1
|
Lee H, Park H, Kwak K, Lee CE, Yun J, Lee D, Lee JH, Lee SH, Kang LW. Structural comparison of substrate-binding pockets of serine β-lactamases in classes A, C, and D. J Enzyme Inhib Med Chem 2025; 40:2435365. [PMID: 39714271 DOI: 10.1080/14756366.2024.2435365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/08/2024] [Accepted: 11/22/2024] [Indexed: 12/24/2024] Open
Abstract
β-lactams have been the most successful antibiotics, but the rise of multi-drug resistant (MDR) bacteria threatens their effectiveness. Serine β-lactamases (SBLs), among the most common causes of resistance, are classified as A, C, and D, with numerous variants complicating structural and substrate spectrum comparisons. This study compares representative SBLs of these classes, focusing on the substrate-binding pocket (SBP). SBP is kidney bean-shaped on the indented surface, formed mainly by loops L1, L2, and L3, and an additional loop Lc in class C. β-lactams bind in a conserved orientation, with the β-lactam ring towards L2 and additional rings towards the space between L1 and L3. Structural comparison shows each class has distinct SBP structures, but subclasses share a conserved scaffold. The SBP structure, accommodating complimentary β-lactams, determines the substrate spectrum of SBLs. The systematic comparison of SBLs, including structural compatibility between β-lactams and SBPs, will help understand their substrate spectrum.
Collapse
Affiliation(s)
- Hyeonmin Lee
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| | - Hyunjae Park
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| | - Kiwoong Kwak
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| | - Chae-Eun Lee
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| | - Jiwon Yun
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| | - Donghyun Lee
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| | - Jung Hun Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, Yongin, Republic of Korea
| | - Sang Hee Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, Yongin, Republic of Korea
| | - Lin-Woo Kang
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
2
|
Stabler AV, Huynh-Phan R, Amin K, Lin K, Patel S, Zaidan N, Stramel S, Thomas JL. Significant Publications on Infectious Diseases Pharmacotherapy in 2023. J Pharm Pract 2025:8971900251318816. [PMID: 39911096 DOI: 10.1177/08971900251318816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
Purpose: To provide a summarization of the most significant infectious diseases (ID) pharmacotherapy articles published in peer-reviewed literature in 2023. Summary: Members of the Houston Infectious Diseases Network (HIDN) nominated notable articles providing significant contributions to ID pharmacotherapy in 2023. Article nominations included those pertaining to general ID and human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS) pharmacotherapy. Out of the 31 articles nominated by HIDN members, 22 pertained to general ID pharmacotherapy, and 9 pertained to HIV/AIDS pharmacotherapy. To aid selection of the most notable articles of 2023, a survey was created and distributed to members of the Society of Infectious Diseases Pharmacists (SIDP). Of the 153 SIDP members who participated in the survey, there were 118 recorded votes for the top 10 general ID pharmacotherapy articles and 55 votes were recorded for the top HIV/AIDS article. The most notable publications are summarized. Conclusion: Advances in antimicrobial stewardship and infectious disease states continue to occur. Sustained growth in the publication of ID-related articles over the past year contributed to this review's aim to aid clinicians in remaining current on potentially practice-changing ID pharmacotherapy publications from 2023. This review provides a summary of recently published ID literature, including emphasis on antimicrobial stewardship, appropriate treatment durations, new antimicrobials, and drug-resistant organisms.
Collapse
Affiliation(s)
- Alex V Stabler
- Division of Pharmacy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ricky Huynh-Phan
- Department of Pharmacy, Baylor St. Luke's Medical Center, Houston, TX, USA
| | - Khyati Amin
- Department of Pharmacy, The University of Texas Medical Branch, Galveston, TX, USA
| | - Kevin Lin
- Division of Pharmacy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shivani Patel
- Department of Pharmacy, Houston Methodist Hospital, Houston, TX, USA
| | - Noor Zaidan
- Department of Pharmacy, The University of Texas Medical Branch, Galveston, TX, USA
| | - Stefanie Stramel
- Department of Pharmacy, Memorial Hermann Memorial City Medical Center, Houston, TX, USA
| | - Jamie L Thomas
- Department of Pharmacy, Memorial Hermann Southwest, Houston, TX, USA
| |
Collapse
|
3
|
Liang LJ, He B, Liang Y, Li YZ, Li ZM, Liu RB, Zhu TT, Luo Y, Lian XL, Zhao DH, Sun J, Ren H, Liao XP. Alisol A 24-Acetate combats Methicillin-Resistant Staphylococcus aureus infection by targeting the mevalonate biosynthesis. Biochem Pharmacol 2025; 233:116766. [PMID: 39894304 DOI: 10.1016/j.bcp.2025.116766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/31/2024] [Accepted: 01/20/2025] [Indexed: 02/04/2025]
Abstract
Infections caused by Methicillin-resistant Staphylococcus aureus (MRSA) have emerged as one of the most pressing global public health challenges. In concert with global rise of antimicrobial resistance at alarming rate, there is an urgent need for alternative strategies to combat MRSA. Here, the high throughput screening indicated that the Alisol A 24-acetate (AA) effectively inhibits the mevalonate (MVA) synthesis in MRSA. The mechanistic analysis revealed that AA competitively inhibits the 3-hydroxy-3-methyl glutaryl coenzyme A reductase (HMGR) protein to blockade the MVA pathway, thereby disrupting the bacterial membrane integrity and functions. Further investigations showed that this disruption consequently restores the β-lactam susceptibility in MRSA by retarding the expression of PBP2a protein and dampens the virulence of MRSA by reducing the exotoxins secretion. In addition to the effect on MRSA, AA has been found to exert host-acting activity to reduce the MRSA-induced inflammation. The promising anti-MRSA activity of AA was further confirmed in vivo. Collectively, the current study highlighted the potential of AA as a proposing drug for combating MRSA and emphasize the MVA pathway as an ideal therapeutic target for MRSA treatment.
Collapse
Affiliation(s)
- Li-Jie Liang
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Bing He
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Yin Liang
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Yu-Ze Li
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Ze-Miao Li
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Rui-Bing Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Ting-Ting Zhu
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Yang Luo
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Xin-Lei Lian
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Dong-Hao Zhao
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Jian Sun
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Hao Ren
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Xiao-Ping Liao
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
4
|
Cammarata AP, Safir MC, Trang M, Larson KB, O'Donnell JP, Bhavnani SM, Rubino CM. Population pharmacokinetic analyses for sulbactam-durlobactam using Phase 1, 2, and 3 data. Antimicrob Agents Chemother 2025; 69:e0048524. [PMID: 39569973 PMCID: PMC11784299 DOI: 10.1128/aac.00485-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 08/15/2024] [Indexed: 11/22/2024] Open
Abstract
Sulbactam-durlobactam is a β-lactam/β-lactamase inhibitor combination approved in the United States for the treatment of hospital-acquired and ventilator-associated bacterial pneumonia caused by susceptible isolates of Acinetobacter baumannii-calcoaceticus in adults. A population pharmacokinetic (PK) model of sulbactam-durlobactam in plasma was developed using data from eight Phase 1-3 studies. A total of 432 subjects and 8,100 plasma concentrations were available for the population PK data set. The combined model was a four-compartment (two compartments per drug) model with linear kinetics. Both renal clearance and nonrenal clearance were estimated, and total clearance was calculated as the sum of renal and nonrenal clearance. Individual renal clearances were scaled by baseline creatinine clearance. The sampling-importance-resampling analysis indicated that the parameters were estimated reliably with adequate precision. Hemodialysis (HD) and epithelial lining fluid (ELF) sub-models were developed for each analyte separately. Intermittent HD resulted in an approximately 30% decrease in the daily area under the concentration-time curve (AUC0-24) when HD was started 1 hour after the end of the infusion. Assuming protein binding estimates of 10% and 38% for durlobactam and sulbactam, respectively, ELF penetration ratios were found to be 41.3% for durlobactam and 86.0% for sulbactam. Of the statistically significant covariates of PK identified, which included body weight, body mass index, infection type, and region of origin, renal function was the only clinically relevant covariate. Overall, a robust description of the plasma PK of sulbactam and durlobactam was achieved. The resultant population PK model was expected to be appropriate for model-based simulations and assessment of pharmacokinetic-pharmacodynamic relationships.
Collapse
Affiliation(s)
| | - M. Courtney Safir
- Institute for Clinical Pharmacodynamics, Inc., Schenectady, New York, USA
| | - Michael Trang
- Institute for Clinical Pharmacodynamics, Inc., Schenectady, New York, USA
| | - Kajal B. Larson
- Entasis Therapeutics, Inc., an affiliate of Innoviva Specialty Therapeutics, Inc., Waltham, Massachusetts, USA
| | - John P. O'Donnell
- Entasis Therapeutics, Inc., an affiliate of Innoviva Specialty Therapeutics, Inc., Waltham, Massachusetts, USA
| | - Sujata M. Bhavnani
- Institute for Clinical Pharmacodynamics, Inc., Schenectady, New York, USA
| | | |
Collapse
|
5
|
Dorazio AJ, Kline EG, Squires KM, Pogue JM, Van Tyne D, Shields RK. Restoring ceftolozane susceptibility: a role for diazabicyclooctane β-lactamase inhibitors? Antimicrob Agents Chemother 2025:e0154324. [PMID: 39873500 DOI: 10.1128/aac.01543-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 01/05/2025] [Indexed: 01/30/2025] Open
Abstract
Paired baseline and post-exposure isolates from 34 patients who developed ceftolozane-tazobactam (TOL-TAZ) resistance following treatment of multidrug-resistant (MDR) Pseudomonas aeruginosa infections were analyzed to determine if ceftolozane with an alternative β-lactamase inhibitor could restore susceptibility. The median baseline TOL-TAZ MIC was 2 mg/L; 88% of post-exposure isolates harbored new ampC mutations. Median MIC fold-increase from baseline was 32-, 24-, 16-, and 6-fold for ceftolozane-tazobactam, ceftolozane-avibactam (AVI), ceftolozane-relebactam (REL), and ceftolozane-durlobactam (DUR), respectively. Enhanced ceftolozane-durlobactam activity was evident in specific ampC mutations.
Collapse
Affiliation(s)
- Ava J Dorazio
- Department of Medicine, Division of Infectious Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ellen G Kline
- Department of Medicine, Division of Infectious Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kevin M Squires
- Department of Medicine, Division of Infectious Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jason M Pogue
- Department of Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, Michigan, USA
| | - Daria Van Tyne
- Department of Medicine, Division of Infectious Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Center for Innovative Antimicrobial Therapy, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ryan K Shields
- Department of Medicine, Division of Infectious Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Center for Innovative Antimicrobial Therapy, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Antibiotic Management Program, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
6
|
Heimann D, Kohnhäuser D, Kohnhäuser AJ, Brönstrup M. Antibacterials with Novel Chemical Scaffolds in Clinical Development. Drugs 2025:10.1007/s40265-024-02137-x. [PMID: 39847315 DOI: 10.1007/s40265-024-02137-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2024] [Indexed: 01/24/2025]
Abstract
The rise of antimicrobial resistance represents a significant global health threat, driven by the diminishing efficacy of existing antibiotics, a lack of novel antibacterials entering the market, and an over- or misuse of existing antibiotics, which accelerates the evolution of resistant bacterial strains. This review focuses on innovative therapies by highlighting 19 novel antibacterials in clinical development as of June 2024. These selected compounds are characterized by new chemical scaffolds, novel molecular targets, and/or unique mechanisms of action, which render their potential to break antimicrobial resistance particularly high. A detailed analysis of the scientific foundations behind each of these compounds is provided, including their pharmacodynamic profiles, current development state, and potential for overcoming existing limitations in antibiotic therapy. By presenting this subset of chemically novel antibacterials, the review highlights the ability to innovate in antibiotic drug development to counteract bacterial resistance and improve treatment outcomes.
Collapse
Affiliation(s)
- Dominik Heimann
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124, Braunschweig, Germany
| | - Daniel Kohnhäuser
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124, Braunschweig, Germany
| | | | - Mark Brönstrup
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124, Braunschweig, Germany.
- Institute of Organic Chemistry and Biomolecular Drug Research Centre (BMWZ), Leibniz University Hannover, Schneiderberg 1B, 30167, Hannover, Germany.
- German Center for Infection Research (DZIF), Site Hannover-Braunschweig, Inhoffenstraße 7, 38124, Braunschweig, Germany.
| |
Collapse
|
7
|
Outeda-García M, Arca-Suárez J, Lence E, Rodriguez-Coello A, Maceiras R, Blanco-Martin T, Guijarro-Sánchez P, Gonzalez-Pinto L, Alonso-Garcia I, García-Pose A, Muras A, Rodriguez-Pallares S, Lasarte-Monterrubio C, Gonzalez-Bello C, Vázquez-Ucha JC, Bou G, Beceiro A. Advancements in the fight against globally distributed OXA-48 carbapenemase: evaluating the new generation of carbapenemase inhibitors. Antimicrob Agents Chemother 2025:e0161424. [PMID: 39791889 DOI: 10.1128/aac.01614-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 12/02/2024] [Indexed: 01/12/2025] Open
Abstract
Carbapenemase OXA-48 and its variants pose a serious threat to the development of effective treatments for bacterial infections. OXA-48-producing Enterobacterales are the most prevalent carbapenemase-producing bacteria in large parts of the world. Although these bacteria exhibit low-level carbapenem resistance in vitro, the infections they cause are challenging to treat with conventional therapies, owing to their spread and complex detection in clinical settings. However, numerous β-lactamase inhibitors (BLIs) are currently in the pipeline or late clinical stages. To assess the potential of these compounds, this study compared the efficacy against OXA-48 of novel β-lactamase inhibitors, specifically the 1,6-diazabicyclo[3,2,1]octanes (DBOs) avibactam, relebactam, zidebactam, nacubactam, and durlobactam, along with the cyclic and bicyclic boronates vaborbactam, taniborbactam, and xeruborbactam. The extensive kinetics assays identified xeruborbactam, taniborbactam, and durlobactam, together with the already established avibactam, as BLIs with superior biochemical performance. Susceptibility testing further validated these findings but also demonstrated significantly improved bacterial killing by the DBOs zidebactam, nacubactam, and durlobactam. On the other hand, binding studies demonstrated the superior inhibitory capacity of the BLIs durlobactam and xeruborbactam. Combinations, such as cefepime/zidebactam, meropenem/nacubactam, and sulbactam/durlobactam, show promising activity against OXA-48-producing Enterobacterales, while ceftazidime/avibactam, cefepime/taniborbactam, and meropenem/xeruborbactam combinations also appear highly active, largely due to the excellent kinetics of these new inhibitors. Overall, this comprehensive analysis provides important insights into the effectiveness of new BLIs against OXA-48-producing Enterobacterales, highlighting xeruborbactam, durlobactam, and avibactam as leading candidates. Additionally, BLIs like zidebactam, nacubactam, and taniborbactam also showed potential in addressing the clinical challenges posed by OXA-48-mediated antimicrobial resistance.
