023] Open
Abstract
Photocatalysis using natural photosynthesis is a green technology that is gaining popularity in a number of industries due to its potential for environmental applications and the use of solar energy. Focus is being placed on using inexpensive materials and light-emitting diodes (LEDs) of various wavelengths in photocatalytic reactions in order to improve the performance of solar-driven photocatalysts at a lower cost. In this study, a scalable, highly efficient photocatalytic and sonophotocatalytic method was investigated for the reduction of nitro-compounds by a water/titania/β-cyclodextrin system under sunlight and blue LED irradiation, using sodium sulfide as a sacrificial electron donor. β-Cyclodextrin, chemically bound to TiO2 nanoparticles as an encapsulating agent, hosted nitro compounds in aqueous media and formed an inclusion complex. In addition, this method was used to successfully carry out one-pot reduction-amidation of nitroarene compounds in the presence of acetic anhydride. Interestingly, it was found that ultrasound has a synergistic effect on photocatalytic reduction and considerably reduces the duration time. In this regard, a fast, practical sonophotocatalytic reduction of nitroarenes was carried out in an ultrasound bath.
Collapse
Affiliation(s)
- Leila Ghasemi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS) Zanjan 45137-66731 Iran
| | - Ayub Ahmadi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS) Zanjan 45137-66731 Iran
| | - Raheleh Abedini
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS) Zanjan 45137-66731 Iran
| | - Foad Kazemi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS) Zanjan 45137-66731 Iran
- Center of Climate Change and Global Warming, Institute for Advanced Studies in Basic Sciences (IASBS) Zanjan Iran
| | - Babak Kaboudin
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS) Zanjan 45137-66731 Iran
| |
Collapse
|
44
|
Moradifar P, Liu Y, Shi J, Siukola Thurston ML, Utzat H, van Driel TB, Lindenberg AM, Dionne JA. Accelerating Quantum Materials Development with Advances in Transmission Electron Microscopy. Chem Rev 2023. [PMID: 37979189 DOI: 10.1021/acs.chemrev.2c00917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2023]
Abstract
Quantum materials are driving a technology revolution in sensing, communication, and computing, while simultaneously testing many core theories of the past century. Materials such as topological insulators, complex oxides, superconductors, quantum dots, color center-hosting semiconductors, and other types of strongly correlated materials can exhibit exotic properties such as edge conductivity, multiferroicity, magnetoresistance, superconductivity, single photon emission, and optical-spin locking. These emergent properties arise and depend strongly on the material's detailed atomic-scale structure, including atomic defects, dopants, and lattice stacking. In this review, we describe how progress in the field of electron microscopy (EM), including in situ and in operando EM, can accelerate advances in quantum materials and quantum excitations. We begin by describing fundamental EM principles and operation modes. We then discuss various EM methods such as (i) EM spectroscopies, including electron energy loss spectroscopy (EELS), cathodoluminescence (CL), and electron energy gain spectroscopy (EEGS); (ii) four-dimensional scanning transmission electron microscopy (4D-STEM); (iii) dynamic and ultrafast EM (UEM); (iv) complementary ultrafast spectroscopies (UED, XFEL); and (v) atomic electron tomography (AET). We describe how these methods could inform structure-function relations in quantum materials down to the picometer scale and femtosecond time resolution, and how they enable precision positioning of atomic defects and high-resolution manipulation of quantum materials. For each method, we also describe existing limitations to solve open quantum mechanical questions, and how they might be addressed to accelerate progress. Among numerous notable results, our review highlights how EM is enabling identification of the 3D structure of quantum defects; measuring reversible and metastable dynamics of quantum excitations; mapping exciton states and single photon emission; measuring nanoscale thermal transport and coupled excitation dynamics; and measuring the internal electric field and charge density distribution of quantum heterointerfaces- all at the quantum materials' intrinsic atomic and near atomic-length scale. We conclude by describing open challenges for the future, including achieving stable sample holders for ultralow temperature (below 10K) atomic-scale spatial resolution, stable spectrometers that enable meV energy resolution, and high-resolution, dynamic mapping of magnetic and spin fields. With atomic manipulation and ultrafast characterization enabled by EM, quantum materials will be poised to integrate into many of the sustainable and energy-efficient technologies needed for the 21st century.
