1
|
Xu J, Girardi-Schappo M, Beique JC, Longtin A, Maler L. Shortcutting from self-motion signals reveals a cognitive map in mice. eLife 2024; 13:RP95764. [PMID: 39526583 PMCID: PMC11554306 DOI: 10.7554/elife.95764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Animals navigate by learning the spatial layout of their environment. We investigated spatial learning of mice in an open maze where food was hidden in one of a hundred holes. Mice leaving from a stable entrance learned to efficiently navigate to the food without the need for landmarks. We developed a quantitative framework to reveal how the mice estimate the food location based on analyses of trajectories and active hole checks. After learning, the computed 'target estimation vector' (TEV) closely approximated the mice's route and its hole check distribution. The TEV required learning both the direction and distance of the start to food vector, and our data suggests that different learning dynamics underlie these estimates. We propose that the TEV can be precisely connected to the properties of hippocampal place cells. Finally, we provide the first demonstration that, after learning the location of two food sites, the mice took a shortcut between the sites, demonstrating that they had generated a cognitive map.
Collapse
Affiliation(s)
- Jiayun Xu
- Department of Cellular and Molecular Medicine, University of OttawaOttawaCanada
| | | | - Jean-Claude Beique
- Department of Cellular and Molecular Medicine, University of OttawaOttawaCanada
- Brain and Mind Institute, University of OttawaOttawaCanada
- Center for Neural Dynamics and Artificial Intelligence, University of OttawaOttawaCanada
| | - André Longtin
- Department of Cellular and Molecular Medicine, University of OttawaOttawaCanada
- Department of Physics, University of OttawaOttawaCanada
- Brain and Mind Institute, University of OttawaOttawaCanada
- Center for Neural Dynamics and Artificial Intelligence, University of OttawaOttawaCanada
| | - Leonard Maler
- Department of Cellular and Molecular Medicine, University of OttawaOttawaCanada
- Brain and Mind Institute, University of OttawaOttawaCanada
- Center for Neural Dynamics and Artificial Intelligence, University of OttawaOttawaCanada
| |
Collapse
|
2
|
Street JS, Jeffery KJ. The dorsal thalamic lateral geniculate nucleus is required for visual control of head direction cell firing direction in rats. J Physiol 2024; 602:5247-5267. [PMID: 39235958 DOI: 10.1113/jp286868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/13/2024] [Indexed: 09/07/2024] Open
Abstract
Head direction (HD) neurons, signalling facing direction, generate a signal that is primarily anchored to the outside world by visual inputs. We investigated the route for visual landmark information into the HD system in rats. There are two candidates: an evolutionarily older, larger subcortical retino-tectal pathway and a more recently evolved, smaller cortical retino-geniculo-striate pathway. We disrupted the cortical pathway by lesioning the dorsal lateral geniculate thalamic nuclei bilaterally, and recorded HD cells in the postsubicular cortex as rats foraged in a visual-cue-controlled enclosure. In lesioned rats we found the expected number of postsubicular HD cells. Although directional tuning curves were broader across a trial, this was attributable to the increased instability of otherwise normal-width tuning curves. Tuning curves were also poorly responsive to polarizing visual landmarks and did not distinguish cues based on their visual pattern. Thus, the retino-geniculo-striate pathway is not crucial for the generation of an underlying, tightly tuned directional signal but does provide the main route for vision-based anchoring of the signal to the outside world, even when visual cues are high in contrast and low in detail. KEY POINTS: Head direction (HD) cells indicate the facing direction of the head, using visual landmarks to distinguish directions. In rats, we investigated whether this visual information is routed through the thalamus to the visual cortex or arrives via the superior colliculus, which is a phylogenetically older and (in rodents) larger pathway. We lesioned the thalamic dorsal lateral geniculate nucleus (dLGN) in rats and recorded the responsiveness of cortical HD cells to visual cues. We found that cortical HD cells had normal tuning curves, but these were slightly more unstable during a trial. Most notably, HD cells in dLGN-lesioned animals showed little ability to distinguish highly distinct cues and none to distinguish more similar cues. These results suggest that directional processing of visual landmarks in mammals requires the geniculo-cortical pathway, which raises questions about when and how visual directional landmark processing appeared during evolution.
Collapse
Affiliation(s)
- James S Street
- Institute of Neurology, University College London, London, UK
| | - Kate J Jeffery
- School of Psychology & Neuroscience, University of Glasgow, Glasgow, UK
| |
Collapse
|
3
|
Wang J, Zhang Y, Yang H, Tian E, Guo Z, Chen J, Qiao C, Jiang H, Guo J, Zhou Z, Luo Q, Shi S, Yao H, Lu Y, Zhang S. Advanced progress of vestibular compensation in vestibular neural networks. CNS Neurosci Ther 2024; 30:e70037. [PMID: 39268632 PMCID: PMC11393560 DOI: 10.1111/cns.70037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/12/2024] [Accepted: 08/27/2024] [Indexed: 09/17/2024] Open
Abstract
Vestibular compensation is the natural process of recovery that occurs with acute peripheral vestibular lesion. Here, we summarize the current understanding of the mechanisms underlying vestibular compensation, focusing on the role of the medial vestibular nucleus (MVN), the central hub of the vestibular system, and its associated neural networks. The disruption of neural activity balance between the bilateral MVNs underlies the vestibular symptoms after unilateral vestibular damage, and this balance disruption can be partially reversed by the mutual inhibitory projections between the bilateral MVNs, and their top-down regulation by other brain regions via different neurotransmitters. However, the detailed mechanism of how MVN is involved in vestibular compensation and regulated remains largely unknown. A deeper understanding of the vestibular neural network and the neurotransmitter systems involved in vestibular compensation holds promise for improving treatment outcomes and developing more effective interventions for vestibular disorders.
Collapse
Affiliation(s)
- Jun Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- National Clinical Research Center for Otolaryngologic Diseases, Jiangxi Branch Center, Nanchang, China
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuejin Zhang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Physiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Huajing Yang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - E Tian
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhaoqi Guo
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingyu Chen
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Caijuan Qiao
- Department of Physiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Hongqun Jiang
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- National Clinical Research Center for Otolaryngologic Diseases, Jiangxi Branch Center, Nanchang, China
| | - Jiaqi Guo
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhanghong Zhou
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Luo
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- National Clinical Research Center for Otolaryngologic Diseases, Jiangxi Branch Center, Nanchang, China
| | - Shiyu Shi
- Department of Rehabilitation, Liyuan Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongyi Yao
- Department of Rehabilitation, Liyuan Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yisheng Lu
- Department of Physiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Sulin Zhang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Griffiths BJ, Schreiner T, Schaefer JK, Vollmar C, Kaufmann E, Quach S, Remi J, Noachtar S, Staudigl T. Electrophysiological signatures of veridical head direction in humans. Nat Hum Behav 2024; 8:1334-1350. [PMID: 38710766 DOI: 10.1038/s41562-024-01872-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 03/22/2024] [Indexed: 05/08/2024]
Abstract
Information about heading direction is critical for navigation as it provides the means to orient ourselves in space. However, given that veridical head-direction signals require physical rotation of the head and most human neuroimaging experiments depend upon fixing the head in position, little is known about how the human brain is tuned to such heading signals. Here we adress this by asking 52 healthy participants undergoing simultaneous electroencephalography and motion tracking recordings (split into two experiments) and 10 patients undergoing simultaneous intracranial electroencephalography and motion tracking recordings to complete a series of orientation tasks in which they made physical head rotations to target positions. We then used a series of forward encoding models and linear mixed-effects models to isolate electrophysiological activity that was specifically tuned to heading direction. We identified a robust posterior central signature that predicts changes in veridical head orientation after regressing out confounds including sensory input and muscular activity. Both source localization and intracranial analysis implicated the medial temporal lobe as the origin of this effect. Subsequent analyses disentangled head-direction signatures from signals relating to head rotation and those reflecting location-specific effects. Lastly, when directly comparing head direction and eye-gaze-related tuning, we found that the brain maintains both codes while actively navigating, with stronger tuning to head direction in the medial temporal lobe. Together, these results reveal a taxonomy of population-level head-direction signals within the human brain that is reminiscent of those reported in the single units of rodents.
Collapse
Affiliation(s)
- Benjamin J Griffiths
- Department of Psychology, Ludwig-Maximilians-Universität München, Munich, Germany
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| | - Thomas Schreiner
- Department of Psychology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Julia K Schaefer
- Department of Psychology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Christian Vollmar
- Epilepsy Center, Department of Neurology, Ludwig-Maximilians-Universität University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Elisabeth Kaufmann
- Epilepsy Center, Department of Neurology, Ludwig-Maximilians-Universität University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Stefanie Quach
- Department of Neurosurgery, University Hospital Munich, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Jan Remi
- Epilepsy Center, Department of Neurology, Ludwig-Maximilians-Universität University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Soheyl Noachtar
- Epilepsy Center, Department of Neurology, Ludwig-Maximilians-Universität University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Tobias Staudigl
- Department of Psychology, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
5
|
Ciocca M, Jameel A, Yousif N, Patel N, Smith J, Akgun S, Jones B, Gedroyc W, Nandi D, Tai Y, Seemungal BM, Bain P. Illusions of Self-Motion during Magnetic Resonance-Guided Focused Ultrasound Thalamotomy for Tremor. Ann Neurol 2024; 96:121-132. [PMID: 38709569 DOI: 10.1002/ana.26945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/08/2024]
Abstract
OBJECTIVE Brain networks mediating vestibular perception of self-motion overlap with those mediating balance. A systematic mapping of vestibular perceptual pathways in the thalamus may reveal new brain modulation targets for improving balance in neurological conditions. METHODS Here, we systematically report how magnetic resonance-guided focused ultrasound surgery of the nucleus ventralis intermedius of the thalamus commonly evokes transient patient-reported illusions of self-motion. In 46 consecutive patients, we linked the descriptions of self-motion to sonication power and 3-dimensional (3D) coordinates of sonication targets. Target coordinates were normalized using a standard atlas, and a 3D model of the nucleus ventralis intermedius and adjacent structures was created to link sonication target to the illusion. RESULTS A total of 63% of patients reported illusions of self-motion, which were more likely with increased sonication power and with targets located more inferiorly along the rostrocaudal axis. Higher power and more inferiorly targeted sonications increased the likelihood of experiencing illusions of self-motion by 4 and 2 times, respectively (odds ratios = 4.03 for power, 2.098 for location). INTERPRETATION The phenomenon of magnetic vestibular stimulation is the most plausible explanation for these illusions of self-motion. Temporary unilateral modulation of vestibular pathways (via magnetic resonance-guided focused ultrasound) unveils the central adaptation to the magnetic field-induced peripheral vestibular bias, leading to an explicable illusion of motion. Consequently, systematic mapping of vestibular perceptual pathways via magnetic resonance-guided focused ultrasound may reveal new intracerebral targets for improving balance in neurological conditions. ANN NEUROL 2024;96:121-132.
Collapse
Affiliation(s)
- Matteo Ciocca
- Department of Brain Sciences, Charing Cross Hospital, Imperial College London, London, United Kingdom
| | - Ayesha Jameel
- Department of Radiology, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Nada Yousif
- School of Engineering and Computer Science, University of Hertfordshire, Hatfield, United Kingdom
| | - Neekhil Patel
- Department of Brain Sciences, Charing Cross Hospital, Imperial College London, London, United Kingdom
| | - Joely Smith
- Faculty of Engineering, Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Sena Akgun
- Department of Radiology, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Brynmor Jones
- Department of Radiology, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Wlayslaw Gedroyc
- Department of Radiology, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Dipankar Nandi
- Department of Brain Sciences, Charing Cross Hospital, Imperial College London, London, United Kingdom
| | - Yen Tai
- Department of Brain Sciences, Charing Cross Hospital, Imperial College London, London, United Kingdom
| | - Barry M Seemungal
- Department of Brain Sciences, Charing Cross Hospital, Imperial College London, London, United Kingdom
| | - Peter Bain
- Department of Brain Sciences, Charing Cross Hospital, Imperial College London, London, United Kingdom
| |
Collapse
|
6
|
Pecirno SA, Keinath AT. The neuroscience of turning heads. Nat Hum Behav 2024; 8:1243-1244. [PMID: 38877288 DOI: 10.1038/s41562-024-01920-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Affiliation(s)
- Sergio A Pecirno
- Department of Psychology, University of Illinois Chicago, Chicago, IL, USA
| | | |
Collapse
|
7
|
Schreiner T, Griffiths BJ, Kutlu M, Vollmar C, Kaufmann E, Quach S, Remi J, Noachtar S, Staudigl T. Spindle-locked ripples mediate memory reactivation during human NREM sleep. Nat Commun 2024; 15:5249. [PMID: 38898100 PMCID: PMC11187142 DOI: 10.1038/s41467-024-49572-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 06/11/2024] [Indexed: 06/21/2024] Open
Abstract
Memory consolidation relies in part on the reactivation of previous experiences during sleep. The precise interplay of sleep-related oscillations (slow oscillations, spindles and ripples) is thought to coordinate the information flow between relevant brain areas, with ripples mediating memory reactivation. However, in humans empirical evidence for a role of ripples in memory reactivation is lacking. Here, we investigated the relevance of sleep oscillations and specifically ripples for memory reactivation during human sleep using targeted memory reactivation. Intracranial electrophysiology in epilepsy patients and scalp EEG in healthy participants revealed that elevated levels of slow oscillation - spindle activity coincided with the read-out of experimentally induced memory reactivation. Importantly, spindle-locked ripples recorded intracranially from the medial temporal lobe were found to be correlated with the identification of memory reactivation during non-rapid eye movement sleep. Our findings establish ripples as key-oscillation for sleep-related memory reactivation in humans and emphasize the importance of the coordinated interplay of the cardinal sleep oscillations.
