1
|
Dibaj P, Safavi-Abbasi S, Asadollahi E. In vivo spectrally unmixed multi-photon imaging of longitudinal axon-glia changes in injured spinal white matter. Neurosci Lett 2024; 841:137959. [PMID: 39218293 DOI: 10.1016/j.neulet.2024.137959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/06/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Understanding the sequence of cellular responses and their contributions to pathomorphogical changes in spinal white matter injuries is a prerequisite for developing efficient therapeutic strategies for spinal cord injury (SCI) as well as neurodegenerative and inflammatory diseases of the spinal cord such as amyotrophic lateral sclerosis and multiple sclerosis. We have developed several types of surgical procedures suitable for acute one-time and chronic recurrent in vivo multiphoton microscopy of spinal white matter [1]. Sophisticated surgical procedures were combined with transgenic mouse technology to image spinal tissue labeled with up to four fluorescent proteins (FPs) in axons, astrocytes, microglia, and blood vessels. To clearly separate the simultaneously excited FPs, spectral unmixing including iterative procedures was performed after imaging the diversely labeled spinal white matter with a custom-made 4-channel two-photon laser-scanning microscope. In our longitudinal multicellular studies of injured spinal white matter, we imaged axonal dynamics and invasion of microglia and astrocytes for a time course of over 200 days after SCI. Our methods offer ideal platforms for investigating acute and chronic cellular dynamics, cell-cell interactions, and metabolite fluctuations in health and disease as well as pharmacological manipulations in vivo.
Collapse
Affiliation(s)
- Payam Dibaj
- Center for Rare Diseases Göttingen (ZSEG), Department of Pediatrics, University Medical Center Göttingen, Georg August University, 37075 Göttingen, Germany; Max-Planck-Institute for Multidisciplinary Sciences, 37075 Göttingen, Germany; Department of Neurology, Ökumenisches Hainich Klinikum, 99974 Mühlhausen, Germany.
| | - Sam Safavi-Abbasi
- Neurosurgical Medicine, Yavapai Regional Medical Group, Prescott, AZ 86301, USA
| | - Ebrahim Asadollahi
- Max-Planck-Institute for Multidisciplinary Sciences, 37075 Göttingen, Germany
| |
Collapse
|
2
|
Tang C, Jin Y, Wu M, Jia F, Lu X, Li J, Wu J, Zhu S, Wang Z, An D, Xiong W, Zhang Y, Xu H, Chen X. A biomimic anti-neuroinflammatory nanoplatform for active neutrophil extracellular traps targeting and spinal cord injury therapy. Mater Today Bio 2024; 28:101218. [PMID: 39221206 PMCID: PMC11364920 DOI: 10.1016/j.mtbio.2024.101218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/19/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
Traumatic spinal cord injury (SCI) always leads to severe neurological deficits and permanent damage. Neuroinflammation is a vital process of SCI and have become a promising target for SCI treatment. However, the neuroinflammation-targeted therapy would hinder the functional recovery of spinal cord and lead to the treatment failure. Herein, a biomimic anti-neuroinflammatory nanoplatform (DHCNPs) was developed for active neutrophil extracellular traps (NETs) targeting and SCI treatment. The curcumin-loaded liposome with the anti-inflammatory property acted as the core of the DHCNPs. Platelet membrane and neutrophil membrane were fused to form the biomimic hybrid membrane of the DHCNPs for hijacking neutrophils and neutralizing the elevated neutrophil-related proinflammatory cytokines, respectively. DNAse I modification on the hybrid membrane could achieve NETs degradation, blood spinal cord barrier, and neuron repair. Further studies proved that the DHCNPs could reprogram the multifaceted neuroinflammation and reverse the SCI process via nuclear factor kappa-B (NF-κB) pathway. We believe that the current study provides a new perspective for neuroinflammation inhibition and may shed new light on the treatment of SCI.
Collapse
Affiliation(s)
- Chunming Tang
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Yaoyao Jin
- Department of Emergency, The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, Huai'an, 223022, China
| | - Min Wu
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Feng Jia
- Department of Neurosurgery, Yancheng NO.1 People's Hospital, The Affiliated Yancheng First Hospital of Nanjing University Medical School, Yancheng, 224008, China
| | - Xiaowei Lu
- Department of Geriatric Neurology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Jinyu Li
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Jie Wu
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Senlin Zhu
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Zhiji Wang
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Di An
- Department of Emergency Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Wu Xiong
- Department of Human Anatomy, Nanjing Medical University, Nanjing, 211166, China
| | - Yongjie Zhang
- Department of Human Anatomy, Nanjing Medical University, Nanjing, 211166, China
| | - Huae Xu
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Xufeng Chen
- Department of Emergency Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| |
Collapse
|
3
|
Abdelaziz MA, Chen WH, Chang YW, Mindaye SA, Chen CC. Exploring the role of spinal astrocytes in the onset of hyperalgesic priming signals in acid-induced chronic muscle pain. PNAS NEXUS 2024; 3:pgae362. [PMID: 39228816 PMCID: PMC11370897 DOI: 10.1093/pnasnexus/pgae362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/13/2024] [Indexed: 09/05/2024]
Abstract
Hyperalgesic priming, a form of pain plasticity initiated by initial injury, leads to heightened sensitivity to subsequent noxious stimuli, contributing to chronic pain development in animals. While astrocytes play active roles in modulating synaptic transmission in various pain models, their specific involvement in hyperalgesic priming remains elusive. Here, we show that spinal astrocytes are essential for hyperalgesic priming formation in a mouse model of acid-induced muscle pain. We observed spinal astrocyte activation 4 h after initial acid injection, and inhibition of this activation prevented chronic pain development upon subsequent acid injection. Chemogenetic activation of spinal astrocytes mimicked the first acid-induced hyperalgesic priming. We also demonstrated that spinal phosphorylated extracellular regulated kinase (pERK)-positive neurons were mainly vesicular glutamate transporter-2 positive (Vglut2+) neurons after the first acid injection, and inhibition of spinal pERK prevented astrocyte activation. Furthermore, pharmacological inhibition of astrocytic glutamate transporters glutamate transporter-1 and glutamate-aspartate transporter abolished the hyperalgesic priming. Collectively, our results suggest that pERK activation in Vglut2+ neurons activate astrocytes through astrocytic glutamate transporters. This process eventually establishes hyperalgesic priming through spinal D-serine. We conclude that spinal astrocytes play a crucial role in the transition from acute to chronic pain.
Collapse
Affiliation(s)
- Mohamed Abbas Abdelaziz
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Cheng Kung University and Academia Sinica, Taipei 11529, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
- Zoology Department, Faculty of Science, Al-Azhar University Assiut Branch, Assiut 71524, Egypt
| | - Wei-Hsin Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Yu-Wang Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Selomon Assefa Mindaye
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Cheng Kung University and Academia Sinica, Taipei 11529, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Chien-Chang Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
4
|
Yang L, Yan C, Tao S, He Y, Zhao J, Wang Y, Wu Y, Liu N, Qin Y. In Vivo Imaging of Rabbit Follicles through Combining Ultrasound Bio-Microscopy and Intravital Window. Animals (Basel) 2024; 14:1727. [PMID: 38929346 PMCID: PMC11200761 DOI: 10.3390/ani14121727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
Continuous ovarian imaging has been proven to be a method for monitoring the development of follicles in vivo. The aim of this study was to evaluate the efficacy of combining ultrasound bio-microscopy (UBM) with an intravital window for follicle imaging in rabbits and to monitor the ovarian dynamic processes. New Zealand White female rabbits (n = 10) received ovarian translocation to a subcutaneous position. The ovarian tissue was sutured onto the abdominal muscles and covered with an intravital window for the continuous monitoring of the follicles using UBM. Results show that physiological changes (red blood cell and white blood cell counts, feed intake, and body weight change) in rabbits induced by surgery returned to normal physiological levels in one week. Furthermore, UBM could provide high-resolution imaging of follicles through the intravital window. Daily monitoring of ovarian dynamic processes for 6 days displayed variabilities in follicle counts and size. Collectively, these results provide a relatively new method to monitor ovarian dynamic processes and to understand the reproductive physiology of female rabbits.
Collapse
Affiliation(s)
- Lihan Yang
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China; (L.Y.); (C.Y.); (S.T.); (Y.H.); (J.Z.); (Y.W.); (Y.W.)
- National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, China
| | - Chang Yan
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China; (L.Y.); (C.Y.); (S.T.); (Y.H.); (J.Z.); (Y.W.); (Y.W.)
- National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, China
| | - Siming Tao
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China; (L.Y.); (C.Y.); (S.T.); (Y.H.); (J.Z.); (Y.W.); (Y.W.)
- National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, China
| | - Yifeilong He
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China; (L.Y.); (C.Y.); (S.T.); (Y.H.); (J.Z.); (Y.W.); (Y.W.)
- National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, China
| | - Jing Zhao
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China; (L.Y.); (C.Y.); (S.T.); (Y.H.); (J.Z.); (Y.W.); (Y.W.)
- National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, China
| | - Yanya Wang
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China; (L.Y.); (C.Y.); (S.T.); (Y.H.); (J.Z.); (Y.W.); (Y.W.)
- National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, China
| | - Yingjie Wu
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China; (L.Y.); (C.Y.); (S.T.); (Y.H.); (J.Z.); (Y.W.); (Y.W.)
- National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, China
| | - Ning Liu
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China; (L.Y.); (C.Y.); (S.T.); (Y.H.); (J.Z.); (Y.W.); (Y.W.)
- National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, China
| | - Yinghe Qin
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China; (L.Y.); (C.Y.); (S.T.); (Y.H.); (J.Z.); (Y.W.); (Y.W.)
- National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, China
| |
Collapse
|
5
|
Wu Y, Temple BA, Sevilla N, Zhang J, Zhu H, Zolotavin P, Jin Y, Duarte D, Sanders E, Azim E, Nimmerjahn A, Pfaff SL, Luan L, Xie C. Ultraflexible electrodes for recording neural activity in the mouse spinal cord during motor behavior. Cell Rep 2024; 43:114199. [PMID: 38728138 PMCID: PMC11233142 DOI: 10.1016/j.celrep.2024.114199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/10/2024] [Accepted: 04/22/2024] [Indexed: 05/12/2024] Open
Abstract
Implantable electrode arrays are powerful tools for directly interrogating neural circuitry in the brain, but implementing this technology in the spinal cord in behaving animals has been challenging due to the spinal cord's significant motion with respect to the vertebral column during behavior. Consequently, the individual and ensemble activity of spinal neurons processing motor commands remains poorly understood. Here, we demonstrate that custom ultraflexible 1-μm-thick polyimide nanoelectronic threads can conduct laminar recordings of many neuronal units within the lumbar spinal cord of unrestrained, freely moving mice. The extracellular action potentials have high signal-to-noise ratio, exhibit well-isolated feature clusters, and reveal diverse patterns of activity during locomotion. Furthermore, chronic recordings demonstrate the stable tracking of single units and their functional tuning over multiple days. This technology provides a path for elucidating how spinal circuits compute motor actions.
Collapse
Affiliation(s)
- Yu Wu
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA; Rice Neuroengineering Initiative, Rice University, Houston, TX 77030, USA
| | - Benjamin A Temple
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA 92037, USA
| | - Nicole Sevilla
- Rice Neuroengineering Initiative, Rice University, Houston, TX 77030, USA; Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Jiaao Zhang
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA; Rice Neuroengineering Initiative, Rice University, Houston, TX 77030, USA
| | - Hanlin Zhu
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA; Rice Neuroengineering Initiative, Rice University, Houston, TX 77030, USA
| | - Pavlo Zolotavin
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA; Rice Neuroengineering Initiative, Rice University, Houston, TX 77030, USA
| | - Yifu Jin
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA; Rice Neuroengineering Initiative, Rice University, Houston, TX 77030, USA
| | - Daniela Duarte
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Elischa Sanders
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Eiman Azim
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Axel Nimmerjahn
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Samuel L Pfaff
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| | - Lan Luan
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA; Rice Neuroengineering Initiative, Rice University, Houston, TX 77030, USA; Department of Bioengineering, Rice University, Houston, TX 77030, USA.
| | - Chong Xie
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA; Rice Neuroengineering Initiative, Rice University, Houston, TX 77030, USA; Department of Bioengineering, Rice University, Houston, TX 77030, USA.
| |
Collapse
|
6
|
Lavaud S, Bichara C, D'Andola M, Yeh SH, Takeoka A. Two inhibitory neuronal classes govern acquisition and recall of spinal sensorimotor adaptation. Science 2024; 384:194-201. [PMID: 38603479 DOI: 10.1126/science.adf6801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 03/06/2024] [Indexed: 04/13/2024]
Abstract
Spinal circuits are central to movement adaptation, yet the mechanisms within the spinal cord responsible for acquiring and retaining behavior upon experience remain unclear. Using a simple conditioning paradigm, we found that dorsal inhibitory neurons are indispensable for adapting protective limb-withdrawal behavior by regulating the transmission of a specific set of somatosensory information to enhance the saliency of conditioning cues associated with limb position. By contrast, maintaining previously acquired motor adaptation required the ventral inhibitory Renshaw cells. Manipulating Renshaw cells does not affect the adaptation itself but flexibly alters the expression of adaptive behavior. These findings identify a circuit basis involving two distinct populations of spinal inhibitory neurons, which enables lasting sensorimotor adaptation independently from the brain.
