1
|
Ankri L, Riccitelli S, Rivlin-Etzion M. A new role for excitation in the retinal direction-selective circuit. J Physiol 2024. [PMID: 39462912 DOI: 10.1113/jp286581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 09/24/2024] [Indexed: 10/29/2024] Open
Abstract
A key feature of the receptive field of neurons in the visual system is their centre-surround antagonism, whereby the centre and the surround exhibit responses of opposite polarity. This organization is thought to enhance visual acuity, but whether and how such antagonism plays a role in more complex processing remains poorly understood. Here, we investigate the role of centre and surround receptive fields in retinal direction selectivity by exposing posterior-preferring On-Off direction-selective ganglion cells (pDSGCs) to adaptive light and recording their response to globally moving objects. We reveal that light adaptation leads to surround expansion in pDSGCs. The pDSGCs maintain their original directional tuning in the centre receptive field, but present the oppositely tuned response in their surround. Notably, although inhibition is the main substrate for retinal direction selectivity, we found that following light adaptation, both the centre- and surround-mediated responses originate from directionally tuned excitatory inputs. Multi-electrode array recordings show similar oppositely tuned responses in other DSGC subtypes. Together, these data attribute a new role for excitation in the direction-selective circuit. This excitation carries an antagonistic centre-surround property, possibly designed to sharpen the detection of motion direction in the retina. KEY POINTS: Receptive fields of direction-selective retinal ganglion cells expand asymmetrically following light adaptation. The increase in the surround receptive field generates a delayed spiking phase that is tuned to the null direction and is mediated by excitation. Following light adaptation, excitation rules the computation in the centre receptive field and is tuned to the preferred direction. GABAergic and glycinergic inputs modulate the null-tuned delayed response differentially. Null-tuned delayed spiking phases can be detected in all types of direction-selective retinal ganglion cells. Light adaptation exposes a hidden directional excitation in the circuit, which is tuned to opposite directions in the centre and surround receptive fields.
Collapse
Affiliation(s)
- Lea Ankri
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Serena Riccitelli
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
2
|
Chotard V, Trapani F, Glaziou G, Sermet BS, Yger P, Marre O, Rebsam A. Altered Functional Responses of the Retina in B6 Albino Tyrc/c Mice. Invest Ophthalmol Vis Sci 2024; 65:39. [PMID: 39189994 PMCID: PMC11361382 DOI: 10.1167/iovs.65.10.39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 08/09/2024] [Indexed: 08/28/2024] Open
Abstract
Purpose Mammals with albinism present low visual discrimination ability and different proportions of certain retinal cell subtypes. As the spatial resolution of the retina depends on the visual field sampling by retinal ganglion cells (RGCs) based on the convergence of upstream cell inputs, it could be affected in albinism and thus modify the RGC function. Methods We used the Tyrc/c line, a mouse model of oculocutaneous albinism type 1 (OCA1), carrying a tyrosinase mutation, and previously characterized by a total absence of pigment and severe visual deficits. To assess their retinal function, we recorded the light responses of hundreds of RGCs ex vivo using multi-electrode array (MEA). We estimated the receptive field (RF)-center diameter of Tyr+/c and Tyrc/c RGCs using a checkerboard stimulation before simultaneously stimulating the center and surround of RGC RFs with full-field flashes. Results Following checkerboard stimulation, the RF-center diameters of RGCs were indistinguishable between Tyrc/c and Tyr+/c retinas. Nevertheless, RGCs from Tyrc/c retinas presented more OFF responses to full-field flashes than RGCs from Tyr+/c retinas. Unlike Tyr+/c retinas, very few OFF-center RGCs switched polarity to ON or ON-OFF responses after full-field flashes in Tyrc/c retinas, suggesting a different surround suppression in these retinas. Conclusions The retinal output signal is affected in Tyrc/c retinas, despite intact RF-center diameters of their RGCs. Adaptive mechanisms during development are probably responsible for this change in RGC responses, related to the absence of ocular pigments.
Collapse
Affiliation(s)
- Virginie Chotard
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Francesco Trapani
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Guilhem Glaziou
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | | | - Pierre Yger
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Olivier Marre
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Alexandra Rebsam
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| |
Collapse
|
3
|
Idrees S, Manookin MB, Rieke F, Field GD, Zylberberg J. Biophysical neural adaptation mechanisms enable artificial neural networks to capture dynamic retinal computation. Nat Commun 2024; 15:5957. [PMID: 39009568 PMCID: PMC11251147 DOI: 10.1038/s41467-024-50114-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 06/28/2024] [Indexed: 07/17/2024] Open
Abstract
Adaptation is a universal aspect of neural systems that changes circuit computations to match prevailing inputs. These changes facilitate efficient encoding of sensory inputs while avoiding saturation. Conventional artificial neural networks (ANNs) have limited adaptive capabilities, hindering their ability to reliably predict neural output under dynamic input conditions. Can embedding neural adaptive mechanisms in ANNs improve their performance? To answer this question, we develop a new deep learning model of the retina that incorporates the biophysics of photoreceptor adaptation at the front-end of conventional convolutional neural networks (CNNs). These conventional CNNs build on 'Deep Retina,' a previously developed model of retinal ganglion cell (RGC) activity. CNNs that include this new photoreceptor layer outperform conventional CNN models at predicting male and female primate and rat RGC responses to naturalistic stimuli that include dynamic local intensity changes and large changes in the ambient illumination. These improved predictions result directly from adaptation within the phototransduction cascade. This research underscores the potential of embedding models of neural adaptation in ANNs and using them to determine how neural circuits manage the complexities of encoding natural inputs that are dynamic and span a large range of light levels.
Collapse
Affiliation(s)
- Saad Idrees
- Department of Physics and Astronomy, York University, Toronto, ON, Canada.
- Centre for Vision Research, York University, Toronto, ON, Canada.
| | | | - Fred Rieke
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Greg D Field
- Stein Eye Institute, Department of Ophthalmology, University of California, Los Angeles, CA, USA
| | - Joel Zylberberg
- Department of Physics and Astronomy, York University, Toronto, ON, Canada.
- Centre for Vision Research, York University, Toronto, ON, Canada.
- Learning in Machines and Brains Program, Canadian Institute for Advanced Research, Toronto, ON, Canada.
| |
Collapse
|
4
|
Dai M, Liang PJ. GABA receptors mediate adaptation and sensitization processes in mouse retinal ganglion cells. Cogn Neurodyn 2024; 18:1021-1032. [PMID: 38826663 PMCID: PMC11143098 DOI: 10.1007/s11571-023-09950-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 02/07/2023] [Accepted: 03/09/2023] [Indexed: 06/04/2024] Open
Abstract
Two coordinated dynamic properties (adaptation and sensitization) are observed in retinal ganglion cells (RGCs) under the contrast stimulation. During sustained high-contrast period, adaptation decreases RGCs' responses while sensitization increases RGCs' responses. In mouse retina, adaptation and sensitization respectively show OFF- and ON-pathway-dominance. However, the mechanisms which drive the differentiation between adaptation and sensitization remain unclear. In the present study, multi-electrode recordings were conducted on isolated mouse retina under full-field contrast stimulation. Dynamic property was quantified based on the trend of RGC's firing rate during high-contrast period, light sensitivity was estimated by linear-nonlinear analysis and coding ability was estimated through stimulus reconstruction algorism. γ-Aminobutyric acid (GABA) receptors were pharmacologically blocked to explore the relation between RGCs' dynamic property and the activity of GABA receptors. It was found that GABAA and GABAC receptors respectively mediated the adaptation and sensitization processes in RGCs' responses. RGCs' dynamic property changes occurred after the blockage of GABA receptors were related to the modulation of the cells' light sensitivity. Further, the blockage of GABAA (GABAC) receptor significantly decreased RGCs' overall coding ability and eliminated the functional benefits of adaptation (sensitization). Our work suggests that the dynamic property of individual RGC is related to the balance between its GABAA-receptor-mediated inputs and GABAC-receptor-mediated inputs. Blockage of GABA receptors breaks the balance of retinal circuitry for signal processing, and down-regulates the visual information coding ability. Supplementary Information The online version contains supplementary material available at 10.1007/s11571-023-09950-2.
Collapse
Affiliation(s)
- Min Dai
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dong-Chuan Road, Shanghai, 200240 China
| | - Pei-Ji Liang
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dong-Chuan Road, Shanghai, 200240 China
| |
Collapse
|
5
|
Chang L, Ran Y, Yang M, Auferkorte O, Butz E, Hüser L, Haverkamp S, Euler T, Schubert T. Spike desensitisation as a mechanism for high-contrast selectivity in retinal ganglion cells. Front Cell Neurosci 2024; 17:1337768. [PMID: 38269116 PMCID: PMC10806099 DOI: 10.3389/fncel.2023.1337768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 12/19/2023] [Indexed: 01/26/2024] Open
Abstract
In the vertebrate retina, several dozens of parallel channels relay information about the visual world to the brain. These channels are represented by the different types of retinal ganglion cells (RGCs), whose responses are rendered selective for distinct sets of visual features by various mechanisms. These mechanisms can be roughly grouped into synaptic interactions and cell-intrinsic mechanisms, with the latter including dendritic morphology as well as ion channel complement and distribution. Here, we investigate how strongly ion channel complement can shape RGC output by comparing two mouse RGC types, the well-described ON alpha cell and a little-studied ON cell that is EGFP-labelled in the Igfbp5 mouse line and displays an unusual selectivity for stimuli with high contrast. Using patch-clamp recordings and computational modelling, we show that a higher activation threshold and a pronounced slow inactivation of the voltage-gated Na+ channels contribute to the distinct contrast tuning and transient responses in ON Igfbp5 RGCs, respectively. In contrast, such a mechanism could not be observed in ON alpha cells. This study provides an example for the powerful role that the last stage of retinal processing can play in shaping RGC responses.
Collapse
Affiliation(s)
- Le Chang
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Werner Reichardt Centre for Integrative Neuroscience (CIN), University of Tübingen, Tübingen, Germany
- Key Laboratory of Primate Neurobiology, Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Yanli Ran
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Werner Reichardt Centre for Integrative Neuroscience (CIN), University of Tübingen, Tübingen, Germany
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Mingpo Yang
- Key Laboratory of Primate Neurobiology, Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | | | - Elisabeth Butz
- Max-Planck-Institute for Brain Research, Frankfurt am Main, Germany
| | - Laura Hüser
- Max-Planck-Institute for Brain Research, Frankfurt am Main, Germany
| | - Silke Haverkamp
- Max-Planck-Institute for Brain Research, Frankfurt am Main, Germany
- Department of Computational Neuroethology, Max Planck Institute for Neurobiology of Behavior – Caesar, Bonn, Germany
| | - Thomas Euler
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Werner Reichardt Centre for Integrative Neuroscience (CIN), University of Tübingen, Tübingen, Germany
| | - Timm Schubert
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Werner Reichardt Centre for Integrative Neuroscience (CIN), University of Tübingen, Tübingen, Germany
| |
Collapse
|
6
|
Nath A, Grimes WN, Diamond JS. Layers of inhibitory networks shape receptive field properties of AII amacrine cells. Cell Rep 2023; 42:113390. [PMID: 37930888 PMCID: PMC10769003 DOI: 10.1016/j.celrep.2023.113390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 09/10/2023] [Accepted: 10/20/2023] [Indexed: 11/08/2023] Open
Abstract
In the retina, rod and cone pathways mediate visual signals over a billion-fold range in luminance. AII ("A-two") amacrine cells (ACs) receive signals from both pathways via different bipolar cells, enabling AIIs to operate at night and during the day. Previous work has examined luminance-dependent changes in AII gap junction connectivity, but less is known about how surrounding circuitry shapes AII receptive fields across light levels. Here, we report that moderate contrast stimuli elicit surround inhibition in AIIs under all but the dimmest visual conditions, due to actions of horizontal cells and at least two ACs that inhibit presynaptic bipolar cells. Under photopic (daylight) conditions, surround inhibition transforms AII response kinetics, which are inherited by downstream ganglion cells. Ablating neuronal nitric oxide synthase type-1 (nNOS-1) ACs removes AII surround inhibition under mesopic (dusk/dawn), but not photopic, conditions. Our findings demonstrate how multiple layers of neural circuitry interact to encode signals across a wide physiological range.
