1
|
Morikawa R, Rodrigues TM, Schreyer HM, Cowan CS, Nadeau S, Graff-Meyer A, Patino-Alvarez CP, Khani MH, Jüttner J, Roska B. The sodium-bicarbonate cotransporter Slc4a5 mediates feedback at the first synapse of vision. Neuron 2024; 112:3715-3733.e9. [PMID: 39317184 PMCID: PMC11602199 DOI: 10.1016/j.neuron.2024.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 07/22/2024] [Accepted: 08/27/2024] [Indexed: 09/26/2024]
Abstract
Feedback at the photoreceptor synapse is the first neuronal circuit computation in vision, which influences downstream activity patterns within the visual system. Yet, the identity of the feedback signal and the mechanism of synaptic transmission are still not well understood. Here, we combined perturbations of cell-type-specific genes of mouse horizontal cells with two-photon imaging of the result of light-induced feedback in cones and showed that the electrogenic bicarbonate transporter Slc4a5, but not the electroneutral bicarbonate transporter Slc4a3, both expressed specifically in horizontal cells, is necessary for horizontal cell-to-cone feedback. Pharmacological blockage of bicarbonate transporters and buffering pH also abolished the feedback but blocking sodium-proton exchangers and GABA receptors did not. Our work suggests an unconventional mechanism of feedback at the first visual synapse: changes in horizontal cell voltage modulate bicarbonate transport to the cell, via Slc4a5, which leads to the modulation of feedback to cones.
Collapse
Affiliation(s)
- Rei Morikawa
- Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland
| | - Tiago M Rodrigues
- Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland; Department of Ophthalmology, University of Basel, 4031 Basel, Switzerland
| | | | - Cameron S Cowan
- Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland
| | - Sarah Nadeau
- Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland
| | - Alexandra Graff-Meyer
- Facility for Advanced Imaging and Microscopy, Friedrich Miescher Institute for Biomedical Research, 4056 Basel, Switzerland
| | | | | | - Josephine Jüttner
- Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland
| | - Botond Roska
- Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland; Department of Ophthalmology, University of Basel, 4031 Basel, Switzerland.
| |
Collapse
|
2
|
Li L, Li S, Wang W, Zhang J, Sun Y, Deng Q, Zheng T, Lu J, Gao W, Yang M, Wang H, Pan Y, Liu X, Yang Y, Li J, Huo N. Adaptative machine vision with microsecond-level accurate perception beyond human retina. Nat Commun 2024; 15:6261. [PMID: 39048552 PMCID: PMC11269608 DOI: 10.1038/s41467-024-50488-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024] Open
Abstract
Visual adaptive devices have potential to simplify circuits and algorithms in machine vision systems to adapt and perceive images with varying brightness levels, which is however limited by sluggish adaptation process. Here, the avalanche tuning as feedforward inhibition in bionic two-dimensional (2D) transistor is proposed for fast and high-frequency visual adaptation behavior with microsecond-level accurate perception, the adaptation speed is over 104 times faster than that of human retina and reported bionic sensors. As light intensity changes, the bionic transistor spontaneously switches between avalanche and photoconductive effect, varying responsivity in both magnitude and sign (from 7.6 × 104 to -1 × 103 A/W), thereby achieving ultra-fast scotopic and photopic adaptation process of 108 and 268 μs, respectively. By further combining convolutional neural networks with avalanche-tuned bionic transistor, an adaptative machine vision is achieved with remarkable microsecond-level rapid adaptation capabilities and robust image recognition with over 98% precision in both dim and bright conditions.
Collapse
Affiliation(s)
- Ling Li
- School of Semiconductor Science and Technology, South China Normal University, Foshan, 528225, P.R. China
| | - Shasha Li
- School of Electronic Engineering, Chaohu University, Hefei, 238000, China
| | - Wenhai Wang
- School of Semiconductor Science and Technology, South China Normal University, Foshan, 528225, P.R. China
| | - Jielian Zhang
- School of Semiconductor Science and Technology, South China Normal University, Foshan, 528225, P.R. China
| | - Yiming Sun
- School of Semiconductor Science and Technology, South China Normal University, Foshan, 528225, P.R. China
| | - Qunrui Deng
- School of Semiconductor Science and Technology, South China Normal University, Foshan, 528225, P.R. China
| | - Tao Zheng
- School of Semiconductor Science and Technology, South China Normal University, Foshan, 528225, P.R. China
| | - Jianting Lu
- National Key Laboratory of Science and Technology on Reliability Physics and Application of Electronic Component, China Electronic Product Reliability and Environmental Testing Research Institute, Guangzhou, 510610, China
| | - Wei Gao
- School of Semiconductor Science and Technology, South China Normal University, Foshan, 528225, P.R. China
| | - Mengmeng Yang
- School of Semiconductor Science and Technology, South China Normal University, Foshan, 528225, P.R. China
| | - Hanyu Wang
- School of Semiconductor Science and Technology, South China Normal University, Foshan, 528225, P.R. China
| | - Yuan Pan
- School of Semiconductor Science and Technology, South China Normal University, Foshan, 528225, P.R. China
| | - Xueting Liu
- School of Semiconductor Science and Technology, South China Normal University, Foshan, 528225, P.R. China
| | - Yani Yang
- School of Semiconductor Science and Technology, South China Normal University, Foshan, 528225, P.R. China
| | - Jingbo Li
- College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, Guangzhou, 510631, P.R. China
| | - Nengjie Huo
- School of Semiconductor Science and Technology, South China Normal University, Foshan, 528225, P.R. China.
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, Guangzhou, 510631, P.R. China.
| |
Collapse
|
3
|
Thoreson WB, Zenisek D. Presynaptic Proteins and Their Roles in Visual Processing by the Retina. Annu Rev Vis Sci 2024; 10:10.1146/annurev-vision-101322-111204. [PMID: 38621251 PMCID: PMC11536687 DOI: 10.1146/annurev-vision-101322-111204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
The sense of vision begins in the retina, where light is detected and processed through a complex series of synaptic connections into meaningful information relayed to the brain via retinal ganglion cells. Light responses begin as tonic and graded signals in photoreceptors, later emerging from the retina as a series of spikes from ganglion cells. Processing by the retina extracts critical features of the visual world, including spatial frequency, temporal frequency, motion direction, color, contrast, and luminance. To achieve this, the retina has evolved specialized and unique synapse types. These include the ribbon synapses of photoreceptors and bipolar cells, the dendritic synapses of amacrine and horizontal cells, and unconventional synaptic feedback from horizontal cells to photoreceptors. We review these unique synapses in the retina with a focus on the presynaptic molecules and physiological properties that shape their capabilities.
Collapse
Affiliation(s)
- Wallace B Thoreson
- 1Departments of Ophthalmology & Visual Sciences and Pharmacology & Experimental Neuroscience, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, Nebraska, USA; ; https://orcid.org/0000-0001-7104-042X
| | - David Zenisek
- 2Departments of Cellular and Molecular Physiology, Ophthalmology and Visual Sciences, and Neuroscience, Yale University, New Haven, Connecticut, USA; ; https://orcid.org/0000-0001-6052-0348
| |
Collapse
|
4
|
Grabner CP, Futagi D, Shi J, Bindokas V, Kitano K, Schwartz EA, DeVries SH. Mechanisms of simultaneous linear and nonlinear computations at the mammalian cone photoreceptor synapse. Nat Commun 2023; 14:3486. [PMID: 37328451 PMCID: PMC10276006 DOI: 10.1038/s41467-023-38943-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 05/22/2023] [Indexed: 06/18/2023] Open
Abstract
Neurons enhance their computational power by combining linear and nonlinear transformations in extended dendritic trees. Rich, spatially distributed processing is rarely associated with individual synapses, but the cone photoreceptor synapse may be an exception. Graded voltages temporally modulate vesicle fusion at a cone's ~20 ribbon active zones. Transmitter then flows into a common, glia-free volume where bipolar cell dendrites are organized by type in successive tiers. Using super-resolution microscopy and tracking vesicle fusion and postsynaptic responses at the quantal level in the thirteen-lined ground squirrel, Ictidomys tridecemlineatus, we show that certain bipolar cell types respond to individual fusion events in the vesicle stream while other types respond to degrees of locally coincident events, creating a gradient across tiers that are increasingly nonlinear. Nonlinearities emerge from a combination of factors specific to each bipolar cell type including diffusion distance, contact number, receptor affinity, and proximity to glutamate transporters. Complex computations related to feature detection begin within the first visual synapse.
Collapse
Affiliation(s)
- Chad P Grabner
- Institute for Auditory Neuroscience, University Medical Center Göttingen, 37075, Göttingen, Germany
- Synaptic Nanophysiology Group, Max Planck Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany
| | - Daiki Futagi
- College of Information Science and Engineering, Ritsumeikan University, Shiga, Japan
- Center for Systems Visual Science, Organization of Science and Technology, Ritsumeikan University, Shiga, Japan
- Ritsumeikan Global Innovation Research Organisation, Ritsumeikan University, Shiga, Japan
- Department of Ophthalmology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Jun Shi
- Department of Ophthalmology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Vytas Bindokas
- Dept of Pharmacological and Physiological Sciences, The University of Chicago, Chicago, IL, 60637, USA
| | - Katsunori Kitano
- College of Information Science and Engineering, Ritsumeikan University, Shiga, Japan
- Center for Systems Visual Science, Organization of Science and Technology, Ritsumeikan University, Shiga, Japan
| | - Eric A Schwartz
- Dept of Pharmacological and Physiological Sciences, The University of Chicago, Chicago, IL, 60637, USA
| | - Steven H DeVries
- Department of Ophthalmology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| |
Collapse
|
5
|
Wen X, Liao P, Luo Y, Yang L, Yang H, Liu L, Jiang R. Tandem pore domain acid-sensitive K channel 3 (TASK-3) regulates visual sensitivity in healthy and aging retina. SCIENCE ADVANCES 2022; 8:eabn8785. [PMID: 36070380 PMCID: PMC9451158 DOI: 10.1126/sciadv.abn8785] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Retinal ganglion cells (RGCs) not only collect but also integrate visual signals and send them from the retina to the brain. The mechanisms underlying the RGC integration of synaptic activity within retinal circuits have not been fully explored. Here, we identified a pronounced expression of tandem pore domain acid-sensitive potassium channel 3 (TASK-3), a two-pore domain potassium channel (K2P), in RGCs. By using a specific antagonist and TASK-3 knockout mice, we found that TASK-3 regulates the intrinsic excitability and the light sensitivity of RGCs by sensing neuronal activity-dependent extracellular acidification. In vivo, the blockade or loss of TASK-3 dampened pupillary light reflex, visual acuity, and contrast sensitivity. Furthermore, overexpressing TASK-3 specifically in RGCs using an adeno-associated virus approach restored the visual function of TASK-3 knockout mice and aged mice where the expression and function of TASK-3 were reduced. Thus, our results provide evidence that implicates a critical role of K2P in visual processing in the retina.
Collapse
Affiliation(s)
- Xiangyi Wen
- Department of Ophthalmology, Department of Optometry and Visual Science, Laboratory of Optometry and Vision Sciences, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ping Liao
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, Department of Anesthesiology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yuncheng Luo
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, Department of Anesthesiology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Linghui Yang
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, Department of Anesthesiology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Huaiyu Yang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Longqian Liu
- Department of Ophthalmology, Department of Optometry and Visual Science, Laboratory of Optometry and Vision Sciences, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ruotian Jiang
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, Department of Anesthesiology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
6
|
Feghhi T, Hernandez RX, Stawarski M, Thomas CI, Kamasawa N, Lau AWC, Macleod GT. Computational modeling predicts ephemeral acidic microdomains in the glutamatergic synaptic cleft. Biophys J 2021; 120:5575-5591. [PMID: 34774503 DOI: 10.1016/j.bpj.2021.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/21/2021] [Accepted: 11/05/2021] [Indexed: 10/19/2022] Open
Abstract
At chemical synapses, synaptic vesicles release their acidic contents into the cleft, leading to the expectation that the cleft should acidify. However, fluorescent pH probes targeted to the cleft of conventional glutamatergic synapses in both fruit flies and mice reveal cleft alkalinization rather than acidification. Here, using a reaction-diffusion scheme, we modeled pH dynamics at the Drosophila neuromuscular junction as glutamate, ATP, and protons (H+) were released into the cleft. The model incorporates bicarbonate and phosphate buffering systems as well as plasma membrane calcium-ATPase activity and predicts substantial cleft acidification but only for fractions of a millisecond after neurotransmitter release. Thereafter, the cleft rapidly alkalinizes and remains alkaline for over 100 ms because the plasma membrane calcium-ATPase removes H+ from the cleft in exchange for calcium ions from adjacent pre- and postsynaptic compartments, thus recapitulating the empirical data. The extent of synaptic vesicle loading and time course of exocytosis have little influence on the magnitude of acidification. Phosphate but not bicarbonate buffering is effective at suppressing the magnitude and time course of the acid spike, whereas both buffering systems are effective at suppressing cleft alkalinization. The small volume of the cleft levies a powerful influence on the magnitude of alkalinization and its time course. Structural features that open the cleft to adjacent spaces appear to be essential for alleviating the extent of pH transients accompanying neurotransmission.