Collapse
Affiliation(s)
- Simon Lavaud
- VIB-Neuroelectronics Research Flanders (NERF), 3001 Leuven, Belgium
- KU Leuven, Department of Neuroscience and Leuven Brain Institute, 3000 Leuven, Belgium
| | - Charlotte Bichara
- VIB-Neuroelectronics Research Flanders (NERF), 3001 Leuven, Belgium
- KU Leuven, Department of Neuroscience and Leuven Brain Institute, 3000 Leuven, Belgium
| | - Mattia D'Andola
- VIB-Neuroelectronics Research Flanders (NERF), 3001 Leuven, Belgium
- KU Leuven, Department of Neuroscience and Leuven Brain Institute, 3000 Leuven, Belgium
| | - Shu-Hao Yeh
- VIB-Neuroelectronics Research Flanders (NERF), 3001 Leuven, Belgium
- KU Leuven, Department of Neuroscience and Leuven Brain Institute, 3000 Leuven, Belgium
| | - Aya Takeoka
- VIB-Neuroelectronics Research Flanders (NERF), 3001 Leuven, Belgium
- KU Leuven, Department of Neuroscience and Leuven Brain Institute, 3000 Leuven, Belgium
- IMEC, 3001 Leuven, Belgium
- RIKEN Center for Brain Science, Laboratory for Motor Circuit Plasticity, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| |
Collapse
|
7
|
Yarmolinsky DA, Zeng X, MacKinnon-Booth N, Greene C, Kim C, Woolf CJ. Selective modification of ascending spinal outputs in acute and neuropathic pain states. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.08.588581. [PMID: 38645252 PMCID: PMC11030409 DOI: 10.1101/2024.04.08.588581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Pain hypersensitivity arises from the plasticity of peripheral and spinal somatosensory neurons, which modifies nociceptive input to the brain and alters pain perception. We utilized chronic calcium imaging of spinal dorsal horn neurons to determine how the representation of somatosensory stimuli in the anterolateral tract, the principal pathway transmitting nociceptive signals to the brain, changes between distinct pain states. In healthy conditions, we identify stable, narrowly tuned outputs selective for cooling or warming, and a neuronal ensemble activated by intense/noxious thermal and mechanical stimuli. Induction of an acute peripheral sensitization with capsaicin selectively and transiently retunes nociceptive output neurons to encode low-intensity stimuli. In contrast, peripheral nerve injury-induced neuropathic pain results in a persistent suppression of innocuous spinal outputs coupled with activation of a normally silent population of high-threshold neurons. These results demonstrate the differential modulation of specific spinal outputs to the brain during nociceptive and neuropathic pain states.
Collapse
|
8
|
Cheng YT, Lett KM, Xu C, Schaffer CB. Three-photon excited fluorescence microscopy enables imaging of blood flow, neural structure and inflammatory response deep into mouse spinal cord in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.04.588110. [PMID: 38617307 PMCID: PMC11014502 DOI: 10.1101/2024.04.04.588110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Nonlinear optical microscopy enables non-invasive imaging in scattering samples with cellular resolution. The spinal cord connects the brain with the periphery and governs fundamental behaviors such as locomotion and somatosensation. Because of dense myelination on the dorsal surface, imaging to the spinal grey matter is challenging, even with two-photon microscopy. Here we show that three-photon excited fluorescence (3PEF) microscopy enables multicolor imaging at depths of up to ~550 μm into the mouse spinal cord, in vivo. We quantified blood flow across vessel types along the spinal vascular network. We then followed the response of neurites and microglia after occlusion of a surface venule, where we observed depth-dependent structural changes in neurites and interactions of perivascular microglia with vessel branches upstream from the clot. This work establishes that 3PEF imaging enables studies of functional dynamics and cell type interactions in the top 550 μm of the murine spinal cord, in vivo.
Collapse
Affiliation(s)
- Yu-Ting Cheng
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA
| | - Kawasi M. Lett
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Chris Xu
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA
| | - Chris B. Schaffer
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| |
Collapse
|
9
|
Celinskis D, Black CJ, Murphy J, Barrios-Anderson A, Friedman NG, Shaner NC, Saab CY, Gomez-Ramirez M, Borton DA, Moore CI. Toward a brighter constellation: multiorgan neuroimaging of neural and vascular dynamics in the spinal cord and brain. NEUROPHOTONICS 2024; 11:024209. [PMID: 38725801 PMCID: PMC11079446 DOI: 10.1117/1.nph.11.2.024209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 05/12/2024]
Abstract
Significance Pain comprises a complex interaction between motor action and somatosensation that is dependent on dynamic interactions between the brain and spinal cord. This makes understanding pain particularly challenging as it involves rich interactions between many circuits (e.g., neural and vascular) and signaling cascades throughout the body. As such, experimentation on a single region may lead to an incomplete and potentially incorrect understanding of crucial underlying mechanisms. Aim We aimed to develop and validate tools to enable detailed and extended observation of neural and vascular activity in the brain and spinal cord. The first key set of innovations was targeted to developing novel imaging hardware that addresses the many challenges of multisite imaging. The second key set of innovations was targeted to enabling bioluminescent (BL) imaging, as this approach can address limitations of fluorescent microscopy including photobleaching, phototoxicity, and decreased resolution due to scattering of excitation signals. Approach We designed 3D-printed brain and spinal cord implants to enable effective surgical implantations and optical access with wearable miniscopes or an open window (e.g., for one- or two-photon microscopy or optogenetic stimulation). We also tested the viability for BL imaging and developed a novel modified miniscope optimized for these signals (BLmini). Results We describe "universal" implants for acute and chronic simultaneous brain-spinal cord imaging and optical stimulation. We further describe successful imaging of BL signals in both foci and a new miniscope, the "BLmini," which has reduced weight, cost, and form-factor relative to standard wearable miniscopes. Conclusions The combination of 3D-printed implants, advanced imaging tools, and bioluminescence imaging techniques offers a coalition of methods for understanding spinal cord-brain interactions. Our work has the potential for use in future research into neuropathic pain and other sensory disorders and motor behavior.
Collapse
Affiliation(s)
- Dmitrijs Celinskis
- Carney Institute for Brain Science, Providence, Rhode Island, United States
| | | | - Jeremy Murphy
- Carney Institute for Brain Science, Providence, Rhode Island, United States
| | | | - Nina G. Friedman
- Carney Institute for Brain Science, Providence, Rhode Island, United States
| | - Nathan C. Shaner
- University of California San Diego, School of Medicine, La Jolla, California, United States
| | - Carl Y. Saab
- Cleveland Clinic Lerner Research Institute, Neurological Institute, Department of Biomedical Engineering, Cleveland, Ohio, United States
| | - Manuel Gomez-Ramirez
- University of Rochester, School of Arts and Sciences, Rochester, New York, United States
| | - David A. Borton
- Carney Institute for Brain Science, Providence, Rhode Island, United States
- Brown University, School of Engineering, Providence, Rhode Island, United States
- Center for Neurorestoration and Neurotechnology, Providence VA Medical Center, Providence, Rhode Island, United States
| | | |
Collapse
|
10
|
Deng J, Sun C, Zheng Y, Gao J, Cui X, Wang Y, Zhang L, Tang P. In vivo imaging of the neuronal response to spinal cord injury: a narrative review. Neural Regen Res 2024; 19:811-817. [PMID: 37843216 PMCID: PMC10664102 DOI: 10.4103/1673-5374.382225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 05/15/2023] [Accepted: 07/07/2023] [Indexed: 10/17/2023] Open
Abstract
Deciphering the neuronal response to injury in the spinal cord is essential for exploring treatment strategies for spinal cord injury (SCI). However, this subject has been neglected in part because appropriate tools are lacking. Emerging in vivo imaging and labeling methods offer great potential for observing dynamic neural processes in the central nervous system in conditions of health and disease. This review first discusses in vivo imaging of the mouse spinal cord with a focus on the latest imaging techniques, and then analyzes the dynamic biological response of spinal cord sensory and motor neurons to SCI. We then summarize and compare the techniques behind these studies and clarify the advantages of in vivo imaging compared with traditional neuroscience examinations. Finally, we identify the challenges and possible solutions for spinal cord neuron imaging.
Collapse
Affiliation(s)
- Junhao Deng
- Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Chang Sun
- Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
- Department of Orthopedics, Air Force Medical Center, PLA, Beijing, China
| | - Ying Zheng
- Medical School of Chinese PLA, Beijing, China
| | - Jianpeng Gao
- Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Xiang Cui
- Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Yu Wang
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China
| | - Licheng Zhang
- Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Peifu Tang
- Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| |
Collapse
|
11
|
Eto K, Cheung DL, Nabekura J. Sensory Processing of Cutaneous Temperature in the Peripheral and Central Nervous System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1461:127-137. [PMID: 39289278 DOI: 10.1007/978-981-97-4584-5_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Thermal perception is critical for sensing environmental temperature, keeping body temperature consistent, and avoiding thermal danger. Central to thermal perception is the detection of cutaneous (skin) temperature information by the peripheral nerves and its transmission to the spinal cord, thalamus, and downstream cortical areas including the insular cortex, primary somatosensory cortex, and secondary somatosensory cortex. Although much is still unknown about this process, advances in technology have enabled significant progress to be made in recent years.This chapter summarizes our current understanding of how the peripheral nerves, spinal cord, and brain process cutaneous temperature information to give rise to conscious thermal perception.
Collapse
Affiliation(s)
- Kei Eto
- Division of Homeostatic Development, National Institute for Physiological Sciences, Okazaki, Japan.
- Department of Physiology, School of Allied Health Sciences, Kitasato University, Tokyo, Japan.
| | - Dennis Lawrence Cheung
- Division of Homeostatic Development, National Institute for Physiological Sciences, Okazaki, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama, Japan
| | - Junichi Nabekura
- Division of Homeostatic Development, National Institute for Physiological Sciences, Okazaki, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama, Japan
- Department of Physiological Sciences, The Graduate School for Advanced Study, Okazaki, Japan
| |
Collapse
|
12
|
Celinskis D, Black CJ, Murphy J, Barrios-Anderson A, Friedman N, Shaner NC, Saab C, Gomez-Ramirez M, Lipscombe D, Borton DA, Moore CI. Towards a Brighter Constellation: Multi-Organ Neuroimaging of Neural and Vascular Dynamics in the Spinal Cord and Brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.25.573323. [PMID: 38234789 PMCID: PMC10793404 DOI: 10.1101/2023.12.25.573323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Significance Pain is comprised of a complex interaction between motor action and somatosensation that is dependent on dynamic interactions between the brain and spinal cord. This makes understanding pain particularly challenging as it involves rich interactions between many circuits (e.g., neural and vascular) and signaling cascades throughout the body. As such, experimentation on a single region may lead to an incomplete and potentially incorrect understanding of crucial underlying mechanisms. Aim Here, we aimed to develop and validate new tools to enable detailed and extended observation of neural and vascular activity in the brain and spinal cord. The first key set of innovations were targeted to developing novel imaging hardware that addresses the many challenges of multi-site imaging. The second key set of innovations were targeted to enabling bioluminescent imaging, as this approach can address limitations of fluorescent microscopy including photobleaching, phototoxicity and decreased resolution due to scattering of excitation signals. Approach We designed 3D-printed brain and spinal cord implants to enable effective surgical implantations and optical access with wearable miniscopes or an open window (e.g., for one- or two-photon microscopy or optogenetic stimulation). We also tested the viability for bioluminescent imaging, and developed a novel modified miniscope optimized for these signals (BLmini). Results Here, we describe novel 'universal' implants for acute and chronic simultaneous brain-spinal cord imaging and optical stimulation. We further describe successful imaging of bioluminescent signals in both foci, and a new miniscope, the 'BLmini,' which has reduced weight, cost and form-factor relative to standard wearable miniscopes. Conclusions The combination of 3D printed implants, advanced imaging tools, and bioluminescence imaging techniques offers a new coalition of methods for understanding spinal cord-brain interactions. This work has the potential for use in future research into neuropathic pain and other sensory disorders and motor behavior.
