1
|
Wang C, Wang Z, Gao M, Zhu Y, Zhu H, Zhou L, Zhou Y, Tian X, Liu Y, Zhang Y, Sun S, Meng C, Hong X, Wang Y, Yang M, Fan N, Huang H, Chen Z, Ge Y, Li J, Jiang K, Zhang H, Qiu M, Wang H. Highly Stable and Integrable Graphene/Molybdenum Disulfide Heterojunction Field-Effect Transistor-Based miRNA Biosensor. ACS APPLIED MATERIALS & INTERFACES 2025; 17:28585-28596. [PMID: 40313004 DOI: 10.1021/acsami.5c03827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
MicroRNAs (miRNAs) are important noncoding RNA molecules that participate in gene regulation and are widely associated with the occurrence and development of various cancers. Developing rapid, highly sensitive, low-cost, and highly stable miRNA detection methods is of great significance for clinical diagnosis. Field-effect transistors (FETs) based on two-dimensional (2D) materials have been proven to have great potential in the field of miRNA detection due to their label-free, rapid, highly sensitive, low-power, and portable features. However, biosensors based on 2D material FETs require the application of an external gate voltage in solution, which seriously hinders the integration, miniaturization, and signal stability of the devices. This study proposes a graphene-molybdenum disulfide heterojunction (G/MoS2) FET biosensing platform to detect miRNA-21 and miRNA-155 without the need for an external gate voltage. The results demonstrate a detection time of approximately 30 min, a linear response range spanning from 10 fM to 10 nM, and limits of detection of 6.06 fM for miRNA-21 and 2.59 fM for miRNA-155. Through comparative experiments, the biosensor shows excellent selectivity and can distinguish target miRNAs from nontarget miRNAs. The G/MoS2 FET biosensor developed in this study provides a technical platform for miRNA detection and has a broad application prospect, especially in the early diagnosis of diseases and the screening of biomarkers.
Collapse
Affiliation(s)
- Chen Wang
- State Key Laboratory of Radio Frequency Heterogeneous Integration, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Institute for Advanced Study in Nuclear Energy and Safety, Interdisciplinary Center of High Magnetic Field Physics of Shenzhen University, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen518060, China
- Key Laboratory of Marine Chemistry Theory and Technology (Ministry of Education), College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao266100, China
| | - Ziqian Wang
- State Key Laboratory of Radio Frequency Heterogeneous Integration, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Institute for Advanced Study in Nuclear Energy and Safety, Interdisciplinary Center of High Magnetic Field Physics of Shenzhen University, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen518060, China
- School of Computer Science and Engineering, Macau University of Science and Technology, Taipa, Macau999078, China
| | - Ming Gao
- Key Laboratory of Marine Chemistry Theory and Technology (Ministry of Education), College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao266100, China
| | - Yihan Zhu
- State Key Laboratory of Radio Frequency Heterogeneous Integration, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Institute for Advanced Study in Nuclear Energy and Safety, Interdisciplinary Center of High Magnetic Field Physics of Shenzhen University, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen518060, China
| | - Honghai Zhu
- State Key Laboratory of Radio Frequency Heterogeneous Integration, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Institute for Advanced Study in Nuclear Energy and Safety, Interdisciplinary Center of High Magnetic Field Physics of Shenzhen University, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen518060, China
| | - Lizhuo Zhou
- State Key Laboratory of Radio Frequency Heterogeneous Integration, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Institute for Advanced Study in Nuclear Energy and Safety, Interdisciplinary Center of High Magnetic Field Physics of Shenzhen University, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen518060, China
| | - Yujie Zhou
- State Key Laboratory of Radio Frequency Heterogeneous Integration, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Institute for Advanced Study in Nuclear Energy and Safety, Interdisciplinary Center of High Magnetic Field Physics of Shenzhen University, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen518060, China
| | - Xilin Tian
- State Key Laboratory of Radio Frequency Heterogeneous Integration, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Institute for Advanced Study in Nuclear Energy and Safety, Interdisciplinary Center of High Magnetic Field Physics of Shenzhen University, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen518060, China
| | - Yi Liu
- State Key Laboratory of Radio Frequency Heterogeneous Integration, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Institute for Advanced Study in Nuclear Energy and Safety, Interdisciplinary Center of High Magnetic Field Physics of Shenzhen University, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen518060, China
| | - Yule Zhang
- State Key Laboratory of Radio Frequency Heterogeneous Integration, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Institute for Advanced Study in Nuclear Energy and Safety, Interdisciplinary Center of High Magnetic Field Physics of Shenzhen University, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen518060, China
| | - Shuo Sun
- State Key Laboratory of Radio Frequency Heterogeneous Integration, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Institute for Advanced Study in Nuclear Energy and Safety, Interdisciplinary Center of High Magnetic Field Physics of Shenzhen University, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen518060, China
| | - Changle Meng
- State Key Laboratory of Radio Frequency Heterogeneous Integration, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Institute for Advanced Study in Nuclear Energy and Safety, Interdisciplinary Center of High Magnetic Field Physics of Shenzhen University, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen518060, China
| | - Xiangqian Hong
- Shenzhen Eye Hospital, Shenzhen Eye Medical Center, Southern Medical University, 18 Zetian Road, Futian District, Shenzhen 518040, China
| | - Yun Wang
- Shenzhen Eye Hospital, Shenzhen Eye Medical Center, Southern Medical University, 18 Zetian Road, Futian District, Shenzhen 518040, China
| | - Mingmin Yang
- Shenzhen Eye Hospital, Shenzhen Eye Medical Center, Southern Medical University, 18 Zetian Road, Futian District, Shenzhen 518040, China
| | - Ning Fan
- Shenzhen Eye Hospital, Shenzhen Eye Medical Center, Southern Medical University, 18 Zetian Road, Futian District, Shenzhen 518040, China
| | - Hao Huang
- State Key Laboratory of Radio Frequency Heterogeneous Integration, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Institute for Advanced Study in Nuclear Energy and Safety, Interdisciplinary Center of High Magnetic Field Physics of Shenzhen University, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen518060, China
| | - Zhi Chen
- State Key Laboratory of Radio Frequency Heterogeneous Integration, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Institute for Advanced Study in Nuclear Energy and Safety, Interdisciplinary Center of High Magnetic Field Physics of Shenzhen University, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen518060, China
- Department of Chemistry, Korea University, Seoul 02841, South Korea
| | - Yanqi Ge
- State Key Laboratory of Radio Frequency Heterogeneous Integration, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Institute for Advanced Study in Nuclear Energy and Safety, Interdisciplinary Center of High Magnetic Field Physics of Shenzhen University, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen518060, China
| | - Jianqing Li
- School of Computer Science and Engineering, Macau University of Science and Technology, Taipa, Macau999078, China
| | - Ke Jiang
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, People's Republic of China
| | - Han Zhang
- State Key Laboratory of Radio Frequency Heterogeneous Integration, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Institute for Advanced Study in Nuclear Energy and Safety, Interdisciplinary Center of High Magnetic Field Physics of Shenzhen University, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen518060, China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang 311121, People's Republic of China
| | - Meng Qiu
- Key Laboratory of Marine Chemistry Theory and Technology (Ministry of Education), College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao266100, China
| | - Huide Wang
- State Key Laboratory of Radio Frequency Heterogeneous Integration, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Institute for Advanced Study in Nuclear Energy and Safety, Interdisciplinary Center of High Magnetic Field Physics of Shenzhen University, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen518060, China
| |
Collapse
|
2
|
Jiang M, Yang K, Zhang C, Xu D. Novel Sensing Strategy for MicroRNA via DSN-RCA Dual Amplification and Optical Tweezer-Assisted Suspension Bead Arrays. Anal Chem 2025; 97:9014-9022. [PMID: 40247710 DOI: 10.1021/acs.analchem.5c00582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
Traditional microRNA detection methods have some limitations that cannot be ignored. Enzyme-catalyzed nucleic acid amplification has gradually become an important method in bioanalysis and is expected to be a substitute for traditional methods. Combining enzymes with different functions provides a wide range of analytical design possibilities to create high-performance sensing strategies. Meanwhile, the optical tweezers that produce the tightly focused laser beam are integrated with a suspension bead array that fully concentrates the signal labels, contributing to stable signal output and improved detection efficiency. Herein, we have developed a novel "DSN-RCA dual amplification and optical tweezer-assisted suspension bead array imaging" sensing strategy for highly efficient detection of microRNA-21 (miRNA-21). The conversion of low abundance targets into bulk fluorescence signal probes was achieved by duplex-specific nuclease (DSN), and signal enrichment on bead supports rather than dispersion in solution was realized by rolling circle amplification (RCA) in one step. The synergistic integration of dual amplification and the application of bead supports effectively improved the sensitivity and specificity. Finally, the suspension bead array was created by the modified optical tweezer system, which realized the high-quality imaging analysis and improved the detection efficiency. The proposed sensing strategy achieved a limit of detection (LOD) as low as 5.90 pM with excellent specificity, stability, and reproducibility and was successfully applied to human serum samples, which has great potential for application in clinical serological research.
Collapse
Affiliation(s)
- Min Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, No. 163, Xianlin Avenue, Nanjing 210023, PR China
| | - Kaihan Yang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, No. 163, Xianlin Avenue, Nanjing 210023, PR China
| | - Chenchen Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, No. 163, Xianlin Avenue, Nanjing 210023, PR China
| | - Danke Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, No. 163, Xianlin Avenue, Nanjing 210023, PR China
| |
Collapse
|
3
|
Qi Y, Yu J, Lou M, Yu Y, Li R, Zhang Z, Dai Y, Lao K, Cao M, Gou X. Lab on a single microbead: An enzyme-free strategy for the sensitive detection of microRNA via efficient localized catalytic hairpin assembly. Anal Chim Acta 2025; 1340:343659. [PMID: 39863312 DOI: 10.1016/j.aca.2025.343659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 01/11/2025] [Indexed: 01/27/2025]
Abstract
BACKGROUND Accurate quantification of microRNA (miRNA) is of great significance because it provides opportunities for the accurate early diagnosis of a series of human diseases including cancers. Currently, complicated nucleic acid amplification technologies are always required for the highly sensitive miRNA detection. The introduction of nucleic acid signal amplification coupled with various enzymes will inevitably lead to tedious work and increase the complexity of the analysis process. It is still urgently desired to develop enzyme-free yet sensitive assays that enable the sensitive analysis of miRNA in complicated biological samples. RESULTS A single microbead (MB)-based localized catalytic hairpin assembly (CHA) strategy is proposed for the sensitive analysis of microRNA (miRNA). This rationally designed CHA strategy allows target miRNA to walk only on a single MB which can create a micro-amplification zone, initiating a highly efficient localized CHA reaction, generating a large number of fluorescent DNA duplexes on the surface of single MB. The efficient localized CHA on single MB can not only greatly suppress the nonspecific reaction between two hairpin probes, thus decreasing the background signal, but also greatly enhance the brightness of MB owing to the highly-concentrated fluorescence enrichment on only one MB. Therefore, highly sensitive quantification of miRNA has been achieved by measuring the fluorescence signal on MB using a confocal fluorescence microscope. This new strategy exhibits a detection limit of 1.09 pM for let-7a detection, and enables high specificity of distinguishing homologous miRNA family members. SIGNIFICANCE This is the first report by only using one single MB as a carrier to conduct localized CHA, rendering highly-concentrated fluorescence enrichment on only one MB and a dramatic increase in sensitivity. This single MB-based localized CHA strategy has been successfully applied to the accurate analysis of miRNA target in complex biological sample.