Collapse
Affiliation(s)
- Amurta Nath
- Synaptic Physiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - William N Grimes
- Synaptic Physiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jeffrey S Diamond
- Synaptic Physiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
7
|
Boissonnet T, Tripodi M, Asari H. Awake responses suggest inefficient dense coding in the mouse retina. eLife 2023; 12:e78005. [PMID: 37922200 PMCID: PMC10624425 DOI: 10.7554/elife.78005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 09/28/2023] [Indexed: 11/05/2023] Open
Abstract
The structure and function of the vertebrate retina have been extensively studied across species with an isolated, ex vivo preparation. Retinal function in vivo, however, remains elusive, especially in awake animals. Here, we performed single-unit extracellular recordings in the optic tract of head-fixed mice to compare the output of awake, anesthetized, and ex vivo retinas. While the visual response properties were overall similar across conditions, we found that awake retinal output had in general (1) faster kinetics with less variability in the response latencies; (2) a larger dynamic range; and (3) higher firing activity, by ~20 Hz on average, for both baseline and visually evoked responses. Our modeling analyses further showed that such awake response patterns convey comparable total information but less efficiently, and allow for a linear population decoder to perform significantly better than the anesthetized or ex vivo responses. These results highlight distinct retinal behavior in awake states, in particular suggesting that the retina employs dense coding in vivo, rather than sparse efficient coding as has been often assumed from ex vivo studies.
Collapse
Affiliation(s)
- Tom Boissonnet
- Epigenetics and Neurobiology Unit, EMBL Rome, European Molecular Biology LaboratoryMonterotondoItaly
- Collaboration for joint PhD degree between EMBL and Université Grenoble Alpes, Grenoble Institut des NeurosciencesLa TroncheFrance
| | - Matteo Tripodi
- Epigenetics and Neurobiology Unit, EMBL Rome, European Molecular Biology LaboratoryMonterotondoItaly
| | - Hiroki Asari
- Epigenetics and Neurobiology Unit, EMBL Rome, European Molecular Biology LaboratoryMonterotondoItaly
| |
Collapse
|
8
|
Manookin MB, Rieke F. Two Sides of the Same Coin: Efficient and Predictive Neural Coding. Annu Rev Vis Sci 2023; 9:293-311. [PMID: 37220331 DOI: 10.1146/annurev-vision-112122-020941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Some visual properties are consistent across a wide range of environments, while other properties are more labile. The efficient coding hypothesis states that many of these regularities in the environment can be discarded from neural representations, thus allocating more of the brain's dynamic range to properties that are likely to vary. This paradigm is less clear about how the visual system prioritizes different pieces of information that vary across visual environments. One solution is to prioritize information that can be used to predict future events, particularly those that guide behavior. The relationship between the efficient coding and future prediction paradigms is an area of active investigation. In this review, we argue that these paradigms are complementary and often act on distinct components of the visual input. We also discuss how normative approaches to efficient coding and future prediction can be integrated.
Collapse
Affiliation(s)
- Michael B Manookin
- Department of Ophthalmology, University of Washington, Seattle, Washington, USA;
- Vision Science Center, University of Washington, Seattle, Washington, USA
- Karalis Johnson Retina Center, University of Washington, Seattle, Washington, USA
| | - Fred Rieke
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington, USA;
- Vision Science Center, University of Washington, Seattle, Washington, USA
| |
Collapse
|
9
|
Gorin AS, Miao Y, Ahn S, Suresh V, Su Y, Ciftcioglu UM, Sommer FT, Hirsch JA. Local interneurons in the murine visual thalamus have diverse receptive fields and can provide feature selective inhibition to relay cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.10.549394. [PMID: 37609295 PMCID: PMC10441385 DOI: 10.1101/2023.08.10.549394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
By influencing the type and quality of information that relay cells transmit, local interneurons in thalamus have a powerful impact on cortex. To define the sensory features that these inhibitory neurons encode, we mapped receptive fields of optogenetically identified cells in the murine dorsolateral geniculate nucleus. Although few in number, local interneurons had diverse types of receptive fields, like their counterpart relay cells. This result differs markedly from visual cortex, where inhibitory cells are typically less selective than excitatory cells. To explore how thalamic interneurons might converge on relay cells, we took a computational approach. Using an evolutionary algorithm to search through a library of interneuron models generated from our results, we show that aggregated output from different groups of local interneurons can simulate the inhibitory component of the relay cell's receptive field. Thus, our work provides proof-of-concept that groups of diverse interneurons can supply feature-specific inhibition to relay cells.
Collapse
|
10
|
Griffis KG, Fehlhaber KE, Rieke F, Sampath AP. Light Adaptation of Retinal Rod Bipolar Cells. J Neurosci 2023; 43:4379-4389. [PMID: 37208176 PMCID: PMC10278674 DOI: 10.1523/jneurosci.0444-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/07/2023] [Accepted: 05/02/2023] [Indexed: 05/21/2023] Open
Abstract
The sensitivity of retinal cells is altered in background light to optimize the detection of contrast. For scotopic (rod) vision, substantial adaptation occurs in the first two cells, the rods and rod bipolar cells (RBCs), through sensitivity adjustments in rods and postsynaptic modulation of the transduction cascade in RBCs. To study the mechanisms mediating these components of adaptation, we made whole-cell, voltage-clamp recordings from retinal slices of mice from both sexes. Adaptation was assessed by fitting the Hill equation to response-intensity relationships with the parameters of half-maximal response (I1/2 ), Hill coefficient (n), and maximum response amplitude (Rmax ). We show that rod sensitivity decreases in backgrounds according to the Weber-Fechner relation with an I1/2 of ∼50 R* s-1 The sensitivity of RBCs follows a near-identical function, indicating that changes in RBC sensitivity in backgrounds bright enough to adapt the rods are mostly derived from the rods themselves. Backgrounds too dim to adapt the rods can however alter n, relieving a synaptic nonlinearity likely through entry of Ca2+ into the RBCs. There is also a surprising decrease of Rmax , indicating that a step in RBC synaptic transduction is desensitized or that the transduction channels became reluctant to open. This effect is greatly reduced after dialysis of BAPTA at a membrane potential of +50 mV to impede Ca2+ entry. Thus the effects of background illumination in RBCs are in part the result of processes intrinsic to the photoreceptors and in part derive from additional Ca2+-dependent processes at the first synapse of vision.SIGNIFICANCE STATEMENT Light adaptation adjusts the sensitivity of vision as ambient illumination changes. Adaptation for scotopic (rod) vision is known to occur partly in the rods and partly in the rest of the retina from presynaptic and postsynaptic mechanisms. We recorded light responses of rods and rod bipolar cells to identify different components of adaptation and study their mechanisms. We show that bipolar-cell sensitivity largely follows adaptation of the rods but that light too dim to adapt the rods produces a linearization of the bipolar-cell response and a surprising decrease in maximum response amplitude, both mediated by a change in intracellular Ca2+ These findings provide a new understanding of how the retina responds to changing illumination.
Collapse
Affiliation(s)
- Khris G Griffis
- Department of Ophthalmology and Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California 90095
| | - Katherine E Fehlhaber
- Department of Ophthalmology and Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
| | - Fred Rieke
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195
| | - Alapakkam P Sampath
- Department of Ophthalmology and Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
| |
Collapse
|
11
|
Bhoi JD, Goel M, Ribelayga CP, Mangel SC. Circadian clock organization in the retina: From clock components to rod and cone pathways and visual function. Prog Retin Eye Res 2023; 94:101119. [PMID: 36503722 PMCID: PMC10164718 DOI: 10.1016/j.preteyeres.2022.101119] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 12/13/2022]
Abstract
Circadian (24-h) clocks are cell-autonomous biological oscillators that orchestrate many aspects of our physiology on a daily basis. Numerous circadian rhythms in mammalian and non-mammalian retinas have been observed and the presence of an endogenous circadian clock has been demonstrated. However, how the clock and associated rhythms assemble into pathways that support and control retina function remains largely unknown. Our goal here is to review the current status of our knowledge and evaluate recent advances. We describe many previously-observed retinal rhythms, including circadian rhythms of morphology, biochemistry, physiology, and gene expression. We evaluate evidence concerning the location and molecular machinery of the retinal circadian clock, as well as consider findings that suggest the presence of multiple clocks. Our primary focus though is to describe in depth circadian rhythms in the light responses of retinal neurons with an emphasis on clock control of rod and cone pathways. We examine evidence that specific biochemical mechanisms produce these daily light response changes. We also discuss evidence for the presence of multiple circadian retinal pathways involving rhythms in neurotransmitter activity, transmitter receptors, metabolism, and pH. We focus on distinct actions of two dopamine receptor systems in the outer retina, a dopamine D4 receptor system that mediates circadian control of rod/cone gap junction coupling and a dopamine D1 receptor system that mediates non-circadian, light/dark adaptive regulation of gap junction coupling between horizontal cells. Finally, we evaluate the role of circadian rhythmicity in retinal degeneration and suggest future directions for the field of retinal circadian biology.
Collapse
Affiliation(s)
- Jacob D Bhoi
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA; Neuroscience Honors Research Program, William Marsh Rice University, Houston, TX, USA
| | - Manvi Goel
- Department of Neuroscience, Wexner Medical Center, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Christophe P Ribelayga
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA; Neuroscience Honors Research Program, William Marsh Rice University, Houston, TX, USA.
| | - Stuart C Mangel
- Department of Neuroscience, Wexner Medical Center, College of Medicine, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
12
|
Mouland JW, Watson AJ, Martial FP, Lucas RJ, Brown TM. Colour and melanopsin mediated responses in the murine retina. Front Cell Neurosci 2023; 17:1114634. [PMID: 36993934 PMCID: PMC10040579 DOI: 10.3389/fncel.2023.1114634] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/17/2023] [Indexed: 03/15/2023] Open
Abstract
Introduction: Intrinsically photosensitive retinal ganglion cells (ipRGCs) integrate melanopsin and rod/cone-mediated inputs to signal to the brain. Whilst originally identified as a cell type specialised for encoding ambient illumination, several lines of evidence indicate a strong association between colour discrimination and ipRGC-driven responses. Thus, cone-mediated colour opponent responses have been widely found across ipRGC target regions in the mouse brain and influence a key ipRGC-dependent function, circadian photoentrainment. Although ipRGCs exhibiting spectrally opponent responses have also been identified, the prevalence of such properties have not been systematically evaluated across the mouse retina or yet been found in ipRGC subtypes known to influence the circadian system. Indeed, there is still uncertainty around the overall prevalence of cone-dependent colour opponency across the mouse retina, given the strong retinal gradient in S and M-cone opsin (co)-expression and overlapping spectral sensitivities of most mouse opsins.Methods: To address this, we use photoreceptor isolating stimuli in multielectrode recordings from human red cone opsin knock-in mouse (Opn1mwR) retinas to systematically survey cone mediated responses and the occurrence of colour opponency across ganglion cell layer (GCL) neurons and identify ipRGCs based on spectral comparisons and/or the persistence of light responses under synaptic blockade.Results: Despite detecting robust cone-mediated responses across the retina, we find cone opponency is rare, especially outside of the central retina (overall ~3% of GCL neurons). In keeping with previous suggestions we also see some evidence of rod-cone opponency (albeit even more rare under our experimental conditions), but find no evidence for any enrichment of cone (or rod) opponent responses among functionally identified ipRGCs.Conclusion: In summary, these data suggest the widespread appearance of cone-opponency across the mouse early visual system and ipRGC-related responses may be an emergent feature of central visual processing mechanisms.