Collapse
Affiliation(s)
| | | | - Jeremy Murphy
- Carney Institute for Brain Science, Providence, RI, USA
| | | | - Nina Friedman
- Carney Institute for Brain Science, Providence, RI, USA
| | - Nathan C. Shaner
- University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Carl Saab
- Cleveland Clinic Lerner Research Institute, Department of Biomedical Engineering and Neurological Institute, Cleveland, OH, USA
| | | | | | - David A. Borton
- Carney Institute for Brain Science, Providence, RI, USA
- School of Engineering, Brown University, RI, USA
- Center for Neurorestoration and Neurotechnology, Providence VA Medical Center, RI, USA
| | | |
Collapse
|
13
|
Golan N, Ehrlich D, Bonanno J, O'Brien RF, Murillo M, Kauer SD, Ravindra N, Van Dijk D, Cafferty WB. Anatomical Diversity of the Adult Corticospinal Tract Revealed by Single-Cell Transcriptional Profiling. J Neurosci 2023; 43:7929-7945. [PMID: 37748862 PMCID: PMC10669816 DOI: 10.1523/jneurosci.0811-22.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 09/27/2023] Open
Abstract
The corticospinal tract (CST) forms a central part of the voluntary motor apparatus in all mammals. Thus, injury, disease, and subsequent degeneration within this pathway result in chronic irreversible functional deficits. Current strategies to repair the damaged CST are suboptimal in part because of underexplored molecular heterogeneity within the adult tract. Here, we combine spinal retrograde CST tracing with single-cell RNA sequencing (scRNAseq) in adult male and female mice to index corticospinal neuron (CSN) subtypes that differentially innervate the forelimb and hindlimb. We exploit publicly available datasets to confer anatomic specialization among CSNs and show that CSNs segregate not only along the forelimb and hindlimb axis but also by supraspinal axon collateralization. These anatomically defined transcriptional data allow us to use machine learning tools to build classifiers that discriminate between CSNs and cortical layer 2/3 and nonspinally terminating layer 5 neurons in M1 and separately identify limb-specific CSNs. Using these tools, CSN subtypes can be differentially identified to study postnatal patterning of the CST in vivo, leveraged to screen for novel limb-specific axon growth survival and growth activators in vitro, and ultimately exploited to repair the damaged CST after injury and disease.SIGNIFICANCE STATEMENT Therapeutic interventions designed to repair the damaged CST after spinal cord injury have remained functionally suboptimal in part because of an incomplete understanding of the molecular heterogeneity among subclasses of CSNs. Here, we combine spinal retrograde labeling with scRNAseq and annotate a CSN index by the termination pattern of their primary axon in the cervical or lumbar spinal cord and supraspinal collateral terminal fields. Using machine learning we have confirmed the veracity of our CSN gene lists to train classifiers to identify CSNs among all classes of neurons in primary motor cortex to study the development, patterning, homeostasis, and response to injury and disease, and ultimately target streamlined repair strategies to this critical motor pathway.
Collapse
Affiliation(s)
- Noa Golan
- Interdepartmental Neuroscience Program, Yale University School, New Haven, Connecticut 06511
- Department of Neurology, Yale University School, New Haven, Connecticut 06511
| | - Daniel Ehrlich
- Interdepartmental Neuroscience Program, Yale University School, New Haven, Connecticut 06511
- Department of Psychiatry, Yale University School, New Haven, Connecticut 06511
| | - James Bonanno
- Interdepartmental Neuroscience Program, Yale University School, New Haven, Connecticut 06511
- Department of Neurology, Yale University School, New Haven, Connecticut 06511
| | - Rory F O'Brien
- Department of Neurology, Yale University School, New Haven, Connecticut 06511
| | - Matias Murillo
- Interdepartmental Neuroscience Program, Yale University School, New Haven, Connecticut 06511
- Department of Neurology, Yale University School, New Haven, Connecticut 06511
| | - Sierra D Kauer
- Department of Neurology, Yale University School, New Haven, Connecticut 06511
| | - Neal Ravindra
- Department of Internal Medicine, Yale University School, New Haven, Connecticut 06511
- Department of Computer Science, Yale University School, New Haven, Connecticut 06511
| | - David Van Dijk
- Department of Internal Medicine, Yale University School, New Haven, Connecticut 06511
- Department of Computer Science, Yale University School, New Haven, Connecticut 06511
| | - William B Cafferty
- Department of Neurology, Yale University School, New Haven, Connecticut 06511
- Department of Neuroscience, Yale University School, New Haven, Connecticut 06511
| |
Collapse
|
14
|
Ramdya P, Ijspeert AJ. The neuromechanics of animal locomotion: From biology to robotics and back. Sci Robot 2023; 8:eadg0279. [PMID: 37256966 DOI: 10.1126/scirobotics.adg0279] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 05/05/2023] [Indexed: 06/02/2023]
Abstract
Robotics and neuroscience are sister disciplines that both aim to understand how agile, efficient, and robust locomotion can be achieved in autonomous agents. Robotics has already benefitted from neuromechanical principles discovered by investigating animals. These include the use of high-level commands to control low-level central pattern generator-like controllers, which, in turn, are informed by sensory feedback. Reciprocally, neuroscience has benefited from tools and intuitions in robotics to reveal how embodiment, physical interactions with the environment, and sensory feedback help sculpt animal behavior. We illustrate and discuss exemplar studies of this dialog between robotics and neuroscience. We also reveal how the increasing biorealism of simulations and robots is driving these two disciplines together, forging an integrative science of autonomous behavioral control with many exciting future opportunities.
Collapse
Affiliation(s)
- Pavan Ramdya
- Neuroengineering Laboratory, Brain Mind Institute and Institute of Bioengineering, EPFL, Lausanne, Switzerland
| | - Auke Jan Ijspeert
- Biorobotics Laboratory, Institute of Bioengineering, EPFL, Lausanne, Switzerland
| |
Collapse
|
15
|
Ahanonu B, Crowther A, Kania A, Casillas MR, Basbaum A. Long-term optical imaging of the spinal cord in awake, behaving animals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.22.541477. [PMID: 37292913 PMCID: PMC10245895 DOI: 10.1101/2023.05.22.541477] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Advances in optical imaging approaches and fluorescent biosensors have enabled an understanding of the spatiotemporal and long-term neural dynamics in the brain of awake animals. However, methodological difficulties and the persistence of post-laminectomy fibrosis have greatly limited similar advances in the spinal cord. To overcome these technical obstacles, we combined in vivo application of fluoropolymer membranes that inhibit fibrosis; a redesigned, cost-effective implantable spinal imaging chamber; and improved motion correction methods that together permit imaging of the spinal cord in awake, behaving mice, for months to over a year. We also demonstrate a robust ability to monitor axons, identify a spinal cord somatotopic map, conduct Ca2+ imaging of neural dynamics in behaving animals responding to pain-provoking stimuli, and observe persistent microglial changes after nerve injury. The ability to couple neural activity and behavior at the spinal cord level will drive insights not previously possible at a key location for somatosensory transmission to the brain.
Collapse
Affiliation(s)
- Biafra Ahanonu
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA
- These authors contributed equally
| | - Andrew Crowther
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA
- These authors contributed equally
| | - Artur Kania
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC, H2W 1R7, Canada
- Department of Cell Biology and Anatomy, and Division of Experimental Medicine, McGill University, Montréal, QC, H3A 2B2, Canada
| | - Mariela Rosa Casillas
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Allan Basbaum
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA
- Lead Contact
| |
Collapse
|
16
|
Zhou R, Li J, Chen Z, Wang R, Shen Y, Zhang R, Zhou F, Zhang Y. Pathological hemodynamic changes and leukocyte transmigration disrupt the blood-spinal cord barrier after spinal cord injury. J Neuroinflammation 2023; 20:118. [PMID: 37210532 DOI: 10.1186/s12974-023-02787-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 04/21/2023] [Indexed: 05/22/2023] Open
Abstract
BACKGROUND Blood-spinal cord barrier (BSCB) disruption is a key event after spinal cord injury (SCI), which permits unfavorable blood-derived substances to enter the neural tissue and exacerbates secondary injury. However, limited mechanical impact is usually followed by a large-scale BSCB disruption in SCI. How the BSCB disruption is propagated along the spinal cord in the acute period of SCI remains unclear. Thus, strategies for appropriate clinical treatment are lacking. METHODS A SCI contusion mouse model was established in wild-type and LysM-YFP transgenic mice. In vivo two-photon imaging and complementary studies, including immunostaining, capillary western blotting, and whole-tissue clearing, were performed to monitor BSCB disruption and verify relevant injury mechanisms. Clinically applied target temperature management (TTM) to reduce the core body temperature was tested for the efficacy of attenuating BSCB disruption. RESULTS Barrier leakage was detected in the contusion epicenter within several minutes and then gradually spread to more distant regions. Membrane expression of the main tight junction proteins remained unaltered at four hours post-injury. Many junctional gaps emerged in paracellular tight junctions at the small vessels from multiple spinal cord segments at 15 min post-injury. A previously unnoticed pathological hemodynamic change was observed in the venous system, which likely facilitated gap formation and barrier leakage by exerting abnormal physical force on the BSCB. Leukocytes were quickly initiated to transverse through the BSCB within 30 min post-SCI, actively facilitating gap formation and barrier leakage. Inducing leukocyte transmigration generated gap formation and barrier leakage. Furthermore, pharmacological alleviation of pathological hemodynamic changes or leukocyte transmigration reduced gap formation and barrier leakage. TTM had very little protective effects on the BSCB in the early period of SCI other than partially alleviating leukocyte infiltration. CONCLUSIONS Our data show that BSCB disruption in the early period of SCI is a secondary change, which is indicated by widespread gap formation in tight junctions. Pathological hemodynamic changes and leukocyte transmigration contribute to gap formation, which could advance our understanding of BSCB disruption and provide new clues for potential treatment strategies. Ultimately, TTM is inadequate to protect the BSCB in early SCI.
Collapse
Affiliation(s)
- Rubing Zhou
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, People's Republic of China
- Department of Neurobiology, School of Basic Medical Sciences and Neuroscience Research Institute, Peking University, Beijing, 100191, People's Republic of China
- Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of P.R. China, Beijing, 100191, People's Republic of China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, 100871, People's Republic of China
| | - Junzhao Li
- Department of Neurobiology, School of Basic Medical Sciences and Neuroscience Research Institute, Peking University, Beijing, 100191, People's Republic of China
- Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of P.R. China, Beijing, 100191, People's Republic of China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, 100871, People's Republic of China
| | - Zhengyang Chen
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Ruideng Wang
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Yin Shen
- Eye Center, Renmin Hospital of Wuhan University, Hubei, Wuhan, 430060, People's Republic of China
| | - Rong Zhang
- Department of Neurobiology, School of Basic Medical Sciences and Neuroscience Research Institute, Peking University, Beijing, 100191, People's Republic of China
- Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of P.R. China, Beijing, 100191, People's Republic of China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, 100871, People's Republic of China
| | - Fang Zhou
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, People's Republic of China.
| | - Yong Zhang
- Department of Neurobiology, School of Basic Medical Sciences and Neuroscience Research Institute, Peking University, Beijing, 100191, People's Republic of China.
- Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of P.R. China, Beijing, 100191, People's Republic of China.
- PKU-IDG/McGovern Institute for Brain Research, Beijing, 100871, People's Republic of China.
| |
Collapse
|
17
|
Lobo MEDV, Bates DO, Arkill KP, Hulse RP. Measurement of solute permeability in the mouse spinal cord. J Neurosci Methods 2023; 393:109880. [PMID: 37178727 DOI: 10.1016/j.jneumeth.2023.109880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/01/2023] [Accepted: 05/08/2023] [Indexed: 05/15/2023]
Abstract
BACKGROUND Sensory perception and motor dexterity is coordinated by the spinal cord, which remains effective due to maintenance of neuronal homeostasis. This is stringently controlled by the blood spinal cord barrier. Therefore, the function of the spinal cord is susceptible to alterations in the microvessel integrity (e.g. vascular leakage) and/or perfusion (e.g. changes in blood flow). NEW METHOD Spinal cord solute permeability was measured in anaesthetised mice. The lumbar spinal cord vertebra were stabilised and a coverslip secured to allow fluorescent tracers of vascular function and anatomy to be visualised in the vascular network. Fluorescence microscopy allowed real time measurements of vascular leakage and capillary perfusion within the spinal cord. RESULTS Capillaries were identified through fluorescent labelling of the endothelial luminal glycocalyx (wheat germ agglutin 555). Real time estimation of vascular permeability through visualisation of sodium fluorescein transport was recorded from identified microvessels in the lumbar dorsal horn of the spinal cord. COMPARISON WITH EXISTING METHOD(S) Current approaches have used histological and/or tracer based in-vivo assays alongside cell culture to determine endothelium integrity and/or function. These only provide a snapshot of the developing vasculopathy, restricting the understanding of physiological function or disease progression over time. CONCLUSIONS These techniques allow for direct visualisation of cellular and/or mechanistic influences upon vascular function and integrity, which can be applied to rodent models including disease, transgenic and/or viral approaches. This combination of attributes allows for real time understanding of the function of the vascular network within the spinal cord.
