1
|
Gao W, Ding F, Wu J, Ma W, Wang C, Man Z, Cai Z, Guo J. Modulation of a Loop Region in the Substrate Binding Pocket Affects the Degree of Polymerization of Bacillus subtilis Chitosanase Products. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4358-4366. [PMID: 38349745 DOI: 10.1021/acs.jafc.3c09313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
The hydrolytic products of chitosanase from Streptomyces avermitilis (SaCsn46A) were found to be aminoglucose and chitobiose, whereas those of chitosanase from Bacillus subtilis (BsCsn46A) were chitobiose and chitotriose. Therefore, the sequence alignment between SaCsn46A and BsCsn46A was conducted, revealing that the structure of BsCsn46A possesses an extra loop region (194N-200T) at the substrate binding pocket. To clarify the impact of this loop on hydrolytic properties, three mutants, SC, TJN, and TJA, were constructed. Eventually, the experimental results indicated that SC changed the ratio of chitobiose to chitotriose hydrolyzed by chitosanase from 1:1 into 2:3, while TJA resulted in a ratio of 15:7. This experiment combined molecular research to unveil a crucial loop within the substrate binding pocket of chitosanase. It also provides an effective strategy for mutagenesis and a foundation for altering hydrolysate composition and further applications in engineering chitosanase.
Collapse
Affiliation(s)
- Wenjun Gao
- Laboratory of Applied Microbiology, School of Pharmacy, School of Biological and Food Engineering, Changzhou University, Changzhou 213164, China
| | - Fei Ding
- Laboratory of Applied Microbiology, School of Pharmacy, School of Biological and Food Engineering, Changzhou University, Changzhou 213164, China
| | - Jie Wu
- Laboratory of Applied Microbiology, School of Pharmacy, School of Biological and Food Engineering, Changzhou University, Changzhou 213164, China
| | - Weiqi Ma
- Laboratory of Applied Microbiology, School of Pharmacy, School of Biological and Food Engineering, Changzhou University, Changzhou 213164, China
| | - Chao Wang
- Laboratory of Applied Microbiology, School of Pharmacy, School of Biological and Food Engineering, Changzhou University, Changzhou 213164, China
| | - Zaiwei Man
- Laboratory of Applied Microbiology, School of Pharmacy, School of Biological and Food Engineering, Changzhou University, Changzhou 213164, China
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China
| | - Zhiqiang Cai
- Laboratory of Applied Microbiology, School of Pharmacy, School of Biological and Food Engineering, Changzhou University, Changzhou 213164, China
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China
| | - Jing Guo
- Laboratory of Applied Microbiology, School of Pharmacy, School of Biological and Food Engineering, Changzhou University, Changzhou 213164, China
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China
| |
Collapse
|
2
|
Torrens-Fontanals M, Tourlas P, Doerr S, De Fabritiis G. PlayMolecule Viewer: A Toolkit for the Visualization of Molecules and Other Data. J Chem Inf Model 2024; 64:584-589. [PMID: 38266194 DOI: 10.1021/acs.jcim.3c01776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
PlayMolecule Viewer is a web-based data visualization toolkit designed to streamline the exploration of data resulting from structural bioinformatics or computer-aided drug design efforts. By harnessing state-of-the-art web technologies such as WebAssembly, PlayMolecule Viewer integrates powerful Python libraries directly within the browser environment, which enhances its capabilities to manage multiple types of molecular data. With its intuitive interface, it allows users to easily upload, visualize, select, and manipulate molecular structures and associated data. The toolkit supports a wide range of common structural file formats and offers a variety of molecular representations to cater to different visualization needs. PlayMolecule Viewer is freely accessible at open.playmolecule.org, ensuring accessibility and availability to the scientific community and beyond.
Collapse
Affiliation(s)
| | | | - Stefan Doerr
- Acellera Labs, C Dr Trueta 183, 08005 Barcelona, Spain
| | - Gianni De Fabritiis
- Computational Science Laboratory, Universitat Pompeu Fabra, Barcelona Biomedical Research Park (PRBB), C Dr. Aiguader 88, 08003 Barcelona, Spain
- Acellera, Devonshire House, 582 Honeypot Lane, HA7 1JS Stanmore Middlesex, United Kingdom
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluis Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
3
|
Guo J, Gao W, Zhang X, Pan W, Zhang X, Man Z, Cai Z. Enhancing the thermostability and catalytic activity of Bacillus subtilis chitosanase by saturation mutagenesis of Lys242. Biotechnol J 2024; 19:e2300010. [PMID: 37705423 DOI: 10.1002/biot.202300010] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 09/01/2023] [Accepted: 09/08/2023] [Indexed: 09/15/2023]
Abstract
Catalysis activity and thermostability are some of the fundamental characteristic of enzymes, which are of great significance to their industrial applications. Bacillus subtilis chitosanase BsCsn46A is a kind of enzyme with good catalytic activity and stability, which can hydrolyze chitosan to produce chitobiose and chitotriose. In order to further improve the catalytic activity and stability of BsCsn46A, saturation mutagenesis of the C-terminal K242 of BsCsn46A was performed. The results showed that the six mutants (K242A, K242D, K242E, K242F, K242P, and K242T) showed increased catalytic activity on chitosan. The catalytic activity of K242P increased from 12971 ± 597 U mg-1 of wild type to 17820 ± 344 U mg-1 , and the thermostability of K242P increased by 2.27%. In order to elucidate the reason for the change of enzymatic properties, hydrogen network, molecular docking, and molecular dynamics simulation were carried out. The hydrogen network results showed that all the mutants lose their interaction with Asp6 at 242 site, thereby increasing the flexibility of Glu19 at the junction sites of α1 and loop1. Molecular dynamics results showed that the RMSD of K242P was lower at both 313 and 323 K than that of other mutants, which supported that K242P had better thermostability. The catalytic activity of mutant K242P reached 17820.27 U mg-1 , the highest level reported so far, which could be a robust candidate for the industrial application of chitooligosaccharide (COS) production.
Collapse
Affiliation(s)
- Jing Guo
- Laboratory of Applied Microbiology, School of Pharmaceutical, Changzhou University, Changzhou, China
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, China
| | - Wenjun Gao
- Laboratory of Applied Microbiology, School of Pharmaceutical, Changzhou University, Changzhou, China
| | - Xuan Zhang
- Laboratory of Applied Microbiology, School of Pharmaceutical, Changzhou University, Changzhou, China
| | - Wenxin Pan
- Laboratory of Applied Microbiology, School of Pharmaceutical, Changzhou University, Changzhou, China
| | - Xin Zhang
- Laboratory of Applied Microbiology, School of Pharmaceutical, Changzhou University, Changzhou, China
| | - Zaiwei Man
- Laboratory of Applied Microbiology, School of Pharmaceutical, Changzhou University, Changzhou, China
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, China
| | - Zhiqiang Cai
- Laboratory of Applied Microbiology, School of Pharmaceutical, Changzhou University, Changzhou, China
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, China
| |
Collapse
|
4
|
Midlik A, Nair S, Anyango S, Deshpande M, Sehnal D, Varadi M, Velankar S. PDBImages: a command-line tool for automated macromolecular structure visualization. Bioinformatics 2023; 39:btad744. [PMID: 38085238 PMCID: PMC10746859 DOI: 10.1093/bioinformatics/btad744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/20/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
SUMMARY PDBImages is an innovative, open-source Node.js package that harnesses the power of the popular macromolecule structure visualization software Mol*. Designed for use by the scientific community, PDBImages provides a means to generate high-quality images for PDB and AlphaFold DB models. Its unique ability to render and save images directly to files in a browserless mode sets it apart, offering users a streamlined, automated process for macromolecular structure visualization. Here, we detail the implementation of PDBImages, enumerating its diverse image types, and elaborating on its user-friendly setup. This powerful tool opens a new gateway for researchers to visualize, analyse, and share their work, fostering a deeper understanding of bioinformatics. AVAILABILITY AND IMPLEMENTATION PDBImages is available as an npm package from https://www.npmjs.com/package/pdb-images. The source code is available from https://github.com/PDBeurope/pdb-images.
Collapse
Affiliation(s)
- Adam Midlik
- Protein Data Bank in Europe, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, United Kingdom
| | - Sreenath Nair
- Protein Data Bank in Europe, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, United Kingdom
| | - Stephen Anyango
- Protein Data Bank in Europe, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, United Kingdom
| | - Mandar Deshpande
- Protein Data Bank in Europe, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, United Kingdom
| | - David Sehnal
- Biological Data Management and Analysis Core Facility, Centre for Structural Biology, CEITEC—Central European Institute of Technology, Masaryk University, Brno 62500, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno 62500, Czech Republic
| | - Mihaly Varadi
- Protein Data Bank in Europe, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, United Kingdom
| | - Sameer Velankar
- Protein Data Bank in Europe, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, United Kingdom
| |
Collapse
|
5
|
Guo H, Wang N, Ding T, Zheng B, Guo L, Huang C, Zhang W, Sun L, Ma X, Huo YX. A tRNAModification-based strategy for Identifying amiNo acid Overproducers (AMINO). Metab Eng 2023; 78:11-25. [PMID: 37149082 DOI: 10.1016/j.ymben.2023.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/05/2023] [Accepted: 04/23/2023] [Indexed: 05/08/2023]
Abstract
Amino acids have a multi-billion-dollar market with rising demand, prompting the development of high-performance microbial factories. However, a general screening strategy applicable to all proteinogenic and non-proteinogenic amino acids is still lacking. Modification of the critical structure of tRNA could decrease the aminoacylation level of tRNA catalyzed by aminoacyl-tRNA synthetases. Involved in a two-substrate sequential reaction, amino acids with increased concentration could elevate the reduced aminoacylation rate caused by specific tRNA modification. Here, we developed a selection system for overproducers of specific amino acids using corresponding engineered tRNAs and marker genes. As a proof-of-concept, overproducers of five amino acids such as L-tryptophan were screened out by growth-based and/or fluorescence-activated cell sorting (FACS)-based screening from random mutation libraries of Escherichia coli and Corynebacterium glutamicum, respectively. This study provided a universal strategy that could be applied to screen overproducers of proteinogenic and non-proteinogenic amino acids in amber-stop-codon-recoded or non-recoded hosts.