Collapse
Affiliation(s)
- Touhid Feghhi
- Department of Physics, College of Science, Florida Atlantic University, Boca Raton, Florida
| | - Roberto X Hernandez
- Integrative Biology & Neuroscience Graduate Program, Florida Atlantic University, Boca Raton, Florida; International Max Planck Research School for Brain and Behavior, Jupiter, Florida; Jupiter Life Sciences Initiative, Florida Atlantic University, Jupiter, Florida
| | - Michal Stawarski
- Wilkes Honors College, Florida Atlantic University, Jupiter, Florida
| | - Connon I Thomas
- Electron Microscopy Core Facility, Max Planck Florida Institute, Jupiter, Florida
| | - Naomi Kamasawa
- Electron Microscopy Core Facility, Max Planck Florida Institute, Jupiter, Florida
| | - A W C Lau
- Department of Physics, College of Science, Florida Atlantic University, Boca Raton, Florida
| | - Gregory T Macleod
- Jupiter Life Sciences Initiative, Florida Atlantic University, Jupiter, Florida; Wilkes Honors College, Florida Atlantic University, Jupiter, Florida; Brain Institute, Florida Atlantic University, Jupiter, Florida; Institute for Human Health & Disease Intervention, Florida Atlantic University, Jupiter, Florida.
| |
Collapse
|
7
|
Baer SM, Chang S, Crook SM, Gardner CL, Jones JR, Ringhofer C, Nelson RF. A multiscale continuum model of the vertebrate outer retina: The temporal dynamics of background-induced flicker enhancement. J Theor Biol 2021; 525:110763. [PMID: 34000285 PMCID: PMC11385586 DOI: 10.1016/j.jtbi.2021.110763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 04/28/2021] [Accepted: 05/07/2021] [Indexed: 11/25/2022]
Abstract
The retina is a part of the central nervous system that is accessible, well documented, and studied by researchers spanning the clinical, experimental, and theoretical sciences. Here, we mathematically model the subcircuits of the outer plexiform layer of the retina on two spatial scales: that of an individual synapse and that of the scale of the receptive field (hundreds to thousands of synapses). To this end we formulate a continuum spine model (a partial differential equation system) that incorporates the horizontal cell syncytium and its numerous processes (spines) within cone pedicles. With this multiscale modeling approach, detailed biophysical mechanisms at the synaptic level are retained while scaling up to the receptive field level. As an example of its utility, the model is applied to study background-induced flicker enhancement in which the onset of a dim background enhances the center flicker response of horizontal cells. Simulation results, in comparison with flicker enhancement data for square, slit, and disk test regions, suggest that feedback mechanisms that are voltage-axis modulators of cone calcium channels (for example, ephaptic and/or pH feedback) are robust in capturing the temporal dynamics of background-induced flicker enhancement. The value and potential of this continuum spine approach is that it provides a framework for mathematically modeling the input-output properties of the entire receptive field of the outer retina while implementing the latest models for transmission mechanisms at the synaptic level.
Collapse
Affiliation(s)
- Steven M Baer
- School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ 85287, United States.
| | - Shaojie Chang
- School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ 85287, United States; The High School Affiliated to Beijing Normal University, Beijing 100052, PR China
| | - Sharon M Crook
- School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ 85287, United States
| | - Carl L Gardner
- School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ 85287, United States
| | - Jeremiah R Jones
- School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ 85287, United States
| | - Christian Ringhofer
- School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ 85287, United States
| | - Ralph F Nelson
- Neural Circuits Unit, Basic Neuroscience Program, NINDS, NIH, Bethesda, MD 20892, United States
| |
Collapse
|
8
|
Malchow RP, Tchernookova BK, Choi JIV, Smith PJS, Kramer RH, Kreitzer MA. Review and Hypothesis: A Potential Common Link Between Glial Cells, Calcium Changes, Modulation of Synaptic Transmission, Spreading Depression, Migraine, and Epilepsy-H . Front Cell Neurosci 2021; 15:693095. [PMID: 34539347 PMCID: PMC8446203 DOI: 10.3389/fncel.2021.693095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/25/2021] [Indexed: 01/03/2023] Open
Abstract
There is significant evidence to support the notion that glial cells can modulate the strength of synaptic connections between nerve cells, and it has further been suggested that alterations in intracellular calcium are likely to play a key role in this process. However, the molecular mechanism(s) by which glial cells modulate neuronal signaling remains contentiously debated. Recent experiments have suggested that alterations in extracellular H+ efflux initiated by extracellular ATP may play a key role in the modulation of synaptic strength by radial glial cells in the retina and astrocytes throughout the brain. ATP-elicited alterations in H+ flux from radial glial cells were first detected from Müller cells enzymatically dissociated from the retina of tiger salamander using self-referencing H+-selective microelectrodes. The ATP-elicited alteration in H+ efflux was further found to be highly evolutionarily conserved, extending to Müller cells isolated from species as diverse as lamprey, skate, rat, mouse, monkey and human. More recently, self-referencing H+-selective electrodes have been used to detect ATP-elicited alterations in H+ efflux around individual mammalian astrocytes from the cortex and hippocampus. Tied to increases in intracellular calcium, these ATP-induced extracellular acidifications are well-positioned to be key mediators of synaptic modulation. In this article, we examine the evidence supporting H+ as a key modulator of neurotransmission, review data showing that extracellular ATP elicits an increase in H+ efflux from glial cells, and describe the potential signal transduction pathways involved in glial cell-mediated H+ efflux. We then examine the potential role that extracellular H+ released by glia might play in regulating synaptic transmission within the vertebrate retina, and then expand the focus to discuss potential roles in spreading depression, migraine, epilepsy, and alterations in brain rhythms, and suggest that alterations in extracellular H+ may be a unifying feature linking these disparate phenomena.
Collapse
Affiliation(s)
- Robert Paul Malchow
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, United States
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, United States
| | - Boriana K. Tchernookova
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, United States
| | - Ji-in Vivien Choi
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, United States
- Stritch School of Medicine, Loyola University, Maywood, IL, United States
| | - Peter J. S. Smith
- Institute for Life Sciences, University of Southampton, Highfield Campus, Southampton, United Kingdom
- Bell Center, Marine Biological Laboratory, Woods Hole, MA, United States
| | - Richard H. Kramer
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Matthew A. Kreitzer
- Department of Biology, Indiana Wesleyan University, Marion, IN, United States
| |
Collapse
|
9
|
Kaneko A. Recollection of My Research Work on the Electrophysiology of the Vertebrate Retina. Bioelectricity 2021. [DOI: 10.1089/bioe.2021.0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
10
|
Vila A, Shihabeddin E, Zhang Z, Santhanam A, Ribelayga CP, O’Brien J. Synaptic Scaffolds, Ion Channels and Polyamines in Mouse Photoreceptor Synapses: Anatomy of a Signaling Complex. Front Cell Neurosci 2021; 15:667046. [PMID: 34393723 PMCID: PMC8356055 DOI: 10.3389/fncel.2021.667046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 07/05/2021] [Indexed: 12/29/2022] Open
Abstract
Synaptic signaling complexes are held together by scaffold proteins, each of which is selectively capable of interacting with a number of other proteins. In previous studies of rabbit retina, we found Synapse-Associated Protein-102 (SAP102) and Channel Associated Protein of Synapse-110 (Chapsyn110) selectively localized in the tips of horizontal cell processes at contacts with rod and cone photoreceptors, along with several interacting ion channels. We have examined the equivalent suites of proteins in mouse retina and found similarities and differences. In the mouse retina we identified Chapsyn110 as the scaffold selectively localized in the tips of horizontal cells contacting photoreceptors, with Sap102 more diffusely present. As in rabbit, the inward rectifier potassium channel Kir2.1 was present with Chapsyn110 on the tips of horizontal cell dendrites within photoreceptor invaginations, where it could provide a hyperpolarization-activated current that could contribute to ephaptic signaling in the photoreceptor synapses. Pannexin 1 and Pannexin 2, thought to play a role in ephaptic and/or pH mediated signaling, were present in the outer plexiform layer, but likely not in the horizontal cells. Polyamines regulate many ion channels and control the degree of rectification of Kir2.1 by imposing a voltage-dependent block. During the day polyamine immunolabeling was unexpectedly high in photoreceptor terminals compared to other areas of the retina. This content was significantly lower at night, when polyamine content was predominantly in Müller glia, indicating daily rhythms of polyamine content. Both rod and cone terminals displayed the same rhythm. While polyamine content was not prominent in horizontal cells, if polyamines are released, they may regulate the activity of Kir2.1 channels located in the tips of HCs. The rhythmic change in polyamine content of photoreceptor terminals suggests that a daily rhythm tunes the behavior of suites of ion channels within the photoreceptor synapses.
Collapse
Affiliation(s)
- Alejandro Vila
- Richard S. Ruiz M.D. Department of Ophthalmology and Visual Science, University of Texas Health Science Center at Houston, Houston, TX, United States
- MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| | - Eyad Shihabeddin
- Richard S. Ruiz M.D. Department of Ophthalmology and Visual Science, University of Texas Health Science Center at Houston, Houston, TX, United States
- MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| | - Zhijing Zhang
- Richard S. Ruiz M.D. Department of Ophthalmology and Visual Science, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Abirami Santhanam
- Richard S. Ruiz M.D. Department of Ophthalmology and Visual Science, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Christophe P. Ribelayga
- Richard S. Ruiz M.D. Department of Ophthalmology and Visual Science, University of Texas Health Science Center at Houston, Houston, TX, United States
- MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| | - John O’Brien
- Richard S. Ruiz M.D. Department of Ophthalmology and Visual Science, University of Texas Health Science Center at Houston, Houston, TX, United States
- MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| |
Collapse
|
11
|
Zhu Y, Warrenfelt CIC, Flannery JC, Lindgren CA. Extracellular Protons Mediate Presynaptic Homeostatic Potentiation at the Mouse Neuromuscular Junction. Neuroscience 2021; 467:188-200. [PMID: 34215419 DOI: 10.1016/j.neuroscience.2021.01.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 01/22/2021] [Accepted: 01/28/2021] [Indexed: 01/27/2023]
Abstract
At the vertebrate neuromuscular junction (NMJ), presynaptic homeostatic potentiation (PHP) refers to the upregulation of neurotransmitter release via an increase in quantal content (QC) when the postsynaptic nicotinic acetylcholine receptors (nAChRs) are partially blocked. The mechanism of PHP has not been completely worked out. In particular, the identity of the presumed retrograde signal is still a mystery. We investigated the role of acid-sensing ion channels (ASICs) and extracellular protons in mediating PHP at the mouse NMJ. We found that blocking AISCs using benzamil, psalmotoxin-1 (PcTx1), or mambalgin-3 (Mamb3) prevented PHP. Likewise, extracellular acidification from pH 7.4 to 7.2 triggered a significant, reversable increase in QC and this increase could be prevented by PcTx1. Interestingly, an acidic saline (pH 7.2) also precluded the subsequent induction of PHP. Using immunofluorescence we observed ASIC2a and ASIC1 subunits at the NMJ. Our results indicate that protons and ASIC channels are involved in activating PHP at the mouse NMJ. We speculate that the partial blockade of nAChRs leads to a modest decrease in the pH of the synaptic cleft (∼0.2 pH units) and this activates ASIC channels on the presynaptic nerve terminal.
Collapse
Affiliation(s)
- Yiyang Zhu
- Department of Biology, Grinnell College, Grinnell, IA 50112, USA
| | | | - Jill C Flannery
- Department of Biology, Grinnell College, Grinnell, IA 50112, USA
| | - Clark A Lindgren
- Department of Biology, Grinnell College, Grinnell, IA 50112, USA.
| |
Collapse
|
12
|
Choi JIV, Tchernookova BK, Kumar W, Kiedrowski L, Goeke C, Guizzetti M, Larson J, Kreitzer MA, Malchow RP. Extracellular ATP-Induced Alterations in Extracellular H + Fluxes From Cultured Cortical and Hippocampal Astrocytes. Front Cell Neurosci 2021; 15:640217. [PMID: 33994945 PMCID: PMC8120152 DOI: 10.3389/fncel.2021.640217] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/19/2021] [Indexed: 12/18/2022] Open
Abstract
Small alterations in the level of extracellular H+ can profoundly alter neuronal activity throughout the nervous system. In this study, self-referencing H+-selective microelectrodes were used to examine extracellular H+ fluxes from individual astrocytes. Activation of astrocytes cultured from mouse hippocampus and rat cortex with extracellular ATP produced a pronounced increase in extracellular H+ flux. The ATP-elicited increase in H+ flux appeared to be independent of bicarbonate transport, as ATP increased H+ flux regardless of whether the primary extracellular pH buffer was 26 mM bicarbonate or 1 mM HEPES, and persisted when atmospheric levels of CO2 were replaced by oxygen. Adenosine failed to elicit any change in extracellular H+ fluxes, and ATP-mediated increases in H+ flux were inhibited by the P2 inhibitors suramin and PPADS suggesting direct activation of ATP receptors. Extracellular ATP also induced an intracellular rise in calcium in cultured astrocytes, and ATP-induced rises in both calcium and H+ efflux were significantly attenuated when calcium re-loading into the endoplasmic reticulum was inhibited by thapsigargin. Replacement of extracellular sodium with choline did not significantly reduce the size of the ATP-induced increases in H+ flux, and the increases in H+ flux were not significantly affected by addition of EIPA, suggesting little involvement of Na+/H+ exchangers in ATP-elicited increases in H+ flux. Given the high sensitivity of voltage-sensitive calcium channels on neurons to small changes in levels of free H+, we hypothesize that the ATP-mediated extrusion of H+ from astrocytes may play a key role in regulating signaling at synapses within the nervous system.