Collapse
Affiliation(s)
- Marlene Elisa Da Vitoria Lobo
- Division of Cancer and Stem Cells, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2UH
| | - David O Bates
- Division of Cancer and Stem Cells, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2UH; Centre of Membrane and Protein and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK
| | - Kenton P Arkill
- Division of Cancer and Stem Cells, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2UH
| | - Richard Philip Hulse
- School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS.
| |
Collapse
|
18
|
Sidorenko P, Buttolph M, Mejooli M, Eom CY, Schaffer CB, Wise F. Evaluation of a gain-managed nonlinear fiber amplifier for multiphoton microscopy. BIOMEDICAL OPTICS EXPRESS 2023; 14:2324-2332. [PMID: 37206123 PMCID: PMC10191666 DOI: 10.1364/boe.485226] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/23/2023] [Accepted: 03/20/2023] [Indexed: 05/21/2023]
Abstract
Two-photon excited fluorescence microscopy is a widely-employed imaging technique that enables the noninvasive study of biological specimens in three dimensions with sub-micrometer resolution. Here, we report an assessment of a gain-managed nonlinear (GMN) fiber amplifier for multiphoton microscopy. This recently-developed source delivers 58-nJ and 33-fs pulses at 31-MHz repetition rate. We show that the GMN amplifier enables high-quality deep-tissue imaging, and furthermore that the broad spectral bandwidth of the GMN amplifier can be exploited for superior spectral resolution when imaging multiple distinct fluorophores.
Collapse
Affiliation(s)
- Pavel Sidorenko
- School of Applied and Engineering Physics,
Cornell University, Ithaca, NY 14853, USA
| | - Michael Buttolph
- School of Applied and Engineering Physics,
Cornell University, Ithaca, NY 14853, USA
| | - Menansili Mejooli
- Meinig School of Biomedical Engineering,
Cornell University, Ithaca, NY 14853, USA
| | - Chi-Yong Eom
- Meinig School of Biomedical Engineering,
Cornell University, Ithaca, NY 14853, USA
| | - Chris B. Schaffer
- Meinig School of Biomedical Engineering,
Cornell University, Ithaca, NY 14853, USA
| | - Frank Wise
- School of Applied and Engineering Physics,
Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
19
|
Li J, Lu L, Binder K, Xiong J, Ye L, Cheng YH, Majri-Morrison S, Lu W, Lee JW, Zhang Z, Wu YZ, Zheng L, Lenardo MJ. Mechanisms of antigen-induced reversal of CNS inflammation in experimental demyelinating disease. SCIENCE ADVANCES 2023; 9:eabo2810. [PMID: 36857453 PMCID: PMC9977187 DOI: 10.1126/sciadv.abo2810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 12/27/2022] [Indexed: 06/18/2023]
Abstract
Autoimmune central nervous system (CNS) demyelinating diseases are a major public health burden and poorly controlled by current immunosuppressants. More precise immunotherapies with higher efficacy and fewer side effects are sought. We investigated the effectiveness and mechanism of an injectable myelin-based antigenic polyprotein MMPt (myelin oligodendrocyte glycoprotein, myelin basic protein and proteolipid protein, truncated). We find that it suppresses mouse experimental autoimmune encephalomyelitis without major side effects. MMPt induces rapid apoptosis of the encephalitogenic T cells and suppresses inflammation in the affected CNS. Intravital microscopy shows that MMPt is taken up by perivascular F4/80+ cells but not conventional antigen-presenting dendritic cells, B cells, or microglia. MMPt-stimulated F4/80+ cells induce reactive T cell immobilization and apoptosis in situ, resulting in reduced infiltration of inflammatory cells and chemokine production. Our study reveals alternative mechanisms that explain how cognate antigen suppresses CNS inflammation and may be applicable for effectively and safely treating demyelinating diseases.
Collapse
Affiliation(s)
- Jian Li
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Institute of Immunology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Lisen Lu
- MoE Key Laboratory for Biomedical Photonics, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Kyle Binder
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Jian Xiong
- Institute of Immunology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Lilin Ye
- Institute of Immunology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yan H. Cheng
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- NIAID Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sonia Majri-Morrison
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Wei Lu
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jae W. Lee
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Zhihong Zhang
- MoE Key Laboratory for Biomedical Photonics, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yu-zhang Wu
- Institute of Immunology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Lixin Zheng
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- NIAID Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Michael J. Lenardo
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- NIAID Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
20
|
Da Vitoria Lobo ME, Weir N, Hardowar L, Al Ojaimi Y, Madden R, Gibson A, Bestall SM, Hirashima M, Schaffer CB, Donaldson LF, Bates DO, Hulse RP. Hypoxia-induced carbonic anhydrase mediated dorsal horn neuron activation and induction of neuropathic pain. Pain 2022; 163:2264-2279. [PMID: 35353768 PMCID: PMC9578530 DOI: 10.1097/j.pain.0000000000002627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/17/2022] [Accepted: 02/23/2022] [Indexed: 11/27/2022]
Abstract
ABSTRACT Neuropathic pain, such as that seen in diabetes mellitus, results in part from central sensitisation in the dorsal horn. However, the mechanisms responsible for such sensitisation remain unclear. There is evidence that disturbances in the integrity of the spinal vascular network can be causative factors in the development of neuropathic pain. Here we show that reduced blood flow and vascularity of the dorsal horn leads to the onset of neuropathic pain. Using rodent models (type 1 diabetes and an inducible endothelial-specific vascular endothelial growth factor receptor 2 knockout mouse) that result in degeneration of the endothelium in the dorsal horn, we show that spinal cord vasculopathy results in nociceptive behavioural hypersensitivity. This also results in increased hypoxia in dorsal horn neurons, depicted by increased expression of hypoxia markers such as hypoxia inducible factor 1α, glucose transporter 3, and carbonic anhydrase 7. Furthermore, inducing hypoxia through intrathecal delivery of dimethyloxalylglycine leads to the activation of dorsal horn neurons as well as mechanical and thermal hypersensitivity. This shows that hypoxic signalling induced by reduced vascularity results in increased hypersensitivity and pain. Inhibition of carbonic anhydrase activity, through intraperitoneal injection of acetazolamide, inhibited hypoxia-induced pain behaviours. This investigation demonstrates that induction of a hypoxic microenvironment in the dorsal horn, as occurs in diabetes, is an integral process by which neurons are activated to initiate neuropathic pain states. This leads to the conjecture that reversing hypoxia by improving spinal cord microvascular blood flow could reverse or prevent neuropathic pain.
Collapse
Affiliation(s)
- Marlene E. Da Vitoria Lobo
- Division of Cancer and Stem Cells, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Nick Weir
- School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Lydia Hardowar
- School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Yara Al Ojaimi
- School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Ryan Madden
- Division of Cancer and Stem Cells, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Alex Gibson
- Division of Cancer and Stem Cells, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Samuel M. Bestall
- Pain Centre Versus Arthritis and School of Life Sciences, The Medical School QMC, University of Nottingham, Nottingham, United Kingdom
| | - Masanori Hirashima
- Division of Pharmacology, Niigata University Graduate School of Medical and Dental Sciences, Japan
| | - Chris B. Schaffer
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, United States
| | - Lucy F. Donaldson
- Pain Centre Versus Arthritis and School of Life Sciences, The Medical School QMC, University of Nottingham, Nottingham, United Kingdom
| | - David O. Bates
- Division of Cancer and Stem Cells, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
- Centre of Membrane and Protein and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, United Kingdom
| | - Richard Philip Hulse
- Division of Cancer and Stem Cells, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
- School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| |
Collapse
|
21
|
Hermans L, Kaynak M, Braun J, Ríos VL, Chen CL, Friedberg A, Günel S, Aymanns F, Sakar MS, Ramdya P. Microengineered devices enable long-term imaging of the ventral nerve cord in behaving adult Drosophila. Nat Commun 2022; 13:5006. [PMID: 36008386 PMCID: PMC9411199 DOI: 10.1038/s41467-022-32571-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 08/04/2022] [Indexed: 11/09/2022] Open
Abstract
The dynamics and connectivity of neural circuits continuously change on timescales ranging from milliseconds to an animal's lifetime. Therefore, to understand biological networks, minimally invasive methods are required to repeatedly record them in behaving animals. Here we describe a suite of devices that enable long-term optical recordings of the adult Drosophila melanogaster ventral nerve cord (VNC). These consist of transparent, numbered windows to replace thoracic exoskeleton, compliant implants to displace internal organs, a precision arm to assist implantation, and a hinged stage to repeatedly tether flies. To validate and illustrate our toolkit we (i) show minimal impact on animal behavior and survival, (ii) follow the degradation of chordotonal organ mechanosensory nerve terminals over weeks after leg amputation, and (iii) uncover waves of neural activity caffeine ingestion. Thus, our long-term imaging toolkit opens up the investigation of premotor and motor circuit adaptations in response to injury, drug ingestion, aging, learning, and disease.
Collapse
Affiliation(s)
- Laura Hermans
- Neuroengineering Laboratory, Brain Mind Institute & Institute of Bioengineering, EPFL, Lausanne, Switzerland
- Microbiorobotic Systems Laboratory, Institute of Mechanical Engineering & Institute of Bioengineering, EPFL, Lausanne, Switzerland
| | - Murat Kaynak
- Microbiorobotic Systems Laboratory, Institute of Mechanical Engineering & Institute of Bioengineering, EPFL, Lausanne, Switzerland
| | - Jonas Braun
- Neuroengineering Laboratory, Brain Mind Institute & Institute of Bioengineering, EPFL, Lausanne, Switzerland
| | - Victor Lobato Ríos
- Neuroengineering Laboratory, Brain Mind Institute & Institute of Bioengineering, EPFL, Lausanne, Switzerland
| | - Chin-Lin Chen
- Neuroengineering Laboratory, Brain Mind Institute & Institute of Bioengineering, EPFL, Lausanne, Switzerland
| | - Adam Friedberg
- Neuroengineering Laboratory, Brain Mind Institute & Institute of Bioengineering, EPFL, Lausanne, Switzerland
| | - Semih Günel
- Neuroengineering Laboratory, Brain Mind Institute & Institute of Bioengineering, EPFL, Lausanne, Switzerland
- Computer Vision Laboratory, EPFL, Lausanne, Switzerland
| | - Florian Aymanns
- Neuroengineering Laboratory, Brain Mind Institute & Institute of Bioengineering, EPFL, Lausanne, Switzerland
| | - Mahmut Selman Sakar
- Microbiorobotic Systems Laboratory, Institute of Mechanical Engineering & Institute of Bioengineering, EPFL, Lausanne, Switzerland.
| | - Pavan Ramdya
- Neuroengineering Laboratory, Brain Mind Institute & Institute of Bioengineering, EPFL, Lausanne, Switzerland.
| |
Collapse
|
22
|
Noristani HN. Intrinsic regulation of axon regeneration after spinal cord injury: Recent advances and remaining challenges. Exp Neurol 2022; 357:114198. [DOI: 10.1016/j.expneurol.2022.114198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/20/2022] [Accepted: 08/02/2022] [Indexed: 11/16/2022]
|
23
|
Yeon C, Im JM, Kim M, Kim YR, Chung E. Cranial and Spinal Window Preparation for in vivo Optical Neuroimaging in Rodents and Related Experimental Techniques. Exp Neurobiol 2022; 31:131-146. [PMID: 35786637 PMCID: PMC9272117 DOI: 10.5607/en22015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/03/2022] [Accepted: 06/15/2022] [Indexed: 11/19/2022] Open
Abstract
Optical neuroimaging provides an effective neuroscience tool for multi-scale investigation of the neural structures and functions, ranging from molecular, cellular activities to the inter-regional connectivity assessment. Amongst experimental preparations, the implementation of an artificial window to the central nervous system (CNS) is primarily required for optical visualization of the CNS and associated brain activities through the opaque skin and bone. Either thinning down or removing portions of the skull or spine is necessary for unobstructed long-term in vivo observations, for which types of the cranial and spinal window and applied materials vary depending on the study objectives. As diversely useful, a window can be designed to accommodate other experimental methods such as electrophysiology or optogenetics. Moreover, auxiliary apparatuses would allow the recording in synchrony with behavior of large-scale brain connectivity signals across the CNS, such as olfactory bulb, cerebral cortex, cerebellum, and spinal cord. Such advancements in the cranial and spinal window have resulted in a paradigm shift in neuroscience, enabling in vivo investigation of the brain function and dysfunction at the microscopic, cellular level. This Review addresses the types and classifications of windows used in optical neuroimaging while describing how to perform in vivo studies using rodent models in combination with other experimental modalities during behavioral tests. The cranial and spinal window has enabled longitudinal examination of evolving neural mechanisms via in situ visualization of the brain. We expect transformable and multi-functional cranial and spinal windows to become commonplace in neuroscience laboratories, further facilitating advances in optical neuroimaging systems.