Collapse
Affiliation(s)
- Thomas Schreiner
- Department of Psychology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Benjamin J Griffiths
- Department of Psychology, Ludwig-Maximilians-Universität München, Munich, Germany
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| | - Merve Kutlu
- Department of Psychology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Christian Vollmar
- Epilepsy Center, Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Elisabeth Kaufmann
- Epilepsy Center, Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Stefanie Quach
- Department of Neurosurgery, University Hospital Munich, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Jan Remi
- Epilepsy Center, Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Soheyl Noachtar
- Epilepsy Center, Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Tobias Staudigl
- Department of Psychology, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
8
|
Jedrasiak-Cape I, Rybicki-Kler C, Brooks I, Ghosh M, Brennan EK, Kailasa S, Ekins TG, Rupp A, Ahmed OJ. Cell-type-specific cholinergic control of granular retrosplenial cortex with implications for angular velocity coding across brain states. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.04.597341. [PMID: 38895393 PMCID: PMC11185600 DOI: 10.1101/2024.06.04.597341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Cholinergic receptor activation enables the persistent firing of cortical pyramidal neurons, providing a key cellular basis for theories of spatial navigation involving working memory, path integration, and head direction encoding. The granular retrosplenial cortex (RSG) is important for spatially-guided behaviors, but how acetylcholine impacts RSG neurons is unknown. Here, we show that a transcriptomically, morphologically, and biophysically distinct RSG cell-type - the low-rheobase (LR) neuron - has a very distinct expression profile of cholinergic muscarinic receptors compared to all other neighboring excitatory neuronal subtypes. LR neurons do not fire persistently in response to cholinergic agonists, in stark contrast to all other principal neuronal subtypes examined within the RSG and across midline cortex. This lack of persistence allows LR neuron models to rapidly compute angular head velocity (AHV), independent of cholinergic changes seen during navigation. Thus, LR neurons can consistently compute AHV across brain states, highlighting the specialized RSG neural codes supporting navigation.
Collapse
Affiliation(s)
| | - Chloe Rybicki-Kler
- Dept. of Psychology, University of Michigan, Ann Arbor, MI 48109
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109
| | - Isla Brooks
- Dept. of Psychology, University of Michigan, Ann Arbor, MI 48109
| | - Megha Ghosh
- Dept. of Psychology, University of Michigan, Ann Arbor, MI 48109
| | - Ellen K.W. Brennan
- Dept. of Psychology, University of Michigan, Ann Arbor, MI 48109
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109
| | - Sameer Kailasa
- Dept. of Mathematics, University of Michigan, Ann Arbor, MI 48109
| | - Tyler G. Ekins
- Dept. of Psychology, University of Michigan, Ann Arbor, MI 48109
| | - Alan Rupp
- Dept. of Internal Medicine, University of Michigan, Ann Arbor, MI 48109
| | - Omar J. Ahmed
- Dept. of Psychology, University of Michigan, Ann Arbor, MI 48109
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109
- Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI 48109
- Dept. of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
9
|
Sulpizio V, Teghil A, Pitzalis S, Boccia M. Common and specific activations supporting optic flow processing and navigation as revealed by a meta-analysis of neuroimaging studies. Brain Struct Funct 2024; 229:1021-1045. [PMID: 38592557 PMCID: PMC11147901 DOI: 10.1007/s00429-024-02790-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/12/2024] [Indexed: 04/10/2024]
Abstract
Optic flow provides useful information in service of spatial navigation. However, whether brain networks supporting these two functions overlap is still unclear. Here we used Activation Likelihood Estimation (ALE) to assess the correspondence between brain correlates of optic flow processing and spatial navigation and their specific neural activations. Since computational and connectivity evidence suggests that visual input from optic flow provides information mainly during egocentric navigation, we further tested the correspondence between brain correlates of optic flow processing and that of both egocentric and allocentric navigation. Optic flow processing shared activation with egocentric (but not allocentric) navigation in the anterior precuneus, suggesting its role in providing information about self-motion, as derived from the analysis of optic flow, in service of egocentric navigation. We further documented that optic flow perception and navigation are partially segregated into two functional and anatomical networks, i.e., the dorsal and the ventromedial networks. Present results point to a dynamic interplay between the dorsal and ventral visual pathways aimed at coordinating visually guided navigation in the environment.
Collapse
Affiliation(s)
- Valentina Sulpizio
- Department of Psychology, Sapienza University, Rome, Italy
- Department of Humanities, Education and Social Sciences, University of Molise, Campobasso, Italy
| | - Alice Teghil
- Department of Psychology, Sapienza University, Rome, Italy
- Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| | - Sabrina Pitzalis
- Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
- Department of Movement, Human and Health Sciences, University of Rome ''Foro Italico'', Rome, Italy
| | - Maddalena Boccia
- Department of Psychology, Sapienza University, Rome, Italy.
- Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy.
| |
Collapse
|
10
|
Jiang Q, Wu KLK, Hu XQ, Cheung MH, Chen W, Ma CW, Shum DKY, Chan YS. Neonatal GABAergic transmission primes vestibular gating of output for adult spatial navigation. Cell Mol Life Sci 2024; 81:147. [PMID: 38502309 PMCID: PMC10951018 DOI: 10.1007/s00018-024-05170-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 01/26/2024] [Accepted: 02/07/2024] [Indexed: 03/21/2024]
Abstract
GABAergic interneurons are poised with the capacity to shape circuit output via inhibitory gating. How early in the development of medial vestibular nucleus (MVN) are GABAergic neurons recruited for feedforward shaping of outputs to higher centers for spatial navigation? The role of early GABAergic transmission in assembling vestibular circuits for spatial navigation was explored by neonatal perturbation. Immunohistochemistry and confocal imaging were utilized to reveal the expression of parvalbumin (PV)-expressing MVN neurons and their perineuronal nets. Whole-cell patch-clamp recording, coupled with optogenetics, was conducted in vitro to examine the synaptic function of MVN circuitry. Chemogenetic targeting strategy was also employed in vivo to manipulate neuronal activity during navigational tests. We found in rats a neonatal critical period before postnatal day (P) 8 in which competitive antagonization of GABAergic transmission in the MVN retarded maturation of inhibitory neurotransmission, as evidenced by deranged developmental trajectory for excitation/inhibition ratio and an extended period of critical period-like plasticity in GABAergic transmission. Despite increased number of PV-expressing GABAergic interneurons in the MVN, optogenetic-coupled patch-clamp recording indicated null-recruitment of these neurons in tuning outputs along the ascending vestibular pathway. Such perturbation not only offset output dynamics of ascending MVN output neurons, but was further accompanied by impaired vestibular-dependent navigation in adulthood. The same perturbations were however non-consequential when applied after P8. Results highlight neonatal GABAergic transmission as key to establishing feedforward output dynamics to higher brain centers for spatial cognition and navigation.
Collapse
Affiliation(s)
- Qiufen Jiang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong, Hong Kong SAR, People's Republic of China
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kenneth Lap-Kei Wu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong, Hong Kong SAR, People's Republic of China
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Xiao-Qian Hu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong, Hong Kong SAR, People's Republic of China
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Man-Him Cheung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong, Hong Kong SAR, People's Republic of China
| | - Wenqiang Chen
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong, Hong Kong SAR, People's Republic of China
- Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Chun-Wai Ma
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong, Hong Kong SAR, People's Republic of China
| | - Daisy Kwok-Yan Shum
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong, Hong Kong SAR, People's Republic of China.
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR, People's Republic of China.
| | - Ying-Shing Chan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong, Hong Kong SAR, People's Republic of China.
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR, People's Republic of China.
| |
Collapse
|
11
|
LaChance PA, Taube JS. The Anterior Thalamus Preferentially Drives Allocentric But Not Egocentric Orientation Tuning in Postrhinal Cortex. J Neurosci 2024; 44:e0861232024. [PMID: 38286624 PMCID: PMC10919204 DOI: 10.1523/jneurosci.0861-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 11/28/2023] [Accepted: 01/11/2024] [Indexed: 01/31/2024] Open
Abstract
Navigating a complex world requires integration of multiple spatial reference frames, including information about one's orientation in both allocentric and egocentric coordinates. Combining these two information sources can provide additional information about one's spatial location. Previous studies have demonstrated that both egocentric and allocentric spatial signals are reflected by the firing of neurons in the rat postrhinal cortex (POR), an area that may serve as a hub for integrating allocentric head direction (HD) cell information with egocentric information from center-bearing and center-distance cells. However, we have also demonstrated that POR HD cells are uniquely influenced by the visual properties and locations of visual landmarks, bringing into question whether the POR HD signal is truly allocentric as opposed to simply being a response to visual stimuli. To investigate this issue, we recorded HD cells from the POR of female rats while bilaterally inactivating the anterior thalamus (ATN), a region critical for expression of the "classic" HD signal in cortical areas. We found that ATN inactivation led to a significant decrease in both firing rate and tuning strength for POR HD cells, as well as a disruption in the encoding of allocentric location by conjunctive HD/egocentric cells. In contrast, POR egocentric cells without HD tuning were largely unaffected in a consistent manner by ATN inactivation. These results indicate that the POR HD signal originates at least partially from projections from the ATN and supports the view that the POR acts as a hub for the integration of egocentric and allocentric spatial representations.
Collapse
Affiliation(s)
- Patrick A LaChance
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, New Hampshire 03755
| | - Jeffrey S Taube
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, New Hampshire 03755
| |
Collapse
|
12
|
Jeffery KJ, Cheng K, Newcombe NS, Bingman VP, Menzel R. Unpacking the navigation toolbox: insights from comparative cognition. Proc Biol Sci 2024; 291:20231304. [PMID: 38320615 PMCID: PMC10846957 DOI: 10.1098/rspb.2023.1304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 01/09/2024] [Indexed: 02/08/2024] Open
Abstract
The study of navigation is informed by ethological data from many species, laboratory investigation at behavioural and neurobiological levels, and computational modelling. However, the data are often species-specific, making it challenging to develop general models of how biology supports behaviour. Wiener et al. outlined a framework for organizing the results across taxa, called the 'navigation toolbox' (Wiener et al. In Animal thinking: contemporary issues in comparative cognition (eds R Menzel, J Fischer), pp. 51-76). This framework proposes that spatial cognition is a hierarchical process in which sensory inputs at the lowest level are successively combined into ever-more complex representations, culminating in a metric or quasi-metric internal model of the world (cognitive map). Some animals, notably humans, also use symbolic representations to produce an external representation, such as a verbal description, signpost or map that allows communication of spatial information or instructions between individuals. Recently, new discoveries have extended our understanding of how spatial representations are constructed, highlighting that the hierarchical relationships are bidirectional, with higher levels feeding back to influence lower levels. In the light of these new developments, we revisit the navigation toolbox, elaborate it and incorporate new findings. The toolbox provides a common framework within which the results from different taxa can be described and compared, yielding a more detailed, mechanistic and generalized understanding of navigation.