Collapse
Affiliation(s)
- Joshua W. Mouland
- Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
- Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
- *Correspondence: Joshua W. Mouland
| | - Alex J. Watson
- Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
- Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Franck P. Martial
- Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
- Division of Neuroscience and Experimental Psychology, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Robert J. Lucas
- Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
- Division of Neuroscience and Experimental Psychology, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Timothy M. Brown
- Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
- Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
13
|
Rodgers J, Hughes S, Lindner M, Allen AE, Ebrahimi AS, Storchi R, Peirson SN, Lucas RJ, Hankins MW. Functional integrity of visual coding following advanced photoreceptor degeneration. Curr Biol 2023; 33:474-486.e5. [PMID: 36630957 DOI: 10.1016/j.cub.2022.12.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/01/2022] [Accepted: 12/09/2022] [Indexed: 01/11/2023]
Abstract
Photoreceptor degeneration sufficient to produce severe visual loss often spares the inner retina. This raises hope for vision restoration treatments using optogenetics or electrical stimulation, which generate a replacement light input signal in surviving neurons. The success of these approaches is dependent on the capacity of surviving circuits of the visual system to generate and propagate an appropriate visual code in the face of neuroanatomical remodeling. To determine whether retinally degenerate animals possess this capacity, we generated a transgenic mouse model expressing the optogenetic actuator ReaChR in ON bipolar cells (second-order neurons in the visual projection). After crossing this with the rd1 model of photoreceptor degeneration, we compared ReaChR-derived responses with photoreceptor-driven responses in wild-type (WT) mice at the level of retinal ganglion cells and the visual thalamus. The ReaChR-driven responses in rd1 animals showed low photosensitivity, but in other respects generated a visual code that was very similar to the WT. ReaChR rd1 responses had high trial-to-trial reproducibility and showed sensitivity normalization to code contrast across background intensities. At the single unit level, ReaChR-derived responses exhibited broadly similar variations in response polarity, contrast sensitivity, and temporal frequency tuning as the WT. Units from the WT and ReaChR rd1 mice clustered together when subjected to unsupervised community detection based on stimulus-response properties. Our data reveal an impressive ability for surviving circuitry to recreate a rich visual code following advanced retinal degeneration and are promising for regenerative medicine in the central nervous system.
Collapse
Affiliation(s)
- Jessica Rodgers
- Faculty of Biology, Medicine & Health, University of Manchester, Upper Brook Street, Manchester M13 9PT, UK
| | - Steven Hughes
- Nuffield Laboratory of Ophthalmology, Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, South Parks Road, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Moritz Lindner
- Nuffield Laboratory of Ophthalmology, Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, South Parks Road, Oxford OX1 3QU, UK; Institute of Physiology and Pathophysiology, Department of Neurophysiology, Philipps University, Deutschhausstr. 1-2, Marburg 35037, Germany
| | - Annette E Allen
- Faculty of Biology, Medicine & Health, University of Manchester, Upper Brook Street, Manchester M13 9PT, UK
| | - Aghileh S Ebrahimi
- Faculty of Biology, Medicine & Health, University of Manchester, Upper Brook Street, Manchester M13 9PT, UK
| | - Riccardo Storchi
- Faculty of Biology, Medicine & Health, University of Manchester, Upper Brook Street, Manchester M13 9PT, UK
| | - Stuart N Peirson
- Nuffield Laboratory of Ophthalmology, Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, South Parks Road, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Robert J Lucas
- Faculty of Biology, Medicine & Health, University of Manchester, Upper Brook Street, Manchester M13 9PT, UK.
| | - Mark W Hankins
- Nuffield Laboratory of Ophthalmology, Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, South Parks Road, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| |
Collapse
|
14
|
Greene E, Morrison J. Evaluating the Talbot-Plateau law. Front Neurosci 2023; 17:1169162. [PMID: 37179545 PMCID: PMC10172486 DOI: 10.3389/fnins.2023.1169162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 04/03/2023] [Indexed: 05/15/2023] Open
Abstract
The Talbot-Plateau law asserts that when the flux (light energy) of a flicker-fused stimulus equals the flux of a steady stimulus, they will appear equal in brightness. To be perceived as flicker-fused, the frequency of the flash sequence must be high enough that no flicker is perceived, i.e., it appears to be a steady stimulus. Generally, this law has been accepted as being true across all brightness levels, and across all combinations of flash duration and frequency that generate the matching flux level. Two experiments that were conducted to test the law found significant departures from its predictions, but these were small relative to the large range of flash intensities that were tested.
Collapse
|
15
|
Abstract
Visual information processing in the retina requires the rhythmic expression of clock genes. The intrinsic retinal circadian clock is independent of the master clock located in the hypothalamic suprachiasmatic nucleus and emerges from retinal cells, including glia. Less clear is how glial oscillators influence the daily regulation of visual information processing in the mouse retina. Here, we demonstrate that the adult conditional deletion of the gene Bmal1 in GLAST-positive glial cells alters retinal physiology. Specifically, such deletion was sufficient to lower the amplitude of the electroretinogram b-wave recorded under light-adapted conditions. Furthermore, recordings from > 20,000 retinal ganglion cells (RGCs), the retina output, showed a non-uniform effect on RGCs activity in response to light across different cell types and over a 24-h period. Overall, our results suggest a new role of a glial circadian gene in adjusting mammalian retinal output throughout the night-day cycle.
Collapse
|
16
|
Stöckl AL, Foster JJ. Night skies through animals' eyes-Quantifying night-time visual scenes and light pollution as viewed by animals. Front Cell Neurosci 2022; 16:984282. [PMID: 36274987 PMCID: PMC9582234 DOI: 10.3389/fncel.2022.984282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/09/2022] [Indexed: 11/13/2022] Open
Abstract
A large proportion of animal species enjoy the benefits of being active at night, and have evolved the corresponding optical and neural adaptations to cope with the challenges of low light intensities. However, over the past century electric lighting has introduced direct and indirect light pollution into the full range of terrestrial habitats, changing nocturnal animals' visual worlds dramatically. To understand how these changes affect nocturnal behavior, we here propose an animal-centered analysis method based on environmental imaging. This approach incorporates the sensitivity and acuity limits of individual species, arriving at predictions of photon catch relative to noise thresholds, contrast distributions, and the orientation cues nocturnal species can extract from visual scenes. This analysis relies on just a limited number of visual system parameters known for each species. By accounting for light-adaptation in our analysis, we are able to make more realistic predictions of the information animals can extract from nocturnal visual scenes under different levels of light pollution. With this analysis method, we aim to provide context for the interpretation of behavioral findings, and to allow researchers to generate specific hypotheses for the behavior of nocturnal animals in observed light-polluted scenes.
Collapse
Affiliation(s)
- Anna Lisa Stöckl
- Department of Biology, University of Konstanz, Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
- Zukunftskolleg, Universität Konstanz, Konstanz, Germany
| | - James Jonathan Foster
- Department of Biology, University of Konstanz, Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
| |
Collapse
|
17
|
Franke K, Willeke KF, Ponder K, Galdamez M, Zhou N, Muhammad T, Patel S, Froudarakis E, Reimer J, Sinz FH, Tolias AS. State-dependent pupil dilation rapidly shifts visual feature selectivity. Nature 2022; 610:128-134. [PMID: 36171291 PMCID: PMC10635574 DOI: 10.1038/s41586-022-05270-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 08/23/2022] [Indexed: 11/09/2022]
Abstract
To increase computational flexibility, the processing of sensory inputs changes with behavioural context. In the visual system, active behavioural states characterized by motor activity and pupil dilation1,2 enhance sensory responses, but typically leave the preferred stimuli of neurons unchanged2-9. Here we find that behavioural state also modulates stimulus selectivity in the mouse visual cortex in the context of coloured natural scenes. Using population imaging in behaving mice, pharmacology and deep neural network modelling, we identified a rapid shift in colour selectivity towards ultraviolet stimuli during an active behavioural state. This was exclusively caused by state-dependent pupil dilation, which resulted in a dynamic switch from rod to cone photoreceptors, thereby extending their role beyond night and day vision. The change in tuning facilitated the decoding of ethological stimuli, such as aerial predators against the twilight sky10. For decades, studies in neuroscience and cognitive science have used pupil dilation as an indirect measure of brain state. Our data suggest that, in addition, state-dependent pupil dilation itself tunes visual representations to behavioural demands by differentially recruiting rods and cones on fast timescales.
Collapse
Affiliation(s)
- Katrin Franke
- Institute for Ophthalmic Research, Tübingen University, Tübingen, Germany.
- Center for Integrative Neuroscience, Tübingen University, Tübingen, Germany.
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA.
| | - Konstantin F Willeke
- Institute for Bioinformatics and Medical Informatics, Tübingen University, Tübingen, Germany
- Department of Computer Science, Göttingen University, Göttingen, Germany
| | - Kayla Ponder
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
| | - Mario Galdamez
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
| | - Na Zhou
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
| | - Taliah Muhammad
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
| | - Saumil Patel
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
| | - Emmanouil Froudarakis
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Heraklion, Greece
| | - Jacob Reimer
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
| | - Fabian H Sinz
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
- Institute for Bioinformatics and Medical Informatics, Tübingen University, Tübingen, Germany
- Department of Computer Science, Göttingen University, Göttingen, Germany
| | - Andreas S Tolias
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
| |
Collapse
|
18
|
Goldin MA, Lefebvre B, Virgili S, Pham Van Cang MK, Ecker A, Mora T, Ferrari U, Marre O. Context-dependent selectivity to natural images in the retina. Nat Commun 2022; 13:5556. [PMID: 36138007 PMCID: PMC9499945 DOI: 10.1038/s41467-022-33242-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 09/08/2022] [Indexed: 11/09/2022] Open
Abstract
Retina ganglion cells extract specific features from natural scenes and send this information to the brain. In particular, they respond to local light increase (ON responses), and/or decrease (OFF). However, it is unclear if this ON-OFF selectivity, characterized with synthetic stimuli, is maintained under natural scene stimulation. Here we recorded ganglion cell responses to natural images slightly perturbed by random noise patterns to determine their selectivity during natural stimulation. The ON-OFF selectivity strongly depended on the specific image. A single ganglion cell can signal luminance increase for one image, and luminance decrease for another. Modeling and experiments showed that this resulted from the non-linear combination of different retinal pathways. Despite the versatility of the ON-OFF selectivity, a systematic analysis demonstrated that contrast was reliably encoded in these responses. Our perturbative approach uncovered the selectivity of retinal ganglion cells to more complex features than initially thought. Ganglion cells classically respond to either light increase (ON) or decrease (OFF). Here, the authors show that during natural scene stimulation, a single ganglion cell can switch between ON and OFF depending on the visual context.