Collapse
Affiliation(s)
- Yan Qi
- Institute of Basic and Translational Medicine & Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, 710021, Shaanxi Province, PR China; Engineering Research Center of Brain Diseases Drug Development, Universities of Shaanxi Province, Xi'an Medical University, Xi'an, 710021, Shaanxi Province, PR China
| | - Jiangtao Yu
- Institute of Basic and Translational Medicine & Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, 710021, Shaanxi Province, PR China; Engineering Research Center of Brain Diseases Drug Development, Universities of Shaanxi Province, Xi'an Medical University, Xi'an, 710021, Shaanxi Province, PR China
| | - Ming Lou
- Stomatology College of Xi'an Medical University, Xi'an Medical University, Xi'an, 710021, Shaanxi Province, PR China
| | - Yameng Yu
- Institute of Basic and Translational Medicine & Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, 710021, Shaanxi Province, PR China; Engineering Research Center of Brain Diseases Drug Development, Universities of Shaanxi Province, Xi'an Medical University, Xi'an, 710021, Shaanxi Province, PR China
| | - Ruohan Li
- Yantai Yongqi Technical Consulting Service Co., Ltd., Yantai, 264003, Shandong Province, PR China
| | - Zhenhao Zhang
- Institute of Basic and Translational Medicine & Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, 710021, Shaanxi Province, PR China; Engineering Research Center of Brain Diseases Drug Development, Universities of Shaanxi Province, Xi'an Medical University, Xi'an, 710021, Shaanxi Province, PR China
| | - Yuxuan Dai
- Institute of Basic and Translational Medicine & Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, 710021, Shaanxi Province, PR China; Engineering Research Center of Brain Diseases Drug Development, Universities of Shaanxi Province, Xi'an Medical University, Xi'an, 710021, Shaanxi Province, PR China
| | - Kejing Lao
- Institute of Basic and Translational Medicine & Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, 710021, Shaanxi Province, PR China; Engineering Research Center of Brain Diseases Drug Development, Universities of Shaanxi Province, Xi'an Medical University, Xi'an, 710021, Shaanxi Province, PR China
| | - Meng Cao
- Institute of Basic and Translational Medicine & Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, 710021, Shaanxi Province, PR China; Engineering Research Center of Brain Diseases Drug Development, Universities of Shaanxi Province, Xi'an Medical University, Xi'an, 710021, Shaanxi Province, PR China
| | - Xingchun Gou
- Institute of Basic and Translational Medicine & Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, 710021, Shaanxi Province, PR China; Engineering Research Center of Brain Diseases Drug Development, Universities of Shaanxi Province, Xi'an Medical University, Xi'an, 710021, Shaanxi Province, PR China.
| |
Collapse
|
4
|
Vera Hernández PF, Téllez Valerio CE, Rosas Cárdenas FDF. Cost-Effective and Sensitive Probe-Based Universal (PBU) qPCR for MicroRNA Quantification in Plants. Methods Mol Biol 2025; 2900:117-127. [PMID: 40380057 DOI: 10.1007/978-1-0716-4398-3_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2025]
Abstract
MicroRNAs (miRNAs) constitute a diverse class of small RNAs (sRNAs) exhibiting distinct expression patterns during pivotal biological processes in plants such as development and environmental responses. Precise quantification of miRNAs is imperative for unraveling their intricate functional roles. Although current real-time PCR techniques offer sensitivity and specificity, their widespread adoption is hindered by prohibitive costs, particularly for laboratories demanding high-throughput analyses with robust yet economically viable outcomes. Drawing inspiration from a methodology proven effective in miRNA quantification from human serum, this chapter outlines a novel real-time probe-based RT-PCR procedure tailored for plant miRNAs. The versatility of this method is showcased through successful application in plants, underscoring its cost-effectiveness and sensitivity. Our findings endorse this probe-based qPCR technique as a practical solution for affordable and accurate microRNA quantification in diverse plant species.
Collapse
|
5
|
Sun Y, Peng Y, Sun Y, Xu D. An enzyme-free and label-free multiplex detection of miRNAs by entropy-driven circuit coupled with capillary electrophoresis. Talanta 2025; 281:126850. [PMID: 39276573 DOI: 10.1016/j.talanta.2024.126850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/23/2024] [Accepted: 09/07/2024] [Indexed: 09/17/2024]
Abstract
MicroRNAs (miRNAs) are currently recognized as important biomarkers for the early diagnosis and prognostic treatment of cancer. Herein, we developed a simple and label-free method for the multiplex detection of miRNAs, based on entropy-driven circuit (EDC) amplification and non-gel sieving capillary electrophoresis-LED induced fluorescence detection (NGCE-LEDIF) platform. In this system, three different lengths of fuel chains were designed to catalyze three EDC, targeting miRNA-21, miRNA-155, and miRNA-10b, respectively. In the presence of target miRNA, the EDC cycle amplification reaction was triggered, generating numerous stable double-strands products (F-DNA/L-DNA). Since the three miRNAs correspond to three different lengths of F-DNA/L-DNA, they can be easily isolated and detected by NGCE. This strategy has good sensitivity, with detection limits of 68 amol, 292.2 amol, and 394 amol for miRNA-21, miRNA-155, and miRNA-10b, respectively. Additionally, this method has good specificity and can effectively distinguish single-base mismatches of miRNA. The recoveries of the three miRNAs in deproteinized healthy human serum ranged from 91.28 % to 108.4 %, with a relative standard deviation (RSD) of less than 7.9 %. This method was further applied to detect cellular miRNAs in human breast cancer (MCF-7) cell extracts, revealing an up-regulation of miRNA-21, miRNA-155, and miRNA-10b in MCF-7 cells. The successful spiked recovery in human serum and RNA extraction from MCF-7 cells underscores the practicality of this method. Therefore, this strategy has broad application prospects in biomedical research.
Collapse
Affiliation(s)
- Yanyan Sun
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, No 163, Xianlin Avenue, Nanjing, 210023, PR China
| | - Yufei Peng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, No 163, Xianlin Avenue, Nanjing, 210023, PR China
| | - Yunlong Sun
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, No 163, Xianlin Avenue, Nanjing, 210023, PR China
| | - Danke Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, No 163, Xianlin Avenue, Nanjing, 210023, PR China.
| |
Collapse
|
6
|
Tan Y, Yu Y, Niu H, Wang C, Mo P, Li D, Zhang Q, Feng D, Liu C. Profile of miRNA expression in the hippocampus of epileptic mice and the prediction of potential therapeutic targets. Mol Biol Rep 2024; 51:929. [PMID: 39172288 DOI: 10.1007/s11033-024-09861-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 08/12/2024] [Indexed: 08/23/2024]
Abstract
Epilepsy is a common neurological disease. Increasing evidence has highlighted the role of miRNAs in the molecular mechanisms underlying the development of neurological diseases such as epilepsy. In this study, we established a lithium chloride-pilocarpine epilepsy mouse model, performed miRNA sequencing of hippocampal tissue samples, and compared the obtained miRNA expression profile with that of normal control mice to determine differences in expression levels. We found that 55 miRNAs were differentially expressed in status epilepticus mice compared with normal control mice, with 38 upregulated and 17 downregulated miRNAs. Through subsequent analysis of the five downregulated miRNAs (mmu-let-7a-1-3p, mmu-let-7a-2-3p, mmu-let-7c-5p, mmu-let-7d-5p, and mmu-let-7e-5p) with the most significant differences in expression, the key pathways involved included the MAPK signaling pathway and focal adhesion, among others. Therefore, we believe that let-7 family miRNAs may be potential therapeutic targets for epilepsy.
Collapse
Affiliation(s)
- Yafu Tan
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Yongjia Yu
- Department of Neurosurgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Haodong Niu
- Department of Neurosurgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Chunxi Wang
- Department of Neurosurgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Panlin Mo
- Department of Neurosurgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Dongqiao Li
- Department of Neurosurgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Qing Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Daqin Feng
- Department of Neurosurgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China.
- State Key Laboratory of Targeting Oncology, Guangxi Medical University, Nanning, Guangxi, 530021, China.
| | - Chang Liu
- Department of Neurosurgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China.
- State Key Laboratory of Targeting Oncology, Guangxi Medical University, Nanning, Guangxi, 530021, China.
| |
Collapse
|
7
|
Qi Y, Sun J, Wang S, Ren W, Liu C. Mix-and-Read Digital MicroRNA Analysis Based on Flow Cytometric Counting of Target-Clicked Nanobead Dimer. Anal Chem 2024; 96:13734-13741. [PMID: 39114879 DOI: 10.1021/acs.analchem.4c03092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
A one-step, enzyme-free, and highly sensitive digital microRNA (miRNA) assay is rationally devised based on flow cytometric counting of target miRNA-clicked nanobead dimers via a facile mix-and-read manner. In this strategy, highly efficient miRNA-sandwiched click chemical ligation of two DNA probes may remarkably stabilize and boost the dimer formation between two kinds of fluorescence-coded nanobeads, and the number of as-produced bead dimers will be target dose-responsive, particularly when the trace number of miRNA is much less than that of employed nanobeads. Finally, each fluorescence-coded bead dimer can be easily identified and digitally counted by a powerful flow cytometer (FCM) and accordingly, the amount of target miRNA can be accurately quantified in a digital way. This new digital miRNA assay can be accomplished with a facile mix-and-read operation just by simply mixing the target miRNA with two kinds of preprepared DNA probe-functionalized nanobeads, which do not require any nucleic acid amplification, purification, and complex operation procedures. In spite of the extremely simple one-step operation, benefiting from the low-background but high target-mediated click ligation efficiency, and the powerfully digital statistical capability of FCM, this strategy achieves high sensitivity with a quite low detection limit of 5.2 fM target miRNA as well as high specificity and good generality for miRNA analysis, pioneering a new direction for fabricating digital bioassays.
Collapse
Affiliation(s)
- Yan Qi
- Institute of Basic and Translational Medicine & Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an 710021, Shaanxi Province, P. R. China
- Engineering Research Center of Brain Diseases Drug Development, Universities of Shaanxi Province, Xi'an Medical University, Xi'an 710021, Shaanxi Province, P. R. China
| | - Junyue Sun
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province; School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, Shaanxi Province, P. R. China
| | - Shan Wang
- Institute of Basic and Translational Medicine & Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an 710021, Shaanxi Province, P. R. China
- Engineering Research Center of Brain Diseases Drug Development, Universities of Shaanxi Province, Xi'an Medical University, Xi'an 710021, Shaanxi Province, P. R. China
| | - Wei Ren
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province; School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, Shaanxi Province, P. R. China
| | - Chenghui Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province; School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, Shaanxi Province, P. R. China
| |
Collapse
|
8
|
Zhang J, Yan C, Liu G. Visual detection of microRNAs using gold nanorod-based lateral flow nucleic acid biosensor and exonuclease III-assisted signal amplification. Mikrochim Acta 2024; 191:491. [PMID: 39066913 DOI: 10.1007/s00604-024-06557-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/08/2024] [Indexed: 07/30/2024]
Abstract
An ultrasensitive method for the visual detection of microRNAs (miRNAs) in cell lysates using a gold nanorod-based lateral flow nucleic acid biosensor (GN-LFNAB) and exonuclease III (Exo III)-assisted signal amplification. The Exo III-catalyzed target recycling strategy is employed to generate a large number of single-strand DNA products, which can be detected by GN-LFNAB visually. With the implementation of a unique recycling strategy, we have demonstrated that the miRNA in the concentration as low as 0.5 pM can be detected without the need for instrumentation, providing a detection limit that surpasses previous reports. The new biosensor is ultrasensitive and can be applied to the reliable monitoring of miRNAs in cell lysates with high accuracy. The approach offers a simple and rapid tool for cancer diagnosis and clinical biomedicine, thanks to its flexibility, simplicity, cost-effectiveness, and convenience. This new method has the potential to significantly improve the detection and monitoring of cancer biomarkers, ultimately contributing to more effective cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Jing Zhang
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276005, China
| | - Chao Yan
- School of Life Science, Anhui University, Hefei, 230601, China
| | - Guodong Liu
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276005, China.
| |
Collapse
|
9
|
Yan Y, Liao L. MicroRNA Expression Profile in Patients Admitted to ICU as Novel and Reliable Approach for Diagnostic and Therapeutic Purposes. Mol Biotechnol 2024; 66:1357-1375. [PMID: 37314613 DOI: 10.1007/s12033-023-00767-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 05/06/2023] [Indexed: 06/15/2023]
Abstract
The ability to detect early metabolic changes in patients who have an increased mortality risk in the intensive care units (ICUs) could increase the likelihood of predicting recovery patterns and assist in disease management. Markers that can predict the disease progression of patients in the ICU might also be beneficial for improving their medical profile. Although biomarkers have been used in the ICU more frequently in recent years, the clinical use of most of them is limited. A wide range of biological processes are influenced by microRNAs (miRNAs) that modulate the translation and stability of specific mRNAs. Studies suggest that miRNAs may serve as a diagnostic and therapeutic biomarker in ICUs by profiling miRNA dysregulation in patient samples. To improve the predictive value of biomarkers for ICU patients, researchers have proposed both investigating miRNAs as novel biomarkers and combining them with other clinical biomarkers. Herein, we discuss recent approaches to the diagnosis and prognosis of patients admitted to an ICU, highlighting the use of miRNAs as novel and robust biomarkers for this purpose. In addition, we discuss emerging approaches to biomarker development and ways to improve the quality of biomarkers so that patients in ICU get the best outcomes possible.