Collapse
Affiliation(s)
- Chanmi Yeon
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Jeong Myo Im
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Minsung Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Young Ro Kim
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA.,Department of Radiology, Harvard Medical School, Boston, MA 02115, USA
| | - Euiheon Chung
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Korea.,AI Graduate School, Gwangju Institute of Science and Technology, Gwangju 61005, Korea.,Research Center for Photon Science Technology, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| |
Collapse
|
24
|
Long-term in vivo imaging of mouse spinal cord through an optically cleared intervertebral window. Nat Commun 2022; 13:1959. [PMID: 35414131 PMCID: PMC9005710 DOI: 10.1038/s41467-022-29496-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/17/2022] [Indexed: 11/08/2022] Open
Abstract
The spinal cord accounts for the main communication pathway between the brain and the peripheral nervous system. Spinal cord injury is a devastating and largely irreversible neurological trauma, and can result in lifelong disability and paralysis with no available cure. In vivo spinal cord imaging in mouse models without introducing immunological artifacts is critical to understand spinal cord pathology and discover effective treatments. We developed a minimally invasive intervertebral window by retaining the ligamentum flavum to protect the underlying spinal cord. By introducing an optical clearing method, we achieve repeated two-photon fluorescence and stimulated Raman scattering imaging at subcellular resolution with up to 15 imaging sessions over 6-167 days and observe no inflammatory response. Using this optically cleared intervertebral window, we study neuron-glia dynamics following laser axotomy and observe strengthened contact of microglia with the nodes of Ranvier during axonal degeneration. By enabling long-term, repetitive, stable, high-resolution and inflammation-free imaging of mouse spinal cord, our method provides a reliable platform in the research aiming at interpretation of spinal cord physiology and pathology.
Collapse
|
25
|
Younis A, Hardowar L, Barker S, Hulse RP. The consequence of endothelial remodelling on the blood spinal cord barrier and nociception. Curr Res Physiol 2022; 5:184-192. [PMID: 35434652 PMCID: PMC9010889 DOI: 10.1016/j.crphys.2022.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/09/2022] [Accepted: 03/30/2022] [Indexed: 12/01/2022] Open
Abstract
Nociception is a fundamental acute protective mechanism that prevents harm to an organism. Understanding the integral processes that control nociceptive processing are fundamental to our appreciation of which cellular and molecular features underlie this process. There is an extensive understanding of how sensory neurons interpret differing sensory modalities and intensities. However, it is widely appreciated that the sensory neurons do not act alone. These work in harmony with inflammatory and vascular systems to modulate pain perception. The spinal cord has an extensive interaction with the capillary network in the form of a blood spinal cord barrier to ensure homeostatic control of the spinal cord neuron milieu. However, there is an extensive appreciation that disturbances in the blood spinal cord barrier contribute to the onset of chronic pain. Enhanced vascular permeability and impaired blood perfusion have both been highlighted as contributors to chronic pain manifestation. Here, we discuss the evidence that demonstrates alterations in the blood spinal cord barrier influences nociceptive processing and perception of pain.
Collapse
Affiliation(s)
- Awais Younis
- School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Lydia Hardowar
- School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Sarah Barker
- School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Richard Philip Hulse
- School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK
| |
Collapse
|
26
|
In vivo imaging in experimental spinal cord injury – Techniques and trends. BRAIN AND SPINE 2022; 2:100859. [PMID: 36248104 PMCID: PMC9560701 DOI: 10.1016/j.bas.2021.100859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/15/2021] [Accepted: 12/22/2021] [Indexed: 11/23/2022]
Abstract
Introduction Traumatic Spinal Cord Injury (SCI) is one of the leading causes of disability in the world. Treatment is limited to supportive care and no curative therapy exists. Experimental research to understand the complex pathophysiology and potential mediators of spinal cord regeneration is essential to develop innovative translational therapies. A multitude of experimental imaging methods to monitor spinal cord regeneration in vivo have developed over the last years. However, little literature exists to deal with advanced imaging methods specifically available in SCI research. Research Question This systematic literature review examines the current standards in experimental imaging in SCI allowing for in vivo imaging of spinal cord regeneration on a neuronal, vascular, and cellular basis. Material and Methods Articles were included meeting the following criteria: experimental research, original studies, rodent subjects, and intravital imaging. Reviewed in detail are microstructural and functional Magnetic Resonance Imaging, Micro-Computed Tomography, Laser Speckle Imaging, Very High Resolution Ultrasound, and in vivo microscopy techniques. Results Following the PRISMA guidelines for systematic reviews, 689 articles were identified for review, of which 492 were sorted out after screening and an additional 104 after detailed review. For qualitative synthesis 93 articles were included in this publication. Discussion and Conclusion With this study we give an up-to-date overview about modern experimental imaging techniques with the potential to advance the knowledge on spinal cord regeneration following SCI. A thorough knowledge of the strengths and limitations of the reviewed techniques will help to optimally exploit our current experimental armamentarium in the field. In vivo imaging is essential to enhance the understanding of SCI pathophysiology. Multiple experimental imaging methods have evolved over the past years. Detailed review of in vivo (f)MRI, μCT, VHRUS, and Microcopy in experimental SCI. Experimental imaging allows for longitudinal examination to the cellular level. Knowledge of the strengths and limitations is essential for future research.
Collapse
|
27
|
Heflin JK, Sun W. Novel Toolboxes for the Investigation of Activity-Dependent Myelination in the Central Nervous System. Front Cell Neurosci 2021; 15:769809. [PMID: 34795563 PMCID: PMC8592894 DOI: 10.3389/fncel.2021.769809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/06/2021] [Indexed: 11/13/2022] Open
Abstract
Myelination is essential for signal processing within neural networks. Emerging data suggest that neuronal activity positively instructs myelin development and myelin adaptation during adulthood. However, the underlying mechanisms controlling activity-dependent myelination have not been fully elucidated. Myelination is a multi-step process that involves the proliferation and differentiation of oligodendrocyte precursor cells followed by the initial contact and ensheathment of axons by mature oligodendrocytes. Conventional end-point studies rarely capture the dynamic interaction between neurons and oligodendrocyte lineage cells spanning such a long temporal window. Given that such interactions and downstream signaling cascades are likely to occur within fine cellular processes of oligodendrocytes and their precursor cells, overcoming spatial resolution limitations represents another technical hurdle in the field. In this mini-review, we discuss how advanced genetic, cutting-edge imaging, and electrophysiological approaches enable us to investigate neuron-oligodendrocyte lineage cell interaction and myelination with both temporal and spatial precision.
Collapse
Affiliation(s)
- Jack Kent Heflin
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Wenjing Sun
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
28
|
Fan W, Sdrulla AD. Differential modulation of excitatory and inhibitory populations of superficial dorsal horn neurons in lumbar spinal cord by Aβ-fiber electrical stimulation. Pain 2021; 161:1650-1660. [PMID: 32068665 DOI: 10.1097/j.pain.0000000000001836] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Activation of Aβ-fibers is fundamental to numerous analgesic therapies, yet its effects on dorsal horn neuronal activity remain unclear. We used multiphoton microscopy of the genetically encoded calcium indicator GCaMP6s to characterize the effects of Aβ-fiber electrical stimulation (Aβ-ES) on neural activity. Specifically, we quantified somatic responses evoked by C-fiber intensity stimulation before and after a 10-minute train of dorsal root Aβ-ES in superficial dorsal horn (SDH) neurons, in mouse lumbar spinal cord. Aβ-ES did not alter C-fiber-evoked activity when GCaMP6s was virally expressed in all neurons, in an intact lumbar spinal cord preparation. However, when we restricted the expression of GCaMP6s to excitatory or inhibitory populations, we observed that Aβ-ES modestly potentiated evoked activity of excitatory neurons and depressed that of inhibitory neurons. Aβ-ES had no significant effects in a slice preparation in either SDH population. A larger proportion of SDH neurons was activated by Aβ-ES when delivered at a root rostral or caudal to the segment where the imaging and C-fiber intensity stimulation occurred. Aβ-ES effects on excitatory and inhibitory populations depended on the root used. Our findings suggest that Aβ-ES differentially modulates lumbar spinal cord SDH populations in a cell type- and input-specific manner. Furthermore, they underscore the importance of the Aβ-ES delivery site, suggesting that Aβ stimulation at a segment adjacent to where the pain is may improve analgesic efficacy.
Collapse
Affiliation(s)
- Wei Fan
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR, United States
| | | |
Collapse
|
29
|
Kawanabe R, Yoshihara K, Hatada I, Tsuda M. Activation of spinal dorsal horn astrocytes by noxious stimuli involves descending noradrenergic signaling. Mol Brain 2021; 14:79. [PMID: 33971918 PMCID: PMC8108464 DOI: 10.1186/s13041-021-00788-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/05/2021] [Indexed: 11/10/2022] Open
Abstract
Astrocytes are critical regulators of neuronal function in the central nervous system (CNS). We have previously shown that astrocytes in the spinal dorsal horn (SDH) have increased intracellular Ca2+ levels following intraplantar injection of the noxious irritant, formalin. However, the underlying mechanisms remain unknown. We investigated these mechanisms by focusing on the role of descending noradrenergic (NAergic) signaling because our recent study revealed the essential role of the astrocytic Ca2+ responses evoked by intraplantar capsaicin. Using in vivo SDH imaging, we found that the Ca2+ level increase in SDH astrocytes induced by intraplantar formalin injection was suppressed by ablation of SDH-projecting locus coeruleus (LC)-NAergic neurons. Furthermore, the formalin-induced Ca2+ response was dramatically decreased by the loss of α1A-adrenaline receptors (ARs) in astrocytes located in the superficial laminae of the SDH. Moreover, similar inhibition was observed in mice pretreated intrathecally with an α1A-AR-specific antagonist. Therefore, activation of α1A-ARs via descending LC-NAergic signals may be a common mechanism underlying astrocytic Ca2+ responses in the SDH evoked by noxious stimuli, including chemical irritants.
Collapse
Affiliation(s)
- Riku Kawanabe
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kohei Yoshihara
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Izuho Hatada
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi, Gunma, 371-8512, Japan
| | - Makoto Tsuda
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
30
|
Multi-Modal Multi-Spectral Intravital Microscopic Imaging of Signaling Dynamics in Real-Time during Tumor-ImmuneInteractions. Cells 2021; 10:cells10030499. [PMID: 33652682 PMCID: PMC7996937 DOI: 10.3390/cells10030499] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/11/2021] [Accepted: 02/22/2021] [Indexed: 11/21/2022] Open
Abstract
Intravital microscopic imaging (IVM) allows for the study of interactions between immune cells and tumor cells in a dynamic, physiologically relevant system in vivo. Current IVM strategies primarily use fluorescence imaging; however, with the advances in bioluminescence imaging and the development of new bioluminescent reporters with expanded emission spectra, the applications for bioluminescence are extending to single cell imaging. Herein, we describe a molecular imaging window chamber platform that uniquely combines both bioluminescent and fluorescent genetically encoded reporters, as well as exogenous reporters, providing a powerful multi-plex strategy to study molecular and cellular processes in real-time in intact living systems at single cell resolution all in one system. We demonstrate that our molecular imaging window chamber platform is capable of imaging signaling dynamics in real-time at cellular resolution during tumor progression. Importantly, we expand the utility of IVM by modifying an off-the-shelf commercial system with the addition of bioluminescence imaging achieved by the addition of a CCD camera and demonstrate high quality imaging within the reaches of any biology laboratory.
Collapse
|
31
|
Lee B, Cho Y. Experimental Model Systems for Understanding Human Axonal Injury Responses. Int J Mol Sci 2021; 22:E474. [PMID: 33418850 PMCID: PMC7824864 DOI: 10.3390/ijms22020474] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/03/2020] [Accepted: 12/30/2020] [Indexed: 12/26/2022] Open
Abstract
Neurons are structurally unique and have dendrites and axons that are vulnerable to injury. Some neurons in the peripheral nervous system (PNS) can regenerate their axons after injuries. However, most neurons in the central nervous system (CNS) fail to do so, resulting in irreversible neurological disorders. To understand the mechanisms of axon regeneration, various experimental models have been utilized in vivo and in vitro. Here, we collate the key experimental models that revealed the important mechanisms regulating axon regeneration and degeneration in different systems. We also discuss the advantages of experimenting with the rodent model, considering the application of these findings in understanding human diseases and for developing therapeutic methods.