Collapse
Affiliation(s)
- Matías A Goldin
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France.
| | - Baptiste Lefebvre
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France.,Laboratoire de physique de l'Ecole normale supérieure, CNRS, PSL University, Sorbonne University, and University of Paris, Paris, France
| | - Samuele Virgili
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France
| | - Mathieu Kim Pham Van Cang
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France.,Institut de l'Audition, Institut Pasteur, INSERM, Paris, France
| | - Alexander Ecker
- Institute of Computer Science and Campus Institute Data Science, University of Göttingen, Göttingen, Germany
| | - Thierry Mora
- Laboratoire de physique de l'Ecole normale supérieure, CNRS, PSL University, Sorbonne University, and University of Paris, Paris, France
| | - Ulisse Ferrari
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France
| | - Olivier Marre
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France.
| |
Collapse
|
19
|
Goetz J, Jessen ZF, Jacobi A, Mani A, Cooler S, Greer D, Kadri S, Segal J, Shekhar K, Sanes JR, Schwartz GW. Unified classification of mouse retinal ganglion cells using function, morphology, and gene expression. Cell Rep 2022; 40:111040. [PMID: 35830791 PMCID: PMC9364428 DOI: 10.1016/j.celrep.2022.111040] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 01/27/2022] [Accepted: 06/13/2022] [Indexed: 11/24/2022] Open
Abstract
Classification and characterization of neuronal types are critical for understanding their function and dysfunction. Neuronal classification schemes typically rely on measurements of electrophysiological, morphological, and molecular features, but aligning such datasets has been challenging. Here, we present a unified classification of mouse retinal ganglion cells (RGCs), the sole retinal output neurons. We use visually evoked responses to classify 1,859 mouse RGCs into 42 types. We also obtain morphological or transcriptomic data from subsets and use these measurements to align the functional classification to publicly available morphological and transcriptomic datasets. We create an online database that allows users to browse or download the data and to classify RGCs from their light responses using a machine learning algorithm. This work provides a resource for studies of RGCs, their upstream circuits in the retina, and their projections in the brain, and establishes a framework for future efforts in neuronal classification and open data distribution.
Collapse
Affiliation(s)
- Jillian Goetz
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Zachary F Jessen
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Northwestern University Interdepartmental Neuroscience Program, Northwestern University, Evanston, IL, USA; Medical Scientist Training Program, Northwestern University, Chicago, IL, USA
| | - Anne Jacobi
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Adam Mani
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Sam Cooler
- Northwestern University Interdepartmental Neuroscience Program, Northwestern University, Evanston, IL, USA
| | - Devon Greer
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Northwestern University Interdepartmental Neuroscience Program, Northwestern University, Evanston, IL, USA
| | - Sabah Kadri
- Department of Pathology, Pritzker School of Medicine, University of Chicago, Chicago, IL, USA
| | - Jeremy Segal
- Department of Pathology, Pritzker School of Medicine, University of Chicago, Chicago, IL, USA
| | - Karthik Shekhar
- Department of Chemical and Biomolecular Engineering and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA
| | - Joshua R Sanes
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Gregory W Schwartz
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
20
|
Idrees S, Baumann MP, Korympidou MM, Schubert T, Kling A, Franke K, Hafed ZM, Franke F, Münch TA. Suppression without inhibition: how retinal computation contributes to saccadic suppression. Commun Biol 2022; 5:692. [PMID: 35821404 PMCID: PMC9276698 DOI: 10.1038/s42003-022-03526-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 05/23/2022] [Indexed: 11/08/2022] Open
Abstract
Visual perception remains stable across saccadic eye movements, despite the concurrent strongly disruptive visual flow. This stability is partially associated with a reduction in visual sensitivity, known as saccadic suppression, which already starts in the retina with reduced ganglion cell sensitivity. However, the retinal circuit mechanisms giving rise to such suppression remain unknown. Here, we describe these mechanisms using electrophysiology in mouse, pig, and macaque retina, 2-photon calcium imaging, computational modeling, and human psychophysics. We find that sequential stimuli, like those that naturally occur during saccades, trigger three independent suppressive mechanisms in the retina. The main mechanism is triggered by contrast-reversing sequential stimuli and originates within the receptive field center of ganglion cells. It does not involve inhibition or other known suppressive mechanisms like saturation or adaptation. Instead, it relies on temporal filtering of the inherently slow response of cone photoreceptors coupled with downstream nonlinearities. Two further mechanisms of suppression are present predominantly in ON ganglion cells and originate in the receptive field surround, highlighting another disparity between ON and OFF ganglion cells. The mechanisms uncovered here likely play a role in shaping the retinal output following eye movements and other natural viewing conditions where sequential stimulation is ubiquitous.
Collapse
Affiliation(s)
- Saad Idrees
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, 72076, Tübingen, Germany
- International Max Planck Research School, University of Tübingen, 72074, Tübingen, Germany
- Center for Vision Research, York University, Toronto, ON, M3J 1P3, Canada
| | - Matthias-Philipp Baumann
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, 72076, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, University of Tübingen, 72076, Tübingen, Germany
| | - Maria M Korympidou
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, 72076, Tübingen, Germany
- International Max Planck Research School, University of Tübingen, 72074, Tübingen, Germany
- Institute for Ophthalmic Research, University of Tübingen, 72076, Tübingen, Germany
| | - Timm Schubert
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, 72076, Tübingen, Germany
- Institute for Ophthalmic Research, University of Tübingen, 72076, Tübingen, Germany
| | - Alexandra Kling
- Department of Neurosurgery, Stanford School of Medicine, Stanford, CA, 94305, USA
| | - Katrin Franke
- Institute for Ophthalmic Research, University of Tübingen, 72076, Tübingen, Germany
- Bernstein Center for Computational Neuroscience, University of Tübingen, 72076, Tübingen, Germany
| | - Ziad M Hafed
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, 72076, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, University of Tübingen, 72076, Tübingen, Germany
| | - Felix Franke
- Bio Engineering Laboratory, ETH Zürich, 4058, Basel, Switzerland.
- Institute of Molecular and Clinical Ophthalmology Basel, 4031, Basel, Switzerland.
- Faculty of Science, University of Basel, 4056, Basel, Switzerland.
| | - Thomas A Münch
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, 72076, Tübingen, Germany.
- Institute for Ophthalmic Research, University of Tübingen, 72076, Tübingen, Germany.
| |
Collapse
|
21
|
Joyce DS, Spitschan M, Zeitzer JM. Duration invariance and intensity dependence of the human circadian system phase shifting response to brief light flashes. Proc Biol Sci 2022; 289:20211943. [PMID: 35259981 PMCID: PMC8905166 DOI: 10.1098/rspb.2021.1943] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 02/14/2022] [Indexed: 01/09/2023] Open
Abstract
The melanopsin-containing intrinsically photosensitive retinal ganglion cells (ipRGCs) are characterized by a delayed off-time following the cessation of light stimulation. Here, we exploited this unusual physiologic property to characterize the exquisite sensitivity of the human circadian system to flashed light. In a 34 h in-laboratory between-subjects design, we examined phase shifting in response to variable-intensity (3-9500 photopic lux) flashes at fixed duration (2 ms; n = 28 participants) and variable-duration (10 µs-10 s) flashes at fixed intensity (2000 photopic lux; n = 31 participants). Acute melatonin suppression, objective alertness and subjective sleepiness during the flash sequence were also assessed. We find a dose-response relationship between flash intensity and circadian phase shift, with an indication of a possible threshold-like behaviour. We find a slight parametric relationship between flash duration and circadian phase shift. Consistent with prior studies, we observe no dose-response relationship to either flash intensity or duration and the acute impact of light on melatonin suppression, objective alertness or subjective sleepiness. Our findings are consistent with circadian responses to a sequence of flashes being mediated by rod or cone photoreceptors via ipRGC integration.
Collapse
Affiliation(s)
- Daniel S. Joyce
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Mental Illness Research Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA, USA
- Department of Psychology, University of Nevada Reno, Reno, NV, USA
| | - Manuel Spitschan
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Translational Sensory and Circadian Neuroscience, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- TUM Department of Sport and Health Sciences (TUM SG), Technical University of Munich, Munich, Germany
| | - Jamie M. Zeitzer
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Mental Illness Research Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA, USA
| |
Collapse
|
22
|
Niu X, Huang S, Zhu M, Wang Z, Shi L. Surround Modulation Properties of Tectal Neurons in Pigeons Characterized by Moving and Flashed Stimuli. Animals (Basel) 2022; 12:ani12040475. [PMID: 35203185 PMCID: PMC8868286 DOI: 10.3390/ani12040475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Surround modulation is a basic visual attribute of sensory neurons in many species and has been extensively characterized in mammal primary visual cortex, lateral geniculate nucleus, and superior colliculus. Little attention has been paid to birds, which have a highly developed visual system. We undertook a systematic analysis on surround modulation properties of tectal neurons in pigeons (Columba livia). This study complements existing studies on surrounding modulation properties in non-mammalian species and deepens the understanding of mechanisms of figure–background segmentation performed by avians. Abstract Surround modulation has been abundantly studied in several mammalian brain areas, including the primary visual cortex, lateral geniculate nucleus, and superior colliculus (SC), but systematic analysis is lacking in the avian optic tectum (OT, homologous to mammal SC). Here, multi-units were recorded from pigeon (Columba livia) OT, and responses to different sizes of moving, flashed squares, and bars were compared. The statistical results showed that most tectal neurons presented suppressed responses to larger stimuli in both moving and flashed paradigms, and suppression induced by flashed squares was comparable with moving ones when the stimuli center crossed the near classical receptive field (CRF) center, which corresponded to the full surrounding condition. Correspondingly, the suppression grew weaker when the stimuli center moved across the CRF border, equivalent to partially surrounding conditions. Similarly, suppression induced by full surrounding flashed squares was more intense than by partially surrounding flashed bars. These results suggest that inhibitions performed on tectal neurons appear to be full surrounding rather than locally lateral. This study enriches the understanding of surround modulation properties of avian tectum neurons and provides possible hypotheses about the arrangement of inhibitions from other nuclei, both of which are important for clarifying the mechanism of target detection against clutter background performed by avians.
Collapse
Affiliation(s)
- Xiaoke Niu
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China; (X.N.); (S.H.); (M.Z.); (Z.W.)
| | - Shuman Huang
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China; (X.N.); (S.H.); (M.Z.); (Z.W.)
| | - Minjie Zhu
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China; (X.N.); (S.H.); (M.Z.); (Z.W.)
| | - Zhizhong Wang
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China; (X.N.); (S.H.); (M.Z.); (Z.W.)
| | - Li Shi
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China; (X.N.); (S.H.); (M.Z.); (Z.W.)
- Department of Automation, Tsinghua University, Beijing 100084, China
- Correspondence:
| |
Collapse
|
23
|
Ichinose T, Habib S. ON and OFF Signaling Pathways in the Retina and the Visual System. FRONTIERS IN OPHTHALMOLOGY 2022; 2:989002. [PMID: 36926308 PMCID: PMC10016624 DOI: 10.3389/fopht.2022.989002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Visual processing starts at the retina of the eye, and signals are then transferred primarily to the visual cortex and the tectum. In the retina, multiple neural networks encode different aspects of visual input, such as color and motion. Subsequently, multiple neural streams in parallel convey unique aspects of visual information to cortical and subcortical regions. Bipolar cells, which are the second order neurons of the retina, separate visual signals evoked by light and dark contrasts and encode them to ON and OFF pathways, respectively. The interplay between ON and OFF neural signals is the foundation for visual processing for object contrast which underlies higher order stimulus processing. ON and OFF pathways have been classically thought to signal in a mirror-symmetric manner. However, while these two pathways contribute synergistically to visual perception in some instances, they have pronounced asymmetries suggesting independent operation in other cases. In this review, we summarize the role of the ON-OFF dichotomy in visual signaling, aiming to contribute to the understanding of visual recognition.