Collapse
Affiliation(s)
- Parivash Moradifar
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Yin Liu
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Jiaojian Shi
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road MS69, Menlo Park, California 94025, United States
| | | | - Hendrik Utzat
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
- Department of Chemistry, University of California Berkeley, Berkeley, California 94720, United States
| | - Tim B van Driel
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Aaron M Lindenberg
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road MS69, Menlo Park, California 94025, United States
| | - Jennifer A Dionne
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
- Department of Radiology, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
45
|
Kaur G, Kaur V, Kaur N, Kaur C, Sood K, Shanavas A, Sen T. Design of Silica@Au Hybrid Nanostars for Enhanced SERS and Photothermal Effect. Chemphyschem 2023; 24:e202200809. [PMID: 37515550 DOI: 10.1002/cphc.202200809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 04/21/2023] [Accepted: 07/25/2023] [Indexed: 07/31/2023]
Abstract
Core-shell nanostructures of silicon oxide@noble metal have drawn a lot of interest due to their distinctive characteristics and minimal toxicity with remarkable biocompatibility. Due to the unique property of localized surface plasmon resonance (LSPR), plasmonic nanoparticles are being used as surface-enhanced Raman scattering (SERS) based detection of pollutants and photothermal (PT) agents in cancer therapy. Herein, we demonstrate the synthesis of multifunctional silica core - Au nanostars shell (SiO2 @Au NSs) nanostructures using surfactant free aqueous phase method. The SERS performance of the as-synthesized anisotropic core-shell NSs was examined using Rhodamine B (RhB) dye as a Raman probe and resulted in strong enhancement factor of 1.37×106 . Furthermore, SiO2 @Au NSs were also employed for PT killing of breast cancer cells and they exhibited a concentration-dependent increase in the photothermal effect. The SiO2 @Au NSs show remarkable photothermal conversion efficiency of up to 72 % which is unprecedented. As an outcome, our synthesized NIR active SiO2 @Au NSs are of pivotal importance to have their dual applications in SERS enhancement and PT effect.
Collapse
Affiliation(s)
- Gagandeep Kaur
- Institute of Nano Science and Technology, Sector- 81, Knowledge city, 140306, Mohali, India
| | - Vishaldeep Kaur
- Institute of Nano Science and Technology, Sector- 81, Knowledge city, 140306, Mohali, India
| | - Navneet Kaur
- Institute of Nano Science and Technology, Sector- 81, Knowledge city, 140306, Mohali, India
| | - Charanleen Kaur
- Institute of Nano Science and Technology, Sector- 81, Knowledge city, 140306, Mohali, India
| | - Kritika Sood
- Institute of Nano Science and Technology, Sector- 81, Knowledge city, 140306, Mohali, India
| | - Asifkhan Shanavas
- Institute of Nano Science and Technology, Sector- 81, Knowledge city, 140306, Mohali, India
| | - Tapasi Sen
- Institute of Nano Science and Technology, Sector- 81, Knowledge city, 140306, Mohali, India
| |
Collapse
|
46
|
Fan Y, Xue X, Yang F, Zhao J, Xiong X, Sun J, Wang W, Shi J, Zhou J, Zhang Z. Reconstruction of the Near-Field Electric Field by SNOM Measurement. NANO LETTERS 2023; 23:9900-9906. [PMID: 37862605 DOI: 10.1021/acs.nanolett.3c02833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
Scanning near-field optical microscope (SNOM) with nanoscale spatial resolution has been a powerful tool in studying the plasmonic properties of nano materials/structures. However, the quantification of the SNOM measurement remains a major challenge in the field due to the lack of reliable methodologies. We employed the point-dipole model to describe the tip-surface interaction upon laser illumination and theoretically derived the quantitative relationship between the measured results and the actual near-field electric field strength. Thus, we can experimentally reconstruct the near-field electric field through this theoretically calculated relationship. We also developed an experimental technique together with FEM simulation to get the above relationship experimentally and reconstruct the near-field electric field from the measurement by SNOM.
