1
|
Mackay S, Reber TP, Bausch M, Boström J, Elger CE, Mormann F. Concept and location neurons in the human brain provide the 'what' and 'where' in memory formation. Nat Commun 2024; 15:7926. [PMID: 39256373 PMCID: PMC11387663 DOI: 10.1038/s41467-024-52295-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/29/2024] [Indexed: 09/12/2024] Open
Abstract
Our brains create new memories by capturing the 'who/what', 'where' and 'when' of everyday experiences. On a neuronal level, mechanisms facilitating a successful transfer into episodic memory are still unclear. We investigated this by measuring single neuron activity in the human medial temporal lobe during encoding of item-location associations. While previous research has found predictive effects in population activity in human MTL structures, we could attribute such effects to two specialized sub-groups of neurons: concept cells in the hippocampus, amygdala and entorhinal cortex (EC), and a second group of parahippocampal location-selective neurons. In both item- and location-selective populations, firing rates were significantly higher during successfully encoded trials. These findings are in line with theories of hippocampal indexing, since selective index neurons may act as pointers to neocortical representations. Overall, activation of distinct populations of neurons could directly support the connection of the 'what' and 'where' of episodic memory.
Collapse
Affiliation(s)
- Sina Mackay
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Thomas P Reber
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
- Faculty of Psychology, UniDistance Suisse, Brig, Switzerland
| | - Marcel Bausch
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Jan Boström
- Department of Neurosurgery, University Hospital Bonn, Bonn, Germany
| | | | - Florian Mormann
- Department of Epileptology, University Hospital Bonn, Bonn, Germany.
| |
Collapse
|
2
|
Kutter EF, Dehnen G, Borger V, Surges R, Mormann F, Nieder A. Distinct neuronal representation of small and large numbers in the human medial temporal lobe. Nat Hum Behav 2023; 7:1998-2007. [PMID: 37783890 DOI: 10.1038/s41562-023-01709-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 08/31/2023] [Indexed: 10/04/2023]
Abstract
Whether small numerical quantities are represented by a special subitizing system that is distinct from a large-number estimation system has been debated for over a century. Here we show that two separate neural mechanisms underlie the representation of small and large numbers. We performed single neuron recordings in the medial temporal lobe of neurosurgical patients judging numbers. We found a boundary in neuronal coding around number 4 that correlates with the behavioural transition from subitizing to estimation. In the subitizing range, neurons showed superior tuning selectivity accompanied by suppression effects suggestive of surround inhibition as a selectivity-increasing mechanism. In contrast, tuning selectivity decreased with increasing numbers beyond 4, characterizing a ratio-dependent number estimation system. The two systems with the coding boundary separating them were also indicated using decoding and clustering analyses. The identified small-number subitizing system could be linked to attention and working memory that show comparable capacity limitations.
Collapse
Affiliation(s)
- Esther F Kutter
- Department of Epileptology, University of Bonn Medical Center, Bonn, Germany
- Animal Physiology, Institute of Neurobiology, University of Tübingen, Tübingen, Germany
| | - Gert Dehnen
- Department of Epileptology, University of Bonn Medical Center, Bonn, Germany
| | - Valeri Borger
- Department of Neurosurgery, University of Bonn Medical Center, Bonn, Germany
| | - Rainer Surges
- Department of Epileptology, University of Bonn Medical Center, Bonn, Germany
| | - Florian Mormann
- Department of Epileptology, University of Bonn Medical Center, Bonn, Germany.
| | - Andreas Nieder
- Animal Physiology, Institute of Neurobiology, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
3
|
Reber TP, Mackay S, Bausch M, Kehl MS, Borger V, Surges R, Mormann F. Single-neuron mechanisms of neural adaptation in the human temporal lobe. Nat Commun 2023; 14:2496. [PMID: 37120437 PMCID: PMC10148801 DOI: 10.1038/s41467-023-38190-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 04/13/2023] [Indexed: 05/01/2023] Open
Abstract
A central function of the human brain is to adapt to new situations based on past experience. Adaptation is reflected behaviorally by shorter reaction times to repeating or similar stimuli, and neurophysiologically by reduced neural activity in bulk-tissue measurements with fMRI or EEG. Several potential single-neuron mechanisms have been hypothesized to cause this reduction of activity at the macroscopic level. We here explore these mechanisms using an adaptation paradigm with visual stimuli bearing abstract semantic similarity. We recorded intracranial EEG (iEEG) simultaneously with spiking activity of single neurons in the medial temporal lobes of 25 neurosurgical patients. Recording from 4917 single neurons, we demonstrate that reduced event-related potentials in the macroscopic iEEG signal are associated with a sharpening of single-neuron tuning curves in the amygdala, but with an overall reduction of single-neuron activity in the hippocampus, entorhinal cortex, and parahippocampal cortex, consistent with fatiguing in these areas.
Collapse
Affiliation(s)
- Thomas P Reber
- Faculty of Psychology, UniDistance Suisse, Brig, Switzerland.
- Department of Epileptology, University of Bonn Medical Centre, Bonn, Germany.
| | - Sina Mackay
- Department of Epileptology, University of Bonn Medical Centre, Bonn, Germany
| | - Marcel Bausch
- Department of Epileptology, University of Bonn Medical Centre, Bonn, Germany
| | - Marcel S Kehl
- Department of Epileptology, University of Bonn Medical Centre, Bonn, Germany
| | - Valeri Borger
- Department of Neurosurgery, University of Bonn Medical Centre, Bonn, Germany
| | - Rainer Surges
- Department of Epileptology, University of Bonn Medical Centre, Bonn, Germany
| | - Florian Mormann
- Department of Epileptology, University of Bonn Medical Centre, Bonn, Germany
| |
Collapse
|
4
|
Guex R, Meaux E, Mégevand P, Domínguez-Borràs J, Seeck M, Vuilleumier P. Frequency-specific gaze modulation of emotional face processing in the human amygdala. Cereb Cortex 2022; 33:4859-4869. [PMID: 36155769 PMCID: PMC10110432 DOI: 10.1093/cercor/bhac385] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 11/13/2022] Open
Abstract
Determining the social significance of emotional face expression is of major importance for adaptive behavior, and gaze direction provides critical information in this process. The amygdala is implicated in both emotion and gaze processing, but how and when it integrates expression and gaze cues remains unresolved. We tackled this question using intracranial electroencephalography in epileptic patients to assess both amygdala (n = 12) and orbitofrontal cortex (OFC; n = 11) time-frequency evoked responses to faces with different emotional expressions and different gaze directions. As predicted, self-relevant threat signals (averted fearful and directed angry faces) elicited stronger amygdala activity than self-irrelevant threat (directed fearful and averted angry faces). Fear effects started at early latencies in both amygdala and OFC (~110 and 160 ms, respectively), while gaze direction effects and their interaction with emotion occurred at later latencies. Critically, the amygdala showed differential gamma band increases to fearful averted gaze (starting ~550 ms) and to angry directed gaze (~470 ms). Moreover, when comparing the 2 self-relevant threat conditions among them, we found higher gamma amygdala activity for averted fearful faces and higher beta OFC activity for angry directed faces. Together, these results reveal for the first time frequency-specific effects of emotion and gaze on amygdala and OFC neural activity.