Collapse
Affiliation(s)
- Michelle Outeda-García
- Microbiology department, A Coruna University Hospital (CHUAC), Institute of Biomedical Research of A Coruna (INIBIC), A Coruna, Spain
| | - Jorge Arca-Suárez
- Microbiology department, A Coruna University Hospital (CHUAC), Institute of Biomedical Research of A Coruna (INIBIC), A Coruna, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), A Coruna, Spain
| | - Emilio Lence
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, Santiago de Compostela, Spain
| | - Arianna Rodriguez-Coello
- Microbiology department, A Coruna University Hospital (CHUAC), Institute of Biomedical Research of A Coruna (INIBIC), A Coruna, Spain
| | - Romina Maceiras
- Microbiology department, A Coruna University Hospital (CHUAC), Institute of Biomedical Research of A Coruna (INIBIC), A Coruna, Spain
| | - Tania Blanco-Martin
- Microbiology department, A Coruna University Hospital (CHUAC), Institute of Biomedical Research of A Coruna (INIBIC), A Coruna, Spain
| | - Paula Guijarro-Sánchez
- Microbiology department, A Coruna University Hospital (CHUAC), Institute of Biomedical Research of A Coruna (INIBIC), A Coruna, Spain
| | - Lucia Gonzalez-Pinto
- Microbiology department, A Coruna University Hospital (CHUAC), Institute of Biomedical Research of A Coruna (INIBIC), A Coruna, Spain
| | - Isaac Alonso-Garcia
- Microbiology department, A Coruna University Hospital (CHUAC), Institute of Biomedical Research of A Coruna (INIBIC), A Coruna, Spain
| | - Andrea García-Pose
- Microbiology department, A Coruna University Hospital (CHUAC), Institute of Biomedical Research of A Coruna (INIBIC), A Coruna, Spain
| | - Andrea Muras
- Microbiology department, A Coruna University Hospital (CHUAC), Institute of Biomedical Research of A Coruna (INIBIC), A Coruna, Spain
| | - Salud Rodriguez-Pallares
- Microbiology department, A Coruna University Hospital (CHUAC), Institute of Biomedical Research of A Coruna (INIBIC), A Coruna, Spain
| | - Cristina Lasarte-Monterrubio
- Microbiology department, A Coruna University Hospital (CHUAC), Institute of Biomedical Research of A Coruna (INIBIC), A Coruna, Spain
| | - Concepción Gonzalez-Bello
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, Santiago de Compostela, Spain
| | - Juan Carlos Vázquez-Ucha
- Microbiology department, A Coruna University Hospital (CHUAC), Institute of Biomedical Research of A Coruna (INIBIC), A Coruna, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), A Coruna, Spain
| | - German Bou
- Microbiology department, A Coruna University Hospital (CHUAC), Institute of Biomedical Research of A Coruna (INIBIC), A Coruna, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), A Coruna, Spain
| | - Alejandro Beceiro
- Microbiology department, A Coruna University Hospital (CHUAC), Institute of Biomedical Research of A Coruna (INIBIC), A Coruna, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), A Coruna, Spain
| |
Collapse
|
8
|
Ho CS, Wong CTH, Aung TT, Lakshminarayanan R, Mehta JS, Rauz S, McNally A, Kintses B, Peacock SJ, de la Fuente-Nunez C, Hancock REW, Ting DSJ. Antimicrobial resistance: a concise update. THE LANCET. MICROBE 2025; 6:100947. [PMID: 39305919 DOI: 10.1016/j.lanmic.2024.07.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 01/04/2025]
Abstract
Antimicrobial resistance (AMR) is a serious threat to global public health, with approximately 5 million deaths associated with bacterial AMR in 2019. Tackling AMR requires a multifaceted and cohesive approach that ranges from increased understanding of mechanisms and drivers at the individual and population levels, AMR surveillance, antimicrobial stewardship, improved infection prevention and control measures, and strengthened global policies and funding to development of novel antimicrobial therapeutic strategies. In this rapidly advancing field, this Review provides a concise update on AMR, encompassing epidemiology, evolution, underlying mechanisms (primarily those related to last-line or newer generation of antibiotics), infection prevention and control measures, access to antibiotics, antimicrobial stewardship, AMR surveillance, and emerging non-antibiotic therapeutic approaches. The Review also discusses the potential roles of artificial intelligence in addressing AMR, including antimicrobial susceptibility testing, AMR surveillance, antimicrobial stewardship, diagnosis, and antimicrobial drug discovery and development. This Review highlights the urgent need for addressing the global effects of AMR and for rapid advancement of relevant technology in this dynamic field.
Collapse
Affiliation(s)
- Charlotte S Ho
- Department of Ophthalmology, Western Eye Hospital, London, UK
| | | | - Thet Tun Aung
- Ocular Infections and Anti-Microbials Research Group, Singapore Eye Research Institute, Singapore; Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Rajamani Lakshminarayanan
- Ocular Infections and Anti-Microbials Research Group, Singapore Eye Research Institute, Singapore; Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore; Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, Singapore
| | - Jodhbir S Mehta
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore; Singapore National Eye Centre, Singapore Eye Research Institute, Singapore
| | - Saaeha Rauz
- Academic Unit of Ophthalmology, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK; Birmingham and Midland Eye Centre, Sandwell and West Birmingham NHS Trust, Birmingham, UK
| | - Alan McNally
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Balint Kintses
- Synthetic and System Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre, National Laboratory of Biotechnology, Szeged, Hungary; HCEMM-BRC Translational Microbiology Research Group, Szeged, Hungary
| | - Sharon J Peacock
- Department of Medicine, University of Cambridge, Cambridge, UK; Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Department of Psychiatry and Department of Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Bioengineering and Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA; Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA; Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, USA.
| | - Robert E W Hancock
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada.
| | - Darren S J Ting
- Ocular Infections and Anti-Microbials Research Group, Singapore Eye Research Institute, Singapore; Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore; Academic Unit of Ophthalmology, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK; Birmingham and Midland Eye Centre, Sandwell and West Birmingham NHS Trust, Birmingham, UK; Academic Ophthalmology, School of Medicine, University of Nottingham, Nottingham, UK.
| |
Collapse
|
9
|
Le Terrier C, Nordmann P, Delaval A, Poirel L. Potent in vitro activity of sulbactam-durlobactam against NDM-producing Escherichia coli including cefiderocol and aztreonam-avibactam-resistant isolates. Clin Microbiol Infect 2025; 31:122-124. [PMID: 39447746 DOI: 10.1016/j.cmi.2024.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/26/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024]
Affiliation(s)
- Christophe Le Terrier
- Department of Medicine, Medical and Molecular Microbiology Unit, University of Fribourg, Fribourg, Switzerland; Division of Intensive Care Unit, University Hospitals of Geneva, Geneva, Switzerland
| | - Patrice Nordmann
- Department of Medicine, Medical and Molecular Microbiology Unit, University of Fribourg, Fribourg, Switzerland; Swiss National Reference Center for Emerging Antibiotic Resistance, Fribourg, Switzerland
| | - Adam Delaval
- Department of Medicine, Medical and Molecular Microbiology Unit, University of Fribourg, Fribourg, Switzerland
| | - Laurent Poirel
- Department of Medicine, Medical and Molecular Microbiology Unit, University of Fribourg, Fribourg, Switzerland; Swiss National Reference Center for Emerging Antibiotic Resistance, Fribourg, Switzerland.
| |
Collapse
|
10
|
Jean SS, Liu CY, Huang TY, Lai CC, Liu IM, Hsieh PC, Hsueh PR. Potentially effective antimicrobial treatment for pneumonia caused by isolates of carbapenem-resistant and extensively drug-resistant Acinetobacter baumannii complex species: what can we expect in the future? Expert Rev Anti Infect Ther 2024; 22:1171-1187. [PMID: 39381911 DOI: 10.1080/14787210.2024.2412637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/01/2024] [Indexed: 10/10/2024]
Abstract
INTRODUCTION Acinetobacter baumannii complex (Abc) is currently a significant cause of difficult-to-treat pneumonia. Due to the high prevalence rates of carbapenem- and extensively drug-resistant (CR, XDR) phenotypes, limited antibiotic options are available for the effective treatment of pneumonia caused by CR/XDR-Abc. AREAS COVERED In vitro susceptibility data, relevant pharmacokinetic profiles (especially the penetration ratios from plasma into epithelial-lining fluid), and pharmacodynamic indices of key antibiotics against CR/XDR-Abc are reviewed. EXPERT OPINION Doubling the routine intravenous maintenance dosages of conventional tigecycline (100 mg every 12 h) and minocycline (200 mg every 12 h) might be recommended for the effective treatment of pneumonia caused by CR/XDR-Abc. Nebulized polymyxin E, novel parenteral rifabutin BV100, and new polymyxin derivatives (SPR206, MRX-8, and QPX9003) could be considered supplementary combination options with other antibiotic classes. Regarding other novel antibiotics, the potency of sulbactam-durlobactam (1 g/1 g infused over 3 h every 6 h intravenously) combined with imipenem-cilastatin, and the β-lactamase inhibitor xeruborbactam, is promising. Continuous infusion of full-dose cefiderocol is likely an effective treatment regimen for CR/XDR-Abc pneumonia. Zosurabalpin exhibits potent anti-CR/XDR-Abc activity in vitro, but its practical use in clinical therapy remains to be evaluated. The clinical application of antimicrobial peptides and bacteriophages requires validation.
Collapse
Affiliation(s)
- Shio-Shin Jean
- Department of Pharmacy, College of Pharmacy and Health Care, Tajen University, Pingtung, Taiwan
- Departments of Internal Medicine and Critical Care Medicine, Min-Sheng General Hospital, Taoyuan, Taiwan
| | - Chia-Ying Liu
- Department of Infectious Diseases and Department of Hospitalist, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Tzu-Yu Huang
- Department of Pharmacy, Min-Sheng General Hospital, Taoyuan, Taiwan
| | - Chih-Cheng Lai
- Division of Hospital Medicine, Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan
- School of Medicine, College of Medicine, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - I-Min Liu
- Department of Pharmacy, College of Pharmacy and Health Care, Tajen University, Pingtung, Taiwan
| | - Po-Chuen Hsieh
- Department of Pharmacy, College of Pharmacy and Health Care, Tajen University, Pingtung, Taiwan
| | - Po-Ren Hsueh
- Departments of Laboratory Medicine and Internal Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan
- School of Medicine, China Medical University, Taichung, Taiwan
- Ph.D Program for Aging, School of Medicine, China Medical University, Taichung, Taiwan
- Departments of Laboratory Medicine and Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
11
|
Bassetti M, Giacobbe DR, Castaldo N, Vena A. The role of sulbactam-durlobactam in treating carbapenem-resistant Acinetobacter infections. Curr Opin Infect Dis 2024; 37:547-553. [PMID: 39259710 DOI: 10.1097/qco.0000000000001059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
PURPOSE OF REVIEW Infections caused by multidrug-resistant Acinetobacter baumannii present a significant global health challenge. Available treatment options are limited and frequently constrained by unfavourable safety and pharmacokinetic profiles. Sulbactam-durlobactam is a novel β-lactamase inhibitors combination specifically developed to target A. baumannii , including carbapenem-resistant strains. The purpose of this review is to assess the current evidence supporting the role of sulbactam-durlobactam in the management of A. baumannii infections. RECENT FINDINGS We summarize the available evidence regarding the pharmacokinetic and pharmacodynamic profiles of sulbactam-durlobactam from key in-vitro and in-vivo studies. Additionally, efficacy results from the Phase III randomized controlled trial and real-world data on sulbactam-durlobactam's use against severe A. baumannii infections are also discussed. SUMMARY Sulbactam-durlobactam is a promising addition to the treatment options for carbapenem-resistant A. baumannii infections. Ongoing research and vigilance are essential to monitor the development of in-vivo resistance, assess effectiveness across diverse patient populations, and explore potential synergistic combinations with other antimicrobials. Careful stewardship and comprehensive clinician education will be crucial to optimizing the clinical use of sulbactam-durlobactam.