Collapse
Affiliation(s)
| | - Yongcheol Cho
- Laboratory of Axon Regeneration & Degeneration, Department of Life Sciences, Korea University, Anam-ro 145, Seongbuk-gu, Seoul 02841, Korea;
| |
Collapse
|
32
|
Staikopoulos V, Qiao S, Liu J, Song X, Yang X, Luo Q, Hutchinson MR, Zhang Z. Graded peripheral nerve injury creates mechanical allodynia proportional to the progression and severity of microglial activity within the spinal cord of male mice. Brain Behav Immun 2021; 91:568-577. [PMID: 33197546 DOI: 10.1016/j.bbi.2020.11.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/31/2020] [Accepted: 11/11/2020] [Indexed: 12/20/2022] Open
Abstract
The reactivity of microglia within the spinal cord in response to nerve injury, has been associated with the development and maintenance of neuropathic pain. However, the temporal changes in microglial reactivity following nerve injury remains to be defined. Importantly, the magnitude of behavioural allodynia displayed and the relationship to the phenotypic microglial changes is also unexplored. Using a heterozygous CX3CR1gfp+ transgenic mouse strain, we monitored microglial activity as measured by cell density, morphology, process movement and process length over 14 days following chronic constriction of the sciatic nerve via in vivo confocal microscopy. Uniquely this relationship was explored in groups of male mice which had graded nerve injury and associated graded behavioural mechanical nociceptive sensitivity. Significant mechanical allodynia was quantified from the ipsilateral hind paw and this interacted with the extent of nerve injury from day 5 to day 14 (p < 0.009). The extent of this ipsilateral allodynia was proportional to the nerve injury from day 5 to 14 (Spearman rho = -0.58 to -0.77; p < 0.002). This approach allowed for the assessment of the association of spinal microglial changes with the magnitude of the mechanical sensitivity quantified behaviourally. Additionally, the haemodynamic response in the somatosensory cortex was quantified as a surrogate measure of neuronal activity. We found that spinal dorsal horn microglia underwent changes unilateral to the injury in density (Spearman rho = 0.47; p = 0.01), velocity (Spearman rho = -0.68; p = 0.00009), and circularity (Spearman rho = 0.55; p = 0.01) proportional to the degree of the neuronal injury. Importantly, these data demonstrate for the first time that the mechanical allodynia behaviour is not a binary all or nothing state, and that microglial reactivity change proportional to this behavioural measurement. Increased total haemoglobin levels in the somatosensory cortex of higher-grade injured animals was observed when compared to sham controls suggesting increased neuronal activity in this brain region. The degree of phenotypic microglial changes quantified here, may explain how microglia can induce both rapid onset and sustained functional changes in the spinal cord dorsal horn, following peripheral injury.
Collapse
Affiliation(s)
- Vasiliki Staikopoulos
- ARC Centre of Excellence for Nanoscale Biophotonics, University of Adelaide, Adelaide Medical School, Adelaide, South Australia, Australia
| | - Sha Qiao
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Wuhan, Hubei, PR China
| | - Jiajun Liu
- ARC Centre of Excellence for Nanoscale Biophotonics, University of Adelaide, Adelaide Medical School, Adelaide, South Australia, Australia
| | - Xianlin Song
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Wuhan, Hubei, PR China
| | - Xiaoquan Yang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Wuhan, Hubei, PR China
| | - Qingming Luo
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Wuhan, Hubei, PR China; School of Biomedical Engineering, Hainan University, Haikou, Hainan 570228, PR China
| | - Mark R Hutchinson
- ARC Centre of Excellence for Nanoscale Biophotonics, University of Adelaide, Adelaide Medical School, Adelaide, South Australia, Australia
| | - Zhihong Zhang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Wuhan, Hubei, PR China; School of Biomedical Engineering, Hainan University, Haikou, Hainan 570228, PR China.
| |
Collapse
|
33
|
Bares AJ, Mejooli MA, Pender MA, Leddon SA, Tilley S, Lin K, Dong J, Kim M, Fowell DJ, Nishimura N, Schaffer CB. Hyperspectral multiphoton microscopy for in vivo visualization of multiple, spectrally overlapped fluorescent labels. OPTICA 2020; 7:1587-1601. [PMID: 33928182 PMCID: PMC8081374 DOI: 10.1364/optica.389982] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 09/30/2020] [Indexed: 05/17/2023]
Abstract
The insensitivity of multiphoton microscopy to optical scattering enables high-resolution, high-contrast imaging deep into tissue, including in live animals. Scattering does, however, severely limit the use of spectral dispersion techniques to improve spectral resolution. In practice, this limited spectral resolution together with the need for multiple excitation wavelengths to excite different fluorophores limits multiphoton microscopy to imaging a few, spectrally-distinct fluorescent labels at a time, restricting the complexity of biological processes that can be studied. Here, we demonstrate a hyperspectral multiphoton microscope that utilizes three different wavelength excitation sources together with multiplexed fluorescence emission detection using angle-tuned bandpass filters. This microscope maintains scattering insensitivity, while providing high enough spectral resolution on the emitted fluorescence and capitalizing on the wavelength-dependent nonlinear excitation of fluorescent dyes to enable clean separation of multiple, spectrally overlapping labels, in vivo. We demonstrated the utility of this instrument for spectral separation of closely-overlapped fluorophores in samples containing ten different colors of fluorescent beads, live cells expressing up to seven different fluorescent protein fusion constructs, and in multiple in vivo preparations in mouse cortex and inflamed skin with up to eight different cell types or tissue structures distinguished.
Collapse
Affiliation(s)
- Amanda J. Bares
- The Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Menansili A. Mejooli
- The Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Mitchell A. Pender
- The Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Scott A. Leddon
- Center for Vaccine Biology and Immunology, Dept. of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Steven Tilley
- The Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Karen Lin
- The Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Jingyuan Dong
- The Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Minsoo Kim
- Center for Vaccine Biology and Immunology, Dept. of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Deborah J. Fowell
- Center for Vaccine Biology and Immunology, Dept. of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Nozomi Nishimura
- The Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Chris B. Schaffer
- The Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
34
|
Canty AJ, Jackson JS, Huang L, Trabalza A, Bass C, Little G, Tortora M, Khan S, De Paola V. In vivo imaging of injured cortical axons reveals a rapid onset form of Wallerian degeneration. BMC Biol 2020; 18:170. [PMID: 33208154 PMCID: PMC7677840 DOI: 10.1186/s12915-020-00869-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 09/16/2020] [Indexed: 12/22/2022] Open
Abstract
Background Despite the widespread occurrence of axon and synaptic loss in the injured and diseased nervous system, the cellular and molecular mechanisms of these key degenerative processes remain incompletely understood. Wallerian degeneration (WD) is a tightly regulated form of axon loss after injury, which has been intensively studied in large myelinated fibre tracts of the spinal cord, optic nerve and peripheral nervous system (PNS). Fewer studies, however, have focused on WD in the complex neuronal circuits of the mammalian brain, and these were mainly based on conventional endpoint histological methods. Post-mortem analysis, however, cannot capture the exact sequence of events nor can it evaluate the influence of elaborated arborisation and synaptic architecture on the degeneration process, due to the non-synchronous and variable nature of WD across individual axons. Results To gain a comprehensive picture of the spatiotemporal dynamics and synaptic mechanisms of WD in the nervous system, we identify the factors that regulate WD within the mouse cerebral cortex. We combined single-axon-resolution multiphoton imaging with laser microsurgery through a cranial window and a fluorescent membrane reporter. Longitudinal imaging of > 150 individually injured excitatory cortical axons revealed a threshold length below which injured axons consistently underwent a rapid-onset form of WD (roWD). roWD started on average 20 times earlier and was executed 3 times slower than WD described in other regions of the nervous system. Cortical axon WD and roWD were dependent on synaptic density, but independent of axon complexity. Finally, pharmacological and genetic manipulations showed that a nicotinamide adenine dinucleotide (NAD+)-dependent pathway could delay cortical roWD independent of transcription in the damaged neurons, demonstrating further conservation of the molecular mechanisms controlling WD in different areas of the mammalian nervous system. Conclusions Our data illustrate how in vivo time-lapse imaging can provide new insights into the spatiotemporal dynamics and synaptic mechanisms of axon loss and assess therapeutic interventions in the injured mammalian brain.
Collapse
Affiliation(s)
- Alison Jane Canty
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, Australia.
| | - Johanna Sara Jackson
- Dementia Research Institute at Imperial College, Department of Brain Sciences, Imperial College London, London, W12 0NN, UK
| | - Lieven Huang
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Antonio Trabalza
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Cher Bass
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Graham Little
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Maria Tortora
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Shabana Khan
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Vincenzo De Paola
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, W12 0NN, UK. .,Medical Research Council London Institute of Medical Sciences, London, W12 0NN, UK.
| |
Collapse
|
35
|
Orem BC, Rajaee A, Stirling DP. IP 3R-mediated intra-axonal Ca 2+ release contributes to secondary axonal degeneration following contusive spinal cord injury. Neurobiol Dis 2020; 146:105123. [PMID: 33011333 DOI: 10.1016/j.nbd.2020.105123] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/15/2020] [Accepted: 09/28/2020] [Indexed: 01/11/2023] Open
Abstract
Secondary axonal loss contributes to the persistent functional disability following trauma. Consequently, preserving axons following spinal cord injury (SCI) is a major therapeutic goal to improve neurological outcome; however, the complex molecular mechanisms that mediate secondary axonal degeneration remain unclear. We previously showed that IP3R-mediated Ca2+ release contributes to axonal dieback and axonal loss following an ex vivo laser-induced SCI. Nevertheless, targeting IP3R in a clinically relevant in vivo model of SCI and determining its contribution to secondary axonal degeneration has yet to be explored. Here we used intravital two-photon excitation microscopy to assess the role of IP3R in secondary axonal degeneration in real-time after a contusive-SCI in vivo. To visualize Ca2+ changes specifically in spinal axons over time, adult 6-8 week-old triple transgenic Avil-Cre:Ai9:Ai95 (sensory neuron-specific expression of tdTomato and the genetic calcium indicator GCaMP6f) mice were subjected to a mild (30 kdyn) T12 contusive-SCI and received delayed treatment with the IP3R blocker 2-APB (100 μM, intrathecal delivery at 3, and 24 h following injury) or vehicle control. To determine the IP3R subtype involved, we knocked-down IP3R3 using capped phosphodiester oligonucleotides. Delayed treatment with 2-APB significantly reduced axonal spheroids, increased axonal survival, and reduced intra-axonal Ca2+ accumulation within dorsal column axons at 24 h following SCI in vivo. Additionally, knockdown of IP3R3 yielded increased axon survival 24 h post-SCI. These results suggest that IP3R-mediated Ca2+ release contributes to secondary axonal degeneration in vivo following SCI.
Collapse
Affiliation(s)
- Ben C Orem
- Kentucky Spinal Cord Injury Research Center, University of Louisville, School of Medicine, Louisville, KY 40202, USA; Anatomical Sciences and Neurobiology, University of Louisville, School of Medicine, Louisville, KY 40202, USA
| | - Arezoo Rajaee
- Kentucky Spinal Cord Injury Research Center, University of Louisville, School of Medicine, Louisville, KY 40202, USA; Departments of Neurological Surgery, University of Louisville, School of Medicine, Louisville, KY 40202, USA
| | - David P Stirling
- Kentucky Spinal Cord Injury Research Center, University of Louisville, School of Medicine, Louisville, KY 40202, USA; Departments of Neurological Surgery, University of Louisville, School of Medicine, Louisville, KY 40202, USA; Anatomical Sciences and Neurobiology, University of Louisville, School of Medicine, Louisville, KY 40202, USA; Microbiology and Immunology, University of Louisville, School of Medicine, Louisville, KY 40202, USA.
| |
Collapse
|
36
|
Ceto S, Sekiguchi KJ, Takashima Y, Nimmerjahn A, Tuszynski MH. Neural Stem Cell Grafts Form Extensive Synaptic Networks that Integrate with Host Circuits after Spinal Cord Injury. Cell Stem Cell 2020; 27:430-440.e5. [PMID: 32758426 DOI: 10.1016/j.stem.2020.07.007] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/11/2020] [Accepted: 07/08/2020] [Indexed: 02/06/2023]
Abstract
Neural stem/progenitor cell (NSPC) grafts can integrate into sites of spinal cord injury (SCI) and generate neuronal relays across lesions that can provide functional benefit. To determine if and how grafts become synaptically organized and connect with host systems, we performed calcium imaging of NSPC grafts in SCI sites in vivo and in adult spinal cord slices. NSPC grafts organize into localized and spontaneously active synaptic networks. Optogenetic stimulation of host corticospinal tract axons regenerating into grafts elicited distinct and segregated neuronal network responses throughout the graft. Moreover, optogenetic stimulation of graft-derived axons extending from the graft into the denervated spinal cord also triggered local host neuronal network responses. In vivo imaging revealed that behavioral stimulation likewise elicited focal synaptic responses within grafts. Thus neural progenitor grafts can form functional synaptic subnetworks whose activity patterns resemble intact spinal cord.