Collapse
Affiliation(s)
- Kate J. Jeffery
- School of Psychology and Neuroscience, University of Glasgow, Glasgow G12 8QB, UK
| | - Ken Cheng
- School of Natural Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Nora S. Newcombe
- Department of Psychology, Temple University, Philadelphia, PA 19122, USA
| | - Verner P. Bingman
- J.P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH 43403-0001, USA
- Department of Psychology, Bowling Green State University, Bowling Green, OH 43403-0001, USA
| | - Randolf Menzel
- Institute for Biology, Neurobiology, Freie Universität Berlin, 14195 Berlin, Germany
| |
Collapse
|
13
|
Zwergal A, Grabova D, Schöberl F. Vestibular contribution to spatial orientation and navigation. Curr Opin Neurol 2024; 37:52-58. [PMID: 38010039 PMCID: PMC10779452 DOI: 10.1097/wco.0000000000001230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
PURPOSE OF REVIEW The vestibular system provides three-dimensional idiothetic cues for updating of one's position in space during head and body movement. Ascending vestibular signals reach entorhinal and hippocampal networks via head-direction pathways, where they converge with multisensory information to tune the place and grid cell code. RECENT FINDINGS Animal models have provided insight to neurobiological consequences of vestibular lesions for cerebral networks controlling spatial cognition. Multimodal cerebral imaging combined with behavioural testing of spatial orientation and navigation performance as well as strategy in the last years helped to decipher vestibular-cognitive interactions also in humans. SUMMARY This review will update the current knowledge on the anatomical and cellular basis of vestibular contributions to spatial orientation and navigation from a translational perspective (animal and human studies), delineate the behavioural and functional consequences of different vestibular pathologies on these cognitive domains, and will lastly speculate on a potential role of vestibular dysfunction for cognitive aging and impeding cognitive impairment in analogy to the well known effects of hearing loss.
Collapse
Affiliation(s)
- Andreas Zwergal
- German Center for Vertigo and Balance Disorders (DSGZ), LMU University Hospital, LMU Munich
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Denis Grabova
- German Center for Vertigo and Balance Disorders (DSGZ), LMU University Hospital, LMU Munich
| | - Florian Schöberl
- German Center for Vertigo and Balance Disorders (DSGZ), LMU University Hospital, LMU Munich
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
14
|
Cano-Ferrer X, Tran-Van-Minh A, Rancz E. RPM: An open-source Rotation Platform for open- and closed-loop vestibular stimulation in head-fixed Mice. J Neurosci Methods 2024; 401:110002. [PMID: 37925080 DOI: 10.1016/j.jneumeth.2023.110002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/07/2023] [Accepted: 10/27/2023] [Indexed: 11/06/2023]
Abstract
Head fixation allows the recording and presentation of controlled stimuli and is used to study neural processes underlying spatial navigation. However, it disrupts the head direction system because of the lack of vestibular stimulation. To overcome this limitation, we developed a novel rotation platform which can be driven by the experimenter (open-loop) or by animal movement (closed-loop). The platform is modular, affordable, easy to build and open source. Additional modules presented here include cameras for monitoring eye movements, visual virtual reality, and a micro-manipulator for positioning various probes for recording or optical interference. We demonstrate the utility of the platform by recording eye movements and showing the robust activation of head-direction cells. This novel experimental apparatus combines the advantages of head fixation and intact vestibular activity in the horizontal plane. The open-loop mode can be used to study e.g., vestibular sensory representation and processing, while the closed-loop mode allows animals to navigate in rotational space, providing a better substrate for 2-D navigation in virtual environments. The full build documentation is maintained at https://ranczlab.github.io/RPM/.
Collapse
Affiliation(s)
- Xavier Cano-Ferrer
- The Francis Crick Institute, Cortical Circuits Laboratory, London NW1 1AT, UK; The Francis Crick Institute, Making Science and Technology Platform, London NW1 1AT, UK
| | | | - Ede Rancz
- The Francis Crick Institute, Cortical Circuits Laboratory, London NW1 1AT, UK; INMED, INSERM, Aix-Marseille Université, France.
| |
Collapse
|
15
|
Blanco-Hernández E, Balsamo G, Preston-Ferrer P, Burgalossi A. Sensory and behavioral modulation of thalamic head-direction cells. Nat Neurosci 2024; 27:28-33. [PMID: 38177338 DOI: 10.1038/s41593-023-01506-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 10/24/2023] [Indexed: 01/06/2024]
Abstract
Head-direction (HD) neurons are thought to exclusively encode directional heading. In awake mice, we found that sensory stimuli evoked robust short-latency responses in thalamic HD cells, but not in non-HD neurons. The activity of HD cells, but not that of non-HD neurons, was tightly correlated to brain-state fluctuations and dynamically modulated during social interactions. These data point to a new role for the thalamic compass in relaying sensory and behavioral-state information.
Collapse
Affiliation(s)
- Eduardo Blanco-Hernández
- Institute of Neurobiology, University of Tübingen, Tübingen, Germany
- Werner-Reichardt Centre for Integrative Neuroscience, Tübingen, Germany
| | - Giuseppe Balsamo
- Institute of Neurobiology, University of Tübingen, Tübingen, Germany
- Werner-Reichardt Centre for Integrative Neuroscience, Tübingen, Germany
- Graduate Training Centre of Neuroscience, IMPRS, Tübingen, Germany
| | - Patricia Preston-Ferrer
- Institute of Neurobiology, University of Tübingen, Tübingen, Germany.
- Werner-Reichardt Centre for Integrative Neuroscience, Tübingen, Germany.
| | - Andrea Burgalossi
- Institute of Neurobiology, University of Tübingen, Tübingen, Germany.
- Werner-Reichardt Centre for Integrative Neuroscience, Tübingen, Germany.
| |
Collapse
|
16
|
Božanić Urbančič N, Battelino S, Vozel D. Appropriate Vestibular Stimulation in Children and Adolescents-A Prerequisite for Normal Cognitive, Motor Development and Bodily Homeostasis-A Review. CHILDREN (BASEL, SWITZERLAND) 2023; 11:2. [PMID: 38275423 PMCID: PMC10814320 DOI: 10.3390/children11010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 01/27/2024]
Abstract
The structural development of the vestibular part of the inner ear is completed by birth but its central connections continue to develop until adolescence. Their development is dependent on vestibular stimulation-vestibular experience. Studies have shown that vestibular function, modulated by experience and epigenetic factors, is not solely an instrument for body position regulation, navigation, and stabilization of the head and images but also influences cognition, emotion, the autonomous nervous system and hormones. To emphasize the importance of appropriate vestibular stimulation, we present a literature review of its effect on bodily homeostasis, cognition and emotion.
Collapse
Affiliation(s)
- Nina Božanić Urbančič
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia; (N.B.U.); (S.B.)
- Department of Otorhinolaryngology and Cervicofacial Surgery, University Medical Centre Ljubljana, Zaloška 2, 1000 Ljubljana, Slovenia
| | - Saba Battelino
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia; (N.B.U.); (S.B.)
- Department of Otorhinolaryngology and Cervicofacial Surgery, University Medical Centre Ljubljana, Zaloška 2, 1000 Ljubljana, Slovenia
| | - Domen Vozel
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia; (N.B.U.); (S.B.)
- Department of Otorhinolaryngology and Cervicofacial Surgery, University Medical Centre Ljubljana, Zaloška 2, 1000 Ljubljana, Slovenia
| |
Collapse
|
17
|
Chari DA, Ahmad M, King S, Boutabla A, Fattahi C, Panic AS, Karmali F, Lewis RF. Vestibular damage affects the precision and accuracy of navigation in a virtual visual environment. Brain Commun 2023; 5:fcad345. [PMID: 38116141 PMCID: PMC10729862 DOI: 10.1093/braincomms/fcad345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 11/17/2023] [Accepted: 12/07/2023] [Indexed: 12/21/2023] Open
Abstract
Vestibular information is available to the brain during navigation, as are the other self-generated (idiothetic) and external (allothetic) sensorimotor cues that contribute to central estimates of position and motion. Rodent studies provide strong evidence that vestibular information contributes to navigation but human studies have been less conclusive. Furthermore, sex-based differences have been described in human navigation studies performed with the head stationary, a situation where dynamic vestibular (and other idiothetic) information is absent, but sex differences in the utilization of vestibular information have not been described. Here, we studied men and women with severe bilateral vestibular damage as they navigated through a visually barren virtual reality environment and compared their performance to normal men and women. Two navigation protocols were employed, which either activated dynamic idiothetic cues ('dynamic task', navigate by turning, walking in place) or eliminated them ('static task', navigate with key presses, head stationary). For both protocols, we employed a standard 'triangle completion task' in which subjects moved to two visual targets in series and then were required to return to their perceived starting position without localizing visual information. The angular and linear 'accuracy' (derived from response error) and 'precision' (derived from response variability) were calculated. Comparing performance 'within tasks', navigation on the dynamic paradigm was worse in male vestibular-deficient patients than in normal men but vestibular-deficient and normal women were equivalent; on the static paradigm, vestibular-deficient men (but not women) performed better than normal subjects. Comparing performance 'between tasks', normal men performed better on the dynamic than the static paradigm while vestibular-deficient men and both normal and vestibular-deficient women were equivalent on both tasks. Statistical analysis demonstrated that for the angular precision metric, sex had a significant effect on the interaction between vestibular status and the test paradigm. These results provide evidence that humans use vestibular information when they navigate in a virtual visual environment and that men and women may utilize vestibular (and visual) information differently. On our navigation paradigm, men used vestibular information to improve navigation performance, and in the presence of severe vestibular damage, they utilized visual information more effectively. In contrast, we did not find evidence that women used vestibular information while navigating on our virtual task, nor did we find evidence that they improved their utilization of visual information in the presence of severe vestibular damage.
Collapse
Affiliation(s)
- Divya A Chari
- Department of Otolaryngolgy-Head and Neck Surgery, Massachusetts Eye and Ear, Boston MA 02114, USA
- Department of Otolaryngology–Head and Neck Surgery, University of Massachusetts Medical School, Worcester MA 01655, USA
| | - Maimuna Ahmad
- Department of Otolaryngolgy-Head and Neck Surgery, Massachusetts Eye and Ear, Boston MA 02114, USA
- Department of Otolaryngology–Head and Neck Surgery, University of Massachusetts Medical School, Worcester MA 01655, USA
| | - Susan King
- Department of Otolaryngolgy-Head and Neck Surgery, Massachusetts Eye and Ear, Boston MA 02114, USA
| | - Anissa Boutabla
- Department of Otolaryngolgy-Head and Neck Surgery, Massachusetts Eye and Ear, Boston MA 02114, USA
- Division of Otorhinolaryngology Head and Neck Surgery, Geneva University Hospitals and University of Geneva, Geneva 1205, Switzerland
| | - Cameron Fattahi
- Department of Otolaryngolgy-Head and Neck Surgery, Massachusetts Eye and Ear, Boston MA 02114, USA
- Department of Otolaryngology–Head and Neck Surgery, University of Massachusetts Medical School, Worcester MA 01655, USA
| | - Alexander S Panic
- Ashton Graybiel Spatial Orientation Lab, Brandeis University, Waltham, MA 02454, USA
| | - Faisal Karmali
- Department of Otolaryngolgy-Head and Neck Surgery, Massachusetts Eye and Ear, Boston MA 02114, USA
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA 02114, USA
| | - Richard F Lewis
- Department of Otolaryngolgy-Head and Neck Surgery, Massachusetts Eye and Ear, Boston MA 02114, USA
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA 02114, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
18
|
Graham JA, Dumont JR, Winter SS, Brown JE, LaChance PA, Amon CC, Farnes KB, Morris AJ, Streltzov NA, Taube JS. Angular Head Velocity Cells within Brainstem Nuclei Projecting to the Head Direction Circuit. J Neurosci 2023; 43:8403-8424. [PMID: 37871964 PMCID: PMC10711713 DOI: 10.1523/jneurosci.0581-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 09/27/2023] [Accepted: 10/17/2023] [Indexed: 10/25/2023] Open
Abstract
The sense of orientation of an animal is derived from the head direction (HD) system found in several limbic structures and depends on an intact vestibular labyrinth. However, how the vestibular system influences the generation and updating of the HD signal remains poorly understood. Anatomical and lesion studies point toward three key brainstem nuclei as key components for generating the HD signal-nucleus prepositus hypoglossi, supragenual nucleus, and dorsal paragigantocellularis reticular nuclei. Collectively, these nuclei are situated between the vestibular nuclei and the dorsal tegmental and lateral mammillary nuclei, which are thought to serve as the origin of the HD signal. To determine the types of information these brain areas convey to the HD network, we recorded neurons from these regions while female rats actively foraged in a cylindrical enclosure or were restrained and rotated passively. During foraging, a large subset of cells in all three nuclei exhibited activity that correlated with the angular head velocity (AHV) of the rat. Two fundamental types of AHV cells were observed; (1) symmetrical AHV cells increased or decreased their firing with increases in AHV regardless of the direction of rotation, and (2) asymmetrical AHV cells responded differentially to clockwise and counterclockwise head rotations. When rats were passively rotated, some AHV cells remained sensitive to AHV, whereas firing was attenuated in other cells. In addition, a large number of AHV cells were modulated by linear head velocity. These results indicate the types of information conveyed from the vestibular nuclei that are responsible for generating the HD signal.SIGNIFICANCE STATEMENT Extracellular recording of brainstem nuclei (nucleus prepositus hypoglossi, supragenual nucleus, and dorsal paragigantocellularis reticular nucleus) that project to the head direction circuit identified different types of AHV cells while rats freely foraged in a cylindrical environment. The firing of many cells was also modulated by linear velocity. When rats were restrained and passively rotated, some cells remained sensitive to AHV, whereas others had attenuated firing. These brainstem nuclei provide critical information about the rotational movement of the head of the rat in the azimuthal plane.