Collapse
Affiliation(s)
- Hao Guo
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Beijing, 100081, PR China; Beijing Institute of Technology (Tangshan) Translational Research Center, Tangshan Port Economic Development Zone, Tangshan, 063611, PR China
| | - Ning Wang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, PR China
| | - Tingting Ding
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Beijing, 100081, PR China
| | - Bo Zheng
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Beijing, 100081, PR China
| | - Liwei Guo
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Beijing, 100081, PR China
| | - Chaoyong Huang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Beijing, 100081, PR China
| | - Wuyuan Zhang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Beijing, 100081, PR China
| | - Lichao Sun
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Beijing, 100081, PR China
| | - Xiaoyan Ma
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Beijing, 100081, PR China; Beijing Institute of Technology (Tangshan) Translational Research Center, Tangshan Port Economic Development Zone, Tangshan, 063611, PR China.
| | - Yi-Xin Huo
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Beijing, 100081, PR China; Beijing Institute of Technology (Tangshan) Translational Research Center, Tangshan Port Economic Development Zone, Tangshan, 063611, PR China.
| |
Collapse
|
6
|
Garrison LA, Goodsell DS, Bruckner S, Campbell B, Samsel F. Changing Aesthetics in Biomolecular Graphics. IEEE COMPUTER GRAPHICS AND APPLICATIONS 2023; 43:94-101. [PMID: 37195829 PMCID: PMC10288201 DOI: 10.1109/mcg.2023.3250680] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Aesthetics for the visualization of biomolecular structures have evolved over the years according to technological advances, user needs, and modes of dissemination. In this article, we explore the goals, challenges, and solutions that have shaped the current landscape of biomolecular imagery from the overlapping perspectives of computer science, structural biology, and biomedical illustration. We discuss changing approaches to rendering, color, human-computer interface, and narrative in the development and presentation of biomolecular graphics. With this historical perspective on the evolving styles and trends in each of these areas, we identify opportunities and challenges for future aesthetics in biomolecular graphics that encourage continued collaboration from multiple intersecting fields.
Collapse
|
7
|
Guo J, Gao W, Wang J, Yao Y, Man Z, Cai Z, Qing Q. Thr22 plays an important role in the efficient catalytic process of Bacillus subtilis chitosanase BsCsn46A. Enzyme Microb Technol 2023; 167:110242. [PMID: 37099965 DOI: 10.1016/j.enzmictec.2023.110242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/28/2023]
Abstract
Threonine 22 (Thr22) located in catalytic center near the catalytic amino acid Glu19 was non-conserved in Bacillus species chitosanase. In order to study the function of Thr22, saturation mutagenesis was carried out towards P121N, a mutant previously constructed in our laboratory. Compared with P121N, which was designated as the wild type (WT) in this research, the specific enzyme activity of all mutants was decreased, and that of the T22P mutant was decreased by 91.6 %. Among these mutants, the optimum temperature decreased from 55 °C to 50 °C for 10 mutants and 45 °C for 4 mutants, respectively. The optimum temperature of mutant T22P was 40 °C. In order to analyze the reasons for the changes in enzymatic properties of the mutants, molecular docking analysis of WT and its mutants with substrate were performed. The hydrogen bond analysis around position 22 also conducted. The substitution of Thr22 was found to significantly affect the enzyme-substrate complex interaction. In addition, the hydrogen network near position 22 has undergone obvious changes. These changes may be the main reasons for the changes in enzymatic properties of the mutants. Altogether, this study is valuable for the future research on Bacillus chitosanase.
Collapse
Affiliation(s)
- Jing Guo
- Laboratory of Applied Microbiology, School of Biological and Food Engineering, Changzhou University, China; Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, China
| | - Wenjun Gao
- Laboratory of Applied Microbiology, School of Biological and Food Engineering, Changzhou University, China
| | - Jing Wang
- Laboratory of Applied Microbiology, School of Biological and Food Engineering, Changzhou University, China
| | - Yao Yao
- Laboratory of Applied Microbiology, School of Biological and Food Engineering, Changzhou University, China
| | - Zaiwei Man
- Laboratory of Applied Microbiology, School of Biological and Food Engineering, Changzhou University, China; Zao zhuang Key Laboraory of Corn Bioengineering, Zaozhuang Science and Technology Collaborative Innovation Center of Enzyme, Shandong Hengren Gongmao Co. Ltd, Zaozhuang, China.
| | - Zhiqiang Cai
- Laboratory of Applied Microbiology, School of Biological and Food Engineering, Changzhou University, China; Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, China
| | - Qing Qing
- Laboratory of Applied Microbiology, School of Biological and Food Engineering, Changzhou University, China; Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, China
| |
Collapse
|
8
|
Jing G, Wenjun G, Yi W, Kepan X, Wen L, Tingting H, Zhiqiang C. Enhancing Enzyme Activity and Thermostability of Bacillus amyloliquefaciens Chitosanase BaCsn46A Through Saturation Mutagenesis at Ser196. Curr Microbiol 2023; 80:180. [PMID: 37046080 DOI: 10.1007/s00284-023-03281-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 03/21/2023] [Indexed: 04/14/2023]
Abstract
Chitosanase plays an important role in chitooligosaccharides (COS) production. We found that the chitosanase (BaCsn46A) of Bacillus amyloliquefacien was a good candidate for chitosan hydrolysis of COS. In order to further improve the enzyme properties of BaCsn46A, the S196 located near the active center was found to be a critical site impacts on enzyme properties by sequence alignment analysis. Herein, saturation mutation was carried out to study role of 196 site on BaCsn46A catalytic function. Compared with WT, the specific enzyme activity of S196A increased by 118.79%, and the thermostability of S196A was much higher than WT. In addition, we found that the enzyme activity of S196P was 2.41% of that of WT, indicating that the type of amino acid in 196 site could significant affect the catalytic activity and thermostability of BaCsn46A. After molecular docking analysis we found that the increase in hydrogen bonds and decrease in unfavorable bonds interacting with the substrate were the main reason for the change of enzyme properties which is valuable for future studies on Bacillus species chitosanase.
Collapse
Affiliation(s)
- Guo Jing
- Laboratory of Applied Microbiology, School of Biological and Food Engineering, Changzhou University, Changzhou Jiangsu, 213164, China
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center and Laboratory of Applied Microbiology, School of Pharmaceutical, Changzhou University, Changzhou, 213164, Jiangsu, China
| | - Gao Wenjun
- Laboratory of Applied Microbiology, School of Biological and Food Engineering, Changzhou University, Changzhou Jiangsu, 213164, China
| | - Wang Yi
- Laboratory of Applied Microbiology, School of Biological and Food Engineering, Changzhou University, Changzhou Jiangsu, 213164, China
| | - Xu Kepan
- Laboratory of Applied Microbiology, School of Biological and Food Engineering, Changzhou University, Changzhou Jiangsu, 213164, China
| | - Luo Wen
- Laboratory of Applied Microbiology, School of Biological and Food Engineering, Changzhou University, Changzhou Jiangsu, 213164, China
| | - Hong Tingting
- Laboratory of Applied Microbiology, School of Biological and Food Engineering, Changzhou University, Changzhou Jiangsu, 213164, China
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center and Laboratory of Applied Microbiology, School of Pharmaceutical, Changzhou University, Changzhou, 213164, Jiangsu, China
| | - Cai Zhiqiang
- Laboratory of Applied Microbiology, School of Biological and Food Engineering, Changzhou University, Changzhou Jiangsu, 213164, China.
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center and Laboratory of Applied Microbiology, School of Pharmaceutical, Changzhou University, Changzhou, 213164, Jiangsu, China.
| |
Collapse
|
9
|
Kim JJ. Capturing 3D macromolecule structure in 2D images. Trends Biochem Sci 2023; 48:305-306. [PMID: 36804039 DOI: 10.1016/j.tibs.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 02/18/2023]
Affiliation(s)
- Jeong Joo Kim
- Department of Therapeutic Discovery, Amgen Research, Amgen Inc., South San Francisco, CA 94080, USA.
| |
Collapse
|
10
|
Corey RA, Baaden M, Chavent M. A brief history of visualizing membrane systems in molecular dynamics simulations. FRONTIERS IN BIOINFORMATICS 2023; 3:1149744. [PMID: 37213533 PMCID: PMC10196259 DOI: 10.3389/fbinf.2023.1149744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 03/13/2023] [Indexed: 05/23/2023] Open
Abstract
Understanding lipid dynamics and function, from the level of single, isolated molecules to large assemblies, is more than ever an intensive area of research. The interactions of lipids with other molecules, particularly membrane proteins, are now extensively studied. With advances in the development of force fields for molecular dynamics simulations (MD) and increases in computational resources, the creation of realistic and complex membrane systems is now common. In this perspective, we will review four decades of the history of molecular dynamics simulations applied to membranes and lipids through the prism of molecular graphics.