Collapse
Affiliation(s)
- Ji-In Vivien Choi
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, United States.,Stritch School of Medicine, Loyola University, Maywood, IL, United States
| | - Boriana K Tchernookova
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, United States
| | - Wasan Kumar
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, United States
| | - Lech Kiedrowski
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, United States.,Spot Cells LLC, Chicago, IL, United States
| | - Calla Goeke
- VA Portland Health Care System, Portland, OR, United States.,Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Marina Guizzetti
- VA Portland Health Care System, Portland, OR, United States.,Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - John Larson
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States
| | - Matthew A Kreitzer
- Department of Biology, Indiana Wesleyan University, Marion, IN, United States
| | - Robert Paul Malchow
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, United States.,Department Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
13
|
Thoreson WB. Transmission at rod and cone ribbon synapses in the retina. Pflugers Arch 2021; 473:1469-1491. [PMID: 33779813 DOI: 10.1007/s00424-021-02548-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 12/29/2022]
Abstract
Light-evoked voltage responses of rod and cone photoreceptor cells in the vertebrate retina must be converted to a train of synaptic vesicle release events for transmission to downstream neurons. This review discusses the processes, proteins, and structures that shape this critical early step in vision, focusing on studies from salamander retina with comparisons to other experimental animals. Many mechanisms are conserved across species. In cones, glutamate release is confined to ribbon release sites although rods are also capable of release at non-ribbon sites. The role of non-ribbon release in rods remains unclear. Release from synaptic ribbons in rods and cones involves at least three vesicle pools: a readily releasable pool (RRP) matching the number of membrane-associated vesicles along the ribbon base, a ribbon reserve pool matching the number of additional vesicles on the ribbon, and an enormous cytoplasmic reserve. Vesicle release increases in parallel with Ca2+ channel activity. While the opening of only a few Ca2+ channels beneath each ribbon can trigger fusion of a single vesicle, sustained release rates in darkness are governed by the rate at which the RRP can be replenished. The number of vacant release sites, their functional status, and the rate of vesicle delivery in turn govern replenishment. Along with an overview of the mechanisms of exocytosis and endocytosis, we consider specific properties of ribbon-associated proteins and pose a number of remaining questions about this first synapse in the visual system.
Collapse
Affiliation(s)
- Wallace B Thoreson
- Truhlsen Eye Institute, Departments of Ophthalmology & Visual Sciences and Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
14
|
Hirasawa H, Miwa N, Watanabe SI. GABAergic and glycinergic systems regulate ON-OFF electroretinogram by cooperatively modulating cone pathways in the amphibian retina. Eur J Neurosci 2020; 53:1428-1440. [PMID: 33222336 DOI: 10.1111/ejn.15054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/03/2020] [Accepted: 11/16/2020] [Indexed: 11/30/2022]
Abstract
The network mechanisms underlying how inhibitory circuits regulate ON- and OFF-responses (the b- and d-waves) in the electroretinogram (ERG) remain unclear. The purpose of this study was to investigate the contribution of inhibitory circuits to the emergence of the b- and d-waves in the full-field ERG in the newt retina. To this end, we investigated the effects of several synaptic transmission blockers on the amplitudes of the b- and d-waves in the ERG obtained from newt eyecup preparations. Our results demonstrated that (a) L-APB blocked the b-wave, indicating that the b-wave arises from the activity of ON-bipolar cells (BCs) expressing type six metabotropic glutamate receptors; (b) the combined administration of UBP310/GYKI 53655 blocked the d-wave, indicating that the d-wave arises from the activity of OFF-BCs expressing kainate-/AMPA-receptors; (c) SR 95531 augmented both the b- and the d-wave, indicating that GABAergic lateral inhibitory circuits inhibit both ON- and OFF-BC pathways; (d) the administration of strychnine in the presence of SR 95531 attenuated the d-wave, and this attenuation was prevented by blocking ON-pathways with L-APB, which indicated that the glycinergic inhibition of OFF-BC pathway is downstream of the GABAergic inhibition of the ON-system; and (e) the glycinergic inhibition from the ON- to the OFF-system widens the response range of OFF-BC pathways, specifically in the absence of GABAergic lateral inhibition. Based on these results, we proposed a circuitry mechanism for the regulation of the d-wave and offered a tentative explanation of the circuitry mechanisms underlying ERG formation.
Collapse
Affiliation(s)
- Hajime Hirasawa
- Department of Physiology, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Naofumi Miwa
- Department of Physiology, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Shu-Ichi Watanabe
- Department of Physiology, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| |
Collapse
|
15
|
Hirano AA, Vuong HE, Kornmann HL, Schietroma C, Stella SL, Barnes S, Brecha NC. Vesicular Release of GABA by Mammalian Horizontal Cells Mediates Inhibitory Output to Photoreceptors. Front Cell Neurosci 2020; 14:600777. [PMID: 33335476 PMCID: PMC7735995 DOI: 10.3389/fncel.2020.600777] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/04/2020] [Indexed: 12/14/2022] Open
Abstract
Feedback inhibition by horizontal cells regulates rod and cone photoreceptor calcium channels that control their release of the neurotransmitter glutamate. This inhibition contributes to synaptic gain control and the formation of the center-surround antagonistic receptive fields passed on to all downstream neurons, which is important for contrast sensitivity and color opponency in vision. In contrast to the plasmalemmal GABA transporter found in non-mammalian horizontal cells, there is evidence that the mechanism by which mammalian horizontal cells inhibit photoreceptors involves the vesicular release of the inhibitory neurotransmitter GABA. Historically, inconsistent findings of GABA and its biosynthetic enzyme, L-glutamate decarboxylase (GAD) in horizontal cells, and the apparent lack of surround response block by GABAergic agents diminished support for GABA's role in feedback inhibition. However, the immunolocalization of the vesicular GABA transporter (VGAT) in the dendritic and axonal endings of horizontal cells that innervate photoreceptor terminals suggested GABA was released via vesicular exocytosis. To test the idea that GABA is released from vesicles, we localized GABA and GAD, multiple SNARE complex proteins, synaptic vesicle proteins, and Cav channels that mediate exocytosis to horizontal cell dendritic tips and axonal terminals. To address the perceived relative paucity of synaptic vesicles in horizontal cell endings, we used conical electron tomography on mouse and guinea pig retinas that revealed small, clear-core vesicles, along with a few clathrin-coated vesicles and endosomes in horizontal cell processes within photoreceptor terminals. Some small-diameter vesicles were adjacent to the plasma membrane and plasma membrane specializations. To assess vesicular release, a functional assay involving incubation of retinal slices in luminal VGAT-C antibodies demonstrated vesicles fused with the membrane in a depolarization- and calcium-dependent manner, and these labeled vesicles can fuse multiple times. Finally, targeted elimination of VGAT in horizontal cells resulted in a loss of tonic, autaptic GABA currents, and of inhibitory feedback modulation of the cone photoreceptor Cai, consistent with the elimination of GABA release from horizontal cell endings. These results in mammalian retina identify the central role of vesicular release of GABA from horizontal cells in the feedback inhibition of photoreceptors.
Collapse
Affiliation(s)
- Arlene A. Hirano
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| | - Helen E. Vuong
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Helen L. Kornmann
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Cataldo Schietroma
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Salvatore L. Stella
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Steven Barnes
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Doheny Eye Institute, University of California, Los Angeles, Los Angeles, CA, United States
| | - Nicholas C. Brecha
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, CA, United States
- Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
16
|
Blaustein M, Wirth S, Saldaña G, Piantanida AP, Bogetti ME, Martin ME, Colman-Lerner A, Uchitel OD. A new tool to sense pH changes at the neuromuscular junction synaptic cleft. Sci Rep 2020; 10:20480. [PMID: 33235222 PMCID: PMC7687886 DOI: 10.1038/s41598-020-77154-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/06/2020] [Indexed: 12/12/2022] Open
Abstract
Synaptic transmission triggers transient acidification of the synaptic cleft. Recently, it has been shown that pH affects the opening of postsynaptic channels and therefore the production of tools that allow to study these behaviors should result of paramount value. We fused α-bungarotoxin, a neurotoxin derived from the snake Bungarus multicinctus that binds irreversibly to the acetylcholine receptor extracellular domain, to the pH sensitive GFP Super Ecliptic pHluorin, and efficiently expressed it in Pichia pastoris. This sensor allows synaptic changes in pH to be measured without the need of incorporating transgenes into animal cells. Here, we show that incubation of the mouse levator auris muscle with a solution containing this recombinant protein is enough to fluorescently label the endplate post synaptic membrane. Furthermore, we could physiologically alter and measure post synaptic pH by evaluating changes in the fluorescent signal of pHluorin molecules bound to acetylcholine receptors. In fact, using this tool we were able to detect a drop in 0.01 to 0.05 pH units in the vicinity of the acetylcholine receptors following vesicle exocytosis triggered by nerve electrical stimulation. Further experiments will allow to learn the precise changes in pH during and after synaptic activation.
Collapse
Affiliation(s)
- Matías Blaustein
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales (FCEN), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina. .,Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), FCEN, UBA, C1428EHA, Buenos Aires, Argentina.
| | - Sonia Wirth
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales (FCEN), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina.,Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), FCEN, CONICET-UBA, Buenos Aires, Argentina
| | - Gustavo Saldaña
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales (FCEN), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina.,Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-UBA, C1428EHA, Buenos Aires, Argentina
| | - Ana Paula Piantanida
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales (FCEN), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina.,Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-UBA, C1428EHA, Buenos Aires, Argentina
| | - María Eugenia Bogetti
- Instituto de Biología Celular y Neurociencias (IBCN) Dr. Eduardo de Robertis, Facultad de Medicina, CONICET-UBA, Buenos Aires, Argentina
| | - María Eugenia Martin
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales (FCEN), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina.,Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-UBA, C1428EHA, Buenos Aires, Argentina
| | - Alejandro Colman-Lerner
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales (FCEN), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina.,Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-UBA, C1428EHA, Buenos Aires, Argentina
| | - Osvaldo D Uchitel
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales (FCEN), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina. .,Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-UBA, C1428EHA, Buenos Aires, Argentina.
| |
Collapse
|
17
|
Tchernookova BK, Gongwer MW, George A, Goeglein B, Powell AM, Caringal HL, Leuschner T, Phillips AG, Schantz AW, Kiedrowski L, Chappell R, Kreitzer MA, Malchow RP. ATP-mediated increase in H + flux from retinal Müller cells: a role for Na +/H + exchange. J Neurophysiol 2020; 125:184-198. [PMID: 33206577 DOI: 10.1152/jn.00546.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Small alterations in extracellular H+ can profoundly alter neurotransmitter release by neurons. We examined mechanisms by which extracellular ATP induces an extracellular H+ flux from Müller glial cells, which surround synaptic connections throughout the vertebrate retina. Müller glia were isolated from tiger salamander retinae and H+ fluxes examined using self-referencing H+-selective microelectrodes. Experiments were performed in 1 mM HEPES with no bicarbonate present. Replacement of extracellular sodium by choline decreased H+ efflux induced by 10 µM ATP by 75%. ATP-induced H+ efflux was also reduced by Na+/H+ exchange inhibitors. Amiloride reduced H+ efflux initiated by 10 µM ATP by 60%, while 10 µM cariporide decreased H+ flux by 37%, and 25 µM zoniporide reduced H+ flux by 32%. ATP-induced H+ fluxes were not significantly altered by the K+/H+ pump blockers SCH28080 or TAK438, and replacement of all extracellular chloride with gluconate was without effect on H+ fluxes. Recordings of ATP-induced H+ efflux from cells that were simultaneously whole cell voltage clamped revealed no effect of membrane potential from -70 mV to 0 mV. Restoration of extracellular potassium after cells were bathed in 0 mM potassium produced a transient alteration in ATP-dependent H+ efflux. The transient response to extracellular potassium occurred only when extracellular sodium was present and was abolished by 1 mM ouabain, suggesting that alterations in sodium gradients were mediated by Na+/K+-ATPase activity. Our data indicate that the majority of H+ efflux elicited by extracellular ATP from isolated Müller cells is mediated by Na+/H+ exchange.NEW & NOTEWORTHY Glial cells are known to regulate neuronal activity, but the exact mechanism(s) whereby these "support" cells modulate synaptic transmission remains unclear. Small changes in extracellular levels of acidity are known to be particularly powerful regulators of neurotransmitter release. Here, we show that extracellular ATP, known to be a potent activator of glial cells, induces H+ efflux from retinal Müller (glial) cells and that the bulk of the H+ efflux is mediated by Na+/H+ exchange.