Collapse
Affiliation(s)
- Jalina A Graham
- Department of Psychological Brain Sciences, Dartmouth College, Dartmouth, New Hampshire 03755
| | - Julie R Dumont
- Department of Psychological Brain Sciences, Dartmouth College, Dartmouth, New Hampshire 03755
| | - Shawn S Winter
- Department of Psychological Brain Sciences, Dartmouth College, Dartmouth, New Hampshire 03755
| | - Joel E Brown
- Department of Psychological Brain Sciences, Dartmouth College, Dartmouth, New Hampshire 03755
| | - Patrick A LaChance
- Department of Psychological Brain Sciences, Dartmouth College, Dartmouth, New Hampshire 03755
| | - Carly C Amon
- Department of Psychological Brain Sciences, Dartmouth College, Dartmouth, New Hampshire 03755
| | - Kara B Farnes
- Department of Psychological Brain Sciences, Dartmouth College, Dartmouth, New Hampshire 03755
| | - Ashlyn J Morris
- Department of Psychological Brain Sciences, Dartmouth College, Dartmouth, New Hampshire 03755
| | - Nicholas A Streltzov
- Department of Psychological Brain Sciences, Dartmouth College, Dartmouth, New Hampshire 03755
| | - Jeffrey S Taube
- Department of Psychological Brain Sciences, Dartmouth College, Dartmouth, New Hampshire 03755
| |
Collapse
|
19
|
Cullen KE. Internal models of self-motion: neural computations by the vestibular cerebellum. Trends Neurosci 2023; 46:986-1002. [PMID: 37739815 PMCID: PMC10591839 DOI: 10.1016/j.tins.2023.08.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 07/15/2023] [Accepted: 08/25/2023] [Indexed: 09/24/2023]
Abstract
The vestibular cerebellum plays an essential role in maintaining our balance and ensuring perceptual stability during activities of daily living. Here I examine three key regions of the vestibular cerebellum: the floccular lobe, anterior vermis (lobules I-V), and nodulus and ventral uvula (lobules X-IX of the posterior vermis). These cerebellar regions encode vestibular information and combine it with extravestibular signals to create internal models of eye, head, and body movements, as well as their spatial orientation with respect to gravity. To account for changes in the external environment and/or biomechanics during self-motion, the neural mechanisms underlying these computations are continually updated to ensure accurate motor behavior. To date, studies on the vestibular cerebellum have predominately focused on passive vestibular stimulation, whereas in actuality most stimulation is the result of voluntary movement. Accordingly, I also consider recent research exploring these computations during active self-motion and emerging evidence establishing the cerebellum's role in building predictive models of self-generated movement.
Collapse
Affiliation(s)
- Kathleen E Cullen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Otolaryngology - Head and Neck Surgery, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA; Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
20
|
Carretti G, Manetti M, Marini M. Physical activity and sport practice to improve balance control of visually impaired individuals: a narrative review with future perspectives. Front Sports Act Living 2023; 5:1260942. [PMID: 37780118 PMCID: PMC10534048 DOI: 10.3389/fspor.2023.1260942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/31/2023] [Indexed: 10/03/2023] Open
Abstract
Visual disability negatively impacts balance, everyday self-efficacy, and mobility and often leads affected subjects to perceive physical exercise as a burdensome challenge thus discouraging them from practicing. Despite the well-proven benefits of regular physical activity in visually impaired people, especially addressing postural control, there are no specific guidelines and most of the available literature seems to be flawed by critical issues. Given the wide heterogeneity and the multidimensional needs of this population, a more realistic and target-specific perspective is needed in order to properly investigate and promote exercise practice and adherence for balance improvement. On this basis, through a critical overview of the recent literature, the present article aimed to enrich the current knowledge about this topic by providing innovative suggestions, both practical and methodological, and specifically deepening the disability-related deficits and peculiarities of different age ranges. Moreover, since a multidisciplinary approach is advisable when designing and leading exercise protocols tailored to visually impaired individuals, such innovative hints also highlighted the central role of the adapted physical activity specialist, hence contributing to foster its official professional recognition and involvement in this field.
Collapse
Affiliation(s)
| | | | - Mirca Marini
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| |
Collapse
|
21
|
Liu B, Shan J, Gu Y. Temporal and spatial properties of vestibular signals for perception of self-motion. Front Neurol 2023; 14:1266513. [PMID: 37780704 PMCID: PMC10534010 DOI: 10.3389/fneur.2023.1266513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 08/29/2023] [Indexed: 10/03/2023] Open
Abstract
It is well recognized that the vestibular system is involved in numerous important cognitive functions, including self-motion perception, spatial orientation, locomotion, and vector-based navigation, in addition to basic reflexes, such as oculomotor or body postural control. Consistent with this rationale, vestibular signals exist broadly in the brain, including several regions of the cerebral cortex, potentially allowing tight coordination with other sensory systems to improve the accuracy and precision of perception or action during self-motion. Recent neurophysiological studies in animal models based on single-cell resolution indicate that vestibular signals exhibit complex spatiotemporal dynamics, producing challenges in identifying their exact functions and how they are integrated with other modality signals. For example, vestibular and optic flow could provide congruent and incongruent signals regarding spatial tuning functions, reference frames, and temporal dynamics. Comprehensive studies, including behavioral tasks, neural recording across sensory and sensory-motor association areas, and causal link manipulations, have provided some insights into the neural mechanisms underlying multisensory self-motion perception.
Collapse
Affiliation(s)
- Bingyu Liu
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, International Center for Primate Brain Research, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiayu Shan
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, International Center for Primate Brain Research, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yong Gu
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, International Center for Primate Brain Research, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
22
|
Keshavarzi S, Velez-Fort M, Margrie TW. Cortical Integration of Vestibular and Visual Cues for Navigation, Visual Processing, and Perception. Annu Rev Neurosci 2023; 46:301-320. [PMID: 37428601 PMCID: PMC7616138 DOI: 10.1146/annurev-neuro-120722-100503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Despite increasing evidence of its involvement in several key functions of the cerebral cortex, the vestibular sense rarely enters our consciousness. Indeed, the extent to which these internal signals are incorporated within cortical sensory representation and how they might be relied upon for sensory-driven decision-making, during, for example, spatial navigation, is yet to be understood. Recent novel experimental approaches in rodents have probed both the physiological and behavioral significance of vestibular signals and indicate that their widespread integration with vision improves both the cortical representation and perceptual accuracy of self-motion and orientation. Here, we summarize these recent findings with a focus on cortical circuits involved in visual perception and spatial navigation and highlight the major remaining knowledge gaps. We suggest that vestibulo-visual integration reflects a process of constant updating regarding the status of self-motion, and access to such information by the cortex is used for sensory perception and predictions that may be implemented for rapid, navigation-related decision-making.
Collapse
Affiliation(s)
- Sepiedeh Keshavarzi
- The Sainsbury Wellcome Centre for Neural Circuits and Behavior, University College London, London, United Kingdom;
| | - Mateo Velez-Fort
- The Sainsbury Wellcome Centre for Neural Circuits and Behavior, University College London, London, United Kingdom;
| | - Troy W Margrie
- The Sainsbury Wellcome Centre for Neural Circuits and Behavior, University College London, London, United Kingdom;
| |
Collapse
|
23
|
Dary Z, Lopez C. Understanding the neural bases of bodily self-consciousness: recent achievements and main challenges. Front Integr Neurosci 2023; 17:1145924. [PMID: 37404707 PMCID: PMC10316713 DOI: 10.3389/fnint.2023.1145924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 05/30/2023] [Indexed: 07/06/2023] Open
Abstract
The last two decades have seen a surge of interest in the mechanisms underpinning bodily self-consciousness (BSC). Studies showed that BSC relies on several bodily experiences (i.e., self-location, body ownership, agency, first-person perspective) and multisensory integration. The aim of this literature review is to summarize new insights and novel developments into the understanding of the neural bases of BSC, such as the contribution of the interoceptive signals to the neural mechanisms of BSC, and the overlap with the neural bases of conscious experience in general and of higher-level forms of self (i.e., the cognitive self). We also identify the main challenges and propose future perspectives that need to be conducted to progress into the understanding of the neural mechanisms of BSC. In particular, we point the lack of crosstalk and cross-fertilization between subdisciplines of integrative neuroscience to better understand BSC, especially the lack of research in animal models to decipher the neural networks and systems of neurotransmitters underpinning BSC. We highlight the need for more causal evidence that specific brain areas are instrumental in generating BSC and the need for studies tapping into interindividual differences in the phenomenal experience of BSC and their underlying mechanisms.
Collapse
|
24
|
Carretti G, Bianco R, Sgambati E, Manetti M, Marini M. Reactive Agility and Pitching Performance Improvement in Visually Impaired Competitive Italian Baseball Players: An Innovative Training and Evaluation Proposal. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6166. [PMID: 37372753 DOI: 10.3390/ijerph20126166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/26/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023]
Abstract
Visual input significantly affects kinesthesis skills and, hence, visually impaired individuals show less developed sensorimotor control, especially in an unfamiliar outdoor environment. Regular blind baseball practice can counteract such a deficit but, given the complex kinetic chain model required, a targeted workout proposal is needed to improve the main athletic gesture performance. On these premises, we investigated, for the first time, the running and pitching performance of a competitive Italian blind baseball team through quantitative tools and parameters such as Libra Easytech sensorized proprioceptive board, goniometric active range of motion, chronometric speed, and pitching linear length. Moreover, the perceived physical exertion was assessed by the Borg CR10 scale. Consequently, an adapted athletic training protocol was designed and tested on the field during the competitive season, with the aim to strengthen sport specific-gesture coordination and efficacy as well as to prevent injuries. Quantitative assessments showed an improvement in ankle stability index, bilateral upper limb and hip mobility, reactive agility, running braking phase control during second base approaching, and auditory target-related pitching accuracy along with a decrease in perceived physical exertion. This protocol might therefore represent an effective and easily reproducible training and evaluation approach to tailor management of visually impaired baseball players, and safely improve their athletic performance under the supervision of an adapted exercise specialist.
Collapse
Affiliation(s)
- Giuditta Carretti
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Raffaele Bianco
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Eleonora Sgambati
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy
| | - Mirko Manetti
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Mirca Marini
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| |
Collapse
|
25
|
Rolls ET. Hippocampal spatial view cells for memory and navigation, and their underlying connectivity in humans. Hippocampus 2023; 33:533-572. [PMID: 36070199 PMCID: PMC10946493 DOI: 10.1002/hipo.23467] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/16/2022] [Accepted: 08/16/2022] [Indexed: 01/08/2023]
Abstract
Hippocampal and parahippocampal gyrus spatial view neurons in primates respond to the spatial location being looked at. The representation is allocentric, in that the responses are to locations "out there" in the world, and are relatively invariant with respect to retinal position, eye position, head direction, and the place where the individual is located. The underlying connectivity in humans is from ventromedial visual cortical regions to the parahippocampal scene area, leading to the theory that spatial view cells are formed by combinations of overlapping feature inputs self-organized based on their closeness in space. Thus, although spatial view cells represent "where" for episodic memory and navigation, they are formed by ventral visual stream feature inputs in the parahippocampal gyrus in what is the parahippocampal scene area. A second "where" driver of spatial view cells are parietal inputs, which it is proposed provide the idiothetic update for spatial view cells, used for memory recall and navigation when the spatial view details are obscured. Inferior temporal object "what" inputs and orbitofrontal cortex reward inputs connect to the human hippocampal system, and in macaques can be associated in the hippocampus with spatial view cell "where" representations to implement episodic memory. Hippocampal spatial view cells also provide a basis for navigation to a series of viewed landmarks, with the orbitofrontal cortex reward inputs to the hippocampus providing the goals for navigation, which can then be implemented by hippocampal connectivity in humans to parietal cortex regions involved in visuomotor actions in space. The presence of foveate vision and the highly developed temporal lobe for object and scene processing in primates including humans provide a basis for hippocampal spatial view cells to be key to understanding episodic memory in the primate and human hippocampus, and the roles of this system in primate including human navigation.
