1
|
Dijkshoorn ABC, Turk E, Hortensius LM, van der Aa NE, Hoebeek FE, Groenendaal F, Benders MJNL, Dudink J. Preterm infants with isolated cerebellar hemorrhage show bilateral cortical alterations at term equivalent age. Sci Rep 2020; 10:5283. [PMID: 32210267 PMCID: PMC7093404 DOI: 10.1038/s41598-020-62078-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 03/06/2020] [Indexed: 01/08/2023] Open
Abstract
The cerebellum is connected to numerous regions of the contralateral side of the cerebrum. Motor and cognitive deficits following neonatal cerebellar hemorrhages (CbH) in extremely preterm neonates may be related to remote cortical alterations, following disrupted cerebello-cerebral connectivity as was previously shown within six CbH infants. In this retrospective case series study, we used MRI and advanced surface-based analyses to reconstruct gray matter (GM) changes in cortical thickness and cortical surface area in extremely preterm neonates (median age = 26; range: 24.9-26.7 gestational weeks) with large isolated unilateral CbH (N = 5 patients). Each CbH infant was matched with their own preterm infant cohort (range: 20-36 infants) based on sex and gestational age at birth. On a macro level, our data revealed that the contralateral cerebral hemisphere of CbH neonates did not show less cortical thickness or cortical surface area than their ipsilateral cerebral hemisphere at term. None of the cases differed from their matched cohort groups in average cortical thickness or average cortical surface area in the ipsilateral or contralateral cerebral hemisphere. On a micro (i.e. vertex) level, we established high variability in significant local cortical GM alteration patterns across case-cohort groups, in which the cases showed thicker or bigger volume in some regions, among which the caudal middle frontal gyrus, insula and parahippocampal gyrus, and thinner or less volume in other regions, among which the cuneus, precuneus and supratentorial gyrus. This study highlights that cerebellar injury during postnatal stages may have widespread bilateral influence on the early maturation of cerebral cortical regions, which implicate complex cerebello-cerebral interactions to be present at term birth.
Collapse
Affiliation(s)
- Aicha B C Dijkshoorn
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Elise Turk
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.,UMC Utrecht Brain Center, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Lisa M Hortensius
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.,UMC Utrecht Brain Center, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Niek E van der Aa
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.,UMC Utrecht Brain Center, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Freek E Hoebeek
- UMC Utrecht Brain Center, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.,Department for Developmental Origins of Disease, Wilhelmina Children's hospital, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Floris Groenendaal
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Manon J N L Benders
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.,UMC Utrecht Brain Center, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Jeroen Dudink
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands. .,UMC Utrecht Brain Center, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
2
|
Upregulation of MicroRNA miR-9 Is Associated with Microcephaly and Zika Virus Infection in Mice. Mol Neurobiol 2018; 56:4072-4085. [DOI: 10.1007/s12035-018-1358-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 09/19/2018] [Indexed: 12/31/2022]
|
3
|
Chen HR, Juan HC, Wong YH, Tsai JW, Fann MJ. Cdk12 Regulates Neurogenesis and Late-Arising Neuronal Migration in the Developing Cerebral Cortex. Cereb Cortex 2017; 27:2289-2302. [PMID: 27073218 DOI: 10.1093/cercor/bhw081] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
DNA damage response (DDR) pathways are critical for ensuring that replication stress and various types of DNA lesion do not perturb production of neural cells during development. Cdk12 maintains genomic stability by regulating expression of DDR genes. Mutant mice in which Cdk12 is conditionally deleted in neural progenitor cells (NPCs) die after birth and exhibit microcephaly with a thinner cortical plate and an aberrant corpus callosum. We show that NPCs of mutant mice accumulate at G2 and M phase, and have lower expression of DDR genes, more DNA double-strand breaks and increased apoptosis. In addition to there being fewer neurons, there is misalignment of layers IV-II neurons and the presence of abnormal axonal tracts of these neurons, suggesting that Cdk12 is also required for the migration of late-arising cortical neurons. Using in utero electroporation, we demonstrate that the migrating mutant cells remain within the intermediate zone and fail to adopt a bipolar morphology. Overexpression of Cdk5 brings about a partially restoration of the neurons reaching layers IV-II in the mutant mice. Thus, Cdk12 is crucial to the repair of DNA damage during the proliferation of NPCs and is also central to the proper migration of late-arising neurons.
