1
|
Vinci D, Ridier K, Qi F, Ardana-Lamas F, Zalden P, Liu LC, Eklund T, Jakobsen MS, Schubert R, Khakhulin D, Deiter C, Bottin N, Yousef H, von Stetten D, Łaski P, Kamiński R, Jarzembska KN, Wallick RF, Stensitzki T, van der Veen RM, Müller-Werkmeister HM, Molnár G, Xiang D, Milne C, Lorenc M, Jiang Y. Capturing ultrafast molecular motions and lattice dynamics in spin crossover film using femtosecond diffraction methods. Nat Commun 2025; 16:2043. [PMID: 40016201 PMCID: PMC11868369 DOI: 10.1038/s41467-025-57202-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 02/12/2025] [Indexed: 03/01/2025] Open
Abstract
A comprehensive insight into ultrafast dynamics of photo-switchable materials is desired for efficient control of material properties through light excitation. Here, we study a polycrystalline spin crossover thin film as a prototypical example and reveal the sequential photo-switching dynamics, from local molecular rearrangement to global lattice deformation. On the earliest femtosecond timescale, the local molecular structural rearrangement occurs within a constant unit-cell volume through a two-step process, involving initial Fe-ligand bond elongation followed by ligand rotation. The highly-oriented structure of the nanocrystalline films and the experimental geometry enables resolving the full anisotropic lattice structural dynamics in and out of the sample plane separately. While both molecular switching and lattice heating influence lattice volume, they exert varying degrees of impact at disparate time scales following photoexcitation. This study highlights the opportunities provided by Mega-electron-volt electron and X-ray free electron laser to advance the understanding of ultrafast dynamics of photo-switchable materials.
Collapse
Affiliation(s)
| | - Karl Ridier
- Laboratoire de Chimie de Coordination, CNRS UPR 8241, Université de Toulouse, 205 route de Narbonne, Toulouse, France
| | - Fengfeng Qi
- Key Laboratory for Laser Plasmas (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China
- , Collaborative Innovation Center of IFSA, Shanghai Jiao Tong University, Shanghai, China
| | | | - Peter Zalden
- European XFEL, Holzkoppel 4, Schenefeld, Germany
| | - Lai Chung Liu
- Uncharted Software, 600-2 Berkeley St., Toronto, ON, Canada
| | - Tobias Eklund
- European XFEL, Holzkoppel 4, Schenefeld, Germany
- Condensed Matter Physics (KOMET), Institute of Physics, Johannes Gutenberg University Mainz, Staudingerweg 7, Mainz, Germany
| | - Mads Sielemann Jakobsen
- Center for Data and Computing in Natural Sciences (CDCS), Notkestrasse 10, Hamburg, Germany
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, Hamburg, Germany
| | | | | | | | | | - Hazem Yousef
- European XFEL, Holzkoppel 4, Schenefeld, Germany
| | - David von Stetten
- European Molecular Biology Laboratory (EMBL), Hamburg unit c/o DESY, Notkestr. 85, Hamburg, Germany
| | - Piotr Łaski
- University of Warsaw, Faculty of Chemistry, Żwirki i Wigury 101, Warsaw, Poland
| | - Radosław Kamiński
- University of Warsaw, Faculty of Chemistry, Żwirki i Wigury 101, Warsaw, Poland
| | | | - Rachel F Wallick
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Till Stensitzki
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, Potsdam-Golm, Germany
| | - Renske M van der Veen
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Helmholtz Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, Berlin, Germany
- Institute of Optics and Atomic Physics, Technical University of Berlin, Berlin, Germany
| | | | - Gábor Molnár
- Laboratoire de Chimie de Coordination, CNRS UPR 8241, Université de Toulouse, 205 route de Narbonne, Toulouse, France
| | - Dao Xiang
- Key Laboratory for Laser Plasmas (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China.
- , Collaborative Innovation Center of IFSA, Shanghai Jiao Tong University, Shanghai, China.
- Zhangjiang Institute for Advanced Study and Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai, China.
| | | | - Maciej Lorenc
- Univ. Rennes, CNRS, IPR (Institut de Physique de Rennes), UMR 6251, Rennes, France.
- CNRS, Univ Rennes, DYNACOM (Dynamical Control of Materials Laboratory), IRL2015, The University of Tokyo, 7-3-1 Hongo, Tokyo, Japan.
| | - Yifeng Jiang
- European XFEL, Holzkoppel 4, Schenefeld, Germany.
| |
Collapse
|
2
|
Zaitsev KV, Tolstikov SE, Bogomyakov AS, Veber SL, Sagdeev RZ, Fedin MV. Light-induced spin-state switching in heterospin complexes of Cu(hfac) 2 with pyridine-based nitroxides. Dalton Trans 2025; 54:811-820. [PMID: 39576142 DOI: 10.1039/d4dt02198c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Copper(II)-nitroxide based molecular magnets exhibit spin-crossover-like spin state switching, which is topical in field of molecular magnetism. However, establishing reliable structure-property relationships in these systems is still challenging, especially regarding the light-induced switching of spin states. In this paper, we report the investigation of photoswitching and relaxation in a series of heterospin Cu(hfac)2LR complexes with pyridine-based nitroxide ligands (LR), which belong to this family of materials. Using electron paramagnetic resonance (EPR) for detection, we demonstrate very long lifetimes of photoinduced spin states at liquid helium temperatures (<15 K), where relaxation to the ground state does not exceed 15% within two hours. At the same time, the efficiency of photoswitching strongly depends on the structure of the radical ligand in this series: the bulkier the ligand, the smaller the fraction of heterospin clusters that undergo photoswitching. These findings expand the understanding of mechanisms and factors behind photoswitching and relaxation in copper(II)-nitroxide molecular magnets and aid in further research aiming to optimize their functional properties.
Collapse
Affiliation(s)
- Konstantin V Zaitsev
- International Tomography Center SB RAS, Novosibirsk, 630090, Russia.
- Novosibirsk State University, Novosibirsk, 630090, Russia
| | | | | | - Sergey L Veber
- International Tomography Center SB RAS, Novosibirsk, 630090, Russia.
- Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Renad Z Sagdeev
- International Tomography Center SB RAS, Novosibirsk, 630090, Russia.
| | - Matvey V Fedin
- International Tomography Center SB RAS, Novosibirsk, 630090, Russia.
- Novosibirsk State University, Novosibirsk, 630090, Russia
| |
Collapse
|
3
|
Haddock TN, Delgado T, Alías‐Rodríguez M, de de Graaf C, Enachescu C, van der Veen RM. Size and Surface Effects in the Ultrafast Dynamics of Strongly Cooperative Spin-Crossover Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2405571. [PMID: 39523726 PMCID: PMC11735884 DOI: 10.1002/smll.202405571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Cooperative photoinduced switching of molecular materials at the nanoscale is still in its infancy. Strongly cooperative spin-crossover nanomaterials are arguably the best prototypes of photomagnetic and volume-changing materials that can be manipulated by short pulses of light. Open questions remain regarding their non-equilibrium dynamics upon light excitation and the role of cooperative elastic interactions in nanoscale systems that are characterized by large surface/volume ratios. Femtosecond-resolved broadband spectroscopy is performed on nanorods of the strongly cooperative Fe-triazole, which undergoes a reversible low-spin to high-spin (HS) phase transition ≈360 K. Supported by density functional theory and mechano-elastic Monte Carlo simulations, a marked difference is observed in the photoswitching dynamics at the surface of the nanoparticles compared with the core. Surprisingly, under low excitation (<2%) conditions, there occurs a transient increase in the HS population at the surface on the picosecond time scale, while the HS population in the core decays concomitantly. These results shed light onto the importance of surface properties and dynamical size limits of nanoscale photoresponsive nanomaterials that can be used in a broad range of applications.
Collapse
Affiliation(s)
- Tyler N. Haddock
- Department of ChemistryUniversity of Illinois Urbana‐ChampaignUrbanaIL61801USA
| | - Teresa Delgado
- Chimie ParisTech‐CNRSIRCP (PSL)11 Rue P. et M. CurieParis75005France
| | - Marc Alías‐Rodríguez
- Departament de Química Física i InorgànicaUniversitat Rovira i VirgiliMarcel·lí Domingo 1Tarragona43 007Spain
| | - Coen de de Graaf
- Departament de Química Física i InorgànicaUniversitat Rovira i VirgiliMarcel·lí Domingo 1Tarragona43 007Spain
| | - Cristian Enachescu
- Department of PhysicsAlexandru Ioan Cuza UniversityBlvd. Carol I, nr. 11Iasi700506Romania
| | - Renske M. van der Veen
- Department of ChemistryUniversity of Illinois Urbana‐ChampaignUrbanaIL61801USA
- Department for Atomic‐Scale Dynamics in Light‐Energy ConversionHelmholtz Zentrum Berlin für Materialien und Energie GmbHHahn‐Meitner‐Platz 114109BerlinGermany
- Institute of Optics and Atomic PhysicsTechnical University of BerlinStraße des 17. Juni 13510623BerlinGermany
| |
Collapse
|
4
|
Privault G, Hervé M, Godin N, Bertoni R, Akagi S, Kubicki J, Tokoro H, Ohkoshi S, Lorenc M, Collet E. From Ultrafast Photoinduced Small Polarons to Cooperative and Macroscopic Charge-Transfer Phase Transition. Angew Chem Int Ed Engl 2024; 63:e202408284. [PMID: 38979690 DOI: 10.1002/anie.202408284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/10/2024]
Abstract
We study by femtosecond infrared spectroscopy the ultrafast and persistent photoinduced phase transition of the Rb0.94Mn0.94Co0.06[Fe(CN)6]0.98 ⋅ 0.2H2O material, induced at room temperature by a single laser shot. This system exhibits a charge-transfer based phase transition with a 75 K wide thermal hysteresis, centred at room temperature, from the low temperature Mn3+-N-C-Fe2+ tetragonal phase to the high temperature Mn2+-N-C-Fe3+ cubic phase. At room temperature, the photoinduced phase transition is persistent. However, the out-of-equilibrium dynamics leading to this phase is multi-scale. Femtosecond infrared spectroscopy, particularly sensitive to local reorganizations through the evolution of the frequency of the N-C vibration modes with the different characteristic electronic states, reveals that at low laser fluence and on short time scale, the photoexcitation of the Mn3+-N-C-Fe2+ phase creates small charge-transfer polarons [Mn2+-N-C-Fe3+]* within ≃250 fs. The local trapping of photoinduced intermetallic charge-transfer is characterized by the appearance of a polaronic infrared band, due to the surrounding Mn2+-N-C-Fe2+ species. Above a threshold fluence, when a critical fraction of small CT-polarons is reached, the macroscopic phase transition to the persistent Mn2+-N-C-Fe3+ cubic phase occurs within ≃ 100 ps. This non-linear photo-response results from elastic cooperativity, intrinsic to a switchable lattice and reminiscent of a feedback mechanism.
Collapse
Affiliation(s)
- G Privault
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251, 35000, Rennes, France
- CNRS, Univ Rennes, DYNACOM (Dynamical Control of Materials Laboratory) - IRL 2015, The University of Tokyo, 7-3-1 Hongo, Tokyo, 113-0033, Japan
| | - M Hervé
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251, 35000, Rennes, France
- CNRS, Univ Rennes, DYNACOM (Dynamical Control of Materials Laboratory) - IRL 2015, The University of Tokyo, 7-3-1 Hongo, Tokyo, 113-0033, Japan
| | - N Godin
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251, 35000, Rennes, France
- CNRS, Univ Rennes, DYNACOM (Dynamical Control of Materials Laboratory) - IRL 2015, The University of Tokyo, 7-3-1 Hongo, Tokyo, 113-0033, Japan
| | - R Bertoni
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251, 35000, Rennes, France
- CNRS, Univ Rennes, DYNACOM (Dynamical Control of Materials Laboratory) - IRL 2015, The University of Tokyo, 7-3-1 Hongo, Tokyo, 113-0033, Japan
| | - S Akagi
- Department of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - J Kubicki
- Faculty of Physics, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 2, 61-614, Poznań, Poland
| | - H Tokoro
- CNRS, Univ Rennes, DYNACOM (Dynamical Control of Materials Laboratory) - IRL 2015, The University of Tokyo, 7-3-1 Hongo, Tokyo, 113-0033, Japan
- Department of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - S Ohkoshi
- CNRS, Univ Rennes, DYNACOM (Dynamical Control of Materials Laboratory) - IRL 2015, The University of Tokyo, 7-3-1 Hongo, Tokyo, 113-0033, Japan
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - M Lorenc
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251, 35000, Rennes, France
- CNRS, Univ Rennes, DYNACOM (Dynamical Control of Materials Laboratory) - IRL 2015, The University of Tokyo, 7-3-1 Hongo, Tokyo, 113-0033, Japan
| | - Eric Collet
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251, 35000, Rennes, France
- CNRS, Univ Rennes, DYNACOM (Dynamical Control of Materials Laboratory) - IRL 2015, The University of Tokyo, 7-3-1 Hongo, Tokyo, 113-0033, Japan
- Institut universitaire de France (IUF), 75231, Paris, France
| |
Collapse
|
5
|
de Jesus Velazquez-Garcia J, Basuroy K, Wong J, Demeshko S, Meyer F, Kim I, Henning R, Staechelin YU, Lange H, Techert S. Out-of-equilibrium dynamics of a grid-like Fe(ii) spin crossover dimer triggered by a two-photon excitation. Chem Sci 2024; 15:13531-13540. [PMID: 39183926 PMCID: PMC11339940 DOI: 10.1039/d4sc02933j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/24/2024] [Indexed: 08/27/2024] Open
Abstract
The application of two-photon excitation (TPE) in the study of light-responsive materials holds immense potential due to its deeper penetration and reduced photodamage. Despite these benefits, TPE has been underutilised in the investigation of the photoinduced spin crossover (SCO) phenomenon. Here, we employ TPE to delve into the out-of-equilibrium dynamics of a SCO FeII dimer of the form [FeII(HL)2]2(BF4)4·2MeCN (HL = 3,5-bis{6-(2,2'-bipyridyl)}pyrazole). Optical transient absorption (OTA) spectroscopy in solution proves that the same dynamics take place under both one-photon excitation (OPE) and TPE. The results show the emergence of the photoinduced high spin state in less than 2 ps and with a lifetime of 147 ns. Time-resolved photocrystallography (TRXRD) reveals a single molecular reorganisation within the first 500 ps following TPE. Additionally, variable temperature single crystal X-ray diffraction (VTSCXRD) and magnetic susceptibility measurements confirm that the thermal transition is silenced by the solvent. While the results of the OTA and TRXRD utilising TPE are intriguing, the high pump fluencies required to excite enough metal centres to the high spin state may impair its practical application. Nonetheless, this study sheds light on the potential of TPE for the investigation of the out-of-equilibrium dynamics of SCO complexes.