Collapse
Affiliation(s)
- Raphael Guex
- Department of Fundamental Neuroscience, University of Geneva-Campus Biotech, HUG, Chem. des Mines 9, 1202 Geneva, Switzerland.,Department of Clinical Neuroscience, University of Geneva-HUG, Rue Gabrielle-Perret-Gentil 4, 1205 Geneva, Switzerland.,Swiss Center for Affective Sciences, University of Geneva, Chem. des Mines 9, 1202 Geneva, Switzerland
| | - Emilie Meaux
- Department of Fundamental Neuroscience, University of Geneva-Campus Biotech, HUG, Chem. des Mines 9, 1202 Geneva, Switzerland
| | - Pierre Mégevand
- Department of Fundamental Neuroscience, University of Geneva-Campus Biotech, HUG, Chem. des Mines 9, 1202 Geneva, Switzerland.,Department of Clinical Neuroscience, University of Geneva-HUG, Rue Gabrielle-Perret-Gentil 4, 1205 Geneva, Switzerland
| | - Judith Domínguez-Borràs
- Department of Fundamental Neuroscience, University of Geneva-Campus Biotech, HUG, Chem. des Mines 9, 1202 Geneva, Switzerland.,Swiss Center for Affective Sciences, University of Geneva, Chem. des Mines 9, 1202 Geneva, Switzerland.,Department of Clinical Psychology and Psychobiology, University of Barcelona: Passeig de laVall d'Hebron, 171 08035 Barcelona
| | - Margitta Seeck
- Department of Clinical Neuroscience, University of Geneva-HUG, Rue Gabrielle-Perret-Gentil 4, 1205 Geneva, Switzerland
| | - Patrik Vuilleumier
- Department of Fundamental Neuroscience, University of Geneva-Campus Biotech, HUG, Chem. des Mines 9, 1202 Geneva, Switzerland.,Swiss Center for Affective Sciences, University of Geneva, Chem. des Mines 9, 1202 Geneva, Switzerland
| |
Collapse
|
5
|
Zheng J, Skelin I, Lin JJ. Neural computations underlying contextual processing in humans. Cell Rep 2022; 40:111395. [PMID: 36130515 PMCID: PMC9552771 DOI: 10.1016/j.celrep.2022.111395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/28/2022] [Accepted: 08/29/2022] [Indexed: 12/01/2022] Open
Abstract
Context shapes our perception of facial expressions during everyday social interactions. We interpret a person’s face in a hostile situation negatively and judge the same face under pleasant circumstances positively. Critical to our adaptive fitness, context provides situation-specific framing to resolve ambiguity and guide our interpersonal behavior. This context-specific modulation of facial expression is thought to engage the amygdala, hippocampus, and orbitofrontal cortex; however, the underlying neural computations remain unknown. Here we use human intracranial electroencephalograms (EEGs) directly recorded from these regions and report bidirectional theta-gamma interactions within the amygdala-hippocampal network, facilitating contextual processing. Contextual information is subsequently represented in the orbitofrontal cortex, where a theta phase shift binds context and face associations within theta cycles, endowing faces with contextual meanings at behavioral timescales. Our results identify theta phase shifts as mediating associations between context and face processing, supporting flexible social behavior. Context influences our perception of facial expressions. Zheng et al. show that contextual modulation of faces relies on medial temporal lobe-orbitofrontal cortex communications in humans. High gamma bursts occur in rhythm with theta oscillations, with cross-regional theta-gamma phase shifts binding context-face associations.
Collapse
Affiliation(s)
- Jie Zheng
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA.
| | - Ivan Skelin
- Department of Neurology, University of California, Davis, Davis, CA 95817, USA; The Center for Mind and Brain, University of California, Davis, Davis, CA 95618, USA
| | - Jack J Lin
- Department of Neurology, University of California, Davis, Davis, CA 95817, USA; The Center for Mind and Brain, University of California, Davis, Davis, CA 95618, USA.
| |
Collapse
|
6
|
Valdez AB, Papesh MH, Treiman DM, Goldinger SD, Steinmetz PN. Encoding of Race Categories by Single Neurons in the Human Brain. NEUROSCI 2022; 3:419-439. [PMID: 39483429 PMCID: PMC11523698 DOI: 10.3390/neurosci3030031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/19/2022] [Indexed: 11/03/2024] Open
Abstract
Previous research has suggested that race-specific features are automatically processed during face perception, often with out-group faces treated categorically. Functional imaging has illuminated the hemodynamic correlates of this process, with fewer studies examining single-neuron responses. In the present experiment, epilepsy patients undergoing microwire recordings in preparation for surgical treatment were shown realistic computer-generated human faces, which they classified according to the emotional expression shown. Racial categories of the stimulus faces varied independently of the emotion shown, being irrelevant to the patients' primary task. Nevertheless, we observed race-driven changes in neural firing rates in the amygdala, anterior cingulate cortex, and hippocampus. These responses were broadly distributed, with the firing rates of 28% of recorded neurons in the amygdala and 45% in the anterior cingulate cortex predicting one or more racial categories. Nearly equal proportions of neurons responded to White and Black faces (24% vs. 22% in the amygdala and 26% vs. 28% in the anterior cingulate cortex). A smaller fraction (12%) of race-responsive neurons in the hippocampus predicted only White faces. Our results imply a distributed representation of race in brain areas involved in affective judgments, decision making, and memory. They also support the hypothesis that race-specific cues are perceptually coded even when those cues are task-irrelevant.