Collapse
Affiliation(s)
- Youqin Yan
- ICU Department, People's Hospital of Changshan, Changshan, China
| | - Linjun Liao
- ICU Department, People's Hospital of Changshan, Changshan, China.
| |
Collapse
|
10
|
Wei Z, Yang X, Xu L, Benma L, Wu D, Zeng H. Microsphere-Enhanced Fluorescence-Lightened Solid-Phase Hybridization Assay: The Strategy to Highly Selective Detection of Micro Ribonucleic Acids. Anal Chem 2024; 96:6738-6745. [PMID: 38642036 DOI: 10.1021/acs.analchem.4c00365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2024]
Abstract
The detection of low-abundance microribonucleic acid (miRNA) frequently adopted nucleic acid sequence-based amplification detection, which was found to have poor selectivity for the nonspecific amplification of template-dependent ligation in enzyme-mediated cascade reactions. Here, a highly selective detection of miRNAs was developed that combined microsphere-enhanced fluorescence (MSEF) and solid-phase base-paired hybridization. The target miRNA could be accurately and quantitatively identified through the solid-phase hybridization assay on the surface of an optical microsphere, while the detected fluorescence signal could be physically amplified by MSEF. Hereinto, the optical microsphere acted as the fluorescence amplifier and whose surface supplied the space to carry out base-paired hybridization to recognize the target miRNA via the immobilized capture DNA sequence. The detected fluorescence signal of the single-base mismatched miRNA-21 sequence was just around 12% of that of the target miRNA-21 sequence in the measurement of model miRNA-21, while the limit of detection of miRNA-21 could be 1.0 fM. The developed detection of miRNA on an optical microsphere was demonstrated to be an excellent physically amplified method to selectively and sensitively detect the target miRNA and magnificently avoid the nonspecific amplification and false-positive results, which is expected to have wide applications in pathematology, pharmacology, clinic diagnosis, and on-site screening fields as well.
Collapse
Affiliation(s)
- Ziheng Wei
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Xiaoli Yang
- Department of Neurology, Shanghai fifth People's Hospital, Fudan University, 801 Heqing Road, Minhang District, Shanghai 200240, China
| | - Lingrui Xu
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Lamu Benma
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Danhong Wu
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Hulie Zeng
- Department of Neurology, Shanghai fifth People's Hospital, Fudan University, 801 Heqing Road, Minhang District, Shanghai 200240, China
| |
Collapse
|
11
|
Kawakatsu Y, Okada R, Hara M, Tsutsui H, Yanagisawa N, Higashiyama T, Arima A, Baba Y, Kurotani KI, Notaguchi M. Microfluidic Device for Simple Diagnosis of Plant Growth Condition by Detecting miRNAs from Filtered Plant Extracts. PLANT PHENOMICS (WASHINGTON, D.C.) 2024; 6:0162. [PMID: 38572468 PMCID: PMC10988387 DOI: 10.34133/plantphenomics.0162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/03/2024] [Indexed: 04/05/2024]
Abstract
Plants are exposed to a variety of environmental stress, and starvation of inorganic phosphorus can be a major constraint in crop production. In plants, in response to phosphate deficiency in soil, miR399, a type of microRNA (miRNA), is up-regulated. By detecting miR399, the early diagnosis of phosphorus deficiency stress in plants can be accomplished. However, general miRNA detection methods require complicated experimental manipulations. Therefore, simple and rapid miRNA detection methods are required for early plant nutritional diagnosis. For the simple detection of miR399, microfluidic technology is suitable for point-of-care applications because of its ability to detect target molecules in small amounts in a short time and with simple manipulation. In this study, we developed a microfluidic device to detect miRNAs from filtered plant extracts for the easy diagnosis of plant growth conditions. To fabricate the microfluidic device, verification of the amine-terminated glass as the basis of the device and the DNA probe immobilization method on the glass was conducted. In this device, the target miRNAs were detected by fluorescence of sandwich hybridization in a microfluidic channel. For plant stress diagnostics using a microfluidic device, we developed a protocol for miRNA detection by validating the sample preparation buffer, filtering, and signal amplification. Using this system, endogenous sly-miR399 in tomatoes, which is expressed in response to phosphorus deficiency, was detected before the appearance of stress symptoms. This early diagnosis system of plant growth conditions has a potential to improve food production and sustainability through cultivation management.
Collapse
Affiliation(s)
- Yaichi Kawakatsu
- Bioscience and Biotechnology Center,
Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Ryo Okada
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Mitsuo Hara
- Department of Molecular and Macromolecular Chemistry,
Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Hiroki Tsutsui
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Naoki Yanagisawa
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
- Institute of Transformative Bio-Molecules,
Nagoya University, Nagoya 464-8601, Japan
| | - Tetsuya Higashiyama
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
- Institute of Transformative Bio-Molecules,
Nagoya University, Nagoya 464-8601, Japan
- Department of Biological Sciences,
Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Akihide Arima
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Yoshinobu Baba
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Department of Biomolecular Engineering,
Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Institute of Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan
| | - Ken-ichi Kurotani
- Bioscience and Biotechnology Center,
Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Michitaka Notaguchi
- Bioscience and Biotechnology Center,
Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
- Department of Botany,
Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
12
|
Chen Y, Wang X, Na X, Zhang Y, Li Z, Chen X, Cai L, Song J, Xu R, Yang C. Highly Multiplexed, Efficient, and Automated Single-Cell MicroRNA Sequencing with Digital Microfluidics. SMALL METHODS 2024; 8:e2301250. [PMID: 38016072 DOI: 10.1002/smtd.202301250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/14/2023] [Indexed: 11/30/2023]
Abstract
Single-cell microRNA (miRNA) sequencing has allowed for comprehensively studying the abundance and complex networks of miRNAs, which provides insights beyond single-cell heterogeneity into the dynamic regulation of cellular events. Current benchtop-based technologies for single-cell miRNA sequencing are low throughput, limited reaction efficiency, tedious manual operations, and high reagent costs. Here, a highly multiplexed, efficient, integrated, and automated sample preparation platform is introduced for single-cell miRNA sequencing based on digital microfluidics (DMF), named Hiper-seq. The platform integrates major steps and automates the iterative operations of miRNA sequencing library construction by digital control of addressable droplets on the DMF chip. Based on the design of hydrophilic micro-structures and the capability of handling droplets of DMF, multiple single cells can be selectively isolated and subject to sample processing in a highly parallel way, thus increasing the throughput and efficiency for single-cell miRNA measurement. The nanoliter reaction volume of this platform enables a much higher miRNA detection ability and lower reagent cost compared to benchtop methods. It is further applied Hiper-seq to explore miRNAs involved in the ossification of mouse skeletal stem cells after bone fracture and discovered unreported miRNAs that regulate bone repairing.
Collapse
Affiliation(s)
- Yingwen Chen
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, Key Laboratory of Analytical Chemistry, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xuanqun Wang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, Key Laboratory of Analytical Chemistry, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xing Na
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, Key Laboratory of Analytical Chemistry, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yingkun Zhang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, Key Laboratory of Analytical Chemistry, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Zan Li
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Xiaohui Chen
- State Key Laboratory of Cellular Stress Biology, The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cell, School of Medicine, Xiamen University, Xiamen, 361100, China
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, 361100, China
| | - Linfeng Cai
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, Key Laboratory of Analytical Chemistry, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Jia Song
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Ren Xu
- State Key Laboratory of Cellular Stress Biology, The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cell, School of Medicine, Xiamen University, Xiamen, 361100, China
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, 361100, China
| | - Chaoyong Yang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, Key Laboratory of Analytical Chemistry, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| |
Collapse
|
13
|
Li K, Xiao P, Yuan N, Yan S, Zhao P, Zuo G. Precise quantification of microRNAs based on proximity ligation of AuNPs-immobilized DNA probes. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:1281-1287. [PMID: 38327233 DOI: 10.1039/d3ay02136j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
MiRNAs are critical regulators of target gene expression in many biological processes and are considered promising biomarkers for diseases. In this study, we developed a simple, specific, and sensitive miRNA detection method based on proximity ligation reaction, which is easy to operate. The method uses a pair of target-specific DNA probes immobilized on the same gold nanoparticles (AuNPs), which hybridize to the target miRNA. Hybridization brings the probes close together, allowing the formation of a continuous DNA sequence that can be amplified by Quantitative Real-time PCR (qPCR). This method eliminates the need for complex reverse transcription design and achieves high specificity for discriminating single base mismatches between miRNAs through a simple procedure. This method can sensitively measure three different miRNAs with a detection limit of 20 aM, providing high versatility and sensitivity, even distinguishing single-base variations among members of the miR-200 family with high selectivity. Due to its high selectivity and sensitivity, this method has important implications for the investigation of miRNA biological functions and related biomedical research.
Collapse
Affiliation(s)
- Keyu Li
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Peng Xiao
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Ningning Yuan
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Shujuan Yan
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510620, China.
| | - Pei Zhao
- Department of Laboratory Medicine, Hebei General Hospital, Shijiazhuang 050051, China.
| | - Guowei Zuo
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
14
|
Zhang X, Xu X, Song J, Xu Y, Qian H, Jin J, Liang ZF. Non-coding RNAs' function in cancer development, diagnosis and therapy. Biomed Pharmacother 2023; 167:115527. [PMID: 37751642 DOI: 10.1016/j.biopha.2023.115527] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/05/2023] [Accepted: 09/15/2023] [Indexed: 09/28/2023] Open
Abstract
While previous research on cancer biology has focused on genes that code for proteins, in recent years it has been discovered that non-coding RNAs (ncRNAs)play key regulatory roles in cell biological functions. NcRNAs account for more than 95% of human transcripts and are an important entry point for the study of the mechanism of cancer development. An increasing number of studies have demonstrated that ncRNAs can act as tumor suppressor genes or oncogenes to regulate tumor development at the epigenetic level, transcriptional level, as well as post-transcriptional level. Because of the importance of ncRNAs in cancer, most clinical trials have focused on ncRNAs to explore whether ncRNAs can be used as new biomarkers or therapies. In this review, we focus on recent studies of ncRNAs including microRNAs (miRNAs), long ncRNAs (lncRNAs), circle RNAs (circRNAs), PIWI interacting RNAs (piRNAs), and tRNA in different types of cancer and explore the application of these ncRNAs in the development of cancer and the identification of relevant therapeutic targets and tumor biomarkers. Graphical abstract drawn by Fidraw.
Collapse
Affiliation(s)
- XinYi Zhang
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Changzhou 213017, Jiangsu, China; Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu university, Zhenjiang, Jiangsu 212013, China
| | - Xiaoqing Xu
- Nanjing Renpin ENT Hospital, Nanjing 210000, Jiangsu, China
| | - Jiajia Song
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Changzhou 213017, Jiangsu, China; Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu university, Zhenjiang, Jiangsu 212013, China
| | - Yumeng Xu
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Changzhou 213017, Jiangsu, China; Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu university, Zhenjiang, Jiangsu 212013, China
| | - Hui Qian
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Changzhou 213017, Jiangsu, China; Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu university, Zhenjiang, Jiangsu 212013, China
| | - Jianhua Jin
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Changzhou 213017, Jiangsu, China.
| | - Zhao Feng Liang
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Changzhou 213017, Jiangsu, China; Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu university, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
15
|
Ghanbari R, Attaripour Isfahani A, Pirmoradian S, Rezaei H, Radfar S, Kheirollahi M. A rapid and simple method for simultaneous determination of three breast cancer related microRNAs based on magnetic nanoparticles modified with S9.6 antibody. Anal Biochem 2023; 665:115052. [PMID: 36682580 DOI: 10.1016/j.ab.2023.115052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/11/2023] [Accepted: 01/14/2023] [Indexed: 01/22/2023]
Abstract
Cancer progression is typically associated with the simultaneous changes of multiple microRNA (miR) levels. Therefore, simultaneous determination of multiple miR biomarkers exhibits great promise in early diagnosis of cancers. This research seeks to discuss a simple biosensing method for the ultrasensitive and specific detection of the three miRs related to the breast cancer based on S9.6 antibody coated magnetic beads, titanium phosphate nanospheres, and screen-printed carbon electrode. To prepare signaling probes, three hairpin DNAs (hDNAs) were labeled with three encoding titanium phosphate nanospheres with large quantities of different heavy metal ions (zinc, cadmium, lead), which have been utilized to discriminate the signals of three microRNA targets in relation with the corresponding heavy metal ions. After that, these hairpin structures hybridize with miR-21, miR-155 and miR-10b to form miR-21/hDNA1, miR-155/hDNA2 and miR-10b/hDNA3 complexes, which were captured by S9.6 antibodies (one anti-DNA/RNA antibody) pre-modified on magnetic bead surface. Therefore, the specific preconcentration of targets from complex matrixes can be carried out using magnetic actuation, increasing the sensitivity and specificity of the detection. The biosensor was suitably applied for direct and rapid detection of multiple microRNAs in real sample. It was observed that there were no significant differences between the results obtained by the suggested method and qRT-PCR as a reference method. So, this method makes an ultrasensitive novel platform for miRNAs expression profiling in clinical diagnosis and biomedical research.