Collapse
Affiliation(s)
- Yihang Fan
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 10084, People's Republic of China
| | - Xiaotian Xue
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 10084, People's Republic of China
| | - Fei Yang
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 10084, People's Republic of China
| | - Jianqiao Zhao
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 10084, People's Republic of China
| | - Xiaoyu Xiong
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Jingbo Sun
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Weipeng Wang
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 10084, People's Republic of China
| | - Ji Shi
- School of Materials and Chemical Technology, Tokyo Institute of Technology, Tokyo 1528552, Japan
| | - Ji Zhou
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Zhengjun Zhang
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 10084, People's Republic of China
| |
Collapse
|
47
|
Pei J, Zhao Y, Zhang S, Yu X, Tian Z, Sun Y, Ma S, Zhao RS, Meng J, Chen X, Chen F. A Surface Matrix of Au NPs Decorated Graphdiyne for Multifunctional Laser Desorption/Ionization Mass Spectrometry. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37909321 DOI: 10.1021/acsami.3c08962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
The development of the valid strategy to enhance laser desorption/ionization efficiency gives rise to widespread concern in surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) technology. Herein, a hybrid of Au NP-decorated graphdiyne (Au/GDY) was fabricated and employed as the SALDI-MS matrix for the first time, and a mechanism based on photothermal and photochemical energy conversions was proposed to understand LDI processes. Given theoretical simulations and microstructure characterizations, it was revealed that the formation of a coupled thermal field and internal electric field endow the as-prepared Au/GDY matrix with superior desorption and ionization efficiency, respectively. Moreover, laser-induced matrix ablation introduced strain and defect level into the Au/GDY hybrid, suppressing the recombination of charge carriers and thereby facilitating analyte ionization. The optimized Au/GDY matrix allowed for reliable detection of trace sulfacetamide and visualization of exogenous/endogenous components in biological tissues. This work offers an integrated solution to promote LDI efficiency based on collaborative photothermal conversion and internal electric field, and may inspire the design of novel semiconductor-based surface matrices.
Collapse
Affiliation(s)
- Jingxuan Pei
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing 100083, China
| | - Yanfang Zhao
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing 100083, China
- Shandong Analysis and Test Center, Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Shuting Zhang
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing 100083, China
| | - Xiang Yu
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing 100083, China
| | - Zhenfei Tian
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing 100083, China
| | - Yibo Sun
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing 100083, China
| | - Shiqing Ma
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing 100083, China
| | - Ru-Song Zhao
- Shandong Analysis and Test Center, Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Jianping Meng
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| | - Xiangfeng Chen
- Shandong Analysis and Test Center, Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Fang Chen
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing 100083, China
| |
Collapse
|
48
|
Balestrieri S, Zito G, Iodice M, Coppola G. Optimized array nanostructure for plasmonically induced motion force generation. OPTICS EXPRESS 2023; 31:33945-33962. [PMID: 37859163 DOI: 10.1364/oe.489583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/06/2023] [Indexed: 10/21/2023]
Abstract
The growing demand to manipulate objects with long-range techniques has increasingly called for the development of techniques capable of intensifying and spatially concentrating electromagnetic fields with the aim of improving the electromagnetic forces acting on objects. In this context, one of the most interesting techniques is based on the use of plasmonic phenomena that have the ability to amplify and structure the electric field in very small areas. In this paper, we report the simulation analysis of a plasmonic nanostructure useful for optimizing the profile of the induced plasmonic field distribution and thus the motion dynamics of a nanoparticle, overcoming some limitations observed in the literature for similar structures. The elementary cell of the proposed nanostructure consists of two gold scalene trapezoids forming a planar V-groove. The spatial replication of this elementary cell to form linear or circular array sequences is used to improve the final nanoparticle velocity. The effect of the geometry variation on the plasmonic behaviour and consequently on the force generated, was analyzed in detail. The results suggest that this optimized plasmonic structure has the potential to efficiently propel macroscopic objects, with implications for various fields such as aerospace and biomedical research.