Collapse
Affiliation(s)
| | - Krishnayan Basuroy
- Deutsches Elektronen-Synchrotron DESY Notkestr. 85 22607 Hamburg Germany
| | - Joanne Wong
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen Tammannstraße 4 Göttingen 37077 Germany
| | - Serhiy Demeshko
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen Tammannstraße 4 Göttingen 37077 Germany
| | - Franc Meyer
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen Tammannstraße 4 Göttingen 37077 Germany
| | - Insik Kim
- Center for Advanced Radiation Sources, The University of Chicago, Argonne National Laboratory 9700 South Cass Ave Lemont Illinois 90439 USA
| | - Robert Henning
- Center for Advanced Radiation Sources, The University of Chicago, Argonne National Laboratory 9700 South Cass Ave Lemont Illinois 90439 USA
| | - Yannic U Staechelin
- Institute of Physical Chemistry, Universität Hamburg Martin-Luther-King-Platz 6 Hamburg 20146 Germany
| | - Holger Lange
- The Hamburg Center for Ultrafast Imaging, Universität Hamburg 22761 Hamburg Germany
- Institute of Physics and Astronomy, Universität Potsdam Karl-Liebknecht-Str. 24 14476 Potsdam Germany
| | - Simone Techert
- Deutsches Elektronen-Synchrotron DESY Notkestr. 85 22607 Hamburg Germany
- Institut für Röntgenphysik, Georg-August-Universität Göttingen Friedrich-Hund-Platz 1 Göttingen 37077 Germany
| |
Collapse
|
6
|
Reinhard M, Kunnus K, Ledbetter K, Biasin E, Zederkof DB, Alonso-Mori R, van Driel TB, Nelson S, Kozina M, Borkiewicz OJ, Lorenc M, Cammarata M, Collet E, Sokaras D, Cordones AA, Gaffney KJ. Observation of a Picosecond Light-Induced Spin Transition in Polymeric Nanorods. ACS NANO 2024; 18:15468-15476. [PMID: 38833689 DOI: 10.1021/acsnano.3c10042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Spin transition (ST) materials are attractive for developing photoswitchable devices, but their slow material transformations limit device applications. Size reduction could enable faster switching, but the photoinduced dynamics at the nanoscale remains poorly understood. Here, we report a femtosecond optical pump multimodal X-ray probe study of polymeric nanorods. Simultaneously tracking the ST order parameter with X-ray emission spectroscopy and structure with X-ray diffraction, we observe photodoping of the low-spin-lattice within ∼150 fs. Above a ∼16% photodoping threshold, the transition to the high-spin phase occurs following an incubation period assigned to vibrational energy redistribution within the nanorods activating the molecular spin switching. Above ∼60% photodoping, the incubation period disappears, and the transition completes within ∼50 ps, preceded by the elastic nanorod expansion in response to the photodoping. These results support the feasibility of ST material-based GHz optical switching applications.
Collapse
Affiliation(s)
- Marco Reinhard
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Kristjan Kunnus
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Kathryn Ledbetter
- Department of Physics, Stanford University, Stanford, California 94305, United States
| | - Elisa Biasin
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | | | - Roberto Alonso-Mori
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Tim Brandt van Driel
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Silke Nelson
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Michael Kozina
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Olaf J Borkiewicz
- X-ray Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Maciej Lorenc
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes)─UMR 6251, 35000 Rennes, France
| | - Marco Cammarata
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes)─UMR 6251, 35000 Rennes, France
| | - Eric Collet
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes)─UMR 6251, 35000 Rennes, France
| | - Dimosthenis Sokaras
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Amy A Cordones
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Kelly J Gaffney
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| |
Collapse
|
7
|
Torres Ramírez RG, Trzop E, Collet E. Magnetoelectric and MIESST effects in spin crossover materials exhibiting symmetry-breaking. Dalton Trans 2024; 53:10159-10167. [PMID: 38819197 DOI: 10.1039/d4dt00672k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Giant magnetoelectric coupling and magnetic-field-induced spin state trapping (MIESST) were recently reported in spin crossover materials with polar phases. We discuss these phenomena considering the distinct contributions of the change of the molecular spin state, driven by the magnetic field, and the coupled structural symmetry-breaking during the stepwise change of electric polarisation or MIESST.
Collapse
Affiliation(s)
- Ricardo G Torres Ramírez
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251, 35000 Rennes, France.
- CNRS, Univ Rennes, DYNACOM (Dynamical Control of Materials Laboratory) - IRL 2015, The University of Tokyo, 7-3-1 Hongo, Tokyo 113-0033, Japan
| | - Elzbieta Trzop
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251, 35000 Rennes, France.
- CNRS, Univ Rennes, DYNACOM (Dynamical Control of Materials Laboratory) - IRL 2015, The University of Tokyo, 7-3-1 Hongo, Tokyo 113-0033, Japan
| | - Eric Collet
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251, 35000 Rennes, France.
- CNRS, Univ Rennes, DYNACOM (Dynamical Control of Materials Laboratory) - IRL 2015, The University of Tokyo, 7-3-1 Hongo, Tokyo 113-0033, Japan
- Institut universitaire de France (IUF), France
| |
Collapse
|
8
|
Jiang Y, Hayes S, Bittmann S, Sarracini A, Liu LC, Müller-Werkmeister HM, Miyawaki A, Hada M, Nakano S, Takahashi R, Banu S, Koshihara SY, Takahashi K, Ishikawa T, Miller RJD. Direct observation of photoinduced sequential spin transition in a halogen-bonded hybrid system by complementary ultrafast optical and electron probes. Nat Commun 2024; 15:4604. [PMID: 38834600 DOI: 10.1038/s41467-024-48529-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/03/2024] [Indexed: 06/06/2024] Open
Abstract
A detailed understanding of the ultrafast dynamics of halogen-bonded materials is desired for designing supramolecular materials and tuning various electronic properties by external stimuli. Here, a prototypical halogen-bonded multifunctional material containing spin crossover (SCO) cations and paramagnetic radical anions is studied as a model system of photo-switchable SCO hybrid systems using ultrafast electron diffraction and two complementary optical spectroscopic techniques. Our results reveal a sequential dynamics from SCO to radical dimer softening, uncovering a key transient intermediate state. In combination with quantum chemistry calculations, we demonstrate the presence of halogen bonds in the low- and high-temperature phases and propose their role during the photoinduced sequential dynamics, underscoring the significance of exploring ultrafast dynamics. Our research highlights the promising utility of halogen bonds in finely tuning functional properties across diverse photoactive multifunctional materials.
Collapse
Affiliation(s)
- Yifeng Jiang
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany.
| | - Stuart Hayes
- Departments of Chemistry and Physics, University of Toronto, 80 St. George St., Toronto, M5S 3H6, ON, Canada
| | - Simon Bittmann
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Antoine Sarracini
- Departments of Chemistry and Physics, University of Toronto, 80 St. George St., Toronto, M5S 3H6, ON, Canada
- Paul Scherrer Institut, Forschungsstrasse 111, 5232, Villigen PSI, Switzerland
| | - Lai Chung Liu
- Uncharted Software, 600-2 Berkeley St., Toronto, M5A 4J5, ON, Canada
| | | | - Atsuhiro Miyawaki
- Department of Chemistry, Graduate School of Science, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Masaki Hada
- Tsukuba Research Center for Energy Materials Science, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8573, Japan
| | - Shinnosuke Nakano
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Ryoya Takahashi
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Samiran Banu
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Shin-Ya Koshihara
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Kazuyuki Takahashi
- Department of Chemistry, Graduate School of Science, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan.
| | - Tadahiko Ishikawa
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8551, Japan.
| | - R J Dwayne Miller
- Departments of Chemistry and Physics, University of Toronto, 80 St. George St., Toronto, M5S 3H6, ON, Canada.
| |
Collapse
|
9
|
Hervé M, Privault G, Trzop E, Akagi S, Watier Y, Zerdane S, Chaban I, Torres Ramírez RG, Mariette C, Volte A, Cammarata M, Levantino M, Tokoro H, Ohkoshi SI, Collet E. Ultrafast and persistent photoinduced phase transition at room temperature monitored by streaming powder diffraction. Nat Commun 2024; 15:267. [PMID: 38267429 PMCID: PMC10808240 DOI: 10.1038/s41467-023-44440-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 12/13/2023] [Indexed: 01/26/2024] Open
Abstract
Ultrafast photoinduced phase transitions at room temperature, driven by a single laser shot and persisting long after stimuli, represent emerging routes for ultrafast control over materials' properties. Time-resolved studies provide fundamental mechanistic insight into far-from-equilibrium electronic and structural dynamics. Here we study the photoinduced phase transformation of the Rb0.94Mn0.94Co0.06[Fe(CN)6]0.98 material, designed to exhibit a 75 K wide thermal hysteresis around room temperature between MnIIIFeII tetragonal and MnIIFeIII cubic phases. We developed a specific powder sample streaming technique to monitor by ultrafast X-ray diffraction the structural and symmetry changes. We show that the photoinduced polarons expand the lattice, while the tetragonal-to-cubic photoinduced phase transition occurs within 100 ps above threshold fluence. These results are rationalized within the framework of the Landau theory of phase transition as an elastically-driven and cooperative process. We foresee broad applications of the streaming powder technique to study non-reversible and ultrafast dynamics.
Collapse
Affiliation(s)
- Marius Hervé
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251, 35000, Rennes, France
- CNRS, Univ Rennes, DYNACOM (Dynamical Control of Materials Laboratory) - IRL 2015, The University of Tokyo, 7-3-1 Hongo, Tokyo, 113-0033, Japan
| | - Gaël Privault
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251, 35000, Rennes, France
- CNRS, Univ Rennes, DYNACOM (Dynamical Control of Materials Laboratory) - IRL 2015, The University of Tokyo, 7-3-1 Hongo, Tokyo, 113-0033, Japan
| | - Elzbieta Trzop
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251, 35000, Rennes, France
- CNRS, Univ Rennes, DYNACOM (Dynamical Control of Materials Laboratory) - IRL 2015, The University of Tokyo, 7-3-1 Hongo, Tokyo, 113-0033, Japan
| | - Shintaro Akagi
- Department of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Yves Watier
- ESRF - The European Synchrotron, 71 avenue des Martyrs, CS40220, 38043 Grenoble Cedex 9, Grenoble, France
| | - Serhane Zerdane
- SwissFEL, Paul Scherrer Institut, Villigen, PSI, Switzerland
| | - Ievgeniia Chaban
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251, 35000, Rennes, France
- CNRS, Univ Rennes, DYNACOM (Dynamical Control of Materials Laboratory) - IRL 2015, The University of Tokyo, 7-3-1 Hongo, Tokyo, 113-0033, Japan
| | - Ricardo G Torres Ramírez
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251, 35000, Rennes, France
- CNRS, Univ Rennes, DYNACOM (Dynamical Control of Materials Laboratory) - IRL 2015, The University of Tokyo, 7-3-1 Hongo, Tokyo, 113-0033, Japan
| | - Celine Mariette
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251, 35000, Rennes, France
- ESRF - The European Synchrotron, 71 avenue des Martyrs, CS40220, 38043 Grenoble Cedex 9, Grenoble, France
| | - Alix Volte
- ESRF - The European Synchrotron, 71 avenue des Martyrs, CS40220, 38043 Grenoble Cedex 9, Grenoble, France
| | - Marco Cammarata
- ESRF - The European Synchrotron, 71 avenue des Martyrs, CS40220, 38043 Grenoble Cedex 9, Grenoble, France
| | - Matteo Levantino
- ESRF - The European Synchrotron, 71 avenue des Martyrs, CS40220, 38043 Grenoble Cedex 9, Grenoble, France
| | - Hiroko Tokoro
- CNRS, Univ Rennes, DYNACOM (Dynamical Control of Materials Laboratory) - IRL 2015, The University of Tokyo, 7-3-1 Hongo, Tokyo, 113-0033, Japan.
- Department of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan.
| | - Shin-Ichi Ohkoshi
- CNRS, Univ Rennes, DYNACOM (Dynamical Control of Materials Laboratory) - IRL 2015, The University of Tokyo, 7-3-1 Hongo, Tokyo, 113-0033, Japan.
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Eric Collet
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251, 35000, Rennes, France.
- CNRS, Univ Rennes, DYNACOM (Dynamical Control of Materials Laboratory) - IRL 2015, The University of Tokyo, 7-3-1 Hongo, Tokyo, 113-0033, Japan.