Collapse
Affiliation(s)
- Matteo Bassetti
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
- Clinica Malattie Infettive, IRCCS Ospedale Policlinico, Genoa
| | - Daniele Roberto Giacobbe
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
- Clinica Malattie Infettive, IRCCS Ospedale Policlinico, Genoa
| | - Nadia Castaldo
- Department of Pulmonology, University of Udine and Azienda Sanitaria Universitaria Integrata di Udine, Udine, Italy
| | - Antonio Vena
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
- Clinica Malattie Infettive, IRCCS Ospedale Policlinico, Genoa
| |
Collapse
|
12
|
Kumar G. Natural peptides and their synthetic congeners acting against Acinetobacter baumannii through the membrane and cell wall: latest progress. RSC Med Chem 2024:d4md00745j. [PMID: 39664362 PMCID: PMC11629675 DOI: 10.1039/d4md00745j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/18/2024] [Indexed: 12/13/2024] Open
Abstract
Acinetobacter baumannii is one of the deadliest Gram-negative bacteria (GNB), responsible for 2-10% of hospital-acquired infections. Several antibiotics are used to control the growth of A. baumannii. However, in recent decades, the abuse and misuse of antibiotics to treat non-microbial diseases have led to the emergence of multidrug-resistant A. baumannii strains. A. baumannii possesses a complex cell wall structure. Cell wall-targeting agents remain the center of antibiotic drug discovery. Notably, the antibacterial drug discovery intends to target the membrane of the bacteria, offering several advantages over antibiotics targeting intracellular systems, as membrane-targeting agents do not have to travel through the plasma membrane to reach the cytoplasmic targets. Microorganisms, insects, and mammals produce antimicrobial peptides as their first line of defense to protect themselves from pathogens and predators. Importantly, antimicrobial peptides are considered potential alternatives to antibiotics. This communication summarises the recently identified peptides of natural origin and their synthetic congeners acting against the A. baumannii membrane by cell wall disruption.
Collapse
Affiliation(s)
- Gautam Kumar
- Department of Pharmacy, Birla Institute of Technology and Science Pilani Pilani Campus Rajasthan 333031 India
| |
Collapse
|
13
|
Bassetti M, Larosa B, Vena A, Giacobbe DR. Novel agents in development for the treatment of resistant Gram-negative infections. Expert Rev Anti Infect Ther 2024; 22:965-976. [PMID: 39292619 DOI: 10.1080/14787210.2024.2407068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/28/2024] [Accepted: 09/17/2024] [Indexed: 09/20/2024]
Abstract
INTRODUCTION Several novel agents are in advanced stages of clinical development, potentially expanding our treatment options against third- and fourth-generation cephalosporin-resistant and carbapenem-resistant Gram-negative bacteria (GNB), including those pathogens for which the current number of effective treatments is limited. AREAS COVERED This review focuses on agents that have completed or ongoing phase-3 studies. A PubMed search was conducted up to 31 May 2024. EXPERT OPINION Novel agents in late-stage clinical development belong to the β-lactam or β-lactam/β-lactamase inhibitor combinations class and display variable antimicrobial activity depending on the specific β-lactamases expressed by GNB, particularly carbapenemases. While many of these novel agents demonstrate in vitro activity against carbapenem-resistant GNB, their efficacy has mainly been evaluated in phase-3 randomized controlled trials (RCT) for infections caused by carbapenem-susceptible GNB. Although evidence from real-world observational studies is generally less robust than that from RCT, it could be crucial for updating clinical guidelines on treating carbapenem-resistant GNB with these new agents in the absence of dedicated RCT.
Collapse
Affiliation(s)
- Matteo Bassetti
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
- UO Clinica Malattie Infettive, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Barbara Larosa
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Antonio Vena
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
- UO Clinica Malattie Infettive, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Daniele Roberto Giacobbe
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
- UO Clinica Malattie Infettive, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
14
|
Covvey JR, Guarascio AJ. Sulbactam-durlobactam for the treatment of Acinetobacter baumannii-calcoaceticus complex. Expert Rev Anti Infect Ther 2024; 22:925-934. [PMID: 39234753 DOI: 10.1080/14787210.2024.2400703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/28/2024] [Accepted: 08/31/2024] [Indexed: 09/06/2024]
Abstract
INTRODUCTION Infections with Acinetobacter baumannii-calcoaceticus complex (ABC) pose difficulty for clinicians given a limited arsenal of effective antimicrobials. Sulbactam/durlobactam provides a novel treatment option for patients experiencing hospital- or ventilator-acquired pneumonia with susceptible strains. AREAS COVERED This review provides a comprehensive discussion of sulbactam/durlobactam, including basic characteristics, in vitro activity, and clinical trial data supporting its use for the treatment of ABC. Manufacturer's data, published literature to date, and conference data are utilized in this review. EXPERT OPINION Sulbactam/durlobactam offers clinicians a new and effective treatment option for resistant ABC infection. Sulbactam, when combined with durlobactam, displays enhanced potency against ABC isolates, which has translated into positive clinical outcomes observed in clinical trials and post-marketing case studies. Although overall treatment indications and clinical experience are limited to date, sulbactam/durlobactam offers a familiar and favorable safety profile in comparison with alternative agents. Factors associated with use of combination antibiotic therapy, availability of commercial drug susceptibility testing, and cost-effectiveness are all currently key considerations for sulbactam/durlobactam use.
Collapse
Affiliation(s)
- Jordan R Covvey
- Division of Pharmaceutical, Administrative and Social Sciences, Duquesne University School of Pharmacy, Pittsburgh, PA, USA
| | - Anthony J Guarascio
- Division of Pharmacy Practice, Duquesne University School of Pharmacy, Pittsburgh, PA, USA
- Department of Pharmacy, Allegheny General Hospital, Pittsburgh, PA, USA
| |
Collapse
|
15
|
Sun J, Wang X, Gao Y, Li S, Hu Z, Huang Y, Fan B, Wang X, Liu M, Qiao C, Zhang W, Wang Y, Ji X. H 2S scavenger as a broad-spectrum strategy to deplete bacteria-derived H 2S for antibacterial sensitization. Nat Commun 2024; 15:9422. [PMID: 39482291 PMCID: PMC11527999 DOI: 10.1038/s41467-024-53764-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/18/2024] [Indexed: 11/03/2024] Open
Abstract
Bacteria-derived H2S plays multifunctional protective roles against antibiotics insult, and the H2S biogenesis pathway is emerging as a viable target for the antibacterial adjuvant design. However, the development of a pan-inhibitor against H2S-synthesizing enzymes is challenging and underdeveloped. Herein, we propose an alternative strategy to downregulate the H2S levels in H2S-producing bacteria, which depletes the bacteria-derived H2S chemically by H2S scavengers without acting on the synthesizing enzymes. After the screening of chemically diversified scaffolds and a structural optimization campaign, a potent and specific H2S scavenger is successfully identified, which displays efficient H2S depletion in several H2S-producing bacteria, potentiates both bactericidal agents and photodynamic therapy, enhances the bacterial clearance of macrophages and polymorphonuclear neutrophils, disrupts the formation of bacterial biofilm and increases the sensitivity of bacterial persister cells to antibiotics. Most importantly, such an H2S scavenger exhibits sensitizing effects with gentamicin in Pseudomonas aeruginosa -infected pneumonia and skin wound female mouse models. In aggregate, our results not only provide an effective strategy to deplete bacteria-derived H2S and establish the H2S biogenesis pathway as a viable target for persisters and drug-resistant bacteria, but also deliver a promising antibacterial adjuvant for potential clinical translation.
Collapse
Affiliation(s)
- Jiekai Sun
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu, China
| | - Xu Wang
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu, China
| | - Ye Gao
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu, China
| | - Shuangyu Li
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu, China
| | - Ziwei Hu
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu, China
| | - Yan Huang
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu, China
| | - Baoqiang Fan
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China
| | - Xia Wang
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu, China
| | - Miao Liu
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu, China
| | - Chunhua Qiao
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu, China
| | - Wei Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China.
| | - Yipeng Wang
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu, China.
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China.
| | - Xingyue Ji
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
16
|
Baranova AA, Alferova VA, Korshun VA, Tyurin AP. Imaging-based profiling for elucidation of antibacterial mechanisms of action. Biotechnol Appl Biochem 2024. [PMID: 39467068 DOI: 10.1002/bab.2681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/03/2024] [Indexed: 10/30/2024]
Abstract
In this review, we aim to summarize experimental data and approaches to identifying cellular targets or mechanisms of action of antibacterials based on imaging techniques. Imaging-based profiling methods, such as bacterial cytological profiling, dynamic bacterial morphology imaging, and others, have become a useful research tool for mechanistic studies of new antibiotics as well as combinations with conventional ones and other therapeutic options. The main methodological and experimental details and obtained results are summarized and discussed. The review covers the literature up to February 2024.
Collapse
Affiliation(s)
- Anna A Baranova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Vera A Alferova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Vladimir A Korshun
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Anton P Tyurin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
17
|
Aitken SL, Pierce VM, Pogue JM, Kline EG, Tverdek FP, Shields RK. The Growing Threat of NDM-Producing Escherichia coli With Penicillin-Binding Protein 3 Mutations in the United States-Is There a Potential Role for Durlobactam? Clin Infect Dis 2024; 79:834-837. [PMID: 38661186 DOI: 10.1093/cid/ciae229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/16/2024] [Accepted: 04/22/2024] [Indexed: 04/26/2024] Open
Abstract
We report identification of 5 patients with infections caused by NDM-5-producing Escherichia coli harboring PBP3 mutations that showed reduced susceptibility to aztreonam-avibactam and cefiderocol. Durlobactam, a novel diazabicyclooctane β-lactamase inhibitor, demonstrated minimum inhibitory concentrations ranging from 0.5 to 2 µg/mL supporting future investigations into a potential role in clinical management.
Collapse
Affiliation(s)
- Samuel L Aitken
- Department of Pharmacy, Michigan Medicine, Ann Arbor, Michigan, USA
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, Michigan, USA
| | - Virginia M Pierce
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Jason M Pogue
- Department of Pharmacy, Michigan Medicine, Ann Arbor, Michigan, USA
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, Michigan, USA
| | - Ellen G Kline
- Division of Infectious Diseases, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania, USA
| | - Frank P Tverdek
- Department of Pharmacy, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Pharmacy, School of Pharmacy, University of Washington, Seattle, Washington, USA
| | - Ryan K Shields
- Division of Infectious Diseases, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
18
|
Miller WR, Arias CA. ESKAPE pathogens: antimicrobial resistance, epidemiology, clinical impact and therapeutics. Nat Rev Microbiol 2024; 22:598-616. [PMID: 38831030 DOI: 10.1038/s41579-024-01054-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2024] [Indexed: 06/05/2024]
Abstract
The rise of antibiotic resistance and a dwindling antimicrobial pipeline have been recognized as emerging threats to public health. The ESKAPE pathogens - Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter spp. - were initially identified as critical multidrug-resistant bacteria for which effective therapies were rapidly needed. Now, entering the third decade of the twenty-first century, and despite the introduction of several new antibiotics and antibiotic adjuvants, such as novel β-lactamase inhibitors, these organisms continue to represent major therapeutic challenges. These bacteria share several key biological features, including adaptations for survival in the modern health-care setting, diverse methods for acquiring resistance determinants and the dissemination of successful high-risk clones around the world. With the advent of next-generation sequencing, novel tools to track and combat the spread of these organisms have rapidly evolved, as well as renewed interest in non-traditional antibiotic approaches. In this Review, we explore the current epidemiology and clinical impact of this important group of bacterial pathogens and discuss relevant mechanisms of resistance to recently introduced antibiotics that affect their use in clinical settings. Furthermore, we discuss emerging therapeutic strategies needed for effective patient care in the era of widespread antimicrobial resistance.
Collapse
Affiliation(s)
- William R Miller
- Department of Internal Medicine, Division of Infectious Diseases, Houston Methodist Hospital, Houston, TX, USA
- Center for Infectious Diseases, Houston Methodist Research Institute, Houston, TX, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Cesar A Arias
- Department of Internal Medicine, Division of Infectious Diseases, Houston Methodist Hospital, Houston, TX, USA.
- Center for Infectious Diseases, Houston Methodist Research Institute, Houston, TX, USA.
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
19
|
Fabrizio C, Tascini C. Chances/Challenges of the Role of New Beta-lactamase Inhibitors Against the Growing Threat of NDM-producing Escherichia coli With Penicillin-binding Protein 3 Mutations. Clin Infect Dis 2024:ciae343. [PMID: 39177152 DOI: 10.1093/cid/ciae343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024] Open
Affiliation(s)
- Claudia Fabrizio
- Infectious and Tropical Diseases Clinic, S. Giuseppe Moscati Hospital, Taranto, Italy
| | - Carlo Tascini
- Infectious Diseases Clinic, Department of Medicine (DMED), University of Udine, Udine, Italy
| |
Collapse
|
20
|
Koenig C, Kuti JL. Evolving resistance landscape in gram-negative pathogens: An update on β-lactam and β-lactam-inhibitor treatment combinations for carbapenem-resistant organisms. Pharmacotherapy 2024; 44:658-674. [PMID: 38949413 DOI: 10.1002/phar.2950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/24/2024] [Accepted: 05/25/2024] [Indexed: 07/02/2024]
Abstract
Antibiotic resistance has become a global threat as it is continuously growing due to the evolution of β-lactamases diminishing the activity of classic β-lactam (BL) antibiotics. Recent antibiotic discovery and development efforts have led to the availability of β-lactamase inhibitors (BLIs) with activity against extended-spectrum β-lactamases as well as Klebsiella pneumoniae carbapenemase (KPC)-producing carbapenem-resistant organisms (CRO). Nevertheless, there is still a lack of drugs that target metallo-β-lactamases (MBL), which hydrolyze carbapenems efficiently, and oxacillinases (OXA) often present in carbapenem-resistant Acinetobacter baumannii. This review aims to provide a snapshot of microbiology, pharmacology, and clinical data for currently available BL/BLI treatment options as well as agents in late stage development for CRO harboring various β-lactamases including MBL and OXA-enzymes.