Collapse
Affiliation(s)
- Tomomi Ichinose
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, USA
- Correspondence: Tomomi Ichinose, MD, PhD,
| | - Samar Habib
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Medical Parasitology, Mansoura Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
24
|
Flood MD, Eggers ED. Dopamine D1 and D4 receptors contribute to light adaptation in ON-sustained retinal ganglion cells. J Neurophysiol 2021; 126:2039-2052. [PMID: 34817291 PMCID: PMC8715048 DOI: 10.1152/jn.00218.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 11/08/2021] [Accepted: 11/19/2021] [Indexed: 01/21/2023] Open
Abstract
The adaptation of ganglion cells to increasing light levels is a crucial property of the retina. The retina must respond to light intensities that vary by 10-12 orders of magnitude, but the dynamic range of ganglion cell responses covers only ∼3 orders of magnitude. Dopamine is a crucial neuromodulator for light adaptation and activates receptors in the D1 and D2 families. Dopamine type D1 receptors (D1Rs) are expressed on horizontal cells and some bipolar, amacrine, and ganglion cells. In the D2 family, D2Rs are expressed on dopaminergic amacrine cells and D4Rs are primarily expressed on photoreceptors. However, the roles of activating these receptors to modulate the synaptic properties of the inputs to ganglion cells are not yet clear. Here, we used single-cell retinal patch-clamp recordings from the mouse retina to determine how activating D1Rs and D4Rs changed the light-evoked and spontaneous excitatory inputs to ON-sustained (ON-s) ganglion cells. We found that both D1R and D4R activation decrease the light-evoked excitatory inputs to ON-s ganglion cells, but that only the sum of the peak response decrease due to activating the two receptors was similar to the effect of light adaptation to a rod-saturating background. The largest effects on spontaneous excitatory activity of both D1R and D4R agonists was on the frequency of events, suggesting that both D1Rs and D4Rs are acting upstream of the ganglion cells.NEW & NOTEWORTHY Dopamine by bright light conditions allows retinal neurons to reduce sensitivity to adapt to bright light conditions. It is not clear how and why dopamine receptors modulate retinal ganglion cell signaling. We found that both D1 and D4 dopamine receptors in photoreceptors and inner retinal neurons contribute significantly to the reduction in sensitivity of ganglion cells with light adaptation. However, light adaptation also requires dopamine-independent mechanisms that could reflect inherent sensitivity changes in photoreceptors.
Collapse
Affiliation(s)
- Michael D Flood
- Department of Physiology, University of Arizona, Tucson, Arizona
- Department Biomedical Engineering, University of Arizona, Tucson, Arizona
| | - Erika D Eggers
- Department of Physiology, University of Arizona, Tucson, Arizona
- Department Biomedical Engineering, University of Arizona, Tucson, Arizona
| |
Collapse
|
25
|
Safarian N, Houshangi-Tabrizi S, Zoidl C, Zoidl GR. Panx1b Modulates the Luminance Response and Direction of Locomotion in the Zebrafish. Int J Mol Sci 2021; 22:ijms222111750. [PMID: 34769181 PMCID: PMC8584175 DOI: 10.3390/ijms222111750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/22/2021] [Accepted: 10/23/2021] [Indexed: 12/29/2022] Open
Abstract
Pannexin1 (Panx1) can form ATP-permeable channels that play roles in the physiology of the visual system. In the zebrafish two ohnologs of Panx1, Panx1a and Panx1b, have unique and shared channel properties and tissue expression patterns. Panx1a channels are located in horizontal cells of the outer retina and modulate light decrement detection through an ATP/pH-dependent mechanisms and adenosine/dopamine signaling. Here, we decipher how the strategic localization of Panx1b channels in the inner retina and ganglion cell layer modulates visually evoked motor behavior. We describe a panx1b knockout model generated by TALEN technology. The RNA-seq analysis of 6 days post-fertilization larvae is confirmed by real-time PCR and paired with testing of locomotion behaviors by visual motor and optomotor response tests. We show that the loss of Panx1b channels disrupts the retinal response to an abrupt loss of illumination and it decreases the larval ability to follow leftward direction of locomotion in low light conditions. We concluded that the loss of Panx1b channels compromises the final output of luminance as well as motion detection. The Panx1b protein also emerges as a modulator of the circadian clock system. The disruption of the circadian clock system in mutants suggests that Panx1b could participate in non-image forming processes in the inner retina.
Collapse
Affiliation(s)
- Nickie Safarian
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada; (N.S.); (S.H.-T.); (C.Z.)
- Center of Vision Research, York University, Toronto, ON M3J 1P3, Canada
| | - Sarah Houshangi-Tabrizi
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada; (N.S.); (S.H.-T.); (C.Z.)
| | - Christiane Zoidl
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada; (N.S.); (S.H.-T.); (C.Z.)
- Center of Vision Research, York University, Toronto, ON M3J 1P3, Canada
| | - Georg R. Zoidl
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada; (N.S.); (S.H.-T.); (C.Z.)
- Center of Vision Research, York University, Toronto, ON M3J 1P3, Canada
- Correspondence:
| |
Collapse
|
26
|
Herzog R, Morales A, Mora S, Araya J, Escobar MJ, Palacios AG, Cofré R. Scalable and accurate method for neuronal ensemble detection in spiking neural networks. PLoS One 2021; 16:e0251647. [PMID: 34329314 PMCID: PMC8323916 DOI: 10.1371/journal.pone.0251647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 04/29/2021] [Indexed: 11/19/2022] Open
Abstract
We propose a novel, scalable, and accurate method for detecting neuronal ensembles from a population of spiking neurons. Our approach offers a simple yet powerful tool to study ensemble activity. It relies on clustering synchronous population activity (population vectors), allows the participation of neurons in different ensembles, has few parameters to tune and is computationally efficient. To validate the performance and generality of our method, we generated synthetic data, where we found that our method accurately detects neuronal ensembles for a wide range of simulation parameters. We found that our method outperforms current alternative methodologies. We used spike trains of retinal ganglion cells obtained from multi-electrode array recordings under a simple ON-OFF light stimulus to test our method. We found a consistent stimuli-evoked ensemble activity intermingled with spontaneously active ensembles and irregular activity. Our results suggest that the early visual system activity could be organized in distinguishable functional ensembles. We provide a Graphic User Interface, which facilitates the use of our method by the scientific community.
Collapse
Affiliation(s)
- Rubén Herzog
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Arturo Morales
- Departamento de Electrónica, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Soraya Mora
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
- Laboratorio de Biología Computacional, Fundación Ciencia y Vida, Santiago, Chile
| | - Joaquín Araya
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Escuela de Tecnología Médica, Facultad de Salud, Universidad Santo Tomás, Santiago, Chile
| | - María-José Escobar
- Departamento de Electrónica, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Adrian G. Palacios
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Rodrigo Cofré
- CIMFAV Ingemat, Facultad de Ingeniería, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
27
|
Abstract
The ability to adapt to changes in stimulus statistics is a hallmark of sensory systems. Here, we developed a theoretical framework that can account for the dynamics of adaptation from an information processing perspective. We use this framework to optimize and analyze adaptive sensory codes, and we show that codes optimized for stationary environments can suffer from prolonged periods of poor performance when the environment changes. To mitigate the adversarial effects of these environmental changes, sensory systems must navigate tradeoffs between the ability to accurately encode incoming stimuli and the ability to rapidly detect and adapt to changes in the distribution of these stimuli. We derive families of codes that balance these objectives, and we demonstrate their close match to experimentally observed neural dynamics during mean and variance adaptation. Our results provide a unifying perspective on adaptation across a range of sensory systems, environments, and sensory tasks.
Collapse
|
28
|
Tang R, Chen W, Wang Y. Different roles of subcortical inputs in V1 responses to luminance and contrast. Eur J Neurosci 2021; 53:3710-3726. [PMID: 33848389 DOI: 10.1111/ejn.15233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 04/02/2021] [Accepted: 04/09/2021] [Indexed: 01/01/2023]
Abstract
Cells in the primary visual cortex (V1) generally respond weakly to large uniform luminance stimuli. Only a subset of V1 cells is thought to encode uniform luminance information. In natural scenes, local luminance is an important feature for defining an object that varies and coexists with local spatial contrast. However, the strategies used by V1 cells to encode local mean luminance for spatial contrast stimuli remain largely unclear. Here, using extracellular recordings in anesthetized cats, we investigated the responses of V1 cells by comparing with those of retinal ganglion (RG) cells and lateral geniculate nucleus (LGN) cells to simultaneous and rapid changes in luminance and spatial contrast. Almost all V1 cells exhibited a strong monotonic increasing luminance tuning when they were exposed to high spatial contrast. Thus, V1 cells encode the luminance carried by spatial contrast stimuli with the monotonically increasing response function. Moreover, high contrast decreased luminance tuning of OFF cells but increased that of in ON cells in RG and LGN. The luminance and contrast tunings of LGN ON cells were highly separable as V1 cells, whereas those of LGN OFF cells were lowly separable. These asymmetrical effects of spatial contrast on ON/OFF channels might underlie the robust ability of V1 cells to perform luminance tuning when exposed to spatial contrast stimuli.
Collapse
Affiliation(s)
- Rendong Tang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wenzhen Chen
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yi Wang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
29
|
Tao X, Sabharwal J, Wu SM, Frankfort BJ. Intraocular Pressure Elevation Compromises Retinal Ganglion Cell Light Adaptation. Invest Ophthalmol Vis Sci 2021; 61:15. [PMID: 33064129 PMCID: PMC7571289 DOI: 10.1167/iovs.61.12.15] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Purpose Functional adaptation to ambient light is a key characteristic of retinal ganglion cells (RGCs), but little is known about how adaptation is affected by factors that are harmful to RGC health. We explored adaptation-induced changes to RGC physiology when exposed to increased intraocular pressure (IOP), a major risk factor for glaucoma. Methods Wild-type mice of both sexes were subjected to 2 weeks of IOP elevation using the bead model. Retinas were assessed using a multielectrode array to record RGC responses to checkerboard white noise stimulation under both scotopic and photopic light levels. This information was used to calculate a spike-triggered average (STA) for each RGC with which to compare between lighting levels. Results Low but not high IOP elevation resulted in several distinct RGC functional changes: (1) diminished adaptation-dependent receptive field (RF) center-surround interactions; (2) increased likelihood of a scotopic STA; and (3) increased spontaneous firing rate. Center RF size change with lighting level varied among RGCs, and both the center and surround STA peak times were consistently increased under scotopic illumination, although none of these properties were impacted by IOP level. Conclusions These findings provide novel evidence that RGCs exhibit reduced light-dependent adaptation and increased excitability when IOP is elevated to low but not high levels. These results may reveal functional changes that occur early in glaucoma, which can potentially be used to identify patients with glaucoma at earlier stages when intervention is most beneficial.
Collapse
Affiliation(s)
- Xiaofeng Tao
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
| | - Jasdeep Sabharwal
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States.,Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States
| | - Samuel M Wu
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States.,Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States
| | - Benjamin J Frankfort
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States.,Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States
| |
Collapse
|
30
|
Wang Q, Banerjee S, So C, Qiu C, Sze Y, Lam TC, To CH, Pan F. The Effect of Low-Dose Atropine on Alpha Ganglion Cell Signaling in the Mouse Retina. Front Cell Neurosci 2021; 15:664491. [PMID: 34025362 PMCID: PMC8131517 DOI: 10.3389/fncel.2021.664491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/24/2021] [Indexed: 11/23/2022] Open
Abstract
Low-dose atropine helps to control myopia progression with few side effects. However, the impact of atropine, a non-selective muscarinic Acetylcholine (ACh) receptor antagonist, on retinal ganglion cells (RGCs) remains unclear. After immersing the cornea and adjacent conjunctiva of enucleated eyes in 0.05% (approximately 800 μM) atropine solution for 30 min, the atropine concentration reached in the retina was below 2 μM. After direct superfusion of the retina with 1 μM atropine (considering that the clinical application of 0.05% atropine eye drops will be diluted over time due to tear flow for 30 min), no noticeable changes in the morphology of ON and OFF alpha RGCs (αRGCs) were observed. Atropine affected the light-evoked responses of ON and OFF αRGCs in a dose- and time-dependent fashion. Direct application of less than 100 μM atropine on the retina did not affect light-evoked responses. The time latency of light-induced responses of ON or OFF αRGCs did not change after the application of 0.05–100 μM atropine for 5 min. However, 50 μM atropine extended the threshold of joint inter-spike interval (ISI) distribution of the RGCs. These results indicated that low-dose atropine (<0.5 μM; equal to 1% atropine topical application) did not interfere with spike frequency, the pattern of synchronized firing between OFF αRGCs, or the threshold of joint ISI distribution of αRGCs. The application of atropine unmasked inhibition to induce ON responses from certain OFF RGCs, possibly via the GABAergic pathway, potentially affecting visual information processing.