Collapse
Affiliation(s)
- Reza Ghanbari
- Department of Biological Science and Technology, Najafabad Branch, Islamic Azad University, Najafabad, Iran.
| | - Ali Attaripour Isfahani
- Department of Biological Science and Technology, Najafabad Branch, Islamic Azad University, Najafabad, Iran.
| | - Sina Pirmoradian
- Department of Biological Science and Technology, Najafabad Branch, Islamic Azad University, Najafabad, Iran.
| | - Halimeh Rezaei
- Genetics Division, Biology Department, Faculty of Sciences, University of Isfahan, Isfahan, 81746-73441, Iran.
| | - Sasan Radfar
- Stem Cell and Regenerative Medicine Center of Excellence, Tehran University of Medical Science, Tehran, Iran.
| | - Majid Kheirollahi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
16
|
Zhao M, Wang R, Yang K, Jiang Y, Peng Y, Li Y, Zhang Z, Ding J, Shi S. Nucleic acid nanoassembly-enhanced RNA therapeutics and diagnosis. Acta Pharm Sin B 2023; 13:916-941. [PMID: 36970219 PMCID: PMC10031267 DOI: 10.1016/j.apsb.2022.10.019] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/22/2022] [Accepted: 09/10/2022] [Indexed: 11/16/2022] Open
Abstract
RNAs are involved in the crucial processes of disease progression and have emerged as powerful therapeutic targets and diagnostic biomarkers. However, efficient delivery of therapeutic RNA to the targeted location and precise detection of RNA markers remains challenging. Recently, more and more attention has been paid to applying nucleic acid nanoassemblies in diagnosing and treating. Due to the flexibility and deformability of nucleic acids, the nanoassemblies could be fabricated with different shapes and structures. With hybridization, nucleic acid nanoassemblies, including DNA and RNA nanostructures, can be applied to enhance RNA therapeutics and diagnosis. This review briefly introduces the construction and properties of different nucleic acid nanoassemblies and their applications for RNA therapy and diagnosis and makes further prospects for their development.
Collapse
Affiliation(s)
- Mengnan Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Rujing Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Kunmeng Yang
- The First Norman Bethune College of Clinical Medicine, Jilin University, Changchun 130061, China
| | - Yuhong Jiang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yachen Peng
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Yuke Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Sanjun Shi
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
17
|
Zhu J, Guo Z, Cui J, Miao P. Partial collapse of DNA tetrahedron for miRNA assay with duplex-specific nuclease-assisted amplification. Analyst 2023; 148:512-515. [PMID: 36648312 DOI: 10.1039/d2an01889f] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
We establish a facile electrochemical approach for detecting miRNA. Programmable DNA tetrahedron is designed using thiol groups for electrode modification, the amino group for the localization of electrochemical species and a hairpin structure that responds to target miRNA. In addition, duplex-specific nuclease-assisted amplification helps improve the sensitivity of this biosensor. The target-initiated partial collapse of the DNA tetrahedron event integrates recognition, electrode immobilization, signal recruitment and amplification. By measuring the sharp silver stripping peak, the highly sensitive detection of miRNA is achieved, which also performs satisfactorily challenging biological samples. This method is featured with simple operation, high sensitivity and practical utility, exhibiting great application potential in clinical diagnosis.
Collapse
Affiliation(s)
- Jinwen Zhu
- University of Science and Technology of China, Hefei 230026, China.,Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China.
| | - Zhenzhen Guo
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China.
| | - Jinjiang Cui
- University of Science and Technology of China, Hefei 230026, China.,Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China.
| | - Peng Miao
- University of Science and Technology of China, Hefei 230026, China.,Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China.
| |
Collapse
|
18
|
Liu L, Wang X, Li Y, Liu J. Evaluation of probe-based ultra-sensitive detection of miRNA using a single-molecule fluorescence imaging method: miR-126 used as the model. Front Bioeng Biotechnol 2023; 11:1081488. [PMID: 36761298 PMCID: PMC9902880 DOI: 10.3389/fbioe.2023.1081488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/09/2023] [Indexed: 01/25/2023] Open
Abstract
This study proposed a new detection method of miRNA based on single-molecule fluorescence imaging, a method that has been successfully developed to measure the light signal of individual molecules labeled with proper fluorophores. We designed probes 1 and 2 to be labeled with Cy5 dye and BHQ2 quencher at the 3'terminals, respectively. Probe 1 consisted of two parts, the longer part complementary to miR-126 and the shorter part complementary to probe 2. After hybridization, miR-126 bound to probe 1 by replacing probe 2 and assembled into a double-stranded DNA with probe 1. The abundance of miR-126 was quantified by detecting image spots of Cy5 dye molecules from probe 1/miR-126 complexes. MiR-126 single-molecule imaging method showed high specificity and sensitivity for miR-126 with a detection limit of 50 fM. This method has good selectivity for miR-126 detection with 2.1-fold, 8.8-fold, and 26.9-41.3-fold higher than those of single-base mismatched miR-126, three-base mismatched miR-126 and non-complementary miRNAs (miR-221, miR-16, miR-143 and miR-141). The method to detect miR-126 was validated in breast cancer cell lines. Our single-molecule miRNA imaging showed high specificity and sensitivity for miRNAs. By changing the base pair sequence of the designed probes, our method would be able to detect different miRNAs.
Collapse
Affiliation(s)
- Longkai Liu
- School of Pharmacy, Department of Chemistry, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Xiaoning Wang
- Department of Pharmacy, Qingdao Municipal Hospital, Qingdao, China,*Correspondence: Xiaoning Wang, ; Yan Li, ; Jianwei Liu,
| | - Yan Li
- School of Pharmacy, Department of Chemistry, Institutes of Biomedical Sciences, Fudan University, Shanghai, China,*Correspondence: Xiaoning Wang, ; Yan Li, ; Jianwei Liu,
| | - Jianwei Liu
- School of Pharmacy, Department of Chemistry, Institutes of Biomedical Sciences, Fudan University, Shanghai, China,*Correspondence: Xiaoning Wang, ; Yan Li, ; Jianwei Liu,
| |
Collapse
|
19
|
Shi H, Bi X, Zhang J, Duan S, Yan J, Jia H. Simple and sensitive detection of microRNA based on guanine-rich DNA-enhanced fluorescence of DNA-templated silver clusters. Talanta 2022. [DOI: 10.1016/j.talanta.2022.124065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
20
|
Ye Y, Lin Y, Chi Z, Zhang J, Cai F, Zhu Y, Tang D, Lin Q. Rolling circle amplification (RCA) -based biosensor system for the fluorescent detection of miR-129-2-3p miRNA. PeerJ 2022; 10:e14257. [PMID: 36312756 PMCID: PMC9610657 DOI: 10.7717/peerj.14257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 09/27/2022] [Indexed: 01/26/2023] Open
Abstract
Herein, a versatile fluorescent bioanalysis platform for sensitive and specific screening of target miRNA (miR-129-2-3p) was innovatively designed by applying target-induced rolling circle amplification (RCA) for efficient signal amplification. Specifically, miR-129-2-3p was used as a ligation template to facilitate its ligation with padlock probes, followed by an RCA reaction in the presence of phi29 DNA polymerase. The dsDNA fragments and products were stained by SYBR Green I and then detected by fluorescence spectrophotometry. As a result, miR-129-2-3p concentrations as low as 50 nM could be detected. Furthermore, the expression of miR-129-2-3p in breast cancer patients was about twice that in healthy people. Therefore, the results indicated that the RCA-based biosensor system could be a valuable platform for miRNA detection in clinical diagnosis and biomedical study.
Collapse
Affiliation(s)
- Yan Ye
- Fujian Normal University, College of Life Sciences, Fuzhou, Fujian, P. R. China
| | - Yao Lin
- Cooperation Base of Traditional Chinese Medicine-Oriented Chronic Disease Prevention and Treatment, Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Zilin Chi
- Fujian Normal University, College of Life Sciences, Fuzhou, Fujian, P. R. China
| | - Jiasheng Zhang
- The First Affiliated Hospital of Fujian Medical University, Department of Thyroid and Breast Surgery, Fuzhou, Fujian, P. R. China
| | - Fan Cai
- Fujian Normal University, College of Life Sciences, Fuzhou, Fujian, P. R. China
| | - Youzhi Zhu
- The First Affiliated Hospital of Fujian Medical University, Department of Thyroid and Breast Surgery, Fuzhou, Fujian, P. R. China
| | - Dianping Tang
- Fuzhou University, Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), State Key Laboratory of Photocatalysis on Energy and Environment, Department of Chemistry, Fuzhou, Fujian, P. R. China.
| | - Qingqiang Lin
- Fujian Normal University, College of Life Sciences, Fuzhou, Fujian, P. R. China
| |
Collapse
|
21
|
Zhang Z, Ma X, Zhu J, Yan R, Miao P. Roll-to-Roll DNA Nanomachine for Ultrasensitive Electrochemical Determination of miRNA. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:11130-11135. [PMID: 36045009 DOI: 10.1021/acs.langmuir.2c02102] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
MicroRNAs (miRNAs) are a family of endogenous noncoding RNAs with the functions of gene regulation, which serve as promising markers for a range of diseases such as diabetic foot ulcers, cancers, etc. In this work, we engineered a roll-to-roll DNA nanomachine for highly sensitive electrochemical detection of miRNA. A dumbbell-structured DNA probe could be transitioned to be wheel-structured conformation upon target recognition, which rolls around track strands on the surface of gold nanoparticles (AuNPs) in the presence of nicking endonuclease. The resulting single strands on AuNPs are activated for the second round of rolling at the DNA-modified electrode interface, leading to the variation of electrochemical responses. The roll-to-roll amplification behavior allows a wide detection range with a limit of detection as low as 10 aM. The practicability is also demonstrated by the application in human serum samples with satisfactory results. It is expected that the proposed electrochemical method offers a new paradigm to develop miRNA assays based on DNA nanotechnology.
Collapse
Affiliation(s)
- Zhenming Zhang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, P.R. China
- Department of Orthopedic Surgery, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Xin Ma
- Department of Orthopedic Surgery, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Jinwen Zhu
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, P.R. China
| | - Ruhong Yan
- Department of Clinical Laboratory, Suzhou Science & Technology Town Hospital, Nanjing Medical University, Suzhou 215153, P.R. China
| | - Peng Miao
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, P.R. China
| |
Collapse
|
22
|
Zheng B, Pan B, Xu S, Xu Z, Lu G, Wang F, Fang B, Xu C. Detection of inflammatory bowel disease (IBD)-associated microRNAs by two color DNA-templated silver nanoclusters fluorescent probes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 276:121185. [PMID: 35395459 DOI: 10.1016/j.saa.2022.121185] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/28/2022] [Accepted: 03/22/2022] [Indexed: 12/16/2022]
Abstract
Researches demonstrated that circulating miRNAs could be used as novel diagnostic and prognostic potential markers for patients with inflammatory bowel diseases (IBD). It is of great significance in clinical to develop rapid and specific detection methods for miRNAs. Herein, we established a fluorescent probe for ulcerative colitis (UC) activity-associated two serum biomarkers (miR-23a and miR-223) simultaneous detection, which used multi-color fluorescent DNA-stabilized silver nanoclusters (DNA-AgNC) illuminated by a close guanine (G)-rich sequence as a signal transducer and two split DNA probes as recognition units. In principle, the two DNA probe sequences containing AgNC nucleation sequence and G-rich sequence respectively, formed a ternary complex when in the presence of target miRNA through base pairing, so as to induce enhancement of fluorescence emission of AgNC by shortening the distance from G-rich sequence. The combined probes for miR-23a and miR-223 detection generated increased fluorescence signals at 460 nm ex/545 nm em and at 560 nm ex/630 nm em, respectively. With this technique, we successfully quantified the two target miRNAs with high selectivity. Furthermore, the potential clinic applicability of this method was verified by testing the spiked standard miRNAs in human serum. Thus, this one-step, low-cost, and homogenous method offers a great opportunity for disease-associated multiplex miRNAs simultaneous detection.