Collapse
Affiliation(s)
- André B. Valdez
- Neurtex Brain Research Institute, 8300 Douglas, Suite 800, Dallas, TX 75225, USA
| | - Megan H. Papesh
- Department of Psychology, New Mexico State University, Las Cruces, NM 88003, USA
| | - David M. Treiman
- Department of Neurology, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | | | - Peter N. Steinmetz
- Neurtex Brain Research Institute, 8300 Douglas, Suite 800, Dallas, TX 75225, USA
| |
Collapse
|
7
|
Battaglia S, Fabius JH, Moravkova K, Fracasso A, Borgomaneri S. The Neurobiological Correlates of Gaze Perception in Healthy Individuals and Neurologic Patients. Biomedicines 2022; 10:627. [PMID: 35327431 PMCID: PMC8945205 DOI: 10.3390/biomedicines10030627] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/01/2022] [Accepted: 03/05/2022] [Indexed: 01/15/2023] Open
Abstract
The ability to adaptively follow conspecific eye movements is crucial for establishing shared attention and survival. Indeed, in humans, interacting with the gaze direction of others causes the reflexive orienting of attention and the faster object detection of the signaled spatial location. The behavioral evidence of this phenomenon is called gaze-cueing. Although this effect can be conceived as automatic and reflexive, gaze-cueing is often susceptible to context. In fact, gaze-cueing was shown to interact with other factors that characterize facial stimulus, such as the kind of cue that induces attention orienting (i.e., gaze or non-symbolic cues) or the emotional expression conveyed by the gaze cues. Here, we address neuroimaging evidence, investigating the neural bases of gaze-cueing and the perception of gaze direction and how contextual factors interact with the gaze shift of attention. Evidence from neuroimaging, as well as the fields of non-invasive brain stimulation and neurologic patients, highlights the involvement of the amygdala and the superior temporal lobe (especially the superior temporal sulcus (STS)) in gaze perception. However, in this review, we also emphasized the discrepancies of the attempts to characterize the distinct functional roles of the regions in the processing of gaze. Finally, we conclude by presenting the notion of invariant representation and underline its value as a conceptual framework for the future characterization of the perceptual processing of gaze within the STS.
Collapse
Affiliation(s)
- Simone Battaglia
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum-Università di Bologna, 47521 Cesena, Italy
| | - Jasper H. Fabius
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow G128QB, UK; (J.H.F.); (K.M.); (A.F.)
| | - Katarina Moravkova
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow G128QB, UK; (J.H.F.); (K.M.); (A.F.)
| | - Alessio Fracasso
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow G128QB, UK; (J.H.F.); (K.M.); (A.F.)
| | - Sara Borgomaneri
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum-Università di Bologna, 47521 Cesena, Italy
- IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| |
Collapse
|
8
|
Domínguez-Borràs J, Vuilleumier P. Amygdala function in emotion, cognition, and behavior. HANDBOOK OF CLINICAL NEUROLOGY 2022; 187:359-380. [PMID: 35964983 DOI: 10.1016/b978-0-12-823493-8.00015-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The amygdala is a core structure in the anterior medial temporal lobe, with an important role in several brain functions involving memory, emotion, perception, social cognition, and even awareness. As a key brain structure for saliency detection, it triggers and controls widespread modulatory signals onto multiple areas of the brain, with a great impact on numerous aspects of adaptive behavior. Here we discuss the neural mechanisms underlying these functions, as established by animal and human research, including insights provided in both healthy and pathological conditions.
Collapse
Affiliation(s)
- Judith Domínguez-Borràs
- Department of Clinical Psychology and Psychobiology & Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Patrik Vuilleumier
- Department of Neuroscience and Center for Affective Sciences, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
9
|
Putnam PT, Chang SWC. Toward a holistic view of value and social processing in the amygdala: Insights from primate behavioral neurophysiology. Behav Brain Res 2021; 411:113356. [PMID: 33989727 PMCID: PMC8238892 DOI: 10.1016/j.bbr.2021.113356] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 05/05/2021] [Accepted: 05/09/2021] [Indexed: 11/22/2022]
Abstract
Located medially within the temporal lobes, the amygdala is a formation of heterogenous nuclei that has emerged as a target for investigations into the neural bases of both primitive and complex behaviors. Although modern neuroscience has eschewed the practice of assigning broad functions to distinct brain regions, the amygdala has classically been associated with regulating negative emotional processes (such as fear or aggression), primarily through research performed in rodent models. Contemporary studies, particularly those in non-human primate models, have provided evidence for a role of the amygdala in other aspects of cognition such as valuation of stimuli or shaping social behaviors. Consequently, many modern perspectives now also emphasize the amygdala's role in processing positive affect and social behaviors. Importantly, several recent experiments have examined the intersection of two seemingly autonomous domains; how both valence/value and social stimuli are simultaneously represented in the amygdala. Results from these studies suggest that there is an overlap between valence/value processing and the processing of social behaviors at the level of single neurons. These findings have prompted researchers investigating the neurophysiological mechanisms underlying social interactions to question what contributions reward-related processes in the amygdala make in shaping social behaviors. In this review, we will examine evidence, primarily from primate neurophysiology, suggesting that value-related processes in the amygdala interact with the processing of social stimuli, and explore holistic hypotheses about how these amygdalar interactions might be instantiated.
Collapse
Affiliation(s)
- Philip T Putnam
- Department of Psychology, Yale University, New Haven, CT, 06520, United States.
| | - Steve W C Chang
- Department of Psychology, Yale University, New Haven, CT, 06520, United States; Department of Neuroscience, Yale University School of Medicine, New Haven, CT, 06510, United States; Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, 06511, United States
| |
Collapse
|
10
|
Duplicate Detection of Spike Events: A Relevant Problem in Human Single-Unit Recordings. Brain Sci 2021; 11:brainsci11060761. [PMID: 34201115 PMCID: PMC8228483 DOI: 10.3390/brainsci11060761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/29/2021] [Accepted: 06/01/2021] [Indexed: 11/21/2022] Open
Abstract
Single-unit recordings in the brain of behaving human subjects provide a unique opportunity to advance our understanding of neural mechanisms of cognition. These recordings are exclusively performed in medical centers during diagnostic or therapeutic procedures. The presence of medical instruments along with other aspects of the hospital environment limit the control of electrical noise compared to animal laboratory environments. Here, we highlight the problem of an increased occurrence of simultaneous spike events on different recording channels in human single-unit recordings. Most of these simultaneous events were detected in clusters previously labeled as artifacts and showed similar waveforms. These events may result from common external noise sources or from different micro-electrodes recording activity from the same neuron. To address the problem of duplicate recorded events, we introduce an open-source algorithm to identify these artificial spike events based on their synchronicity and waveform similarity. Applying our method to a comprehensive dataset of human single-unit recordings, we demonstrate that our algorithm can substantially increase the data quality of these recordings. Given our findings, we argue that future studies of single-unit activity recorded under noisy conditions should employ algorithms of this kind to improve data quality.