Collapse
Affiliation(s)
- Hong-Ru Chen
- Department of Life Sciences and Institute of Genome Sciences.,Brain Research Center
| | - Hsien-Chia Juan
- Department of Life Sciences and Institute of Genome Sciences
| | | | - Jin-Wu Tsai
- Brain Research Center.,Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan 11221, Republic of China
| | - Ming-Ji Fann
- Department of Life Sciences and Institute of Genome Sciences.,Brain Research Center
| |
Collapse
|
4
|
Abstract
c-Fos is a proto-oncogene involved in diverse cellular functions. Its deregulation has been associated to abnormal development and oncogenic progression. c-fos−/− mice are viable but present a reduction in their body weight and brain size. We examined the importance of c-Fos during neocortex development at 13.5, 14.5 and 16.5 days of gestation. At E14.5, neocortex thickness, apoptosis, mitosis and expression of markers along the different stages of Neural Stem Progenitor Cells (NSPCs) differentiation in c-fos−/− and wild-type mice were analyzed. A ∼15% reduction in the neocortex thickness of c-fos−/− embryos was observed which correlates with a decrease in the number of differentiated cells and an increase in apoptosis at the ventricular zone. No difference in mitosis rate was observed, although the mitotic angle was predominantly vertical in c-fos−/− embryos, suggesting a reduced trend of NSPCs to differentiate. At E13.5, changes in differentiation markers start to be apparent and are still clearly observed at E16.5. A tendency of more AP-1/DNA complexes present in nuclear extracts of cerebral cortex from c-fos−/− embryos with no differences in the lipid synthesis activity was found. These results suggest that c-Fos is involved in the normal development of NSPCs by means of its AP-1 activity.
Collapse
|
5
|
Bowers JM, Perez-Pouchoulen M, Roby CR, Ryan TE, McCarthy MM. Androgen modulation of Foxp1 and Foxp2 in the developing rat brain: impact on sex specific vocalization. Endocrinology 2014; 155:4881-94. [PMID: 25247470 PMCID: PMC4239422 DOI: 10.1210/en.2014-1486] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Sex differences in vocal communication are prevalent in both the animals and humans. The mechanism(s) mediating gender differences in human language are unknown, although, sex hormones, principally androgens, play a central role in the development of vocalizations in a wide variety of animal species. The discovery of FOXP2 has added an additional avenue for exploring the origins of language and animal communication. The FOXP2 gene is a member of the forkhead box P (FOXP) family of transcription factors. Prior to the prenatal androgen surge in male fetuses, we observed no sex difference for Foxp2 protein levels in cultured cells. In contrast, 24 hours after the onset of the androgen surge, we found a sex difference for Foxp2 protein levels in cultured cortical cells with males having higher levels than females. Furthermore, we observed the potent nonaromatizable androgen dihydrotestosterone altered not only Foxp2 mRNA and protein levels but also Foxp1. Androgen effects on both Foxp2 and Foxp1 were found to occur in the striatum, cerebellar vermis, and cortex. Immunofluorescence microscopy and coimmunoprecipitation demonstrate Foxp2 and the androgen receptor protein interact. Databases for transcription factor binding sites predict a consensus binding motif for androgen receptor on the Foxp2 promoter regions. We also observed a sex difference in rat pup vocalization with males vocalizing more than females and treatment of females with dihydrotestosterone eliminated the sex difference. We propose that androgens might be an upstream regulator of both Foxp2 and Foxp1 expression and signaling. This has important implications for language and communication as well as neuropsychiatric developmental disorders involving impairments in communication.