Collapse
Affiliation(s)
- Bo Zheng
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Binhui Pan
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Sheng Xu
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Zhihua Xu
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Guangrong Lu
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - FangYan Wang
- Department of Pathophysiology, School of Basic Medicine Science, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Biyun Fang
- School of Basic Medical Sciences, Xi'an Key Laboratory of Immune Related Diseases, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| | - ChangLong Xu
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
23
|
Chai H, Tang Y, Miao P. Tetrahedral DNA Supported Walking Nanomachine for Ultrasensitive miRNA Detection in Cancer Cells and Serums. Anal Chem 2022; 94:9975-9980. [PMID: 35796492 DOI: 10.1021/acs.analchem.2c02288] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A three-dimensional DNA tetrahedral nanostructure is constructed to support a walker strand on top and multiple track strands around it via the assembly of triplex-forming oligonucleotide (TFO). This design facilitates the regeneration of the sensing interface by simply adjusting pH conditions. On the basis of the tetrahedral DNA supported walking nanomachine, ultrasensitive electrochemical analysis of miRNA (miR-141) is achieved. Target miRNA assists the formation of three-way junction nanostructure. It contains a duplex region (hybridized by track and walker strands) that could be specially recognized and digested by certain nicking endonuclease. As a result, walker strand and target miRNA are released and move around the attached tracks for continuous cleavage reactions, releasing a larger number of signal reporters. By measuring the variation of signal responses, ultrasensitive analysis of miRNA is achieved. The limit of detection (LOD) is calculated to be 4.9 aM, which is rather low. In addition, the proposed method is successfully applied for the detection of miRNA in cell and serum samples, which could distinguish pathological information from healthy controls.
Collapse
Affiliation(s)
- Hua Chai
- University of Science and Technology of China, Hefei 230026, China.,Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Yuguo Tang
- University of Science and Technology of China, Hefei 230026, China.,Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Peng Miao
- University of Science and Technology of China, Hefei 230026, China.,Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| |
Collapse
|
24
|
Yan Y, Hu T, Fang Y, Xiang X, Ma C. A fluorescence strategy for the rapid detection of miRNA-21 based on G-quadruplex and cyclic amplification signal. Anal Biochem 2022; 652:114775. [DOI: 10.1016/j.ab.2022.114775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/03/2022] [Accepted: 06/01/2022] [Indexed: 11/17/2022]
|
25
|
Sun D, Cao F, Yi X, Zhu H, Qi G, Xu W, Xu S. MicroRNA-21 expression in single living cells revealed by fluorescence and SERS dual-response microfluidic droplet platform. LAB ON A CHIP 2022; 22:2165-2172. [PMID: 35522901 DOI: 10.1039/d2lc00096b] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Analysis of single-cell microRNA is essential to reveal cell heterogeneity at the genetic level. It raises a high demand for single-cell analytical methods because single-cell microRNA sequences are highly similar and small in size and feature low-level expression. Herein, SERS and fluorescence imaging technology were introduced into a microfluidic droplet platform to realize direct in situ, nondestructive, and highly sensitive detection of a small number of microRNA-21 (miR-21) in a single intact living cell. A multifunctional plasmonic nanoprobe was designed by decorating a gold nanoparticle with fluorescent dye (ROX)-labeled probe DNA and capture DNA strands. The dual-signal switching of fluorescence turn-off and SERS turn-on of ROX in response to miR-21 achieves highly sensitive and reliable detection of miR-21 in a single cell. The turn-on of SERS signal with a zero background guarantees the sensitivity of the detection. The fluorescence-SERS simultaneous response strategy was able to mutually corroborate the test results, improving the reliability of determining low-level expression of miR-21. SERS combined with encapsulation of microdroplets provides a feasible way to conduct in situ, nondestructive determination of miR-21 secreted by single cells, avoiding cell lysis and tedious time-consuming steps of miR-21 isolation. As a result, the miR-21 expressed by various types of single cells was investigated by fluorescence imaging and the cellular heterogeneity in miR-21 expression was evaluated accurately and quantitatively by SERS. This research would provide important reference information for understanding the effects of miRNAs on cancer diseases at the single-cell level.
Collapse
Affiliation(s)
- Dan Sun
- School of Pharmacy, Nantong University, Nantong, Jiangsu 226001, China.
| | - Fanghao Cao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xuan Yi
- School of Pharmacy, Nantong University, Nantong, Jiangsu 226001, China.
| | - Hongyan Zhu
- School of Pharmacy, Nantong University, Nantong, Jiangsu 226001, China.
| | - Guohua Qi
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
| | - Weiqing Xu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Shuping Xu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
26
|
Li X, Guo Z, Luo G, Miao P. Fluorescence DNA Switch for Highly Sensitive Detection of miRNA Amplified by Duplex-Specific Nuclease. SENSORS 2022; 22:s22093252. [PMID: 35590941 PMCID: PMC9104181 DOI: 10.3390/s22093252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/21/2022] [Accepted: 04/21/2022] [Indexed: 02/01/2023]
Abstract
DNA is a type of promising material for the construction of sensors owing to its sequence programmability to control the formation of certain structures. MicroRNA (miRNA) can be applied as promising biomarkers for the diagnosis of a range of diseases. Herein, a novel fluorescent sensing strategy for miRNA is proposed combining duplex-specific nuclease (DSN)-mediated amplification and dumbbell DNA structural switch. Gold nanoparticles (AuNPs) are employed, which provide a 3D reaction interface. They also act as effective fluorescence quenchers. The proposed sensor exhibits high sensitivity (sub-femtomolar level) with a wide dynamic range. In addition, excellent selectivity to distinguish homology sequences is achieved. It also performs satisfactorily in biological samples. Overall, this fluorescent sensor provides a powerful tool for the analysis of miRNA levels and can be applied for related biological studies and clinical diagnosis.
Collapse
Affiliation(s)
- Xiaoqiang Li
- School of Biomedical Engineering (Suzhou), University of Science and Technology of China, Hefei 230026, China;
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China; (Z.G.); (G.L.)
| | - Zhenzhen Guo
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China; (Z.G.); (G.L.)
- Ji Hua Laboratory, Foshan 528200, China
| | - Gangyin Luo
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China; (Z.G.); (G.L.)
| | - Peng Miao
- School of Biomedical Engineering (Suzhou), University of Science and Technology of China, Hefei 230026, China;
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China; (Z.G.); (G.L.)
- Correspondence:
| |
Collapse
|
27
|
Exponential isothermal amplification coupled MALDI-TOF MS for microRNAs detection. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
28
|
Radfar S, Ghanbari R, Attaripour Isfahani A, Rezaei H, Kheirollahi M. A novel signal amplification tag to develop rapid and sensitive aptamer-based biosensors. Bioelectrochemistry 2022; 145:108087. [DOI: 10.1016/j.bioelechem.2022.108087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 11/25/2022]
|
29
|
Wang Q, Liu L, Chen X, Wang T, Zhou H, Huang H, Qing L, Luo P. Noninvasive Prognosis of Postmyocardial Infarction Using Urinary miRNA Ultratrace Detection Based on Single-Target DNA-Functionalized AuNPs. ACS APPLIED MATERIALS & INTERFACES 2022; 14:3633-3642. [PMID: 35018773 DOI: 10.1021/acsami.1c17883] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Urine is the most appropriate body fluid for analysis because it is easily and less-invasively obtained than blood; thus, urinary miRNAs can better represent the local stage of the disease and might grow up to be a new class of noninvasive biomarkers of postmyocardial infarction (MI). Monofunctionalized Au nanoparticles (AuNPs) with only one selective DNA at a specific location are more promising in nanotechnology. This study developed a urinary miRNA ultratrace detection strategy based on single-target DNA-functionalized AuNPs for the noninvasive prognosis of post-MI. The AuNPs were designed with only single-stranded biotinylated DNA complementary to the target miRNA through a ratio-optimized stoichiometric method for the first time. Combined with the duplex specific nuclease-assisted target recycling amplification, the single-target DNA-functionalized AuNPs for the first time were used in inductively coupled plasma-mass spectrometry for the determination of urinary miRNA with high sensitivity. After optimizing the reaction conditions, a linear detection range between 1 fM and 10 pM for miR-155 and a detection limit of 0.47 fM were obtained. Finally, the target miR-155 in urine samples collected from MI rats was quantified and the level of miR-155 in MI groups was 30 times higher than in the control groups. The results suggest that urinary miR-155 could be a novel biomarker for the noninvasive diagnosis of MI.
Collapse
Affiliation(s)
- Qianlong Wang
- State Key Laboratories for Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau 999078, China
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610000, China
- School of Materials Science and Engineering, Tsinghua University, Beijing 100080, China
| | - Lancong Liu
- State Key Laboratories for Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau 999078, China
| | - Xiaoyi Chen
- State Key Laboratories for Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau 999078, China
| | - Tiantian Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610000, China
| | - Hua Zhou
- State Key Laboratories for Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau 999078, China
| | - Hui Huang
- Department of Cardiology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518048, China
| | - Linsen Qing
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610000, China
| | - Pei Luo
- State Key Laboratories for Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau 999078, China
| |
Collapse
|
30
|
Li CC, Hu J, Zou X, Luo X, Zhang CY. Construction of a Structure-Switchable Toehold Dumbbell Probe for Sensitive and Label-Free Measurement of MicroRNA in Cancer Cells and Tissues. Anal Chem 2022; 94:1882-1889. [DOI: 10.1021/acs.analchem.1c05066] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Chen-Chen Li
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jinping Hu
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Xiaoran Zou
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Xiliang Luo
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Chun-Yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
31
|
Li D, Yan L, Lin F, Yuan X, Yang X, Yang X, Wei L, Yang Y, Lu Y. Urinary Biomarkers for the Noninvasive Detection of Gastric Cancer. J Gastric Cancer 2022; 22:306-318. [DOI: 10.5230/jgc.2022.22.e28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 08/01/2022] [Accepted: 08/16/2022] [Indexed: 12/24/2022] Open
Affiliation(s)
- Dehong Li
- Gansu Provincial Clinical Research Center for Laboratory Medicine, Lanzhou, China
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, China
| | - Li Yan
- Gansu Provincial Clinical Research Center for Laboratory Medicine, Lanzhou, China
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, China
| | - Fugui Lin
- Gansu Provincial Clinical Research Center for Laboratory Medicine, Lanzhou, China
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, China
| | - Xiumei Yuan
- Gansu Provincial Clinical Research Center for Laboratory Medicine, Lanzhou, China
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, China
| | - Xingwen Yang
- Gansu Provincial Clinical Research Center for Laboratory Medicine, Lanzhou, China
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, China
| | - Xiaoyan Yang
- Gansu Provincial Clinical Research Center for Laboratory Medicine, Lanzhou, China
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, China
| | - Lianhua Wei
- Gansu Provincial Clinical Research Center for Laboratory Medicine, Lanzhou, China
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, China
| | - Yang Yang
- Gansu Provincial Clinical Research Center for Laboratory Medicine, Lanzhou, China
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, China
| | - Yan Lu
- Gansu Provincial Clinical Research Center for Laboratory Medicine, Lanzhou, China
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, China
| |
Collapse
|
32
|
Haluck-Kangas A, Patel M, Paudel B, Vaidyanathan A, Murmann AE, Peter ME. DISE/6mer seed toxicity-a powerful anti-cancer mechanism with implications for other diseases. J Exp Clin Cancer Res 2021; 40:389. [PMID: 34893072 PMCID: PMC8662895 DOI: 10.1186/s13046-021-02177-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/05/2021] [Indexed: 01/03/2023] Open
Abstract
micro(mi)RNAs are short noncoding RNAs that through their seed sequence (pos. 2-7/8 of the guide strand) regulate cell function by targeting complementary sequences (seed matches) located mostly in the 3' untranslated region (3' UTR) of mRNAs. Any short RNA that enters the RNA induced silencing complex (RISC) can kill cells through miRNA-like RNA interference when its 6mer seed sequence (pos. 2-7 of the guide strand) has a G-rich nucleotide composition. G-rich seeds mediate 6mer Seed Toxicity by targeting C-rich seed matches in the 3' UTR of genes critical for cell survival. The resulting Death Induced by Survival gene Elimination (DISE) predominantly affects cancer cells but may contribute to cell death in other disease contexts. This review summarizes recent findings on the role of DISE/6mer Seed Tox in cancer; its therapeutic potential; its contribution to therapy resistance; its selectivity, and why normal cells are protected. In addition, we explore the connection between 6mer Seed Toxicity and aging in relation to cancer and certain neurodegenerative diseases.