Collapse
Affiliation(s)
| | | | - Alexis George
- Department of Biology, Indiana Wesleyan University, Marion, Indiana
| | - Brock Goeglein
- Department of Biology, Indiana Wesleyan University, Marion, Indiana
| | - Alyssa M Powell
- Department of Biology, Indiana Wesleyan University, Marion, Indiana
| | | | - Thomas Leuschner
- Department of Biology, Indiana Wesleyan University, Marion, Indiana
| | - Anna G Phillips
- Department of Biology, Indiana Wesleyan University, Marion, Indiana
| | - Adam W Schantz
- Department of Biology, Indiana Wesleyan University, Marion, Indiana
| | - Lech Kiedrowski
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois.,Spot Cells LLC, Chicago, Illinois
| | - Richard Chappell
- Department of Physiology and Biophysics, University at Buffalo, Buffalo, New York.,Eugene Bell Center, Marine Biological Laboratory, Woods Hole, Massachusetts
| | | | - Robert Paul Malchow
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois.,Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
18
|
Barnes S, Grove JCR, McHugh CF, Hirano AA, Brecha NC. Horizontal Cell Feedback to Cone Photoreceptors in Mammalian Retina: Novel Insights From the GABA-pH Hybrid Model. Front Cell Neurosci 2020; 14:595064. [PMID: 33328894 PMCID: PMC7672006 DOI: 10.3389/fncel.2020.595064] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 09/24/2020] [Indexed: 01/20/2023] Open
Abstract
How neurons in the eye feed signals back to photoreceptors to optimize sensitivity to patterns of light appears to be mediated by one or more unconventional mechanisms. Via these mechanisms, horizontal cells control photoreceptor synaptic gain and enhance key aspects of temporal and spatial center-surround receptive field antagonism. After the transduction of light energy into an electrical signal in photoreceptors, the next key task in visual processing is the transmission of an optimized signal to the follower neurons in the retina. For this to happen, the release of the excitatory neurotransmitter glutamate from photoreceptors is carefully regulated via horizontal cell feedback, which acts as a thermostat to keep the synaptic transmission in an optimal range during changes to light patterns and intensities. Novel findings of a recently described model that casts a classical neurotransmitter system together with ion transport mechanisms to adjust the alkaline milieu outside the synapse are reviewed. This novel inter-neuronal messaging system carries feedback signals using two separate, but interwoven regulated systems. The complex interplay between these two signaling modalities, creating synaptic modulation-at-a-distance, has obscured it’s being defined. The foundations of our understanding of the feedback mechanism from horizontal cells to photoreceptors have been long established: Horizontal cells have broad receptive fields, suitable for providing surround inhibition, their membrane potential, a function of stimulus intensity and size, regulates inhibition of photoreceptor voltage-gated Ca2+ channels, and strong artificial pH buffering eliminates this action. This review compares and contrasts models of how these foundations are linked, focusing on a recent report in mammals that shows tonic horizontal cell release of GABA activating Cl− and HCO3− permeable GABA autoreceptors. The membrane potential of horizontal cells provides the driving force for GABAR-mediated HCO3− efflux, alkalinizing the cleft when horizontal cells are hyperpolarized by light or adding to their depolarization in darkness and contributing to cleft acidification via NHE-mediated H+ efflux. This model challenges interpretations of earlier studies that were considered to rule out a role for GABA in feedback to cones.
Collapse
Affiliation(s)
- Steven Barnes
- Doheny Eye Institute, Los Angeles, CA, United States.,Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - James C R Grove
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, United States
| | | | - Arlene A Hirano
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| | - Nicholas C Brecha
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, CA, United States.,Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
19
|
Controlling Horizontal Cell-Mediated Lateral Inhibition in Transgenic Zebrafish Retina with Chemogenetic Tools. eNeuro 2020; 7:ENEURO.0022-20.2020. [PMID: 33060180 PMCID: PMC7665903 DOI: 10.1523/eneuro.0022-20.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 08/11/2020] [Accepted: 08/28/2020] [Indexed: 12/03/2022] Open
Abstract
Horizontal cells (HCs) form reciprocal synapses with rod and cone photoreceptors, an arrangement that underlies lateral inhibition in the retina. HCs send negative and positive feedback signals to photoreceptors, but how HCs initiate these signals remains unclear. Unfortunately, because HCs have no unique neurotransmitter receptors, there are no pharmacological treatments for perturbing membrane potential specifically in HCs. Here we use transgenic zebrafish whose HCs express alien receptors, enabling cell-type-specific control by cognate alien agonists. To depolarize HCs, we used the Phe-Met-Arg-Phe-amide (FMRFamide)-gated Na+ channel (FaNaC) activated by the invertebrate neuropeptide FMRFamide. To hyperpolarize HCs we used a pharmacologically selective actuator module (PSAM)-glycine receptor (GlyR), an engineered Cl– selective channel activated by a synthetic agonist. Expression of FaNaC or PSAM-GlyR was restricted to HCs with the cell-type selective promoter for connexin-55.5. We assessed HC-feedback control of photoreceptor synapses in three ways. First, we measured presynaptic exocytosis from photoreceptor terminals using the fluorescent dye FM1-43. Second, we measured the electroretinogram (ERG) b-wave, a signal generated by postsynaptic responses. Third, we used Ca2+ imaging in retinal ganglion cells (RGCs) expressing the Ca2+ indicator GCaMP6. Addition of FMRFamide significantly decreased FM1-43 destaining in darkness, whereas the addition of PSAM-GlyR significantly increased it. However, both agonists decreased the light-elicited ERG b-wave and eliminated surround inhibition of the Ca2+ response of RGCs. Taken together, our findings show that chemogenetic tools can selectively manipulate negative feedback from HCs, providing a platform for understanding its mechanism and helping to elucidate its functional roles in visual information processing at a succession of downstream stages.
Collapse
|
20
|
Alkalinization of the Synaptic Cleft during Excitatory Neurotransmission. J Neurosci 2020; 40:6267-6269. [PMID: 32801127 DOI: 10.1523/jneurosci.0914-20.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/20/2020] [Accepted: 07/05/2020] [Indexed: 11/21/2022] Open
|
21
|
Furukawa T, Ueno A, Omori Y. Molecular mechanisms underlying selective synapse formation of vertebrate retinal photoreceptor cells. Cell Mol Life Sci 2020; 77:1251-1266. [PMID: 31586239 PMCID: PMC11105113 DOI: 10.1007/s00018-019-03324-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/21/2019] [Accepted: 09/25/2019] [Indexed: 11/29/2022]
Abstract
In vertebrate central nervous systems (CNSs), highly diverse neurons are selectively connected via synapses, which are essential for building an intricate neural network. The vertebrate retina is part of the CNS and is comprised of a distinct laminar organization, which serves as a good model system to study developmental synapse formation mechanisms. In the retina outer plexiform layer, rods and cones, two types of photoreceptor cells, elaborate selective synaptic contacts with ON- and/or OFF-bipolar cell terminals as well as with horizontal cell terminals. In the mouse retina, three photoreceptor subtypes and at least 15 bipolar subtypes exist. Previous and recent studies have significantly progressed our understanding of how selective synapse formation, between specific subtypes of photoreceptor and bipolar cells, is designed at the molecular level. In the ON pathway, photoreceptor-derived secreted and transmembrane proteins directly interact in trans with the GRM6 (mGluR6) complex, which is localized to ON-bipolar cell dendritic terminals, leading to selective synapse formation. Here, we review our current understanding of the key factors and mechanisms underlying selective synapse formation of photoreceptor cells with bipolar and horizontal cells in the retina. In addition, we describe how defects/mutations of the molecules involved in photoreceptor synapse formation are associated with human retinal diseases and visual disorders.
Collapse
Affiliation(s)
- Takahisa Furukawa
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Akiko Ueno
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yoshihiro Omori
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
22
|
Kamar S, Howlett MHC, Kamermans M. Silent-substitution stimuli silence the light responses of cones but not their output. J Vis 2020; 19:14. [PMID: 31100130 DOI: 10.1167/19.5.14] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Chromatic vision starts at the retinal photoreceptors but photoreceptors are themselves color-blind, responding only to their effective quantal catch and not to the wavelength of the caught photon per se. Mitchell and Rushton (1971) termed this phenomenon the univariance concept, and it is widely used in designing silent-substitution stimuli to test the unique contributions of specific photoreceptor types to vision. In principle, this procedure controls the effective quantal catch of photoreceptors well and hence works at the phototransduction-cascade level of vision. However, both phototransduction-cascade modulation and the horizontal-cell-mediated feedback signal determine photoreceptor output. Horizontal cells receive input from, and send feedback to, more than one photoreceptor type. This should mean that silent-substitution stimuli do not silence horizontal-cell activity, and that this activity is fed back to the silenced cones. This in turn will modulate the output of silenced cones, making them not so silent after all. Here we tested this idea and found that silent-substitution stimuli can adequately silence cone-membrane potential responses. However, these cones still received a feedback signal from horizontal cells, which modulates their Ca2+ current and thus their output. These feedback-induced Ca2+-current changes are substantial, as they are of the same order of magnitude as Ca2+-current changes that occur when cones are directly stimulated with light. This illustrates that great care needs to be taken in interpreting results obtained with silent-substitution stimuli. In the discussion, we outline two basic types of interpretation pitfalls that can occur.
Collapse
Affiliation(s)
- Sizar Kamar
- Netherlands Institute for Neuroscience, Amsterdam, the Netherlands
| | | | - Maarten Kamermans
- Netherlands Institute for Neuroscience, Amsterdam, the Netherlands.,Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
23
|
Neuronal Glutamatergic Synaptic Clefts Alkalinize Rather Than Acidify during Neurotransmission. J Neurosci 2020; 40:1611-1624. [PMID: 31964719 DOI: 10.1523/jneurosci.1774-19.2020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 12/11/2022] Open
Abstract
The dogma that the synaptic cleft acidifies during neurotransmission is based on the corelease of neurotransmitters and protons from synaptic vesicles, and is supported by direct data from sensory ribbon-type synapses. However, it is unclear whether acidification occurs at non-ribbon-type synapses. Here we used genetically encoded fluorescent pH indicators to examine cleft pH at conventional neuronal synapses. At the neuromuscular junction of female Drosophila larvae, we observed alkaline spikes of over 1 log unit during fictive locomotion in vivo. Ex vivo, single action potentials evoked alkalinizing pH transients of only ∼0.01 log unit, but these transients summated rapidly during burst firing. A chemical pH indicator targeted to the cleft corroborated these findings. Cleft pH transients were dependent on Ca2+ movement across the postsynaptic membrane, rather than neurotransmitter release per se, a result consistent with cleft alkalinization being driven by the Ca2+/H+ antiporting activity of the plasma membrane Ca2+-ATPase at the postsynaptic membrane. Targeting the pH indicators to the microenvironment of the presynaptic voltage gated Ca2+ channels revealed that alkalinization also occurred within the cleft proper at the active zone and not just within extrasynaptic regions. Application of the pH indicators at the mouse calyx of Held, a mammalian central synapse, similarly revealed cleft alkalinization during burst firing in both males and females. These findings, made at two quite different non-ribbon type synapses, suggest that cleft alkalinization during neurotransmission, rather than acidification, is a generalizable phenomenon across conventional neuronal synapses.SIGNIFICANCE STATEMENT Neurotransmission is highly sensitive to the pH of the extracellular milieu. This is readily evident in the neurological symptoms that accompany systemic acid/base imbalances. Imaging data from sensory ribbon-type synapses show that neurotransmission itself can acidify the synaptic cleft, likely due to the corelease of protons and glutamate. It is not clear whether the same phenomenon occurs at conventional neuronal synapses due to the difficulties in collecting such data. If it does occur, it would provide for an additional layer of activity-dependent modulation of neurotransmission. Our findings of alkalinization, rather than acidification, within the cleft of two different neuronal synapses encourages a reassessment of the scope of activity-dependent pH influences on neurotransmission and short-term synaptic plasticity.
Collapse
|
24
|
Abstract
At the first retinal synapse, horizontal cells (HCs) contact both photoreceptor terminals and bipolar cell dendrites, modulating information transfer between these two cell types to enhance spatial contrast and mediate color opponency. The synaptic mechanisms through which these modulations occur are still debated. The initial hypothesis of a GABAergic feedback from HCs to cones has been challenged by pharmacological inconsistencies. Surround antagonism has been demonstrated to occur via a modulation of cone calcium channels through ephaptic signaling and pH changes in the synaptic cleft. GABAergic transmission between HCs and cones has been reported in some lower vertebrates, like the turtle and tiger salamander. In these reports, it was revealed that GABA is released from HCs through reverse transport and target GABA receptors are located at the cone terminals. In mammalian retinas, there is growing evidence that HCs can release GABA through conventional vesicular transmission, acting both on autaptic GABA receptors and on receptors expressed at the dendritic tips of the bipolar cells. The presence of GABA receptors on mammalian cone terminals remains equivocal. Here, we looked specifically for functional GABA receptors in mouse photoreceptors by recording in the whole-cell or amphotericin/gramicidin-perforated patch clamp configurations. Cones could be differentiated from rods through morphological criteria. Local GABA applications evoked a Cl- current in cones but not in rods. It was blocked by the GABAA receptor antagonist bicuculline methiodide and unaffected by the GABAC receptor antagonist TPMPA [(1,2,5,6-tetrahydropyridin-4-yl)methylphosphinic acid]. The voltage dependency of the current amplitude was as expected from a direct action of GABA on cone pedicles but not from an indirect modulation of cone currents following the activation of the GABA receptors of HCs. This supports a direct role of GABA released from HCs in the control of cone activity in the mouse retina.
Collapse
|
25
|
Wen X, Thoreson WB. Contributions of glutamate transporters and Ca 2+-activated Cl - currents to feedback from horizontal cells to cone photoreceptors. Exp Eye Res 2019; 189:107847. [PMID: 31628905 DOI: 10.1016/j.exer.2019.107847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/26/2019] [Accepted: 10/15/2019] [Indexed: 02/05/2023]
Abstract
Lateral inhibitory feedback from horizontal cells (HCs) to cones establishes center-surround receptive fields and color opponency in the retina. When HCs hyperpolarize to light, inhibitory feedback to cones increases activation of cone Ca2+ currents (ICa) that can in turn activate additional currents. We recorded simultaneously from cones and HCs to analyze cone currents activated by HC feedback in salamander retina. Depolarization-activated inward tail currents in cones were inhibited by CaCCinh-A01 that inhibits both Ano1 and Ano2 Ca2+-activated Cl- currents (ICl(Ca)). An Ano1-selective inhibitor Ani9 was less effective suggesting that Ano2 is the predominant ICl(Ca) subtype in cones. CaCCinh-A01 inhibited feedback currents more strongly when intracellular Ca2+ in cones was buffered with 0.05 mM EGTA compared to stronger buffering with 5 mM EGTA. By contrast, blocking glutamate transporter anion currents (ICl(Glu)) with TBOA had stronger inhibitory effects on cone feedback currents when Ca2+ buffering was strong. Inward feedback currents ran down at rates intermediate between rundown of glutamate release and ICl(Ca), consistent with contributions to feedback from both ICl(Ca) and ICl(Glu). These results suggest that Cl- channels coupled to glutamate transporters help to speed inward feedback currents initiated by local changes in intracellular [Ca2+] close to synaptic ribbons of cones whereas Ano2 Ca2+-activated Cl- channels contribute to slower components of feedback regulated by spatially extensive changes in intracellular [Ca2+].