Collapse
|
49
|
Romero M, Sánchez-Valencia JR, Lozano G, Míguez H. Effect of the effective refractive index on the radiative decay rate in nanoparticle thin films. NANOSCALE 2023; 15:15279-15287. [PMID: 37676237 DOI: 10.1039/d3nr03348a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
In this work, we theoretically and experimentally study the influence of the optical environment on the radiative decay rate of rare-earth transitions in luminescent nanoparticles forming a thin film. We use electric dipole sources in finite-difference time-domain simulations to analyze the effect of modifying the effective refractive index of transparent layers made of phosphor nanocrystals doped with rare earth cations, and propose a correction to previously reported analytical models for calculating the radiative decay rate. Our predictions are tested against an experimental realization of such luminescent films, in which we manage to vary the effective refractive index in a gradual and controllable manner. Our model accurately accounts for the measurements attained, allows us to discriminate the radiative and non-radiative contributions to the time-resolved photoluminescence, and provides a way to rationally tune the spontaneous decay rate and hence the photoluminescence quantum yield in an ensemble of luminescent nanoparticles.
Collapse
Affiliation(s)
- Manuel Romero
- Institute of Materials Science of Seville, Spanish National Research Council - University of Seville, C. Américo Vespucio 49, 41092, Seville, Spain.
| | - Juan Ramón Sánchez-Valencia
- Institute of Materials Science of Seville, Spanish National Research Council - University of Seville, C. Américo Vespucio 49, 41092, Seville, Spain.
| | - Gabriel Lozano
- Institute of Materials Science of Seville, Spanish National Research Council - University of Seville, C. Américo Vespucio 49, 41092, Seville, Spain.
| | - Hernán Míguez
- Institute of Materials Science of Seville, Spanish National Research Council - University of Seville, C. Américo Vespucio 49, 41092, Seville, Spain.
| |
Collapse
|
50
|
Chu H, Wang H, Huang Y, Dai H, Lv M, Zhang Z, Jiang C. Investigation of the Optical Nonlinearity for Au Plasmonic Nanoparticles Based on Ion Implantation. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2662. [PMID: 37836303 PMCID: PMC10574023 DOI: 10.3390/nano13192662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023]
Abstract
The Au ion implantation process has emerged as an effective and simple method to be utilized for the fabrication of opto-electronic materials and devices due to numerous fascinating features of Au nanoparticles such as surface plasmon resonance (SPR), large third-order nonlinearity and a fast response time. In this paper, we describe the fabrication of a novel Au nanoparticle saturable absorber (Au NP-SA) by embedding the Au NPs into a SiO2 thin film using the ion implantation process, which shows excellent saturable absorption features due to the localized surface plasmon resonance (LSPR) effect of Au NPs. A stable and high-quality pulsed laser with a repetition rate of 33.3 kHz and a single pulse energy of 11.7 nJ was successfully constructed with the Au NP-SA. Both the stable operation characteristic of the obtained Q-switched pulsed laser and the high repeatability of the fabrication process of the Au NP-SA were demonstrated. In addition, the simple feasibility and maturity of the ion implantation process allow for the plasmonic nanoparticles to be easily integrated into other types of opto-electronic materials and devices to further improve their performance, and shows immense potential for the production of wafer-level products.
Collapse
Affiliation(s)
- Huiyuan Chu
- College of Electronic and Information, Qingdao University, Qingdao 266071, China; (H.C.); (Y.H.); (H.D.); (M.L.)
| | - Hongpei Wang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China;
| | - Yancheng Huang
- College of Electronic and Information, Qingdao University, Qingdao 266071, China; (H.C.); (Y.H.); (H.D.); (M.L.)
| | - Hao Dai
- College of Electronic and Information, Qingdao University, Qingdao 266071, China; (H.C.); (Y.H.); (H.D.); (M.L.)
| | - Menglu Lv
- College of Electronic and Information, Qingdao University, Qingdao 266071, China; (H.C.); (Y.H.); (H.D.); (M.L.)
| | - Ziyang Zhang
- College of Electronic and Information, Qingdao University, Qingdao 266071, China; (H.C.); (Y.H.); (H.D.); (M.L.)
- Qingdao Yichen Leishuo Technology Co., Ltd., Qingdao 266318, China
| | - Cheng Jiang
- College of Electronic and Information, Qingdao University, Qingdao 266071, China; (H.C.); (Y.H.); (H.D.); (M.L.)
| |
Collapse
|