Collapse
Affiliation(s)
- Qin Wang
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Seema Banerjee
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - ChungHim So
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - ChunTing Qiu
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - YingHon Sze
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Thomas Chuen Lam
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong.,Centre for Eye and Vision Research, Hong Kong, Hong Kong
| | - Chi-Ho To
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong.,Centre for Eye and Vision Research, Hong Kong, Hong Kong
| | - Feng Pan
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong.,Centre for Eye and Vision Research, Hong Kong, Hong Kong
| |
Collapse
|
31
|
Mouland JW, Martial FP, Lucas RJ, Brown TM. Modulations in irradiance directed at melanopsin, but not cone photoreceptors, reliably alter electrophysiological activity in the suprachiasmatic nucleus and circadian behaviour in mice. J Pineal Res 2021; 70:e12735. [PMID: 33793975 DOI: 10.1111/jpi.12735] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 03/23/2021] [Indexed: 12/25/2022]
Abstract
Intrinsically photosensitive retinal ganglion cells convey intrinsic, melanopsin-based, photoreceptive signals alongside those produced by rods and cones to the suprachiasmatic nucleus (SCN) circadian clock. To date, experimental data suggest that melanopsin plays a more significant role in measuring ambient light intensity than cone photoreception. Such studies have overwhelmingly used diffuse light stimuli, whereas light intensity in the world around us varies across space and time. Here, we investigated the extent to which melanopsin or cone signals support circadian irradiance measurements in the presence of naturalistic spatiotemporal variations in light intensity. To address this, we first presented high- and low-contrast movies to anaesthetised mice whilst recording extracellular electrophysiological activity from the SCN. Using a mouse line with altered cone sensitivity (Opn1mwR mice) and multispectral light sources we then selectively varied irradiance of the movies for specific photoreceptor classes. We found that steps in melanopic irradiance largely account for the light induced-changes in SCN activity over a range of starting light intensities and in the presence of spatiotemporal modulation. By contrast, cone-directed changes in irradiance only influenced SCN activity when spatiotemporal contrast was low. Consistent with these findings, under housing conditions where we could independently adjust irradiance for melanopsin versus cones, the period lengthening effects of constant light on circadian rhythms in behaviour were reliably determined by melanopic irradiance, regardless of irradiance for cones. These data add to the growing evidence that modulating effective irradiance for melanopsin is an effective strategy for controlling the circadian impact of light.
Collapse
Affiliation(s)
- Josh W Mouland
- Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
- Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Franck P Martial
- Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
- Division of Neuroscience and Experimental Psychology, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Robert J Lucas
- Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
- Division of Neuroscience and Experimental Psychology, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Timothy M Brown
- Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
- Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
32
|
Röth K, Shao S, Gjorgjieva J. Efficient population coding depends on stimulus convergence and source of noise. PLoS Comput Biol 2021; 17:e1008897. [PMID: 33901195 PMCID: PMC8075262 DOI: 10.1371/journal.pcbi.1008897] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 03/19/2021] [Indexed: 11/30/2022] Open
Abstract
Sensory organs transmit information to downstream brain circuits using a neural code comprised of spikes from multiple neurons. According to the prominent efficient coding framework, the properties of sensory populations have evolved to encode maximum information about stimuli given biophysical constraints. How information coding depends on the way sensory signals from multiple channels converge downstream is still unknown, especially in the presence of noise which corrupts the signal at different points along the pathway. Here, we calculated the optimal information transfer of a population of nonlinear neurons under two scenarios. First, a lumped-coding channel where the information from different inputs converges to a single channel, thus reducing the number of neurons. Second, an independent-coding channel when different inputs contribute independent information without convergence. In each case, we investigated information loss when the sensory signal was corrupted by two sources of noise. We determined critical noise levels at which the optimal number of distinct thresholds of individual neurons in the population changes. Comparing our system to classical physical systems, these changes correspond to first- or second-order phase transitions for the lumped- or the independent-coding channel, respectively. We relate our theoretical predictions to coding in a population of auditory nerve fibers recorded experimentally, and find signatures of efficient coding. Our results yield important insights into the diverse coding strategies used by neural populations to optimally integrate sensory stimuli in the presence of distinct sources of noise.
Collapse
Affiliation(s)
- Kai Röth
- Computation in Neural Circuits Group, Max Planck Institute for Brain Research, Frankfurt, Germany
- School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Shuai Shao
- Computation in Neural Circuits Group, Max Planck Institute for Brain Research, Frankfurt, Germany
- Donders Institute and Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Julijana Gjorgjieva
- Computation in Neural Circuits Group, Max Planck Institute for Brain Research, Frankfurt, Germany
- School of Life Sciences, Technical University of Munich, Freising, Germany
| |
Collapse
|
33
|
Pottackal J, Walsh HL, Rahmani P, Zhang K, Justice NJ, Demb JB. Photoreceptive Ganglion Cells Drive Circuits for Local Inhibition in the Mouse Retina. J Neurosci 2021; 41:1489-1504. [PMID: 33397711 PMCID: PMC7896016 DOI: 10.1523/jneurosci.0674-20.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 11/11/2020] [Accepted: 12/18/2020] [Indexed: 12/22/2022] Open
Abstract
Intrinsically photosensitive retinal ganglion cells (ipRGCs) exhibit melanopsin-dependent light responses that persist in the absence of rod and cone photoreceptor-mediated input. In addition to signaling anterogradely to the brain, ipRGCs signal retrogradely to intraretinal circuitry via gap junction-mediated electrical synapses with amacrine cells (ACs). However, the targets and functions of these intraretinal signals remain largely unknown. Here, in mice of both sexes, we identify circuitry that enables M5 ipRGCs to locally inhibit retinal neurons via electrical synapses with a nonspiking GABAergic AC. During pharmacological blockade of rod- and cone-mediated input, whole-cell recordings of corticotropin-releasing hormone-expressing (CRH+) ACs reveal persistent visual responses that require both melanopsin expression and gap junctions. In the developing retina, ipRGC-mediated input to CRH+ ACs is weak or absent before eye opening, indicating a primary role for this input in the mature retina (i.e., in parallel with rod- and cone-mediated input). Among several ipRGC types, only M5 ipRGCs exhibit consistent anatomical and physiological coupling to CRH+ ACs. Optogenetic stimulation of local CRH+ ACs directly drives IPSCs in M4 and M5, but not M1-M3, ipRGCs. CRH+ ACs also inhibit M2 ipRGC-coupled spiking ACs, demonstrating direct interaction between discrete networks of ipRGC-coupled interneurons. Together, these results demonstrate a functional role for electrical synapses in translating ipRGC activity into feedforward and feedback inhibition of local retinal circuits.SIGNIFICANCE STATEMENT Melanopsin directly generates light responses in intrinsically photosensitive retinal ganglion cells (ipRGCs). Through gap junction-mediated electrical synapses with retinal interneurons, these uniquely photoreceptive RGCs may also influence the activity and output of neuronal circuits within the retina. Here, we identified and studied an electrical synaptic circuit that, in principle, could couple ipRGC activity to the chemical output of an identified retinal interneuron. Specifically, we found that M5 ipRGCs form electrical synapses with corticotropin-releasing hormone-expressing amacrine cells, which locally release GABA to inhibit specific RGC types. Thus, ipRGCs are poised to influence the output of diverse retinal circuits via electrical synapses with interneurons.
Collapse
Affiliation(s)
| | | | | | | | - Nicholas J Justice
- Institute of Molecular Medicine, University of Texas Health Science Center, Houston, Texas 77030
| | - Jonathan B Demb
- Interdepartmental Neuroscience Program
- Department of Ophthalmology and Visual Science
- Department of Cellular and Molecular Physiology
- Department of Neuroscience, Yale University, New Haven, Connecticut 06511
| |
Collapse
|
34
|
Abstract
The retinal output is the sole source of visual information for the brain. Studies in non-primate mammals estimate that this information is carried by several dozens of retinal ganglion cell types, each informing the brain about different aspects of a visual scene. Even though morphological studies of primate retina suggest a similar diversity of ganglion cell types, research has focused on the function of only a few cell types. In human retina, recordings from individual cells are anecdotal or focus on a small subset of identified types. Here, we present the first systematic ex-vivo recording of light responses from 342 ganglion cells in human retinas obtained from donors. We find a great variety in the human retinal output in terms of preferences for positive or negative contrast, spatio-temporal frequency encoding, contrast sensitivity, and speed tuning. Some human ganglion cells showed similar response behavior as known cell types in other primate retinas, while we also recorded light responses that have not been described previously. This first extensive description of the human retinal output should facilitate interpretation of primate data and comparison to other mammalian species, and it lays the basis for the use of ex-vivo human retina for in-vitro analysis of novel treatment approaches.
Collapse
|
35
|
Function of cone and cone-related pathways in Ca V1.4 IT mice. Sci Rep 2021; 11:2732. [PMID: 33526839 PMCID: PMC7851161 DOI: 10.1038/s41598-021-82210-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 01/11/2021] [Indexed: 11/09/2022] Open
Abstract
CaV1.4 L-type calcium channels are predominantly expressed in photoreceptor terminals playing a crucial role for synaptic transmission and, consequently, for vision. Human mutations in the encoding gene are associated with congenital stationary night blindness type-2. Besides rod-driven scotopic vision also cone-driven photopic responses are severely affected in patients. The present study therefore examined functional and morphological changes in cones and cone-related pathways in mice carrying the CaV1.4 gain-of function mutation I756T (CaV1.4-IT) using multielectrode array, patch-clamp and immunohistochemical analyses. CaV1.4-IT ganglion cell responses to photopic stimuli were seen only in a small fraction of cells indicative of a major impairment in the cone pathway. Though cone photoreceptors underwent morphological rearrangements, they retained their ability to release glutamate. Our functional data suggested a postsynaptic cone bipolar cell defect, supported by the fact that the majority of cone bipolar cells showed sprouting, while horizontal cells maintained contacts with cones and cone-to-horizontal cell input was preserved. Furthermore a reduction of basal Ca2+ influx by a calcium channel blocker was not sufficient to rescue synaptic transmission deficits caused by the CaV1.4-IT mutation. Long term treatments with low-dose Ca2+ channel blockers might however be beneficial reducing Ca2+ toxicity without major effects on ganglion cells responses.
Collapse
|
36
|
Orlowska-Feuer P, Smyk MK, Alwani A, Lewandowski MH. Neuronal Responses to Short Wavelength Light Deficiency in the Rat Subcortical Visual System. Front Neurosci 2021; 14:615181. [PMID: 33488355 PMCID: PMC7815651 DOI: 10.3389/fnins.2020.615181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/08/2020] [Indexed: 12/26/2022] Open
Abstract
The amount and spectral composition of light changes considerably during the day, with dawn and dusk being the most crucial moments when light is within the mesopic range and short wavelength enriched. It was recently shown that animals use both cues to adjust their internal circadian clock, thereby their behavior and physiology, with the solar cycle. The role of blue light in circadian processes and neuronal responses is well established, however, an unanswered question remains: how do changes in the spectral composition of light (short wavelengths blocking) influence neuronal activity? In this study we addressed this question by performing electrophysiological recordings in image (dorsal lateral geniculate nucleus; dLGN) and non-image (the olivary pretectal nucleus; OPN, the suprachiasmatic nucleus; SCN) visual structures to determine neuronal responses to spectrally varied light stimuli. We found that removing short-wavelength from the polychromatic light (cut off at 525 nm) attenuates the most transient ON and sustained cells in the dLGN and OPN, respectively. Moreover, we compared the ability of different types of sustained OPN neurons (either changing or not their response profile to filtered polychromatic light) to irradiance coding, and show that both groups achieve it with equal efficacy. On the other hand, even very dim monochromatic UV light (360 nm; log 9.95 photons/cm2/s) evokes neuronal responses in the dLGN and SCN. To our knowledge, this is the first electrophysiological experiment supporting previous behavioral findings showing visual and circadian functions disruptions under short wavelength blocking environment. The current results confirm that neuronal activity in response to polychromatic light in retinorecipient structures is affected by removing short wavelengths, however, with type and structure – specific action. Moreover, they show that rats are sensitive to even very dim UV light.