Collapse
Affiliation(s)
- Xiangyi Wen
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Department of Optometry and Visual Science, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Truhlsen Eye Institute, Department of Ophthalmology & Visual Sciences, University of Nebraska Medical Center, Omaha, NE, USA; Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Wallace B Thoreson
- Truhlsen Eye Institute, Department of Ophthalmology & Visual Sciences, University of Nebraska Medical Center, Omaha, NE, USA; Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
26
|
Abstract
Retinal function has long been studied with psychophysical methods in humans, whereas detailed functional studies of vision have been conducted mostly in animals owing to the invasive nature of physiological approaches. There are exceptions to this generalization, for example, the electroretinogram. This review examines exciting recent advances using in vivo retinal imaging to understand the function of retinal neurons. In some cases, the methods have existed for years and are still being optimized. In others, new methods such as optophysiology are revealing novel patterns of retinal function in animal models that have the potential to change our understanding of the functional capacity of the retina. Together, the advances in retinal imaging mark an important milestone that shifts attention away from anatomy alone and begins to probe the function of healthy and diseased eyes.
Collapse
Affiliation(s)
- Jennifer J Hunter
- Flaum Eye Institute and Center for Visual Science, University of Rochester, Rochester, New York 14604, USA; , ,
- The Institute of Optics and Department of Biomedical Engineering, University of Rochester, Rochester, New York 14604, USA
| | - William H Merigan
- Flaum Eye Institute and Center for Visual Science, University of Rochester, Rochester, New York 14604, USA; , ,
| | - Jesse B Schallek
- Flaum Eye Institute and Center for Visual Science, University of Rochester, Rochester, New York 14604, USA; , ,
- Department of Neuroscience, University of Rochester, Rochester, New York 14604, USA
| |
Collapse
|
27
|
Liu H, Sun Y, Li Z, Yang R, Yang J, Aryee AA, Zhang X, Ge J, Qu L, Lin Y. SciFinder-guided rational design of fluorescent carbon dots for ratiometric monitoring intracellular pH fluctuations under heat shock. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.06.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
28
|
Van Hook MJ, Nawy S, Thoreson WB. Voltage- and calcium-gated ion channels of neurons in the vertebrate retina. Prog Retin Eye Res 2019; 72:100760. [PMID: 31078724 PMCID: PMC6739185 DOI: 10.1016/j.preteyeres.2019.05.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/25/2019] [Accepted: 05/01/2019] [Indexed: 02/06/2023]
Abstract
In this review, we summarize studies investigating the types and distribution of voltage- and calcium-gated ion channels in the different classes of retinal neurons: rods, cones, horizontal cells, bipolar cells, amacrine cells, interplexiform cells, and ganglion cells. We discuss differences among cell subtypes within these major cell classes, as well as differences among species, and consider how different ion channels shape the responses of different neurons. For example, even though second-order bipolar and horizontal cells do not typically generate fast sodium-dependent action potentials, many of these cells nevertheless possess fast sodium currents that can enhance their kinetic response capabilities. Ca2+ channel activity can also shape response kinetics as well as regulating synaptic release. The L-type Ca2+ channel subtype, CaV1.4, expressed in photoreceptor cells exhibits specific properties matching the particular needs of these cells such as limited inactivation which allows sustained channel activity and maintained synaptic release in darkness. The particular properties of K+ and Cl- channels in different retinal neurons shape resting membrane potentials, response kinetics and spiking behavior. A remaining challenge is to characterize the specific distributions of ion channels in the more than 100 individual cell types that have been identified in the retina and to describe how these particular ion channels sculpt neuronal responses to assist in the processing of visual information by the retina.
Collapse
Affiliation(s)
- Matthew J Van Hook
- Truhlsen Eye Institute, Department of Ophthalmology & Visual Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Scott Nawy
- Truhlsen Eye Institute, Department of Ophthalmology & Visual Sciences, University of Nebraska Medical Center, Omaha, NE, USA; Department Pharmacology & Experimental Neuroscience(2), University of Nebraska Medical Center, Omaha, NE, USA
| | - Wallace B Thoreson
- Truhlsen Eye Institute, Department of Ophthalmology & Visual Sciences, University of Nebraska Medical Center, Omaha, NE, USA; Department Pharmacology & Experimental Neuroscience(2), University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
29
|
Thoreson WB, Dacey DM. Diverse Cell Types, Circuits, and Mechanisms for Color Vision in the Vertebrate Retina. Physiol Rev 2019; 99:1527-1573. [PMID: 31140374 PMCID: PMC6689740 DOI: 10.1152/physrev.00027.2018] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 03/27/2019] [Accepted: 04/02/2019] [Indexed: 01/13/2023] Open
Abstract
Synaptic interactions to extract information about wavelength, and thus color, begin in the vertebrate retina with three classes of light-sensitive cells: rod photoreceptors at low light levels, multiple types of cone photoreceptors that vary in spectral sensitivity, and intrinsically photosensitive ganglion cells that contain the photopigment melanopsin. When isolated from its neighbors, a photoreceptor confounds photon flux with wavelength and so by itself provides no information about color. The retina has evolved elaborate color opponent circuitry for extracting wavelength information by comparing the activities of different photoreceptor types broadly tuned to different parts of the visible spectrum. We review studies concerning the circuit mechanisms mediating opponent interactions in a range of species, from tetrachromatic fish with diverse color opponent cell types to common dichromatic mammals where cone opponency is restricted to a subset of specialized circuits. Distinct among mammals, primates have reinvented trichromatic color vision using novel strategies to incorporate evolution of an additional photopigment gene into the foveal structure and circuitry that supports high-resolution vision. Color vision is absent at scotopic light levels when only rods are active, but rods interact with cone signals to influence color perception at mesopic light levels. Recent evidence suggests melanopsin-mediated signals, which have been identified as a substrate for setting circadian rhythms, may also influence color perception. We consider circuits that may mediate these interactions. While cone opponency is a relatively simple neural computation, it has been implemented in vertebrates by diverse neural mechanisms that are not yet fully understood.
Collapse
Affiliation(s)
- Wallace B Thoreson
- Department of Ophthalmology and Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center , Omaha, Nebraska ; and Department of Biological Structure, Washington National Primate Research Center, University of Washington , Seattle, Washington
| | - Dennis M Dacey
- Department of Ophthalmology and Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center , Omaha, Nebraska ; and Department of Biological Structure, Washington National Primate Research Center, University of Washington , Seattle, Washington
| |
Collapse
|
30
|
Grove JCR, Hirano AA, de los Santos J, McHugh CF, Purohit S, Field GD, Brecha NC, Barnes S. Novel hybrid action of GABA mediates inhibitory feedback in the mammalian retina. PLoS Biol 2019; 17:e3000200. [PMID: 30933967 PMCID: PMC6459543 DOI: 10.1371/journal.pbio.3000200] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 04/11/2019] [Accepted: 03/13/2019] [Indexed: 01/06/2023] Open
Abstract
The stream of visual information sent from photoreceptors to second-order bipolar cells is intercepted by laterally interacting horizontal cells that generate feedback to optimize and improve the efficiency of signal transmission. The mechanisms underlying the regulation of graded photoreceptor synaptic output in this nonspiking network have remained elusive. Here, we analyze with patch clamp recording the novel mechanisms by which horizontal cells control pH in the synaptic cleft to modulate photoreceptor neurotransmitter release. First, we show that mammalian horizontal cells respond to their own GABA release and that the results of this autaptic action affect cone voltage-gated Ca2+ channel (CaV channel) gating through changes in pH. As a proof-of-principle, we demonstrate that chemogenetic manipulation of horizontal cells with exogenous anion channel expression mimics GABA-mediated cone CaV channel inhibition. Activation of these GABA receptor anion channels can depolarize horizontal cells and increase cleft acidity via Na+/H+ exchanger (NHE) proton extrusion, which results in inhibition of cone CaV channels. This action is effectively counteracted when horizontal cells are sufficiently hyperpolarized by increased GABA receptor (GABAR)-mediated HCO3- efflux, alkalinizing the cleft and disinhibiting cone CaV channels. This demonstrates how hybrid actions of GABA operate in parallel to effect voltage-dependent pH changes, a novel mechanism for regulating synaptic output.
Collapse
Affiliation(s)
- James C. R. Grove
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
- Neuroscience Graduate Program, University of California, San Francisco, California, United States of America
| | - Arlene A. Hirano
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
- Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, California, United States of America
| | - Janira de los Santos
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
| | - Cyrus F. McHugh
- Doheny Eye Institute, University of California, Los Angeles, California, United States of America
| | - Shashvat Purohit
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
| | - Greg D. Field
- Department of Neurobiology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Nicholas C. Brecha
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
- Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, California, United States of America
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
- Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
- Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
| | - Steven Barnes
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
- Doheny Eye Institute, University of California, Los Angeles, California, United States of America
- Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Ophthalmology and Visual Sciences, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
31
|
Lee YN, Araki T, Kimura Y, Dasai F, Iwata T, Takahashi K, Sawada K. High-Density 2-μm-Pitch pH Image Sensor With High-Speed Operation up to 1933 fps. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2019; 13:352-363. [PMID: 30676977 DOI: 10.1109/tbcas.2019.2895069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Various biosensing platforms for real-time monitoring and mapping of chemical signals in neural networks have been developed based on CMOS process technology. Despite their achievements, however, there remains a demand for an advanced method that can offer detailed insights into cellular functions with higher spatiotemporal resolution. Here, we present a pH image sensor that employs a high-density array of 256 × 256 pixels and readout circuitry designed for fast operation. The sensor's characteristics, such as the pH sensitivity of 55.1 mV/pH and higher frame speed of 1933 fps, are experimentally demonstrated and compared to those of state-of-the-art pH image sensors. Among them, our sensor presents the smallest pitch of 2 μm with a significantly high operation speed. This sensor can successfully detect a pH change, but also transform the measured data to a two-dimensional image series in real time. The practical spatial resolution of images is investigated by an evaluation method that we first propose in this paper. By this method, we confirm that our sensor can discriminate objects distanced over 4 μm apart, which is twice bigger than the pixel pitch. In order to analyze the degraded resolution and image blur, a capacitive coupling effect at an ion-sensitive membrane is suggested as the main factor and demonstrated by simulation.
Collapse
|
32
|
Pangrsic T, Singer JH, Koschak A. Voltage-Gated Calcium Channels: Key Players in Sensory Coding in the Retina and the Inner Ear. Physiol Rev 2019; 98:2063-2096. [PMID: 30067155 DOI: 10.1152/physrev.00030.2017] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Calcium influx through voltage-gated Ca (CaV) channels is the first step in synaptic transmission. This review concerns CaV channels at ribbon synapses in primary sense organs and their specialization for efficient coding of stimuli in the physical environment. Specifically, we describe molecular, biochemical, and biophysical properties of the CaV channels in sensory receptor cells of the retina, cochlea, and vestibular apparatus, and we consider how such properties might change over the course of development and contribute to synaptic plasticity. We pay particular attention to factors affecting the spatial arrangement of CaV channels at presynaptic, ribbon-type active zones, because the spatial relationship between CaV channels and release sites has been shown to affect synapse function critically in a number of systems. Finally, we review identified synaptopathies affecting sensory systems and arising from dysfunction of L-type, CaV1.3, and CaV1.4 channels or their protein modulatory elements.