Collapse
Affiliation(s)
- Christina Koenig
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, Connecticut, USA
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Joseph L Kuti
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, Connecticut, USA
| |
Collapse
|
21
|
Chen X, Li B. Analysis of Co-localized Biosynthetic Gene Clusters Identifies a Membrane-Permeabilizing Natural Product. JOURNAL OF NATURAL PRODUCTS 2024; 87:1694-1703. [PMID: 38949271 DOI: 10.1021/acs.jnatprod.3c01231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Combination therapy is an effective strategy to combat antibiotic resistance. Multiple synergistic antimicrobial combinations are produced by enzymes encoded in biosynthetic gene clusters (BGCs) that co-localize on the bacterial genome. This phenomenon led to the hypothesis that mining co-localized BGCs will reveal new synergistic combinations of natural products. Here, we bioinformatically identified 38 pairs of co-localized BGCs, which we predict to produce natural products that are related to known compounds, including polycyclic tetramate macrolactams (PoTeMs). We further showed that ikarugamycin, a PoTeM, increases the membrane permeability of Acinetobacter baumannii and Staphylococcus aureus, which suggests that ikarugamycin might be an adjuvant that facilitates the entry of other natural products. Our work outlines a promising avenue to discover synergistic combinations of natural products by mining bacterial genomes.
Collapse
Affiliation(s)
- Xiaoyan Chen
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Bo Li
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
22
|
Marshall CM, Federice JG, Bell CN, Cox PB, Njardarson JT. An Update on the Nitrogen Heterocycle Compositions and Properties of U.S. FDA-Approved Pharmaceuticals (2013-2023). J Med Chem 2024; 67:11622-11655. [PMID: 38995264 DOI: 10.1021/acs.jmedchem.4c01122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
This Perspective is a continuation of our analysis of U.S. FDA-approved small-molecule drugs (1938-2012) containing nitrogen heterocycles. In this study we report drug structure and property analyses of 321 unique new small-molecule drugs approved from January 2013 to December 2023 as well as information about frequency of important heteroatoms such as sulfur and fluorine and key small nitrogen substituents (CN and NO2). The most notable change is an incredible increase in drugs containing at least one nitrogen heterocycle─82%, compared to 59% from preceding decades─as well as a significant increase in the number of nitrogen heterocycles per drug. Pyridine has claimed the #1 high-frequency nitrogen heterocycle occurrence spot from piperidine (#2), with pyrimidine (#5), pyrazole (#6), and morpholine (#9) being the big top 10 climbers. Also notable is high number of fused nitrogen heterocycles, apparently driven largely by newly approved cancer drugs.
Collapse
Affiliation(s)
- Christopher M Marshall
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - John G Federice
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Chloe N Bell
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Philip B Cox
- Discovery Research, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Jon T Njardarson
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
23
|
Keck JM, Viteri A, Schultz J, Fong R, Whitman C, Poush M, Martin M. New Agents Are Coming, and So Is the Resistance. Antibiotics (Basel) 2024; 13:648. [PMID: 39061330 PMCID: PMC11273847 DOI: 10.3390/antibiotics13070648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Antimicrobial resistance is a global threat that requires urgent attention to slow the spread of resistant pathogens. The United States Centers for Disease Control and Prevention (CDC) has emphasized clinician-driven antimicrobial stewardship approaches including the reporting and proper documentation of antimicrobial usage and resistance. Additional efforts have targeted the development of new antimicrobial agents, but narrow profit margins have hindered manufacturers from investing in novel antimicrobials for clinical use and therefore the production of new antibiotics has decreased. In order to combat this, both antimicrobial drug discovery processes and healthcare reimbursement programs must be improved. Without action, this poses a high probability to culminate in a deadly post-antibiotic era. This review will highlight some of the global health challenges faced both today and in the future. Furthermore, the new Infectious Diseases Society of America (IDSA) guidelines for resistant Gram-negative pathogens will be discussed. This includes new antimicrobial agents which have gained or are likely to gain FDA approval. Emphasis will be placed on which human pathogens each of these agents cover, as well as how these new agents could be utilized in clinical practice.
Collapse
Affiliation(s)
- J. Myles Keck
- Department of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Alina Viteri
- Department of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | | | - Rebecca Fong
- Department of Pharmacy, Central Arkansas Veterans Healthcare System, Little Rock, AR 72205, USA
| | - Charles Whitman
- Department of Pharmacy, Central Arkansas Veterans Healthcare System, Little Rock, AR 72205, USA
| | - Madeline Poush
- Department of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Marlee Martin
- Department of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
24
|
August B, Matlob A, Kale-Pradhan PB. Sulbactam-Durlobactam in the Treatment of Carbapenem-Resistant Acinetobacter baumannii Infections. Ann Pharmacother 2024; 58:735-741. [PMID: 37817550 DOI: 10.1177/10600280231204566] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023] Open
Abstract
OBJECTIVE To review the pharmacology, efficacy, and safety of intravenous sulbactam-durlobactam (SUL-DUR) in the treatment of carbapenem-resistant Acinetobacter baumannii (CRAB) infections. DATA SOURCES PubMed databases and ClinicalTrials.gov were searched using the following terms: Sulbactam Durlobactam, ETX2514, Xacduro, Sulbactam-ETX2514, ETX2514SUL. STUDY SELECTION AND DATA EXTRACTION Articles published in English between January 1985 and September 13, 2023, related to pharmacology, safety, efficacy, and clinical trials were reviewed. DATA SYNTHESIS A phase II trial compared SUL-DUR with placebo with imipenem and cilastatin in both groups. Overall treatment success in the microbiological intention-to-treat analysis was reported in 76.6% of patients in the SUL-DUR group compared with 81% patients in the placebo group. A phase III trial compared SUL-DUR with colistin in adults with confirmed CRAB infections. Patients received either SUL-DUR or colistin and background therapy with imipenem-cilastatin. SUL-DUR was noninferior to colistin for 28-day all-cause mortality (19% vs 32.3%, treatment difference -13.2%; 95% CI [-30.0 to 3.5]). RELEVANCE TO PATIENT CARE AND CLINICAL PRACTICE IN COMPARISON TO EXISTING DRUGS Clinicians have limited options to treat CRAB infections. SUL-DUR has demonstrated efficacy against CRAB in patients with pneumonia and may be considered a viable treatment option. Nonetheless, potential impact of concomitant imipenem-cilastatin as background therapy on clinical trial findings is unclear. Further studies are needed to elucidate the role of SUL-DUR alone or in combination with other active antimicrobials for the treatment of CRAB infections. CONCLUSIONS SUL-DUR has shown to be predominantly noninferior to alternative antibiotics in the treatment of pneumonias caused by CRAB, making it a viable treatment option. Further postmarketing data is needed to ascertain its role in other infections.
Collapse
Affiliation(s)
- Benjamin August
- Department of Pharmacy Practice, Henry Ford Hospital, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Andrew Matlob
- Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Pramodini B Kale-Pradhan
- Department of Pharmacy Practice, Ascension St. John Hospital, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| |
Collapse
|
25
|
McLeod SM, Carter NM, Bradford PA, Miller AA. In vitro antibacterial activity of sulbactam-durlobactam in combination with other antimicrobial agents against Acinetobacter baumannii-calcoaceticus complex. Diagn Microbiol Infect Dis 2024; 109:116344. [PMID: 38735147 DOI: 10.1016/j.diagmicrobio.2024.116344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/08/2024] [Indexed: 05/14/2024]
Abstract
Combinations of the β-lactam/β-lactamase inhibitor sulbactam-durlobactam and seventeen antimicrobial agents were tested against strains of Acinetobacter baumannii in checkerboard assays. Most combinations resulted in indifference with no instances of antagonism. These results suggest sulbactam-durlobactam antibacterial activity against A. baumannii is unlikely to be affected if co-dosed with other antimicrobial agents.
Collapse
Affiliation(s)
- Sarah M McLeod
- Entasis Therapeutics Inc., an affiliate of Innoviva Specialty Therapeutics, Inc., Waltham, MA, USA.
| | - Nicole M Carter
- Entasis Therapeutics Inc., an affiliate of Innoviva Specialty Therapeutics, Inc., Waltham, MA, USA
| | | | - Alita A Miller
- Entasis Therapeutics Inc., an affiliate of Innoviva Specialty Therapeutics, Inc., Waltham, MA, USA
| |
Collapse
|
26
|
Choi SJ, Kim ES. Optimizing Treatment for Carbapenem-Resistant Acinetobacter baumannii Complex Infections: A Review of Current Evidence. Infect Chemother 2024; 56:171-187. [PMID: 38960737 PMCID: PMC11224036 DOI: 10.3947/ic.2024.0055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 06/05/2024] [Indexed: 07/05/2024] Open
Abstract
Carbapenem-resistant Acinetobacter baumannii complex (CRAB) poses a significant global health challenge owing to its resistance to multiple antibiotics and limited treatment options. Polymyxin-based therapies have been widely used to treat CRAB infections; however, they are associated with high mortality rates and common adverse events such as nephrotoxicity. Recent developments include numerous observational studies and randomized clinical trials investigating antibiotic combinations, repurposing existing antibiotics, and the development of novel agents. Consequently, recommendations for treating CRAB are undergoing significant changes. The importance of colistin is decreasing, and the role of sulbactam, which exhibits direct antibacterial activity against A. baumannii complex, is being reassessed. High-dose ampicillin-sulbactam-based combination therapies, as well as combinations of sulbactam and durlobactam, which prevent the hydrolysis of sulbactam and binds to penicillin-binding protein 2, have shown promising results. This review introduces recent advancements in CRAB infection treatment based on clinical trial data, highlighting the need for optimized treatment protocols and comprehensive clinical trials to combat the evolving threat of CRAB effectively.
Collapse
Affiliation(s)
- Seong Jin Choi
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Eu Suk Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea.
| |
Collapse
|
27
|
Serapide F, Guastalegname M, Gullì SP, Lionello R, Bruni A, Garofalo E, Longhini F, Trecarichi EM, Russo A. Antibiotic Treatment of Carbapenem-Resistant Acinetobacter baumannii Infections in View of the Newly Developed β-Lactams: A Narrative Review of the Existing Evidence. Antibiotics (Basel) 2024; 13:506. [PMID: 38927173 PMCID: PMC11201171 DOI: 10.3390/antibiotics13060506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
It is estimated that antimicrobial resistance (AMR) is responsible for nearly 5 million human deaths worldwide each year and will reach 10 million by 2050. Carbapenem-resistant Acinetobacter baumannii (CRAB) infections represent the fourth-leading cause of death attributable to antimicrobial resistance globally, but a standardized therapy is still lacking. Among the antibiotics under consideration, Sulbactam/durlobactam seems to be the best candidate to replace current back-bone agents. Cefiderocol could play a pivotal role within combination therapy regimens. Due to toxicity and the pharmacokinetics/pharmacodynamics (PK/PD) limitations, colistin (or polymyxin B) should be used as an alternative agent (when no other options are available). Tigecycline (or minocycline) and fosfomycin could represent suitable partners for both NBLs. Randomized clinical trials (RCTs) are needed to better evaluate the role of NBLs in CRAB infection treatment and to compare the efficacy of tigecycline and fosfomycin as partner antibiotics. Synergism should be tested between NBLs and "old" drugs (rifampicin and trimethoprim/sulfamethoxazole). Huge efforts should be made to accelerate pre-clinical and clinical studies on safer polymyxin candidates with improved lung activity, as well as on the iv rifabutin formulation. In this narrative review, we focused the antibiotic treatment of CRAB infections in view of newly developed β-lactam agents (NBLs).