Collapse
Affiliation(s)
- R. A. Corey
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - M. Baaden
- Centre Nationale de la Recherche Scientifique, Laboratoire de Biochimie Théorique, Université Paris Cité, Paris, France
| | - M. Chavent
- Institut de Pharmacologie et Biologie Structurale, CNRS, Université de Toulouse, Toulouse, France
- *Correspondence: M. Chavent,
| |
Collapse
|
11
|
Lin L, Xia Y, Wen H, Lu W, Li Z, Xu H, Zhou J. Green and continuous microflow synthesis of fluorescent carbon quantum dots for bio‐imaging application. AIChE J 2022. [DOI: 10.1002/aic.17901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Liangliang Lin
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering Jiangnan University Wuxi China
| | - Yuan Xia
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering Jiangnan University Wuxi China
| | - Hongyu Wen
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering Jiangnan University Wuxi China
| | - Wentong Lu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering Jiangnan University Wuxi China
| | - Ziyang Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering Jiangnan University Wuxi China
| | - Hujun Xu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering Jiangnan University Wuxi China
| | - Juan Zhou
- School of Life Sciences and Health Engineering Jiangnan University Wuxi China
| |
Collapse
|
12
|
Kumar VH, Tamminana R. Copper‐catalyzed multicomponent green reaction approach: Synthesis of dihydropyrano [2, 3‐c] pyrazoles and evaluation of their anti‐cancer activity. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Venkata Hema Kumar
- Department of Chemistry GITAM Deemed to be University, NH‐207, Doddaballapur Taluk Bengaluru Rural Karnataka Inida
| | - Ramana Tamminana
- Department of Chemistry GITAM Deemed to be University, NH‐207, Doddaballapur Taluk Bengaluru Rural Karnataka Inida
| |
Collapse
|
13
|
Werner E. Strategies for the Production of Molecular Animations. FRONTIERS IN BIOINFORMATICS 2022; 2:793914. [PMID: 36304328 PMCID: PMC9580893 DOI: 10.3389/fbinf.2022.793914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 04/14/2022] [Indexed: 09/06/2024] Open
Abstract
Molecular animations play an increasing role in scientific visualisation and science communication. They engage viewers through non-fictional, documentary type storytelling and aim at advancing the audience. Every scene of a molecular animation is to be designed to secure clarity. To achieve this, knowledge on design principles from various design fields is essential. The relevant principles help to draw attention, guide the eye, establish relationships, convey dynamics and/or trigger a reaction. The tools of general graphic design are used to compose a signature frame, those of cinematic storytelling and user interface design to choreograph the relative movement of characters and cameras. Clarity in a scientific visualisation is reached by simplification and abstraction where the choice of the adequate representation is of great importance. A large set of illustration styles is available to chose the appropriate detail level but they are constrained by the availability of experimental data. For a high-quality molecular animation, data from different sources can be integrated, even filling the structural gaps to show a complete picture of the native biological situation. For maintaining scientific authenticity it is good practice to mark use of artistic licence which ensures transparency and accountability. The design of motion requires knowledge from molecule kinetics and kinematics. With biological macromolecules, four types of motion are most relevant: thermal motion, small and large conformational changes and Brownian motion. The principles of dynamic realism should be respected as well as the circumstances given in the crowded cellular environment. Ultimately, consistent complexity is proposed as overarching principle for the production of molecular animations and should be achieved between communication objective and abstraction/simplification, audience expertise and scientific complexity, experiment and representation, characters and environment as well as structure and motion representation.
Collapse
|
14
|
Wang T, Fan L, Feng S, Ding X, An X, Chen J, Wang M, Zhai X, Li Y. Network pharmacology of iridoid glycosides from Eucommia ulmoides Oliver against osteoporosis. Sci Rep 2022; 12:7430. [PMID: 35523810 PMCID: PMC9076851 DOI: 10.1038/s41598-022-10769-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 04/13/2022] [Indexed: 12/12/2022] Open
Abstract
Eucommia ulmoides Oliver is one of the commonly used traditional Chinese medicines for the treatment of osteoporosis, and iridoid glycosides are considered to be its active ingredients against osteoporosis. This study aims to clarify the chemical components and molecular mechanism of iridoid glycosides of Eucommia ulmoides Oliver in the treatment of osteoporosis by integrating network pharmacology and molecular simulations. The active iridoid glycosides and their potential targets were retrieved from text mining as well as Swiss Target Prediction, TargetNet database, and STITCH databases. At the same time, DisGeNET, GeneCards, and Therapeutic Target Database were used to search for the targets associated with osteoporosis. A protein–protein interaction network was built to analyze the interactions between targets. Then, DAVID bioinformatics resources and R 3.6.3 project were used to carry out Gene Ontology enrichment analysis and Kyoto Encyclopedia of Genes and Genomes pathway analysis. Moreover, interactions between active compounds and potential targets were investigated through molecular docking, molecular dynamic simulation, and binding free energy analysis. The results showed that a total of 12 iridoid glycosides were identified as the active iridoid glycosides of Eucommia ulmoides Oliver in the treatment of osteoporosis. Among them, aucubin, reptoside, geniposide and ajugoside were the core compounds. The enrichment analysis suggested iridoid glycosides of Eucommia ulmoides Oliver prevented osteoporosis mainly through PI3K-Akt signaling pathway, MAPK signaling pathway and Estrogen signaling pathway. Molecular docking results indicated that the 12 iridoid glycosides had good binding ability with 25 hub target proteins, which played a critical role in the treatment of osteoporosis. Molecular dynamic and molecular mechanics Poisson–Boltzmann surface area results revealed these compounds showed stable binding to the active sites of the target proteins during the simulations. In conclusion, our research demonstrated that iridoid glycosides of Eucommia ulmoides Oliver in the treatment of osteoporosis involved a multi-component, multi-target and multi-pathway mechanism, which provided new suggestions and theoretical support for treating osteoporosis.
Collapse
Affiliation(s)
- Ting Wang
- Biomedicine Key Laboratory of Shaanxi Province, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Liming Fan
- Biomedicine Key Laboratory of Shaanxi Province, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Shuai Feng
- Biomedicine Key Laboratory of Shaanxi Province, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Xinli Ding
- Biomedicine Key Laboratory of Shaanxi Province, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Xinxin An
- Biomedicine Key Laboratory of Shaanxi Province, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Jiahuan Chen
- Biomedicine Key Laboratory of Shaanxi Province, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Minjuan Wang
- Physical and Chemical Laboratory, Shaanxi Provincial Center for Disease Control and Prevention, Xi'an, 710054, China
| | - Xifeng Zhai
- School of Pharmaceutical Sciences, Xi'an Medical University, Xi'an, 710021, China
| | - Yang Li
- Biomedicine Key Laboratory of Shaanxi Province, College of Life Sciences, Northwest University, Xi'an, 710069, China.
| |
Collapse
|
15
|
Vectorial channeling as a mechanism for translational control by functional prions and condensates. Proc Natl Acad Sci U S A 2021; 118:2115904118. [PMID: 34795061 DOI: 10.1073/pnas.2115904118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2021] [Indexed: 01/07/2023] Open
Abstract
Translation of messenger RNA (mRNA) is regulated through a diverse set of RNA-binding proteins. A significant fraction of RNA-binding proteins contains prion-like domains which form functional prions. This raises the question of how prions can play a role in translational control. Local control of translation in dendritic spines by prions has been invoked in the mechanism of synaptic plasticity and memory. We show how channeling through diffusion and processive translation cooperate in highly ordered mRNA/prion aggregates as well as in less ordered mRNA/protein condensates depending on their substructure. We show that the direction of translational control, whether it is repressive or activating, depends on the polarity of the mRNA distribution in mRNA/prion assemblies which determines whether vectorial channeling can enhance recycling of ribosomes. Our model also addresses the effect of changes of substrate concentration in assemblies that have been suggested previously to explain translational control by assemblies through the introduction of a potential of mean force biasing diffusion of ribosomes inside the assemblies. The results from the model are compared with the experimental data on translational control by two functional RNA-binding prions, CPEB involved in memory and Rim4 involved in gametogenesis.
Collapse
|
16
|
Guo J, Wang Y, Zhang X, Gao W, Cai Z, Hong T, Man Z, Qing Q. Improvement of the Catalytic Activity of Chitosanase BsCsn46A from Bacillus subtilis by Site-Saturation Mutagenesis of Proline121. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:11835-11846. [PMID: 34590486 DOI: 10.1021/acs.jafc.1c04206] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
BsCsn46A, a GH46 family chitosanase from Bacillus subtilis, has great potential for industrial chitooligosaccharide production due to its high activity and stability. In this study, a special amino acid Pro121 was identified not fit in the helix structure, which was located in the opposite side of the active center in BsCsn46A, by the PoPMuSiC algorithm. Then, saturation mutagenesis was performed to explore the role of the site amino acid 121. Compared with the wild type, the specific activity of P121N, P121C, and P121V was increased by 1.69-, 1.97-, and 2.15-fold, respectively. In particular, the specific activity of P121N was increased without loss of thermostability, indicating that replacing the structural stiffness of proline in the helical structure could significantly improve the chitosanase activity. The Km values of P121N, P121C, and P121V decreased significantly, indicating that the affinity between the enzyme-substrate complex was enhanced. Through molecular docking, it was found that the increase of hydrogen bonds and van der Waals force between the enzyme-substrate complex and the removal of unfavorable bonds might be the main reason for the change of enzyme properties. In addition, the optimal temperature of the three mutants changed from 60 to 55 °C. These results indicate that the site 121 plays a critical role in the catalytic activity and enzymatic properties of chitosanase. To our knowledge, the results provide novel data on chitosanase activity and identify an excellent candidate of industrial chitosanase.
Collapse
Affiliation(s)
- Jing Guo
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu 213164, China
- Laboratory of Applied Microbiology, School of Pharmaceutical, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Yi Wang
- Laboratory of Applied Microbiology, School of Pharmaceutical, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Xuan Zhang
- Laboratory of Applied Microbiology, School of Pharmaceutical, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Wenjun Gao
- Laboratory of Applied Microbiology, School of Pharmaceutical, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Zhiqiang Cai
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu 213164, China
- Laboratory of Applied Microbiology, School of Pharmaceutical, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Tingting Hong
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu 213164, China
- Laboratory of Applied Microbiology, School of Pharmaceutical, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Zaiwei Man
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu 213164, China
- School of Petrochemical Engineering, School of food Science and Technology, Changzhou University, Changzhou, Jiangsu 213164, China
- Zaozhuang Key Laboratory of Corn Bioengineering, Zaozhuang Science and Technology Collaborative Innovation Center of Enzyme, Shandong Hengren Gongmao Co. Ltd, Zaozhuang 277100, China
| | - Qing Qing
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu 213164, China
- Laboratory of Applied Microbiology, School of Pharmaceutical, Changzhou University, Changzhou 213164, Jiangsu, China
| |
Collapse
|
17
|
Agamennone M, Nicoli A, Bayer S, Weber V, Borro L, Gupta S, Fantacuzzi M, Di Pizio A. Protein-protein interactions at a glance: Protocols for the visualization of biomolecular interactions. Methods Cell Biol 2021; 166:271-307. [PMID: 34752337 DOI: 10.1016/bs.mcb.2021.06.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Protein-protein interactions (PPIs) play a key role in many biological processes and are intriguing targets for drug discovery campaigns. Advancements in experimental and computational techniques are leading to a growth of data accessibility, and, with it, an increased need for the analysis of PPIs. In this respect, visualization tools are essential instruments to represent and analyze biomolecular interactions. In this chapter, we reviewed some of the available tools, highlighting their features, and describing their functions with practical information on their usage.