Collapse
Affiliation(s)
- J Michael Bowers
- Department of Pharmacology (J.M.B., M.P.-P., C.R.R., M.M.M.), University of Maryland School of Medicine and Programs in Neuroscience (M.M.M.) and Medicine (T.E.R.), University of Maryland School of Medicine, University of Maryland, Baltimore, Baltimore, Maryland 21201
| | | | | | | | | |
Collapse
|
6
|
Poluch S, Juliano SL. Fine-tuning of neurogenesis is essential for the evolutionary expansion of the cerebral cortex. ACTA ACUST UNITED AC 2013; 25:346-64. [PMID: 23968831 DOI: 10.1093/cercor/bht232] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We used several animal models to study global and regional cortical surface expansion: The lissencephalic mouse, gyrencephalic normal ferrets, in which the parietal cortex expands more than the temporal cortex, and moderately lissencephalic ferrets, showing a similar degree of temporal and parietal expansion. We found that overall cortical surface expansion is achieved when specific events occur prior to surpragranular layer formation. (1) The subventricular zone (SVZ) shows substantial growth, (2) the inner SVZ contains an increased number of outer radial glia and intermediate progenitor cells expressing Pax6, and (3) the outer SVZ contains a progenitor cell composition similar to the combined VZ and inner SVZ. A greater parietal expansion is also achieved by eliminating the latero-dorsal neurogenic gradient, so that neurogenesis displays a similar developmental degree between parietal and temporal regions. In contrast, mice or lissencephalic ferrets show more advanced neurogenesis in the temporal region. In conclusion, we propose that global and regional cortical surface expansion rely on similar strategies consisting in altering the timing of neurogenic events prior to the surpragranular layer formation, so that more progenitor cells, and ultimately more neurons, are produced. This hypothesis is supported by findings from a ferret model of lissencephaly obtained by transiently blocking neurogenesis during the formation of layer IV.
Collapse
Affiliation(s)
- Sylvie Poluch
- Department of Anatomy, Physiology, and Genetics Department of Neuroscience, Uniformed Services University, Bethesda, MD, USA
| | - Sharon L Juliano
- Department of Anatomy, Physiology, and Genetics Department of Neuroscience, Uniformed Services University, Bethesda, MD, USA
| |
Collapse
|
7
|
De Guio F, Mangin JF, Rivière D, Perrot M, Molteno CD, Jacobson SW, Meintjes EM, Jacobson JL. A study of cortical morphology in children with fetal alcohol spectrum disorders. Hum Brain Mapp 2013; 35:2285-96. [PMID: 23946151 DOI: 10.1002/hbm.22327] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Accepted: 04/23/2013] [Indexed: 02/04/2023] Open
Abstract
Prenatal alcohol exposure is responsible for a broad range of brain structural malformations, which can be studied using magnetic resonance imaging (MRI). Advanced MRI methods have emerged to characterize brain abnormalities, but the teratogenic effects of alcohol on cortical morphology have received little attention to date. Twenty-four 9-year-old children with fetal alcohol spectrum disorders (9 with fetal alcohol syndrome, 15 heavy exposed nonsyndromal children) and 16 age-matched controls were studied to assess the effect of alcohol consumption during pregnancy on cortical morphology. An automated method was applied to 3D T1-weighted images to assess cortical gyrification using global and regional sulcal indices and two region-based morphological measurements, mean sulcal depth and fold opening. Increasing levels of alcohol exposure were related to reduced cortical folding complexity, even among children with normal brain size, indicating a reduction of buried cortical surface. Fold opening was the strongest anatomical correlate of prenatal alcohol intake, indicating a widening of sulci in all regions that were examined. These data identify cortical morphology as a suitable marker for further investigation of brain damage associated with prenatal alcohol exposure.
Collapse
|
8
|
Bushman DM, Chun J. The genomically mosaic brain: aneuploidy and more in neural diversity and disease. Semin Cell Dev Biol 2013; 24:357-69. [PMID: 23466288 PMCID: PMC3637860 DOI: 10.1016/j.semcdb.2013.02.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 01/25/2013] [Accepted: 02/06/2013] [Indexed: 10/27/2022]
Abstract
Genomically identical cells have long been assumed to comprise the human brain, with post-genomic mechanisms giving rise to its enormous diversity, complexity, and disease susceptibility. However, the identification of neural cells containing somatically generated mosaic aneuploidy - loss and/or gain of chromosomes from a euploid complement - and other genomic variations including LINE1 retrotransposons and regional patterns of DNA content variation (DCV), demonstrate that the brain is genomically heterogeneous. The precise phenotypes and functions produced by genomic mosaicism are not well understood, although the effects of constitutive aberrations, as observed in Down syndrome, implicate roles for defined mosaic genomes relevant to cellular survival, differentiation potential, stem cell biology, and brain organization. Here we discuss genomic mosaicism as a feature of the normal brain as well as a possible factor in the weak or complex genetic linkages observed for many of the most common forms of neurological and psychiatric diseases.