Collapse
Affiliation(s)
- Francesca Serapide
- Infectious and Tropical Disease Unit, Department of Medical and Surgical Sciences, ‘Magna Graecia’ University of Catanzaro, 88100 Catanzaro, Italy; (F.S.); (S.P.G.); (R.L.)
| | - Maurizio Guastalegname
- Infectious and Tropical Disease Unit, Department of Medical and Surgical Sciences, ‘Magna Graecia’ University of Catanzaro, 88100 Catanzaro, Italy; (F.S.); (S.P.G.); (R.L.)
| | - Sara Palma Gullì
- Infectious and Tropical Disease Unit, Department of Medical and Surgical Sciences, ‘Magna Graecia’ University of Catanzaro, 88100 Catanzaro, Italy; (F.S.); (S.P.G.); (R.L.)
| | - Rosaria Lionello
- Infectious and Tropical Disease Unit, Department of Medical and Surgical Sciences, ‘Magna Graecia’ University of Catanzaro, 88100 Catanzaro, Italy; (F.S.); (S.P.G.); (R.L.)
| | - Andrea Bruni
- Intensive Care Unit, Department of Medical and Surgical Sciences, ‘Magna Graecia’ University of Catanzaro, 88100 Catanzaro, Italy; (A.B.); (E.G.); (F.L.)
| | - Eugenio Garofalo
- Intensive Care Unit, Department of Medical and Surgical Sciences, ‘Magna Graecia’ University of Catanzaro, 88100 Catanzaro, Italy; (A.B.); (E.G.); (F.L.)
| | - Federico Longhini
- Intensive Care Unit, Department of Medical and Surgical Sciences, ‘Magna Graecia’ University of Catanzaro, 88100 Catanzaro, Italy; (A.B.); (E.G.); (F.L.)
| | - Enrico Maria Trecarichi
- Infectious and Tropical Disease Unit, Department of Medical and Surgical Sciences, ‘Magna Graecia’ University of Catanzaro, 88100 Catanzaro, Italy; (F.S.); (S.P.G.); (R.L.)
| | - Alessandro Russo
- Infectious and Tropical Disease Unit, Department of Medical and Surgical Sciences, ‘Magna Graecia’ University of Catanzaro, 88100 Catanzaro, Italy; (F.S.); (S.P.G.); (R.L.)
| |
Collapse
|
28
|
Nantongo M, Nguyen DC, Bethel CR, Taracila MA, Li Q, Dousa KM, Shin E, Kurz SG, Nguyen L, Kreiswirth BN, Boom WH, Plummer MS, Bonomo RA. Durlobactam, a Diazabicyclooctane β-Lactamase Inhibitor, Inhibits BlaC and Peptidoglycan Transpeptidases of Mycobacterium tuberculosis. ACS Infect Dis 2024; 10:1767-1779. [PMID: 38619138 DOI: 10.1021/acsinfecdis.4c00119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Peptidoglycan synthesis is an underutilized drug target in Mycobacterium tuberculosis (Mtb). Diazabicyclooctanes (DBOs) are a class of broad-spectrum β-lactamase inhibitors that also inhibit certain peptidoglycan transpeptidases that are important in mycobacterial cell wall synthesis. We evaluated the DBO durlobactam as an inhibitor of BlaC, the Mtb β-lactamase, and multiple Mtb peptidoglycan transpeptidases (PonA1, LdtMt1, LdtMt2, LdtMt3, and LdtMt5). Timed electrospray ionization mass spectrometry (ESI-MS) captured acyl-enzyme complexes with BlaC and all transpeptidases except LdtMt5. Inhibition kinetics demonstrated durlobactam was a potent and efficient DBO inhibitor of BlaC (KI app 9.2 ± 0.9 μM, k2/K 5600 ± 560 M-1 s-1) and similar to clavulanate (KI app 3.3 ± 0.6 μM, k2/K 8400 ± 840 M-1 s-1); however, durlobactam had a lower turnover number (tn = kcat/kinact) than clavulanate (1 and 8, respectively). KI app values with durlobactam and clavulanate were similar for peptidoglycan transpeptidases, but ESI-MS captured durlobactam complexes at more time points. Molecular docking and simulation demonstrated several productive interactions of durlobactam in the active sites of BlaC, PonA1, and LdtMt2. Antibiotic susceptibility testing was conducted on 11 Mtb isolates with amoxicillin, ceftriaxone, meropenem, imipenem, clavulanate, and durlobactam. Durlobactam had a minimum inhibitory concentration (MIC) range of 0.5-16 μg/mL, similar to the ranges for meropenem (1-32 μg/mL) and imipenem (0.5-64 μg/mL). In β-lactam + durlobactam combinations (1:1 mass/volume), MICs were lowered 4- to 64-fold for all isolates except one with meropenem-durlobactam. This work supports further exploration of novel β-lactamase inhibitors that target BlaC and Mtb peptidoglycan transpeptidases.
Collapse
Affiliation(s)
- Mary Nantongo
- Department of Molecular Biology and Microbiology, Case Western Reserve University (CWRU), Cleveland, Ohio 44106, United States
- Research Service, Louis Stokes Veterans Affairs Medical Center, Cleveland, Ohio 44106, United States
| | - David C Nguyen
- Division of Infectious Diseases, Department of Pediatrics and Division of Infectious Diseases, and Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois 60612, United States
| | - Christopher R Bethel
- Research Service, Louis Stokes Veterans Affairs Medical Center, Cleveland, Ohio 44106, United States
| | - Magdalena A Taracila
- Research Service, Louis Stokes Veterans Affairs Medical Center, Cleveland, Ohio 44106, United States
- Department of Medicine, Case Western Reserve University (CWRU), Cleveland, Ohio 44106, United States
| | - Qing Li
- Department of Medicine, Case Western Reserve University (CWRU), Cleveland, Ohio 44106, United States
| | - Khalid M Dousa
- Research Service, Louis Stokes Veterans Affairs Medical Center, Cleveland, Ohio 44106, United States
- Department of Medicine, Case Western Reserve University (CWRU), Cleveland, Ohio 44106, United States
- Medical Service, Veterans Affairs Northeast Ohio Healthcare System (VANEOHS), Cleveland, Ohio 44106, United States
| | - Eunjeong Shin
- Research Service, Louis Stokes Veterans Affairs Medical Center, Cleveland, Ohio 44106, United States
- Department of Medicine, Case Western Reserve University (CWRU), Cleveland, Ohio 44106, United States
| | - Sebastian G Kurz
- Department of Internal Medicine VIII, Medical Oncology and Pneumology, University of Tübingen, 72076 Tübingen, Germany
| | - Liem Nguyen
- Department of Molecular Biology and Microbiology, Case Western Reserve University (CWRU), Cleveland, Ohio 44106, United States
| | - Barry N Kreiswirth
- Center for Discovery and Innovation, Hackensack, New Jersey 07110, United States
| | - W Henry Boom
- Department of Molecular Biology and Microbiology, Case Western Reserve University (CWRU), Cleveland, Ohio 44106, United States
- Department of Medicine, Case Western Reserve University (CWRU), Cleveland, Ohio 44106, United States
| | - Mark S Plummer
- Biopharmaworks, Groton, Connecticut 06340, United States
| | - Robert A Bonomo
- Department of Molecular Biology and Microbiology, Case Western Reserve University (CWRU), Cleveland, Ohio 44106, United States
- Department of Medicine, Case Western Reserve University (CWRU), Cleveland, Ohio 44106, United States
- Medical Service, Veterans Affairs Northeast Ohio Healthcare System (VANEOHS), Cleveland, Ohio 44106, United States
- CWRU-Cleveland VAMC Center for Antibiotic Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio 44106, United States
- Departments of Biochemistry, Pharmacology, and Proteomics and Bioinformatics, CWRU, Cleveland, Ohio 44106, United States
- Cleveland Geriatrics Research Education and Clinical Center (GRECC), VANEOHS, Cleveland, Ohio 44106, United States
| |
Collapse
|
29
|
Miller AA, Moussa SH, McLeod SM. Characterization of Acinetobacter baumannii-calcoaceticus complex isolates and microbiological outcome for patients treated with sulbactam-durlobactam in a phase 3 trial (ATTACK). Antimicrob Agents Chemother 2024; 68:e0169823. [PMID: 38567976 PMCID: PMC11064521 DOI: 10.1128/aac.01698-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/15/2024] [Indexed: 05/03/2024] Open
Abstract
Acinetobacter baumannii-calcoaceticus complex (ABC) causes severe, difficult-to-treat infections that are frequently antibiotic resistant. Sulbactam-durlobactam (SUL-DUR) is a targeted β-lactam/β-lactamase inhibitor combination antibiotic designed to treat ABC infections, including those caused by multidrug-resistant strains. In a global, pathogen-specific, randomized, controlled phase 3 trial (ATTACK), the efficacy and safety of SUL-DUR were compared to colistin, both dosed with imipenem-cilastatin as background therapy, in patients with serious infections caused by carbapenem-resistant ABC. Results from ATTACK showed that SUL-DUR met the criteria for non-inferiority to colistin for the primary efficacy endpoint of 28-day all-cause mortality with improved clinical and microbiological outcomes compared to colistin. This report describes the characterization of the baseline ABC isolates from patients enrolled in ATTACK, including an analysis of the correlation of microbiological outcomes with SUL-DUR MIC values and the molecular drivers of SUL-DUR resistance.
Collapse
Affiliation(s)
- Alita A. Miller
- Entasis Therapeutics Inc., an affiliate of Innoviva Specialty Therapeutics, Inc., Waltham, Massachusetts, USA
| | - Samir H. Moussa
- Entasis Therapeutics Inc., an affiliate of Innoviva Specialty Therapeutics, Inc., Waltham, Massachusetts, USA
| | - Sarah M. McLeod
- Entasis Therapeutics Inc., an affiliate of Innoviva Specialty Therapeutics, Inc., Waltham, Massachusetts, USA
| |
Collapse
|
30
|
McLeod SM, Miller AA, Rana K, Altarac D, Moussa SH, Shapiro AB. Clinical Outcomes for Patients With Monomicrobial vs Polymicrobial Acinetobacter baumannii-calcoaceticus Complex Infections Treated With Sulbactam-Durlobactam or Colistin: A Subset Analysis From a Phase 3 Clinical Trial. Open Forum Infect Dis 2024; 11:ofae140. [PMID: 38595956 PMCID: PMC11002948 DOI: 10.1093/ofid/ofae140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/19/2024] [Indexed: 04/11/2024] Open
Abstract
Background In a previous study, the efficacy and safety of sulbactam-durlobactam vs colistin for the treatment of patients with carbapenem-resistant Acinetobacter baumannii-calcoaceticus complex (CRABC) infections were evaluated in a randomized controlled phase 3 trial. Both arms were dosed on a background of imipenem-cilastatin to treat coinfecting gram-negative pathogens. Thirty-six percent of infections in the primary efficacy population were polymicrobial. Methods A subset analysis was performed to compare clinical and microbiological outcomes at test of cure (7 ± 2 days after the last dose) for patients with monomicrobial and polymicrobial CRABC infections. Minimal inhibitory concentrations of antibiotics against baseline isolates were determined by broth microdilution according to Clinical and Laboratory Standards Institute methodology. Results Clinical cure, 28-day all-cause mortality, and microbiological outcomes were similar for patients in the sulbactam-durlobactam treatment arm with monomicrobial or polymicrobial A baumannii-calcoaceticus infections. Patients in the colistin arm with monomicrobial CRABC infections had higher mortality rates with worse clinical and microbiological outcomes as compared with those with polymicrobial infections. For patients who received sulbactam-durlobactam, imipenem susceptibility of coinfecting gram-negative pathogens trended with clinical benefit for patients with polymicrobial A baumannii-calcoaceticus infections. When tested in vitro, durlobactam restored imipenem susceptibility to the majority of coinfecting gram-negative pathogens from the sulbactam-durlobactam arm. This phenotype appeared to be related to the clinical outcome in 13 of 15 evaluable cases. Conclusions These results suggest that the use of sulbactam-durlobactam plus a carbapenem could be an effective approach to treat polymicrobial infections that include CRABC, but additional clinical data are needed to demonstrate efficacy.
Collapse
Affiliation(s)
- Sarah M McLeod
- Entasis Therapeutics, Inc, an affiliate of Innoviva Specialty Therapeutics, Inc, Waltham, Massachusetts, USA
| | - Alita A Miller
- Entasis Therapeutics, Inc, an affiliate of Innoviva Specialty Therapeutics, Inc, Waltham, Massachusetts, USA
| | - Khurram Rana
- Entasis Therapeutics, Inc, an affiliate of Innoviva Specialty Therapeutics, Inc, Waltham, Massachusetts, USA
| | - David Altarac
- Entasis Therapeutics, Inc, an affiliate of Innoviva Specialty Therapeutics, Inc, Waltham, Massachusetts, USA
| | - Samir H Moussa
- Entasis Therapeutics, Inc, an affiliate of Innoviva Specialty Therapeutics, Inc, Waltham, Massachusetts, USA
| | - Adam B Shapiro
- Entasis Therapeutics, Inc, an affiliate of Innoviva Specialty Therapeutics, Inc, Waltham, Massachusetts, USA
| |
Collapse
|
31
|
Franzone JP, Mackow N, van Duin D. Current treatment options for pneumonia caused by carbapenem-resistant Acinetobacter baumannii. Curr Opin Infect Dis 2024; 37:137-143. [PMID: 38179988 PMCID: PMC10922681 DOI: 10.1097/qco.0000000000001001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
PURPOSE OF REVIEW The purpose of this review is to briefly summarize the challenges associated with the treatment of pneumonia caused by carbapenem-resistant Acinetobacter baumannii (CRAB), discuss its carbapenem-resistance, and review the literature supporting the current treatment paradigm and therapeutic options. RECENT FINDINGS In a multicenter, randomized, and controlled trial the novel β-lactam-β-lactamase inhibitor sulbactam-durlobactam was compared to colistin, both in addition to imipenem-cilastatin. The drug met the prespecified criteria for noninferiority for 28-day all-cause mortality while demonstrating higher clinical cure rates in the treatment of CRAB pneumonia. In an international, randomized, double-blind, placebo controlled trial colistin monotherapy was compared to colistin combined with meropenem. In this trial, combination therapy was not superior to monotherapy in the treatment of drug-resistant gram-negative organisms including CRAB pneumonia. SUMMARY CRAB pneumonia is a preeminent public health threat without an agreed upon first line treatment strategy. Historically, there have been drawbacks to available treatment modalities without a clear consensus on the first-line treatment regimen. CRAB pneumonia is a top priority for the continued development of antimicrobials, adjuvant therapies and refinement of current treatment strategies.
Collapse
Affiliation(s)
- John P. Franzone
- Division of Infectious Diseases, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Natalie Mackow
- Division of Infectious Diseases, University of North Carolina, Chapel Hill, North Carolina, USA
| | - David van Duin
- Division of Infectious Diseases, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
32
|
Paterson DL. Antibacterial agents active against Gram Negative Bacilli in phase I, II, or III clinical trials. Expert Opin Investig Drugs 2024; 33:371-387. [PMID: 38445383 DOI: 10.1080/13543784.2024.2326028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 02/28/2024] [Indexed: 03/07/2024]
Abstract
INTRODUCTION Antimicrobial resistance is a major threat to modern healthcare, and it is often regarded that the antibiotic pipeline is 'dry.' AREAS COVERED Antimicrobial agents active against Gram negative bacilli in Phase I, II, or III clinical trials were reviewed. EXPERT OPINION Nearly 50 antimicrobial agents (28 small molecules and 21 non-traditional antimicrobial agents) active against Gram-negative bacilli are currently in clinical trials. These have the potential to provide substantial improvements to the antimicrobial armamentarium, although it is known that 'leakage' from the pipeline occurs due to findings of toxicity during clinical trials. Significantly, a lack of funding for large phase III clinical trials is likely to prevent trials occurring for the indications most relevant to loss of life attributed to antimicrobial resistance such as ventilator-associated pneumonia. Non-traditional antimicrobial agents face issues in clinical development such as a lack of readily available and reliable susceptibility tests, and the potential need for superiority trials rather than non-inferiority trials. Most importantly, concrete plans must be made during clinical development for access of new antimicrobial agents to areas of the world where resistance to Gram negative bacilli is most frequent.