Collapse
Affiliation(s)
| | - Alessandro Nicoli
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
| | - Sebastian Bayer
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
| | - Verena Weber
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
| | - Luca Borro
- Department of Imaging, Advanced Cardiovascular Imaging Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Shailendra Gupta
- Department of Systems Biology and Bioinformatics, University of Rostock, Rostock, Germany
| | | | - Antonella Di Pizio
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany.
| |
Collapse
|
18
|
O'Donoghue SI. Grand Challenges in Bioinformatics Data Visualization. FRONTIERS IN BIOINFORMATICS 2021; 1:669186. [PMID: 36303723 PMCID: PMC9581027 DOI: 10.3389/fbinf.2021.669186] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/30/2021] [Indexed: 01/17/2023] Open
Affiliation(s)
- Seán I. O'Donoghue
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, NSW, Australia
- CSIRO Data61, Eveleigh, NSW, Australia
| |
Collapse
|
19
|
Xu K, Liu N, Xu J, Guo C, Zhao L, Wang HW, Zhang QC. VRmol: an integrative web-based virtual reality system to explore macromolecular structure. Bioinformatics 2021; 37:1029-1031. [PMID: 32745209 DOI: 10.1093/bioinformatics/btaa696] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 07/21/2020] [Accepted: 07/27/2020] [Indexed: 12/22/2022] Open
Abstract
SUMMARY Structural visualization and analysis are fundamental to explore macromolecular functions. Here, we present a novel integrative web-based virtual reality (VR) system-VRmol, to visualize and study molecular structures in an immersive virtual environment. Importantly, it is integrated with multiple online databases and is able to couple structure studies with associated genomic variations and drug information in a visual interface by cloud-based drug docking. VRmol thus can serve as an integrative platform to aid structure-based translational research and drug design. AVAILABILITY AND IMPLEMENTATION VRmol is freely available (https://VRmol.net), with detailed manual and tutorial (https://VRmol.net/docs). The code of VRmol is available as open source under the MIT license at http://github.com/kuixu/VRmol. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Kui Xu
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Beijing 100084, China.,Beijing Advanced Innovation Center for Structural Biology, Beijing Frotier Research Center for Biological Structures, Beijing 100084, China.,Tsinghua-Peking Joint Center for Life Sciences, Beijing 100084, China
| | - Nan Liu
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frotier Research Center for Biological Structures, Beijing 100084, China.,Tsinghua-Peking Joint Center for Life Sciences, Beijing 100084, China.,Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jingle Xu
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Beijing 100084, China.,Beijing Advanced Innovation Center for Structural Biology, Beijing Frotier Research Center for Biological Structures, Beijing 100084, China
| | - Chunlong Guo
- Tsinghua-Peking Joint Center for Life Sciences, Beijing 100084, China
| | - Lingyun Zhao
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frotier Research Center for Biological Structures, Beijing 100084, China.,Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Hong-Wei Wang
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frotier Research Center for Biological Structures, Beijing 100084, China.,Tsinghua-Peking Joint Center for Life Sciences, Beijing 100084, China.,Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qiangfeng Cliff Zhang
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Beijing 100084, China.,Beijing Advanced Innovation Center for Structural Biology, Beijing Frotier Research Center for Biological Structures, Beijing 100084, China.,Tsinghua-Peking Joint Center for Life Sciences, Beijing 100084, China
| |
Collapse
|
20
|
Visualizing protein structures - tools and trends. Biochem Soc Trans 2021; 48:499-506. [PMID: 32196545 DOI: 10.1042/bst20190621] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 03/01/2020] [Accepted: 03/04/2020] [Indexed: 02/06/2023]
Abstract
Molecular visualization is fundamental in the current scientific literature, textbooks and dissemination materials. It provides an essential support for presenting results, reasoning on and formulating hypotheses related to molecular structure. Tools for visual exploration of structural data have become easily accessible on a broad variety of platforms thanks to advanced software tools that render a great service to the scientific community. These tools are often developed across disciplines bridging computer science, biology and chemistry. This mini-review was written as a short and compact overview for scientists who need to visualize protein structures and want to make an informed decision which tool they should use. Here, we first describe a few 'Swiss Army knives' geared towards protein visualization for everyday use with an existing large user base, then focus on more specialized tools for peculiar needs that are not yet as broadly known. Our selection is by no means exhaustive, but reflects a diverse snapshot of scenarios that we consider informative for the reader. We end with an account of future trends and perspectives.
Collapse
|
21
|
Richardson JS, Richardson DC, Goodsell DS. Seeing the PDB. J Biol Chem 2021; 296:100742. [PMID: 33957126 PMCID: PMC8167287 DOI: 10.1016/j.jbc.2021.100742] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 04/26/2021] [Accepted: 04/30/2021] [Indexed: 01/21/2023] Open
Abstract
Ever since the first structures of proteins were determined in the 1960s, structural biologists have required methods to visualize biomolecular structures, both as an essential tool for their research and also to promote 3D comprehension of structural results by a wide audience of researchers, students, and the general public. In this review to celebrate the 50th anniversary of the Protein Data Bank, we present our own experiences in developing and applying methods of visualization and analysis to the ever-expanding archive of protein and nucleic acid structures in the worldwide Protein Data Bank. Across that timespan, Jane and David Richardson have concentrated on the organization inside and between the macromolecules, with ribbons to show the overall backbone "fold" and contact dots to show how the all-atom details fit together locally. David Goodsell has explored surface-based representations to present and explore biological subjects that range from molecules to cells. This review concludes with some ideas about the current challenges being addressed by the field of biomolecular visualization.
Collapse
Affiliation(s)
- Jane S Richardson
- Department of Biochemistry, Duke University, Durham, North Carolina, USA.
| | - David C Richardson
- Department of Biochemistry, Duke University, Durham, North Carolina, USA
| | - David S Goodsell
- Department of Integrative and Computational Biology, The Scripps Research Institute, La Jolla, California, USA; Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, the State University of New Jersey, Piscataway, New Jersey, USA.
| |
Collapse
|
22
|
Pettersen EF, Goddard TD, Huang CC, Meng EC, Couch GS, Croll TI, Morris JH, Ferrin TE. UCSF ChimeraX: Structure visualization for researchers, educators, and developers. Protein Sci 2021; 30:70-82. [PMID: 32881101 PMCID: PMC7737788 DOI: 10.1002/pro.3943] [Citation(s) in RCA: 4237] [Impact Index Per Article: 1412.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 12/27/2022]
Abstract
UCSF ChimeraX is the next-generation interactive visualization program from the Resource for Biocomputing, Visualization, and Informatics (RBVI), following UCSF Chimera. ChimeraX brings (a) significant performance and graphics enhancements; (b) new implementations of Chimera's most highly used tools, many with further improvements; (c) several entirely new analysis features; (d) support for new areas such as virtual reality, light-sheet microscopy, and medical imaging data; (e) major ease-of-use advances, including toolbars with icons to perform actions with a single click, basic "undo" capabilities, and more logical and consistent commands; and (f) an app store for researchers to contribute new tools. ChimeraX includes full user documentation and is free for noncommercial use, with downloads available for Windows, Linux, and macOS from https://www.rbvi.ucsf.edu/chimerax.
Collapse
Affiliation(s)
- Eric F. Pettersen
- Department of Pharmaceutical ChemistryUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Thomas D. Goddard
- Department of Pharmaceutical ChemistryUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Conrad C. Huang
- Department of Pharmaceutical ChemistryUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Elaine C. Meng
- Department of Pharmaceutical ChemistryUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Gregory S. Couch
- Department of Pharmaceutical ChemistryUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Tristan I. Croll
- Cambridge Institute for Medical Research, Department of HaematologyUniversity of CambridgeCambridgeUK
| | - John H. Morris
- Department of Pharmaceutical ChemistryUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Thomas E. Ferrin
- Department of Pharmaceutical ChemistryUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| |
Collapse
|
23
|
Goodsell DS, Olson AJ, Forli S. Art and Science of the Cellular Mesoscale. Trends Biochem Sci 2020; 45:472-483. [PMID: 32413324 PMCID: PMC7230070 DOI: 10.1016/j.tibs.2020.02.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/12/2020] [Accepted: 02/27/2020] [Indexed: 12/22/2022]
Abstract
Experimental information from microscopy, structural biology, and bioinformatics may be integrated to build structural models of entire cells with molecular detail. This integrative modeling is challenging in several ways: the intrinsic complexity of biology results in models with many closely packed and heterogeneous components; the wealth of available experimental data is scattered among multiple resources and must be gathered, reconciled, and curated; and computational infrastructure is only now gaining the capability of modeling and visualizing systems of this complexity. We present recent efforts to address these challenges, both with artistic approaches to depicting the cellular mesoscale, and development and application of methods to build quantitative models.
Collapse
Affiliation(s)
- David S Goodsell
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA.
| | - Arthur J Olson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Stefano Forli
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
24
|
Abstract
LiteMol suite is an innovative solution that enables near-instant delivery of model and experimental biomacromolecular structural data, providing users with an interactive and responsive experience in all modern web browsers and mobile devices. LiteMol suite is a combination of data delivery services (CoordinateServer and DensityServer), compression format (BinaryCIF), and a molecular viewer (LiteMol Viewer). The LiteMol suite is integrated into Protein Data Bank in Europe (PDBe) and other life science web applications (e.g., UniProt, Ensemble, SIB, and CNRS services), it is freely available at https://litemol.org , and its source code is available via GitHub. LiteMol suite provides advanced functionality (annotations and their visualization, powerful selection features), and this chapter will describe their use for visual inspection of protein structures.
Collapse
|
25
|
Martinez X, Krone M, Alharbi N, Rose AS, Laramee RS, O'Donoghue S, Baaden M, Chavent M. Molecular Graphics: Bridging Structural Biologists and Computer Scientists. Structure 2019; 27:1617-1623. [PMID: 31564470 DOI: 10.1016/j.str.2019.09.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 08/02/2019] [Accepted: 09/10/2019] [Indexed: 01/20/2023]
Abstract
Visualization of molecular structures is one of the most common tasks carried out by structural biologists, typically using software, such as Chimera, COOT, PyMOL, or VMD. In this Perspective article, we outline how past developments in computer graphics and data visualization have expanded the understanding of biomolecular function, and we summarize recent advances that promise to further transform structural biology. We also highlight how progress in molecular graphics has been impeded by communication barriers between two communities: the computer scientists driving these advances, and the structural and computational biologists who stand to benefit. By pointing to canonical papers and explaining technical progress underlying new graphical developments in simple terms, we aim to improve communication between these communities; this, in turn, would help shape future developments in molecular graphics.