Collapse
Affiliation(s)
- Diane M. Bushman
- Molecular and Cellular Neuroscience Department, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, California, USA
- Biomedical Sciences Graduate Program, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Jerold Chun
- Molecular and Cellular Neuroscience Department, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, California, USA
| |
Collapse
|
9
|
Aneuploid cells are differentially susceptible to caspase-mediated death during embryonic cerebral cortical development. J Neurosci 2013; 32:16213-22. [PMID: 23152605 DOI: 10.1523/jneurosci.3706-12.2012] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Neural progenitor cells, neurons, and glia of the normal vertebrate brain are diversely aneuploid, forming mosaics of intermixed aneuploid and euploid cells. The functional significance of neural mosaic aneuploidy is not known; however, the generation of aneuploidy during embryonic neurogenesis, coincident with caspase-dependent programmed cell death (PCD), suggests that a cell's karyotype could influence its survival within the CNS. To address this hypothesis, PCD in the mouse embryonic cerebral cortex was attenuated by global pharmacological inhibition of caspases or genetic removal of caspase-3 or caspase-9. The chromosomal repertoire of individual brain cells was then assessed by chromosome counting, spectral karyotyping, fluorescence in situ hybridization, and DNA content flow cytometry. Reducing PCD resulted in markedly enhanced mosaicism that was comprised of increased numbers of cells with the following: (1) numerical aneuploidy (chromosome losses or gains); (2) extreme forms of numerical aneuploidy (>5 chromosomes lost or gained); and (3) rare karyotypes, including those with coincident chromosome loss and gain, or absence of both members of a chromosome pair (nullisomy). Interestingly, mildly aneuploid (<5 chromosomes lost or gained) populations remained comparatively unchanged. These data demonstrate functional non-equivalence of distinguishable aneuploidies on neural cell survival, providing evidence that somatically generated, cell-autonomous genomic alterations have consequences for neural development and possibly other brain functions.
Collapse
|
10
|
Montgomery SH, Mundy NI. Positive selection on NIN, a gene involved in neurogenesis, and primate brain evolution. GENES BRAIN AND BEHAVIOR 2012; 11:903-10. [PMID: 22937743 DOI: 10.1111/j.1601-183x.2012.00844.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 08/20/2012] [Accepted: 08/27/2012] [Indexed: 11/28/2022]
Abstract
A long-held dogma in comparative neurobiology has been that the number of neurons under a given area of cortical surface is constant. As such, the attention of those seeking to understand the genetic basis of brain evolution has focused on genes with functions in the lateral expansion of the developing cerebral cortex. However, new data suggest that cortical cytoarchitecture is not constant across primates, raising the possibility that changes in radial cortical development played a role in primate brain evolution. We present the first analysis of a gene with functions relevant to this dimension of brain evolution. We show that NIN, a gene necessary for maintaining asymmetric, neurogenic divisions of radial glial cells (RGCs), evolved adaptively during anthropoid evolution. We explored how this selection relates to neural phenotypes and find a significant association between selection on NIN and neonatal brain size in catarrhines. Our analyses suggest a relationship with prenatal neurogenesis and identify the human data point as an outlier, possibly explained by postnatal changes in development on the human lineage. A similar pattern is found in platyrrhines, but the highly encephalized genus Cebus departs from the general trend. We further show that the evolution of NIN may be associated with variation in neuron number not explained by increases in surface area, a result consistent with NIN's role in neurogenic divisions of RGCs. Our combined results suggest a role for NIN in the evolution of cortical development.