- Institut universitaire de France (IUF), Paris, France.
| |
Collapse
|
10
|
Ohkoshi SI, Nakagawa K, Yoshikiyo M, Namai A, Imoto K, Nagane Y, Jia F, Stefanczyk O, Tokoro H, Wang J, Sugahara T, Chiba K, Motodohi K, Isogai K, Nishioka K, Momiki T, Hatano R. Giant adiabatic temperature change and its direct measurement of a barocaloric effect in a charge-transfer solid. Nat Commun 2023; 14:8466. [PMID: 38151489 PMCID: PMC10752886 DOI: 10.1038/s41467-023-44350-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 12/11/2023] [Indexed: 12/29/2023] Open
Abstract
Solid refrigerants exhibiting a caloric effect upon applying external stimuli are receiving attention as one of the next-generation refrigeration technologies. Herein, we report a new inorganic refrigerant, rubidium cyano-bridged manganese-iron-cobalt ternary metal assembly (cyano-RbMnFeCo). Cyano-RbMnFeCo shows a reversible barocaloric effect with large reversible adiabatic temperature changes of 74 K (from 57 °C to -17 °C) at 340 MPa, and 85 K (from 88 °C to 3 °C) at 560 MPa. Such large reversible adiabatic temperature changes have yet to be reported among caloric effects in solid-solid phase transition refrigerants. The reversible refrigerant capacity is 26000 J kg-1 and the temperature window is 142 K. Additionally, cyano-RbMnFeCo shows barocaloric effects even at low pressures, e.g., reversible adiabatic temperature change is 21 K at 90 MPa. Furthermore, direct measurement of the temperature change using a thermocouple shows +44 K by applying pressure. The temperature increase and decrease upon pressure application and release are repeated over 100 cycles without any degradation of the performance. This material series also possesses a high thermal conductivity value of 20.4 W m-1 K-1. The present barocaloric material may realize a high-efficiency solid refrigerant.
Collapse
Affiliation(s)
- Shin-Ichi Ohkoshi
- Department of Chemistry, School of Science, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
- Cryogenic Research Center, The University of Tokyo 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan.
| | - Kosuke Nakagawa
- Department of Chemistry, School of Science, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Marie Yoshikiyo
- Department of Chemistry, School of Science, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Asuka Namai
- Department of Chemistry, School of Science, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kenta Imoto
- Department of Chemistry, School of Science, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yugo Nagane
- Department of Chemistry, School of Science, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Fangda Jia
- Department of Chemistry, School of Science, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Olaf Stefanczyk
- Department of Chemistry, School of Science, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hiroko Tokoro
- Department of Chemistry, School of Science, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Department of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan
| | - Junhao Wang
- Department of Chemistry, School of Science, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Department of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan
| | - Takeshi Sugahara
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
| | - Kouji Chiba
- Material Science Div., MOLSIS Inc., 3-19-9 Hatchobori, Chuo-ku, Tokyo, 104-0032, Japan
| | | | - Kazuo Isogai
- Aisin Corporation, 2-1 Asahi-machi, Kariya, Aichi, 448-8650, Japan
| | - Koki Nishioka
- Aisin Corporation, 2-1 Asahi-machi, Kariya, Aichi, 448-8650, Japan
| | - Takashi Momiki
- Aisin Corporation, 2-1 Asahi-machi, Kariya, Aichi, 448-8650, Japan
| | - Ryu Hatano
- Aisin Corporation, 2-1 Asahi-machi, Kariya, Aichi, 448-8650, Japan
| |
Collapse
|
11
|
Velazquez-Garcia JDJ, Basuroy K, Storozhuk D, Wong J, Demeshko S, Meyer F, Henning R, Techert S. Structural dynamics of a thermally silent triiron(II) spin crossover defect grid complex. Dalton Trans 2023; 52:12224-12234. [PMID: 37656445 PMCID: PMC10498823 DOI: 10.1039/d3dt02067c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 08/04/2023] [Indexed: 09/02/2023]
Abstract
The structural evolution of spin crossover (SCO) complexes during their spin transition at equilibrium and out-of-equilibrium conditions needs to be understood to enable their successful utilisation in displays, actuators and memory components. In this study, diffraction techniques were employed to study the structural changes accompanying the temperature increase and the light irradiation of a defect [2 × 2] triiron(II) metallogrid of the form [FeII3LH2(HLH)2](BF4)4·4MeCN (FE3), LH = 3,5-bis{6-(2,2'-bipyridyl)}pyrazole. Although a multi-temperature crystallographic investigation on single crystals evidenced that the compound does not exhibit a thermal spin transition, the structural analysis of the defect grid suggests that the flexibility of the grid, provided by a metal-devoid vertex, leads to interesting characteristics that can be used for intermolecular cooperativity in related thermally responsive systems. Time-resolved photocrystallography results reveal that upon excitation with a ps laser pulse, the defect grid shows the first two steps of the out-of-equilibrium process, namely the photoinduced and elastic steps, occurring at the ps and ns time scales, respectively. Similar to a previously reported [2 × 2] tetrairon(II) metallogrid, FE3 exhibits a local distortion of the entire grid during the photoinduced step and a long-range distortion of the lattice during the elastic step. Although the lifetime of the pure photoinduced high spin (HS) state is longer in the tetranuclear grid than in the defect grid, suggesting that the global nuclearity plays a crucial role for the lifetime of the photoinduced species, the influence of the co-crystalising solvent on the lifetime of the photoinduced HS state remains unknown. This study sheds light on the out-of-equilibrium dynamics of a thermally silent defect triiron SCO metallogrid.
Collapse
Affiliation(s)
| | - Krishnayan Basuroy
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany.
| | - Darina Storozhuk
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany.
| | - Joanne Wong
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Tammannstraße, 4, 37077, Göttingen, Germany
| | - Serhiy Demeshko
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Tammannstraße, 4, 37077, Göttingen, Germany
| | - Franc Meyer
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Tammannstraße, 4, 37077, Göttingen, Germany
| | - Robert Henning
- Center for Advanced Radiation Sources, The University of Chicago, Argonne National Laboratory, 9700 South Cass Ave, Lemont, Illinois, 90439, USA
| | - Simone Techert
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany.
- Institut für Röntgenphysik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, Göttingen, 37077, Germany
| |
Collapse
|
12
|
Hu Y, Picher M, Palluel M, Daro N, Freysz E, Stoleriu L, Enachescu C, Chastanet G, Banhart F. Laser-Driven Transient Phase Oscillations in Individual Spin Crossover Particles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303701. [PMID: 37246252 DOI: 10.1002/smll.202303701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Indexed: 05/30/2023]
Abstract
An unusual expansion dynamics of individual spin crossover nanoparticles is studied by ultrafast transmission electron microscopy. After exposure to nanosecond laser pulses, the particles exhibit considerable length oscillations during and after their expansion. The vibration period of 50-100 ns is of the same order of magnitude as the time that the particles need for a transition from the low-spin to the high-spin state. The observations are explained in Monte Carlo calculations using a model where elastic and thermal coupling between the molecules within a crystalline spin crossover particle govern the phase transition between the two spin states. The experimentally observed length oscillations are in agreement with the calculations, and it is shown that the system undergoes repeated transitions between the two spin states until relaxation in the high-spin state occurs due to energy dissipation. Spin crossover particles are therefore a unique system where a resonant transition between two phases occurs in a phase transformation of first order.
Collapse
Affiliation(s)
- Yaowei Hu
- Institut de Physique et Chimie des Matériaux UMR 7504, Université de Strasbourg & CNRS, Strasbourg, 67034, France
| | - Matthieu Picher
- Institut de Physique et Chimie des Matériaux UMR 7504, Université de Strasbourg & CNRS, Strasbourg, 67034, France
| | - Marlène Palluel
- Université de Bordeaux, CNRS, Bordeaux INP (ICMCB-UMR 5026), Pessac, 33600, France
| | - Nathalie Daro
- Université de Bordeaux, CNRS, Bordeaux INP (ICMCB-UMR 5026), Pessac, 33600, France
| | - Eric Freysz
- Université de Bordeaux, CNRS UMR 5798, LOMA, Talence cedex, 33405, France
| | - Laurentiu Stoleriu
- Faculty of Physics, Alexandru Ioan Cuza University, Iasi, 700506, Romania
| | - Cristian Enachescu
- Faculty of Physics, Alexandru Ioan Cuza University, Iasi, 700506, Romania
| | - Guillaume Chastanet
- Université de Bordeaux, CNRS, Bordeaux INP (ICMCB-UMR 5026), Pessac, 33600, France
| | - Florian Banhart
- Institut de Physique et Chimie des Matériaux UMR 7504, Université de Strasbourg & CNRS, Strasbourg, 67034, France
| |
Collapse
|
13
|
Time-resolved transmission electron microscopy for nanoscale chemical dynamics. Nat Rev Chem 2023; 7:256-272. [PMID: 37117417 DOI: 10.1038/s41570-023-00469-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2023] [Indexed: 02/24/2023]
Abstract
The ability of transmission electron microscopy (TEM) to image a structure ranging from millimetres to Ångströms has made it an indispensable component of the toolkit of modern chemists. TEM has enabled unprecedented understanding of the atomic structures of materials and how structure relates to properties and functions. Recent developments in TEM have advanced the technique beyond static material characterization to probing structural evolution on the nanoscale in real time. Accompanying advances in data collection have pushed the temporal resolution into the microsecond regime with the use of direct-electron detectors and down to the femtosecond regime with pump-probe microscopy. Consequently, studies have deftly applied TEM for understanding nanoscale dynamics, often in operando. In this Review, time-resolved in situ TEM techniques and their applications for probing chemical and physical processes are discussed, along with emerging directions in the TEM field.
Collapse
|
14
|
Gudyma I, Yarema V. On the role of random bond in spin-crossover compounds. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02739-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
15
|
Velazquez-Garcia JDJ, Basuroy K, Storozhuk D, Wong J, Demeshko S, Meyer F, Henning R, Techert S. Short- vs. long-range elastic distortion: structural dynamics of a [2 × 2] tetrairon(II) spin crossover grid complex observed by time-resolved X-Ray crystallography. Dalton Trans 2022; 51:17558-17566. [PMID: 36315244 PMCID: PMC9749069 DOI: 10.1039/d2dt02638d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Spin crossover complexes (SCO) are among the most studied molecular switches due to their potential use in displays, sensors, actuators and memory components. A prerequisite to using these materials is the understanding of the structural changes following the spin transition at out-of-equilibrium conditions. So far, out-of-equilibrium studies in SCO solids have been focused on mononuclear complexes, though a growing number of oligonuclear SCO complexes showing cooperative effects are being reported. Here, we use time-resolved pink Laue crystallography to study the out-of-equilibrium dynamics of a [2 × 2] tetranuclear metallogrid of the form [FeII4LMe4](BF4)4·2MeCN ([LMe]- = 4-methyl-3,5-bis{6-(2,2'-bipyridyl)}pyrazolate). The out-of-equilibrium spin state switching induced by a ps laser pulse demonstrates that the metallogrid exhibits a multi-step response similar to that reported for mononuclear complexes. Contrary to the mononuclear complexes, the metallogrid shows two types of elastic distortions at different time scales. The first is a short-range distortion that propagates over the entire Fe4 grid complex during the ps time scale, and it is caused by the rearrangement of the coordination sphere of the photo-switching ion and the constant feedback between strongly linked metal ions. The second is a long-range distortion caused by the anisotropic expansion of the lattice during the ns time scale, observed in mononuclear materials. The structural analysis demonstrates that the long-range prevails over the short-range distortion, inducing the largest deformation of both the entire grid and the coordination sphere of each metal ion. The present study sheds light on the out-of -equilibrium dynamics of a non-cooperative oligonuclear complex.
Collapse
Affiliation(s)
- Jose de Jesus Velazquez-Garcia
- Photon Science - Structural Dynamics in Chemical Systems, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, Hamburg, 22607, Germany.
| | - Krishnayan Basuroy
- Photon Science - Structural Dynamics in Chemical Systems, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, Hamburg, 22607, Germany.
| | - Darina Storozhuk
- Photon Science - Structural Dynamics in Chemical Systems, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, Hamburg, 22607, Germany.
| | - Joanne Wong
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Tammannstraße 4, Göttingen, 37077, Germany
| | - Serhiy Demeshko
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Tammannstraße 4, Göttingen, 37077, Germany
| | - Franc Meyer
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Tammannstraße 4, Göttingen, 37077, Germany
| | - Robert Henning
- Center for Advanced Radiation Sources, The University of Chicago, Argonne National Laboratory, 9700 South Cass Ave, Lemont, Illinois, 90439, USA
| | - Simone Techert
- Photon Science - Structural Dynamics in Chemical Systems, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, Hamburg, 22607, Germany.
- Institut für Röntgenphysik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, Göttingen, 37077, Germany
| |
Collapse
|
16
|
Fukaya R, Adachi JI, Nakao H, Yamasaki Y, Tabata C, Nozawa S, Ichiyanagi K, Ishii Y, Kimura H, Adachi SI. Time-resolved resonant soft X-ray scattering combined with MHz synchrotron X-ray and laser pulses at the Photon Factory. JOURNAL OF SYNCHROTRON RADIATION 2022; 29:1414-1419. [PMID: 36345749 PMCID: PMC9641559 DOI: 10.1107/s1600577522008724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/31/2022] [Indexed: 06/16/2023]
Abstract
A picosecond pump-probe resonant soft X-ray scattering measurement system has been developed at the Photon Factory storage ring for highly efficient data collection. A high-repetition-rate high-power compact laser system has been installed to improve efficiency via flexible data acquisition to a sub-MHz frequency in time-resolved experiments. Data are acquired by gating the signal of a channel electron multiplier with a pulse-counting mode capable of discriminating single-bunch soft X-ray pulses in the dark gap of the hybrid operation mode in the storage ring. The photoinduced dynamics of magnetic order for multiferroic manganite SmMn2O5 are clearly demonstrated by the detection of transient changes in the resonant soft X-ray scattering intensity around the Mn LIII- and O K-edges.