Collapse
Affiliation(s)
- Edmund T. Rolls
- Oxford Centre for Computational NeuroscienceOxfordUK
- Department of Computer ScienceUniversity of WarwickCoventryUK
| |
Collapse
|
26
|
Graham JA, Dumont JR, Winter SS, Brown JE, LaChance PA, Amon CC, Farnes KB, Morris AJ, Streltzov NA, Taube JS. Angular head velocity cells within brainstem nuclei projecting to the head direction circuit. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.29.534808. [PMID: 37034640 PMCID: PMC10081164 DOI: 10.1101/2023.03.29.534808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
An animal's perceived sense of orientation depends upon the head direction (HD) system found in several limbic structures and depends upon an intact peripheral vestibular labyrinth. However, how the vestibular system influences the generation, maintenance, and updating of the HD signal remains poorly understood. Anatomical and lesion studies point towards three key brainstem nuclei as being potential critical components in generating the HD signal: nucleus prepositus hypoglossi (NPH), supragenual nucleus (SGN), and dorsal paragigantocellularis reticular nuclei (PGRNd). Collectively, these nuclei are situated between the vestibular nuclei and the dorsal tegmental and lateral mammillary nuclei, which are thought to serve as the origin of the HD signal. To test this hypothesis, extracellular recordings were made in these areas while rats either freely foraged in a cylindrical environment or were restrained and rotated passively. During foraging, a large subset of cells in all three nuclei exhibited activity that correlated with changes in the rat's angular head velocity (AHV). Two fundamental types of AHV cells were observed: 1) symmetrical AHV cells increased or decreased their neural firing with increases in AHV regardless of the direction of rotation; 2) asymmetrical AHV cells responded differentially to clockwise (CW) and counter-clockwise (CCW) head rotations. When rats were passively rotated, some AHV cells remained sensitive to AHV whereas others had attenuated firing. In addition, a large number of AHV cells were modulated by linear head velocity. These results indicate the types of information conveyed in the ascending vestibular pathways that are responsible for generating the HD signal. Significance Statement Extracellular recording of brainstem nuclei (nucleus prepositus hypoglossi, supragenual nucleus, and dorsal paragigantocellularis reticular nucleus) that project to the head direction circuit identified different types of angular head velocity (AHV) cells while rats freely foraged in a cylindrical environment. The firing of many cells was also modulated by linear velocity. When rats were restrained and passively rotated some cells remained sensitive to AHV, whereas others had attenuated firing. These brainstem nuclei provide critical information about the rotational movement of the rat's head in the azimuthal plane.
Collapse
|
27
|
Hemm S, Baumann D, Duarte da Costa V, Tarnutzer AA. Test-re-test reliability and dynamics of the Fukuda–Unterberger stepping test. Front Neurol 2023; 14:1128760. [PMID: 37064178 PMCID: PMC10090507 DOI: 10.3389/fneur.2023.1128760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/15/2023] [Indexed: 03/31/2023] Open
Abstract
BackgroundThe Fukuda-stepping-test (FST), i.e., repetitive walking on the spot while blindfolded, has been proposed as a means to assess the integrity of the vestibular pathways. While its sensitivity to detect abnormalities in patients is limited, it may be useful in studying the physiology of the subjective-straight-ahead (SSA). Considering reported systematic shifts in SSA in humans, we hypothesize that such asymmetries arise from individual differences in the orientation/configuration of the macular organs and in central processing of vestibular input. We hypothesize that such asymmetries are stable over time in individual subjects. Alternatively, such asymmetries may arise from random noise in the sensory/motor systems involved, demonstrating low reproducibility over time.Materials and methodsTwenty-four subjects walked on the spot over 60 s while blindfolded (n = 6 trials per subject). Using an inertial measurement unit (IMU) placed at the chest, angular deviations were recorded and compared to manually-measured final positions. Both static (direction, magnitude) and dynamic (time-to-onset of deviation, pattern of deviations) parameters were retrieved from the yaw slopes.ResultsSignificant deviations were found in 15/24 participants for the manual measurements (leftwards = 8; rightwards = 7), whereas when using the IMU-sensor 13/24 participants showed significant shifts (leftwards = 9; rightwards = 4). There was a high correlation (0.98) between manually measured rotation angles (average absolute deviations = 58.0 deg ± 48.6 deg; intra-individual variability = 39 deg ± 24 deg) and sensor-based yaw slopes (1.00 deg/s ± 0.88 deg/s; 0.67 deg/s ± 0.41 deg/s). Relevant yaw deviation was detected 22.1 s ± 12.3 s (range = 5.6 s-59.2 s) after the onset of marching (no relevant yaw-deviation in 15/139 measurements), showing a mostly linear behavior over time.ConclusionWe observed significant inter-individual variability in task performance in the FST, reproducing findings from previous studies. With test-re-test reliability being moderate only, but at the same time observing a preference in the side of shifts in most trials and subjects, we conclude that likely both individually varying estimates of straight-ahead and random noise contribute to the pattern of angular deviations observed. Using an IMU-sensory based approach, additional dynamic parameters could be retrieved, emphasizing the value of such a quantitative approach over manual measurements. Such an approach may provide useful additional information to distinguish patients from healthy controls.
Collapse
Affiliation(s)
- Simone Hemm
- School of Life Sciences, Institute for Medical Engineering and Medical Informatics, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
| | - Denise Baumann
- School of Life Sciences, Institute for Medical Engineering and Medical Informatics, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
| | - Vasco Duarte da Costa
- School of Life Sciences, Institute for Medical Engineering and Medical Informatics, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
| | - Alexander Andrea Tarnutzer
- Neurology, Cantonal Hospital of Baden, Baden, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
- *Correspondence: Alexander Andrea Tarnutzer,
| |
Collapse
|
28
|
Ajabi Z, Keinath AT, Wei XX, Brandon MP. Population dynamics of head-direction neurons during drift and reorientation. Nature 2023; 615:892-899. [PMID: 36949190 PMCID: PMC10060160 DOI: 10.1038/s41586-023-05813-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 02/03/2023] [Indexed: 03/24/2023]
Abstract
The head direction (HD) system functions as the brain's internal compass1,2, classically formalized as a one-dimensional ring attractor network3,4. In contrast to a globally consistent magnetic compass, the HD system does not have a universal reference frame. Instead, it anchors to local cues, maintaining a stable offset when cues rotate5-8 and drifting in the absence of referents5,8-10. However, questions about the mechanisms that underlie anchoring and drift remain unresolved and are best addressed at the population level. For example, the extent to which the one-dimensional description of population activity holds under conditions of reorientation and drift is unclear. Here we performed population recordings of thalamic HD cells using calcium imaging during controlled rotations of a visual landmark. Across experiments, population activity varied along a second dimension, which we refer to as network gain, especially under circumstances of cue conflict and ambiguity. Activity along this dimension predicted realignment and drift dynamics, including the speed of network realignment. In the dark, network gain maintained a 'memory trace' of the previously displayed landmark. Further experiments demonstrated that the HD network returned to its baseline orientation after brief, but not longer, exposures to a rotated cue. This experience dependence suggests that memory of previous associations between HD neurons and allocentric cues is maintained and influences the internal HD representation. Building on these results, we show that continuous rotation of a visual landmark induced rotation of the HD representation that persisted in darkness, demonstrating experience-dependent recalibration of the HD system. Finally, we propose a computational model to formalize how the neural compass flexibly adapts to changing environmental cues to maintain a reliable representation of HD. These results challenge classical one-dimensional interpretations of the HD system and provide insights into the interactions between this system and the cues to which it anchors.
Collapse
Affiliation(s)
- Zaki Ajabi
- Department of Psychiatry, Douglas Hospital Research Centre, McGill University, Verdun, Quebec, Canada.
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada.
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
| | - Alexandra T Keinath
- Department of Psychiatry, Douglas Hospital Research Centre, McGill University, Verdun, Quebec, Canada
| | - Xue-Xin Wei
- Department of Neuroscience, University of Texas at Austin, Austin, TX, USA
- Department of Psychology, University of Texas at Austin, Austin, TX, USA
- Center for Perceptual Systems, University of Texas at Austin, Austin, TX, USA
- Center for Theoretical and Computational Neuroscience, University of Texas at Austin, Austin, TX, USA
| | - Mark P Brandon
- Department of Psychiatry, Douglas Hospital Research Centre, McGill University, Verdun, Quebec, Canada.
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
29
|
Abstract
Aims of the present article are: 1) assessing vestibular contribution to spatial navigation, 2) exploring how age, global positioning systems (GPS) use, and vestibular navigation contribute to subjective sense of direction (SOD), 3) evaluating vestibular navigation in patients with lesions of the vestibular-cerebellum (patients with downbeat nystagmus, DBN) that could inform on the signals carried by vestibulo-cerebellar-cortical pathways. We applied two navigation tasks on a rotating chair in the dark: return-to-start (RTS), where subjects drive the chair back to the origin after discrete angular displacement stimuli (path reversal), and complete-the-circle (CTC) where subjects drive the chair on, all the way round to origin (path completion). We examined 24 normal controls (20-83 yr), five patients with DBN (62-77 yr) and, as proof of principle, two patients with early dementia (84 and 76 yr). We found a relationship between SOD, assessed by Santa Barbara Sense of Direction Scale, and subject's age (positive), GPS use (negative), and CTC-vestibular-navigation-task (positive). Age-related decline in vestibular navigation was observed with the RTS task but not with the complex CTC task. Vestibular navigation was normal in patients with vestibulo-cerebellar dysfunction but abnormal, particularly CTC, in the demented patients. We conclude that vestibular navigation skills contribute to the build-up of our SOD. Unexpectedly, perceived SOD in the elderly is not inferior, possibly explained by increased GPS use by the young. Preserved vestibular navigation in cerebellar patients suggests that ascending vestibular-cerebellar projections carry velocity (not position) signals. The abnormalities in the cognitively impaired patients suggest that their vestibulo-spatial navigation is disrupted.NEW & NOTEWORTHY Our subjective sense-of-direction is influenced by how good we are at spatial navigation using vestibular cues. Global positioning systems (GPS) may inhibit sense of direction. Increased use of GPS by the young may explain why the elderly's sense of direction is not worse than the young's. Patients with vestibulo-cerebellar dysfunction (downbeat nystagmus syndrome) display normal vestibular navigation, suggesting that ascending vestibulo-cerebellar-cortical pathways carry velocity rather than position signals. Pilot data indicate that dementia disrupts vestibular navigation.
Collapse
Affiliation(s)
- Athena Zachou
- Neuro-otology Unit, Department of Brain Sciences, Imperial College London, Charing Cross Hospital Campus, London, United Kingdom
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, Greece
| | - Adolfo M Bronstein
- Neuro-otology Unit, Department of Brain Sciences, Imperial College London, Charing Cross Hospital Campus, London, United Kingdom
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, Greece
| |
Collapse
|
30
|
Rineau AL, Bringoux L, Sarrazin JC, Berberian B. Being active over one's own motion: Considering predictive mechanisms in self-motion perception. Neurosci Biobehav Rev 2023; 146:105051. [PMID: 36669748 DOI: 10.1016/j.neubiorev.2023.105051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/16/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023]
Abstract
Self-motion perception is a key element guiding pilots' behavior. Its importance is mostly revealed when impaired, leading in most cases to spatial disorientation which is still today a major factor of accidents occurrence. Self-motion perception is known as mainly based on visuo-vestibular integration and can be modulated by the physical properties of the environment with which humans interact. For instance, several studies have shown that the respective weight of visual and vestibular information depends on their reliability. More recently, it has been suggested that the internal state of an operator can also modulate multisensory integration. Interestingly, the systems' automation can interfere with this internal state through the loss of the intentional nature of movements (i.e., loss of agency) and the modulation of associated predictive mechanisms. In this context, one of the new challenges is to better understand the relationship between automation and self-motion perception. The present review explains how linking the concepts of agency and self-motion is a first approach to address this issue.