Collapse
Affiliation(s)
- David L Paterson
- ADVANCE-ID, Saw Swee Hock School of Public Health, National University of Singapore, Singapore
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
33
|
McLeod SM, O'Donnell JP, Narayanan N, Mills JP, Kaye KS. Sulbactam-durlobactam: a β-lactam/β-lactamase inhibitor combination targeting Acinetobacter baumannii. Future Microbiol 2024; 19:563-576. [PMID: 38426849 PMCID: PMC11229585 DOI: 10.2217/fmb-2023-0248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/02/2024] [Indexed: 03/02/2024] Open
Abstract
Sulbactam-durlobactam is a pathogen-targeted β-lactam/β-lactamase inhibitor combination that has been approved by the US FDA for the treatment of hospital-acquired and ventilator-associated bacterial pneumonia caused by susceptible isolates of Acinetobacter baumannii-calcoaceticus complex (ABC) in patients 18 years of age and older. Sulbactam is a penicillin derivative with antibacterial activity against Acinetobacter but is prone to hydrolysis by β-lactamases encoded by contemporary isolates. Durlobactam is a diazabicyclooctane β-lactamase inhibitor with activity against Ambler classes A, C and D serine β-lactamases that restores sulbactam activity both in vitro and in vivo against multidrug-resistant ABC. Sulbactam-durlobactam is a promising alternative therapy for the treatment of serious Acinetobacter infections, which can have high rates of mortality.
Collapse
Affiliation(s)
- Sarah M McLeod
- Innoviva Specialty Therapeutics, Inc., an affiliate of Entasis Therapeutics Inc., 35 Gatehouse Drive, Waltham, MA 02451, USA
| | - John P O'Donnell
- Innoviva Specialty Therapeutics, Inc., an affiliate of Entasis Therapeutics Inc., 35 Gatehouse Drive, Waltham, MA 02451, USA
| | - Navaneeth Narayanan
- Rutgers University Ernest Mario School of Pharmacy, Department of Pharmacy Practice & Administration, Piscataway, NJ 08901, USA
| | - John P Mills
- Division of Allergy, Immunology & Infectious Diseases, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Keith S Kaye
- Division of Allergy, Immunology & Infectious Diseases, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| |
Collapse
|
34
|
McLeod SM, Carter NM, Huband MD, Traczewski MM, Bradford PA, Miller AA. Sulbactam-durlobactam susceptibility test method development and quality control ranges for MIC and disk diffusion tests. J Clin Microbiol 2024; 62:e0122823. [PMID: 38095417 PMCID: PMC10793306 DOI: 10.1128/jcm.01228-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/06/2023] [Indexed: 01/18/2024] Open
Abstract
Sulbactam-durlobactam is a β-lactam/β-lactamase inhibitor combination developed to treat hospital-acquired and ventilator-associated bacterial pneumonia caused by Acinetobacter baumannii-calcoaceticus complex (ABC). Durlobactam is a diazabicyclooctane β-lactamase inhibitor with potent activity against Ambler classes A, C, and D serine β-lactamases and restores sulbactam activity against multidrug-resistant ABC. Studies were conducted to establish sulbactam-durlobactam antimicrobial susceptibility testing methods for both broth microdilution minimal inhibitory concentration (MIC) and disk diffusion tests as well as quality control (QC) ranges. To establish the MIC test method, combinations of sulbactam and durlobactam were evaluated using a panel of genetically characterized A. baumannii isolates which were categorized as predicted to be susceptible or resistant based on the spectrum of β-lactamase inhibition by durlobactam. MIC testing with doubling dilutions of sulbactam with a fixed concentration of 4 µg/mL of durlobactam resulted in the greatest discrimination of the pre-defined susceptible and resistant strains. Similarly, the sulbactam/durlobactam 10/10 µg disk concentration showed the best discrimination as well as correlation with the MIC test. A. baumannii NCTC 13304 was selected for QC purposes because it assesses the activity of both sulbactam and durlobactam with clear endpoints. Multi-laboratory QC studies were conducted according to CLSI M23 Tier 2 criteria. A sulbactam-durlobactam broth MIC QC range of 0.5/4-2/4 µg/mL and a zone diameter QC range of 24-30 mm were determined for A. baumannii NCTC 13304 and have been approved by CLSI. These studies will enable clinical laboratories to perform susceptibility tests with accurate and reproducible methods.
Collapse
Affiliation(s)
- Sarah M. McLeod
- Entasis Therapeutics Inc. (an affiliate of Innoviva Specialty Therapeutics, Inc.), Waltham, Massachusetts, USA
| | - Nicole M. Carter
- Entasis Therapeutics Inc. (an affiliate of Innoviva Specialty Therapeutics, Inc.), Waltham, Massachusetts, USA
| | | | | | | | - Alita A. Miller
- Entasis Therapeutics Inc. (an affiliate of Innoviva Specialty Therapeutics, Inc.), Waltham, Massachusetts, USA
| |
Collapse
|
35
|
Bentley E, Russo C, Khan A, Smalc S, Rhoads DD, Humphries R, Tao L. False-positive imipenemase detected by NG-Test CARBA-5 in carbapenem-resistant Acinetobacter baumannii. Microbiol Spectr 2024; 12:e0375723. [PMID: 38078718 PMCID: PMC10783128 DOI: 10.1128/spectrum.03757-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 11/17/2023] [Indexed: 01/13/2024] Open
Affiliation(s)
- Emily Bentley
- Department of Pathology, Microbiology and Immunology, Division of Laboratory Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Carmella Russo
- Department of Pathology, Microbiology and Immunology, Division of Laboratory Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Ayesha Khan
- Department of Pathology, Microbiology and Immunology, Division of Laboratory Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Shanna Smalc
- Department of Laboratory Medicine, Cleveland Clinic, Cleveland, Ohio, USA
| | - Daniel D. Rhoads
- Department of Laboratory Medicine, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Pathology, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Infection Biology Program, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Romney Humphries
- Department of Pathology, Microbiology and Immunology, Division of Laboratory Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Lili Tao
- Department of Pathology, Microbiology and Immunology, Division of Laboratory Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
36
|
O'Donnell J, Tanudra A, Chen A, Miller AA, McLeod SM, Tommasi R. I n vitro pharmacokinetics/pharmacodynamics of the β-lactamase inhibitor, durlobactam, in combination with sulbactam against Acinetobacter baumannii-calcoaceticus complex. Antimicrob Agents Chemother 2024; 68:e0031223. [PMID: 38092676 PMCID: PMC10869334 DOI: 10.1128/aac.00312-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 10/30/2023] [Indexed: 01/11/2024] Open
Abstract
Infections caused by Acinetobacter baumannii are increasingly multidrug resistant and associated with high rates of morbidity and mortality. Sulbactam is a β-lactamase inhibitor with intrinsic antibacterial activity against A. baumannii. Durlobactam is a non-β-lactam β-lactamase inhibitor with an extended spectrum of activity compared to other inhibitors of its class. In vitro pharmacodynamic infection models were undertaken to establish the pharmacokinetic/pharmacodynamic (PK/PD) index and magnitudes associated with sulbactam and durlobactam efficacy and to simulate epithelial lining fluid (ELF) exposures at clinical doses to understand sulbactam-durlobactam activity with and without co-administration of a carbapenem. Hollow fiber infection models (HFIMs) and one-compartment systems were used to identify the PK/PD indices and exposure magnitudes associated of 1-log10 and 2-log10 colony-forming unit (CFU)/mL reductions. Sulbactam and durlobactam demonstrated PK/PD drivers of % time above the minimum inhibition concentration (%T > MIC) and area under the plasma concentration-time curve from time 0 to 24 h (AUC0-24)/MIC, respectively. Against a sulbactam-susceptible strain, sulbactam %T > MIC of 71.5 and 82.0 were associated with 1-log10 and 2-log10 CFU/mL reductions, respectively, in the HFIM. Against a non-susceptible strain, durlobactam restored the activity of sulbactam with an AUC0-24/MICs of 34.0 and 46.8 using a polysulfone cartridge to achieve a 1-log10 and 2-log10 CFU/mL reduction. These magnitudes were reduced to 13.8 and 24.2, respectively, using a polyvinylidene fluoride cartridge with a membrane pore size of 0.1 μm. In the one-compartment model, durlobactam AUC0-24/MIC to achieve 1-log10 and 2-log10 CFU/mL reduction were 7.6 and 33.4, respectively. Simulations of clinical ELF exposures in the HFIM showed cidal activity at MICs ≤4 µg/mL. Penicillin binding protein 3 mutant strains with MICs of 8 μg/mL may benefit from the addition of a carbapenem at clinical exposures.
Collapse
Affiliation(s)
| | | | - April Chen
- Entasis Therapeutics, Inc., Waltham, Massachusetts, USA
| | | | | | - Rubén Tommasi
- Entasis Therapeutics, Inc., Waltham, Massachusetts, USA
| |
Collapse
|
37
|
O'Donnell J, Tanudra A, Chen A, Newman J, McLeod SM, Tommasi R. In vivo dose response and efficacy of the β-lactamase inhibitor, durlobactam, in combination with sulbactam against the Acinetobacter baumannii-calcoaceticus complex. Antimicrob Agents Chemother 2024; 68:e0080023. [PMID: 38092671 PMCID: PMC10777848 DOI: 10.1128/aac.00800-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 11/07/2023] [Indexed: 01/11/2024] Open
Abstract
Multi-drug resistant (MDR) Acinetobacter baumannii is emerging as a pathogen of increasing prevalence and concern. Infections associated with this Gram-negative pathogen are often associated with increased morbidity and mortality and few therapeutic options. The β-lactamase inhibitor sulbactam used commonly in combination with ampicillin demonstrates intrinsic antibacterial activity against A. baumannii acting as an inhibitor of PBP1 and PBP3, which participate in cell wall biosynthesis. The production of β-lactamases, particularly class D oxacillinases, however, has limited the utility of sulbactam resorting to increased doses and the need for alternate therapies. Durlobactam is a non-β-lactam β-lactamase inhibitor that demonstrates broad β-lactamase inhibition including class D enzymes produced by A. baumannii and has shown potent in vitro activity against MDR A. baumannii, particularly carbapenem-resistant isolates in susceptibility and pharmacodynamic model systems. The objective of this study is to evaluate the exposure-response relationship of sulbactam and durlobactam in combination using in vivo neutropenic thigh and lung models to establish PK/PD exposure magnitudes to project clinically effective doses. Utilizing established PK/PD determinants of %T>MIC and AUC/MIC for sulbactam and durlobactam, respectively, non-linear regressional analysis of drug exposure was evaluated relative to the 24-hour change in bacterial burden (log10 CFU/g). Co-modeling of the data across multiple strains exhibiting a broad range of MIC susceptibility suggested net 1-log10 CFU/g0 reduction can be achieved when sulbactam T>MIC exceeds 50% of the dosing interval and durlobactam AUC/MIC is 10. These data were ultimately used to support sulbactam-durlobactam dose selection for Phase 3 clinical trials.
Collapse
Affiliation(s)
| | | | - April Chen
- Entasis Therapeutics Inc., Waltham, Massachusetts, USA
| | | | | | - Rubén Tommasi
- Entasis Therapeutics Inc., Waltham, Massachusetts, USA
| |
Collapse
|
38
|
Jacobs LMC, Consol P, Chen Y. Drug Discovery in the Field of β-Lactams: An Academic Perspective. Antibiotics (Basel) 2024; 13:59. [PMID: 38247618 PMCID: PMC10812508 DOI: 10.3390/antibiotics13010059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/21/2023] [Accepted: 12/23/2023] [Indexed: 01/23/2024] Open
Abstract
β-Lactams are the most widely prescribed class of antibiotics that inhibit penicillin-binding proteins (PBPs), particularly transpeptidases that function in peptidoglycan synthesis. A major mechanism of antibiotic resistance is the production of β-lactamase enzymes, which are capable of hydrolyzing β-lactam antibiotics. There have been many efforts to counter increasing bacterial resistance against β-lactams. These studies have mainly focused on three areas: discovering novel inhibitors against β-lactamases, developing new β-lactams less susceptible to existing resistance mechanisms, and identifying non-β-lactam inhibitors against cell wall transpeptidases. Drug discovery in the β-lactam field has afforded a range of research opportunities for academia. In this review, we summarize the recent new findings on both β-lactamases and cell wall transpeptidases because these two groups of enzymes are evolutionarily and functionally connected. Many efforts to develop new β-lactams have aimed to inhibit both transpeptidases and β-lactamases, while several promising novel β-lactamase inhibitors have shown the potential to be further developed into transpeptidase inhibitors. In addition, the drug discovery progress against each group of enzymes is presented in three aspects: understanding the targets, screening methodology, and new inhibitor chemotypes. This is to offer insights into not only the advancement in this field but also the challenges, opportunities, and resources for future research. In particular, cyclic boronate compounds are now capable of inhibiting all classes of β-lactamases, while the diazabicyclooctane (DBO) series of small molecules has led to not only new β-lactamase inhibitors but potentially a new class of antibiotics by directly targeting PBPs. With the cautiously optimistic successes of a number of new β-lactamase inhibitor chemotypes and many questions remaining to be answered about the structure and function of cell wall transpeptidases, non-β-lactam transpeptidase inhibitors may usher in the next exciting phase of drug discovery in this field.