Collapse
Affiliation(s)
- Ryo Fukaya
- Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba, Ibaraki 305-0801, Japan
| | - Jun-ichi Adachi
- Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba, Ibaraki 305-0801, Japan
- Graduate University for Advanced Studies (SOKENDAI), Tsukuba, Ibaraki 305-0801, Japan
| | - Hironori Nakao
- Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba, Ibaraki 305-0801, Japan
- Graduate University for Advanced Studies (SOKENDAI), Tsukuba, Ibaraki 305-0801, Japan
| | - Yuichi Yamasaki
- Research and Services Division of Materials Data and Integrated System, National Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan
| | - Chihiro Tabata
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Osaka 590-0494, Japan
| | - Shunsuke Nozawa
- Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba, Ibaraki 305-0801, Japan
- Graduate University for Advanced Studies (SOKENDAI), Tsukuba, Ibaraki 305-0801, Japan
| | - Kouhei Ichiyanagi
- Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba, Ibaraki 305-0801, Japan
| | - Yuta Ishii
- Department of Physics, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Hiroyuki Kimura
- Department of Physics, Tohoku University, Sendai, Miyagi 980-8578, Japan
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Shin-ichi Adachi
- Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba, Ibaraki 305-0801, Japan
- Graduate University for Advanced Studies (SOKENDAI), Tsukuba, Ibaraki 305-0801, Japan
| |
Collapse
|
17
|
Dynamics of Spin Crossover Molecular Complexes. NANOMATERIALS 2022; 12:nano12101742. [PMID: 35630963 PMCID: PMC9144206 DOI: 10.3390/nano12101742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/09/2022] [Accepted: 05/16/2022] [Indexed: 02/04/2023]
Abstract
We review the current understanding of the time scale and mechanisms associated with the change in spin state in transition metal-based spin crossover (SCO) molecular complexes. Most time resolved experiments, performed by optical techniques, rely on the intrinsic light-induced switching properties of this class of materials. The optically driven spin state transition can be mediated by a rich interplay of complexities including intermediate states in the spin state transition process, as well as intermolecular interactions, temperature, and strain. We emphasize here that the size reduction down to the nanoscale is essential for designing SCO systems that switch quickly as well as possibly retaining the memory of the light-driven state. We argue that SCO nano-sized systems are the key to device applications where the “write” speed is an important criterion.
Collapse
|
18
|
Influence of Cooperative Interactions on the Spin Crossover Phenomenon in Iron(II) Complexes: A Review. THEOR EXP CHEM+ 2022. [DOI: 10.1007/s11237-022-09725-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
19
|
Velazquez-Garcia JDJ, Basuroy K, Storozhuk D, Wong J, Demeshko S, Meyer F, Henning R, Techert S. Metal-to-metal communication during the spin state transition of a [2 × 2] Fe(II) metallogrid at equilibrium and out-of-equilibrium conditions. Dalton Trans 2022; 51:6036-6045. [PMID: 35352719 DOI: 10.1039/d1dt04255f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Spin crossover (SCO) complexes are prototypes of materials with bi- or multi-stability in the solid state. The structural evolution during their spin transition is a key feature to establish the foundations of how to utilize this type of material. So far, ultrafast time-resolved structural investigations of SCO solids have been focused on monometallic complexes, though an increasing number of oligometallic SCO complexes showing cooperativity effects are being reported. Here, we used single crystal X-ray crystallography and time-resolved pink Laue photocrystallography to study the molecular reorganisation during the thermal and photoinduced SCO of a [2 × 2] tetranuclear metallogrid of the form [FeII4LMe4](BF4)4·2MeCN ([LMe]- = 4-methyl-3,5-bis{6-(2,2'-bipyridyl)}pyrazolate). A multitemperature crystallographic investigation on single crystals reveals an effective communication between the metal centres during thermal SCO, observed by the simultaneous transformation of the coordination polyhedra of both crystallographic-symmetry independent metal atoms accompanying the SCO in only one of them. Time-resolved photocrystallography results reveal the different molecular responses between mononuclear and oligonuclear complexes, after light irradiation with a picosecond laser pulse. While mononuclear SCO complexes reorganise once during the first nanosecond after excitation, the tetranuclear metallogrid exhibits a multiple structural rearrangement in the same span of time. Such behaviour is attributed to the elastic communication between metal atoms, which allows the propagation of a short-range elastic distortion over the entire Fe4 grid complex. The present study sheds light on the importance of strong elastic coupling of metal atoms during the correlated spin transition of oligometallic complexes.
Collapse
Affiliation(s)
- Jose de Jesus Velazquez-Garcia
- Photon Science - Structural Dynamics in Chemical Systems, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607 Hamburg, Germany.
| | - Krishnayan Basuroy
- Photon Science - Structural Dynamics in Chemical Systems, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607 Hamburg, Germany.
| | - Darina Storozhuk
- Photon Science - Structural Dynamics in Chemical Systems, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607 Hamburg, Germany.
| | - Joanne Wong
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Tammannstraße 4, D-37077 Göttingen, Germany
| | - Serhiy Demeshko
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Tammannstraße 4, D-37077 Göttingen, Germany
| | - Franc Meyer
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Tammannstraße 4, D-37077 Göttingen, Germany
| | - Robert Henning
- Center for Advanced Radiation Sources, The University of Chicago, Argonne National Laboratory, 9700 South Cass Ave, Lemont, Illinois, 90439, USA
| | - Simone Techert
- Photon Science - Structural Dynamics in Chemical Systems, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607 Hamburg, Germany.
- Institut für Röntgenphysik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, D-37077 Göttingen, Germany
| |
Collapse
|
20
|
Gudyma I, Yarema V. Bond-random model of spin-crossover compounds: similarities and differences from spin glasses. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-021-01731-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Ridier K, Nicolazzi W, Salmon L, Molnár G, Bousseksou A. Sequential Activation of Molecular and Macroscopic Spin-State Switching within the Hysteretic Region Following Pulsed Light Excitation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2105468. [PMID: 34817094 DOI: 10.1002/adma.202105468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/19/2021] [Indexed: 06/13/2023]
Abstract
Molecular spin-crossover (SCO) compounds constitute a promising class of photoactive materials exhibiting efficient photoinduced phase transitions (PIPTs). Taking advantage of the unique, picture-perfect reproducibility of the spin-transition properties in the compound [Fe(HB(1,2,4-triazol-1-yl)3 )2 ], the spatiotemporal dynamics of the PIPT within the thermodynamic metastability (hysteretic) region of a single crystal is dissected, using pump-probe optical microscopy. Beyond a threshold laser-excitation density, complete PIPTs are evidenced, with conversion rates up to 200 switched molecules per absorbed photon. It is shown that the PIPT takes place through the sequential activation of two (molecular and macroscopic) switching mechanisms, occurring on sub-microsecond and millisecond timescales, governed by the intramolecular and free energy barriers of the system, respectively. The main finding here is that the thermodynamic metastability has strictly no influence on the sub-millisecond switching dynamics. Indeed, before this millisecond timescale, the response of the crystal to the laser excitation involves a gradual, molecular conversion process, as if there were no hysteresis loop. Consequently, in this regime, even a 100% photoinduced conversion may not give rise to a PIPT. These results provide new insight on the intrinsic dynamical limits of the PIPT, which is an important issue from a technological perspective.
Collapse
Affiliation(s)
- Karl Ridier
- Laboratoire de Chimie de Coordination, CNRS & Université de Toulouse, Toulouse, 31077, France
| | - William Nicolazzi
- Laboratoire de Chimie de Coordination, CNRS & Université de Toulouse, Toulouse, 31077, France
| | - Lionel Salmon
- Laboratoire de Chimie de Coordination, CNRS & Université de Toulouse, Toulouse, 31077, France
| | - Gábor Molnár
- Laboratoire de Chimie de Coordination, CNRS & Université de Toulouse, Toulouse, 31077, France
| | - Azzedine Bousseksou
- Laboratoire de Chimie de Coordination, CNRS & Université de Toulouse, Toulouse, 31077, France
| |
Collapse
|
22
|
Gournay L, Chaban I, Mevellec JY, Humbert B, Janod E, Guerin L, Cammarata M, Daro N, Chastanet G, Collet E. Shifting photo-stationary light-induced excited spin state trapping equilibrium towards higher temperature by increasing light fluence. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
zerdane S, Herve M, Mazerat S, CATALA L, Mori RA, Glownia JM, Song S, Levantino M, Mallah T, Cammarata M, Collet E. Out-of-equilibrium dynamics driven by photoinduced charge transfer in CsCoFe Prussian Blue Analogue nanocrystals. Faraday Discuss 2022; 237:224-236. [DOI: 10.1039/d2fd00015f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this paper we study the out-of-equilibrium dynamics associated with photoinduced charge-transfer (CT) in cyanide-bridged Co-Fe Prussian blue analogue nanocrystals. In these coordination networks, the structural trapping of the photoinduced...
Collapse
|
24
|
Hu Y, Picher M, Tran NM, Palluel M, Stoleriu L, Daro N, Mornet S, Enachescu C, Freysz E, Banhart F, Chastanet G. Photo-Thermal Switching of Individual Plasmonically Activated Spin Crossover Nanoparticle Imaged by Ultrafast Transmission Electron Microscopy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2105586. [PMID: 34601766 DOI: 10.1002/adma.202105586] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Spin crossover (SCO) is a promising switching phenomenon when implemented in electronic devices as molecules, thin films or nanoparticles. Among the properties modulated along this phenomenon, optically induced mechanical changes are of tremendous importance as they can work as fast light-induced mechanical switches or allow to investigate and control microstructural strains and fatigability. The development of characterization techniques probing nanoscopic behavior with high spatio-temporal resolution allows to trigger and visualize such mechanical changes of individual nanoscopic objects. Here, ultrafast transmission electron microscopy (UTEM) is used to precisely probe the length changes of individual switchable nanoparticles induced thermally by nanosecond laser pulses. This allows revealing of the mechanisms of spin switching, leading to the macroscopic expansion of SCO materials. This study is conducted on individual pure SCO nanoparticles and SCO nanoparticles encapsulating gold nanorods that serve for plasmonic heating under laser pulses. Length changes are compared with time-resolved optical measurements performed on an assembly of these particles.
Collapse
Affiliation(s)
- Yaowei Hu
- Institut de Physique et Chimie des Matériaux, UMR 7504 CNRS, Université de Strasbourg, Strasbourg, F-67034, France
| | - Matthieu Picher
- Institut de Physique et Chimie des Matériaux, UMR 7504 CNRS, Université de Strasbourg, Strasbourg, F-67034, France
| | - Ngoc Minh Tran
- Universite de Bordeaux, CNRS, UMR 5798, LOMA, 358 Cours de la libération, Talence cedex, F-33405, France
| | - Marlène Palluel
- Institut de Chimie de la Matière Condensée de Bordeaux, CNRS, Université de Bordeaux, Bordeaux INP, UMR 5026, Pessac, F-33600, France
| | - Laurentiu Stoleriu
- Faculty of Physics, Alexandru Ioan Cuza University, Iasi, 700506, Romania
| | - Nathalie Daro
- Institut de Chimie de la Matière Condensée de Bordeaux, CNRS, Université de Bordeaux, Bordeaux INP, UMR 5026, Pessac, F-33600, France
| | - Stephane Mornet
- Institut de Chimie de la Matière Condensée de Bordeaux, CNRS, Université de Bordeaux, Bordeaux INP, UMR 5026, Pessac, F-33600, France
| | - Cristian Enachescu
- Faculty of Physics, Alexandru Ioan Cuza University, Iasi, 700506, Romania
| | - Eric Freysz
- Universite de Bordeaux, CNRS, UMR 5798, LOMA, 358 Cours de la libération, Talence cedex, F-33405, France
| | - Florian Banhart
- Institut de Physique et Chimie des Matériaux, UMR 7504 CNRS, Université de Strasbourg, Strasbourg, F-67034, France
| | - Guillaume Chastanet
- Institut de Chimie de la Matière Condensée de Bordeaux, CNRS, Université de Bordeaux, Bordeaux INP, UMR 5026, Pessac, F-33600, France
| |
Collapse
|
25
|
Tong Y, Kelaï M, Bairagi K, Repain V, Lagoute J, Girard Y, Rousset S, Boillot ML, Mallah T, Enachescu C, Bellec A. Voltage-Induced Bistability of Single Spin-Crossover Molecules in a Two-Dimensional Monolayer. J Phys Chem Lett 2021; 12:11029-11034. [PMID: 34743521 DOI: 10.1021/acs.jpclett.1c03271] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Bistable spin-crossover molecules are particularly interesting for the development of innovative electronic and spintronic devices as they present two spin states that can be controlled by external stimuli. In this paper, we report the voltage-induced switching of the high spin/low spin electronic states of spin-crossover molecules self-assembled in dense 2D networks on Au(111) and Cu(111) by scanning tunneling microscopy at low temperature. On Au(111), voltage pulses lead to the nonlocal switching of the molecules from any─high or low─spin state to the other followed by a spontaneous relaxation toward their initial state within minutes. On the other hand, on Cu(111), single molecules can be addressed at will. They retain their new electronic configuration after a voltage pulse. The memory effect demonstrated on Cu(111) is due to an interplay between long-range intermolecular interaction and molecule/substrate coupling as confirmed by mechanoelastic simulations.