Collapse
Affiliation(s)
- Tina Pangrsic
- Synaptic Physiology of Mammalian Vestibular Hair Cells Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen and Auditory Neuroscience Group, Max Planck Institute of Experimental Medicine , Göttingen, Germany ; Department of Biology, University of Maryland , College Park, Maryland ; and Pharmacology and Toxicology, Institute of Pharmacy, University of Innsbruck , Innsbruck , Austria
| | - Joshua H Singer
- Synaptic Physiology of Mammalian Vestibular Hair Cells Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen and Auditory Neuroscience Group, Max Planck Institute of Experimental Medicine , Göttingen, Germany ; Department of Biology, University of Maryland , College Park, Maryland ; and Pharmacology and Toxicology, Institute of Pharmacy, University of Innsbruck , Innsbruck , Austria
| | - Alexandra Koschak
- Synaptic Physiology of Mammalian Vestibular Hair Cells Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen and Auditory Neuroscience Group, Max Planck Institute of Experimental Medicine , Göttingen, Germany ; Department of Biology, University of Maryland , College Park, Maryland ; and Pharmacology and Toxicology, Institute of Pharmacy, University of Innsbruck , Innsbruck , Austria
| |
Collapse
|
33
|
Country M. Advancing the pH hypothesis of negative feedback to photoreceptors: sources of protons and a role for bicarbonate in feedback. J Physiol 2018; 595:1023-1024. [PMID: 28198015 DOI: 10.1113/jp273518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Michael Country
- Department of Biology, University of Ottawa, Ottawa, ON, Canada, K1N 6N5
| |
Collapse
|
34
|
Localizing Proton-Mediated Inhibitory Feedback at the Retinal Horizontal Cell-Cone Synapse with Genetically-Encoded pH Probes. J Neurosci 2018; 39:651-662. [PMID: 30504272 DOI: 10.1523/jneurosci.1541-18.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 11/12/2018] [Accepted: 11/17/2018] [Indexed: 11/21/2022] Open
Abstract
Lateral inhibition in the vertebrate retina depends on a negative feedback synapse between horizontal cells (HCs) and rod and cone photoreceptors. A change in pH is thought to be the signal for negative feedback, but its spatial profile in the synaptic cleft is unknown. Here we use three different membrane proteins, each fused to the same genetically-encoded pH-sensitive Green Fluorescent Protein (GFP) (pHluorin), to probe synaptic pH in retina from transgenic zebrafish (Danio rerio) of either sex. We used the cone transducin promoter to express SynaptopHluorin (pHluorin on vesicle-associated membrane protein (VAMP2)) or CalipHluorin (pHluorin on an L-type Ca2+ channel) and the HC-specific connexin-55.5 promoter to express AMPApHluorin (pHluorin on an AMPA receptor). Stimulus light led to increased fluorescence of all three probes, consistent with alkalinization of the synaptic cleft. The receptive field size, sensitivity to surround illumination, and response to activation of an alien receptor expressed exclusively in HCs, are consistent with lateral inhibition as the trigger for alkalinization. However, SynaptopHluorin and AMPApHluorin, which are displaced farther from cone synaptic ribbons than CalipHluorin, reported a smaller pH change. Hence, unlike feedforward glutamatergic transmission, which spills over to allow cross talk between terminals in the cone network, the pH change underlying HC feedback is compartmentalized to individual synaptic invaginations within a cone terminal, consistent with private line communication.SIGNIFICANCE STATEMENT Lateral inhibition (LI) is a fundamental feature of information processing in sensory systems, enhancing contrast sensitivity and enabling edge discrimination. Horizontal cells (HCs) are the first cellular substrate of LI in the vertebrate retina, but the synaptic mechanisms underlying LI are not completely understood, despite decades of study. This paper makes a significant contribution to our understanding of LI, by showing that each HC-cone synapse is a "private-line" that operates independently from other HC-cone connections. Using transgenic zebrafish expressing pHluorin, a pH-sensitive GFP variant spliced onto three different protein platforms expressed either in cones or HCs we show that the feedback pH signal is constrained to individual cone terminals, and more stringently, to individual synaptic contact sites within each terminal.
Collapse
|
35
|
Soto E, Ortega-Ramírez A, Vega R. Protons as Messengers of Intercellular Communication in the Nervous System. Front Cell Neurosci 2018; 12:342. [PMID: 30364044 PMCID: PMC6191491 DOI: 10.3389/fncel.2018.00342] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/14/2018] [Indexed: 12/18/2022] Open
Abstract
In this review, evidence demonstrating that protons (H+) constitute a complex, regulated intercellular signaling mechanisms are presented. Given that pH is a strictly regulated variable in multicellular organisms, localized extracellular pH changes may constitute significant signals of cellular processes that occur in a cell or a group of cells. Several studies have demonstrated that the low pH of synaptic vesicles implies that neurotransmitter release is always accompanied by the co-release of H+ into the synaptic cleft, leading to transient extracellular pH shifts. Also, evidence has accumulated indicating that extracellular H+ concentration regulation is complex and implies a source of protons in a network of transporters, ion exchangers, and buffer capacity of the media that may finally establish the extracellular proton concentration. The activation of membrane transporters, increased production of CO2 and of metabolites, such as lactate, produce significant extracellular pH shifts in nano- and micro-domains in the central nervous system (CNS), constituting a reliable signal for intercellular communication. The acid sensing ion channels (ASIC) function as specific signal sensors of proton signaling mechanism, detecting subtle variations of extracellular H+ in a range varying from pH 5 to 8. The main question in relation to this signaling system is whether it is only synaptically restricted, or a volume modulator of neuron excitability. This signaling system may have evolved from a metabolic activity detection mechanism to a highly localized extracellular proton dependent communication mechanism. In this study, evidence showing the mechanisms of regulation of extracellular pH shifts and of the ASICs and its function in modulating the excitability in various systems is reviewed, including data and its role in synaptic neurotransmission, volume transmission and even segregated neurotransmission, leading to a reliable extracellular signaling mechanism.
Collapse
Affiliation(s)
- Enrique Soto
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | | | - Rosario Vega
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| |
Collapse
|
36
|
Giarmarco MM, Cleghorn WM, Hurley JB, Brockerhoff SE. Preparing Fresh Retinal Slices from Adult Zebrafish for Ex Vivo Imaging Experiments. J Vis Exp 2018. [PMID: 29806828 DOI: 10.3791/56977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The retina is a complex tissue that initiates and integrates the first steps of vision. Dysfunction of retinal cells is a hallmark of many blinding diseases, and future therapies hinge on fundamental understandings about how different retinal cells function normally. Gaining such information with biochemical methods has proven difficult because contributions of particular cell types are diminished in the retinal cell milieu. Live retinal imaging can provide a view of numerous biological processes on a subcellular level, thanks to a growing number of genetically encoded fluorescent biosensors. However, this technique has thus far been limited to tadpoles and zebrafish larvae, the outermost retinal layers of isolated retinas, or lower resolution imaging of retinas in live animals. Here we present a method for generating live ex vivo retinal slices from adult zebrafish for live imaging via confocal microscopy. This preparation yields transverse slices with all retinal layers and most cell types visible for performing confocal imaging experiments using perfusion. Transgenic zebrafish expressing fluorescent proteins or biosensors in specific retinal cell types or organelles are used to extract single-cell information from an intact retina. Additionally, retinal slices can be loaded with fluorescent indicator dyes, adding to the method's versatility. This protocol was developed for imaging Ca2+ within zebrafish cone photoreceptors, but with proper markers it could be adapted to measure Ca2+ or metabolites in Müller cells, bipolar and horizontal cells, microglia, amacrine cells, or retinal ganglion cells. The retinal pigment epithelium is removed from slices so this method is not suitable for studying that cell type. With practice, it is possible to generate serial slices from one animal for multiple experiments. This adaptable technique provides a powerful tool for answering many questions about retinal cell biology, Ca2+, and energy homeostasis.
Collapse
Affiliation(s)
| | | | - James B Hurley
- Department of Biochemistry, University of Washington; Department of Ophthalmology, University of Washington
| | - Susan E Brockerhoff
- Department of Biochemistry, University of Washington; Department of Ophthalmology, University of Washington;
| |
Collapse
|
37
|
Tchernookova BK, Heer C, Young M, Swygart D, Kaufman R, Gongwer M, Shepherd L, Caringal H, Jacoby J, Kreitzer MA, Malchow RP. Activation of retinal glial (Müller) cells by extracellular ATP induces pronounced increases in extracellular H+ flux. PLoS One 2018; 13:e0190893. [PMID: 29466379 PMCID: PMC5821311 DOI: 10.1371/journal.pone.0190893] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 12/21/2017] [Indexed: 11/25/2022] Open
Abstract
Small alterations in extracellular acidity are potentially important modulators of neuronal signaling within the vertebrate retina. Here we report a novel extracellular acidification mechanism mediated by glial cells in the retina. Using self-referencing H+-selective microelectrodes to measure extracellular H+ fluxes, we show that activation of retinal Müller (glial) cells of the tiger salamander by micromolar concentrations of extracellular ATP induces a pronounced extracellular H+ flux independent of bicarbonate transport. ADP, UTP and the non-hydrolyzable analog ATPγs at micromolar concentrations were also potent stimulators of extracellular H+ fluxes, but adenosine was not. The extracellular H+ fluxes induced by ATP were mimicked by the P2Y1 agonist MRS 2365 and were significantly reduced by the P2 receptor blockers suramin and PPADS, suggesting activation of P2Y receptors. Bath-applied ATP induced an intracellular rise in calcium in Müller cells; both the calcium rise and the extracellular H+ fluxes were significantly attenuated when calcium re-loading into the endoplasmic reticulum was inhibited by thapsigargin and when the PLC-IP3 signaling pathway was disrupted with 2-APB and U73122. The anion transport inhibitor DIDS also markedly reduced the ATP-induced increase in H+ flux while SITS had no effect. ATP-induced H+ fluxes were also observed from Müller cells isolated from human, rat, monkey, skate and lamprey retinae, suggesting a highly evolutionarily conserved mechanism of potential general importance. Extracellular ATP also induced significant increases in extracellular H+ flux at the level of both the outer and inner plexiform layers in retinal slices of tiger salamander which was significantly reduced by suramin and PPADS. We suggest that the novel H+ flux mediated by ATP-activation of Müller cells and of other glia as well may be a key mechanism modulating neuronal signaling in the vertebrate retina and throughout the brain.
Collapse
Affiliation(s)
- Boriana K. Tchernookova
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, United States of America
- * E-mail: (BKT); (RPM)
| | - Chad Heer
- Department of Biology, Indiana Wesleyan University, Marion, Indiana, United States of America
| | - Marin Young
- Department of Biology, Indiana Wesleyan University, Marion, Indiana, United States of America
| | - David Swygart
- Department of Biology, Indiana Wesleyan University, Marion, Indiana, United States of America
| | - Ryan Kaufman
- Department of Biology, Indiana Wesleyan University, Marion, Indiana, United States of America
| | - Michael Gongwer
- Department of Biology, Indiana Wesleyan University, Marion, Indiana, United States of America
| | - Lexi Shepherd
- Department of Biology, Indiana Wesleyan University, Marion, Indiana, United States of America
| | - Hannah Caringal
- Department of Biology, Indiana Wesleyan University, Marion, Indiana, United States of America
| | - Jason Jacoby
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Matthew A. Kreitzer
- Department of Biology, Indiana Wesleyan University, Marion, Indiana, United States of America
| | - Robert Paul Malchow
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Ophthalmology & Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, United States of America
- * E-mail: (BKT); (RPM)
| |
Collapse
|
38
|
Cenedese V, de Graaff W, Csikós T, Poovayya M, Zoidl G, Kamermans M. Pannexin 1 Is Critically Involved in Feedback from Horizontal Cells to Cones. Front Mol Neurosci 2017; 10:403. [PMID: 29375296 PMCID: PMC5770619 DOI: 10.3389/fnmol.2017.00403] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 11/20/2017] [Indexed: 11/18/2022] Open
Abstract
Retinal horizontal cells (HCs) feed back negatively to cone photoreceptors and in that way generate the center/surround organization of bipolar cell receptive fields. The mechanism by which HCs inhibit photoreceptors is a matter of debate. General consensus exists that horizontal cell activity leads to the modulation of the cone Ca-current. This modulation has two components, one fast and the other slow. Several mechanisms for this modulation have been proposed: a fast ephaptic mechanism, and a slow pH mediated mechanism. Here we test the hypothesis that the slow negative feedback signal from HCs to cones is mediated by Panx1 channels expressed at the tips of the dendrites of horizontal cell. We generated zebrafish lacking Panx1 and found that the slow component of the feedback signal was strongly reduced in the mutants showing that Panx1 channels are a fundamental part of the negative feedback pathway from HCs to cones.
Collapse
Affiliation(s)
- Valentina Cenedese
- Retinal Signal Processing Lab, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
| | - Wim de Graaff
- Retinal Signal Processing Lab, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
| | - Tamás Csikós
- Retinal Signal Processing Lab, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
| | - Mitali Poovayya
- Retinal Signal Processing Lab, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
| | - Georg Zoidl
- Department of Biology, York University, Toronto, ON, Canada
| | - Maarten Kamermans
- Retinal Signal Processing Lab, Netherlands Institute for Neuroscience, Amsterdam, Netherlands.,Department of Biomedical Physics and Biomedical Optics, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
39
|
Kreitzer MA, Swygart D, Osborn M, Skinner B, Heer C, Kaufman R, Williams B, Shepherd L, Caringal H, Gongwer M, Tchernookova BK, Malchow RP. Extracellular H + fluxes from tiger salamander Müller (glial) cells measured using self-referencing H +-selective microelectrodes. J Neurophysiol 2017; 118:3132-3143. [PMID: 28855292 DOI: 10.1152/jn.00409.2017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/18/2017] [Accepted: 08/25/2017] [Indexed: 12/22/2022] Open
Abstract
Self-referencing H+-selective electrodes were used to measure extracellular H+ fluxes from Müller (glial) cells isolated from the tiger salamander retina. A novel chamber enabled stable recordings using H+-selective microelectrodes in a self-referencing format using bicarbonate-based buffer solutions. A small basal H+ flux was observed from the end foot region of quiescent cells bathed in 24 mM bicarbonate-based solutions, and increasing extracellular potassium induced a dose-dependent increase in H+ flux. Barium at 6 mM also increased H+ flux. Potassium-induced extracellular acidifications were abolished when bicarbonate was replaced by 1 mM HEPES. The carbonic anhydrase antagonist benzolamide potentiated the potassium-induced extracellular acidification, while 300 μM DIDS, 300 μM SITS, and 30 μM S0859 significantly reduced the response. Potassium-induced extracellular acidifications persisted in solutions lacking extracellular calcium, although potassium-induced changes in intracellular calcium monitored with Oregon Green were abolished. Exchange of external sodium with choline also eliminated the potassium-induced extracellular acidification. Removal of extracellular sodium by itself induced a transient alkalinization, and replacement of sodium induced a transient acidification, both of which were blocked by 300 μM DIDS. Recordings at the apical portion of the cell showed smaller potassium-induced extracellular H+ fluxes, and removal of the end foot region further decreased the H+ flux, suggesting that the end foot was the major source of acidifications. These studies demonstrate that self-referencing H+-selective electrodes can be used to monitor H+ fluxes from retinal Müller cells in bicarbonate-based solutions and confirm the presence of a sodium-coupled bicarbonate transporter, the activity of which is largely restricted to the end foot of the cell.NEW & NOTEWORTHY The present study uses self-referencing H+-selective electrodes for the first time to measure H+ fluxes from Müller (glial) cells isolated from tiger salamander retina. These studies demonstrate bicarbonate transport as a potent regulator of extracellular levels of acidity around Müller cells and point toward a need for further studies aimed at addressing how such glial cell pH regulatory mechanisms may shape neuronal signaling.