Collapse
Affiliation(s)
- Anne-Laure Rineau
- Information Processing and Systems, ONERA, Salon de Provence, Base Aérienne 701, France.
| | | | | | - Bruno Berberian
- Information Processing and Systems, ONERA, Salon de Provence, Base Aérienne 701, France.
| |
Collapse
|
31
|
Lai SK, Wu KLK, Ma CW, Ng KP, Hu XQ, Tam KW, Yung WH, Wang YT, Wong TP, Shum DKY, Chan YS. Timely insertion of AMPA receptor in developing vestibular circuits is required for manifestation of righting reflexes and effective navigation. Prog Neurobiol 2023; 221:102402. [PMID: 36608782 DOI: 10.1016/j.pneurobio.2023.102402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/23/2022] [Accepted: 01/02/2023] [Indexed: 01/05/2023]
Abstract
Vestibular information processed first by the brainstem vestibular nucleus (VN), and further by cerebellum and thalamus, underlies diverse brain function. These include the righting reflexes and spatial cognitive behaviour. While the cerebellar and thalamic circuits that decode vestibular information are known, the importance of VN neurons and the temporal requirements for their maturation that allow developmental consolidation of the aforementioned circuits remains unclear. We show that timely unsilencing of glutamatergic circuits in the VN by NMDA receptor-mediated insertion of AMPAR receptor type 1 (GluA1) subunits is critical for maturation of VN and successful consolidation of higher circuits that process vestibular information. Delayed unsilencing of NMDA receptor-only synapses of neonatal VN neurons permanently decreased their functional connectivity with inferior olive circuits. This was accompanied by delayed pruning of the inferior olive inputs to Purkinje cells and permanent reduction in their plasticity. These derangements led to deficits in associated vestibular righting reflexes and motor co-ordination during voluntary movement. Vestibular-dependent recruitment of thalamic neurons was similarly reduced, resulting in permanently decreased efficiency of spatial navigation. The findings thus show that well-choreographed maturation of the nascent vestibular circuitry is prerequisite for functional integration of vestibular signals into ascending pathways for diverse vestibular-related behaviours.
Collapse
Affiliation(s)
- Suk-King Lai
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, PR China
| | - Kenneth Lap Kei Wu
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, PR China
| | - Chun-Wai Ma
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, PR China
| | - Ka-Pak Ng
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, PR China
| | - Xiao-Qian Hu
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, PR China
| | - Kin-Wai Tam
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, PR China
| | - Wing-Ho Yung
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, PR China
| | - Yu Tian Wang
- Department of Medicine and Brain Research Centre, Vancouver Coastal Health Research Institute and University of British Columbia, Vancouver, BC, Canada
| | - Tak Pan Wong
- Douglas Mental Health University Institute, Montreal, Quebec, Canada; Department of Psychiatry McGill University, Montreal, Quebec, Canada.
| | - Daisy Kwok-Yan Shum
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, PR China; State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, PR China.
| | - Ying-Shing Chan
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, PR China; State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, PR China.
| |
Collapse
|
32
|
Cullen KE, Chacron MJ. Neural substrates of perception in the vestibular thalamus during natural self-motion: A review. CURRENT RESEARCH IN NEUROBIOLOGY 2023; 4:100073. [PMID: 36926598 PMCID: PMC10011815 DOI: 10.1016/j.crneur.2023.100073] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/01/2022] [Accepted: 01/03/2023] [Indexed: 01/13/2023] Open
Abstract
Accumulating evidence across multiple sensory modalities suggests that the thalamus does not simply relay information from the periphery to the cortex. Here we review recent findings showing that vestibular neurons within the ventral posteriolateral area of the thalamus perform nonlinear transformations on their afferent input that determine our subjective awareness of motion. Specifically, these neurons provide a substrate for previous psychophysical observations that perceptual discrimination thresholds are much better than predictions from Weber's law. This is because neural discrimination thresholds, which are determined from both variability and sensitivity, initially increase but then saturate with increasing stimulus amplitude, thereby matching the previously observed dependency of perceptual self-motion discrimination thresholds. Moreover, neural response dynamics give rise to unambiguous and optimized encoding of natural but not artificial stimuli. Finally, vestibular thalamic neurons selectively encode passively applied motion when occurring concurrently with voluntary (i.e., active) movements. Taken together, these results show that the vestibular thalamus plays an essential role towards generating motion perception as well as shaping our vestibular sense of agency that is not simply inherited from afferent input.
Collapse
Affiliation(s)
- Kathleen E Cullen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, USA.,Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, USA.,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, USA.,Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, USA
| | | |
Collapse
|
33
|
Cullen KE. Vestibular motor control. HANDBOOK OF CLINICAL NEUROLOGY 2023; 195:31-54. [PMID: 37562876 DOI: 10.1016/b978-0-323-98818-6.00022-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
The vestibular system is an essential sensory system that generates motor reflexes that are crucial for our daily activities, including stabilizing the visual axis of gaze and maintaining head and body posture. In addition, the vestibular system provides us with our sense of movement and orientation relative to space and serves a vital role in ensuring accurate voluntary behaviors. Neurophysiological studies have provided fundamental insights into the functional circuitry of vestibular motor pathways. A unique feature of the vestibular system compared to other sensory systems is that the same central neurons that receive direct input from the afferents of the vestibular component of the 8th nerve can also directly project to motor centers that control vital vestibular motor reflexes. In turn, these reflexes ensure stabilize gaze and the maintenance of posture during everyday activities. For instance, a direct three-neuron pathway mediates the vestibulo-ocular reflex (VOR) pathway to provide stable gaze. Furthermore, recent studies have advanced our understanding of the computations performed by the cerebellum and cortex required for motor learning, compensation, and voluntary movement and navigation. Together, these findings have provided new insights into how the brain ensures accurate self-movement during our everyday activities and have also advanced our knowledge of the neurobiological mechanisms underlying disorders of vestibular processing.
Collapse
Affiliation(s)
- Kathleen E Cullen
- Departments of Biomedical Engineering, of Otolaryngology-Head and Neck Surgery, and of Neuroscience; Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, United States.
| |
Collapse
|
34
|
Coughlan G, Plumb W, Zhukovsky P, Aung MH, Hornberger M. Vestibular contribution to path integration deficits in 'at-genetic-risk' for Alzheimer's disease. PLoS One 2023; 18:e0278239. [PMID: 36595510 PMCID: PMC9810179 DOI: 10.1371/journal.pone.0278239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 11/14/2022] [Indexed: 01/04/2023] Open
Abstract
Path integration changes may precede a clinical presentation of Alzheimer's disease by several years. Studies to date have focused on how spatial cell changes affect path integration in preclinical AD. However, vestibular input is also critical for intact path integration. Here, we developed the vestibular rotation task that requires individuals to manually point an iPad device in the direction of their starting point following rotational movement, without any visual cues. Vestibular features were derived from the sensor data using feature selection. Machine learning models illustrate that the vestibular features accurately classified Apolipoprotein E ε3ε4 carriers and ε3ε3 carrier controls (mean age 62.7 years), with 65% to 79% accuracy depending on task trial. All machine learning models produced a similar classification accuracy. Our results demonstrate the cross-sectional role of the vestibular system in Alzheimer's disease risk carriers. Future investigations should examine if vestibular functions explain individual phenotypic heterogeneity in path integration among Alzheimer's disease risk carriers.
Collapse
Affiliation(s)
- Gillian Coughlan
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
| | - William Plumb
- Department of Computing, Imperial College London, London, United Kingdom
| | - Peter Zhukovsky
- Centre for Addiction and Mental Health, Kimel Family Translational Imaging Genetics Laboratory, Toronto, Ontario, Canada
| | - Min Hane Aung
- School of Computing Sciences, University of East Anglia, Norwich, United Kingdom
| | - Michael Hornberger
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
- * E-mail:
| |
Collapse
|
35
|
Grieves RM, Shinder ME, Rosow LK, Kenna MS, Taube JS. The Neural Correlates of Spatial Disorientation in Head Direction Cells. eNeuro 2022; 9:ENEURO.0174-22.2022. [PMID: 36635237 PMCID: PMC9770022 DOI: 10.1523/eneuro.0174-22.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 10/01/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022] Open
Abstract
While the brain has evolved robust mechanisms to counter spatial disorientation, their neural underpinnings remain unknown. To explore these underpinnings, we monitored the activity of anterodorsal thalamic head direction (HD) cells in rats while they underwent unidirectional or bidirectional rotation at different speeds and under different conditions (light vs dark, freely-moving vs head-fixed). Under conditions that promoted disorientation, HD cells did not become quiescent but continued to fire, although their firing was no longer direction specific. Peak firing rates, burst frequency, and directionality all decreased linearly with rotation speed, consistent with previous experiments where rats were inverted or climbed walls/ceilings in zero gravity. However, access to visual landmarks spared the stability of preferred firing directions (PFDs), indicating that visual landmarks provide a stabilizing signal to the HD system while vestibular input likely maintains direction-specific firing. In addition, we found evidence that the HD system underestimated angular velocity at the beginning of head-fixed rotations, consistent with the finding that humans often underestimate rotations. When head-fixed rotations in the dark were terminated HD cells fired in bursts that matched the frequency of rotation. This postrotational bursting shared several striking similarities with postrotational "nystagmus" in the vestibulo-ocular system, consistent with the interpretation that the HD system receives input from a vestibular velocity storage mechanism that works to reduce spatial disorientation following rotation. Thus, the brain overcomes spatial disorientation through multisensory integration of different motor-sensory inputs.
Collapse
Affiliation(s)
- Roddy M Grieves
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH 03755
| | - Michael E Shinder
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH 03755
| | - Laura K Rosow
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH 03755
| | - Megan S Kenna
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH 03755
| | - Jeffrey S Taube
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH 03755
| |
Collapse
|
36
|
Rondi-Reig L, Paradis AL, Fallahnezhad M. A Liaison Brought to Light: Cerebellum-Hippocampus, Partners for Spatial Cognition. CEREBELLUM (LONDON, ENGLAND) 2022; 21:826-837. [PMID: 35752720 DOI: 10.1007/s12311-022-01422-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/24/2022] [Indexed: 01/18/2023]
Abstract
This review focuses on the functional and anatomical links between the cerebellum and the hippocampus and the role of their interplay in goal-directed navigation and spatial cognition. We will describe the interactions between the cerebellum and the hippocampus at different scales: a macroscopic scale revealing the joint activations of these two structures at the level of neuronal circuits, a mesoscopic scale highlighting the synchronization of neuronal oscillations, and finally a cellular scale where we will describe the activity of hippocampal neuronal assemblies following a targeted manipulation of the cerebellar system. We will take advantage of this framework to summarize the different anatomical pathways that may sustain this multiscale interaction. We will finally consider the possible influence of the cerebellum on pathologies traditionally associated with hippocampal dysfunction.
Collapse
Affiliation(s)
- Laure Rondi-Reig
- Institut de Biologie Paris Seine (IBPS), Cerebellum Navigation and Memory Team (CeZaMe), Sorbonne Université, CNRS, INSERM, Neurosciences Paris Seine (NPS), 75005, Paris, France.
| | - Anne-Lise Paradis
- Institut de Biologie Paris Seine (IBPS), Cerebellum Navigation and Memory Team (CeZaMe), Sorbonne Université, CNRS, INSERM, Neurosciences Paris Seine (NPS), 75005, Paris, France
| | - Mehdi Fallahnezhad
- Institut de Biologie Paris Seine (IBPS), Cerebellum Navigation and Memory Team (CeZaMe), Sorbonne Université, CNRS, INSERM, Neurosciences Paris Seine (NPS), 75005, Paris, France
| |
Collapse
|
37
|
Chang DHF, Thinnes D, Au PY, Maziero D, Stenger VA, Sinnett S, Vibell J. Sound-modulations of visual motion perception implicate the cortico-vestibular brain. Neuroimage 2022; 257:119285. [PMID: 35537600 DOI: 10.1016/j.neuroimage.2022.119285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/20/2022] [Accepted: 05/05/2022] [Indexed: 11/19/2022] Open
Abstract
A widely used example of the intricate (yet poorly understood) intertwining of multisensory signals in the brain is the audiovisual bounce inducing effect (ABE). This effect presents two identical objects moving along the azimuth with uniform motion and towards opposite directions. The perceptual interpretation of the motion is ambiguous and is modulated if a transient (sound) is presented in coincidence with the point of overlap of the two objects' motion trajectories. This phenomenon has long been written-off to simple attentional or decision-making mechanisms, although the neurological underpinnings for the effect are not well understood. Using behavioural metrics concurrently with event-related fMRI, we show that sound-induced modulations of motion perception can be further modulated by changing motion dynamics of the visual targets. The phenomenon engages the posterior parietal cortex and the parieto-insular-vestibular cortical complex, with a close correspondence of activity in these regions with behaviour. These findings suggest that the insular cortex is engaged in deriving a probabilistic perceptual solution through the integration of multisensory data.