Collapse
Affiliation(s)
- Yongfeng Tong
- Université de Paris, Laboratoire Matériaux et Phénomènes Quantiques (MPQ), CNRS-UMR7162, 75013, Paris, France
| | - Massine Kelaï
- Université de Paris, Laboratoire Matériaux et Phénomènes Quantiques (MPQ), CNRS-UMR7162, 75013, Paris, France
| | - Kaushik Bairagi
- Université de Paris, Laboratoire Matériaux et Phénomènes Quantiques (MPQ), CNRS-UMR7162, 75013, Paris, France
| | - Vincent Repain
- Université de Paris, Laboratoire Matériaux et Phénomènes Quantiques (MPQ), CNRS-UMR7162, 75013, Paris, France
| | - Jérôme Lagoute
- Université de Paris, Laboratoire Matériaux et Phénomènes Quantiques (MPQ), CNRS-UMR7162, 75013, Paris, France
| | - Yann Girard
- Université de Paris, Laboratoire Matériaux et Phénomènes Quantiques (MPQ), CNRS-UMR7162, 75013, Paris, France
| | - Sylvie Rousset
- Université de Paris, Laboratoire Matériaux et Phénomènes Quantiques (MPQ), CNRS-UMR7162, 75013, Paris, France
| | - Marie-Laure Boillot
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, Université Paris-Saclay, CNRS, UMR 8182, 91405 Orsay Cedex, France
| | - Talal Mallah
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, Université Paris-Saclay, CNRS, UMR 8182, 91405 Orsay Cedex, France
| | - Cristian Enachescu
- Faculty of Physics, Alexandru Ioan Cuza University of Iasi, Iasi 700506, Romania
| | - Amandine Bellec
- Université de Paris, Laboratoire Matériaux et Phénomènes Quantiques (MPQ), CNRS-UMR7162, 75013, Paris, France
| |
Collapse
|
26
|
Elastic Modeling of Two-Step Transitions in Sterically Frustrated 1D Binuclear Spin-Crossover Chains. Symmetry (Basel) 2021. [DOI: 10.3390/sym13101836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Among the large family of spin-crossover materials, binuclear systems play an important role due to their specific molecular configurations, allowing the presence of multi-step transitions and elastic frustration. Although this issue benefited from a significant number of spin-based theories, there is almost no elastic description of the spin transition phenomenon in binuclear systems. To overcome this deficiency, in this work we develop the first elastic modeling of thermal properties of binuclear spin-crossover solids. At this end, we investigated a finite spin-crossover open chain constituted of elastically coupled binuclear (A = B) blocks, ⋯A=B−A=B−A=B⋯, in which the considered equivalent A and B sites may occupy two configurations, namely low-spin (LS) and high-spin (HS) states. The sites of the binuclear unit interact via an intramolecular spring and couple to the neighboring binuclear units via other springs. The model also includes the change of length inside and between the binuclear units subsequent to the spin state changes. When injecting an elastic frustration inside the binuclear unit in the LS state, competing interactions between the intra- and the inter-binuclear couplings emerge. The latter shows that according to the intra- and inter-binuclear elastic constants and the strength of the frustration, multi-step transitions are derived, for which a specific self-organization of type (HS = HS)-(LS-LS)-(HS = HS)⋯ is revealed and discussed. Finally, we have also studied the relaxation of the metastable photoinduced HS states at low temperature, in which two relaxation regimes with transient self-organized states were identified when monitoring the elastic frustration rate or the ratio of intra- and intermolecular elastic interactions. These behaviors are reminiscent of the thermal dependence of the order parameters of the system. The present model opens several possibilities of extensions of elastic frustrations acting in polynuclear spin-crossover systems, which may lead to other types of spin-state self-organizations and relaxation dynamics.
Collapse
|
27
|
Kelai M, Repain V, Tauzin A, Li W, Girard Y, Lagoute J, Rousset S, Otero E, Sainctavit P, Arrio MA, Boillot ML, Mallah T, Enachescu C, Bellec A. Thermal Bistability of an Ultrathin Film of Iron(II) Spin-Crossover Molecules Directly Adsorbed on a Metal Surface. J Phys Chem Lett 2021; 12:6152-6158. [PMID: 34184899 DOI: 10.1021/acs.jpclett.1c01366] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Spin-crossover molecules are very attractive compounds to realize multifunctional spintronic devices. Understanding their properties when deposited on metals is therefore crucial for their future rational implementation as ultrathin films in such devices. Using X-ray absorption spectroscopy, we study the thermal transition of the spin-crossover compound FeII((3,5-(CH3)2Pz)3BH)2 from submonolayer to multilayers on a Cu(111) substrate. We determine how the residual fraction of high spin molecules at low temperature, as well as the bistability range and the temperature of switching, depends on the layer thickness. The most spectacular effect is the clear opening of a 35 ± 9 K thermal hysteresis loop for a 3.0 ± 0.7 monolayers thick film. To better understand the role played by the substrate and the dimensionality on the thermal bistability, we have performed Monte Carlo Arrhenius simulations in the framework of a mechanoelastic model that include a molecule-substrate interaction. This model reproduces well the main features observed experimentally and can predict how the spin-crossover transition is modified by the thickness and the substrate interaction.
Collapse
Affiliation(s)
- Massine Kelai
- Matériaux et Phénomènes Quantiques, Université de Paris, CNRS UMR 7162, 75013 Paris, France
| | - Vincent Repain
- Matériaux et Phénomènes Quantiques, Université de Paris, CNRS UMR 7162, 75013 Paris, France
| | - Arthur Tauzin
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, Univ Paris Sud, Université Paris-Saclay, CNRS, UMR 8182, 91405 Orsay Cedex, France
| | - Weibin Li
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, CNRS UMR7590, Sorbonne Université, MNHN, 75252 Paris Cedex 5, France
| | - Yann Girard
- Matériaux et Phénomènes Quantiques, Université de Paris, CNRS UMR 7162, 75013 Paris, France
| | - Jérôme Lagoute
- Matériaux et Phénomènes Quantiques, Université de Paris, CNRS UMR 7162, 75013 Paris, France
| | - Sylvie Rousset
- Matériaux et Phénomènes Quantiques, Université de Paris, CNRS UMR 7162, 75013 Paris, France
| | - Edwige Otero
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, 91192 Gif sur Yvette, France
| | - Philippe Sainctavit
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, CNRS UMR7590, Sorbonne Université, MNHN, 75252 Paris Cedex 5, France
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, 91192 Gif sur Yvette, France
| | - Marie-Anne Arrio
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, CNRS UMR7590, Sorbonne Université, MNHN, 75252 Paris Cedex 5, France
| | - Marie-Laure Boillot
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, Univ Paris Sud, Université Paris-Saclay, CNRS, UMR 8182, 91405 Orsay Cedex, France
| | - Talal Mallah
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, Univ Paris Sud, Université Paris-Saclay, CNRS, UMR 8182, 91405 Orsay Cedex, France
| | - Cristian Enachescu
- Faculty of Physics, Alexandru Ioan Cuza University of Iasi, Iasi, 700506, Romania
| | - Amandine Bellec
- Matériaux et Phénomènes Quantiques, Université de Paris, CNRS UMR 7162, 75013 Paris, France
| |
Collapse
|
28
|
Sadashivaiah S, Wolny JA, Scherthan L, Jenni K, Omlor A, Müller CS, Sergueev I, Herlitschke M, Leupold O, Wille HC, Röhlsberger R, Schünemann V. High-Repetition Rate Optical Pump-Nuclear Resonance Probe Experiments Identify Transient Molecular Vibrations after Photoexcitation of a Spin Crossover Material. J Phys Chem Lett 2021; 12:3240-3245. [PMID: 33764073 DOI: 10.1021/acs.jpclett.0c03733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Phonon modes play a vital role in the cooperative phenomenon of light-induced spin transitions in spin crossover (SCO) molecular complexes. Although the cooperative vibrations, which occur over several hundreds of picoseconds to nanoseconds after photoexcitation, are understood to play a crucial role in this phase transition, they have not been precisely identified. Therefore, we have performed a novel optical laser pump-nuclear resonance probe experiment to identify the Fe-projected vibrational density of states (pDOS) during the first few nanoseconds after laser excitation of the mononuclear Fe(II) SCO complex [Fe(PM-BiA)2(NCS)2]. Evaluation of the so obtained nanosecond-resolved pDOS yields an excitation of ∼8% of the total volume of the complex from the low-spin to high-spin state. Density functional theory calculations allow simulation of the observed changes in the pDOS and thus identification of the transient inter- and intramolecular vibrational modes at nanosecond time scales.
Collapse
Affiliation(s)
- Sakshath Sadashivaiah
- Fachbereich Physik, Technische Universität Kaiserslautern, Erwin-Schrödinger Straße 46, 67663 Kaiserslautern, Germany
- Helmholtz-Institut Jena, Fröbelstieg 3, 07743 Jena, Germany
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, 64291 Darmstadt, Germany
| | - Juliusz A Wolny
- Fachbereich Physik, Technische Universität Kaiserslautern, Erwin-Schrödinger Straße 46, 67663 Kaiserslautern, Germany
| | - Lena Scherthan
- Fachbereich Physik, Technische Universität Kaiserslautern, Erwin-Schrödinger Straße 46, 67663 Kaiserslautern, Germany
| | - Kevin Jenni
- Fachbereich Physik, Technische Universität Kaiserslautern, Erwin-Schrödinger Straße 46, 67663 Kaiserslautern, Germany
| | - Andreas Omlor
- Fachbereich Physik, Technische Universität Kaiserslautern, Erwin-Schrödinger Straße 46, 67663 Kaiserslautern, Germany
| | - Christina S Müller
- Fachbereich Physik, Technische Universität Kaiserslautern, Erwin-Schrödinger Straße 46, 67663 Kaiserslautern, Germany
| | - Ilya Sergueev
- Deutsches Elektronen Synchrotron, Notkestraße 85, 22607 Hamburg, Germany
| | - Marcus Herlitschke
- Deutsches Elektronen Synchrotron, Notkestraße 85, 22607 Hamburg, Germany
| | - Olaf Leupold
- Deutsches Elektronen Synchrotron, Notkestraße 85, 22607 Hamburg, Germany
| | | | - Ralf Röhlsberger
- Deutsches Elektronen Synchrotron, Notkestraße 85, 22607 Hamburg, Germany
- Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, 07743 Jena, Germany
- Helmholtz-Institut Jena, Fröbelstieg 3, 07743 Jena, Germany
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, 64291 Darmstadt, Germany
| | - Volker Schünemann
- Fachbereich Physik, Technische Universität Kaiserslautern, Erwin-Schrödinger Straße 46, 67663 Kaiserslautern, Germany
| |
Collapse
|
29
|
Kumar KS, Ruben M. Sublimable Spin-Crossover Complexes: From Spin-State Switching to Molecular Devices. Angew Chem Int Ed Engl 2021; 60:7502-7521. [PMID: 31769131 PMCID: PMC8048919 DOI: 10.1002/anie.201911256] [Citation(s) in RCA: 153] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Indexed: 11/10/2022]
Abstract
Spin-crossover (SCO) active transition metal complexes are an important class of switchable molecular materials due to their bistable spin-state switching characteristics at or around room temperature. Vacuum-sublimable SCO complexes are a subclass of SCO complexes suitable for fabricating ultraclean spin-switchable films desirable for applications, especially in molecular electronics/spintronics. Consequently, on-surface SCO of thin-films of sublimable SCO complexes have been studied employing spectroscopy and microscopy techniques, and results of fundamental and technological importance have been obtained. This Review provides complete coverage of advances made in the field of vacuum-sublimable SCO complexes: progress made in the design and synthesis of sublimable functional SCO complexes, on-surface SCO of molecular and multilayer thick films, and various molecular and thin-film device architectures based on the sublimable SCO complexes.
Collapse
Affiliation(s)
- Kuppusamy Senthil Kumar
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS)CNRS-Université de Strasbourg23, rue du Loess, BP 4367034Strasbourg cedex 2France
| | - Mario Ruben
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS)CNRS-Université de Strasbourg23, rue du Loess, BP 4367034Strasbourg cedex 2France
- Institute of NanotechnologyKarlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
- Institute of Quantum Materials and -TechnologyKarlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| |
Collapse
|
30
|
Mariette C, Lorenc M, Cailleau H, Collet E, Guérin L, Volte A, Trzop E, Bertoni R, Dong X, Lépine B, Hernandez O, Janod E, Cario L, Ta Phuoc V, Ohkoshi S, Tokoro H, Patthey L, Babic A, Usov I, Ozerov D, Sala L, Ebner S, Böhler P, Keller A, Oggenfuss A, Zmofing T, Redford S, Vetter S, Follath R, Juranic P, Schreiber A, Beaud P, Esposito V, Deng Y, Ingold G, Chergui M, Mancini GF, Mankowsky R, Svetina C, Zerdane S, Mozzanica A, Bosak A, Wulff M, Levantino M, Lemke H, Cammarata M. Strain wave pathway to semiconductor-to-metal transition revealed by time-resolved X-ray powder diffraction. Nat Commun 2021; 12:1239. [PMID: 33623010 PMCID: PMC7902810 DOI: 10.1038/s41467-021-21316-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 01/13/2021] [Indexed: 11/09/2022] Open
Abstract
One of the main challenges in ultrafast material science is to trigger phase transitions with short pulses of light. Here we show how strain waves, launched by electronic and structural precursor phenomena, determine a coherent macroscopic transformation pathway for the semiconducting-to-metal transition in bistable Ti3O5 nanocrystals. Employing femtosecond powder X-ray diffraction, we measure the lattice deformation in the phase transition as a function of time. We monitor the early intra-cell distortion around the light absorbing metal dimer and the long range deformations governed by acoustic waves propagating from the laser-exposed Ti3O5 surface. We developed a simplified elastic model demonstrating that picosecond switching in nanocrystals happens concomitantly with the propagating acoustic wavefront, several decades faster than thermal processes governed by heat diffusion.