Collapse
|
11
|
Stephenson LJ, Edwards SG, Bayliss AP. From Gaze Perception to Social Cognition: The Shared-Attention System. PERSPECTIVES ON PSYCHOLOGICAL SCIENCE 2021; 16:553-576. [PMID: 33567223 PMCID: PMC8114330 DOI: 10.1177/1745691620953773] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
When two people look at the same object in the environment and are aware of each other's attentional state, they find themselves in a shared-attention episode. This can occur through intentional or incidental signaling and, in either case, causes an exchange of information between the two parties about the environment and each other's mental states. In this article, we give an overview of what is known about the building blocks of shared attention (gaze perception and joint attention) and focus on bringing to bear new findings on the initiation of shared attention that complement knowledge about gaze following and incorporate new insights from research into the sense of agency. We also present a neurocognitive model, incorporating first-, second-, and third-order social cognitive processes (the shared-attention system, or SAS), building on previous models and approaches. The SAS model aims to encompass perceptual, cognitive, and affective processes that contribute to and follow on from the establishment of shared attention. These processes include fundamental components of social cognition such as reward, affective evaluation, agency, empathy, and theory of mind.
Collapse
|
12
|
Kovács G. Getting to Know Someone: Familiarity, Person Recognition, and Identification in the Human Brain. J Cogn Neurosci 2020; 32:2205-2225. [DOI: 10.1162/jocn_a_01627] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Abstract
In our everyday life, we continuously get to know people, dominantly through their faces. Several neuroscientific experiments showed that familiarization changes the behavioral processing and underlying neural representation of faces of others. Here, we propose a model of the process of how we actually get to know someone. First, the purely visual familiarization of unfamiliar faces occurs. Second, the accumulation of associated, nonsensory information refines person representation, and finally, one reaches a stage where the effortless identification of very well-known persons occurs. We offer here an overview of neuroimaging studies, first evaluating how and in what ways the processing of unfamiliar and familiar faces differs and, second, by analyzing the fMRI adaptation and multivariate pattern analysis results we estimate where identity-specific representation is found in the brain. The available neuroimaging data suggest that different aspects of the information emerge gradually as one gets more and more familiar with a person within the same network. We propose a novel model of familiarity and identity processing, where the differential activation of long-term memory and emotion processing areas is essential for correct identification.
Collapse
|
13
|
Kerr F, Wiechula R, Feo R, Schultz T, Kitson A. Neurophysiology of human touch and eye gaze in therapeutic relationships and healing: a scoping review. ACTA ACUST UNITED AC 2020; 17:209-247. [PMID: 30730854 PMCID: PMC6382052 DOI: 10.11124/jbisrir-2017-003549] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Objective: The primary objective of this scoping review was to examine and map the range of neurophysiological impacts of human touch and eye gaze, and consider their potential relevance to the therapeutic relationship and to healing. Introduction: Clinicians, and many patients and their relatives, have no doubt as to the efficacy of a positive therapeutic relationship; however, much evidence is based on self-reporting by the patient or observation by the researcher. There has been little formal exploration into what is happening in the body to elicit efficacious reactions in patients. There is, however, a growing body of work on the neurophysiological impact of human interaction. Physical touch and face-to-face interaction are two central elements of this interaction that produce neurophysiological effects on the body. Inclusion criteria: This scoping review considered studies that included cognitively intact human subjects in any setting. This review investigated the neurophysiology of human interaction including touch and eye gaze. It considered studies that have examined, in a variety of settings, the neurophysiological impacts of touch and eye gaze. Quantitative studies were included as the aim was to examine objective measures of neurophysiological changes as a result of human touch and gaze. Methods: An extensive search of multiple databases was undertaken to identify published research in the English language with no date restriction. Data extraction was undertaken using an extraction tool developed specifically for the scoping review objectives. Results: The results of the review are presented in narrative form supported by tables and concept maps. Sixty-four studies were included and the majority were related to touch with various types of massage predominating. Only seven studies investigated gaze with three of these utilizing both touch and gaze. Interventions were delivered by a variety of providers including nurses, significant others and masseuses. The main neurophysiological measures were cortisol, oxytocin and noradrenaline. Conclusions: The aim of this review was to map the neurophysiological impact of human touch and gaze. Although our interest was in studies that might have implications for the therapeutic relationship, we accepted studies that explored phenomena outside of the context of a nurse-patient relationship. This allowed exploration of the boundary of what might be relevant in any therapeutic relationship. Indeed, only a small number of studies included in the review involved clinicians (all nurses) and patients. There was sufficient consistency in trends evident across many studies in regard to the beneficial impact of touch and eye gaze to warrant further investigation in the clinical setting. There is a balance between tightly controlled studies conducted in an artificial (laboratory) setting and/or using artificial stimuli and those of a more pragmatic nature that are contextually closer to the reality of providing nursing care. The latter should be encouraged.
Collapse
Affiliation(s)
- Fiona Kerr
- Adelaide Nursing School, University of Adelaide, Adelaide, Australia.,Faculty of the Professions, University of Adelaide, Adelaide, Australia.,The NeuroTech Institute Pty. Ltd., Adelaide, Australia.,South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Rick Wiechula
- Adelaide Nursing School, University of Adelaide, Adelaide, Australia.,Centre for Evidence-based Practice South Australia: a Joanna Briggs Institute Centre of Excellence
| | - Rebecca Feo
- Adelaide Nursing School, University of Adelaide, Adelaide, Australia.,Centre for Evidence-based Practice South Australia: a Joanna Briggs Institute Centre of Excellence
| | - Tim Schultz
- Adelaide Nursing School, University of Adelaide, Adelaide, Australia.,Centre for Evidence-based Practice South Australia: a Joanna Briggs Institute Centre of Excellence
| | - Alison Kitson
- Adelaide Nursing School, University of Adelaide, Adelaide, Australia.,Centre for Evidence-based Practice South Australia: a Joanna Briggs Institute Centre of Excellence
| |
Collapse
|
14
|
Nuara A, Nicolini Y, D'Orio P, Cardinale F, Rizzolatti G, Avanzini P, Fabbri-Destro M, De Marco D. Catching the imposter in the brain: The case of Capgras delusion. Cortex 2020; 131:295-304. [PMID: 32540160 DOI: 10.1016/j.cortex.2020.04.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 03/21/2020] [Accepted: 04/24/2020] [Indexed: 10/24/2022]
Abstract
Here we describe a rare case of Capgras delusion - a misidentification syndrome characterized by the belief that a person has been replaced by an imposter - in a patient without evident neurological or psychiatric symptoms. Intriguingly, delusional belief was selective for both person and modality, as the patient believed that his son - not his daughter or other relatives - was substituted with an imposter only while being in presence of him and looking at his face, but not when merely listening to his voice. A neuroanatomical reconstruction obtained integrating morphological and functional patient's neuroimaging data highlighted two main peculiarities: a compression of the rostral portion of right temporal lobe due to a large arachnoid cyst, and a bilaterally reduced metabolism of frontal areas. Autonomic data obtained from thermal infra-red camera and skin conductance recordings showed that a higher sympathetic activation was evoked by the observation of daughter's face, relative to the observation of the son's face as well as of not-familiar faces; conversely, daughter and son voices elicited a similar sympathetic activation, higher relative to not-familiar voices, indicating a modality-dependent dissociation consistent with the delusional behavior. Our case supports the "two-hit hypothesis" about Capgras delusion etiopathogenesis: here, the first hit is represented by the right-temporal lesion impairing the association between familiar faces and emotional values, the second one is the frontal bilateral hypometabolism favoring delusional behavior. The selective occurrence of "imposter" delusion for a particular subject and for a specific perceptual modality suggests the involvement of modality-specific interactions in the retrieval of affective properties during familiar people recognition.