Collapse
Affiliation(s)
- S H Montgomery
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - N I Mundy
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
11
|
Willette AA, Lubach GR, Knickmeyer RC, Short SJ, Styner M, Gilmore JH, Coe CL. Brain enlargement and increased behavioral and cytokine reactivity in infant monkeys following acute prenatal endotoxemia. Behav Brain Res 2011; 219:108-15. [PMID: 21192986 PMCID: PMC3662233 DOI: 10.1016/j.bbr.2010.12.023] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 11/29/2010] [Accepted: 12/17/2010] [Indexed: 12/15/2022]
Abstract
Infections and inflammatory conditions during pregnancy can dysregulate neural development and increase the risk for developing autism and schizophrenia. The following research utilized a nonhuman primate model to investigate the potential impact of a mild endotoxemia during pregnancy on brain maturation and behavioral reactivity as well as the infants' hormone and immune physiology. Nine pregnant female rhesus monkeys (Macaca mulatta) were administered nanogram concentrations of lipopolysaccharide (LPS) on two consecutive days, 6 weeks before term, and their offspring were compared to nine control animals. When tested under arousing challenge conditions, infants from the LPS pregnancies were more behaviorally disturbed, including a failure to show a normal attenuation of startle responses on tests of prepulse inhibition. Examination of their brains at 1 year of age with magnetic resonance imaging (MRI) revealed the unexpected finding of a significant 8.8% increase in global white matter volume distributed across many cortical regions compared to controls. More selective changes in regional gray matter volume and cortical thickness were noted in parietal, medial temporal, and frontal areas. While inhibited neural growth has been described previously after prenatal infection and LPS administration at higher doses in rodents, this low dose endotoxemia in the monkey is the first paradigm to produce a neural phenotype associated with augmented gray and white matter growth.
Collapse
Affiliation(s)
- Auriel A Willette
- Harlow Primate Laboratory, University of Wisconsin, Madison, WI 53715, USA.
| | | | | | | | | | | | | |
Collapse
|
12
|
Growth defects in the dorsal pallium after genetically targeted ablation of principal preplate neurons and neuroblasts: a morphometric analysis. ASN Neuro 2010; 2:e00046. [PMID: 20957077 PMCID: PMC2949088 DOI: 10.1042/an20100022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Revised: 07/28/2010] [Accepted: 08/02/2010] [Indexed: 11/17/2022] Open
Abstract
The present study delineates the large-scale, organic responses of growth in the dorsal pallium to targeted genetic ablations of the principal PP (preplate) neurons of the neocortex. Ganciclovir treatment during prenatal development [from E11 (embryonic age 11) to E13] of mice selectively killed cells with shared S-phase vulnerability and targeted expression of a GPT [golli promoter transgene; GPT linked to HSV-TK (herpes simplex virus-thymidine kinase), τ-eGFP and lacZ reporters] localized in PP neurons and their intermediate progenitor neuroblasts. The volume, area and thickness of the pallium were measured in an E12-P4 (postnatal age 4) longitudinal study with comparisons between ablated (HSV-TK(+/0)) and control (HSV-TK(0/0)) littermates. The extent of ablations was also systematically varied, and the effect on physical growth was assessed in an E18 cross-sectional study. The morphological evidence obtained in the present study supports the conclusion that genetically targeted ablations delay the settlement of the principal PP neurons of the dorsal pallium. This leads to progressive and substantial reductions of growth, despite compensatory responses that rapidly replace the ablated cells. These growth defects originate from inductive cellular interactions in the proliferative matrix of the ventricular zone of the pallium, but are amplified by subsequent morphogenic and trophic cellular interactions. The defects persist during the course of prenatal and postnatal development to demonstrate a constrained dose-response relationship with the extent of specific killing of GPT neurons. The defects propagate simultaneously in both the horizontal and vertical cytoarchitectural dimensions of the developing pallium, an outcome that produces a localized shortfall of volume in the telencephalic vesicles.