Collapse
Affiliation(s)
- C Mariette
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes)-UMR 6251, Rennes, France.
| | - M Lorenc
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes)-UMR 6251, Rennes, France.
| | - H Cailleau
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes)-UMR 6251, Rennes, France
| | - E Collet
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes)-UMR 6251, Rennes, France
| | - L Guérin
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes)-UMR 6251, Rennes, France
| | - A Volte
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes)-UMR 6251, Rennes, France
| | - E Trzop
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes)-UMR 6251, Rennes, France
| | - R Bertoni
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes)-UMR 6251, Rennes, France
| | - X Dong
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes)-UMR 6251, Rennes, France
| | - B Lépine
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes)-UMR 6251, Rennes, France
| | - O Hernandez
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, Rennes, France
| | - E Janod
- Institut des Matériaux Jean Rouxel (IMN), Université de Nantes, CNRS, Nantes, France
| | - L Cario
- Institut des Matériaux Jean Rouxel (IMN), Université de Nantes, CNRS, Nantes, France
| | - V Ta Phuoc
- GREMAN-UMR 7347 CNRS, Université de Tours, Tours, France
| | - S Ohkoshi
- Department of Chemistry, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - H Tokoro
- Department of Chemistry, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.,Department of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - L Patthey
- SwissFEL, Paul Scherrer Institut, Villigen PSI, Switzerland
| | - A Babic
- SwissFEL, Paul Scherrer Institut, Villigen PSI, Switzerland
| | - I Usov
- SwissFEL, Paul Scherrer Institut, Villigen PSI, Switzerland
| | - D Ozerov
- SwissFEL, Paul Scherrer Institut, Villigen PSI, Switzerland
| | - L Sala
- SwissFEL, Paul Scherrer Institut, Villigen PSI, Switzerland
| | - S Ebner
- SwissFEL, Paul Scherrer Institut, Villigen PSI, Switzerland
| | - P Böhler
- SwissFEL, Paul Scherrer Institut, Villigen PSI, Switzerland
| | - A Keller
- SwissFEL, Paul Scherrer Institut, Villigen PSI, Switzerland
| | - A Oggenfuss
- SwissFEL, Paul Scherrer Institut, Villigen PSI, Switzerland
| | - T Zmofing
- SwissFEL, Paul Scherrer Institut, Villigen PSI, Switzerland
| | - S Redford
- SwissFEL, Paul Scherrer Institut, Villigen PSI, Switzerland
| | - S Vetter
- SwissFEL, Paul Scherrer Institut, Villigen PSI, Switzerland
| | - R Follath
- SwissFEL, Paul Scherrer Institut, Villigen PSI, Switzerland
| | - P Juranic
- SwissFEL, Paul Scherrer Institut, Villigen PSI, Switzerland
| | - A Schreiber
- SwissFEL, Paul Scherrer Institut, Villigen PSI, Switzerland
| | - P Beaud
- SwissFEL, Paul Scherrer Institut, Villigen PSI, Switzerland
| | - V Esposito
- SwissFEL, Paul Scherrer Institut, Villigen PSI, Switzerland.,Institute for Materials and Energy Science, Stanford University and SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Y Deng
- SwissFEL, Paul Scherrer Institut, Villigen PSI, Switzerland
| | - G Ingold
- SwissFEL, Paul Scherrer Institut, Villigen PSI, Switzerland
| | - M Chergui
- Laboratory of Ultrafast Spectroscopy, Lausanne Center for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - G F Mancini
- SwissFEL, Paul Scherrer Institut, Villigen PSI, Switzerland.,Laboratory of Ultrafast Spectroscopy, Lausanne Center for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - R Mankowsky
- SwissFEL, Paul Scherrer Institut, Villigen PSI, Switzerland
| | - C Svetina
- SwissFEL, Paul Scherrer Institut, Villigen PSI, Switzerland
| | - S Zerdane
- SwissFEL, Paul Scherrer Institut, Villigen PSI, Switzerland
| | - A Mozzanica
- SwissFEL, Paul Scherrer Institut, Villigen PSI, Switzerland
| | - A Bosak
- European Synchrotron Radiation Facility, Grenoble, France
| | - M Wulff
- European Synchrotron Radiation Facility, Grenoble, France
| | - M Levantino
- European Synchrotron Radiation Facility, Grenoble, France
| | - H Lemke
- SwissFEL, Paul Scherrer Institut, Villigen PSI, Switzerland
| | - M Cammarata
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes)-UMR 6251, Rennes, France. .,European Synchrotron Radiation Facility, Grenoble, France.
| |
Collapse
|
31
|
Barlow K, Johansson JO. Ultrafast photoinduced dynamics in Prussian blue analogues. Phys Chem Chem Phys 2021; 23:8118-8131. [DOI: 10.1039/d1cp00535a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A review on ultrafast photoinduced processes in molecule-based magnets with an emphasis on Prussian blue analogues.
Collapse
Affiliation(s)
- Kyle Barlow
- EaStCHEM School of Chemistry
- University of Edinburgh
- David Brewster Road
- Edinburgh
- UK
| | - J. Olof Johansson
- EaStCHEM School of Chemistry
- University of Edinburgh
- David Brewster Road
- Edinburgh
- UK
| |
Collapse
|
32
|
Nakaya M, Ohtani R, Lindoy LF, Hayami S. Light-induced excited spin state trapping in iron(iii) complexes. Inorg Chem Front 2021. [DOI: 10.1039/d0qi01188f] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This review discusses the correlation of the local and whole molecular structure of iron(iii) complexes with the magnetic properties including the light-induced excited spin-state trapping (LIESST) effect.
Collapse
Affiliation(s)
- Manabu Nakaya
- Department of Chemistry
- Faculty of Science
- Josai University
- Sakado
- Japan
| | - Ryo Ohtani
- Department of Chemistry
- Faculty of Science
- Kyushu University
- Fukuoka 819-0395
- Japan
| | | | - Shinya Hayami
- Department of Chemistry
- Faculty of Advanced Science and Technology
- Kumamoto University
- Kumamoto 860-8555
- Japan
| |
Collapse
|
33
|
Ohkoshi SI, Yoshikiyo M, Imoto K, Nakagawa K, Namai A, Tokoro H, Yahagi Y, Takeuchi K, Jia F, Miyashita S, Nakajima M, Qiu H, Kato K, Yamaoka T, Shirata M, Naoi K, Yagishita K, Doshita H. Magnetic-Pole Flip by Millimeter Wave. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2004897. [PMID: 33029839 DOI: 10.1002/adma.202004897] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/30/2020] [Indexed: 06/11/2023]
Abstract
In the era of Big Data and the Internet of Things, data archiving is a key technology. From this viewpoint, magnetic recordings are drawing attention because they guarantee long-term data storage. To archive an enormous amount of data, further increase of the recording density is necessary. Herein a new magnetic recording methodology, "focused-millimeter-wave-assisted magnetic recording (F-MIMR)," is proposed. To test this methodology, magnetic films based on epsilon iron oxide nanoparticles are prepared and a focused-millimeter-wave generator is constructed using terahertz (THz) light. Irradiating the focused millimeter wave to epsilon iron oxide instantly switches its magnetic pole direction. The spin dynamics of F-MIMR are also calculated using the stochastic Landau-Lifshitz-Gilbert model considering all of the spins in an epsilon iron oxide nanoparticle. In F-MIMR, the heat-up effect of the recording media is expected to be suppressed. Thus, F-MIMR can be applied to high-density magnetic recordings.
Collapse
Affiliation(s)
- Shin-Ichi Ohkoshi
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Marie Yoshikiyo
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kenta Imoto
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kosuke Nakagawa
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Asuka Namai
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hiroko Tokoro
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Department of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Yuji Yahagi
- Department of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Kyohei Takeuchi
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Fangda Jia
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Seiji Miyashita
- Department of Physics, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Makoto Nakajima
- Institute of Laser Engineering, Osaka University, 2-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hongsong Qiu
- Institute of Laser Engineering, Osaka University, 2-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kosaku Kato
- Institute of Laser Engineering, Osaka University, 2-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Takehiro Yamaoka
- Analysis Systems Solution Development Dept., Metrology and Analysis Systems Product Div., Hitachi High-Tech Corporation, 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa, 213-0012, Japan
| | - Masashi Shirata
- Recording Media Research & Development Laboratories, FUJIFILM Corporation, 12-1, Ohgi-cho 2-Chome, Odawara-shi, Kanagawa, 250-0001, Japan
| | - Kenji Naoi
- Recording Media Research & Development Laboratories, FUJIFILM Corporation, 12-1, Ohgi-cho 2-Chome, Odawara-shi, Kanagawa, 250-0001, Japan
| | - Koichi Yagishita
- Recording Media Research & Development Laboratories, FUJIFILM Corporation, 12-1, Ohgi-cho 2-Chome, Odawara-shi, Kanagawa, 250-0001, Japan
| | - Hiroaki Doshita
- Recording Media Research & Development Laboratories, FUJIFILM Corporation, 12-1, Ohgi-cho 2-Chome, Odawara-shi, Kanagawa, 250-0001, Japan
| |
Collapse
|
34
|
Kumar KS, Ruben M. Sublimierbare Spin‐Crossover‐Komplexe: Vom Schalten des Spinzustands zu molekularen Bauelementen. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201911256] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Kuppusamy Senthil Kumar
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS) CNRS-Université de Strasbourg 23, rue du Loess, BP 43 67034 Strasbourg cedex 2 Frankreich
| | - Mario Ruben
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS) CNRS-Université de Strasbourg 23, rue du Loess, BP 43 67034 Strasbourg cedex 2 Frankreich
- Institut für Nanotechnologie Karlsruher Institut für Technologie (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Deutschland
- Institut für Quantenmaterialien und -technologien Karlsruher Institut für Technologie (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Deutschland
| |
Collapse
|
35
|
Guo W, Daro N, Pillet S, Marchivie M, Bendeif EE, Tailleur E, Chainok K, Denux D, Chastanet G, Guionneau P. Unprecedented Reverse Volume Expansion in Spin-Transition Crystals. Chemistry 2020; 26:12927-12930. [PMID: 32428382 DOI: 10.1002/chem.202001821] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/04/2020] [Indexed: 11/09/2022]
Abstract
The current craze for research around the spin crossover phenomenon can be justified to some extent by the mechanical properties due to the decrease of volume associated with the transition of the metal ion from the HS state to the LS state. As demonstrated here, the molecular complex [Fe(PM-pBrA)2 (NCS)2 ] exhibits, on the contrary, an increase of the unit-cell volume from HS to LS. This counter-intuitive and unprecedented behavior that concerns both the thermal and the photoexcited spin conversions is revealed by a combination of single-crystal and powder X-ray diffraction complemented by magnetic measurements. Interestingly, this abnormal volume change appears concomitant with the wide rotation of a phenyl ring which induces a drastic modification, though reversible, of the structural packing within the crystal. In addition, the light-induced HS state obtained through the Light-Induced Excited Spin-State Trapping shows a remarkably high relaxation temperature, namely T(LIESST), of 109 K, one of the highest so far reported. The above set of quite unusual characteristics opens up new fields of possibilities within the development of spin crossover materials.
Collapse
Affiliation(s)
- Wenbin Guo
- CNRS, Univ. Bordeaux, Bordeaux INP, ICMCB, UMR 5026, 33600, Pessac, France
| | - Nathalie Daro
- CNRS, Univ. Bordeaux, Bordeaux INP, ICMCB, UMR 5026, 33600, Pessac, France
| | - Sébastien Pillet
- Université de Lorraine, CNRS, CRM2, Nancy, 254506, Vandoeuvre-les-Nancy, France
| | - Mathieu Marchivie
- CNRS, Univ. Bordeaux, Bordeaux INP, ICMCB, UMR 5026, 33600, Pessac, France
| | - El-Eulmi Bendeif
- Université de Lorraine, CNRS, CRM2, Nancy, 254506, Vandoeuvre-les-Nancy, France
| | - Elodie Tailleur
- CNRS, Univ. Bordeaux, Bordeaux INP, ICMCB, UMR 5026, 33600, Pessac, France
| | - Kittipong Chainok
- CNRS, Univ. Bordeaux, Bordeaux INP, ICMCB, UMR 5026, 33600, Pessac, France.,Materials and Textiles Technology, Faculty of Science and Technology, Thammasat University, Khlong Luang, Pathum Thani, 12121, Thailand
| | - Dominique Denux
- CNRS, Univ. Bordeaux, Bordeaux INP, ICMCB, UMR 5026, 33600, Pessac, France
| | | | - Philippe Guionneau
- CNRS, Univ. Bordeaux, Bordeaux INP, ICMCB, UMR 5026, 33600, Pessac, France
| |
Collapse
|
36
|
Brennan AT, Zenere KA, Brand HEA, Price JR, Bhadbhade MM, Turner GF, Moggach SA, Valverde-Muñoz FJ, Real JA, Clegg JK, Kepert CJ, Neville SM. Guest Removal and External Pressure Variation Induce Spin Crossover in Halogen-Functionalized 2-D Hofmann Frameworks. Inorg Chem 2020; 59:14296-14305. [DOI: 10.1021/acs.inorgchem.0c02092] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ashley T. Brennan
- The School of Chemistry, UNSW Sydney, Sydney 2052, New South Wales, Australia
| | - Katrina A. Zenere
- The School of Chemistry, The University of Sydney, Sydney 2006, New South Wales, Australia
| | | | - Jason R. Price
- The School of Chemistry, UNSW Sydney, Sydney 2052, New South Wales, Australia
- Australian Synchrotron, ANSTO, Clayton 3800, Victoria, Australia
| | - Mohan M. Bhadbhade
- Mark Wainwright Analytical Centre, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Gemma F. Turner
- School of Molecular Sciences/Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Perth 6009, Western Australia, Australia
| | - Stephen A. Moggach
- School of Molecular Sciences/Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Perth 6009, Western Australia, Australia
| | - Francisco J. Valverde-Muñoz
- Institut the Ciencia Molecular, Department de Quimica Inorganica, Universitat de Valéncia, 46980 Paterna, Valéncia, Spain
| | - Jose A. Real
- Institut the Ciencia Molecular, Department de Quimica Inorganica, Universitat de Valéncia, 46980 Paterna, Valéncia, Spain
| | - Jack K. Clegg
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Cameron J. Kepert
- The School of Chemistry, The University of Sydney, Sydney 2006, New South Wales, Australia
| | - Suzanne M. Neville
- The School of Chemistry, UNSW Sydney, Sydney 2052, New South Wales, Australia
| |
Collapse
|
37
|
Yoshida T, Nakabayashi K, Tokoro H, Yoshikiyo M, Namai A, Imoto K, Chiba K, Ohkoshi SI. Extremely low-frequency phonon material and its temperature- and photo-induced switching effects. Chem Sci 2020; 11:8989-8998. [PMID: 34123153 PMCID: PMC8163449 DOI: 10.1039/d0sc02605k] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/05/2020] [Indexed: 11/23/2022] Open
Abstract
Atomic vibrations due to stretching or bending modes cause optical phonon modes in the solid phase. These optical phonon modes typically lie in the frequency range of 102 to 104 cm-1. How much can the frequency of optical phonon modes be lowered? Herein we show an extremely low-frequency optical phonon mode of 19 cm-1 (0.58 THz) in a Rb-intercalated two-dimensional cyanide-bridged Co-W bimetal assembly. This ultralow frequency is attributed to a millefeuille-like structure where Rb ions are very softly sandwiched between the two-dimensional metal-organic framework, and the Rb ions slowly vibrate between the layers. Furthermore, we demonstrate temperature-induced and photo-induced switching of this low-frequency phonon mode. Such an external-stimulation-controllable sub-terahertz (sub-THz) phonon crystal, which has not been reported before, should be useful in devices and absorbers for high-speed wireless communications such as beyond 5G or THz communication systems.