Collapse
Affiliation(s)
- Arturo Nuara
- CNR Neuroscience Institute, Parma, Italy; Unit of Neuroscience, Department of Medicine and Surgery, University of Parma, Italy.
| | - Ylenia Nicolini
- Unit of Neuroscience, Department of Medicine and Surgery, University of Parma, Italy
| | - Piergiorgio D'Orio
- CNR Neuroscience Institute, Parma, Italy; «Claudio Munari» Centre for Epilepsy Surgery, ASST GOM Niguarda, Milan, Italy
| | - Francesco Cardinale
- «Claudio Munari» Centre for Epilepsy Surgery, ASST GOM Niguarda, Milan, Italy
| | | | | | | | | |
Collapse
|
15
|
Young AW, Frühholz S, Schweinberger SR. Face and Voice Perception: Understanding Commonalities and Differences. Trends Cogn Sci 2020; 24:398-410. [DOI: 10.1016/j.tics.2020.02.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/16/2020] [Accepted: 02/03/2020] [Indexed: 01/01/2023]
|
16
|
Representation of abstract semantic knowledge in populations of human single neurons in the medial temporal lobe. PLoS Biol 2019; 17:e3000290. [PMID: 31158216 PMCID: PMC6564037 DOI: 10.1371/journal.pbio.3000290] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 06/13/2019] [Accepted: 05/10/2019] [Indexed: 11/23/2022] Open
Abstract
Sensory experience elicits complex activity patterns throughout the neocortex. Projections from the neocortex converge onto the medial temporal lobe (MTL), in which distributed neocortical firing patterns are distilled into sparse representations. The precise nature of these neuronal representations is still unknown. Here, we show that population activity patterns in the MTL are governed by high levels of semantic abstraction. We recorded human single-unit activity in the MTL (4,917 units, 25 patients) while subjects viewed 100 images grouped into 10 semantic categories of 10 exemplars each. High levels of semantic abstraction were indicated by representational similarity analyses (RSAs) of patterns elicited by individual stimuli. Moreover, pattern classifiers trained to decode semantic categories generalised successfully to unseen exemplars, and classifiers trained to decode exemplar identity more often confused exemplars of the same versus different categories. Semantic abstraction and generalisation may thus be key to efficiently distill the essence of an experience into sparse representations in the human MTL. Although semantic abstraction is efficient and may facilitate generalisation of knowledge to novel situations, it comes at the cost of a loss of detail and may be central to the generation of false memories. Single-neuron representations of stimuli in the human medial temporal lobe at the population level are governed by highly abstract semantic principles, but the attendant efficiency and potential for generalization comes at the cost of confusion between related stimuli. What is the neuronal code for sensory experience in the human medial temporal lobe (MTL)? Single-cell electrophysiology in the awake human brain during chronic, invasive epilepsy monitoring has previously revealed the existence of so-called concept cells. These cells have been found to increase their firing rate in response to, for example, the famous tennis player ‘Roger Federer’, whether his name is spoken by a computer voice or a picture of him is presented on a computer screen. These neurons thus seem to encode the semantic content of a stimulus, regardless of the sensory modality through which it is delivered. Previous work has predominantly focused on individual neurons that were selected based on their strong response to a particular stimulus using rather conservative statistical criteria. Those studies stressed that concept cells encode a single, concrete concept in an all-or-nothing fashion. Here, we analysed the neuronal code on the level of the entire population of neurons without any preselection. We conducted representational similarity analyses (RSAs) and pattern classification analyses of firing patterns evoked by visual stimuli (for example, a picture of an apple) that could be grouped into semantic categories on multiple levels of abstraction (‘fruit’, ‘food’, ‘natural things’). We found that neuronal activation patterns contain information on higher levels of categorical abstraction rather than just the level of individual exemplars. On the one hand, the neuronal code in the human MTL thus seems well suited to generalise semantic knowledge to new situations; on the other hand, it could also be responsible for the generation of false memories.
Collapse
|
17
|
Ferretti V, Maltese F, Contarini G, Nigro M, Bonavia A, Huang H, Gigliucci V, Morelli G, Scheggia D, Managò F, Castellani G, Lefevre A, Cancedda L, Chini B, Grinevich V, Papaleo F. Oxytocin Signaling in the Central Amygdala Modulates Emotion Discrimination in Mice. Curr Biol 2019; 29:1938-1953.e6. [DOI: 10.1016/j.cub.2019.04.070] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 04/11/2019] [Accepted: 04/26/2019] [Indexed: 11/29/2022]
|
18
|
|
19
|
Waytz A, Cacioppo JT, Hurlemann R, Castelli F, Adolphs R, Paul LK. Anthropomorphizing without Social Cues Requires the Basolateral Amygdala. J Cogn Neurosci 2019; 31:482-496. [DOI: 10.1162/jocn_a_01365] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Anthropomorphism, the attribution of distinctively human mental characteristics to nonhuman animals and objects, illustrates the human propensity for extending social cognition beyond typical social targets. Yet, its processing components remain challenging to study because they are typically all engaged simultaneously. Across one pilot study and one focal study, we tested three rare people with basolateral amygdala lesions to dissociate two specific processing components: those triggered by attention to social cues (e.g., seeing a face) and those triggered by endogenous semantic knowledge (e.g., imbuing a machine with animacy). A pilot study demonstrated that, like neurologically intact control group participants, the three amygdala-damaged participants produced anthropomorphic descriptions for highly socially salient stimuli but not for stimuli lacking clear social cues. A focal study found that the three amygdala participants could anthropomorphize animate and living entities normally, but anthropomorphized inanimate stimuli less than control participants. Our findings suggest that the amygdala contributes to how we anthropomorphize stimuli that are not explicitly social.