Collapse
Key Words
- BrdU, bromodeoxyuridine
- CP/D, cortical plate/distal division
- CP/P, cortical plate/proximal division
- E11, embryonic age 11
- GPT, golli promoter transgene
- HSV-TK, herpes simplex virus-thymidine kinase
- IZ, intermediate zone
- MBP, myelin basic protein
- NA, numerical aperture
- P4, postnatal age 4
- PP, preplate
- Pα, probability of type I error
- SP, subplate
- SVZ, subventricular zone
- TUNEL, terminal deoxynucleotidyltransferase-mediated dUTP nick-end labelling
- VZ, ventricular zone
- VZ/SVZ, the combined VZ and SVZ
- X-gal, 5-bromo-4-chloro-3-indolyl-β-d-galactoside
- df, degrees of freedom
- forebrain growth
- morphogenesis
- neocortex
- pathogenesis
- preplate
- targeted ablation
Collapse
|
13
|
Fox SE, Levitt P, Nelson CA. How the timing and quality of early experiences influence the development of brain architecture. Child Dev 2010; 81:28-40. [PMID: 20331653 DOI: 10.1111/j.1467-8624.2009.01380.x] [Citation(s) in RCA: 497] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Early life events can exert a powerful influence on both the pattern of brain architecture and behavioral development. In this study a conceptual framework is provided for considering how the structure of early experience gets "under the skin." The study begins with a description of the genetic framework that lays the foundation for brain development, and then proceeds to the ways experience interacts with and modifies the structures and functions of the developing brain. Much of the attention is focused on early experience and sensitive periods, although it is made clear that later experience also plays an important role in maintaining and elaborating this early wiring diagram, which is critical to establishing a solid footing for development beyond the early years.
Collapse
Affiliation(s)
- Sharon E Fox
- Harvard-MIT Division of Health Sciences and Technology, Boston, MA, USA
| | | | | |
Collapse
|
14
|
Abstract
Axon pruning and neuronal cell death constitute two major regressive events that enable the establishment of fully mature brain architecture and connectivity. Although the cellular mechanisms for these two events are thought to be distinct, recent evidence has indicated the direct involvement of axon guidance molecules, including semaphorins, netrins, and ephrins, in controlling both processes. Here, we review how axon guidance cues regulate regressive events in paradigmatic models of neural development, from early control of apoptosis of neural progenitors, to later maintenance of neuronal survival and stereotyped pruning of axonal branches. These new findings are also discussed in the context of neural diseases and the potential links between axon pruning and degeneration.
Collapse
|
15
|
Abstract
The enlargement and species-specific elaboration of the cerebral neocortex during evolution holds the secret to the mental abilities of humans; however, the genetic origin and cellular mechanisms that generated the distinct evolutionary advancements are not well understood. This article describes how novelties that make us human may have been introduced during evolution, based on findings in the embryonic cerebral cortex in different mammalian species. The data on the differences in gene expression, new molecular pathways and novel cellular interactions that have led to these evolutionary advances may also provide insight into the pathogenesis and therapies for human-specific neuropsychiatric disorders.
Collapse
Affiliation(s)
- Pasko Rakic
- Department of Neurobiology and Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06510, USA.
| |
Collapse
|
16
|
Kaukola T, Kapellou O, Laroche S, Counsell SJ, Dyet LE, Allsop JM, Edwards AD. Severity of perinatal illness and cerebral cortical growth in preterm infants. Acta Paediatr 2009; 98:990-5. [PMID: 19302092 DOI: 10.1111/j.1651-2227.2009.01268.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AIM We have shown previously that the degree of prematurity affects cortical surface area growth. We now addressed the question whether cortical surface area growth after preterm birth is predicted by the severity of peri- and postnatal illness. METHODS Cortical surface area was measured in 269 images from 111 infants born between 23 and 29 weeks and imaged at 23 to 48 weeks gestational age (GA). The severity of perinatal illness was assessed using the clinical risk index for babies score (CRIB I) and the severity of ongoing illness by the presence of chronic lung disease (CLD). The effects on cortical growth were modelled using generalized least-square regression for random effects with Bonferroni correction. To explore the results further we examined CRIB II, C-reactive protein (CRP) on the second day after birth, and time taken to achieve full enteral feeding. RESULTS Cortical surface area grew by 12.4% per week. Reduced cortical growth was predicted by adverse CRIB I (-0.15% per week per unit) and development of CLD (-1.18% per week). Secondary analysis showed that growth was related to adverse CRIB II (-0.36% per week per unit) and increasing CRP (-0.03% per week per mMol), but not by the time taken to achieve full enteral feeding. CONCLUSION After very premature birth illness severity predicts reduced cortical growth.