Collapse
Affiliation(s)
- Takaya Yoshida
- Department of Chemistry, School of Science, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Koji Nakabayashi
- Department of Chemistry, School of Science, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Hiroko Tokoro
- Department of Chemistry, School of Science, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
- Division of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba 1-1-1 Tennodai Tsukuba Ibaraki 305-8573 Japan
| | - Marie Yoshikiyo
- Department of Chemistry, School of Science, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Asuka Namai
- Department of Chemistry, School of Science, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Kenta Imoto
- Department of Chemistry, School of Science, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Kouji Chiba
- Material Science Div., MOLSIS Inc. Tokyo Daia Bldg., 1-28-38 Shinkawa, Chuo-ku Tokyo 104-0033 Japan
| | - Shin-Ichi Ohkoshi
- Department of Chemistry, School of Science, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| |
Collapse
|
38
|
Ishibashi Y, Nakai S, Masuda K, Kitagawa D, Kobatake S, Asahi T. Nanosecond laser photothermal effect-triggered amplification of photochromic reactions in diarylethene nanoparticles. Chem Commun (Camb) 2020; 56:7088-7091. [PMID: 32500124 DOI: 10.1039/d0cc00884b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Intense ns pulse laser excitation to nanoparticle colloids of a photochromic diarylethene induced an amplified cycloreversion reaction. The mechanism was explained as a 'photosynergetic response' coupled with nanoscale laser heating and the photochemical reaction in nanoparticles.
Collapse
Affiliation(s)
- Yukihide Ishibashi
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Matsuyama, Ehime 790-8577, Japan.
| | | | | | | | | | | |
Collapse
|
39
|
Jiang Y, Liu LC, Sarracini A, Krawczyk KM, Wentzell JS, Lu C, Field RL, Matar SF, Gawelda W, Müller-Werkmeister HM, Miller RJD. Direct observation of nuclear reorganization driven by ultrafast spin transitions. Nat Commun 2020; 11:1530. [PMID: 32251278 PMCID: PMC7090058 DOI: 10.1038/s41467-020-15187-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 02/11/2020] [Indexed: 11/24/2022] Open
Abstract
One of the most basic molecular photophysical processes is that of spin transitions and intersystem crossing between excited states surfaces. The change in spin states affects the spatial distribution of electron density through the spin orbit coupling interaction. The subsequent nuclear reorganization reports on the full extent of the spin induced change in electron distribution, which can be treated similarly to intramolecular charge transfer with effective reaction coordinates depicting the spin transition. Here, single-crystal [FeII(bpy)3](PF6)2, a prototypical system for spin crossover (SCO) dynamics, is studied using ultrafast electron diffraction in the single-photon excitation regime. The photoinduced SCO dynamics are resolved, revealing two distinct processes with a (450 ± 20)-fs fast component and a (2.4 ± 0.4)-ps slow component. Using principal component analysis, we uncover the key structural modes, ultrafast Fe–N bond elongations coupled with ligand motions, that define the effective reaction coordinate to fully capture the relevant molecular reorganization. Electron spin is a fundamental property of molecules, and changes in spin state affect both molecular structure and dynamics. Here, the authors resolve, by ultrafast electron diffraction, the nuclear reorganization stabilizing spin transitions in a [FeII(bpy)3](PF6)2 crystal.
Collapse
Affiliation(s)
- Yifeng Jiang
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761, Hamburg, Germany.,European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Lai Chung Liu
- Departments of Chemistry and Physics, University of Toronto, 80 St. George St., Toronto, M5S 3H6, ON, Canada.,Uncharted Software, 600-2 Berkeley St., Toronto, M5A 4J5, ON, Canada
| | - Antoine Sarracini
- Departments of Chemistry and Physics, University of Toronto, 80 St. George St., Toronto, M5S 3H6, ON, Canada
| | - Kamil M Krawczyk
- Departments of Chemistry and Physics, University of Toronto, 80 St. George St., Toronto, M5S 3H6, ON, Canada
| | - Jordan S Wentzell
- Departments of Chemistry and Physics, University of Toronto, 80 St. George St., Toronto, M5S 3H6, ON, Canada
| | - Cheng Lu
- Departments of Chemistry and Physics, University of Toronto, 80 St. George St., Toronto, M5S 3H6, ON, Canada
| | - Ryan L Field
- Departments of Chemistry and Physics, University of Toronto, 80 St. George St., Toronto, M5S 3H6, ON, Canada
| | - Samir F Matar
- Lebanese German University, LGU, Sahel-Alma, P.O. Box 206, Jounieh, Lebanon
| | - Wojciech Gawelda
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany.,Faculty of Physics, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 2, 61-614, Poznań, Poland
| | | | - R J Dwayne Miller
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761, Hamburg, Germany. .,Departments of Chemistry and Physics, University of Toronto, 80 St. George St., Toronto, M5S 3H6, ON, Canada.
| |
Collapse
|
40
|
Naumova MA, Kalinko A, Wong JWL, Abdellah M, Geng H, Domenichini E, Meng J, Gutierrez SA, Mante PA, Lin W, Zalden P, Galler A, Lima F, Kubicek K, Biednov M, Britz A, Checchia S, Kabanova V, Wulff M, Zimara J, Schwarzer D, Demeshko S, Murzin V, Gosztola D, Jarenmark M, Zhang J, Bauer M, Lawson Daku ML, Gawelda W, Khakhulin D, Bressler C, Meyer F, Zheng K, Canton SE. Revealing Hot and Long-Lived Metastable Spin States in the Photoinduced Switching of Solvated Metallogrid Complexes with Femtosecond Optical and X-ray Spectroscopies. J Phys Chem Lett 2020; 11:2133-2141. [PMID: 32069410 DOI: 10.1021/acs.jpclett.9b03883] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
An atomistic understanding of the photoinduced spin-state switching (PSS) within polynuclear systems of d4-d7 transition metal ion complexes is required for their rational integration into light-driven reactions of chemical and biological interest. However, in contrast to mononuclear systems, the multidimensional dynamics of the PSS in solvated molecular arrays have not yet been elucidated due to the expected complications associated with the connectivity between the metal centers and the strong interactions with the surroundings. In this work, the PSS in a solvated triiron(II) metallogrid complex is characterized using transient optical absorption and X-ray emission spectroscopies on the femtosecond time scale. The complementary measurements reveal the photoinduced creation of energy-rich (hot) and long-lived quintet states, whose dynamics differ critically from their mononuclear congeners. This finding opens major prospects for developing novel schemes in solution-phase spin chemistry that are driven by the dynamic PSS process in compact oligometallic arrays.
Collapse
Affiliation(s)
- Maria A Naumova
- Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, D-22607 Hamburg, Germany
| | - Aleksandr Kalinko
- Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, D-22607 Hamburg, Germany
- Department Chemie and Center for Sustainable Systems Design (CSSD), University of Paderborn, Warburger Straße 100, D-33098 Paderborn, Germany
| | - Joanne W L Wong
- Institut für Anorganische Chemie, Universität Göttingen, Tammannstraße 4, 37077 Göttingen, Germany
| | - Mohamed Abdellah
- Chemical Physics and NanoLund, Lund University, Box 124, 22100 Lund, Sweden
- Department of Chemistry, Qena Faculty of Science, South Valley University, 83523 Qena, Egypt
| | - Huifang Geng
- ELI-ALPS, ELI-HU Non-Profit Ltd., Dugonics ter 13, Szeged 6720, Hungary
| | | | - Jie Meng
- Department of Chemistry, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Sol Alvarez Gutierrez
- Department of Chemistry, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Pierre-Adrien Mante
- Chemical Physics and NanoLund, Lund University, Box 124, 22100 Lund, Sweden
- Department of Applied Physics, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Weihua Lin
- Chemical Physics and NanoLund, Lund University, Box 124, 22100 Lund, Sweden
| | - Peter Zalden
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | | | | | | | | | | | | | - Victoria Kabanova
- European Synchrotron Radiation Facility (ESRF), 38000 Grenoble Cedex 9, France
| | - Michael Wulff
- European Synchrotron Radiation Facility (ESRF), 38000 Grenoble Cedex 9, France
| | - Jennifer Zimara
- Department of Dynamics at Surfaces, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Dirk Schwarzer
- Department of Dynamics at Surfaces, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Serhiy Demeshko
- Institut für Anorganische Chemie, Universität Göttingen, Tammannstraße 4, 37077 Göttingen, Germany
| | - Vadim Murzin
- Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, D-22607 Hamburg, Germany
- Bergische Universität Wuppertal, Gaußstraße 20, 42119 Wuppertal, Germany
| | - David Gosztola
- Center for Nanoscale Materials, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, United States
| | | | - Jianxin Zhang
- State Key Laboratory of Hollow Fiber Membrane Materials and Processes, School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300387, China
| | - Matthias Bauer
- Department Chemie and Center for Sustainable Systems Design (CSSD), University of Paderborn, Warburger Straße 100, D-33098 Paderborn, Germany
| | - Max Latevi Lawson Daku
- Département de Chimie Physique, Université de Genève, Quai E. Ansermet 30, CH-1211 Genève 4, Switzerland
| | - Wojciech Gawelda
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
- Faculty of Physics, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland
| | | | - Christian Bressler
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
- The Hamburg Centre for Ultrafast Imaging, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Franc Meyer
- Institut für Anorganische Chemie, Universität Göttingen, Tammannstraße 4, 37077 Göttingen, Germany
| | - Kaibo Zheng
- Chemical Physics and NanoLund, Lund University, Box 124, 22100 Lund, Sweden
- Department of Chemistry, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Sophie E Canton
- Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, D-22607 Hamburg, Germany
- ELI-ALPS, ELI-HU Non-Profit Ltd., Dugonics ter 13, Szeged 6720, Hungary
| |
Collapse
|
41
|
Ohkoshi SI, Nakagawa K, Imoto K, Tokoro H, Shibata Y, Okamoto K, Miyamoto Y, Komine M, Yoshikiyo M, Namai A. A photoswitchable polar crystal that exhibits superionic conduction. Nat Chem 2020; 12:338-344. [DOI: 10.1038/s41557-020-0427-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 01/23/2020] [Indexed: 11/09/2022]
|
42
|
Dankhoff K, Lochenie C, Weber B. Iron(II) Spin Crossover Complexes with 4,4'-Dipyridylethyne-Crystal Structures and Spin Crossover with Hysteresis. Molecules 2020; 25:molecules25030581. [PMID: 32013168 PMCID: PMC7037042 DOI: 10.3390/molecules25030581] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/22/2020] [Accepted: 01/27/2020] [Indexed: 11/29/2022] Open
Abstract
Three new iron(II) 1D coordination polymers with cooperative spin crossover behavior showing thermal hysteresis loops were synthesized using N2O2 Schiff base-like equatorial ligands and 4,4′-dipyridylethyne as a bridging, rigid axial linker. One of those iron(II) 1D coordination polymers showed a 73 K wide hysteresis below room temperature, which, upon solvent loss, decreased to a still remarkable 30 K wide hysteresis. Single crystal X-ray structures of two iron(II) coordination polymers and T-dependent powder XRD patterns are discussed to obtain insight into the structure property relationship of those materials.