Collapse
|
20
|
Burra N, Mares I, Senju A. The influence of top-down modulation on the processing of direct gaze. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2019; 10:e1500. [PMID: 30864304 DOI: 10.1002/wcs.1500] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 01/25/2019] [Accepted: 02/10/2019] [Indexed: 01/01/2023]
Abstract
Gaze or eye contact is one of the most important nonverbal social cues, which is fundamental to human social interactions. To achieve real time and dynamic face-to-face communication, our brain needs to process another person's gaze direction rapidly and without explicit instruction. In order to explain the fast and spontaneous processing of direct gaze, the fast-track modulator model was proposed. Here, we review recent developments in gaze processing research in the last decade to extend the fast-track modulator model. In particular, we propose that task demand or top-down modulation could play a more crucial role at gaze processing than formerly assumed. We suggest that under different task demands, top-down modulation can facilitate or interfere with the direct gaze effects for early visual processing. The proposed modification of the model extends the role of task demand and its implication on the direct gaze effect, as well as the need to better control for top-down processing in order to better disentangle the role of top-down and bottom-up processing on the direct gaze effect. This article is categorized under: Cognitive Biology > Evolutionary Roots of Cognition Psychology > Perception and Psychophysics Neuroscience > Cognition.
Collapse
Affiliation(s)
- Nicolas Burra
- Faculté de Psychologie et des Sciences de l'Education, Université de Genève, Geneva, Switzerland
| | - Ines Mares
- Department of Psychological Sciences, Birkbeck, University of London, London, England
| | - Atsushi Senju
- Department of Psychological Sciences, Birkbeck, University of London, London, England.,Centre for Brain and Cognitive Development, Birkbeck, University of London, London, England
| |
Collapse
|
21
|
Hennessey T, Andari E, Rainnie DG. RDoC-based categorization of amygdala functions and its implications in autism. Neurosci Biobehav Rev 2018; 90:115-129. [PMID: 29660417 PMCID: PMC6250055 DOI: 10.1016/j.neubiorev.2018.04.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 03/09/2018] [Accepted: 04/09/2018] [Indexed: 12/28/2022]
Abstract
Confusion endures as to the exact role of the amygdala in relation to autism. To help resolve this we turned to the NIMH's Research Domain Criteria (RDoC) which provides a classification schema that identifies different categories of behaviors that can turn pathologic in mental health disorders, e.g. autism. While RDoC incorporates all the known neurobiological substrates for each domain, this review will focus primarily on the amygdala. We first consider the amygdala from an anatomical, historical, and developmental perspective. Next, we examine the different domains and constructs of RDoC that the amygdala is involved in: Negative Valence Systems, Positive Valence Systems, Cognitive Systems, Social Processes, and Arousal and Regulatory Systems. Then the evidence for a dysfunctional amygdala in autism is presented with a focus on alterations in development, prenatal valproic acid exposure as a model for ASD, and changes in the oxytocin system therein. Finally, a synthesis of RDoC, the amygdala, and autism is offered, emphasizing the task of disambiguation and suggestions for future research.
Collapse
Affiliation(s)
- Thomas Hennessey
- Department of Behavioral Neuroscience and Psychiatric Disorders, Yerkes National Primate Research Center, United States; Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, 30329, United States
| | - Elissar Andari
- Silvio O. Conte Center for Oxytocin and Social Cognition, Department of Psychiatry and Behavioral Sciences, Division of Behavioral Neuroscience and Psychiatric Disorders, Yerkes National Primate Research Center, Emory University, United States
| | - Donald G Rainnie
- Department of Behavioral Neuroscience and Psychiatric Disorders, Yerkes National Primate Research Center, United States; Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, 30329, United States.
| |
Collapse
|
22
|
Jiang J, Borowiak K, Tudge L, Otto C, von Kriegstein K. Neural mechanisms of eye contact when listening to another person talking. Soc Cogn Affect Neurosci 2017; 12:319-328. [PMID: 27576745 PMCID: PMC5390711 DOI: 10.1093/scan/nsw127] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 08/24/2016] [Indexed: 11/14/2022] Open
Abstract
Eye contact occurs frequently and voluntarily during face-to-face verbal communication. However, the neural mechanisms underlying eye contact when it is accompanied by spoken language remain unexplored to date. Here we used a novel approach, fixation-based event-related functional magnetic resonance imaging (fMRI), to simulate the listener making eye contact with a speaker during verbal communication. Participants’ eye movements and fMRI data were recorded simultaneously while they were freely viewing a pre-recorded speaker talking. The eye tracking data were then used to define events for the fMRI analyses. The results showed that eye contact in contrast to mouth fixation involved visual cortical areas (cuneus, calcarine sulcus), brain regions related to theory of mind/intentionality processing (temporoparietal junction, posterior superior temporal sulcus, medial prefrontal cortex) and the dorsolateral prefrontal cortex. In addition, increased effective connectivity was found between these regions for eye contact in contrast to mouth fixations. The results provide first evidence for neural mechanisms underlying eye contact when watching and listening to another person talking. The network we found might be well suited for processing the intentions of communication partners during eye contact in verbal communication.