Collapse
Affiliation(s)
- Steven Ceto
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA; Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA; Veterans Administration Medical Center, San Diego, La Jolla, CA 92161, USA.
| | - Kohei J Sekiguchi
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Yoshio Takashima
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA; Veterans Administration Medical Center, San Diego, La Jolla, CA 92161, USA
| | - Axel Nimmerjahn
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Mark H Tuszynski
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA; Veterans Administration Medical Center, San Diego, La Jolla, CA 92161, USA.
| |
Collapse
|
37
|
Oxytocin prevents neuronal network pain-related changes on spinal cord dorsal horn in vitro. Cell Calcium 2020; 90:102246. [PMID: 32590238 DOI: 10.1016/j.ceca.2020.102246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/02/2020] [Accepted: 06/16/2020] [Indexed: 12/28/2022]
Abstract
Recently, oxytocin (OT) has been studied as a potential modulator of endogenous analgesia by acting upon pain circuits at the spinal cord and supraspinal levels. Yet the detailed action mechanisms of OT are still undetermined. The present study aimed to evaluate the action of OT in the spinal cord dorsal horn network under nociceptive-like conditions induced by the activation of the N-methyl-d-aspartate (NMDA) receptor and formalin injection, using calcium imaging techniques. Results demonstrate that the spontaneous Ca2+-dependent activity of the dorsal horn cells was scarce, and the coactivity of cells was mainly absent. When NMDA was applied, high rates of activity and coactivity occurred in the dorsal horn cells; these rates of high activity mimicked the activity dynamics evoked by a neuropathic pain condition. In addition, although OT treatment increased activity rates, it was also capable of disrupting the conformation of coordinated activity previously consolidated by NMDA treatment, without showing any effect by itself. Altogether, our results suggest that OT globally prevents the formation of coordinated patterns previously generated by nociceptive-like conditions on dorsal horn cells by NMDA application, which supports previous evidence showing that OT represents a potential therapeutic alternative for the treatment of chronic neuropathic pain.
Collapse
|
38
|
Harding EK, Fung SW, Bonin RP. Insights Into Spinal Dorsal Horn Circuit Function and Dysfunction Using Optical Approaches. Front Neural Circuits 2020; 14:31. [PMID: 32595458 PMCID: PMC7303281 DOI: 10.3389/fncir.2020.00031] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 05/01/2020] [Indexed: 12/13/2022] Open
Abstract
Somatosensation encompasses a variety of essential modalities including touch, pressure, proprioception, temperature, pain, and itch. These peripheral sensations are crucial for all types of behaviors, ranging from social interaction to danger avoidance. Somatosensory information is transmitted from primary afferent fibers in the periphery into the central nervous system via the dorsal horn of the spinal cord. The dorsal horn functions as an intermediary processing center for this information, comprising a complex network of excitatory and inhibitory interneurons as well as projection neurons that transmit the processed somatosensory information from the spinal cord to the brain. It is now known that there can be dysfunction within this spinal cord circuitry in pathological pain conditions and that these perturbations contribute to the development and maintenance of pathological pain. However, the complex and heterogeneous network of the spinal dorsal horn has hampered efforts to further elucidate its role in somatosensory processing. Emerging optical techniques promise to illuminate the underlying organization and function of the dorsal horn and provide insights into the role of spinal cord sensory processing in shaping the behavioral response to somatosensory input that we ultimately observe. This review article will focus on recent advances in optogenetics and fluorescence imaging techniques in the spinal cord, encompassing findings from both in vivo and in vitro preparations. We will also discuss the current limitations and difficulties of employing these techniques to interrogate the spinal cord and current practices and approaches to overcome these challenges.
Collapse
Affiliation(s)
- Erika K Harding
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada.,Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, AB, Canada
| | - Samuel Wanchi Fung
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Robert P Bonin
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada.,University of Toronto Centre for the Study of Pain, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
39
|
Bukreeva I, Asadchikov V, Buzmakov A, Chukalina M, Ingacheva A, Korolev NA, Bravin A, Mittone A, Biella GEM, Sierra A, Brun F, Massimi L, Fratini M, Cedola A. High resolution 3D visualization of the spinal cord in a post-mortem murine model. BIOMEDICAL OPTICS EXPRESS 2020; 11:2235-2253. [PMID: 32341880 PMCID: PMC7173906 DOI: 10.1364/boe.386837] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/27/2020] [Accepted: 03/02/2020] [Indexed: 05/04/2023]
Abstract
A crucial issue in the development of therapies to treat pathologies of the central nervous system is represented by the availability of non-invasive methods to study the three-dimensional morphology of spinal cord, with a resolution able to characterize its complex vascular and neuronal organization. X-ray phase contrast micro-tomography enables a high-quality, 3D visualization of both the vascular and neuronal network simultaneously without the need of contrast agents, destructive sample preparations or sectioning. Until now, high resolution investigations of the post-mortem spinal cord in murine models have mostly been performed in spinal cords removed from the spinal canal. We present here post-mortem phase contrast micro-tomography images reconstructed using advanced computational tools to obtain high-resolution and high-contrast 3D images of the fixed spinal cord without removing the bones and preserving the richness of micro-details available when measuring exposed spinal cords. We believe that it represents a significant step toward the in-vivo application.
Collapse
Affiliation(s)
- Inna Bukreeva
- Institute of Nanotechnology- CNR, Rome Unit, Piazzale Aldo Moro 5, Italy
- P. N. Lebedev Physical Institute, RAS, Leninsky pr., 53, Moscow, Russia
| | - Victor Asadchikov
- Shubnikov Institute of Crystallography FSRC “Crystallography and Photonics” RAS, Leninsky prosp., 59, Moscow, Russia
| | - Alexey Buzmakov
- Shubnikov Institute of Crystallography FSRC “Crystallography and Photonics” RAS, Leninsky prosp., 59, Moscow, Russia
| | - Marina Chukalina
- Shubnikov Institute of Crystallography FSRC “Crystallography and Photonics” RAS, Leninsky prosp., 59, Moscow, Russia
- Intitute for Information Transmission Problems RAS, Bolshoi Karetny per, 9, Moscow, Russia
| | - Anastasya Ingacheva
- Intitute for Information Transmission Problems RAS, Bolshoi Karetny per, 9, Moscow, Russia
| | - Nikolay A. Korolev
- National Research Nuclear University /Moscow Engineering Physics Institute, Kashirskoye Highway, 31 Moscow, Russia
| | - Alberto Bravin
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, Grenoble, France
| | - Alberto Mittone
- CELLS - ALBA Synchrotron Light Source, Carrer de la Llum, 2-26, Cerdanyola del Valles, Barcelona, Spain
| | | | - Alejandra Sierra
- Biomedical Imaging Unit, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Francesco Brun
- Department of Engineering and Architecture, University of Trieste, Via A. Valerio, 6/1 Trieste, Italy
| | - Lorenzo Massimi
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Michela Fratini
- Institute of Nanotechnology- CNR, Rome Unit, Piazzale Aldo Moro 5, Italy
- Fondazione Santa Lucia I.R.C.C.S., Via Ardeatina 306, Roma, Italy
| | - Alessia Cedola
- Institute of Nanotechnology- CNR, Rome Unit, Piazzale Aldo Moro 5, Italy
| |
Collapse
|
40
|
Soulet D, Lamontagne-Proulx J, Aubé B, Davalos D. Multiphoton intravital microscopy in small animals: motion artefact challenges and technical solutions. J Microsc 2020; 278:3-17. [PMID: 32072642 PMCID: PMC7187339 DOI: 10.1111/jmi.12880] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 02/06/2020] [Accepted: 02/14/2020] [Indexed: 12/28/2022]
Abstract
Since its invention 29 years ago, two‐photon laser‐scanning microscopy has evolved from a promising imaging technique, to an established widely available imaging modality used throughout the biomedical research community. The establishment of two‐photon microscopy as the preferred method for imaging fluorescently labelled cells and structures in living animals can be attributed to the biophysical mechanism by which the generation of fluorescence is accomplished. The use of powerful lasers capable of delivering infrared light pulses within femtosecond intervals, facilitates the nonlinear excitation of fluorescent molecules only at the focal plane and determines by objective lens position. This offers numerous benefits for studies of biological samples at high spatial and temporal resolutions with limited photo‐damage and superior tissue penetration. Indeed, these attributes have established two‐photon microscopy as the ideal method for live‐animal imaging in several areas of biology and have led to a whole new field of study dedicated to imaging biological phenomena in intact tissues and living organisms. However, despite its appealing features, two‐photon intravital microscopy is inherently limited by tissue motion from heartbeat, respiratory cycles, peristalsis, muscle/vascular tone and physiological functions that change tissue geometry. Because these movements impede temporal and spatial resolution, they must be properly addressed to harness the full potential of two‐photon intravital microscopy and enable accurate data analysis and interpretation. In addition, the sources and features of these motion artefacts are varied, sometimes unpredictable and unique to specific organs and multiple complex strategies have previously been devised to address them. This review will discuss these motion artefacts requirement and technical solutions for their correction and after intravital two‐photon microscopy.
Collapse
Affiliation(s)
- D Soulet
- Centre de recherche du CHUL, Department of Neurosciences, Quebec, Canada.,Faculty of Pharmacy, Université Laval, Quebec, Canada
| | - J Lamontagne-Proulx
- Centre de recherche du CHUL, Department of Neurosciences, Quebec, Canada.,Faculty of Pharmacy, Université Laval, Quebec, Canada
| | - B Aubé
- Centre de recherche du CHUL, Department of Neurosciences, Quebec, Canada
| | - D Davalos
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, U.S.A
| |
Collapse
|
41
|
Rajaee A, Geisen ME, Sellers AK, Stirling DP. Repeat intravital imaging of the murine spinal cord reveals degenerative and reparative responses of spinal axons in real-time following a contusive SCI. Exp Neurol 2020; 327:113258. [PMID: 32105708 DOI: 10.1016/j.expneurol.2020.113258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/06/2020] [Accepted: 02/22/2020] [Indexed: 12/18/2022]
Abstract
Spinal cord injury (SCI) induces a secondary degenerative response that causes the loss of spared axons and worsens neurological outcome. The complex molecular mechanisms that mediate secondary axonal degeneration remain poorly understood. To further our understanding of secondary axonal degeneration following SCI, we assessed the spatiotemporal dynamics of axonal spheroid and terminal bulb formation following a contusive SCI in real-time in vivo. Adult 6-8 week old Thy1YFP transgenic mice underwent a T12 laminectomy for acute imaging sessions or were implanted with a custom spinal cord imaging chamber for chronic imaging of the spinal cord. Two-photon excitation time-lapse microscopy was performed prior to a mild contusion SCI (30 kilodyne, IH Impactor) and at 1-4 h and 1-14 days post-SCI. We quantified the number of axonal spheroids, their size and distribution, the number of endbulbs, and axonal survival from 1 h to 14 days post-SCI. Our data reveal that the majority of axons underwent swelling and axonal spheroid formation acutely after SCI resulting in the loss of ~70% of axons by 1 day after injury. In agreement, the number of axonal spheroids rapidly increased at 1 h after SCI and remained significantly elevated up to 14 days after SCI. Furthermore, the distribution of axonal spheroids spread mediolaterally over time indicative of delayed secondary degenerative processes. In contrast, axonal endbulbs were relatively sparse and their numbers peaked at 1 day after injury. Intriguingly, axonal survival significantly increased at 7 and 14 days compared to 3 days after SCI revealing a potential endogenous axonal repair process that mirrors the known spontaneous functional recovery after SCI. In support, ~43% of tracked axonal spheroids resolved over the course of observation revealing their dynamic nature. Furthermore, axonal spheroids and endbulbs accumulated mitochondria and excessive tubulin polyglutamylation suggestive of disrupted axonal transport as a shared mechanism. Collectively, this study provides important insight into both degenerative and recoverable responses of axons following contusive SCI in real-time. Understanding how axons spontaneously recover after SCI will be an important avenue for future SCI research and may help guide future clinical trials.
Collapse
Affiliation(s)
- Arezoo Rajaee
- Kentucky Spinal Cord Injury Research Center, University of Louisville, School of Medicine, Louisville, KY 40202, USA; Department of Neurological Surgery, University of Louisville, School of Medicine, Louisville, KY 40202, USA
| | - Mariah E Geisen
- Kentucky Spinal Cord Injury Research Center, University of Louisville, School of Medicine, Louisville, KY 40202, USA; Department of Neurological Surgery, University of Louisville, School of Medicine, Louisville, KY 40202, USA
| | - Alexandra K Sellers
- Department of Bioengineering, University of Louisville, School of Medicine, Louisville, KY 40202, USA
| | - David P Stirling
- Kentucky Spinal Cord Injury Research Center, University of Louisville, School of Medicine, Louisville, KY 40202, USA; Department of Neurological Surgery, University of Louisville, School of Medicine, Louisville, KY 40202, USA; Department of Anatomical Sciences and Neurobiology, University of Louisville, School of Medicine, Louisville, KY 40202, USA; Department of Microbiology and Immunology, University of Louisville, School of Medicine, Louisville, KY 40202, USA.
| |
Collapse
|
42
|
Orem BC, Partain SB, Stirling DP. Inhibiting store-operated calcium entry attenuates white matter secondary degeneration following SCI. Neurobiol Dis 2019; 136:104718. [PMID: 31846736 DOI: 10.1016/j.nbd.2019.104718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 11/22/2019] [Accepted: 12/13/2019] [Indexed: 01/11/2023] Open
Abstract
Axonal degeneration plays a key role in the pathogenesis of numerous neurological disorders including spinal cord injury. After the irreversible destruction of the white matter elements during the primary (mechanical) injury, spared axons and their supporting glial cells begin to breakdown causing an expansion of the lesion site. Here we mechanistically link external sources of calcium entry through axoplasmic reticulum calcium store depletion that contributes to secondary axonal degeneration through a process called store-operated calcium entry. There is increasing evidence suggesting that store-operated calcium entry impairment is responsible for numerous disorders. Nevertheless, its role following spinal cord injury remains poorly understood. We hypothesize that store-operated calcium entry mediates secondary white matter degeneration after spinal cord injury. We used our previously published model of laser-induced spinal cord injury to focally transect mid cervical dorsal column axons from live 6-8-week-old heterozygous CNPaseGFP/+: Thy1YFP+ double transgenic murine spinal cord preparations (five treated, eight controls) and documented the dynamic changes in axons over time using two-photon excitation microscopy. We report that 1 hour delayed treatment with YM-58483, a potent inhibitor of store-operated calcium entry, significantly decreased intra-axonal calcium accumulation, axonal dieback both proximal and distal to the lesion site, reduced secondary axonal "bystander" damage acutely after injury, and promoted greater oligodendrocyte survival compared to controls. We also targeted store-operated calcium entry following a clinically relevant contusion spinal cord injury model in vivo. Adult, 6-8-week-old Advillin-Cre: Ai9 mice were subjected to a mild 30 kdyn contusion and imaged to observe secondary axonal degeneration in live animals. We found that delayed treatment with YM-58483 increased axonal survival and reduced axonal spheroid formation compared to controls (n = 5 mice per group). These findings suggest that blocking store-operated calcium entry acutely is neuroprotective and introduces a novel target to prevent pathological calcium entry following spinal cord injury using a clinically relevant model.