Collapse
|
43
|
Zerdane S, Cammarata M, Iasco O, Boillot ML, Collet E. Photoselective MLCT to d-d pathways for light-induced excited spin state trapping. J Chem Phys 2019; 151:171101. [DOI: 10.1063/1.5127507] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- S. Zerdane
- Univ. Rennes, CNRS, IPR (Institut de Physique de Rennes), UMR 6251, F-35000 Rennes, France
| | - M. Cammarata
- Univ. Rennes, CNRS, IPR (Institut de Physique de Rennes), UMR 6251, F-35000 Rennes, France
| | - O. Iasco
- Univ. Paris Sud, Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d’Orsay, UMR 8182, Orsay, France
| | - M.-L. Boillot
- Univ. Paris Sud, Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d’Orsay, UMR 8182, Orsay, France
| | - E. Collet
- Univ. Rennes, CNRS, IPR (Institut de Physique de Rennes), UMR 6251, F-35000 Rennes, France
| |
Collapse
|
44
|
Hochdörffer T, Chumakov AI, Wille HC, Schünemann V, Wolny JA. Vibrational properties and cooperativity of the 3D spin crossover network [Fe(pyrazine)][Pt(CN) 4]. Dalton Trans 2019; 48:15625-15634. [PMID: 31418431 DOI: 10.1039/c9dt02139f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Nuclear inelastic scattering of synchrotron radiation has been used to determine the phonon density of vibrational states (pDOS) for the high-spin and low-spin phases of the hydrated and dehydrated isomer of the spin crossover polymer [Fe(pyrazine)][Pt(CN)4]. Density functional theory calculations have been performed for molecular models of the 3D polymeric system. The models contain 15 Fe(ii)/Zn(ii) centres and allowed the assignment of the observed bands to the corresponding vibrational modes. Thermodynamic parameters like the mean force constant and the vibrational entropy but also sound velocities of the molecular lattices in both spin states have been derived from the pDOS. Modelling of the low-spin and high-spin centres in the environment or matrix of different spins has revealed the enthalpic and entropic components of the intramolecular cooperativity. In contrast to the 1D spin crossover systems (Rackwitz, et al., Phys. Chem. Chem. Phys., 2013, 15, 15450) based on the rigid 1,2,4-triazole derivatives the distortion of the low-spin iron Fe(ii) centre by the matrix of high-spin Fe(ii) (modelled as Zn(ii)) occurs only in two dimensions, defined by the [M(CN)4]2- sheets, rather than concerning all six Fe-N bonds, as in 1D systems. The enthalpic intramolecular cooperativity has been determined to be 15 kJ mol-1 which is lower than that in 1D systems (20-30 kJ mol-1). Yet, the entropic contribution stabilizes the low-spin state in a low-spin matrix, a behaviour which is opposite to what was found for the 1D systems.
Collapse
Affiliation(s)
- Tim Hochdörffer
- Department of Physics, Technische Universität Kaiserslautern, Erwin Schrödinger Str. 46, 67663 Kaiserslautern, Germany.
| | | | | | - Volker Schünemann
- Department of Physics, Technische Universität Kaiserslautern, Erwin Schrödinger Str. 46, 67663 Kaiserslautern, Germany.
| | - Juliusz A Wolny
- Department of Physics, Technische Universität Kaiserslautern, Erwin Schrödinger Str. 46, 67663 Kaiserslautern, Germany.
| |
Collapse
|
45
|
Ridier K, Bas AC, Shalabaeva V, Nicolazzi W, Salmon L, Molnár G, Bousseksou A, Lorenc M, Bertoni R, Collet E, Cailleau H. Finite Size Effects on the Switching Dynamics of Spin-Crossover Thin Films Photoexcited by a Femtosecond Laser Pulse. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1901361. [PMID: 31034107 DOI: 10.1002/adma.201901361] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/10/2019] [Indexed: 06/09/2023]
Abstract
Using ultrafast optical absorption spectroscopy, the room-temperature spin-state switching dynamics induced by a femtosecond laser pulse in high-quality thin films of the molecular spin-crossover (SCO) complex [Fe(HB(tz)3 )2 ] (tz = 1,2,4-triazol-1-yl) are studied. These measurements reveal that the early, sub-picosecond, low-spin to high-spin photoswitching event, with linear response to the laser pulse energy, can be followed under certain conditions by a second switching process occurring on a timescale of tens of nanoseconds, enabling nonlinear amplification. This out-of-equilibrium dynamics is discussed in light of the characteristic timescales associated with the different switching mechanisms, i.e., the electronic and structural rearrangements of photoexcited molecules, the propagation of strain waves at the material scale, and the thermal activation above the molecular energy barrier. Importantly, the additional, nonlinear switching step appears to be completely suppressed in the thinnest (50 nm) film due to the efficient heat transfer to the substrate, allowing the system to retrieve the thermal equilibrium state on the 100 ns timescale. These results provide a first milestone toward the assessment of the physical parameters that drive the photoresponse of SCO thin films, opening up appealing perspectives for their use as high-frequency all-optical switches working at room temperature.
Collapse
Affiliation(s)
- Karl Ridier
- Laboratoire de Chimie de Coordination, CNRS & Université de Toulouse, 31077, Toulouse, France
| | - Alin-Ciprian Bas
- Laboratoire de Chimie de Coordination, CNRS & Université de Toulouse, 31077, Toulouse, France
| | - Victoria Shalabaeva
- Laboratoire de Chimie de Coordination, CNRS & Université de Toulouse, 31077, Toulouse, France
| | - William Nicolazzi
- Laboratoire de Chimie de Coordination, CNRS & Université de Toulouse, 31077, Toulouse, France
| | - Lionel Salmon
- Laboratoire de Chimie de Coordination, CNRS & Université de Toulouse, 31077, Toulouse, France
| | - Gábor Molnár
- Laboratoire de Chimie de Coordination, CNRS & Université de Toulouse, 31077, Toulouse, France
| | - Azzedine Bousseksou
- Laboratoire de Chimie de Coordination, CNRS & Université de Toulouse, 31077, Toulouse, France
| | - Maciej Lorenc
- Univ. Rennes, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251, F-35000, Rennes, France
| | - Roman Bertoni
- Univ. Rennes, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251, F-35000, Rennes, France
| | - Eric Collet
- Univ. Rennes, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251, F-35000, Rennes, France
| | - Hervé Cailleau
- Univ. Rennes, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251, F-35000, Rennes, France
| |
Collapse
|
46
|
Azzolina G, Collet E, Mariette C, Cammarata M, Trzop E, Sander M, Levantino M, Nakagawa K, Tokoro H, Ohkoshi SI, Bertoni R. Single Laser Shot Photoinduced Phase Transition of Rubidium Manganese Hexacyanoferrate Investigated by X-ray Diffraction. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201801478] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Giovanni Azzolina
- IPR (Institut de Physique de Rennes) - UMR 6251; Univ Rennes, CNRS; 35000 Rennes France
| | - Eric Collet
- IPR (Institut de Physique de Rennes) - UMR 6251; Univ Rennes, CNRS; 35000 Rennes France
| | - Céline Mariette
- IPR (Institut de Physique de Rennes) - UMR 6251; Univ Rennes, CNRS; 35000 Rennes France
| | - Marco Cammarata
- IPR (Institut de Physique de Rennes) - UMR 6251; Univ Rennes, CNRS; 35000 Rennes France
| | - Elzbieta Trzop
- IPR (Institut de Physique de Rennes) - UMR 6251; Univ Rennes, CNRS; 35000 Rennes France
| | - Mathias Sander
- European Synchrotron Radiation Facility; 38000 Grenoble France
| | | | - Kosuke Nakagawa
- Department of Chemistry; School of Science; The University of Tokyo; 7-3-1 Hongo, Bunkyo-ku 113-0033 Tokyo Japan
| | - Hiroko Tokoro
- Division of Materials Science; Faculty of Pure and Applied Sciences; Univ Tsukuba; 1-1-1 Tennodai, Tsukuba 305-8577 Ibaraki Japan
| | - Shin-ichi Ohkoshi
- Department of Chemistry; School of Science; The University of Tokyo; 7-3-1 Hongo, Bunkyo-ku 113-0033 Tokyo Japan
| | - Roman Bertoni
- IPR (Institut de Physique de Rennes) - UMR 6251; Univ Rennes, CNRS; 35000 Rennes France
| |
Collapse
|
47
|
Książek M, Weselski M, Ilczyszyn M, Kusz J, Bronisz R. Sliding Polymeric Layers and Anion Displacement Coupled with Spin Crossover in Two-Dimensional Networks of [Fe(hbtz) 2 (CH 3 CN) 2 ](BF 4 ) 2. Chemistry 2019; 25:2250-2261. [PMID: 30637819 DOI: 10.1002/chem.201804721] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 11/14/2018] [Indexed: 11/08/2022]
Abstract
The abrupt high spin (HS)→low spin (LS) transition (T↓ 1/2 =136 K) in [Fe(hbtz)2 (CH3 CN)2 ](BF4 )2 (hbtz=1,6-di(tetrazol-2-yl)hexane) is finished at 100 K and further thermal treatment influences the spin crossover. Subsequent heating involves a change of the spin state in the same way (T↑ 1/2 =136 K) on cooling. In contrast, cooling below 100 K triggers different behavior and T↑ 1/2 is shifted to 170 K. The extraordinary structural changes that occurred below 100 K are responsible for the observed diversity of properties. A unique feature of the low-temperature phase is the rebuilding of the anion network expressed by a shift of anions inside the polymeric layer at a distance of 1.2 Å as well as the relative shift of neighboring layers at over 4 Å. These structural alterations, connected with a phase transition, become the origin of the strain, which in most cases causes crystal cleaving. In a sample composed from crystals crushed as a result of the phase transition or as a result of mechanical crumbling, the hysteresis loop vanishes; however, annealing the sample allows to its partial restoration. A replacement of acetonitrile by other nitriles leads to preservation of the polymeric structure and spin crossover, but no phase transition follows.
Collapse
Affiliation(s)
- Maria Książek
- Institute of Physics, University of Silesia, 40-007, Katowice, Poland
| | - Marek Weselski
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383, Wrocław, Poland
| | - Maria Ilczyszyn
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383, Wrocław, Poland
| | - Joachim Kusz
- Institute of Physics, University of Silesia, 40-007, Katowice, Poland
| | - Robert Bronisz
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383, Wrocław, Poland
| |
Collapse
|
48
|
Ohkoshi SI, Imoto K, Namai A, Yoshikiyo M, Miyashita S, Qiu H, Kimoto S, Kato K, Nakajima M. Rapid Faraday Rotation on ε-Iron Oxide Magnetic Nanoparticles by Visible and Terahertz Pulsed Light. J Am Chem Soc 2019; 141:1775-1780. [PMID: 30645116 DOI: 10.1021/jacs.8b12910] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Light- or electromagnetic wave-responsive magnetism is an attractive issue in spin chemistry and optical materials science. Herein we show the magnetization reversal induced by visible-light pulsed laser and the ultrafast dynamic magnetooptical effect caused by terahertz (THz) pulsed laser irradiation onto chemically synthesized magnetic films based on gallium-titanium-cobalt-substituted ε-Fe2O3 (GTC-ε-Fe2O3) and ε-Fe2O3 nanoparticles. Visible-light pulsed laser irradiation switches the sign of the Faraday effect in GTC-ε-Fe2O3 films. On the other hand, irradiating the ε-Fe2O3 film with pulsed THz light induces an ultrafast Faraday rotation in an extremely short time of 400 fs. The time evolution dynamics of these ultrafast magnetooptical effects are theoretically demonstrated by stochastic Landau-Lifshitz-Gilbert calculations of a nanoparticle model that considers all motions of the individual spins. These ε-iron oxide magnetic nanomaterials are expected to contribute to high-density magnetic memory media or high-speed operation circuit magnetic devices.
Collapse
Affiliation(s)
- Shin-Ichi Ohkoshi
- Department of Chemistry, School of Science , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku , Tokyo 113-0033 , Japan
| | - Kenta Imoto
- Department of Chemistry, School of Science , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku , Tokyo 113-0033 , Japan
| | - Asuka Namai
- Department of Chemistry, School of Science , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku , Tokyo 113-0033 , Japan
| | - Marie Yoshikiyo
- Department of Chemistry, School of Science , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku , Tokyo 113-0033 , Japan
| | - Seiji Miyashita
- Department of Physics, School of Science , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku , Tokyo 113-0033 , Japan
| | - Hongsong Qiu
- Institute of Laser Engineering , Osaka University , 2-6 Yamadaoka , Suita , Osaka 565-0871 , Japan
| | - Shodai Kimoto
- Institute of Laser Engineering , Osaka University , 2-6 Yamadaoka , Suita , Osaka 565-0871 , Japan
| | - Kosaku Kato
- Institute of Laser Engineering , Osaka University , 2-6 Yamadaoka , Suita , Osaka 565-0871 , Japan
| | - Makoto Nakajima
- Institute of Laser Engineering , Osaka University , 2-6 Yamadaoka , Suita , Osaka 565-0871 , Japan
| |
Collapse
|
49
|
Bertoni R, Collet E, Cailleau H, Boillot ML, Tissot A, Laisney J, Enachescu C, Lorenc M. Temperature dependence of the cooperative out-of-equilibrium elastic switching in a spin-crossover material. Phys Chem Chem Phys 2019; 21:6606-6612. [DOI: 10.1039/c8cp07074a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
We explore the key parameters that influence the efficiency of the cooperative low-spin to high-spin conversion through long range elastic intermolecular interactions during the so-called elastic step, triggered by instantaneous photo-induced conversion.
Collapse
Affiliation(s)
- Roman Bertoni
- Univ Rennes
- CNRS, IPR (Institut de Physique de Rennes) – UMR 6251
- F-35000 Rennes
- France
| | - Eric Collet
- Univ Rennes
- CNRS, IPR (Institut de Physique de Rennes) – UMR 6251
- F-35000 Rennes
- France
| | - Hervé Cailleau
- Univ Rennes
- CNRS, IPR (Institut de Physique de Rennes) – UMR 6251
- F-35000 Rennes
- France
| | - Marie-Laure Boillot
- Institut de Chimie Moléculaire et des Matériaux d’Orsay
- Univ. Paris Sud
- Université Paris-Saclay
- CNRS
- 91405 Orsay
| | - Antoine Tissot
- Institut de Chimie Moléculaire et des Matériaux d’Orsay
- Univ. Paris Sud
- Université Paris-Saclay
- CNRS
- 91405 Orsay
| | - Jérôme Laisney
- Institut de Chimie Moléculaire et des Matériaux d’Orsay
- Univ. Paris Sud
- Université Paris-Saclay
- CNRS
- 91405 Orsay
| | | | - Maciej Lorenc
- Univ Rennes
- CNRS, IPR (Institut de Physique de Rennes) – UMR 6251
- F-35000 Rennes
- France
| |
Collapse
|
50
|
|