Collapse
Affiliation(s)
- Jing Jiang
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany.,Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin 10117, Germany.,Institute of Psychology, Humboldt-Universität zu Berlin, Berlin 12489, Germany
| | - Kamila Borowiak
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany.,Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin 10117, Germany
| | - Luke Tudge
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin 10117, Germany
| | - Carolin Otto
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
| | - Katharina von Kriegstein
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany.,Institute of Psychology, Humboldt-Universität zu Berlin, Berlin 12489, Germany
| |
Collapse
|
23
|
Knieling S, Niediek J, Kutter E, Bostroem J, Elger CE, Mormann F. An online adaptive screening procedure for selective neuronal responses. J Neurosci Methods 2017; 291:36-42. [PMID: 28826654 DOI: 10.1016/j.jneumeth.2017.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 08/01/2017] [Accepted: 08/02/2017] [Indexed: 11/30/2022]
Abstract
BACKGROUND A common problem in neurophysiology is to identify stimuli that elicit neuronal responses in a given brain region. Particularly in situations where electrode positions are fixed, this can be a time-consuming task that requires presentation of a large number of stimuli. Such a screening for response-eliciting stimuli is employed, e.g., as a standard procedure to identify 'concept cells' in the human medial temporal lobe. NEW METHOD Our new method evaluates neuronal responses to stimuli online during a screening session, which allows us to successively exclude stimuli that do not evoke a response. Using this method, we can screen a larger number of stimuli which in turn increases the chances of finding responsive neurons and renders time-consuming offline analysis unnecessary. RESULTS Our method enabled us to present 30% more stimuli in the same period of time with additional presentations of the most promising candidate stimuli. Our online method ran smoothly on a standard computer and network. COMPARISON WITH AN EXISTING METHOD To analyze how our online screening procedure performs in comparison to an established offline method, we used the Wave_Clus software package. We did not observe any major drawbacks in our method, but a much higher efficiency and analysis speed. CONCLUSIONS By transitioning from a traditional offline screening procedure to our new online method, we substantially increased the number of visual stimuli presented in a given time period. This allows to identify more response-eliciting stimuli, which forms the basis to better address a great number of questions in cognitive neuroscience.
Collapse
Affiliation(s)
- S Knieling
- Dept. of Epileptology, University of Bonn, Germany
| | - J Niediek
- Dept. of Epileptology, University of Bonn, Germany
| | - E Kutter
- Dept. of Epileptology, University of Bonn, Germany
| | - J Bostroem
- Dept. of Neurosurgery, University of Bonn, Germany
| | - C E Elger
- Dept. of Epileptology, University of Bonn, Germany
| | - F Mormann
- Dept. of Epileptology, University of Bonn, Germany.
| |
Collapse
|
24
|
Gothard KM, Mosher CP, Zimmerman PE, Putnam PT, Morrow JK, Fuglevand AJ. New perspectives on the neurophysiology of primate amygdala emerging from the study of naturalistic social behaviors. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2017; 9. [PMID: 28800678 DOI: 10.1002/wcs.1449] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 06/03/2017] [Accepted: 06/05/2017] [Indexed: 11/07/2022]
Abstract
A major challenge of primate neurophysiology, particularly in the domain of social neuroscience, is to adopt more natural behaviors without compromising the ability to relate patterns of neural activity to specific actions or sensory inputs. Traditional approaches have identified neural activity patterns in the amygdala in response to simplified versions of social stimuli such as static images of faces. As a departure from this reduced approach, single images of faces were replaced with arrays of images or videos of conspecifics. These stimuli elicited more natural behaviors and new types of neural responses: (1) attention-gated responses to faces, (2) selective responses to eye contact, and (3) selective responses to touch and somatosensory feedback during the production of facial expressions. An additional advance toward more natural social behaviors in the laboratory was the implementation of dyadic social interactions. Under these conditions, neurons encoded similarly rewards that monkeys delivered to self and to their social partner. These findings reinforce the value of bringing natural, ethologically valid, behavioral tasks under neurophysiological scrutiny. WIREs Cogn Sci 2018, 9:e1449. doi: 10.1002/wcs.1449 This article is categorized under: Psychology > Emotion and Motivation Neuroscience > Cognition Neuroscience > Physiology.
Collapse
Affiliation(s)
- Katalin M Gothard
- Department of Physiology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Clayton P Mosher
- Department of Physiology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Prisca E Zimmerman
- Department of Physiology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Philip T Putnam
- Department of Physiology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Jeremiah K Morrow
- Department of Physiology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Andrew J Fuglevand
- Department of Physiology, College of Medicine, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
25
|
Roswandowitz C, Schelinski S, von Kriegstein K. Developmental phonagnosia: Linking neural mechanisms with the behavioural phenotype. Neuroimage 2017; 155:97-112. [DOI: 10.1016/j.neuroimage.2017.02.064] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 12/16/2016] [Accepted: 02/21/2017] [Indexed: 11/30/2022] Open
|
26
|
The human amygdala parametrically encodes the intensity of specific facial emotions and their categorical ambiguity. Nat Commun 2017; 8:14821. [PMID: 28429707 PMCID: PMC5413952 DOI: 10.1038/ncomms14821] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 02/06/2017] [Indexed: 11/15/2022] Open
Abstract
The human amygdala is a key structure for processing emotional facial expressions, but it remains unclear what aspects of emotion are processed. We investigated this question with three different approaches: behavioural analysis of 3 amygdala lesion patients, neuroimaging of 19 healthy adults, and single-neuron recordings in 9 neurosurgical patients. The lesion patients showed a shift in behavioural sensitivity to fear, and amygdala BOLD responses were modulated by both fear and emotion ambiguity (the uncertainty that a facial expression is categorized as fearful or happy). We found two populations of neurons, one whose response correlated with increasing degree of fear, or happiness, and a second whose response primarily decreased as a linear function of emotion ambiguity. Together, our results indicate that the human amygdala processes both the degree of emotion in facial expressions and the categorical ambiguity of the emotion shown and that these two aspects of amygdala processing can be most clearly distinguished at the level of single neurons. The amygdala processes emotional facial expressions, but its exact contributions are unclear. Wang. et al. use behavioural analysis of amygdala lesion patients, fMRI, and single-neuron recordings to show that both emotional intensity and ambiguity signals are processed in the human amygdala.