Collapse
Affiliation(s)
- Ashley Haluck-Kangas
- Division Hematology/Oncology and Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, 303 East Superior Street, Lurie 6-123, Chicago, IL 60611 USA
| | - Monal Patel
- Division Hematology/Oncology and Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, 303 East Superior Street, Lurie 6-123, Chicago, IL 60611 USA
| | - Bidur Paudel
- Division Hematology/Oncology and Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, 303 East Superior Street, Lurie 6-123, Chicago, IL 60611 USA
| | - Aparajitha Vaidyanathan
- Division Hematology/Oncology and Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, 303 East Superior Street, Lurie 6-123, Chicago, IL 60611 USA
| | - Andrea E. Murmann
- Division Hematology/Oncology and Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, 303 East Superior Street, Lurie 6-123, Chicago, IL 60611 USA
| | - Marcus E. Peter
- Division Hematology/Oncology and Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, 303 East Superior Street, Lurie 6-123, Chicago, IL 60611 USA
| |
Collapse
|
33
|
Yao Y, Zhang H, Tian T, Liu Y, Zhu R, Ji J, Liu B. Iodide-modified Ag nanoparticles coupled with DSN-Assisted cycling amplification for label-free and ultrasensitive SERS detection of MicroRNA-21. Talanta 2021; 235:122728. [PMID: 34517596 DOI: 10.1016/j.talanta.2021.122728] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/17/2021] [Accepted: 07/21/2021] [Indexed: 01/22/2023]
Abstract
With the emergence of microRNA (miRNA) as a key player in early clinical disease diagnosis, development of rapidly sensitive and quantitative miRNA detection methods are imperative. Herein, a label-free SERS assay coupled with duplex-specific nuclease (DSN) signal amplification strategy was proposed for facilely ultrasensitive and quantitative analysis of miRNA-21. Firstly, magnetic beads assembled with excessive capture DNA were utilized to hybridize the target miRNA-21. These DNA-RNA heteroduplexes were cleaved by DSN to generate small nucleotide fragments into the supernatant and the miRNA-21 released and rehybridized another DNA, going to the next DSN cycle. Consequently, numerous of small nucleotide fragments of capture DNA were released from magnetic beads and the miRNA-21 signal was transferred and amplified by the SERS signals of total phosphate backbones which are abundant in nucleotide. Furthermore, iodide-modified Ag nanoparticles (AgINPs) was employed to generate a strong and reproducible SERS signal. The proposed method displayed excellent performance for miRNA-21 detection with the linear range from 0.33 fM to 3.3 pM, and a lower detection limit of 42 aM. Moreover, this strategy exhibited effectively base discrimination capability and was successfully applied for monitoring the expression levels of miRNA-21 in different cancer cell lines and human serum.
Collapse
Affiliation(s)
- Yuanyuan Yao
- Department of Chemistry, Shanghai Stomatological Hospital, Institute of Biomedical Sciences, State Key Lab of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China; Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang, 314001, China
| | - Hongding Zhang
- Department of Chemistry, Shanghai Stomatological Hospital, Institute of Biomedical Sciences, State Key Lab of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| | - Tongtong Tian
- Department of Chemistry, Shanghai Stomatological Hospital, Institute of Biomedical Sciences, State Key Lab of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| | - Yixin Liu
- Department of Chemistry, Shanghai Stomatological Hospital, Institute of Biomedical Sciences, State Key Lab of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| | - Rendan Zhu
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang, 314001, China
| | - Ji Ji
- Department of Chemistry, Shanghai Stomatological Hospital, Institute of Biomedical Sciences, State Key Lab of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China.
| | - Baohong Liu
- Department of Chemistry, Shanghai Stomatological Hospital, Institute of Biomedical Sciences, State Key Lab of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
34
|
Bao G, Sun J, Zheng H, Hou J, Huang J, Wei J, Fu Y, Qiu J, Zou X, Xiang B, Cai J. Visualization of microRNA-21 Dynamics in Neuroblastoma Using Magnetic Resonance Imaging Based on a microRNA-21-Responsive Reporter Gene. Front Oncol 2021; 11:747305. [PMID: 34804934 PMCID: PMC8602822 DOI: 10.3389/fonc.2021.747305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/25/2021] [Indexed: 11/13/2022] Open
Abstract
Background MicroRNAs (miRs) have been shown to be closely associated with the occurrence and development of tumors and to have potential as diagnostic and therapeutic targets. The detection of miRs by noninvasive imaging technology is crucial for deeply understanding their biological functions. Our aim was to develop a novel miR-21-responsive gene reporter system for magnetic resonance imaging (MRI) visualization of the miR-21 dynamics in neuroblastoma. Methods The reporter gene ferritin heavy chain (FTH1) was modified by the addition of 3 copies of the sequence completely complementary to miR-21 (3xC_miR-21) to its 3’-untranslated region (3’ UTR) and transduced into SK-N-SH cells to obtain SK-N-SH/FTH1-3xC_miR-21 cells. Then, the antagomiR-21 was delivered into cells by graphene oxide functionalized with polyethylene glycol and dendrimer. Before and after antagomiR-21 delivery, FTH1 expression, MRI contrast and intracellular iron uptake were assayed in vitro and in vivo. Results In the SK-N-SH/FTH1-3xC_miR-21 cells, FTH1 expression was in an “off” state due to the combination of intratumoral miR-21 with the 3’ UTR of the reporter gene. AntagomiR-21 delivered into the cells bound to miR-21 and thereby released it from the 3’ UTR of the reporter gene, thus “switching on” FTH1 expression in a dose-dependent manner. This phenomenon resulted in intracellular iron accumulation and allowed MRI detection in vitro and in vivo. Conclusion MRI based on the miR-21-responsive gene reporter may be a potential method for visualization of the endogenous miR-21 activity in neuroblastoma and its response to gene therapy.
Collapse
Affiliation(s)
- Guangcheng Bao
- Department of Radiology, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,Key Laboratory of Pediatrics in Chongqing, Chongqing, China.,Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
| | - Jun Sun
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,Key Laboratory of Pediatrics in Chongqing, Chongqing, China.,Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China.,Department of Radiology, Chongqing University Central Hospital, Chongqing, China
| | - Helin Zheng
- Department of Radiology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Jingxin Hou
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jie Huang
- Department of Radiology, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,Key Laboratory of Pediatrics in Chongqing, Chongqing, China.,Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
| | - Jie Wei
- Department of Radiology, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,Key Laboratory of Pediatrics in Chongqing, Chongqing, China.,Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
| | - Yuanqiao Fu
- Department of Radiology, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,Key Laboratory of Pediatrics in Chongqing, Chongqing, China.,Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
| | - Jiawen Qiu
- Department of Radiology, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,Key Laboratory of Pediatrics in Chongqing, Chongqing, China.,Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
| | - Xuefeng Zou
- Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Education University, Guiyang, China
| | - Bin Xiang
- Chemistry and Chemical Engineering, Chongqing University, Chongqing, China
| | - Jinhua Cai
- Department of Radiology, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,Key Laboratory of Pediatrics in Chongqing, Chongqing, China.,Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
| |
Collapse
|
35
|
Yazarlou F, Kadkhoda S, Ghafouri-Fard S. Emerging role of let-7 family in the pathogenesis of hematological malignancies. Biomed Pharmacother 2021; 144:112334. [PMID: 34656064 DOI: 10.1016/j.biopha.2021.112334] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/04/2021] [Accepted: 10/10/2021] [Indexed: 12/30/2022] Open
Abstract
Let-7 includes a family of miRNA which are implicated in the developmental processes as well as carcinogenesis. This miRNA family has been shown to influence pathogenesis of a variety of hematological malignancies through changing expression of a number of oncogenic pathways, particularly those related with MYC. Expression of these miRNAs has been found to be different between distinct hematological malignancies or even between cytogenetically-defined subgroups of a certain malignancy. In the current review, we summarize the data regarding biogenesis, genomic locations, targets and regulatory network of this miRNA family in the context of hematological malignancies.
Collapse
Affiliation(s)
- Fatemeh Yazarlou
- Department of Medical Genetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Kadkhoda
- Department of Medical Genetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
36
|
Investigation of miRNA dysregulation and association with immune cell profile during malignant transformation of colorectal cells. Eur J Surg Oncol 2021; 48:245-252. [PMID: 34620510 DOI: 10.1016/j.ejso.2021.09.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/01/2021] [Accepted: 09/21/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the most prevalent and life-threatening cancer among the world. Accumulated somatic mutations during malignant transformation process endow cancer cells with increased growth, invasiveness and immunogenicity. These highly immunogenic cancer cells develop multiple strategies to evade immune attack. Through post-transcriptional regulation, microRNAs (miRNAs) not only participate in cancer development and progression but also manipulate anti-cancer immune response. This study aims to identify miRNAs associated with the colorectal cell malignant transformation process and their association with immune cell population using synchronous adjacent normal, polyp and CRC specimens. METHODS We conducted a Low Density Array to compare the miRNA expression profile of synchronous colorectal adenoma, adenocarcinoma and adjacent normal colon mucosa collected from 8 patients, in order to identify candidate miRNAs involved in CRC progression. These findings were further validated in 14 additional patients and GEO dataset GSE41655. The relative abundance of dendritic cells, natural killer cells, neutrophil and macrophage was determined and correlated with dysregulated miRNA levels. RESULTS MicroRNA microarray identified 39 miRNAs aberrantly expressed during the colorectal cell transformation process. Seven novel miRNAs were shortlisted, and dysregulation of miR-149-3p, miR-192-3p, miR-335-5p and miR-425 were further validated by the qPCR validation experiment and data retrieved from the GEO dataset. Furthermore, these miRNAs demonstrated certain associations with level of dendritic cells, natural killer cells, neutrophil and macrophage within the polyp or CRC specimens. CONCLUSION This study revealed miRNA dysregulated during stepwise malignant transformation of colorectal mucosal cells and their association with immune cell population.
Collapse
|
37
|
Ma GM, Huo LW, Tong YX, Wang YC, Li CP, Jia HX. Label-free and sensitive MiRNA detection based on turn-on fluorescence of DNA-templated silver nanoclusters coupled with duplex-specific nuclease-assisted signal amplification. Mikrochim Acta 2021; 188:355. [PMID: 34585278 DOI: 10.1007/s00604-021-05001-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/24/2021] [Indexed: 11/30/2022]
Abstract
A novel strategy for microRNAs (miRNAs) detection has been developed utilizing duplex-specific nuclease-assisted signal amplification (DSNSA) and guanine-rich DNA-enhanced fluorescence of DNA-templated silver nanoclusters (AgNCs). The combination between target miRNA, DSNSA, and AgNCs is achieved by the unique design of DNA sequences. Target miRNA opens the hairpin structure of the Hairpin DNA probe (HP) by hybridizing with the HP and initiates the duplex-specific nuclease-assisted signal amplification (DSNSA) reaction. The DSNSA reaction generates the release of the guanine-rich DNA sequence, which can turn on the fluorescence of the dark AgNCs by hybridizing with the DNA template of the dark AgNCs. The fluorescence intensity of AgNCs corresponds to the dosage of the target miRNA. This is measured at 630 nm by exciting at 560 nm. The constructed method exhibits a low detection limit (~8.3 fmol), a great dynamic range of more than three orders of magnitude, and excellent selectivity. Moreover, it has a good performance for miR-21 detection in complex biological samples. A novel strategy for microRNAs (miRNAs) detection has been developed utilizing duplex-specific nuclease-assisted signal amplification (DSNSA) and guanine-rich DNA-enhanced fluorescence of DNA-templated silver nanoclusters (AgNCs).
Collapse
Affiliation(s)
- Gui-Min Ma
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education; Key Laboratory of Analytical Science and Technology of Hebei Province; Institute of Life Science and Green Development; College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, Hebei Province, People's Republic of China
| | - Li-Wei Huo
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education; Key Laboratory of Analytical Science and Technology of Hebei Province; Institute of Life Science and Green Development; College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, Hebei Province, People's Republic of China
| | - Yin-Xia Tong
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education; Key Laboratory of Analytical Science and Technology of Hebei Province; Institute of Life Science and Green Development; College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, Hebei Province, People's Republic of China
| | - Yu-Cong Wang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education; Key Laboratory of Analytical Science and Technology of Hebei Province; Institute of Life Science and Green Development; College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, Hebei Province, People's Republic of China
| | - Cui-Ping Li
- Key Laboratory of Public Health Safety of Hebei Province; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education; College of Public Health, Hebei University, Baoding, 071002, People's Republic of China
| | - Hong-Xia Jia
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education; Key Laboratory of Analytical Science and Technology of Hebei Province; Institute of Life Science and Green Development; College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, Hebei Province, People's Republic of China.
| |
Collapse
|
38
|
Smolarz B, Durczyński A, Romanowicz H, Hogendorf P. The Role of microRNA in Pancreatic Cancer. Biomedicines 2021; 9:biomedicines9101322. [PMID: 34680441 PMCID: PMC8533140 DOI: 10.3390/biomedicines9101322] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/18/2021] [Accepted: 09/22/2021] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are small ribonucleic acid molecules that play a key role in regulating gene expression. The increasing number of studies undertaken on the functioning of microRNAs in the tumor formation clearly indicates their important potential in oncological therapy. Pancreatic cancer is one of the deadliest cancers. The expression of miRNAs released into the bloodstream appears to be a good indicator of progression and evaluation of the aggressiveness of pancreatic cancer, as indicated by studies. The work reviewed the latest literature on the importance of miRNAs for pancreatic cancer development.