Collapse
Affiliation(s)
| | - David Swygart
- Department of Biology, Indiana Wesleyan University, Marion, Indiana
| | - Meredith Osborn
- Department of Biology, Indiana Wesleyan University, Marion, Indiana
| | - Blair Skinner
- Department of Biology, Indiana Wesleyan University, Marion, Indiana
| | - Chad Heer
- Department of Biology, Indiana Wesleyan University, Marion, Indiana
| | - Ryan Kaufman
- Department of Biology, Indiana Wesleyan University, Marion, Indiana
| | - Bethany Williams
- Department of Biology, Indiana Wesleyan University, Marion, Indiana
| | - Lexi Shepherd
- Department of Biology, Indiana Wesleyan University, Marion, Indiana
| | - Hannah Caringal
- Department of Biology, Indiana Wesleyan University, Marion, Indiana
| | - Michael Gongwer
- Department of Biology, Indiana Wesleyan University, Marion, Indiana
| | - Boriana K Tchernookova
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois; and
| | - Robert P Malchow
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois; and.,Ophthalmology & Visual Sciences, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
40
|
Versatile functional roles of horizontal cells in the retinal circuit. Sci Rep 2017; 7:5540. [PMID: 28717219 PMCID: PMC5514144 DOI: 10.1038/s41598-017-05543-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 05/31/2017] [Indexed: 01/13/2023] Open
Abstract
In the retinal circuit, environmental light signals are converted into electrical signals that can be decoded properly by the brain. At the first synapse of the visual system, information flow from photoreceptors to bipolar cells is modulated by horizontal cells (HCs), however, their functional contribution to retinal output and individual visual function is not fully understood. In the current study, we investigated functional roles for HCs in retinal ganglion cell (RGC) response properties and optokinetic responses by establishing a HC-depleted mouse line. We observed that HC depletion impairs the antagonistic center-surround receptive field formation of RGCs, supporting a previously reported HC function revealed by pharmacological approaches. In addition, we found that HC loss reduces both the ON and OFF response diversities of RGCs, impairs adjustment of the sensitivity to ambient light at the retinal output level, and alters spatial frequency tuning at an individual level. Taken together, our current study suggests multiple functional aspects of HCs crucial for visual processing.
Collapse
|
41
|
Abstract
The zebrafish (Danio rerio) possesses a vertebrate-type retina that is extraordinarily conserved in evolution. This well-organized and anatomically easily accessible part of the central nervous system has been widely investigated in zebrafish, promoting general understanding of retinal development, morphology, function and associated diseases. Over the recent years, genome and protein engineering as well as imaging techniques have experienced revolutionary advances and innovations, creating new possibilities and methods to study zebrafish development and function. In this review, we focus on some of these emerging technologies and how they may impact retinal research in the future. We place an emphasis on genetic techniques, such as transgenic approaches and the revolutionizing new possibilities in genome editing.
Collapse
Affiliation(s)
- Stephanie Niklaus
- a Institute of Molecular Life Sciences , University of Zurich , Zurich , Switzerland.,b Life Science Zurich Graduate Program - Neuroscience , Zurich , Switzerland
| | - Stephan C F Neuhauss
- a Institute of Molecular Life Sciences , University of Zurich , Zurich , Switzerland
| |
Collapse
|
42
|
Milosavljevic N, Allen AE, Cehajic-Kapetanovic J, Lucas RJ. Chemogenetic Activation of ipRGCs Drives Changes in Dark-Adapted (Scotopic) Electroretinogram. Invest Ophthalmol Vis Sci 2017; 57:6305-6312. [PMID: 27893096 PMCID: PMC5119489 DOI: 10.1167/iovs.16-20448] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Purpose The purpose of this study was to investigate the impact of activating melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs) on dark-adapted (scotopic) electroretinograms (ERG). Methods We used mice (Opn4Cre/+) expressing cre recombinase in melanopsin-expressing cells for a targeted gene delivery of a chemogenetic Gq-coupled receptor, hM3Dq, to ipRGCs. Intraperitoneal injection of clozapine N-oxide (CNO) at 5 mg/kg was used for acute activation of hM3Dq and thus excitation of ipRGCs in darkness. Dark-adapted flash ERGs were recorded across a 9-fold range of irradiances from hM3Dq Opn4Cre/+ and control Opn4Cre/+ mice before and after intraperitoneal injection of CNO. A- and b-wave amplitudes and implicit times and oscillatory potentials (OPs) were analyzed. Paired-flash stimuli were used to isolate cone-driven responses. Results Clozapine N-oxide application suppressed a- and b-wave amplitudes of the dark-adapted ERG across the flash intensity range in hM3Dq Opn4Cre/+ mice compared to control mice. Examination of the normalized irradiance-response functions revealed a shift in b-wave but not a-wave sensitivity. No changes in a- and b-wave implicit times were detected. Total OP amplitudes were also reduced in hM3Dq Opn4Cre/+ mice compared to controls following CNO administration. The paired-flash method revealed reduction in both the first (rods and cones) and second (cones only) flash response. Conclusions Acute and selective activation of ipRGCs modulates the amplitude of both a- and b-waves of the scotopic ERG, indicating that the influence of this ganglion cell class on the retinal physiology extends to the photoreceptors as well as their downstream pathways.
Collapse
Affiliation(s)
- Nina Milosavljevic
- Faculty of Biology, Medicine and Health, the University of Manchester, Manchester, United Kingdom
| | - Annette E Allen
- Faculty of Biology, Medicine and Health, the University of Manchester, Manchester, United Kingdom
| | - Jasmina Cehajic-Kapetanovic
- Centre for Ophthalmology and Vision Sciences, Institute of Human Development, the University of Manchester, Manchester, United Kingdom
| | - Robert J Lucas
- Faculty of Biology, Medicine and Health, the University of Manchester, Manchester, United Kingdom
| |
Collapse
|
43
|
Chapot CA, Euler T, Schubert T. How do horizontal cells 'talk' to cone photoreceptors? Different levels of complexity at the cone-horizontal cell synapse. J Physiol 2017; 595:5495-5506. [PMID: 28378516 DOI: 10.1113/jp274177] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 03/27/2017] [Indexed: 11/08/2022] Open
Abstract
The first synapse of the retina plays a fundamental role in the visual system. Due to its importance, it is critical that it encodes information from the outside world with the greatest accuracy and precision possible. Cone photoreceptor axon terminals contain many individual synaptic sites, each represented by a presynaptic structure called a 'ribbon'. These synapses are both highly sophisticated and conserved. Each ribbon relays the light signal to one ON cone bipolar cell and several OFF cone bipolar cells, while two dendritic processes from a GABAergic interneuron, the horizontal cell, modulate the cone output via parallel feedback mechanisms. The presence of these three partners within a single synapse has raised numerous questions, and its anatomical and functional complexity is still only partially understood. However, the understanding of this synapse has recently evolved, as a consequence of progress in understanding dendritic signal processing and its role in facilitating global versus local signalling. Indeed, for the downstream retinal network, dendritic processing in horizontal cells may be essential, as they must support important functional operations such as contrast enhancement, which requires spatial averaging of the photoreceptor array, while at the same time preserving accurate spatial information. Here, we review recent progress made towards a better understanding of the cone synapse, with an emphasis on horizontal cell function, and discuss why such complexity might be necessary for early visual processing.
Collapse
Affiliation(s)
- Camille A Chapot
- Institute for Ophthalmic Research, University of Tübingen, 72076, Tübingen, Germany.,Centre for Integrative Neuroscience, University of Tübingen, 72076, Tübingen, Germany.,Graduate Training Centre of Neuroscience, University of Tübingen, 72076, Tübingen, Germany
| | - Thomas Euler
- Institute for Ophthalmic Research, University of Tübingen, 72076, Tübingen, Germany.,Centre for Integrative Neuroscience, University of Tübingen, 72076, Tübingen, Germany.,Bernstein Centre for Computational Neuroscience, University of Tübingen, 72076, Tübingen, Germany
| | - Timm Schubert
- Institute for Ophthalmic Research, University of Tübingen, 72076, Tübingen, Germany.,Centre for Integrative Neuroscience, University of Tübingen, 72076, Tübingen, Germany
| |
Collapse
|
44
|
Chen J, Xia L, Bruchas MR, Solnica-Krezel L. Imaging early embryonic calcium activity with GCaMP6s transgenic zebrafish. Dev Biol 2017; 430:385-396. [PMID: 28322738 PMCID: PMC5835148 DOI: 10.1016/j.ydbio.2017.03.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 01/12/2017] [Accepted: 03/11/2017] [Indexed: 12/02/2022]
Abstract
Intracellular Ca2+ signaling regulates cellular activities during embryogenesis and in adult organisms. We generated stable Tg[βactin2:GCaMP6s]stl351 and Tg[ubi:GCaMP6s]stl352 transgenic lines that combine the ubiquitously-expressed Ca2+ indicator GCaMP6s with the transparent characteristics of zebrafish embryos to achieve superior in vivo Ca2+ imaging. Using the Tg[βactin2:GCaMP6s]stl351 line featuring strong GCaMP6s expression from cleavage through gastrula stages, we detected higher frequency of Ca2+ transients in the superficial blastomeres during the blastula stages preceding the midblastula transition. Additionally, GCaMP6s also revealed that dorsal-biased Ca2+ signaling that follows the midblastula transition persisted longer during gastrulation, compared with earlier studies. We observed that dorsal-biased Ca2+ signaling is diminished in ventralized ichabod/β-catenin2 mutant embryos and ectopically induced in embryos dorsalized by excess β-catenin. During gastrulation, we directly visualized Ca2+ signaling in the dorsal forerunner cells, which form in a Nodal signaling dependent manner and later give rise to the laterality organ. We found that excess Nodal increases the number and the duration of Ca2+ transients specifically in the dorsal forerunner cells. The GCaMP6s transgenic lines described here enable unprecedented visualization of dynamic Ca2+ events from embryogenesis through adulthood, augmenting the zebrafish toolbox.
Collapse
Affiliation(s)
- Jiakun Chen
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Li Xia
- Department of Anesthesiology, Division of Basic Research, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University in St. Louis, St Louis, MO, 63105, USA
| | - Michael R Bruchas
- Department of Anesthesiology, Division of Basic Research, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University in St. Louis, St Louis, MO, 63105, USA; Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, USA
| | - Lilianna Solnica-Krezel
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
45
|
Chiacchiaretta M, Latifi S, Bramini M, Fadda M, Fassio A, Benfenati F, Cesca F. Neuronal hyperactivity causes Na +/H + exchanger-induced extracellular acidification at active synapses. J Cell Sci 2017; 130:1435-1449. [PMID: 28254883 DOI: 10.1242/jcs.198564] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 02/28/2017] [Indexed: 12/12/2022] Open
Abstract
Extracellular pH impacts on neuronal activity, which is in turn an important determinant of extracellular H+ concentration. The aim of this study was to describe the spatio-temporal dynamics of extracellular pH at synaptic sites during neuronal hyperexcitability. To address this issue we created ex.E2GFP, a membrane-targeted extracellular ratiometric pH indicator that is exquisitely sensitive to acidic shifts. By monitoring ex.E2GFP fluorescence in real time in primary cortical neurons, we were able to quantify pH fluctuations during network hyperexcitability induced by convulsant drugs or high-frequency electrical stimulation. Sustained hyperactivity caused a pH decrease that was reversible upon silencing of neuronal activity and located at active synapses. This acidic shift was not attributable to the outflow of synaptic vesicle H+ into the cleft nor to the activity of membrane-exposed H+ V-ATPase, but rather to the activity of the Na+/H+-exchanger. Our data demonstrate that extracellular synaptic pH shifts take place during epileptic-like activity of neural cultures, emphasizing the strict links existing between synaptic activity and synaptic pH. This evidence may contribute to the understanding of the physio-pathological mechanisms associated with hyperexcitability in the epileptic brain.