Collapse
|
27
|
Framorando D, George N, Kerzel D, Burra N. Straight gaze facilitates face processing but does not cause involuntary attentional capture. VISUAL COGNITION 2017. [DOI: 10.1080/13506285.2017.1285840] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- D. Framorando
- Faculté de Psychologie et des Sciences de l’Education, Université de Genève, Geneva, Switzerland
| | - N. George
- Inserm, Paris, France
- CNRS, Paris, France
- Sorbonne Universités, Paris, France
- Institut du Cerveau et de la Moelle Epinière (ICM), Social and Affective Neuroscience Lab and MEG-EEG Centre - CENIR, Paris, France
| | - D. Kerzel
- Faculté de Psychologie et des Sciences de l’Education, Université de Genève, Geneva, Switzerland
| | - N. Burra
- Faculté de Psychologie et des Sciences de l’Education, Université de Genève, Geneva, Switzerland
| |
Collapse
|
28
|
Elbich DB, Scherf S. Beyond the FFA: Brain-behavior correspondences in face recognition abilities. Neuroimage 2017; 147:409-422. [DOI: 10.1016/j.neuroimage.2016.12.042] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 12/09/2016] [Accepted: 12/15/2016] [Indexed: 10/20/2022] Open
|
29
|
Niediek J, Boström J, Elger CE, Mormann F. Reliable Analysis of Single-Unit Recordings from the Human Brain under Noisy Conditions: Tracking Neurons over Hours. PLoS One 2016; 11:e0166598. [PMID: 27930664 PMCID: PMC5145161 DOI: 10.1371/journal.pone.0166598] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 10/24/2016] [Indexed: 11/18/2022] Open
Abstract
Recording extracellulary from neurons in the brains of animals in vivo is among the most established experimental techniques in neuroscience, and has recently become feasible in humans. Many interesting scientific questions can be addressed only when extracellular recordings last several hours, and when individual neurons are tracked throughout the entire recording. Such questions regard, for example, neuronal mechanisms of learning and memory consolidation, and the generation of epileptic seizures. Several difficulties have so far limited the use of extracellular multi-hour recordings in neuroscience: Datasets become huge, and data are necessarily noisy in clinical recording environments. No methods for spike sorting of such recordings have been available. Spike sorting refers to the process of identifying the contributions of several neurons to the signal recorded in one electrode. To overcome these difficulties, we developed Combinato: a complete data-analysis framework for spike sorting in noisy recordings lasting twelve hours or more. Our framework includes software for artifact rejection, automatic spike sorting, manual optimization, and efficient visualization of results. Our completely automatic framework excels at two tasks: It outperforms existing methods when tested on simulated and real data, and it enables researchers to analyze multi-hour recordings. We evaluated our methods on both short and multi-hour simulated datasets. To evaluate the performance of our methods in an actual neuroscientific experiment, we used data from from neurosurgical patients, recorded in order to identify visually responsive neurons in the medial temporal lobe. These neurons responded to the semantic content, rather than to visual features, of a given stimulus. To test our methods with multi-hour recordings, we made use of neurons in the human medial temporal lobe that respond selectively to the same stimulus in the evening and next morning.
Collapse
Affiliation(s)
- Johannes Niediek
- Department of Epileptology, University of Bonn, Bonn, Germany
- * E-mail:
| | - Jan Boström
- Department of Neurosurgery, University of Bonn, Bonn, Germany
| | | | - Florian Mormann
- Department of Epileptology, University of Bonn, Bonn, Germany
| |
Collapse
|
30
|
Burra N, Kerzel D, George N. Early Left Parietal Activity Elicited by Direct Gaze: A High-Density EEG Study. PLoS One 2016; 11:e0166430. [PMID: 27880776 PMCID: PMC5120811 DOI: 10.1371/journal.pone.0166430] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 10/30/2016] [Indexed: 11/18/2022] Open
Abstract
Gaze is one of the most important cues for human communication and social interaction. In particular, gaze contact is the most primary form of social contact and it is thought to capture attention. A very early-differentiated brain response to direct versus averted gaze has been hypothesized. Here, we used high-density electroencephalography to test this hypothesis. Topographical analysis allowed us to uncover a very early topographic modulation (40-80 ms) of event-related responses to faces with direct as compared to averted gaze. This modulation was obtained only in the condition where intact broadband faces-as opposed to high-pass or low-pas filtered faces-were presented. Source estimation indicated that this early modulation involved the posterior parietal region, encompassing the left precuneus and inferior parietal lobule. This supports the idea that it reflected an early orienting response to direct versus averted gaze. Accordingly, in a follow-up behavioural experiment, we found faster response times to the direct gaze than to the averted gaze broadband faces. In addition, classical evoked potential analysis showed that the N170 peak amplitude was larger for averted gaze than for direct gaze. Taken together, these results suggest that direct gaze may be detected at a very early processing stage, involving a parallel route to the ventral occipito-temporal route of face perceptual analysis.
Collapse
Affiliation(s)
- Nicolas Burra
- Institut du Cerveau et de la Moelle Epinière, ICM, Social and Affective Neuroscience (SAN) Laboratory and Centre MEG-EEG, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S 1127 and Centre MEG-EEG, Paris, France
- CNRS, UMR 7225 and Centre MEG-EEG, Paris, France
- Inserm, U 1127 and Centre MEG-EEG, Paris, France
- Faculté de Psychologie et des Sciences de l’Education, Université de Genève, Geneva, Switzerland
- * E-mail: (NB)
| | - Dirk Kerzel
- Faculté de Psychologie et des Sciences de l’Education, Université de Genève, Geneva, Switzerland
| | - Nathalie George
- Institut du Cerveau et de la Moelle Epinière, ICM, Social and Affective Neuroscience (SAN) Laboratory and Centre MEG-EEG, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S 1127 and Centre MEG-EEG, Paris, France
- CNRS, UMR 7225 and Centre MEG-EEG, Paris, France
- Inserm, U 1127 and Centre MEG-EEG, Paris, France
- ENS, Centre MEG-EEG, Paris, France
| |
Collapse
|
31
|
Exploring human epileptic activity at the single-neuron level. Epilepsy Behav 2016; 58:11-7. [PMID: 26994366 DOI: 10.1016/j.yebeh.2016.02.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 02/09/2016] [Accepted: 02/10/2016] [Indexed: 11/21/2022]
Abstract
Today, localization of the seizure focus heavily relies on EEG monitoring (scalp or intracranial). However, current technology enables much finer resolutions. The activity of hundreds of single neurons in the human brain can now be simultaneously explored before, during, and after a seizure or in association with an interictal discharge. This technology opens up new horizons to understanding epilepsy at a completely new level. This review therefore begins with a brief description of the basis of the technology, the microelectrodes, and the setup for their implantation in patients with epilepsy. Using these electrodes, recent studies provide novel insights into both the time domain and firing patterns of epileptic activity of single neurons. In the time domain, seizure-related activity may occur even minutes before seizure onset (in its current, EEG-based definition). Seizure-related neuronal interactions exhibit complex heterogeneous dynamics. In the seizure-onset zone, changes in firing patterns correlate with cell loss; in the penumbra, neurons maintain their spike stereotypy during a seizure. Hence, investigation of the extracellular electrical activity is expected to provide a better understanding of the mechanisms underlying the disease; it may, in the future, serve for a more accurate localization of the seizure focus; and it may also be employed to predict the occurrence of seizures prior to their behavioral manifestation in order to administer automatic therapeutic interventions.
Collapse
|