Collapse
Affiliation(s)
| | | | - Yu Chen
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (L.M.C.J.); (P.C.)
| |
Collapse
|
39
|
Ruiz VH, Shen Y, Abouelhassan Y, Fouad A, Nicolau DP, Kuti JL. Physical compatibility of sulbactam/durlobactam with select intravenous drugs during simulated Y-site administration. Am J Health Syst Pharm 2024; 81:e21-e29. [PMID: 37740370 DOI: 10.1093/ajhp/zxad232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Indexed: 09/24/2023] Open
Abstract
PURPOSE Sulbactam/durlobactam is a combination antibiotic designed to target Acinetobacter baumannii, including carbapenem-resistant and multidrug-resistant strains. The objective of this study was to determine the physical compatibility of sulbactam/durlobactam solution during simulated Y-site administration with 95 intravenous (IV) drugs. METHODS Vials of sulbactam/durlobactam solution were diluted in 0.9% sodium chloride injection to a volume of 100 mL (the final concentration of both drugs was 15 mg/mL). All other IV drugs were reconstituted according to the manufacturer's recommendations and diluted with 0.9% sodium chloride injection to the upper range of concentrations used clinically or tested undiluted as intended for administration. Y-site conditions were simulated by mixing 5 mL of sulbactam/durlobactam with 5 mL of the tested drug solutions in a 1:1 ratio. Solutions were inspected for physical characteristics (clarity, color, and Tyndall effect), turbidity, and pH changes before admixture, immediately post admixture, and over 4 hours. Incompatibility was defined as any observed precipitation, significant color change, positive Tyndall test, or turbidity change of ≥0.5 nephelometric turbidity unit during the observation period. RESULTS Sulbactam/durlobactam was physically compatible with 38 out of 42 antimicrobials tested (90.5%) and compatible overall with 86 of 95 drugs tested (90.5%). Incompatibility was observed with albumin, amiodarone hydrochloride, ceftaroline fosamil, ciprofloxacin, daptomycin, levofloxacin, phenytoin sodium, vecuronium, and propofol. CONCLUSION The Y-site compatibility of sulbactam/durlobactam with 95 IV drugs was described. These compatibility data will assist pharmacists and nurses to safely coordinate administration of IV medications with sulbactam/durlobactam.
Collapse
Affiliation(s)
- Victor H Ruiz
- Center for Anti-infective Research and Development, Hartford Hospital, Hartford, CT, USA
| | - Yuwei Shen
- Center for Anti-infective Research and Development, Hartford Hospital, Hartford, CT, USA
| | - Yasmeen Abouelhassan
- Center for Anti-infective Research and Development, Hartford Hospital, Hartford, CT, USA
| | - Aliaa Fouad
- Center for Anti-infective Research and Development, Hartford Hospital, Hartford, CT, USA
| | - David P Nicolau
- Center for Anti-infective Research and Development, Hartford Hospital, Hartford, CT
- Department of Infectious Diseases, Hartford Hospital, Hartford, CT, USA
| | - Joseph L Kuti
- Center for Anti-infective Research and Development, Hartford Hospital, Hartford, CT, USA
| |
Collapse
|
40
|
Velmurugan H, Venkatesan S, Meles HN, Neelambaram K, Thangaraju P. Sulbactam-Durlobactam, A Novel Drug for the Treatment of Multidrug Resistant Acinetobacter baumannii Infections - A Systematic Review. Infect Disord Drug Targets 2024; 24:e220124225835. [PMID: 38258766 DOI: 10.2174/0118715265276432231217192054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/20/2023] [Accepted: 11/01/2023] [Indexed: 01/24/2024]
Abstract
BACKGROUND Sulbactam-durlobactam (SUL-DUR) has been tested in vitro for its ability to generate resistance in clinical isolates of Acinetobacter species. According to prior studies, combining durlobactam with sulbactam causes sulbactam-resistant isolates to become more active and revert to susceptibility. We aimed to conduct a systematic review of the in vitro activity of SUL-DUR on A. baumannii (Ab) isolates, including carbapenem-resistant A. baumannii (CRAb), to provide an overview for physicians dealing with Ab infections. METHODS The following keywords were searched in the PubMed, Google Scholar, and EMBASE databases to look for eligible original works that have been published without restrictions till June 30, 2023: A. baumannii and sulbactam-durlobactam, SUL-DUR, durlobactam, and sulbactam-ETX2514. We also searched clinicaltrials.gov and the Clinical Trials Registry of India (CTRI) for clinical trials involving sulbactamdurlobactam and Acinetobacter. RESULTS There were a total of 852 abstracts found. Among them, 633 articles with titles, abstracts, and keywords were reviewed, and 574 articles were removed after the initial screening. A total of 59 full-text eligible articles were evaluated, and 51 of them were eliminated because they did not satisfy the criteria set for inclusion. The full texts of the final 8 in vitro studies on A. baumanii and sulbactam/durlobactam were further evaluated. There were 5 trials on A. baumanii and sulbactam/durlobactam found on clinicaltrials.gov and the Clinical Trial Registry of India (CTRI). CONCLUSION The findings from the studies show that SUL-DUR might be a successful therapeutic option for multidrug-resistant-Ab infections. Future clinical trials will be required to validate the possibility of using this combination to treat multidrug-resistant A. baumannii infections.
Collapse
Affiliation(s)
| | | | - Hadush Negash Meles
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Adigrat University, Tigrai, Northern Ethiopia
| | | | | |
Collapse
|
41
|
Karruli A, Migliaccio A, Pournaras S, Durante-Mangoni E, Zarrilli R. Cefiderocol and Sulbactam-Durlobactam against Carbapenem-Resistant Acinetobacter baumannii. Antibiotics (Basel) 2023; 12:1729. [PMID: 38136764 PMCID: PMC10740486 DOI: 10.3390/antibiotics12121729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Infections caused by carbapenem-resistant Acinetobacter baumannii (CRAB) remain a clinical challenge due to limited treatment options. Recently, cefiderocol, a novel siderophore cephalosporin, and sulbactam-durlobactam, a bactericidal β-lactam-β-lactamase inhibitor combination, have been approved by the Food and Drug Administration for the treatment of A. baumannii infections. In this review, we discuss the mechanisms of action of and resistance to cefiderocol and sulbactam-durlobactam, the antimicrobial susceptibility of A. baumannii isolates to these drugs, as well as the clinical effectiveness of cefiderocol and sulbactam/durlobactam-based regimens against CRAB. Overall, cefiderocol and sulbactam-durlobactam show an excellent antimicrobial activity against CRAB. The review of clinical studies evaluating the efficacy of cefiderocol therapy against CRAB indicates it is non-inferior to colistin/other treatments for CRAB infections, with a better safety profile. Combination treatment is not associated with improved outcomes compared to monotherapy. Higher mortality rates are often associated with prior patient comorbidities and the severity of the underlying infection. Regarding sulbactam-durlobactam, current data from the pivotal clinical trial and case reports suggest this antibiotic combination could be a valuable option in critically ill patients affected by CRAB infections, in particular where no other antibiotic appears to be effective.
Collapse
Affiliation(s)
- Arta Karruli
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy;
| | - Antonella Migliaccio
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy;
| | - Spyros Pournaras
- Clinical Microbiology Laboratory, Medical School, “Attikon” University General Hospital, National and Kapodistrian University of Athens, 1 Rimini Street, 12462 Athens, Greece
| | | | - Raffaele Zarrilli
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy;
| |
Collapse
|
42
|
Bassetti M, Castaldo N, Fantin A, Giacobbe DR, Vena A. Antibiotic therapy for nonfermenting Gram-negative bacilli infections: future perspectives. Curr Opin Infect Dis 2023; 36:615-622. [PMID: 37846592 DOI: 10.1097/qco.0000000000000984] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
PURPOSE OF REVIEW Serious infections caused by nonfermenting Gram-negative bacteria (NF-GNB) pose a significant challenge for clinicians due to the limited treatment options available, which are frequently associated with issues of toxicity and unfavourable pharmacokinetic profiles. The aim of this review is to provide a brief overview of the existing data concerning the ongoing development of antiinfective agents targeting NF-GNB. RECENT FINDINGS Several agents exhibiting efficacy against NF-GNB are under clinical investigation. Durlobactam-sulbactam and cefepime-taniborbactam emerge as promising therapeutic avenues against carbapenem-resistant Acinetobacter baumanii . Cefepime-zidebactam may serve as a suitable treatment option for urinary tract infections caused by a wide range of NF-GNB. Cefepime-enmetazobactam demonstrates potent in vitro activity against various NF-GNB strains; however, its role as an anti- Pseudomonal agent is inadequately substantiated by available data. Xeruborbactam is a wide β-lactamase inhibitor that can be associated with a range of agents, enhancing in-vitro activity of these against many NF-GNB, including those resistant to newer, broader spectrum options. Lastly, murepavadin appears to be a potential pathogen-specific solution for severe Pseudomonas infections; however, additional investigation is necessary to establish the safety profile of this compound. SUMMARY Each of the novel molecules reviewed possesses an interesting range of in-vitro activity against NF-GNB. In addition, some of them have already been proved effective in vivo, underscoring their potential as future treatment options.
Collapse
Affiliation(s)
- Matteo Bassetti
- Infectious Diseases Unit, Policlinico San Martino Hospital - IRCCS
- Department of Health Sciences (DISSAL), University of Genoa, Genoa
| | - Nadia Castaldo
- Department of Pulmonology, University of Udine and Azienda Sanitaria Universitaria Integrata di Udine, Udine, Italy
| | - Alberto Fantin
- Department of Pulmonology, University of Udine and Azienda Sanitaria Universitaria Integrata di Udine, Udine, Italy
| | - Daniele Roberto Giacobbe
- Infectious Diseases Unit, Policlinico San Martino Hospital - IRCCS
- Department of Health Sciences (DISSAL), University of Genoa, Genoa
| | - Antonio Vena
- Infectious Diseases Unit, Policlinico San Martino Hospital - IRCCS
- Department of Health Sciences (DISSAL), University of Genoa, Genoa
| |
Collapse
|
43
|
Fouad A, Nicolau DP, Gill CM. In vitro synergy of the combination of sulbactam-durlobactam and cefepime at clinically relevant concentrations against A. baumannii, P. aeruginosa and Enterobacterales. J Antimicrob Chemother 2023; 78:2801-2809. [PMID: 37839896 PMCID: PMC10689914 DOI: 10.1093/jac/dkad244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/15/2023] [Indexed: 10/17/2023] Open
Abstract
BACKGROUND Sulbactam-durlobactam is a potent combination active against Acinetobacter baumannii; however, it lacks activity against other nosocomial pathogens. Cefepime is a common first-line therapy for hospital/ventilator-associated pneumonia caused by Gram-negative pathogens including Pseudomonas aeruginosa and Enterobacterales. With increasing resistance to cefepime, and the significant proportion of polymicrobial nosocomial infections, effective therapy for infections caused by Acinetobacter baumannii, P. aeruginosa and Enterobacterales is needed. This study investigated the in vitro synergy of sulbactam-durlobactam plus cefepime against relevant pathogens. METHODS Static time-kills assays were performed in duplicate against 14 cefepime-resistant isolates (A. baumannii, n = 4; P. aeruginosa, n = 4; Escherichia coli, n = 3; Klebsiella pneumoniae, n = 3). One WT K. pneumoniae isolate was included. Antibiotic concentrations simulated the free-steady state average concentration of clinically administered doses in patients. RESULTS Sulbactam-durlobactam alone showed significant activity against A. baumannii consistent with the MIC values. Sulbactam-durlobactam plus cefepime showed synergy against one A. baumannii isolate with an elevated MIC to sulbactam-durlobactam (32 mg/L). Against all P. aeruginosa isolates, synergy was observed with sulbactam-durlobactam plus cefepime. For the Enterobacterales, one E. coli isolate demonstrated synergy while the others were indifferent due to significant kill from sulbactam-durlobactam alone. The combination of sulbactam-durlobactam plus cefepime showed synergy against one of the K. pneumoniae and additive effects against the other two K. pneumoniae tested. No antagonism was observed in any isolates including the WT strain. CONCLUSIONS Synergy and no antagonism was observed with a combination of sulbactam-durlobactam and cefepime; further in vivo pharmacokinetic/pharmacodynamics data and clinical correlation are necessary to support our findings.
Collapse
Affiliation(s)
- Aliaa Fouad
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, CT, USA
| | - David P Nicolau
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, CT, USA
- Division of Infectious Diseases, Hartford Hospital, Hartford, CT, USA
| | - Christian M Gill
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, CT, USA
| |
Collapse
|
44
|
Moussa SH, Shapiro AB, McLeod SM, Iyer R, Carter NM, Tsai YK, Siu LK, Miller AA. Molecular drivers of resistance to sulbactam-durlobactam in contemporary clinical isolates of Acinetobacter baumannii. Antimicrob Agents Chemother 2023; 67:e0066523. [PMID: 37843305 PMCID: PMC10648852 DOI: 10.1128/aac.00665-23] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/07/2023] [Indexed: 10/17/2023] Open
Abstract
Acinetobacter baumannii-calcoaceticus complex (ABC) causes severe infections that are difficult to treat due to pre-existing antibiotic resistance. Sulbactam-durlobactam (SUL-DUR) is a targeted β-lactam/β-lactamase inhibitor combination antibiotic designed to treat serious infections caused by Acinetobacter, including multidrug- and carbapenem-resistant strains. In a recent global surveillance study of 5,032 ABC clinical isolates collected from 2016 to 2021, less than 2% of ABC isolates had SUL-DUR MIC values >4 µg/mL. Molecular characterization of these isolates confirmed the primary drivers of resistance are metallo-β-lactamases or penicillin-binding protein 3 (PBP3) mutations, as previously described. In addition, this study shows that certain common PBP3 variants, such as A515V, are insufficient to confer sulbactam resistance and that the efflux of durlobactam by AdeIJK is likely to play a role in a subset of strains.