Collapse
Affiliation(s)
- Patrycja Orlowska-Feuer
- Malopolska Centre of Biotechnology (MCB), Jagiellonian University in Kraków, Kraków, Poland.,Department of Neurophysiology and Chronobiology, Jagiellonian University in Kraków, Kraków, Poland
| | - Magdalena Kinga Smyk
- Malopolska Centre of Biotechnology (MCB), Jagiellonian University in Kraków, Kraków, Poland.,Department of Neurophysiology and Chronobiology, Jagiellonian University in Kraków, Kraków, Poland
| | - Anna Alwani
- Department of Neurophysiology and Chronobiology, Jagiellonian University in Kraków, Kraków, Poland
| | | |
Collapse
|
37
|
Kaehler K, Seitter H, Sandbichler AM, Tschugg B, Obermair GJ, Stefanova N, Koschak A. Assessment of the Retina of Plp-α-Syn Mice as a Model for Studying Synuclein-Dependent Diseases. Invest Ophthalmol Vis Sci 2021; 61:12. [PMID: 32503050 PMCID: PMC7415298 DOI: 10.1167/iovs.61.6.12] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Purpose Synucleinopathies such as multiple system atrophy (MSA) and Parkinson's disease are associated with a variety of visual symptoms. Functional and morphological retinal aberrations are therefore supposed to be valuable biomarkers for these neurodegenerative diseases. This study examined the retinal morphology and functionality resulting from human α-synuclein (α-Syn) overexpression in the transgenic Plp-α-Syn mouse model. Methods Immunohistochemistry on retinal sections and whole-mounts was performed on 8- to 11-week-old and 12-month-old Plp-α-Syn mice and C57BL/6N controls. Quantitative RT-PCR experiments were performed to study the expression of endogenous and human α-Syn and tyrosine hydroxylase (TH). We confirmed the presence of human α-Syn in the retina in western blot analyses. Multi-electrode array (MEA) analyses from light-stimulated whole-mounted retinas were used to investigate their functionality. Results Biochemical and immunohistochemical analyses showed human α-Syn in the retina of Plp-α-Syn mice. We found distinct staining in different retinal cell layers, most abundantly in rod bipolar cells of the peripheral retina. In the periphery, we also observed a trend toward a decline in the number of retinal ganglion cells. The number of TH+ neurons was unaffected in this human α-Syn overexpression model. MEA recordings showed that Plp-α-Syn retinas were functional but exhibited mild alterations in dim light conditions. Conclusions Together, these findings implicate an impairment of retinal neurons in the Plp-α-Syn mouse. The phenotype partly relates to retinal deficits reported in MSA patients. We further propose the suitability of the Plp-α-Syn retina as a biological model to study synuclein-mediated mechanisms.
Collapse
|
38
|
Ahn J, Yoo Y, Goo YS. Spike-triggered Clustering for Retinal Ganglion Cell Classification. Exp Neurobiol 2020; 29:433-452. [PMID: 33321473 PMCID: PMC7788309 DOI: 10.5607/en20029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 11/19/2022] Open
Abstract
Retinal ganglion cells (RGCs), the retina's output neurons, encode visual information through spiking. The RGC receptive field (RF) represents the basic unit of visual information processing in the retina. RFs are commonly estimated using the spike-triggered average (STA), which is the average of the stimulus patterns to which a given RGC is sensitive. Whereas STA, based on the concept of the average, is simple and intuitive, it leaves more complex structures in the RFs undetected. Alternatively, spike-triggered covariance (STC) analysis provides information on second-order RF statistics. However, STC is computationally cumbersome and difficult to interpret. Thus, the objective of this study was to propose and validate a new computational method, called spike-triggered clustering (STCL), specific for multimodal RFs. Specifically, RFs were fit with a Gaussian mixture model, which provides the means and covariances of multiple RF clusters. The proposed method recovered bipolar stimulus patterns in the RFs of ON-OFF cells, while the STA identified only ON and OFF RGCs, and the remaining RGCs were labeled as unknown types. In contrast, our new STCL analysis distinguished ON-OFF RGCs from the ON, OFF, and unknown RGC types classified by STA. Thus, the proposed method enables us to include ON-OFF RGCs prior to retinal information analysis.
Collapse
Affiliation(s)
- Jungryul Ahn
- Department of Physiology, Chungbuk National University School of Medicine, Cheongju 28644, Korea
| | - Yongseok Yoo
- Department of Electronics Engineering, Incheon National University, Incheon 22012, Korea
| | - Yong Sook Goo
- Department of Physiology, Chungbuk National University School of Medicine, Cheongju 28644, Korea
| |
Collapse
|
39
|
Ruda K, Zylberberg J, Field GD. Ignoring correlated activity causes a failure of retinal population codes. Nat Commun 2020; 11:4605. [PMID: 32929073 PMCID: PMC7490269 DOI: 10.1038/s41467-020-18436-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 08/21/2020] [Indexed: 11/25/2022] Open
Abstract
From starlight to sunlight, adaptation alters retinal output, changing both the signal and noise among populations of retinal ganglion cells (RGCs). Here we determine how these light level-dependent changes impact decoding of retinal output, testing the importance of accounting for RGC noise correlations to optimally read out retinal activity. We find that at moonlight conditions, correlated noise is greater and assuming independent noise severely diminishes decoding performance. In fact, assuming independence among a local population of RGCs produces worse decoding than using a single RGC, demonstrating a failure of population codes when correlated noise is substantial and ignored. We generalize these results with a simple model to determine what conditions dictate this failure of population processing. This work elucidates the circumstances in which accounting for noise correlations is necessary to take advantage of population-level codes and shows that sensory adaptation can strongly impact decoding requirements on downstream brain areas. To see during day and night, the retina adapts to a trillion-fold change in light intensity. The authors show that an accurate read-out of retinal signals over this intensity range requires that brain circuits account for changing noise correlations across populations of retinal neurons.
Collapse
Affiliation(s)
- Kiersten Ruda
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, USA
| | - Joel Zylberberg
- Department of Physics and Center for Vision Research, York University, Toronto, Ontario, Canada
| | - Greg D Field
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
40
|
Retinal Inputs to the Thalamus Are Selectively Gated by Arousal. Curr Biol 2020; 30:3923-3934.e9. [PMID: 32795442 DOI: 10.1016/j.cub.2020.07.065] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 06/12/2020] [Accepted: 07/21/2020] [Indexed: 12/14/2022]
Abstract
The brain can flexibly filter out sensory information in a manner that depends on behavioral state. In the visual thalamus and cortex, arousal and locomotion are associated with changes in the magnitude of responses to visual stimuli. Here, we asked whether such modulation of visual responses might already occur at an earlier stage in this visual pathway. We measured neural activity of retinal axons using wide-field and two-photon calcium imaging in awake mouse thalamus across arousal states associated with different pupil sizes. Surprisingly, visual responses to drifting gratings in retinal axonal boutons were robustly modulated by arousal level in a manner that varied across stimulus dimensions and across functionally distinct subsets of boutons. At low and intermediate spatial frequencies, the majority of boutons were suppressed by arousal. In contrast, at high spatial frequencies, boutons tuned to regions of visual space ahead of the mouse showed enhancement of responses. Arousal-related modulation also varied with a bouton's preference for luminance changes and direction or axis of motion, with greater response suppression in boutons tuned to luminance decrements versus increments, and in boutons preferring motion along directions or axes of optic flow. Together, our results suggest that differential modulation of distinct visual information channels by arousal state occurs at very early stages of visual processing, before the information is transmitted to neurons in visual thalamus. Such early filtering may provide an efficient means of optimizing central visual processing and perception across behavioral contexts.
Collapse
|
41
|
Abstract
Visual sensitivity, probed through perceptual detectability of very brief visual stimuli, is strongly impaired around the time of rapid eye movements. This robust perceptual phenomenon, called saccadic suppression, is frequently attributed to active suppressive signals that are directly derived from eye movement commands. Here we show instead that visual-only mechanisms, activated by saccade-induced image shifts, can account for all perceptual properties of saccadic suppression that we have investigated. Such mechanisms start at, but are not necessarily exclusive to, the very first stage of visual processing in the brain, the retina. Critically, neural suppression originating in the retina outlasts perceptual suppression around the time of saccades, suggesting that extra-retinal movement-related signals, rather than causing suppression, may instead act to shorten it. Our results demonstrate a far-reaching contribution of visual processing mechanisms to perceptual saccadic suppression, starting in the retina, without the need to invoke explicit motor-based suppression commands. Saccadic suppression is frequently attributed to active suppressive signals derived from eye movement commands. Here, the authors show that visual-only mechanisms starting in the retina can account for perceptual saccadic suppression properties without the need for motor-based suppression commands.
Collapse
|
42
|
Ahn J, Rueckauer B, Yoo Y, Goo YS. New Features of Receptive Fields in Mouse Retina through Spike-triggered Covariance. Exp Neurobiol 2020; 29:38-49. [PMID: 32122107 PMCID: PMC7075653 DOI: 10.5607/en.2020.29.1.38] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 02/19/2020] [Accepted: 02/19/2020] [Indexed: 12/31/2022] Open
Abstract
Retinal ganglion cells (RGCs) encode various spatiotemporal features of visual information into spiking patterns. The receptive field (RF) of each RGC is usually calculated by spike-triggered average (STA), which is fast and easy to understand, but limited to simple and unimodal RFs. As an alternative, spike-triggered covariance (STC) has been proposed to characterize more complex patterns in RFs. This study compares STA and STC for the characterization of RFs and demonstrates that STC has an advantage over STA for identifying novel spatiotemporal features of RFs in mouse RGCs. We first classified mouse RGCs into ON, OFF, and ON/OFF cells according to their response to full-field light stimulus, and then investigated the spatiotemporal patterns of RFs with random checkerboard stimulation, using both STA and STC analysis. We propose five sub-types (T1–T5) in the STC of mouse RGCs together with their physiological implications. In particular, the relatively slow biphasic pattern (T1) could be related to excitatory inputs from bipolar cells. The transient biphasic pattern (T2) allows one to characterize complex patterns in RFs of ON/OFF cells. The other patterns (T3–T5), which are contrasting, alternating, and monophasic patterns, could be related to inhibitory inputs from amacrine cells. Thus, combining STA and STC and considering the proposed sub-types unveil novel characteristics of RFs in the mouse retina and offer a more holistic understanding of the neural coding mechanisms of mouse RGCs.
Collapse
Affiliation(s)
- Jungryul Ahn
- Department of Physiology, Chungbuk National University School of Medicine, Cheongju 28644, Korea
| | - Bodo Rueckauer
- Institute of Neuroinformatics, ETH Zurich and University of Zurich, Zurich 8057, Switzerland
| | - Yongseok Yoo
- Department of Electronics Engineering, Incheon National University, Incheon 22012, Korea
| | - Yong Sook Goo
- Department of Physiology, Chungbuk National University School of Medicine, Cheongju 28644, Korea
| |
Collapse
|
43
|
Abstract
The jawless fish that were ancestral to all living vertebrates had four spectral cone types that were probably served by chromatic-opponent retinal circuits. Subsequent evolution of photoreceptor spectral sensitivities is documented for many vertebrate lineages, giving insight into the ecological adaptation of color vision. Beyond the photoreceptors, retinal color processing is best understood in mammals, especially the blueON system, which opposes short- against long-wavelength receptor responses. For other vertebrates that often have three or four types of cone pigment, new findings from zebrafish are extending older work on teleost fish and reptiles to reveal rich color circuitry. Here, horizontal cells establish diverse and complex spectral responses even in photoreceptor outputs. Cone-selective connections to bipolar cells then set up color-opponent synaptic layers in the inner retina, which lead to a large variety of color-opponent channels for transmission to the brain via retinal ganglion cells.