Collapse
Affiliation(s)
- Xavier Martinez
- Laboratoire de Biochimie Théorique, CNRS, UPR9080, Institut de Biologie Physico-Chimique, Paris, France
| | - Michael Krone
- Big Data Visual Analytics in Life Sciences, University of Tübingen, Tübingen, Germany
| | - Naif Alharbi
- Department of Computer Science, Swansea University, Swansea, Wales, United Kingdom
| | - Alexander S Rose
- RCSB Protein Data Bank, San Diego Supercomputer Center, University of California, San Diego, USA
| | - Robert S Laramee
- Department of Computer Science, Swansea University, Swansea, Wales, United Kingdom
| | - Sean O'Donoghue
- Garvan Institute of Medical Research, Sydney, Australia; University of New South Wales (UNSW), Sydney, Australia; CSIRO Data61, Sydney, Australia
| | - Marc Baaden
- Laboratoire de Biochimie Théorique, CNRS, UPR9080, Institut de Biologie Physico-Chimique, Paris, France
| | - Matthieu Chavent
- Institut de Pharmacologie et de Biologie Structurale IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
26
|
Goodsell DS, Autin L, Olson AJ. Illustrate: Software for Biomolecular Illustration. Structure 2019; 27:1716-1720.e1. [PMID: 31519398 DOI: 10.1016/j.str.2019.08.011] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/12/2019] [Accepted: 08/20/2019] [Indexed: 10/26/2022]
Abstract
The small program Illustrate generates non-photorealistic images of biological molecules for use in dissemination, outreach, and education. The method has been used as part of the "Molecule of the Month," an ongoing educational column at the RCSB Protein Data Bank (http://rcsb.org). Insights from 20 years of application of the program are presented, and the program has been released both as open-source Fortran at GitHub and through an interactive web-based interface.
Collapse
Affiliation(s)
- David S Goodsell
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; RCSB Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
| | - Ludovic Autin
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Arthur J Olson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
27
|
Shi M, Gao J, Zhang MQ. Web3DMol: interactive protein structure visualization based on WebGL. Nucleic Acids Res 2019; 45:W523-W527. [PMID: 28482028 PMCID: PMC5570197 DOI: 10.1093/nar/gkx383] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 04/26/2017] [Indexed: 11/24/2022] Open
Abstract
A growing number of web-based databases and tools for protein research are being developed. There is now a widespread need for visualization tools to present the three-dimensional (3D) structure of proteins in web browsers. Here, we introduce our 3D modeling program—Web3DMol—a web application focusing on protein structure visualization in modern web browsers. Users submit a PDB identification code or select a PDB archive from their local disk, and Web3DMol will display and allow interactive manipulation of the 3D structure. Featured functions, such as sequence plot, fragment segmentation, measure tool and meta-information display, are offered for users to gain a better understanding of protein structure. Easy-to-use APIs are available for developers to reuse and extend Web3DMol. Web3DMol can be freely accessed at http://web3dmol.duapp.com/, and the source code is distributed under the MIT license.
Collapse
Affiliation(s)
- Maoxiang Shi
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Juntao Gao
- MOE Key Laboratory of Bioinformatics, Bioinformatics Division and Center for Synthetic & Systems Biology, TNLIST, Department of Automation, Tsinghua University, Beijing 100084, China
| | - Michael Q Zhang
- MOE Key Laboratory of Bioinformatics, Bioinformatics Division and Center for Synthetic & Systems Biology, TNLIST, Department of Automation, Tsinghua University, Beijing 100084, China.,Department of Biological Sciences, Center for Systems Biology, University of Texas at Dallas, Richardson, TX 75080-3021, USA
| |
Collapse
|
28
|
Sehnal D, Deshpande M, Vařeková RS, Mir S, Berka K, Midlik A, Pravda L, Velankar S, Koča J. LiteMol suite: interactive web-based visualization of large-scale macromolecular structure data. Nat Methods 2019; 14:1121-1122. [PMID: 29190272 DOI: 10.1038/nmeth.4499] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- David Sehnal
- CEITEC, Central European Institute of Technology, Masaryk University, Brno, Czech Republic.,National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic.,Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, UK
| | - Mandar Deshpande
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, UK
| | - Radka Svobodová Vařeková
- CEITEC, Central European Institute of Technology, Masaryk University, Brno, Czech Republic.,National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Saqib Mir
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, UK
| | - Karel Berka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Adam Midlik
- CEITEC, Central European Institute of Technology, Masaryk University, Brno, Czech Republic.,National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Lukáš Pravda
- CEITEC, Central European Institute of Technology, Masaryk University, Brno, Czech Republic.,National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Sameer Velankar
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, UK
| | - Jaroslav Koča
- CEITEC, Central European Institute of Technology, Masaryk University, Brno, Czech Republic.,National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
29
|
Rathinam M, Kesiraju K, Singh S, Thimmegowda V, Rai V, Pattanayak D, Sreevathsa R. Molecular Interaction-Based Exploration of the Broad Spectrum Efficacy of a Bacillus thuringiensis Insecticidal Chimeric Protein, Cry1AcF. Toxins (Basel) 2019; 11:toxins11030143. [PMID: 30832332 PMCID: PMC6468889 DOI: 10.3390/toxins11030143] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/04/2019] [Accepted: 02/06/2019] [Indexed: 11/16/2022] Open
Abstract
Bacillus thuringiensis insecticidal proteins (Bt ICPs) are reliable and valuable options for pest management in crops. Protein engineering of Bt ICPs is a competitive alternative for resistance management in insects. The primary focus of the study was to reiterate the translational utility of a protein-engineered chimeric Cry toxin, Cry1AcF, for its broad spectrum insecticidal efficacy using molecular modeling and docking studies. In-depth bioinformatic analysis was undertaken for structure prediction of the Cry toxin as the ligand and aminopeptidase1 receptors (APN1) from Helicoverpa armigera (HaAPN1) and Spodoptera litura (SlAPN1) as receptors, followed by interaction studies using protein-protein docking tools. The study revealed feasible interactions between the toxin and the two receptors through H-bonding and hydrophobic interactions. Further, molecular dynamics simulations substantiated the stability of the interactions, proving the broad spectrum efficacy of Cry1AcF in controlling H. armigera and S. litura. These findings justify the utility of protein-engineered toxins in pest management.
Collapse
Affiliation(s)
- Maniraj Rathinam
- ICAR-National Research Centre on Plant Biotechnology, New Delhi 110012, India.
| | - Karthik Kesiraju
- ICAR-National Research Centre on Plant Biotechnology, New Delhi 110012, India.
| | - Shweta Singh
- ICAR-National Research Centre on Plant Biotechnology, New Delhi 110012, India.
| | - Vinutha Thimmegowda
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India.
| | - Vandna Rai
- ICAR-National Research Centre on Plant Biotechnology, New Delhi 110012, India.
| | - Debasis Pattanayak
- ICAR-National Research Centre on Plant Biotechnology, New Delhi 110012, India.
| | - Rohini Sreevathsa
- ICAR-National Research Centre on Plant Biotechnology, New Delhi 110012, India.
| |
Collapse
|
30
|
Goodstadt MN, Marti-Renom MA. Communicating Genome Architecture: Biovisualization of the Genome, from Data Analysis and Hypothesis Generation to Communication and Learning. J Mol Biol 2018; 431:1071-1087. [PMID: 30419242 DOI: 10.1016/j.jmb.2018.11.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 10/29/2018] [Accepted: 11/01/2018] [Indexed: 01/07/2023]
Abstract
Genome discoveries at the core of biology are made by visual description and exploration of the cell, from microscopic sketches and biochemical mapping to computational analysis and spatial modeling. We outline the experimental and visualization techniques that have been developed recently which capture the three-dimensional interactions regulating how genes are expressed. We detail the challenges faced in integration of the data to portray the components and organization and their dynamic landscape. The goal is more than a single data-driven representation as interactive visualization for de novo research is paramount to decipher insights on genome organization in space.
Collapse
Affiliation(s)
- Mike N Goodstadt
- CNAG-CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Baldiri Reixac 4, Barcelona 08028, Spain; Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain.
| | - Marc A Marti-Renom
- CNAG-CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Baldiri Reixac 4, Barcelona 08028, Spain; Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluis Companys 23, Barcelona 08010, Spain.
| |
Collapse
|
31
|
Gardner A, Autin L, Barbaro B, Olson AJ, Goodsell DS. CellPAINT: Interactive Illustration of Dynamic Mesoscale Cellular Environments. IEEE COMPUTER GRAPHICS AND APPLICATIONS 2018; 38:51-66. [PMID: 30668455 PMCID: PMC6456043 DOI: 10.1109/mcg.2018.2877076] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
CellPAINT allows nonexpert users to create interactive mesoscale illustrations that integrate a variety of biological data. Like popular digital painting software, scenes are created using a palette of molecular "brushes." The current release allows creation of animated scenes with an HIV virion, blood plasma, and a simplified T-cell.
Collapse
|
32
|
Olson AJ. Perspectives on Structural Molecular Biology Visualization: From Past to Present. J Mol Biol 2018; 430:3997-4012. [PMID: 30009769 PMCID: PMC6186497 DOI: 10.1016/j.jmb.2018.07.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 07/03/2018] [Accepted: 07/06/2018] [Indexed: 12/15/2022]
Abstract
Visualization has been a key technology in the progress of structural molecular biology for as long as the field has existed. This perspective describes the nature of the visualization process in structural studies, how it has evolved over the years, and its relationship to the changes in technology that have supported and driven it. It focuses on how technical advances have changed the way we look at and interact with molecular structure, and how structural biology has fostered and challenged that technology.