Collapse
Affiliation(s)
- Samir H. Moussa
- Innoviva Specialty Therapeutics Inc., an affiliate of Entasis Therapeutics Inc., Waltham, Massachusetts, USA
| | - Adam B. Shapiro
- Innoviva Specialty Therapeutics Inc., an affiliate of Entasis Therapeutics Inc., Waltham, Massachusetts, USA
| | - Sarah M. McLeod
- Innoviva Specialty Therapeutics Inc., an affiliate of Entasis Therapeutics Inc., Waltham, Massachusetts, USA
| | - Ramkumar Iyer
- Innoviva Specialty Therapeutics Inc., an affiliate of Entasis Therapeutics Inc., Waltham, Massachusetts, USA
| | - Nicole M. Carter
- Innoviva Specialty Therapeutics Inc., an affiliate of Entasis Therapeutics Inc., Waltham, Massachusetts, USA
| | - Yu-Kuo Tsai
- Kemyth Biotech Co., Ltd., Taipei City, Taiwan
| | | | - Alita A. Miller
- Innoviva Specialty Therapeutics Inc., an affiliate of Entasis Therapeutics Inc., Waltham, Massachusetts, USA
| |
Collapse
|
45
|
Domínguez AV, Panadero IM, Smani Y. In vitro and in vivo evaluation of two combined β-lactamase inhibitors against carbapenem-resistant Acinetobacter baumannii. Eur J Clin Microbiol Infect Dis 2023; 42:1317-1325. [PMID: 37709968 PMCID: PMC10587209 DOI: 10.1007/s10096-023-04664-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/06/2023] [Indexed: 09/16/2023]
Abstract
The objective of this study was to evaluate the in vitro and in vivo efficacy of clavulanic acid (C/A) in combination with tazobactam against clinical strains of carbapenem-resistant Acinetobacter baumannii. The MIC of 24 clinical strains of A. baumannii was determined, and a checkerboard assay and time-kill curve analysis were performed in selected strains to determine the synergy between C/A and tazobactam. The efficacy of C/A in monotherapy and in combination with tazobactam was evaluated in vitro in cell culture experiments and in a murine peritoneal sepsis model. The C/A and C/A plus tazobactam MIC50 were 128 and <1 mg/L, respectively. The checkerboard assay showed that tazobactam (4 and 8 mg/L) demonstrated synergy with C/A against A. baumannii Ab40, an OXA-24 producer strain, and Ab293, a lacking OXA β-lactamase strain. The time-kill curve assay showed both bactericidal and synergistic effects against Ab40 and Ab293, with C/A 1xMIC and tazobactam (4 and 8 mg/L) at 24 h. In the murine peritoneal sepsis model with Ab293 strain, the combination of C/A and tazobactam reduced bacterial loads in tissues and blood by 2 and 4 log10 CFU/g or mL compared with C/A alone. Combining C/A with tazobactam could be considered as a potential alternative strategy to treat A. baumannii in some cases, and future work with more strains is needed to confirm this possibility.
Collapse
Affiliation(s)
- Andrea Vila Domínguez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC, Universidad de Seville, Seville, Spain
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía, Sevilla, Spain
| | - Irene Molina Panadero
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía, Sevilla, Spain
| | - Younes Smani
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC, Universidad de Seville, Seville, Spain.
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía, Sevilla, Spain.
- Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Sevilla, Spain.
| |
Collapse
|
46
|
Krajewska J, Chyży P, Durka K, Wińska P, Krzyśko KA, Luliński S, Laudy AE. Aromatic Diboronic Acids as Effective KPC/AmpC Inhibitors. Molecules 2023; 28:7362. [PMID: 37959781 PMCID: PMC10648349 DOI: 10.3390/molecules28217362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 11/15/2023] Open
Abstract
Over 30 compounds, including para-, meta-, and ortho-phenylenediboronic acids, ortho-substituted phenylboronic acids, benzenetriboronic acids, di- and triboronated thiophenes, and pyridine derivatives were investigated as potential β-lactamase inhibitors. The highest activity against KPC-type carbapenemases was found for ortho-phenylenediboronic acid 3a, which at the concentration of 8/4 mg/L reduced carbapenems' MICs up to 16/8-fold, respectively. Checkerboard assays revealed strong synergy between carbapenems and 3a with the fractional inhibitory concentrations indices of 0.1-0.32. The nitrocefin hydrolysis test and the whole cell assay with E. coli DH5α transformant carrying blaKPC-3 proved KPC enzyme being its molecular target. para-Phenylenediboronic acids efficiently potentiated carbapenems against KPC-producers and ceftazidime against AmpC-producers, whereas meta-phenylenediboronic acids enhanced only ceftazidime activity against the latter ones. Finally, the statistical analysis confirmed that ortho-phenylenediboronic acids act synergistically with carbapenems significantly stronger than other groups. Since the obtained phenylenediboronic compounds are not toxic to MRC-5 human fibroblasts at the tested concentrations, they can be considered promising scaffolds for the future development of novel KPC/AmpC inhibitors. The complexation of KPC-2 with the most representative isomeric phenylenediboronic acids 1a, 2a, and 3a was modeled by quantum mechanics/molecular mechanics calculations. Compound 3a reached the most effective configuration enabling covalent binding to the catalytic Ser70 residue.
Collapse
Affiliation(s)
- Joanna Krajewska
- Department of Pharmaceutical Microbiology and Bioanalysis, Medical University of Warsaw, 02-097 Warsaw, Poland;
| | - Piotr Chyży
- Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland;
| | - Krzysztof Durka
- Faculty of Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland; (K.D.); (P.W.); (S.L.)
| | - Patrycja Wińska
- Faculty of Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland; (K.D.); (P.W.); (S.L.)
| | | | - Sergiusz Luliński
- Faculty of Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland; (K.D.); (P.W.); (S.L.)
| | - Agnieszka E. Laudy
- Department of Pharmaceutical Microbiology and Bioanalysis, Medical University of Warsaw, 02-097 Warsaw, Poland;
| |
Collapse
|
47
|
Xiao G, Li J, Sun Z. The Combination of Antibiotic and Non-Antibiotic Compounds Improves Antibiotic Efficacy against Multidrug-Resistant Bacteria. Int J Mol Sci 2023; 24:15493. [PMID: 37895172 PMCID: PMC10607837 DOI: 10.3390/ijms242015493] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/19/2023] [Accepted: 10/21/2023] [Indexed: 10/29/2023] Open
Abstract
Bacterial antibiotic resistance, especially the emergence of multidrug-resistant (MDR) strains, urgently requires the development of effective treatment strategies. It is always of interest to delve into the mechanisms of resistance to current antibiotics and target them to promote the efficacy of existing antibiotics. In recent years, non-antibiotic compounds have played an important auxiliary role in improving the efficacy of antibiotics and promoting the treatment of drug-resistant bacteria. The combination of non-antibiotic compounds with antibiotics is considered a promising strategy against MDR bacteria. In this review, we first briefly summarize the main resistance mechanisms of current antibiotics. In addition, we propose several strategies to enhance antibiotic action based on resistance mechanisms. Then, the research progress of non-antibiotic compounds that can promote antibiotic-resistant bacteria through different mechanisms in recent years is also summarized. Finally, the development prospects and challenges of these non-antibiotic compounds in combination with antibiotics are discussed.
Collapse
Affiliation(s)
| | | | - Zhiliang Sun
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (G.X.); (J.L.)
| |
Collapse
|
48
|
Bertonha AF, Silva CCL, Shirakawa KT, Trindade DM, Dessen A. Penicillin-binding protein (PBP) inhibitor development: A 10-year chemical perspective. Exp Biol Med (Maywood) 2023; 248:1657-1670. [PMID: 38030964 PMCID: PMC10723023 DOI: 10.1177/15353702231208407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023] Open
Abstract
Bacterial cell wall formation is essential for cellular survival and morphogenesis. The peptidoglycan (PG), a heteropolymer that surrounds the bacterial membrane, is a key component of the cell wall, and its multistep biosynthetic process is an attractive antibacterial development target. Penicillin-binding proteins (PBPs) are responsible for cross-linking PG stem peptides, and their central role in bacterial cell wall synthesis has made them the target of successful antibiotics, including β-lactams, that have been used worldwide for decades. Following the discovery of penicillin, several other compounds with antibiotic activity have been discovered and, since then, have saved millions of lives. However, since pathogens inevitably become resistant to antibiotics, the search for new active compounds is continuous. The present review highlights the ongoing development of inhibitors acting mainly in the transpeptidase domain of PBPs with potential therapeutic applications for the development of new antibiotic agents. Both the critical aspects of the strategy, design, and structure-activity relationships (SAR) are discussed, covering the main published articles over the last 10 years. Some of the molecules described display activities against main bacterial pathogens and could open avenues toward the development of new, efficient antibacterial drugs.
Collapse
Affiliation(s)
- Ariane F Bertonha
- Brazilian Biosciences National Laboratory (LNBio), CNPEM, Campinas 13084-971, Brazil
| | - Caio C L Silva
- Brazilian Biosciences National Laboratory (LNBio), CNPEM, Campinas 13084-971, Brazil
| | - Karina T Shirakawa
- Brazilian Biosciences National Laboratory (LNBio), CNPEM, Campinas 13084-971, Brazil
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-862, Brazil
| | - Daniel M Trindade
- Brazilian Biosciences National Laboratory (LNBio), CNPEM, Campinas 13084-971, Brazil
| | - Andréa Dessen
- Brazilian Biosciences National Laboratory (LNBio), CNPEM, Campinas 13084-971, Brazil
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), F-38044 Grenoble, France
| |
Collapse
|
49
|
VanNatta M, Grier L, Khan MH, Pinargote Cornejo P, Alam M, Moussa SH, Smith JG, Aitken SL, Malek AE. In Vivo Emergence of Pandrug-Resistant Acinetobacter baumannii Strain: Comprehensive Resistance Characterization and Compassionate Use of Sulbactam-Durlobactam. Open Forum Infect Dis 2023; 10:ofad504. [PMID: 37901122 PMCID: PMC10603586 DOI: 10.1093/ofid/ofad504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/04/2023] [Indexed: 10/31/2023] Open
Abstract
The treatment of patients with infection secondary to carbapenem-resistant Acinetobacter baumannii with emerging cefiderocol resistance remains challenging and unclear. We present a case of in vivo emergence of pandrug-resistant A baumannii that was successfully treated with the compassionate use of investigational sulbactam-durlobactam-based antibiotic regimen. We also performed a longitudinal genomic analysis of the bacterial isolates and showed the development of resistance and genetic mutations over time.
Collapse
Affiliation(s)
- Mollie VanNatta
- Department of Pharmacy, Ochsner LSU Health Shreveport, Shreveport, Louisiana, USA
| | - Laurie Grier
- Division of Critical Care Medicine, LSU Health Shreveport, Shreveport, Louisiana, USA
| | - Muhammad H Khan
- Division of Infectious Diseases, Department of Medicine, LSU Health Shreveport, Shreveport, Louisiana, USA
| | - Paulette Pinargote Cornejo
- Division of Infectious Diseases, Department of Medicine, LSU Health Shreveport, Shreveport, Louisiana, USA
| | - Mohammad Alam
- Division of Infectious Diseases, Department of Medicine, LSU Health Shreveport, Shreveport, Louisiana, USA
| | - Samir H Moussa
- Innoviva Specialty Therapeutics, Inc, an affiliate of Entasis Therapeutics Inc, Waltham, Massachusetts, USA
| | - Jennifer G Smith
- Department of Pharmacy, Ochsner LSU Health Shreveport, Shreveport, Louisiana, USA
| | - Samuel L Aitken
- Department of Pharmacy, Michigan Medicine, Ann Arbor, Michigan, USA
| | - Alexandre E Malek
- Division of Infectious Diseases, Department of Medicine, LSU Health Shreveport, Shreveport, Louisiana, USA
| |
Collapse
|
50
|
Abstract
Sulbactam/durlobactam (XACDURO®), is a co-packaged antibacterial product that has been developed by Entasis Therapeutics Inc. for the treatment of infections caused by Acinetobacter baumannii-calcoaceticus complex (ABC). Coadministration of durlobactam (a β-lactamase inhibitor with potent activity against a broad range of serine β-lactamases) with sulbactam (an established class A β-lactamase inhibitor with antibacterial activity against A. baumannii) prevents sulbactam degradation by ABC-produced β-lactamases. In May 2023, sulbactam/durlobactam was approved in the USA for use in patients 18 years of age and older for the treatment of hospital-acquired bacterial pneumonia and ventilator-associated bacterial pneumonia (HABP/VABP) caused by susceptible isolates of ABC. This article summarizes the milestones in the development of sulbactam/durlobactam leading to this first approval for the treatment of infections caused by ABC.
Collapse
Affiliation(s)
- Susan J Keam
- Springer Nature, Private Bag 65901, Mairangi Bay, Auckland, 0754, New Zealand.
| |
Collapse
|