Collapse
Affiliation(s)
- Ben C Orem
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY 40202, USA; Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY 40202, USA
| | - Steven B Partain
- Department of Bioengineering, University of Louisville, Louisville, KY 40202, USA
| | - David P Stirling
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY 40202, USA; Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY 40202, USA; Department of Neurological Surgery, University of Louisville, Louisville, KY 40202, USA; Department of Microbiology and Immunology, University of Louisville, Louisville, KY 40202, USA.
| |
Collapse
|
43
|
Abstract
Intravital microscopy is a powerful technique to observe dynamic processes with single-cell resolution in live animals. No intravital window has been developed for imaging the colon due to its anatomic location and motility, although the colon is a key organ where the majority of microbiota reside and common diseases such as inflammatory bowel disease, functional gastrointestinal disorders, and colon cancer occur. Here we describe an intravital murine colonic window with a stabilizing ferromagnetic scaffold for chronic imaging, minimizing motion artifacts while maximizing long-term survival by preventing colonic obstruction. Using this setup, we image fluorescently-labeled stem cells, bacteria, and immune cells in live animal colons. Furthermore, we image nerve activity via calcium imaging in real time to demonstrate that electrical sacral nerve stimulation can activate colonic enteric neurons. The simple implantable apparatus enables visualization of live processes in the colon, which will open the window to a broad range of studies. Performing intravital imaging of the colon in mouse models is challenging due to the colon’s anatomic location and motility. Here, the authors develop a murine colonic window for intravital chronic imaging that maximises long-term animal survival and minimises motion artefacts.
Collapse
|
44
|
Laredo F, Plebanski J, Tedeschi A. Pericytes: Problems and Promises for CNS Repair. Front Cell Neurosci 2019; 13:546. [PMID: 31866833 PMCID: PMC6908836 DOI: 10.3389/fncel.2019.00546] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/25/2019] [Indexed: 12/14/2022] Open
Abstract
Microvascular complications are often associated with slow and progressive damage of various organs. Pericytes are multi-functional mural cells of the microcirculation that control blood flow, vascular permeability and homeostasis. Whereas accumulating evidence suggests that these cells are also implicated in a variety of diseases, pericytes represent promising targets that can be manipulated for therapeutic gain. Here, we review the role of pericytes in angiogenesis, blood-brain barrier (BBB) function, neuroinflammation, tissue fibrosis, axon regeneration failure, and neurodegeneration. In addition, we outline strategies altering pericyte behavior to point out problems and promises for axon regeneration and central nervous system (CNS) repair following injury or disease.
Collapse
Affiliation(s)
- Fabio Laredo
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH, United States.,Department of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Julia Plebanski
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Andrea Tedeschi
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH, United States.,Discovery Theme on Chronic Brain Injury, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
45
|
Borjini N, Paouri E, Tognatta R, Akassoglou K, Davalos D. Imaging the dynamic interactions between immune cells and the neurovascular interface in the spinal cord. Exp Neurol 2019; 322:113046. [PMID: 31472115 DOI: 10.1016/j.expneurol.2019.113046] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/16/2019] [Accepted: 08/27/2019] [Indexed: 12/19/2022]
Abstract
Imaging the dynamic interactions between immune cells, glia, neurons and the vasculature in living rodents has revolutionized our understanding of physiological and pathological mechanisms of the CNS. Emerging microscopy and imaging technologies have enabled longitudinal tracking of structural and functional changes in a plethora of different cell types in the brain. The development of novel methods also allowed stable and longitudinal optical access to the spinal cord with minimum tissue perturbation. These important advances facilitated the application of in vivo imaging using two-photon microscopy for studies of the healthy, diseased, or injured spinal cord. Indeed, decoding the interactions between peripheral and resident cells with the spinal cord vasculature has shed new light on neuroimmune and vascular mechanisms regulating the onset and progression of neurological diseases. This review focuses on imaging studies of the interactions between the vasculature and peripheral immune cells or microglia, with emphasis on their contribution to neuroinflammation. We also discuss in vivo imaging studies highlighting the importance of neurovascular changes following spinal cord injury. Real-time imaging of blood-brain barrier (BBB) permeability and other vascular changes, perivascular glial responses, and immune cell entry has revealed unanticipated cellular mechanisms and novel molecular pathways that can be targeted to protect the injured or diseased CNS. Imaging the cell-cell interactions between the vasculature, immune cells, and neurons as they occur in real time, is a powerful tool both for testing the efficacy of existing therapeutic approaches, and for identifying new targets for limiting damage or enhancing the potential for repair of the affected spinal cord tissue.
Collapse
Affiliation(s)
- Nozha Borjini
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Evi Paouri
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | - Katerina Akassoglou
- Gladstone Institutes, San Francisco, CA, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Dimitrios Davalos
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
46
|
Mattedi F, Vagnoni A. Temporal Control of Axonal Transport: The Extreme Case of Organismal Ageing. Front Cell Neurosci 2019; 13:393. [PMID: 31555095 PMCID: PMC6716446 DOI: 10.3389/fncel.2019.00393] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/09/2019] [Indexed: 01/05/2023] Open
Abstract
A fundamental question in cell biology is how cellular components are delivered to their destination with spatial and temporal precision within the crowded cytoplasmic environment. The long processes of neurons represent a significant spatial challenge and make these cells particularly dependent on mechanisms for long-range cytoskeletal transport of proteins, RNA and organelles. Although many studies have substantiated a role for defective transport of axonal cargoes in the pathogenesis of neurodevelopmental and neurodegenerative diseases, remarkably little is known about how transport is regulated throughout ageing. The scale of the challenge posed by ageing is considerable because, in this case, the temporal regulation of transport is ultimately dictated by the length of organismal lifespan, which can extend to days, years or decades. Recent methodological advances to study live axonal transport during ageing in situ have provided new tools to scratch beneath the surface of this complex problem and revealed that age-dependent decline in the transport of mitochondria is a common feature across different neuronal populations of several model organisms. In certain instances, the molecular pathways that affect transport in ageing animals have begun to emerge. However, the functional implications of these observations are still not fully understood. Whether transport decline is a significant determinant of neuronal ageing or a mere consequence of decreased cellular fitness remains an open question. In this review, we discuss the latest developments in axonal trafficking in the ageing nervous system, along with the early studies that inaugurated this new area of research. We explore the possibility that the interplay between mitochondrial function and motility represents a crucial driver of ageing in neurons and put forward the hypothesis that declining axonal transport may be legitimately considered a hallmark of neuronal ageing.
Collapse
Affiliation(s)
| | - Alessio Vagnoni
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, IoPPN, King’s College London, London, United Kingdom
| |
Collapse
|
47
|
Combining molecular intervention with in vivo imaging to untangle mechanisms of axon pathology and outgrowth following spinal cord injury. Exp Neurol 2019; 318:1-11. [DOI: 10.1016/j.expneurol.2019.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/20/2019] [Accepted: 04/07/2019] [Indexed: 12/17/2022]
|
48
|
Chen C, Zhang J, Sun L, Zhang Y, Gan WB, Tang P, Yang G. Long-term imaging of dorsal root ganglia in awake behaving mice. Nat Commun 2019; 10:3087. [PMID: 31300648 PMCID: PMC6625980 DOI: 10.1038/s41467-019-11158-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 06/26/2019] [Indexed: 01/26/2023] Open
Abstract
The dorsal root ganglia (DRG) contain the somas of first-order sensory neurons critical for somatosensation. Due to technical difficulties, DRG neuronal activity in awake behaving animals remains unknown. Here, we develop a method for imaging DRG at cellular and subcellular resolution over weeks in awake mice. The method involves the installation of an intervertebral fusion mount to reduce spinal movement, and the implantation of a vertebral glass window without interfering animals' motor and sensory functions. In vivo two-photon calcium imaging shows that DRG neuronal activity is higher in awake than anesthetized animals. Immediately after plantar formalin injection, DRG neuronal activity increases substantially and this activity upsurge correlates with animals' phasic pain behavior. Repeated imaging of DRG over 5 weeks after formalin injection reveals persistent neuronal hyperactivity associated with ongoing pain. The method described here provides an important means for in vivo studies of DRG functions in sensory perception and disorders.
Collapse
Affiliation(s)
- Chao Chen
- Department of Orthopaedics, Peking 301 Hospital, Beijing, 100853, China
| | - Jinhui Zhang
- Department of Orthopaedics, the Affiliated Southeast Hospital of Xiamen University, Zhangzhou 175 Hospital, Zhangzhou, 363000, China
| | - Linlin Sun
- Department of Anesthesiology, Columbia University, New York, 10032, NY, USA
| | - Yiling Zhang
- Department of Orthopaedics, Peking 301 Hospital, Beijing, 100853, China
| | - Wen-Biao Gan
- Department of Neuroscience and Physiology, Department of Anesthesiology, Skirball Institute, New York University School of Medicine, New York, 10016, NY, USA.
| | - Peifu Tang
- Department of Orthopaedics, Peking 301 Hospital, Beijing, 100853, China.
| | - Guang Yang
- Department of Anesthesiology, Columbia University, New York, 10032, NY, USA.
| |
Collapse
|
49
|
Xu Q, Dong X. Calcium imaging approaches in investigation of pain mechanism in the spinal cord. Exp Neurol 2019; 317:129-132. [PMID: 30853387 PMCID: PMC6544469 DOI: 10.1016/j.expneurol.2019.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/16/2019] [Accepted: 03/06/2019] [Indexed: 11/28/2022]
Abstract
The continuous advancement of microscopic imaging techniques combined with the discovery and use of more powerful calcium indicators has made calcium imaging technology much more effective and has increased its use in the study of pain circuitry. Using calcium imaging to study spinal pain mechanisms causes less damage to animals compared to electrophysiological techniques and is also able to observe the firing pattern of spinal neurons and the connections between them on a large scale. These advantages allow any changes in spinal cord circuits caused by pain transmission to be observed more effectively. This review will discuss the development of calcium indicators over the past decades as well as the various applications of calcium imaging, from in vitro to in vivo spinal cord experiments, in the study of pain circuits. We will also discuss possible directions for the study of spinal pain circuits in the future.
Collapse
Affiliation(s)
- Qian Xu
- The Solomon H. Snyder Department of Neuroscience and the Center for Sensory Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Xinzhong Dong
- The Solomon H. Snyder Department of Neuroscience and the Center for Sensory Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
50
|
Evans TA, Barkauskas DS, Silver J. Intravital imaging of immune cells and their interactions with other cell types in the spinal cord: Experiments with multicolored moving cells. Exp Neurol 2019; 320:112972. [PMID: 31234058 DOI: 10.1016/j.expneurol.2019.112972] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/25/2019] [Accepted: 06/04/2019] [Indexed: 12/25/2022]
Abstract
Intravital imaging of the immune system is a powerful technique for studying biology of the immune response in the spinal cord using a variety of disease models ranging from traumatic injury to autoimmune disorders. Here, we will discuss specific technical aspects as well as many intriguing biological phenomena that have been revealed with the use of intravital imaging for investigation of the immune system in the spinal cord. We will discuss surgical techniques for exposing and stabilizing the spine that are critical for obtaining images, visualizing immune and CNS cells with genetically expressed fluorescent proteins, fluorescent labeling techniques and briefly discuss some of the challenges of image analysis.
Collapse
Affiliation(s)
- Teresa A Evans
- Department of Pediatrics, Stanford University, Stanford, CA, USA.
| | | | - Jerry Silver
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|