Collapse
Affiliation(s)
- Arthur J Olson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
33
|
Navigating Among Known Structures in Protein Space. Methods Mol Biol 2018. [PMID: 30298400 DOI: 10.1007/978-1-4939-8736-8_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Present-day protein space is the result of 3.7 billion years of evolution, constrained by the underlying physicochemical qualities of the proteins. It is difficult to differentiate between evolutionary traces and effects of physicochemical constraints. Nonetheless, as a rule of thumb, instances of structural reuse, or focusing on structural similarity, are likely attributable to physicochemical constraints, whereas sequence reuse, or focusing on sequence similarity, may be more indicative of evolutionary relationships. Both types of relationships have been studied and can provide meaningful insights to protein biophysics and evolution, which in turn can lead to better algorithms for protein search, annotation, and maybe even design.In broad strokes, studies of protein space vary in the entities they represent, the similarity measure comparing these entities, and the representation used. The entities can be, for example, protein chains, domains, supra-domains, or smaller protein sub-parts denoted themes. The measures of similarity between the entities can be based on sequence, structure, function, or any combination of these. The representation can be global, encompassing the whole space, or local, focusing on a particular region surrounding protein(s) of interest. Global representations include lists of grouped proteins, protein networks, and maps. Networks are the abstraction that is derived most directly from the similarity data: each node is the protein entity (e.g., a domain), and edges connect similar domains. Selecting the entities, the similarity measure, and the abstraction are three intertwined decisions: the similarity measures allow us to identify the entities, and the selection of entities influences what is a meaningful similarity measure. Similarly, we seek entities that are related to each other in a way, for which a simple representation describes their relationships succinctly and accurately. This chapter will cover studies that rely on different entities, similarity measures, and a range of representations to better understand protein structure space. Scholars may use publicly available navigators offering a global representation, and in particular the hierarchical classifications SCOP, CATH, and ECOD, or a local representation, which encompass structural alignment algorithms. Alternatively, scholars can configure their own navigator using existing tools. To demonstrate this DIY (do it yourself) approach for navigating in protein space, we investigate substrate-binding proteins. By presenting sequence similarities among this large and diverse protein family as a network, we can infer that one member (pdb ID 4ntl; of yet unknown function) may bind methionine and suggest a putative binding mechanism.
Collapse
|
34
|
O'Donoghue SI, Baldi BF, Clark SJ, Darling AE, Hogan JM, Kaur S, Maier-Hein L, McCarthy DJ, Moore WJ, Stenau E, Swedlow JR, Vuong J, Procter JB. Visualization of Biomedical Data. Annu Rev Biomed Data Sci 2018. [DOI: 10.1146/annurev-biodatasci-080917-013424] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The rapid increase in volume and complexity of biomedical data requires changes in research, communication, and clinical practices. This includes learning how to effectively integrate automated analysis with high–data density visualizations that clearly express complex phenomena. In this review, we summarize key principles and resources from data visualization research that help address this difficult challenge. We then survey how visualization is being used in a selection of emerging biomedical research areas, including three-dimensional genomics, single-cell RNA sequencing (RNA-seq), the protein structure universe, phosphoproteomics, augmented reality–assisted surgery, and metagenomics. While specific research areas need highly tailored visualizations, there are common challenges that can be addressed with general methods and strategies. Also common, however, are poor visualization practices. We outline ongoing initiatives aimed at improving visualization practices in biomedical research via better tools, peer-to-peer learning, and interdisciplinary collaboration with computer scientists, science communicators, and graphic designers. These changes are revolutionizing how we see and think about our data.
Collapse
Affiliation(s)
- Seán I. O'Donoghue
- Data61, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Eveleigh NSW 2015, Australia
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney NSW 2010, Australia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales (UNSW), Kensington NSW 2033, Australia
| | - Benedetta Frida Baldi
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney NSW 2010, Australia
| | - Susan J. Clark
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney NSW 2010, Australia
| | - Aaron E. Darling
- The ithree Institute, University of Technology Sydney, Ultimo NSW 2007, Australia
| | - James M. Hogan
- School of Electrical Engineering and Computer Science, Queensland University of Technology, Brisbane QLD, 4000, Australia
| | - Sandeep Kaur
- School of Computer Science and Engineering, University of New South Wales (UNSW), Kensington NSW 2033, Australia
| | - Lena Maier-Hein
- Division of Computer Assisted Medical Interventions (CAMI), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Davis J. McCarthy
- European Bioinformatics Institute (EBI), European Molecular Biology Laboratory (EMBL), Wellcome Genome Campus, Hinxton CB10 1SD, United Kingdom
- St. Vincent's Institute of Medical Research, Fitzroy VIC 3065, Australia
| | - William J. Moore
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Esther Stenau
- Division of Computer Assisted Medical Interventions (CAMI), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Jason R. Swedlow
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Jenny Vuong
- Data61, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Eveleigh NSW 2015, Australia
| | - James B. Procter
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| |
Collapse
|
35
|
Trellet M, Férey N, Flotyński J, Baaden M, Bourdot P. Semantics for an Integrative and Immersive Pipeline Combining Visualization and Analysis of Molecular Data. J Integr Bioinform 2018; 15:/j/jib.ahead-of-print/jib-2018-0004/jib-2018-0004.xml. [PMID: 29982236 PMCID: PMC6167042 DOI: 10.1515/jib-2018-0004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 05/11/2018] [Indexed: 12/14/2022] Open
Abstract
The advances made in recent years in the field of structural biology significantly increased the throughput and complexity of data that scientists have to deal with. Combining and analyzing such heterogeneous amounts of data became a crucial time consumer in the daily tasks of scientists. However, only few efforts have been made to offer scientists an alternative to the standard compartmentalized tools they use to explore their data and that involve a regular back and forth between them. We propose here an integrated pipeline especially designed for immersive environments, promoting direct interactions on semantically linked 2D and 3D heterogeneous data, displayed in a common working space. The creation of a semantic definition describing the content and the context of a molecular scene leads to the creation of an intelligent system where data are (1) combined through pre-existing or inferred links present in our hierarchical definition of the concepts, (2) enriched with suitable and adaptive analyses proposed to the user with respect to the current task and (3) interactively presented in a unique working environment to be explored.
Collapse
Affiliation(s)
- Mikael Trellet
- Faculty of Science, Chemistry, Computational Structural Biology group, Bijvoet Center for Biomolecular Research, Padualaan 9, 3584CH Utrecht, Netherlands
| | - Nicolas Férey
- VENISE Group, LIMSI, CNRS, Université Paris Sud, Orsay, France
| | | | - Marc Baaden
- Laboratoire de Biochimie Théorique, CNRS, UPR9080, Institut de Biologie Physico-Chimique, Univ Paris Diderot, Sorbonne Paris Cité, PSL Research University, Paris, France
| | - Patrick Bourdot
- VENISE Group, LIMSI, CNRS, Université Paris Sud, Orsay, France
| |
Collapse
|
36
|
Goodsell DS, Jenkinson J. Molecular Illustration in Research and Education: Past, Present, and Future. J Mol Biol 2018; 430:3969-3981. [PMID: 29752966 DOI: 10.1016/j.jmb.2018.04.043] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/26/2018] [Accepted: 04/30/2018] [Indexed: 01/26/2023]
Abstract
Two-dimensional illustration is used extensively to study and disseminate the results of structural molecular biology. Molecular graphics methods have been and continue to be developed to address the growing needs of the structural biology community, and there are currently many effective, turn-key methods for displaying and exploring molecular structure. Building on decades of experience in design, best-practice resources are available to guide creation of illustrations that are effective for research and education communities.
Collapse
Affiliation(s)
- David S Goodsell
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; RCSB Protein Data Bank & Center for Integrative Proteomics Research, Rutgers State University, Piscataway, NJ 08854, USA.
| | - Jodie Jenkinson
- Biomedical Communications, Department of Biology, University of Toronto, Mississauga, ON L5L 1C6, Canada
| |
Collapse
|
37
|
Bader C, Kolb D, Weaver JC, Sharma S, Hosny A, Costa J, Oxman N. Making data matter: Voxel printing for the digital fabrication of data across scales and domains. SCIENCE ADVANCES 2018; 4:eaas8652. [PMID: 29854949 PMCID: PMC5976266 DOI: 10.1126/sciadv.aas8652] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 04/27/2018] [Indexed: 05/23/2023]
Abstract
We present a multimaterial voxel-printing method that enables the physical visualization of data sets commonly associated with scientific imaging. Leveraging voxel-based control of multimaterial three-dimensional (3D) printing, our method enables additive manufacturing of discontinuous data types such as point cloud data, curve and graph data, image-based data, and volumetric data. By converting data sets into dithered material deposition descriptions, through modifications to rasterization processes, we demonstrate that data sets frequently visualized on screen can be converted into physical, materially heterogeneous objects. Our approach alleviates the need to postprocess data sets to boundary representations, preventing alteration of data and loss of information in the produced physicalizations. Therefore, it bridges the gap between digital information representation and physical material composition. We evaluate the visual characteristics and features of our method, assess its relevance and applicability in the production of physical visualizations, and detail the conversion of data sets for multimaterial 3D printing. We conclude with exemplary 3D-printed data sets produced by our method pointing toward potential applications across scales, disciplines, and problem domains.
Collapse
Affiliation(s)
- Christoph Bader
- The Mediated Matter Group, Media Lab, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Dominik Kolb
- The Mediated Matter Group, Media Lab, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - James C. Weaver
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, USA
| | - Sunanda Sharma
- The Mediated Matter Group, Media Lab, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ahmed Hosny
- Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
| | - João Costa
- The Mediated Matter Group, Media Lab, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Neri Oxman
- The Mediated Matter Group, Media Lab, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
38
|
Developing novel methods to image and visualize 3D genomes. Cell Biol Toxicol 2018; 34:367-380. [PMID: 29577183 PMCID: PMC6133007 DOI: 10.1007/s10565-018-9427-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 03/11/2018] [Indexed: 02/07/2023]
Abstract
To investigate three-dimensional (3D) genome organization in prokaryotic and eukaryotic cells, three main strategies are employed, namely nuclear proximity ligation-based methods, imaging tools (such as fluorescence in situ hybridization (FISH) and its derivatives), and computational/visualization methods. Proximity ligation-based methods are based on digestion and re-ligation of physically proximal cross-linked chromatin fragments accompanied by massively parallel DNA sequencing to measure the relative spatial proximity between genomic loci. Imaging tools enable direct visualization and quantification of spatial distances between genomic loci, and advanced implementation of (super-resolution) microscopy helps to significantly improve the resolution of images. Computational methods are used to map global 3D genome structures at various scales driven by experimental data, and visualization methods are used to visualize genome 3D structures in virtual 3D space-based on algorithms. In this review, we focus on the introduction of novel imaging and visualization methods to study 3D genomes. First, we introduce the progress made recently in 3D genome imaging in both fixed cell and live cells based on long-probe labeling, short-probe labeling, RNA FISH, and the CRISPR system. As the fluorescence-capturing capability of a particular microscope is very important for the sensitivity of bioimaging experiments, we also introduce two novel super-resolution microscopy methods, SDOM and low-power super-resolution STED, which have potential for time-lapse super-resolution live-cell imaging of chromatin. Finally, we review some software tools developed recently to visualize proximity ligation-based data. The imaging and visualization methods are complementary to each other, and all three strategies are not mutually exclusive. These methods provide powerful tools to explore the mechanisms of gene regulation and transcription in cell nuclei.