Collapse
Affiliation(s)
- Beata Smolarz
- Laboratory of Cancer Genetics, Department of Pathology, Polish Mother’s Memorial Hospital Research Institute, 93-338 Lodz, Poland;
- Correspondence: ; Tel.: +48-42-271-1290
| | - Adam Durczyński
- Department of General and Transplant Surgery, N. Barlicki Memorial Clinical Hospital, Medical University of Lodz, 90-153 Lodz, Poland; (A.D.); (P.H.)
| | - Hanna Romanowicz
- Laboratory of Cancer Genetics, Department of Pathology, Polish Mother’s Memorial Hospital Research Institute, 93-338 Lodz, Poland;
| | - Piotr Hogendorf
- Department of General and Transplant Surgery, N. Barlicki Memorial Clinical Hospital, Medical University of Lodz, 90-153 Lodz, Poland; (A.D.); (P.H.)
| |
Collapse
|
39
|
Lang F, Contreras-Gerenas MF, Gelléri M, Neumann J, Kröger O, Sadlo F, Berniak K, Marx A, Cremer C, Wagenknecht HA, Allgayer H. Tackling Tumour Cell Heterogeneity at the Super-Resolution Level in Human Colorectal Cancer Tissue. Cancers (Basel) 2021; 13:cancers13153692. [PMID: 34359592 PMCID: PMC8345115 DOI: 10.3390/cancers13153692] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Tumour cell heterogeneity is the most fundamental problem in cancer diagnosis and therapy. Micro-diagnostic technologies able to differentiate the heterogeneous molecular, especially metastatic, potential of single cells or cell clones already within early primary tumours of carcinoma patients would be of utmost importance. Single molecule localisation microscopy (SMLM) has recently allowed the imaging of subcellular features at the nanoscale. However, the technology has mostly been limited to cultured cell lines only. We introduce a first-in-field approach for quantitative SMLM-analysis of chromatin nanostructure in individual cells in resected, routine-pathology colorectal carcinoma patient tissue sections, illustrating, as a first example, changes in nuclear chromatin nanostructure and microRNA intracellular distribution within carcinoma cells as opposed to normal cells, chromatin accessibility and microRNAs having been shown to be critical in gene regulation and metastasis. We believe this technology to have an enormous potential for future differential diagnosis between individual cells in the tissue context. Abstract Tumour cell heterogeneity, and its early individual diagnosis, is one of the most fundamental problems in cancer diagnosis and therapy. Single molecule localisation microscopy (SMLM) resolves subcellular features but has been limited to cultured cell lines only. Since nuclear chromatin architecture and microRNAs are critical in metastasis, we introduce a first-in-field approach for quantitative SMLM-analysis of chromatin nanostructure in individual cells in resected, routine-pathology colorectal carcinoma (CRC) patient tissue sections. Chromatin density profiles proved to differ for cells in normal and carcinoma colorectal tissues. In tumour sections, nuclear size and chromatin compaction percentages were significantly different in carcinoma versus normal epithelial and other cells of colorectal tissue. SMLM analysis in nuclei from normal colorectal tissue revealed abrupt changes in chromatin density profiles at the nanoscale, features not detected by conventional widefield microscopy. SMLM for microRNAs relevant for metastasis was achieved in colorectal cancer tissue at the nuclear level. Super-resolution microscopy with quantitative image evaluation algorithms provide powerful tools to analyse chromatin nanostructure and microRNAs of individual cells from normal and tumour tissue at the nanoscale. Our new perspectives improve the differential diagnosis of normal and (metastatically relevant) tumour cells at the single-cell level within the heterogeneity of primary tumours of patients.
Collapse
Affiliation(s)
- Fabian Lang
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, Campus Süd, 76131 Karlsruhe, Germany; (F.L.); (H.-A.W.)
| | - María F. Contreras-Gerenas
- Department of Experimental Surgery—Cancer Metastasis, Mannheim Medical Faculty, Ruprecht-Karls University of Heidelberg, Ludolf-Krehl-Straße 13-17, 68167 Mannheim, Germany;
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz, Germany; (M.G.); (J.N.); (C.C.)
| | - Márton Gelléri
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz, Germany; (M.G.); (J.N.); (C.C.)
| | - Jan Neumann
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz, Germany; (M.G.); (J.N.); (C.C.)
| | - Ole Kröger
- Interdisciplinary Centre for Scientific Computing (IWR), University Heidelberg, Mathematikon B, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany; (O.K.); (F.S.)
| | - Filip Sadlo
- Interdisciplinary Centre for Scientific Computing (IWR), University Heidelberg, Mathematikon B, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany; (O.K.); (F.S.)
| | - Krzysztof Berniak
- Department of Cell Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7 Street, 30-387 Krakow, Poland;
| | - Alexander Marx
- Institute of Pathology, Mannheim Medical Faculty, Ruprecht-Karls University of Heidelberg, Theodor-Kutzer-Ufer 1, 68167 Mannheim, Germany;
| | - Christoph Cremer
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz, Germany; (M.G.); (J.N.); (C.C.)
- Interdisciplinary Centre for Scientific Computing (IWR), University Heidelberg, Mathematikon B, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany; (O.K.); (F.S.)
- Institute of Pharmacy & Molecular Biotechnology, Ruprecht-Karls University of Heidelberg, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Hans-Achim Wagenknecht
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, Campus Süd, 76131 Karlsruhe, Germany; (F.L.); (H.-A.W.)
| | - Heike Allgayer
- Department of Experimental Surgery—Cancer Metastasis, Mannheim Medical Faculty, Ruprecht-Karls University of Heidelberg, Ludolf-Krehl-Straße 13-17, 68167 Mannheim, Germany;
- Correspondence: ; Tel.: +49-(0)621-383-71630/-1406/-71635; Fax: +49-(0)621-383-71631
| |
Collapse
|
40
|
Cai S, Pataillot-Meakin T, Shibakawa A, Ren R, Bevan CL, Ladame S, Ivanov AP, Edel JB. Single-molecule amplification-free multiplexed detection of circulating microRNA cancer biomarkers from serum. Nat Commun 2021; 12:3515. [PMID: 34112774 PMCID: PMC8192752 DOI: 10.1038/s41467-021-23497-y] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/30/2021] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) play essential roles in post-transcriptional gene expression and are also found freely circulating in bodily fluids such as blood. Dysregulated miRNA signatures have been associated with many diseases including cancer, and miRNA profiling from liquid biopsies offers a promising strategy for cancer diagnosis, prognosis and monitoring. Here, we develop size-encoded molecular probes that can be used for simultaneous electro-optical nanopore sensing of miRNAs, allowing for ultrasensitive, sequence-specific and multiplexed detection directly in unprocessed human serum, in sample volumes as small as 0.1 μl. We show that this approach allows for femtomolar sensitivity and single-base mismatch selectivity. We demonstrate the ability to simultaneously monitor miRNAs (miR-141-3p and miR-375-3p) from prostate cancer patients with active disease and in remission. This technology can pave the way for next generation of minimally invasive diagnostic and companion diagnostic tests for cancer.
Collapse
Affiliation(s)
- Shenglin Cai
- Department of Chemistry, Imperial College London, Molecular Science Research Hub, London, W12 0BZ, UK
| | - Thomas Pataillot-Meakin
- Department of Chemistry, Imperial College London, Molecular Science Research Hub, London, W12 0BZ, UK
- Department of Bioengineering, Imperial College London, Sir Michael Uren Hub, London, W12 0BZ, UK
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London, UK
| | - Akifumi Shibakawa
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London, UK
| | - Ren Ren
- Department of Chemistry, Imperial College London, Molecular Science Research Hub, London, W12 0BZ, UK
| | - Charlotte L Bevan
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London, UK.
| | - Sylvain Ladame
- Department of Bioengineering, Imperial College London, Sir Michael Uren Hub, London, W12 0BZ, UK.
| | - Aleksandar P Ivanov
- Department of Chemistry, Imperial College London, Molecular Science Research Hub, London, W12 0BZ, UK.
| | - Joshua B Edel
- Department of Chemistry, Imperial College London, Molecular Science Research Hub, London, W12 0BZ, UK.
| |
Collapse
|
41
|
Zhou Y, Song W, Wang C, Mu C, Li R. Integrated metabolomics and transcriptomics reveal the anti-aging effect of melanin from Sepiella maindroni ink (MSMI) on D-galactose-induced aging mice. Aging (Albany NY) 2021; 13:11889-11906. [PMID: 33952720 PMCID: PMC8109126 DOI: 10.18632/aging.202890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 03/13/2021] [Indexed: 02/07/2023]
Abstract
Sepiella maindroni ink, a flavoring and coloring agent in food, has attracted considerable attention due to its various pharmacological activities. Our previous study showed that the melanin of Sepiella maindroni ink (MSMI) can alleviate oxidative damage and delay aging in D-galactose(D-gal)-induced aging mice. This study aimed to reveal the possible mechanisms of the anti-aging effect of MSMI. In this article, a comprehensive analysis of gas chromatography-mass spectrometry (GC-MS)-based metabolomics and microarray-based transcriptomics revealed that 221 mRNAs were differentially expressed and 46 metabolites were significantly changed in the anti-aging progress of MSMI. Integrated analysis of transcript and metabolic profiles indicated that MSMI mainly altered carbohydrate metabolism, lipid metabolism, and insulin signaling pathway. MSMI achieved anti-aging effects not only by reducing oxidative damage and sorbitol toxicity but also by regulating lipid metabolism, improving insulin sensitivity, and reducing the formation of advanced glycation end products (AGEs). Moreover, our findings firstly demonstrated that MSMI could increase the expression of interferon-induced proteins and might be a potential antiviral compound.
Collapse
Affiliation(s)
- Yueyue Zhou
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Weiwei Song
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo 315211, China.,Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo University, Ningbo 315211, China
| | - Chunlin Wang
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo 315211, China.,Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo University, Ningbo 315211, China
| | - Changkao Mu
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo 315211, China.,Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo University, Ningbo 315211, China
| | - Ronghua Li
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo 315211, China.,Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo University, Ningbo 315211, China
| |
Collapse
|
42
|
Solovjev AM, Galkin II, Pletjushkina OY, Medvedko AV, Zhao S, Sakharov IY. Isothermal chemiluminescent assay based on circular stand-displacement polymerization reaction amplification for cel-miRNA-39-3p determination in cell extracts. Int J Biol Macromol 2021; 182:987-992. [PMID: 33887290 DOI: 10.1016/j.ijbiomac.2021.04.101] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 12/26/2022]
Abstract
A sensitive and specific heterogeneous assay for quantitation of cel-miRNA-39-3p (miRNA-39) was constructed. To improve the assay sensitivity an amplification strategy based on the use of isothermal circular strand-displacement polymerization reaction (ICSDPR), polyperoxidase conjugated with streptavidin and enhanced chemiluminescence was used. The detection limit of the proposed assay was 4 × 10-13 M. The coefficient of variation (CV) for quantitation of miRNA-39 within the working range was below 8%. The study of cross-reactivity of different miRNAs including miRNA-39 demonstrated high specificity of the proposed assay. Comparison of the calibration curves of miRNA-39 dissolved in the buffer and the lysate of MCF-7 cells (prepared by lysis of the cells with phenol/guanidine thiocyanate mixture and purified using silica membrane spin column) has demonstrated a negligible matrix effect. The proposed assay makes it possible to estimate the yield of purification of miRNAs from cells, which is necessary for the quantitative calculation of the intracellular content of miRNAs measured with the isothermal assay coupled with ICSDPR.