Collapse
Affiliation(s)
- Dorita H F Chang
- Department of Psychology and The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong.
| | - David Thinnes
- Department of Psychology, University of Hawai'i at Mānoa, Hawaii, USA; Faculty of Medicine, Systems Neuroscience & Neurotechnology Unit, Saarland University & HTW Saar, Germany
| | - Pak Yam Au
- Department of Psychology and The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong
| | - Danilo Maziero
- Department of Medicine, MR Research Program, John A. Burns School of Medicine, University of Hawai'i, HI, USA
| | - Victor Andrew Stenger
- Department of Medicine, MR Research Program, John A. Burns School of Medicine, University of Hawai'i, HI, USA
| | - Scott Sinnett
- Department of Psychology, University of Hawai'i at Mānoa, Hawaii, USA
| | - Jonas Vibell
- Department of Psychology, University of Hawai'i at Mānoa, Hawaii, USA.
| |
Collapse
|
38
|
Chari DA, Madhani A, Sharon JD, Lewis RF. Evidence for cognitive impairment in patients with vestibular disorders. J Neurol 2022; 269:5831-5842. [PMID: 35930032 DOI: 10.1007/s00415-022-11289-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Extensive animal research has shown that vestibular damage can be associated with cognitive deficits. More recently, new evidence has emerged linking vestibular disorders to cognitive impairment in humans. Herein, we review contemporary research on the pathophysiology of cognitive-vestibular interactions and discuss its emerging clinical relevance. DATA SOURCES PubMed, Embase, and Cochrane databases. REVIEW METHODS A systematic literature search was performed with combinations of search terms: "cognition," "cognitive impairment," "chronic fatigue," "brain fog," "spatial navigation," "attention," "memory," "executive function," "processing speed," and "vestibular hypofunction." Relevant articles were considered for inclusion, including basic and clinical studies, case series, and major reviews. CONCLUSIONS Patients with vestibular disorders can demonstrate long-term deficits in both spatial and nonspatial cognitive domains. The underlying mechanism(s) linking the vestibular system to cognitive function is not well characterized, but several neuro-biologic correlates have been identified. Additional screening tools are required to identify individuals at risk for cognitive impairment, and further research is needed to determine whether treatment of vestibular dysfunction has the capacity to improve cognitive function. IMPLICATIONS FOR PRACTICE Physicians should be aware of emerging data supporting the presence of cognitive deficits in patients with vestibular disorders. Prevention and treatment of long-term cognitive deficits may be possible through screening and rehabilitation.
Collapse
Affiliation(s)
- Divya A Chari
- Department of Otolaryngology - Head and Neck Surgery, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA.
- Department of Otolaryngology - Head and Neck Surgery, University of Massachusetts Medical School, Worcester, MA, USA.
- Jenks Vestibular Physiology Lab, Massachusetts Eye and Ear, Boston, MA, USA.
| | - Amsal Madhani
- Jenks Vestibular Physiology Lab, Massachusetts Eye and Ear, Boston, MA, USA
| | - Jeffrey D Sharon
- Department of Otolaryngology - Head and Neck Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Richard F Lewis
- Department of Otolaryngology - Head and Neck Surgery, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
- Jenks Vestibular Physiology Lab, Massachusetts Eye and Ear, Boston, MA, USA
| |
Collapse
|
39
|
The anterior thalamic nuclei: core components of a tripartite episodic memory system. Nat Rev Neurosci 2022; 23:505-516. [PMID: 35478245 DOI: 10.1038/s41583-022-00591-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2022] [Indexed: 12/13/2022]
Abstract
Standard models of episodic memory focus on hippocampal-parahippocampal interactions, with the neocortex supplying sensory information and providing a final repository of mnemonic representations. However, recent advances have shown that other regions make distinct and equally critical contributions to memory. In particular, there is growing evidence that the anterior thalamic nuclei have a number of key cognitive functions that support episodic memory. In this article, we describe these findings and argue for a core, tripartite memory system, comprising a 'temporal lobe' stream (centred on the hippocampus) and a 'medial diencephalic' stream (centred on the anterior thalamic nuclei) that together act on shared cortical areas. We demonstrate how these distributed brain regions form complementary and necessary partnerships in episodic memory formation.
Collapse
|
40
|
Tarnutzer AA, Duarte da Costa V, Baumann D, Hemm S. Heading Direction Is Significantly Biased by Preceding Whole-Body Roll-Orientation While Lying. Front Neurol 2022; 13:868144. [PMID: 35509993 PMCID: PMC9058079 DOI: 10.3389/fneur.2022.868144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/18/2022] [Indexed: 12/05/2022] Open
Abstract
Background After a prolonged static whole-body roll-tilt, a significant bias of the internal estimates of the direction of gravity has been observed when assessing the subjective visual vertical. Objective We hypothesized that this post-tilt bias represents a more general phenomenon, broadly affecting spatial orientation and navigation. Specifically, we predicted that after the prolonged roll-tilt to either side perceived straight-ahead would also be biased. Methods Twenty-five healthy participants were asked to rest in three different lying positions (supine, right-ear-down, and left-ear-down) for 5 min (“adaptation period”) prior to walking straight-ahead blindfolded for 2 min. Walking was recorded with the inertial measurement unit sensors attached to different body locations and with sensor shoe insoles. The raw data was segmented with a gait–event detection method. The Heading direction was determined and linear mixed-effects models were used for statistical analyses. Results A significant bias in heading into the direction of the previous roll-tilt position was observed in the post-adaptation trials. This bias was identified in both measurement systems and decreased again over the 2-min walking period. Conclusions The bias observed further confirms the influence of prior knowledge on spatial orientation and navigation. Specifically, it underlines the broad impact of a shifting internal estimate of direction of gravity over a range of distinct paradigms, illustrating similar decay time constants. In the broader context, the observed bias in perceived straight-ahead emphasizes that getting up in the morning after a good night's sleep is a vulnerable period, with an increased risk of falls and fall-related injuries due to non-availability of optimally tuned internal estimates of the direction of gravity and the direction of straight-ahead.
Collapse
Affiliation(s)
- Alexander Andrea Tarnutzer
- Department of Neurology, Cantonal Hospital of Baden, Baden, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
- *Correspondence: Alexander Andrea Tarnutzer
| | - Vasco Duarte da Costa
- School of Life Sciences, Institute for Medical Engineering and Medical Informatics, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
| | - Denise Baumann
- School of Life Sciences, Institute for Medical Engineering and Medical Informatics, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
| | - Simone Hemm
- School of Life Sciences, Institute for Medical Engineering and Medical Informatics, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
| |
Collapse
|
41
|
Modular microcircuit organization of the presubicular head-direction map. Cell Rep 2022; 39:110684. [PMID: 35417686 DOI: 10.1016/j.celrep.2022.110684] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 02/16/2022] [Accepted: 03/24/2022] [Indexed: 11/22/2022] Open
Abstract
Our internal sense of direction is thought to rely on the activity of head-direction (HD) neurons. We find that the mouse dorsal presubiculum (PreS), a key structure in the cortical representation of HD, displays a modular "patch-matrix" organization, which is conserved across species (including human). Calbindin-positive layer 2 neurons within the "matrix" form modular recurrent microcircuits, while inputs from the anterodorsal and laterodorsal thalamic nuclei are non-overlapping and target the "patch" and "matrix" compartments, respectively. The apical dendrites of identified HD cells are largely restricted within the "matrix," pointing to a non-random sampling of patterned inputs and to a precise structure-function architecture. Optogenetic perturbation of modular recurrent microcircuits results in a drastic tonic suppression of firing only in a subpopulation of HD neurons. Altogether, our data reveal a modular microcircuit organization of the PreS HD map and point to the existence of cell-type-specific microcircuits that support the cortical HD representation.
Collapse
|
42
|
Robinson BS, Norman-Tenazas R, Cervantes M, Symonette D, Johnson EC, Joyce J, Rivlin PK, Hwang GM, Zhang K, Gray-Roncal W. Online learning for orientation estimation during translation in an insect ring attractor network. Sci Rep 2022; 12:3210. [PMID: 35217679 PMCID: PMC8881593 DOI: 10.1038/s41598-022-05798-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 01/10/2022] [Indexed: 11/09/2022] Open
Abstract
Insect neural systems are a promising source of inspiration for new navigation algorithms, especially on low size, weight, and power platforms. There have been unprecedented recent neuroscience breakthroughs with Drosophila in behavioral and neural imaging experiments as well as the mapping of detailed connectivity of neural structures. General mechanisms for learning orientation in the central complex (CX) of Drosophila have been investigated previously; however, it is unclear how these underlying mechanisms extend to cases where there is translation through an environment (beyond only rotation), which is critical for navigation in robotic systems. Here, we develop a CX neural connectivity-constrained model that performs sensor fusion, as well as unsupervised learning of visual features for path integration; we demonstrate the viability of this circuit for use in robotic systems in simulated and physical environments. Furthermore, we propose a theoretical understanding of how distributed online unsupervised network weight modification can be leveraged for learning in a trajectory through an environment by minimizing orientation estimation error. Overall, our results may enable a new class of CX-derived low power robotic navigation algorithms and lead to testable predictions to inform future neuroscience experiments.
Collapse
Affiliation(s)
- Brian S Robinson
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD, 20723, USA.
| | | | - Martha Cervantes
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD, 20723, USA
| | - Danilo Symonette
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD, 20723, USA
| | - Erik C Johnson
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD, 20723, USA
| | - Justin Joyce
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD, 20723, USA
| | - Patricia K Rivlin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, 20147, USA
| | - Grace M Hwang
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD, 20723, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Kechen Zhang
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, 21205, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - William Gray-Roncal
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD, 20723, USA
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, 21218, USA
| |
Collapse
|
43
|
Phillips J, Muheim R, Painter M, Raines J, Anderson C, Landler L, Dommer D, Raines A, Deutschlander M, Whitehead J, Fitzpatrick NE, Youmans P, Borland C, Sloan K, McKenna K. Why is it so difficult to study magnetic compass orientation in murine rodents? J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2022; 208:197-212. [PMID: 35094127 DOI: 10.1007/s00359-021-01532-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 01/21/2023]
Abstract
A magnetic compass sense has been demonstrated in all major classes of vertebrates, as well as in many invertebrates. In mammals, controlled laboratory studies of mice have provided evidence for a robust magnetic compass that is comparable to, or exceeds, the performance of that in other animals. Nevertheless, the vast majority of laboratory studies of spatial behavior and cognition in murine rodents have failed to produce evidence of sensitivity to magnetic cues. Given the central role that a magnetic compass sense plays in the spatial ecology and cognition of non-mammalian vertebrates, and the potential utility that a global/universal reference frame derived from the magnetic field would have in mammals, the question of why responses to magnetic cues have been so difficult to demonstrate reliably is of considerable importance. In this paper, we review evidence that the magnetic compass of murine rodents shares a number of properties with light-dependent compasses in a wide variety of other animals generally believed to be mediated by a radical pair mechanism (RPM) or related quantum process. Consistent with the RPM, we summarize both published and previously unpublished findings suggesting that the murine rodent compass is sensitive to low-level radio frequency (RF) fields. Finally, we argue that the presence of anthropogenic RF fields in laboratory settings, may be an important source of variability in responses of murine rodents to magnetic cues.