Collapse
|
39
|
Yuan S, Chan HCS, Filipek S, Vogel H. PyMOL and Inkscape Bridge the Data and the Data Visualization. Structure 2018; 24:2041-2042. [PMID: 27926832 DOI: 10.1016/j.str.2016.11.012] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Shuguang Yuan
- Laboratory of Physical Chemistry of Polymers and Membranes, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH B3 495 (Bâtiment CH) Station 6, Lausanne CH-1015, Switzerland.
| | - H C Stephen Chan
- Faculty of Life Sciences, University of Bradford, Bradford, West Yorkshire BD7 1DP, UK
| | - Slawomir Filipek
- Laboratory of Biomodeling, Faculty of Chemistry & Biological and Chemical Research Centre, University of Warsaw, ul. Pasteura 1, Warsaw 02-093, Poland
| | - Horst Vogel
- Laboratory of Physical Chemistry of Polymers and Membranes, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH B3 495 (Bâtiment CH) Station 6, Lausanne CH-1015, Switzerland
| |
Collapse
|
40
|
Suryanto CH, Saigo H, Fukui K. Structural Class Classification of 3D Protein Structure Based on Multi-View 2D Images. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2018; 15:286-299. [PMID: 28113600 DOI: 10.1109/tcbb.2016.2603987] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Computing similarity or dissimilarity between protein structures is an important task in structural biology. A conventional method to compute protein structure dissimilarity requires structural alignment of the proteins. However, defining one best alignment is difficult, especially when the structures are very different. In this paper, we propose a new similarity measure for protein structure comparisons using a set of multi-view 2D images of 3D protein structures. In this approach, each protein structure is represented by a subspace from the image set. The similarity between two protein structures is then characterized by the canonical angles between the two subspaces. The primary advantage of our method is that precise alignment is not needed. We employed Grassmann Discriminant Analysis (GDA) as the subspace-based learning in the classification framework. We applied our method for the classification problem of seven SCOP structural classes of protein 3D structures. The proposed method outperformed the k-nearest neighbor method (k-NN) based on conventional alignment-based methods CE, FATCAT, and TM-align. Our method was also applied to the classification of SCOP folds of membrane proteins, where the proposed method could recognize the fold HEM-binding four-helical bundle (f.21) much better than TM-Align.
Collapse
|
41
|
Goddard TD, Huang CC, Meng EC, Pettersen EF, Couch GS, Morris JH, Ferrin TE. UCSF ChimeraX: Meeting modern challenges in visualization and analysis. Protein Sci 2018; 27:14-25. [PMID: 28710774 PMCID: PMC5734306 DOI: 10.1002/pro.3235] [Citation(s) in RCA: 2923] [Impact Index Per Article: 487.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 07/07/2017] [Accepted: 07/10/2017] [Indexed: 12/18/2022]
Abstract
UCSF ChimeraX is next-generation software for the visualization and analysis of molecular structures, density maps, 3D microscopy, and associated data. It addresses challenges in the size, scope, and disparate types of data attendant with cutting-edge experimental methods, while providing advanced options for high-quality rendering (interactive ambient occlusion, reliable molecular surface calculations, etc.) and professional approaches to software design and distribution. This article highlights some specific advances in the areas of visualization and usability, performance, and extensibility. ChimeraX is free for noncommercial use and is available from http://www.rbvi.ucsf.edu/chimerax/ for Windows, Mac, and Linux.
Collapse
Affiliation(s)
- Thomas D. Goddard
- Department of Pharmaceutical ChemistryUniversity of California San FranciscoSan FranciscoCalifornia94143
| | - Conrad C. Huang
- Department of Pharmaceutical ChemistryUniversity of California San FranciscoSan FranciscoCalifornia94143
| | - Elaine C. Meng
- Department of Pharmaceutical ChemistryUniversity of California San FranciscoSan FranciscoCalifornia94143
| | - Eric F. Pettersen
- Department of Pharmaceutical ChemistryUniversity of California San FranciscoSan FranciscoCalifornia94143
| | - Gregory S. Couch
- Department of Pharmaceutical ChemistryUniversity of California San FranciscoSan FranciscoCalifornia94143
| | - John H. Morris
- Department of Pharmaceutical ChemistryUniversity of California San FranciscoSan FranciscoCalifornia94143
| | - Thomas E. Ferrin
- Department of Pharmaceutical ChemistryUniversity of California San FranciscoSan FranciscoCalifornia94143
| |
Collapse
|
42
|
Sojka AC, Brennan KM, Maizels ET, Young CD. The Science Behind G Protein-Coupled Receptors (GPCRs) and Their Accurate Visual Representation in Scientific Research. THE JOURNAL OF BIOCOMMUNICATION 2017; 41:e6. [PMID: 36405408 PMCID: PMC9140105 DOI: 10.5210/jbc.v41i1.7309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
G Protein-Coupled Receptors (GPCRs) are transmembrane (TM) proteins that span the cell membrane seven times, and contain intracellular and extracellular domains, comprised of connecting loops, as well as terminal extension sequences. GPCRs bind ligands within their transmembrane and/or extracellular domains. Ligand binding elicits conformational changes that initiate downstream intracellular signaling events through arrestins and G proteins. GPCRs play central roles in many physiological processes, from sensory to neurological, cardiovascular, endocrine, and reproductive functions. This paper strives to provide an entry point to current GPCR science, and to identify visual approaches to communicate select aspects of GPCR structure and function with clarity and accuracy. The overall GPCR structure, primary sequence and the implications of sequence for membrane topology, ligand binding and helical rearrangements accompanying activation are considered and discussed in the context of visualization strategies, including two-dimensional topological diagrams, three-dimensional representations, and common errors that arise from these representations.
Collapse
|
43
|
Lam WWT, Siu SWI. PyMOL mControl: Manipulating molecular visualization with mobile devices. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 45:76-83. [PMID: 27292587 DOI: 10.1002/bmb.20987] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 02/03/2016] [Accepted: 05/15/2016] [Indexed: 06/06/2023]
Abstract
Viewing and manipulating three-dimensional (3D) structures in molecular graphics software are essential tasks for researchers and students to understand the functions of molecules. Currently, the way to manipulate a 3D molecular object is mainly based on mouse-and-keyboard control that is usually difficult and tedious to learn. While gesture-based and touch-based interactions are increasingly popular in interactive software systems, their suitability in handling molecular graphics has not yet been sufficiently explored. Here, we designed the gesture-based and touch-based interaction methods to manipulate virtual objects in PyMOL utilizing the motion and touch sensors in a mobile device. Three fundamental viewing controls-zooming, translation and rotation-and frequently used functions were implemented. Results from a pilot user study reveal that task performances on viewing controls using a mobile device are slightly reduced as compared to mouse-and-keyboard method. However, it is considered to be more suitable for oral presentations and equally suitable for education scenarios such as school classes. Overall, PyMOL mControl provides an alternative way to manipulate objects in molecular graphic software with new user experiences. The software is freely available at http://cbbio.cis.umac.mo/mcontrol.html. © 2016 by The International Union of Biochemistry and Molecular Biology, 45(1):76-83, 2017.
Collapse
Affiliation(s)
- Wendy W T Lam
- Department of Computer and Information Science, University of Macau, Avenida Da Universidade, Taipa, Macau, China
| | - Shirley W I Siu
- Department of Computer and Information Science, University of Macau, Avenida Da Universidade, Taipa, Macau, China
| |
Collapse
|
44
|
Rose PW, Prlić A, Altunkaya A, Bi C, Bradley AR, Christie CH, Costanzo LD, Duarte JM, Dutta S, Feng Z, Green RK, Goodsell DS, Hudson B, Kalro T, Lowe R, Peisach E, Randle C, Rose AS, Shao C, Tao YP, Valasatava Y, Voigt M, Westbrook JD, Woo J, Yang H, Young JY, Zardecki C, Berman HM, Burley SK. The RCSB protein data bank: integrative view of protein, gene and 3D structural information. Nucleic Acids Res 2016; 45:D271-D281. [PMID: 27794042 PMCID: PMC5210513 DOI: 10.1093/nar/gkw1000] [Citation(s) in RCA: 399] [Impact Index Per Article: 49.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 10/12/2016] [Accepted: 10/14/2016] [Indexed: 12/02/2022] Open
Abstract
The Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB, http://rcsb.org), the US data center for the global PDB archive, makes PDB data freely available to all users, from structural biologists to computational biologists and beyond. New tools and resources have been added to the RCSB PDB web portal in support of a ‘Structural View of Biology.’ Recent developments have improved the User experience, including the high-speed NGL Viewer that provides 3D molecular visualization in any web browser, improved support for data file download and enhanced organization of website pages for query, reporting and individual structure exploration. Structure validation information is now visible for all archival entries. PDB data have been integrated with external biological resources, including chromosomal position within the human genome; protein modifications; and metabolic pathways. PDB-101 educational materials have been reorganized into a searchable website and expanded to include new features such as the Geis Digital Archive.