Collapse
Affiliation(s)
- Martina Chiacchiaretta
- Center for Synaptic Neuroscience and Technology, Fondazione Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, Genova 16132, Italy.,Department of Experimental Medicine, University of Genova, Viale Benedetto XV 3, Genova 16132, Italy
| | - Shahrzad Latifi
- Center for Synaptic Neuroscience and Technology, Fondazione Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, Genova 16132, Italy
| | - Mattia Bramini
- Center for Synaptic Neuroscience and Technology, Fondazione Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, Genova 16132, Italy
| | - Manuela Fadda
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV 3, Genova 16132, Italy
| | - Anna Fassio
- Center for Synaptic Neuroscience and Technology, Fondazione Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, Genova 16132, Italy.,Department of Experimental Medicine, University of Genova, Viale Benedetto XV 3, Genova 16132, Italy
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology, Fondazione Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, Genova 16132, Italy.,Department of Experimental Medicine, University of Genova, Viale Benedetto XV 3, Genova 16132, Italy
| | - Fabrizia Cesca
- Center for Synaptic Neuroscience and Technology, Fondazione Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, Genova 16132, Italy
| |
Collapse
|
46
|
Country MW, Jonz MG. Calcium dynamics and regulation in horizontal cells of the vertebrate retina: lessons from teleosts. J Neurophysiol 2017; 117:523-536. [PMID: 27832601 PMCID: PMC5288477 DOI: 10.1152/jn.00585.2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 11/02/2016] [Indexed: 01/20/2023] Open
Abstract
Horizontal cells (HCs) are inhibitory interneurons of the vertebrate retina. Unlike typical neurons, HCs are chronically depolarized in the dark, leading to a constant influx of Ca2+ Therefore, mechanisms of Ca2+ homeostasis in HCs must differ from neurons elsewhere in the central nervous system, which undergo excitotoxicity when they are chronically depolarized or stressed with Ca2+ HCs are especially well characterized in teleost fish and have been used to unlock mysteries of the vertebrate retina for over one century. More recently, mammalian models of the retina have been increasingly informative for HC physiology. We draw from both teleost and mammalian models in this review, using a comparative approach to examine what is known about Ca2+ pathways in vertebrate HCs. We begin with a survey of Ca2+-permeable ion channels, exchangers, and pumps and summarize Ca2+ influx and efflux pathways, buffering, and intracellular stores. This includes evidence for Ca2+-permeable α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors and N-methyl-d-aspartate receptors and for voltage-gated Ca2+ channels. Special attention is given to interactions between ion channels, to differences among species, and in which subtypes of HCs these channels have been found. We then discuss a number of unresolved issues pertaining to Ca2+ dynamics in HCs, including a potential role for Ca2+ in feedback to photoreceptors, the role for Ca2+-induced Ca2+ release, and the properties and functions of Ca2+-based action potentials. This review aims to highlight the unique Ca2+ dynamics in HCs, as these are inextricably tied to retinal function.
Collapse
Affiliation(s)
- Michael W Country
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Michael G Jonz
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
47
|
Mango D, Braksator E, Battaglia G, Marcelli S, Mercuri NB, Feligioni M, Nicoletti F, Bashir ZI, Nisticò R. Acid-sensing ion channel 1a is required for mGlu receptor dependent long-term depression in the hippocampus. Pharmacol Res 2017; 119:12-19. [PMID: 28137639 DOI: 10.1016/j.phrs.2017.01.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 01/24/2017] [Accepted: 01/25/2017] [Indexed: 01/18/2023]
Abstract
Acid-sensing ion channels (ASICs), members of the degenerin/epithelial Na+ channel superfamily, are widely distributed in the mammalian nervous system. ASIC1a is highly permeable to Ca2+ and are thought to be important in a variety of physiological processes, including synaptic plasticity, learning and memory. To further understand the role of ASIC1a in synaptic transmission and plasticity, we investigated metabotropic glutamate (mGlu) receptor-dependent long-term depression (LTD) in the hippocampus. We found that ASIC1a channels mediate a component of LTD in P30-40 animals, since the ASIC1a selective blocker psalmotoxin-1 (PcTx1) reduced the magnitude of LTD induced by application of the group I mGlu receptor agonist (S)-3,5-Dihydroxyphenylglycine (DHPG) or induced by paired-pulse low frequency stimulation (PP-LFS). Conversely, PcTx1 did not affect LTD in P13-18 animals. We also provide evidence that ASIC1a is involved in group I mGlu receptor-induced increase in action potential firing. However, blockade of ASIC1a did not affect DHPG-induced polyphosphoinositide hydrolysis, suggesting the involvement of some other molecular partners in the functional crosstalk between ASIC1a and group I mGlu receptors. Notably, PcTx1 was able to prevent the increase in GluA1 S845 phosphorylation at the post-synaptic membrane induced by group I mGlu receptor activation. These findings suggest a novel function of ASIC1a channels in the regulation of group I mGlu receptor synaptic plasticity and intrinsic excitability.
Collapse
Affiliation(s)
- D Mango
- European Brain Research Institute, Rita Levi-Montalcini Foundation, Rome, Italy.
| | - E Braksator
- University of Bristol, Bristol BS8 1TD, United Kingdom
| | | | - S Marcelli
- European Brain Research Institute, Rita Levi-Montalcini Foundation, Rome, Italy; Sapienza University of Rome, Rome, Italy
| | - N B Mercuri
- University of Rome Tor Vergata, Rome, Italy; I.R.C.C.S. Santa Lucia Foundation, Rome, Italy
| | - M Feligioni
- European Brain Research Institute, Rita Levi-Montalcini Foundation, Rome, Italy; Casa Cura Policlinico (CCP), Department of Neurorehabilitation Sciences, Milan, Italy
| | - F Nicoletti
- I.R.C.C.S. Neuromed, Pozzilli, Italy; Sapienza University of Rome, Rome, Italy
| | - Z I Bashir
- University of Bristol, Bristol BS8 1TD, United Kingdom
| | - R Nisticò
- European Brain Research Institute, Rita Levi-Montalcini Foundation, Rome, Italy; University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
48
|
Jerath R, Cearley SM, Barnes VA, Nixon-Shapiro E. How lateral inhibition and fast retinogeniculo-cortical oscillations create vision: A new hypothesis. Med Hypotheses 2016; 96:20-29. [PMID: 27959269 DOI: 10.1016/j.mehy.2016.09.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 08/23/2016] [Accepted: 09/21/2016] [Indexed: 12/12/2022]
Abstract
The role of the physiological processes involved in human vision escapes clarification in current literature. Many unanswered questions about vision include: 1) whether there is more to lateral inhibition than previously proposed, 2) the role of the discs in rods and cones, 3) how inverted images on the retina are converted to erect images for visual perception, 4) what portion of the image formed on the retina is actually processed in the brain, 5) the reason we have an after-image with antagonistic colors, and 6) how we remember space. This theoretical article attempts to clarify some of the physiological processes involved with human vision. The global integration of visual information is conceptual; therefore, we include illustrations to present our theory. Universally, the eyeball is 2.4cm and works together with membrane potential, correspondingly representing the retinal layers, photoreceptors, and cortex. Images formed within the photoreceptors must first be converted into chemical signals on the photoreceptors' individual discs and the signals at each disc are transduced from light photons into electrical signals. We contend that the discs code the electrical signals into accurate distances and are shown in our figures. The pre-existing oscillations among the various cortices including the striate and parietal cortex, and the retina work in unison to create an infrastructure of visual space that functionally "places" the objects within this "neural" space. The horizontal layers integrate all discs accurately to create a retina that is pre-coded for distance. Our theory suggests image inversion never takes place on the retina, but rather images fall onto the retina as compressed and coiled, then amplified through lateral inhibition through intensification and amplification on the OFF-center cones. The intensified and amplified images are decompressed and expanded in the brain, which become the images we perceive as external vision. SUMMARY This is a theoretical article presenting a novel hypothesis about the physiological processes in vision, and expounds upon the visual aspect of two of our previously published articles, "A unified 3D default space consciousness model combining neurological and physiological processes that underlie conscious experience", and "Functional representation of vision within the mind: A visual consciousness model based in 3D default space." Currently, neuroscience teaches that visual images are initially inverted on the retina, processed in the brain, and then conscious perception of vision happens in the visual cortex. Here, we propose that inversion of visual images never takes place because images enter the retina as coiled and compressed graded potentials that are intensified and amplified in OFF-center photoreceptors. Once they reach the brain, they are decompressed and expanded to the original size of the image, which is perceived by the brain as the external image. We adduce that pre-existing oscillations (alpha, beta, and gamma) among the various cortices in the brain (including the striate and parietal cortex) and the retina, work together in unison to create an infrastructure of visual space thatfunctionally "places" the objects within a "neural" space. These fast oscillations "bring" the faculties of the cortical activity to the retina, creating the infrastructure of the space within the eye where visual information can be immediately recognized by the brain. By this we mean that the visual (striate) cortex synchronizes the information with the photoreceptors in the retina, and the brain instantaneously receives the already processed visual image, thereby relinquishing the eye from being required to send the information to the brain to be interpreted before it can rise to consciousness. The visual system is a heavily studied area of neuroscience yet very little is known about how vision occurs. We believe that our novel hypothesis provides new insights into how vision becomes part of consciousness, helps to reconcile various previously proposed models, and further elucidates current questions in vision based on our unified 3D default space model. Illustrations are provided to aid in explaining our theory.
Collapse
|
49
|
Kinetics of Inhibitory Feedback from Horizontal Cells to Photoreceptors: Implications for an Ephaptic Mechanism. J Neurosci 2016; 36:10075-88. [PMID: 27683904 DOI: 10.1523/jneurosci.1090-16.2016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 08/12/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Inhibitory feedback from horizontal cells (HCs) to cones generates center-surround receptive fields and color opponency in the retina. Mechanisms of HC feedback remain unsettled, but one hypothesis proposes that an ephaptic mechanism may alter the extracellular electrical field surrounding photoreceptor synaptic terminals, thereby altering Ca(2+) channel activity and photoreceptor output. An ephaptic voltage change produced by current flowing through open channels in the HC membrane should occur with no delay. To test for this mechanism, we measured kinetics of inhibitory feedback currents in Ambystoma tigrinum cones and rods evoked by hyperpolarizing steps applied to synaptically coupled HCs. Hyperpolarizing HCs stimulated inward feedback currents in cones that averaged 8-9 pA and exhibited a biexponential time course with time constants averaging 14-17 ms and 120-220 ms. Measurement of feedback-current kinetics was limited by three factors: (1) HC voltage-clamp speed, (2) cone voltage-clamp speed, and (3) kinetics of Ca(2+) channel activation or deactivation in the photoreceptor terminal. These factors totaled ∼4-5 ms in cones meaning that the true fast time constants for HC-to-cone feedback currents were 9-13 ms, slower than expected for ephaptic voltage changes. We also compared speed of feedback to feedforward glutamate release measured at the same cone/HC synapses and found a latency for feedback of 11-14 ms. Inhibitory feedback from HCs to rods was also significantly slower than either measurement kinetics or feedforward release. The finding that inhibitory feedback from HCs to photoreceptors involves a significant delay indicates that it is not due to previously proposed ephaptic mechanisms. SIGNIFICANCE STATEMENT Lateral inhibitory feedback from horizontal cells (HCs) to photoreceptors creates center-surround receptive fields and color-opponent interactions. Although underlying mechanisms remain unsettled, a longstanding hypothesis proposes that feedback is due to ephaptic voltage changes that regulate photoreceptor synaptic output by altering Ca(2+) channel activity. Ephaptic processes should occur with no delay. We measured kinetics of inhibitory feedback currents evoked in photoreceptors with voltage steps applied to synaptically coupled HCs and found that feedback is too slow to be explained by ephaptic voltage changes generated by current flowing through continuously open channels in HC membranes. By eliminating the proposed ephaptic mechanism for HC feedback regulation of photoreceptor Ca(2+) channels, our data support earlier proposals that synaptic cleft pH changes are more likely responsible.
Collapse
|
50
|
Vila A, Whitaker CM, O'Brien J. Membrane-associated guanylate kinase scaffolds organize a horizontal cell synaptic complex restricted to invaginating contacts with photoreceptors. J Comp Neurol 2016; 525:850-867. [PMID: 27558197 DOI: 10.1002/cne.24101] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 08/02/2016] [Accepted: 08/15/2016] [Indexed: 12/21/2022]
Abstract
Synaptic processes and plasticity of synapses are mediated by large suites of proteins. In most cases, many of these proteins are tethered together by synaptic scaffold proteins. Scaffold proteins have a large number and typically a variety of protein interaction domains that allow many different proteins to be assembled into functional complexes. Because each scaffold protein has a different set of protein interaction domains and a unique set of interacting partners, the presence of synaptic scaffolds can provide insight into the molecular mechanisms that regulate synaptic processes. In studies of rabbit retina, we found SAP102 and Chapsyn110 selectively localized in the tips of B-type horizontal cell processes, where they contact cone and rod photoreceptors. We further identified some known SAP102 binding partners, kainate receptor GluR6/7 and inward rectifier potassium channel Kir2.1, closely associated with SAP102 in photoreceptor invaginations. The kainate receptor occupies a position distinct from that of the majority of AMPA receptors that dominate the horizontal cell postsynaptic response. GluR6/7 and Kir2.1 presumably are involved in synaptic processes that govern cell-to-cell communication and could both contribute in different ways to synaptic currents that mediate feedback signaling. Notably, we failed to find evidence for the presence of Cx57 or Cx59 that might be involved in ephaptic feedback signaling in this complex. The presence of SAP102 and its binding partners in both cone and rod invaginating synapses suggests that whatever mechanism is supported by this protein complex is present in both types of photoreceptors. J. Comp. Neurol. 525:850-867, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Alejandro Vila
- Richard S. Ruiz M.D. Department of Ophthalmology and Visual Science, University of Texas Health Science Center at Houston, Houston, Texas, 77030.,University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas, 77030
| | - Christopher M Whitaker
- Richard S. Ruiz M.D. Department of Ophthalmology and Visual Science, University of Texas Health Science Center at Houston, Houston, Texas, 77030
| | - John O'Brien
- Richard S. Ruiz M.D. Department of Ophthalmology and Visual Science, University of Texas Health Science Center at Houston, Houston, Texas, 77030.,University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas, 77030
| |
Collapse
|