Collapse
Affiliation(s)
- John Phillips
- Dept of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061-0406, USA.
| | - Rachel Muheim
- Dept of Biology, Lund University, Biology Building, 223 62, Lund, Sweden
| | - Michael Painter
- Dept of Biology, Barry University, 11300 NE 2nd Ave, Miami, FL, 33161, USA
| | - Jenny Raines
- University of Virginia, 409 Lane Road, Charlottesville, VA, 22908, USA
| | - Chris Anderson
- Electrical Engineering Dept, US Naval Academy, 105 Maryland Ave, Annapolis, MD, 21402, USA
| | - Lukas Landler
- Institute of Zoology, University of Natural Resources and Life Sciences (BOKU), Gregor-Mendel-Straße 33/I, 1180, Vienna, Austria
| | - Dave Dommer
- University of Mount Olive, 5001 South Miami Boulevard, Durham, NC, 27703, USA
| | - Adam Raines
- Dept of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061-0406, USA
| | - Mark Deutschlander
- Dept of Biology, Hobart and William Smith Colleges, 300 Pulteney St., Geneva, NY, 14456, USA
| | - John Whitehead
- Dept of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061-0406, USA
| | | | - Paul Youmans
- Dept of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061-0406, USA
| | - Chris Borland
- Civic Champs, 642 N. Madison St., Suite 116, Bloomington, IN, 47404, USA
| | - Kelly Sloan
- Sanibel Captiva Conservation Foundation, 3333 Sanibel Captiva Rd, PO Box 839, Sanibel, FL, 33957, USA
| | - Kaitlyn McKenna
- Dept of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061-0406, USA
| |
Collapse
|
44
|
Takahashi N, Zittrell F, Hensgen R, Homberg U. Receptive field structures for two celestial compass cues at the input stage of the central complex in the locust brain. J Exp Biol 2022; 225:274503. [DOI: 10.1242/jeb.243858] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/14/2022] [Indexed: 11/20/2022]
Abstract
Successful navigation depends on an animal's ability to perceive its spatial orientation relative to visual surroundings. Heading direction in insects is represented in the central complex (CX), a navigation center in the brain, to generate steering commands. In insects that navigate relative to sky compass signals, CX neurons are tuned to celestial cues indicating the location of the sun. The desert locust CX contains a compass-like representation of two related celestial cues: the direction of unpolarized direct sunlight and the pattern of polarized light, which depends on the sun position. Whether congruent tuning to these two compass cues emerges within the CX network or is inherited from CX input neurons is unclear. To address this question, we intracellularly recorded from GABA-immunoreactive TL neurons, input elements to the locust CX (corresponding to R neurons in Drosophila), while applying visual stimuli simulating unpolarized sunlight and polarized light across the hemisphere above the animal. We show that TL neurons have large receptive fields for both types of stimuli. However, faithful integration of polarization angles across the dorsal hemisphere, or matched-filter ability to encode particular sun positions, was found in only two out of 22 recordings. Those two neurons also showed a good match in sun position coding through polarized and unpolarized light signaling, whereas 20 neurons showed substantial mismatch in signaling of the two compass cues. The data, therefore, suggest that considerable refinement of azimuth coding based on sky compass signals occurs at the synapses from TL neurons to postsynaptic CX compass neurons.
Collapse
Affiliation(s)
- Naomi Takahashi
- Department of Biology, Animal Physiology, Philipps-Universität Marburg, D-35032 Marburg, Germany
| | - Frederick Zittrell
- Department of Biology, Animal Physiology, Philipps-Universität Marburg, D-35032 Marburg, Germany
| | - Ronja Hensgen
- Department of Biology, Animal Physiology, Philipps-Universität Marburg, D-35032 Marburg, Germany
| | - Uwe Homberg
- Department of Biology, Animal Physiology, Philipps-Universität Marburg, D-35032 Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Germany
| |
Collapse
|
45
|
The influence of uncertainty and validity of expectation on the perceptual decision of motion direction. ACTA PSYCHOLOGICA SINICA 2022. [DOI: 10.3724/sp.j.1041.2022.00595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
46
|
Hennestad E, Witoelar A, Chambers AR, Vervaeke K. Mapping vestibular and visual contributions to angular head velocity tuning in the cortex. Cell Rep 2021; 37:110134. [PMID: 34936869 PMCID: PMC8721284 DOI: 10.1016/j.celrep.2021.110134] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 09/21/2021] [Accepted: 11/24/2021] [Indexed: 11/19/2022] Open
Abstract
Neurons that signal the angular velocity of head movements (AHV cells) are important for processing visual and spatial information. However, it has been challenging to isolate the sensory modality that drives them and to map their cortical distribution. To address this, we develop a method that enables rotating awake, head-fixed mice under a two-photon microscope in a visual environment. Starting in layer 2/3 of the retrosplenial cortex, a key area for vision and navigation, we find that 10% of neurons report angular head velocity (AHV). Their tuning properties depend on vestibular input with a smaller contribution of vision at lower speeds. Mapping the spatial extent, we find AHV cells in all cortical areas that we explored, including motor, somatosensory, visual, and posterior parietal cortex. Notably, the vestibular and visual contributions to AHV are area dependent. Thus, many cortical circuits have access to AHV, enabling a diverse integration with sensorimotor and cognitive information.
Collapse
Affiliation(s)
- Eivind Hennestad
- Institute of Basic Medical Sciences, Section of Physiology, University of Oslo, Oslo, Norway
| | - Aree Witoelar
- Institute of Basic Medical Sciences, Section of Physiology, University of Oslo, Oslo, Norway
| | - Anna R Chambers
- Institute of Basic Medical Sciences, Section of Physiology, University of Oslo, Oslo, Norway
| | - Koen Vervaeke
- Institute of Basic Medical Sciences, Section of Physiology, University of Oslo, Oslo, Norway.
| |
Collapse
|
47
|
Performance in Real World- and Virtual Reality-Based Spatial Navigation Tasks in Patients With Vestibular Dysfunction. Otol Neurotol 2021; 42:e1524-e1531. [PMID: 34766948 DOI: 10.1097/mao.0000000000003289] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE This study evaluated whether vestibular dysfunction is associated with reduced spatial navigation performance. STUDY DESIGN Cross-sectional study. SETTING Otolaryngology Clinic in the Johns Hopkins Outpatient Center and an analogous virtual reality (VR) environment. PATIENTS Eligible patients had diagnosis of unilateral or bilateral vestibular loss. Matched healthy controls were recruited at 1:1 ratio. INTERVENTIONS The navigation task involved a route-based or place-based strategy in both real world and VR environments. MAIN OUTCOME MEASURES Navigation performance was measured by distance travelled relative to optimal distance (i.e., path ratio) and the Judgments of Relative Direction (JRD) task, whereby participants had to recall relative angular distances between landmarks. RESULTS The study sample included 20 patients with vestibular loss (mean age: 61 yrs, SD: 10.2 yrs) and 20 matched controls (mean age: 60 yrs, SD: 10.4 yrs). Patients with vestibular loss travelled significantly greater distance using both route-based (path ratio 1.3 vs. 1.0, p = 0.02) and place-based (path ratio 2.6 vs. 2.0, p = 0.03) strategies in the real world. Overall, participants performed worse in virtual reality compared to real world in both path ratio (2.2 vs. 1.7; p = 0.04) and JRD error (78° vs. 67°; p < 0.01). Furthermore, while controls exhibited significant positive correlations between real world and VR performance in place-based (β = 0.75; p < 0.001) and JRD tasks (β = 0.70; p < 0.001), patients with vestibular loss exhibited no similar correlations. CONCLUSIONS The vestibular system appears to play a role in navigation ability during both actual and virtual navigation, suggesting a role for static vestibular signals in navigation performance.
Collapse
|
48
|
The molecular, electrophysiological, and structural changes in the vestibular nucleus during vestibular compensation: a narrative review. JOURNAL OF BIO-X RESEARCH 2021. [DOI: 10.1097/jbr.0000000000000107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
49
|
Delle Monache S, Indovina I, Zago M, Daprati E, Lacquaniti F, Bosco G. Watching the Effects of Gravity. Vestibular Cortex and the Neural Representation of "Visual" Gravity. Front Integr Neurosci 2021; 15:793634. [PMID: 34924968 PMCID: PMC8671301 DOI: 10.3389/fnint.2021.793634] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/08/2021] [Indexed: 11/13/2022] Open
Abstract
Gravity is a physical constraint all terrestrial species have adapted to through evolution. Indeed, gravity effects are taken into account in many forms of interaction with the environment, from the seemingly simple task of maintaining balance to the complex motor skills performed by athletes and dancers. Graviceptors, primarily located in the vestibular otolith organs, feed the Central Nervous System with information related to the gravity acceleration vector. This information is integrated with signals from semicircular canals, vision, and proprioception in an ensemble of interconnected brain areas, including the vestibular nuclei, cerebellum, thalamus, insula, retroinsula, parietal operculum, and temporo-parietal junction, in the so-called vestibular network. Classical views consider this stage of multisensory integration as instrumental to sort out conflicting and/or ambiguous information from the incoming sensory signals. However, there is compelling evidence that it also contributes to an internal representation of gravity effects based on prior experience with the environment. This a priori knowledge could be engaged by various types of information, including sensory signals like the visual ones, which lack a direct correspondence with physical gravity. Indeed, the retinal accelerations elicited by gravitational motion in a visual scene are not invariant, but scale with viewing distance. Moreover, the "visual" gravity vector may not be aligned with physical gravity, as when we watch a scene on a tilted monitor or in weightlessness. This review will discuss experimental evidence from behavioral, neuroimaging (connectomics, fMRI, TMS), and patients' studies, supporting the idea that the internal model estimating the effects of gravity on visual objects is constructed by transforming the vestibular estimates of physical gravity, which are computed in the brainstem and cerebellum, into internalized estimates of virtual gravity, stored in the vestibular cortex. The integration of the internal model of gravity with visual and non-visual signals would take place at multiple levels in the cortex and might involve recurrent connections between early visual areas engaged in the analysis of spatio-temporal features of the visual stimuli and higher visual areas in temporo-parietal-insular regions.
Collapse
Affiliation(s)
- Sergio Delle Monache
- UniCamillus—Saint Camillus International University of Health Sciences, Rome, Italy
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Iole Indovina
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Myrka Zago
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy
- Center for Space Biomedicine, University of Rome “Tor Vergata”, Rome, Italy
- Department of Civil and Computer Engineering, University of Rome “Tor Vergata”, Rome, Italy
| | - Elena Daprati
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy
- Center for Space Biomedicine, University of Rome “Tor Vergata”, Rome, Italy
- Department of Systems Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Francesco Lacquaniti
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy
- Center for Space Biomedicine, University of Rome “Tor Vergata”, Rome, Italy
- Department of Systems Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Gianfranco Bosco
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy
- Center for Space Biomedicine, University of Rome “Tor Vergata”, Rome, Italy
- Department of Systems Medicine, University of Rome “Tor Vergata”, Rome, Italy
| |
Collapse
|
50
|
Beetz MJ, Kraus C, Franzke M, Dreyer D, Strube-Bloss MF, Rössler W, Warrant EJ, Merlin C, El Jundi B. Flight-induced compass representation in the monarch butterfly heading network. Curr Biol 2021; 32:338-349.e5. [PMID: 34822766 DOI: 10.1016/j.cub.2021.11.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/27/2021] [Accepted: 11/03/2021] [Indexed: 10/19/2022]
Abstract
For navigation, animals use a robust internal compass. Compass navigation is crucial for long-distance migrating animals like monarch butterflies, which use the sun to navigate over 4,000 km to their overwintering sites every fall. Sun-compass neurons of the central complex have only been recorded in immobile butterflies, and experimental evidence for encoding the animal's heading in these neurons is still missing. Although the activity of central-complex neurons exhibits a locomotor-dependent modulation in many insects, the function of such modulations remains unexplored. Here, we developed tetrode recordings from tethered flying monarch butterflies to reveal how flight modulates heading representation. We found that, during flight, heading-direction neurons change their tuning, transforming the central-complex network to function as a global compass. This compass is characterized by the dominance of processing steering feedback and allows for robust heading representation even under unreliable visual scenarios, an ideal strategy for maintaining a migratory heading over enormous distances.
Collapse
Affiliation(s)
- M Jerome Beetz
- Zoology II, Biocenter, University of Würzburg, Am Hubland 1, 97074 Würzburg, Germany.
| | - Christian Kraus
- Zoology II, Biocenter, University of Würzburg, Am Hubland 1, 97074 Würzburg, Germany
| | - Myriam Franzke
- Zoology II, Biocenter, University of Würzburg, Am Hubland 1, 97074 Würzburg, Germany
| | - David Dreyer
- Lund Vision Group, Department of Biology, Lund University, Sölvegatan 35, 22362 Lund, Sweden
| | - Martin F Strube-Bloss
- Department of Biological Cybernetics, University of Bielefeld, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Wolfgang Rössler
- Zoology II, Biocenter, University of Würzburg, Am Hubland 1, 97074 Würzburg, Germany
| | - Eric J Warrant
- Lund Vision Group, Department of Biology, Lund University, Sölvegatan 35, 22362 Lund, Sweden
| | - Christine Merlin
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, TX 77843, USA
| | - Basil El Jundi
- Zoology II, Biocenter, University of Würzburg, Am Hubland 1, 97074 Würzburg, Germany.
| |
Collapse
|