Collapse
Affiliation(s)
- Peter W Rose
- RCSB Protein Data Bank, San Diego Supercomputer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Andreas Prlić
- RCSB Protein Data Bank, San Diego Supercomputer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ali Altunkaya
- RCSB Protein Data Bank, San Diego Supercomputer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Chunxiao Bi
- RCSB Protein Data Bank, San Diego Supercomputer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Anthony R Bradley
- RCSB Protein Data Bank, San Diego Supercomputer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Cole H Christie
- RCSB Protein Data Bank, San Diego Supercomputer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Luigi Di Costanzo
- RCSB Protein Data Bank, Department of Chemistry and Chemical Biology, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Jose M Duarte
- RCSB Protein Data Bank, San Diego Supercomputer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Shuchismita Dutta
- RCSB Protein Data Bank, Department of Chemistry and Chemical Biology, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Zukang Feng
- RCSB Protein Data Bank, Department of Chemistry and Chemical Biology, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Rachel Kramer Green
- RCSB Protein Data Bank, Department of Chemistry and Chemical Biology, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - David S Goodsell
- RCSB Protein Data Bank, Department of Chemistry and Chemical Biology, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.,Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Brian Hudson
- RCSB Protein Data Bank, Department of Chemistry and Chemical Biology, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Tara Kalro
- RCSB Protein Data Bank, San Diego Supercomputer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Robert Lowe
- RCSB Protein Data Bank, Department of Chemistry and Chemical Biology, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Ezra Peisach
- RCSB Protein Data Bank, Department of Chemistry and Chemical Biology, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Christopher Randle
- RCSB Protein Data Bank, San Diego Supercomputer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Alexander S Rose
- RCSB Protein Data Bank, San Diego Supercomputer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Chenghua Shao
- RCSB Protein Data Bank, Department of Chemistry and Chemical Biology, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Yi-Ping Tao
- RCSB Protein Data Bank, Department of Chemistry and Chemical Biology, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Yana Valasatava
- RCSB Protein Data Bank, San Diego Supercomputer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Maria Voigt
- RCSB Protein Data Bank, Department of Chemistry and Chemical Biology, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - John D Westbrook
- RCSB Protein Data Bank, Department of Chemistry and Chemical Biology, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Jesse Woo
- RCSB Protein Data Bank, San Diego Supercomputer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Huangwang Yang
- RCSB Protein Data Bank, Department of Chemistry and Chemical Biology, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Jasmine Y Young
- RCSB Protein Data Bank, Department of Chemistry and Chemical Biology, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Christine Zardecki
- RCSB Protein Data Bank, Department of Chemistry and Chemical Biology, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Helen M Berman
- RCSB Protein Data Bank, Department of Chemistry and Chemical Biology, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Stephen K Burley
- RCSB Protein Data Bank, San Diego Supercomputer Center, University of California, San Diego, La Jolla, CA 92093, USA .,RCSB Protein Data Bank, Department of Chemistry and Chemical Biology, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.,Institute for Quantitative BioMedicine and Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA.,Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
45
|
Melvin RL, Salsbury FR. Visualizing ensembles in structural biology. J Mol Graph Model 2016; 67:44-53. [PMID: 27179343 PMCID: PMC5954827 DOI: 10.1016/j.jmgm.2016.05.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/26/2016] [Accepted: 05/02/2016] [Indexed: 10/21/2022]
Abstract
Displaying a single representative conformation of a biopolymer rather than an ensemble of states mistakenly conveys a static nature rather than the actual dynamic personality of biopolymers. However, there are few apparent options due to the fixed nature of print media. Here we suggest a standardized methodology for visually indicating the distribution width, standard deviation and uncertainty of ensembles of states with little loss of the visual simplicity of displaying a single representative conformation. Of particular note is that the visualization method employed clearly distinguishes between isotropic and anisotropic motion of polymer subunits. We also apply this method to ligand binding, suggesting a way to indicate the expected error in many high throughput docking programs when visualizing the structural spread of the output. We provide several examples in the context of nucleic acids and proteins with particular insights gained via this method. Such examples include investigating a therapeutic polymer of FdUMP (5-fluoro-2-deoxyuridine-5-O-monophosphate) - a topoisomerase-1 (Top1), apoptosis-inducing poison - and nucleotide-binding proteins responsible for ATP hydrolysis from Bacillus subtilis. We also discuss how these methods can be extended to any macromolecular data set with an underlying distribution, including experimental data such as NMR structures.
Collapse
Affiliation(s)
- Ryan L Melvin
- Department of Physics, Wake Forest University, NC, United States
| | | |
Collapse
|
46
|
MAN MY, ONG MS, Mohamad MS, DERIS S, SULONG G, YUNUS J, CHE HARUN FK. A Review on the Bioinformatics Tools for Neuroimaging. Malays J Med Sci 2015; 22:9-19. [PMID: 27006633 PMCID: PMC4795522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 11/03/2015] [Indexed: 06/05/2023] Open
Abstract
Neuroimaging is a new technique used to create images of the structure and function of the nervous system in the human brain. Currently, it is crucial in scientific fields. Neuroimaging data are becoming of more interest among the circle of neuroimaging experts. Therefore, it is necessary to develop a large amount of neuroimaging tools. This paper gives an overview of the tools that have been used to image the structure and function of the nervous system. This information can help developers, experts, and users gain insight and a better understanding of the neuroimaging tools available, enabling better decision making in choosing tools of particular research interest. Sources, links, and descriptions of the application of each tool are provided in this paper as well. Lastly, this paper presents the language implemented, system requirements, strengths, and weaknesses of the tools that have been widely used to image the structure and function of the nervous system.
Collapse
Affiliation(s)
- Mei Yen MAN
- Artificial Intelligence and Bioinformatics Research Group, Faculty of Computing, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Mei Sin ONG
- Artificial Intelligence and Bioinformatics Research Group, Faculty of Computing, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Mohd Saberi Mohamad
- Artificial Intelligence and Bioinformatics Research Group, Faculty of Computing, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Safaai DERIS
- Faculty of Creative Technology & Heritage, Universiti Malaysia Kelantan, Locked Bag 01, 16300 Bachok, Kota Bharu, Kelantan, Malaysia
| | - Ghazali SULONG
- Media and Game Innovation Centre of Excellence (MaGIC-X), Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Jasmy YUNUS
- Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Fauzan Khairi CHE HARUN
- Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| |
Collapse
|
47
|
Singer DB. Pediatric Pathology In The Year 2050. Pediatr Dev Pathol 2015. [PMID: 26214731 DOI: 10.2350/15-06-1664-oa.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The study of pathology in fetuses, infants, and children had its beginnings in the mid-19th century. Now, 165 years later, hundreds of pediatric pathologists are in up-to-date practices throughout the world. They, and all medical practitioners, are just beginning to delve into the nanotechnical wave. Nanotechnology refers to the structure and activity of minute particles, molecules, compounds, and atoms. By 2050, as nanotechnical studies develop further, new diseases and variations of old diseases will be discovered. Aggregation of medical data from billions of people, a process known as crowd sourcing, will be digitally interconnected to the new findings with computers. Pediatric pathologists will contribute to this expanding science with new laboratory instruments, including ultramodern microscopes known as Omniscopes. Robots will be programmed to perform autopsies and process surgical specimens. Analyzers in chemistry, microbiology, hematology, and genetics will, in 2050, produce dozens or even hundreds of results within minutes. These advances will lead to better treatments and overall better health for everyone.
Collapse
Affiliation(s)
- Don B Singer
- Department of Pathology, University of Wisconsin School of Medicine and Public Health, 1685 Highland Street, Madison, WI 53705, USA
| |
Collapse
|
48
|
Rose AS, Hildebrand PW. NGL Viewer: a web application for molecular visualization. Nucleic Acids Res 2015; 43:W576-9. [PMID: 25925569 PMCID: PMC4489237 DOI: 10.1093/nar/gkv402] [Citation(s) in RCA: 286] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 04/11/2015] [Accepted: 04/15/2015] [Indexed: 01/12/2023] Open
Abstract
The NGL Viewer (http://proteinformatics.charite.de/ngl) is a web application for the visualization of macromolecular structures. By fully adopting capabilities of modern web browsers, such as WebGL, for molecular graphics, the viewer can interactively display large molecular complexes and is also unaffected by the retirement of third-party plug-ins like Flash and Java Applets. Generally, the web application offers comprehensive molecular visualization through a graphical user interface so that life scientists can easily access and profit from available structural data. It supports common structural file-formats (e.g. PDB, mmCIF) and a variety of molecular representations (e.g. 'cartoon, spacefill, licorice'). Moreover, the viewer can be embedded in other web sites to provide specialized visualizations of entries in structural databases or results of structure-related calculations.
Collapse
Affiliation(s)
- Alexander S Rose
- Institut für Medizinische Physik und Biophysik, AG ProteInformatics, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Peter W Hildebrand
- Institut für Medizinische Physik und Biophysik, AG ProteInformatics, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
49
|
Nepomnyachiy S, Ben-Tal N, Kolodny R. CyToStruct: Augmenting the Network Visualization of Cytoscape with the Power of Molecular Viewers. Structure 2015; 23:941-948. [PMID: 25865247 DOI: 10.1016/j.str.2015.02.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 02/20/2015] [Accepted: 02/24/2015] [Indexed: 12/18/2022]
Abstract
It can be informative to view biological data, e.g., protein-protein interactions within a large complex, in a network representation coupled with three-dimensional structural visualizations of individual molecular entities. CyToStruct, introduced here, provides a transparent interface between the Cytoscape platform for network analysis and molecular viewers, including PyMOL, UCSF Chimera, VMD, and Jmol. CyToStruct launches and passes scripts to molecular viewers from the network's edges and nodes. We provide demonstrations to analyze interactions among subunits in large protein/RNA/DNA complexes, and similarities among proteins. CyToStruct enriches the network tools of Cytoscape by adding a layer of structural analysis, offering all capabilities implemented in molecular viewers. CyToStruct is available at https://bitbucket.org/sergeyn/cytostruct/wiki/Home and in the Cytoscape App Store. Given the coordinates of a molecular complex, our web server (http://trachel-srv.cs.haifa.ac.il/rachel/ppi/) automatically generates all files needed to visualize the complex as a Cytoscape network with CyToStruct bridging to PyMOL, UCSF Chimera, VMD, and Jmol.
Collapse
Affiliation(s)
- Sergey Nepomnyachiy
- Department of Computer Science & Engineering, Polytechnic Institute of NYU, Brooklyn, NY 11201, USA
| | - Nir Ben-Tal
- Department of Biochemistry and Molecular Biochemistry, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel.
| | - Rachel Kolodny
- Department of Computer Science, University of Haifa, Mount Carmel 31905, Israel.
| |
Collapse
|
50
|
|