Collapse
Affiliation(s)
- T Baden
- School of Life Sciences, University of Sussex, BN1 9QG Brighton, United Kingdom; ,
- Institute for Ophthalmic Research, University of Tübingen, 72076 Tübingen, Germany
| | - D Osorio
- School of Life Sciences, University of Sussex, BN1 9QG Brighton, United Kingdom; ,
| |
Collapse
|
44
|
Abstract
Adaptation is a common principle that recurs throughout the nervous system at all stages of processing. This principle manifests in a variety of phenomena, from spike frequency adaptation, to apparent changes in receptive fields with changes in stimulus statistics, to enhanced responses to unexpected stimuli. The ubiquity of adaptation leads naturally to the question: What purpose do these different types of adaptation serve? A diverse set of theories, often highly overlapping, has been proposed to explain the functional role of adaptive phenomena. In this review, we discuss several of these theoretical frameworks, highlighting relationships among them and clarifying distinctions. We summarize observations of the varied manifestations of adaptation, particularly as they relate to these theoretical frameworks, focusing throughout on the visual system and making connections to other sensory systems.
Collapse
Affiliation(s)
- Alison I Weber
- Department of Physiology and Biophysics and Computational Neuroscience Center, University of Washington, Seattle, Washington 98195, USA; ,
| | - Kamesh Krishnamurthy
- Neuroscience Institute and Center for Physics of Biological Function, Department of Physics, Princeton University, Princeton, New Jersey 08544, USA;
| | - Adrienne L Fairhall
- Department of Physiology and Biophysics and Computational Neuroscience Center, University of Washington, Seattle, Washington 98195, USA; , .,UW Institute for Neuroengineering, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
45
|
Shi Q, Gupta P, Boukhvalova AK, Singer JH, Butts DA. Functional characterization of retinal ganglion cells using tailored nonlinear modeling. Sci Rep 2019; 9:8713. [PMID: 31213620 PMCID: PMC6581951 DOI: 10.1038/s41598-019-45048-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 05/31/2019] [Indexed: 01/30/2023] Open
Abstract
The mammalian retina encodes the visual world in action potentials generated by 20-50 functionally and anatomically-distinct types of retinal ganglion cell (RGC). Individual RGC types receive synaptic input from distinct presynaptic circuits; therefore, their responsiveness to specific features in the visual scene arises from the information encoded in synaptic input and shaped by postsynaptic signal integration and spike generation. Unfortunately, there is a dearth of tools for characterizing the computations reflected in RGC spike output. Therefore, we developed a statistical model, the separable Nonlinear Input Model, to characterize the excitatory and suppressive components of RGC receptive fields. We recorded RGC responses to a correlated noise ("cloud") stimulus in an in vitro preparation of mouse retina and found that our model accurately predicted RGC responses at high spatiotemporal resolution. It identified multiple receptive fields reflecting the main excitatory and suppressive components of the response of each neuron. Significantly, our model accurately identified ON-OFF cells and distinguished their distinct ON and OFF receptive fields, and it demonstrated a diversity of suppressive receptive fields in the RGC population. In total, our method offers a rich description of RGC computation and sets a foundation for relating it to retinal circuitry.
Collapse
Affiliation(s)
- Qing Shi
- Department of Biology, University of Maryland, College Park, MD, United States.
| | - Pranjal Gupta
- Department of Biology, University of Maryland, College Park, MD, United States
| | | | - Joshua H Singer
- Department of Biology, University of Maryland, College Park, MD, United States
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, United States
| | - Daniel A Butts
- Department of Biology, University of Maryland, College Park, MD, United States
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, United States
| |
Collapse
|
46
|
Neural mechanisms of contextual modulation in the retinal direction selective circuit. Nat Commun 2019; 10:2431. [PMID: 31160566 PMCID: PMC6547848 DOI: 10.1038/s41467-019-10268-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 04/26/2019] [Indexed: 01/07/2023] Open
Abstract
Contextual modulation of neuronal responses by surrounding environments is a fundamental attribute of sensory processing. In the mammalian retina, responses of On–Off direction selective ganglion cells (DSGCs) are modulated by motion contexts. However, the underlying mechanisms are unknown. Here, we show that posterior-preferring DSGCs (pDSGCs) are sensitive to discontinuities of moving contours owing to contextually modulated cholinergic excitation from starburst amacrine cells (SACs). Using a combination of synapse-specific genetic manipulations, patch clamp electrophysiology and connectomic analysis, we identified distinct circuit motifs upstream of On and Off SACs that are required for the contextual modulation of pDSGC activity for bright and dark contrasts. Furthermore, our results reveal a class of wide-field amacrine cells (WACs) with straight, unbranching dendrites that function as “continuity detectors” of moving contours. Therefore, divergent circuit motifs in the On and Off pathways extend the information encoding of On-Off DSGCs beyond their direction selectivity during complex stimuli. The mechanisms of contextual modulation in direction selective ganglion cells in the retina remain unclear. Here, the authors find that that On-Off direction-selective ganglion cells are differentially sensitive to discontinuities of dark and bright moving edges in the visual environment and, using synapse-specific genetic manipulations with functional measurements, reveal the microcircuits underlying this contextual sensitivity.
Collapse
|
47
|
Odor Concentration Change Coding in the Olfactory Bulb. eNeuro 2019; 6:eN-NWR-0396-18. [PMID: 30834303 PMCID: PMC6397952 DOI: 10.1523/eneuro.0396-18.2019] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 01/04/2019] [Accepted: 01/16/2019] [Indexed: 11/21/2022] Open
Abstract
Dynamical changes in the environment strongly impact our perception. Likewise, sensory systems preferentially represent stimulus changes, enhancing temporal contrast. In olfaction, odor concentration changes across consecutive inhalations (ΔCt) can guide odor source localization, yet the neural representation of ΔCt has not been studied in vertebrates. We have found that, in the mouse olfactory bulb, a subset of mitral/tufted (M/T) cells represents ΔCt, enhancing the contrast between different concentrations. These concentration change responses are direction selective: they respond either to increments or decrements of concentration, reminiscent of ON and OFF selectivity in the retina. This contrast enhancement scales with the magnitude, but not the duration of the concentration step. Further, ΔCt can be read out from the total spike count per sniff, unlike odor identity and intensity, which are represented by fast temporal spike patterns. Our results demonstrate that a subset of M/T cells represents ΔCt, providing a signal that may instruct navigational decisions in downstream olfactory circuits.
Collapse
|
48
|
Escobar MJ, Reyes C, Herzog R, Araya J, Otero M, Ibaceta C, Palacios AG. Characterization of Retinal Functionality at Different Eccentricities in a Diurnal Rodent. Front Cell Neurosci 2018; 12:444. [PMID: 30559649 PMCID: PMC6287453 DOI: 10.3389/fncel.2018.00444] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 11/05/2018] [Indexed: 11/18/2022] Open
Abstract
Although the properties of the neurons of the visual system that process central and peripheral regions of the visual field have been widely researched in the visual cortex and the LGN, they have scarcely been documented for the retina. The retina is the first step in integrating optical signals, and despite considerable efforts to functionally characterize the different types of retinal ganglion cells (RGCs), a clear account of the particular functionality of cells with central vs. peripheral fields is still wanting. Here, we use electrophysiological recordings, gathered from retinas of the diurnal rodent Octodon degus, to show that RGCs with peripheral receptive fields (RF) are larger, faster, and have shorter transient responses. This translates into higher sensitivity at high temporal frequencies and a full frequency bandwidth when compared to RGCs with more central RF. We also observed that imbalances between ON and OFF cell populations are preserved with eccentricity. Finally, the high diversity of functional types of RGCs highlights the complexity of the computational strategies implemented in the early stages of visual processing, which could inspire the development of bio-inspired artificial systems.
Collapse
Affiliation(s)
- María-José Escobar
- Departamento de Electrónica, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - César Reyes
- Departamento de Electrónica, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Rubén Herzog
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Joaquin Araya
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Programa de Doctorado en NeurocienciaUniversidad de Santiago de Chile, Santiago, Chile
| | - Mónica Otero
- Departamento de Electrónica, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Cristóbal Ibaceta
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Adrián G. Palacios
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
49
|
Wienbar S, Schwartz GW. The dynamic receptive fields of retinal ganglion cells. Prog Retin Eye Res 2018; 67:102-117. [PMID: 29944919 PMCID: PMC6235744 DOI: 10.1016/j.preteyeres.2018.06.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/15/2018] [Accepted: 06/20/2018] [Indexed: 11/30/2022]
Abstract
Retinal ganglion cells (RGCs) were one of the first classes of sensory neurons to be described in terms of a receptive field (RF). Over the last six decades, our understanding of the diversity of RGC types and the nuances of their response properties has grown exponentially. We will review the current understanding of RGC RFs mostly from studies in mammals, but including work from other vertebrates as well. We will argue for a new paradigm that embraces the fluidity of RGC RFs with an eye toward the neuroethology of vision. Specifically, we will focus on (1) different methods for measuring RGC RFs, (2) RF models, (3) feature selectivity and the distinction between fluid and stable RF properties, and (4) ideas about the future of understanding RGC RFs.
Collapse
Affiliation(s)
- Sophia Wienbar
- Departments of Ophthalmology and Physiology, Feinberg School of Medicine, Northwestern University, United States.
| | - Gregory W Schwartz
- Departments of Ophthalmology and Physiology, Feinberg School of Medicine, Northwestern University, United States.
| |
Collapse
|
50
|
Yao X, Cafaro J, McLaughlin AJ, Postma FR, Paul DL, Awatramani G, Field GD. Gap Junctions Contribute to Differential Light Adaptation across Direction-Selective Retinal Ganglion Cells. Neuron 2018; 100:216-228.e6. [PMID: 30220512 PMCID: PMC6293282 DOI: 10.1016/j.neuron.2018.08.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 06/28/2018] [Accepted: 08/17/2018] [Indexed: 01/19/2023]
Abstract
Direction-selective ganglion cells (DSGCs) deliver signals from the retina to multiple brain areas to indicate the presence and direction of motion. Delivering reliable signals in response to motion is critical across light levels. Here we determine how populations of DSGCs adapt to changes in light level, from moonlight to daylight. Using large-scale measurements of neural activity, we demonstrate that the population of DSGCs switches encoding strategies across light levels. Specifically, the direction tuning of superior (upward)-preferring ON-OFF DSGCs becomes broader at low light levels, whereas other DSGCs exhibit stable tuning. Using a conditional knockout of gap junctions, we show that this differential adaptation among superior-preferring ON-OFF DSGCs is caused by connexin36-mediated electrical coupling and differences in effective GABAergic inhibition. Furthermore, this adaptation strategy is beneficial for balancing motion detection and direction estimation at the lower signal-to-noise ratio encountered at night. These results provide insights into how light adaptation impacts motion encoding in the retina.
Collapse
Affiliation(s)
- Xiaoyang Yao
- Graduate Program in Neurobiology, Duke University, Durham, NC, 27710, USA; Neurobiology Department, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Jon Cafaro
- Neurobiology Department, Duke University School of Medicine, Durham, NC, 27710, USA
| | | | | | - David L Paul
- Department of Neurobiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Gautam Awatramani
- Department of Biology, University of Victoria, Victoria, BC V8W 3N5, Canada
| | - Greg D Field
- Neurobiology Department, Duke University School of Medicine, Durham, NC, 27710, USA.
| |
Collapse
|