Collapse
Affiliation(s)
- Tuula Kaukola
- Department of Paediatrics, Imperial College London, Hammersmith Hospital, London, UK
| | | | | | | | | | | | | |
Collapse
|
17
|
Pulvers JN, Huttner WB. Brca1 is required for embryonic development of the mouse cerebral cortex to normal size by preventing apoptosis of early neural progenitors. Development 2009; 136:1859-68. [PMID: 19403657 DOI: 10.1242/dev.033498] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The extent of apoptosis of neural progenitors is known to influence the size of the cerebral cortex. Mouse embryos lacking Brca1, the ortholog of the human breast cancer susceptibility gene BRCA1, show apoptosis in the neural tube, but the consequences of this for brain development have not been studied. Here we investigated the role of Brca1 during mouse embryonic cortical development by deleting floxed Brca1 using Emx1-Cre, which leads to conditional gene ablation specifically in the dorsal telencephalon after embryonic day (E) 9.5. The postnatal Brca1-ablated cerebral cortex was substantially reduced in size with regard to both cortical thickness and surface area. Remarkably, although the thickness of the cortical layers (except for the upper-most layer) was decreased, cortical layering as such was essentially unperturbed. High levels of apoptosis were found at E11.5 and E13.5, but dropped to near-control levels by E16.5. The apoptosis at the early stage of neurogenesis occurred in both BrdU pulse-labeled neural progenitors and the neurons derived therefrom. No changes were observed in the mitotic index of apical (neuroepithelial, radial glial) progenitors and basal (intermediate) progenitors, indicating that Brca1 ablation did not affect cell cycle progression. Brca1 ablation did, however, result in the nuclear translocation of p53 in neural progenitors, suggesting that their apoptosis involved activation of the p53 pathway. Our results show that Brca1 is required for the cerebral cortex to develop to normal size by preventing the apoptosis of early cortical progenitors and their immediate progeny.
Collapse
Affiliation(s)
- Jeremy N Pulvers
- Max Planck Institute for Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | | |
Collapse
|
18
|
Abstract
The spatio-temporal timing of the last round of mitosis, followed by the migration of neuroblasts to the cortical plate leads to the formation of the six-layered cortex that is subdivided into functionally defined cortical areas. Whereas many of the cellular and molecular mechanisms have been established in rodents, there are a number of unique features that require further elucidation in primates. Recent findings both in rodents and in primates indicate that regulation of the cell cycle, specifically of the G1 phase has a crucial role in controlling area-specific rates of neuron production and the generation of cytoarchitectonic maps.
Collapse
Affiliation(s)
- Colette Dehay
- INSERM, U846, 18 Avenue Doyen Lépine, 69675 Bron Cedex, France.
| | | |
Collapse
|
19
|
Abstract
OBJECTIVE To critically examine the relationship between evolutionary and developmental influences on human neocortex and the properties of the conscious mind it creates. METHODS Using PubMed searches and the bibliographies of several monographs, we selected 50 key works, which offer empirical support for a novel understanding of the organization of the neocortex. RESULTS The cognitive gulf between humans and our closest primate relatives has usually been taken as evidence that our brains evolved crucial new mechanisms somehow conferring advanced capacities, particularly in association areas of the neocortex. In this overview of neocortical development and comparative brain morphometry, we propose an alternative view: that an increase in neocortical size, alone, could account for novel and powerful cognitive capabilities. Other than humans' very large brain in relation to the body weight, the morphometric relations between neocortex and all other brain regions show remarkably consistent exponential ratios across the range of primate species, including humans. For an increase in neocortical size to produce new abilities, the developmental mechanisms of neocortex would need to be able to generate an interarchy of functionally diverse cortical domains in the absence of explicit specification, and in this respect, the mammalian neocortex is unique: its relationship to the rest of the nervous system is unusually plastic, allowing great changes in cortical organization to occur in relatively short periods of evolution. The fact that even advanced abilities like self-recognition have arisen in species from different mammalian orders suggests that expansion of the neocortex quite naturally generates new levels of cognitive sophistication. Our cognitive and behavioural sophistication may, therefore, be attributable to these intrinsic mechanisms' ability to generate complex interarchies when the neocortex reaches a sufficient size. CONCLUSION Our analysis offers a parsimonious explanation for key properties of the human mind based on evolutionary influences and developmental processes. This view is perhaps surprising in its simplicity, but offers a fresh perspective on the evolutionary basis of mental complexity.