Collapse
Affiliation(s)
- Anton M Solovjev
- Department of Chemistry, Lomonosov Moscow State University, Leninskie gory, bldg.1, Moscow 119991, Russia
| | - Ivan I Galkin
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie gory, bldg.1, Moscow 119992, Russia
| | - Olga Yu Pletjushkina
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie gory, bldg.1, Moscow 119992, Russia
| | - Alexey V Medvedko
- N.D. Zelinsky Institute of Organic Chemistry RAS, Leninsky prospect, 47, Moscow 119991, Russia
| | - Shulin Zhao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, China
| | - Ivan Yu Sakharov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie gory, bldg.1, Moscow 119991, Russia.
| |
Collapse
|
43
|
Budakoti M, Panwar AS, Molpa D, Singh RK, Büsselberg D, Mishra AP, Coutinho HDM, Nigam M. Micro-RNA: The darkhorse of cancer. Cell Signal 2021; 83:109995. [PMID: 33785398 DOI: 10.1016/j.cellsig.2021.109995] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/25/2021] [Accepted: 03/25/2021] [Indexed: 12/21/2022]
Abstract
The discovery of micro RNAs (miRNA) in cancer has opened up new vistas for researchers in recent years. Micro RNAs area set of small, endogenous, highly conserved, non-coding RNAs that control the expression of about 30% genes at post-transcriptional levels. Typically, microRNAs impede the translation and stability of messenger RNAs (mRNA), control genes associated with cellular processes namely inflammation, cell cycle regulation, stress response, differentiation, apoptosis, and migration. Compelling findings revealed that miRNA mutations or disruption correspond to diverse human cancers and suggest that miRNAs can function as tumor suppressors or oncogenes. Here we summarize the literature on these master regulators in clinical settings from last three decades as both abrupt cancer therapeutics and as an approach to sensitize tumors to chemotherapy. This review highlights (I) the prevailing perception of miRNA genomics, biogenesis, as well as function; (II) the significant advancements in regulatory mechanisms in the expression of carcinogenic genes; and (III) explains, how miRNA is utilized as a diagnostic and prognostic biomarker for the disease stage indicating survival as well as therapeutic targets in cancer.
Collapse
Affiliation(s)
- Mridul Budakoti
- Department of Biochemistry, H. N. B. Garhwal University, Srinagar Garhwal 246174, Uttarakhand, India
| | - Abhay Shikhar Panwar
- Department of Biochemistry, H. N. B. Garhwal University, Srinagar Garhwal 246174, Uttarakhand, India
| | - Diksha Molpa
- Department of Biochemistry, H. N. B. Garhwal University, Srinagar Garhwal 246174, Uttarakhand, India
| | - Rahul Kunwar Singh
- Department of Microbiology, H. N. B. Garhwal University, Srinagar Garhwal 246174, Uttarakhand, India
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar.
| | - Abhay Prakash Mishra
- Department of Pharmaceutical Chemistry, H. N. B. Garhwal University, Srinagar Garhwal 246174, Uttarakhand, India.
| | | | - Manisha Nigam
- Department of Biochemistry, H. N. B. Garhwal University, Srinagar Garhwal 246174, Uttarakhand, India.
| |
Collapse
|
44
|
Ahn SY, Liu J, Vellampatti S, Wu Y, Um SH. DNA Transformations for Diagnosis and Therapy. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2008279. [PMID: 33613148 PMCID: PMC7883235 DOI: 10.1002/adfm.202008279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/22/2020] [Indexed: 05/03/2023]
Abstract
Due to its unique physical and chemical characteristics, DNA, which is known only as genetic information, has been identified and utilized as a new material at an astonishing rate. The role of DNA has increased dramatically with the advent of various DNA derivatives such as DNA-RNA, DNA-metal hybrids, and PNA, which can be organized into 2D or 3D structures by exploiting their complementary recognition. Due to its intrinsic biocompatibility, self-assembly, tunable immunogenicity, structural programmability, long stability, and electron-rich nature, DNA has generated major interest in electronic and catalytic applications. Based on its advantages, DNA and its derivatives are utilized in several fields where the traditional methodologies are ineffective. Here, the present challenges and opportunities of DNA transformations are demonstrated, especially in biomedical applications that include diagnosis and therapy. Natural DNAs previously utilized and transformed into patterns are not found in nature due to lack of multiplexing, resulting in low sensitivity and high error frequency in multi-targeted therapeutics. More recently, new platforms have advanced the diagnostic ability and therapeutic efficacy of DNA in biomedicine. There is confidence that DNA will play a strong role in next-generation clinical technology and can be used in multifaceted applications.
Collapse
Affiliation(s)
- So Yeon Ahn
- School of Chemical EngineeringSungkyunkwan University2066, Seobu‐ro, Jangan‐guSuwonGyeonggi‐do16419Korea
| | - Jin Liu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia MedicaSchool of Chemistry and Chemical Engineering Huazhong University of Science and Technology1037 Luoyu LoadWuhan430074China
| | - Srivithya Vellampatti
- Institute of Convergent Chemical Engineering and TechnologySungkyunkwan University2066, Seobu‐ro, Jangan‐guSuwonGyeonggi‐do16419Korea
- Present address:
Progeneer, Inc.#1002, 12, Digital‐ro 31‐gil, Guro‐guSeoul08380Korea
| | - Yuzhou Wu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia MedicaSchool of Chemistry and Chemical Engineering Huazhong University of Science and Technology1037 Luoyu LoadWuhan430074China
| | - Soong Ho Um
- School of Chemical EngineeringSKKU Advanced Institute of Nanotechnology (SAINT)Biomedical Institute for Convergence at SKKU (BICS) and Institute of Quantum Biophysics (IQB)Sungkyunkwan University2066, Seobu‐ro, Jangan‐guSuwonGyeonggi‐do16419Korea
- Progeneer Inc.#1002, 12, Digital‐ro 31‐gil, Guro‐guSeoul08380Korea
| |
Collapse
|
45
|
A simple and sensitive direct mRNA multiplexed detection strategy for amoA-targeted monitoring of ammonia-oxidizing activity in water environment. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
46
|
Jet T, Gines G, Rondelez Y, Taly V. Advances in multiplexed techniques for the detection and quantification of microRNAs. Chem Soc Rev 2021; 50:4141-4161. [PMID: 33538706 DOI: 10.1039/d0cs00609b] [Citation(s) in RCA: 203] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
MicroRNA detection is currently a crucial analytical chemistry challenge: almost 2000 papers were referenced in PubMed in 2018 and 2019 for the keywords "miRNA detection method". MicroRNAs are potential biomarkers for multiple diseases including cancers, neurodegenerative and cardiovascular diseases. Since miRNAs are stably released in bodily fluids, they are of prime interest for the development of non-invasive diagnosis methods, such as liquid biopsies. Their detection is however challenging, as high levels of sensitivity, specificity and robustness are required. The analysis also needs to be quantitative, since the aim is to detect miRNA concentration changes. Moreover, a high multiplexing capability is also of crucial importance, since the clinical potential of miRNAs probably lays in our ability to perform parallel mapping of multiple miRNA concentrations and recognize typical disease signature from this profile. A plethora of biochemical innovative detection methods have been reported recently and some of them provide new solutions to the problem of sensitive multiplex detection. In this review, we propose to analyze in particular the new developments in multiplexed approaches to miRNA detection. The main aspects of these methods (including sensitivity and specificity) will be analyzed, with a particular focus on the demonstrated multiplexing capability and potential of each of these methods.
Collapse
Affiliation(s)
- Thomas Jet
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, CNRS SNC5096, Equipe Labellisée Ligue Nationale Contre le Cancer, F-75006 Paris, France.
| | | | | | | |
Collapse
|
47
|
Liu LQ, Yin F, Lu Y, Yan XL, Wu CC, Li X, Li C. A light-up "G-quadruplex nanostring" for label-free and selective detection of miRNA via duplex-specific nuclease mediated tandem rolling circle amplification. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2021; 32:102339. [PMID: 33227538 DOI: 10.1016/j.nano.2020.102339] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 11/08/2020] [Accepted: 11/11/2020] [Indexed: 12/29/2022]
Abstract
MicroRNA (miRNA) has emerged as a promising genetic marker for cancer diagnosis and therapy because its expression level is closely related to the progression of malignant diseases. Herein, a label-free and selective fluorescence platform was proposed for miRNA based on light-up "G-quadruplex nanostring" via duplex-specific nuclease (DSN) mediated tandem rolling circle amplification (RCA). First, a long DNA generated from upstream RCA was designed with the antisense sequences for miR-21 and downstream RCA primer. Upon recognizing miR-21, the resulting DNA-RNA permitted DSN digestion and triggered downstream two-way RCA, and generation of abundant "G-quadruplex nanostring" binding with ZnPPIX for label-free fluorescent responses. In our strategy, the strong preference of DSN for perfectly matched DNA/RNA ensures its excellent selectivity. The developed method generated wide linear response with LOD of 1.019 fM. Additionally, the miR-21 levels in cell extracts have been evaluated, revealing the utility of this tool for biomedical research and clinical diagnosis.
Collapse
Affiliation(s)
- Li-Qi Liu
- Department of Chemistry, Liaocheng University, Liaocheng, China
| | - Fei Yin
- Department of Chemistry, Liaocheng University, Liaocheng, China
| | - Yu Lu
- Department of Chemistry, Liaocheng University, Liaocheng, China
| | - Xi-Luan Yan
- Department of Bio-industrial Mechatronics Engineering, National Chung Hsing University, Taiwan
| | - Ching-Chou Wu
- Department of Bio-industrial Mechatronics Engineering, National Chung Hsing University, Taiwan
| | - Xia Li
- Department of Chemistry, Liaocheng University, Liaocheng, China.
| | - Chenzhong Li
- Department of Bio-industrial Mechatronics Engineering, National Chung Hsing University, Taiwan
| |
Collapse
|
48
|
Liu ZN, Jiang Y, Liu XQ, Yang MM, Chen C, Zhao BH, Huang HF, Luo Q. MiRNAs in Gestational Diabetes Mellitus: Potential Mechanisms and Clinical Applications. J Diabetes Res 2021; 2021:4632745. [PMID: 34869778 PMCID: PMC8635917 DOI: 10.1155/2021/4632745] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/08/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022] Open
Abstract
Gestational diabetes mellitus (GDM) is a common pregnancy complication which is normally diagnosed in the second trimester of gestation. With an increasing incidence, GDM poses a significant threat to maternal and offspring health. Therefore, we need a deeper understanding of GDM pathophysiology and novel investigation on the diagnosis and treatment for GDM. MicroRNAs (miRNAs), a class of endogenic small noncoding RNAs with a length of approximately 19-24 nucleotides, have been reported to exert their function in gene expression by binding to proteins or being enclosed in membranous vesicles, such as exosomes. Studies have investigated the roles of miRNAs in the pathophysiological mechanism of GDM and their potential as noninvasive biological candidates for the management of GDM, including diagnosis and treatment. This review is aimed at summarizing the pathophysiological significance of miRNAs in GDM development and their potential function in GDM clinical diagnosis and therapeutic approach. In this review, we summarized an integrated expressional profile and the pathophysiological significance of placental exosomes and associated miRNAs, as well as other plasma miRNAs such as exo-AT. Furthermore, we also discussed the practical application of exosomes in GDM postpartum outcomes and the potential function of several miRNAs as therapeutic target in the GDM pathological pathway, thus providing a novel clinical insight of these biological signatures into GDM therapeutic approach.
Collapse
Affiliation(s)
- Zhao-Nan Liu
- Department of Reproductive Genetics, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Ying Jiang
- Department of Obstetrics, Women's Hospital, School of Medicine, Zhejiang University, China
| | - Xuan-Qi Liu
- Department of Reproductive Genetics, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Meng-Meng Yang
- Department of Obstetrics, Women's Hospital, School of Medicine, Zhejiang University, China
| | - Cheng Chen
- Department of Obstetrics, Women's Hospital, School of Medicine, Zhejiang University, China
| | - Bai-Hui Zhao
- Department of Obstetrics, Women's Hospital, School of Medicine, Zhejiang University, China
| | - He-Feng Huang
- Department of Reproductive Genetics, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Qiong Luo
- Department of Obstetrics, Women's Hospital, School of Medicine, Zhejiang University, China
| |
Collapse
|
49
|
Three-way junction DNA based electrochemical biosensor for microRNAs detection with distinguishable locked nucleic acid recognition and redox cycling signal amplification. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2020.114861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
50
|
Mehta P. MicroRNA research: The new dawn of Tuberculosis. Indian J Tuberc 2020; 68:321-329. [PMID: 34099196 DOI: 10.1016/j.ijtb.2020.11.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/20/2020] [Indexed: 11/17/2022]
Abstract
Tuberculosis (TB) is global, one of the most fatal communicable diseases and leading cause of worldwide mortality. One-third of the global population is latently affected by Mtb (Mycobacterium tuberculosis) due to its ability to circumvent the host's immune response for its own survival. MicroRNAs (miRNAs) are small, non-coding RNAs which function at the post-transcriptional level and are critical in fine-tuning immune responses regulating the repertoire of genes expressed in immune cells. Recent studies have established their crucial role against TB. Furthermore, the differential expression pattern of miRNAs has revealed the potential role of miRNAs as biomarkers which could be utilized to differentiate between healthy controls and active TB patients or between active and latent TB. The recent advancements made in the field of miRNA regulation of the host responses against TB, as well as the potential of miRNAs as biomarkers for TB diagnosis are discussed here in this review.
Collapse
Affiliation(s)
- Priyanka Mehta
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, 110 007, India.
| |
Collapse
|