Collapse
Affiliation(s)
- Matthew T K Kirkcaldie
- 1Department of Physiology, School of Medical Sciences, The University of New South Wales, Randwick, New South Wales, Australia
| | - Peter D Kitchener
- 2Department of Anatomy and Cell Biology, The University of Melbourne, Melbourne Victoria, Australia
| |
Collapse
|
20
|
Cameron RS, Liu C, Mixon AS, Pihkala JPS, Rahn RJ, Cameron PL. Myosin16b: The COOH-tail region directs localization to the nucleus and overexpression delays S-phase progression. ACTA ACUST UNITED AC 2007; 64:19-48. [PMID: 17029291 DOI: 10.1002/cm.20162] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Rat Myo16a and Myo16b comprise the founding members of class XVI myosin and are characterized by an N-terminal ankyrin repeat domain thought to mediate an association with protein phosphatase 1 catalytic subunits 1alpha and 1gamma. Myo16b is the principal isoform and reveals predominant expression in developing neural tissue. Here, we use COS-7 cells as a model system to develop an understanding of Myo16b function. We find that Myo16b displays predominant localization in the nucleus of cells transitioning through interphase, but is not associated with processes of mitosis. Using a panel of EGFP-Myo16b-expression plasmids in transient transfection studies, we identified the COOH-terminal residues 1616-1912 as necessary and solely sufficient to target Myo16b to the nucleus. We show that the Myo16b-tail region directs localization to a nuclear compartment containing profilin and polymerized actin, which appears to form a three-dimensional meshwork through the depth of the nucleus. Further, we demonstrate that this compartment localizes within euchromatic regions of the genome and contains proliferating cell nuclear antigen (PCNA) and cyclin A, both markers of S-phase of the cell cycle. Cells transiently expressing Myo16b or Myo16b-tail region show limited incorporation of BrdU, delayed progression through S-phase of the cell cycle, and curtailed cellular proliferation.
Collapse
Affiliation(s)
- Richard S Cameron
- Program in Developmental Neurobiology, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA 30912, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Gohlke JM, Griffith WC, Faustman EM. Computational models of neocortical neuronogenesis and programmed cell death in the developing mouse, monkey, and human. ACTA ACUST UNITED AC 2007; 17:2433-42. [PMID: 17204816 DOI: 10.1093/cercor/bhl151] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
This paper presents a computational model allowing quantitative simulations of acquisition of neocortical neuronal number across mammalian species. When extrapolating scientific findings from rodents to humans, it is particularly pertinent to acknowledge the importance of the accelerated enlargement of the neocortex during human evolution. Neocortex development is marked by discrete stages of neural progenitor cell proliferation and death, neuronal differentiation, and neuronal programmed cell death. We have developed computational models of human and rhesus monkey neocortical neuronal cell acquisition based on experimentally derived parameters of cell cycle length, commitment to cell cycle exit, and cell death. Our model results agree with independent stereological studies estimating neocortical neuron number in adult and developing rhesus monkey and human. Comparisons of our primate models with previously developed rodent models suggest correlations between the lengthening of the duration of the neuronogenesis period and a lengthening of the cellular processes of cell cycle progression and death can account for the vast increase in size of the primate neocortex. Furthermore, when compared with rodents, we predict that cell death may play a larger role in shaping the primate neocortex. Our mathematical models of the development and evolution of the neocortex provide a quantitative, biologically based construct for extrapolation between rodent and humans. These models can assist in focusing future experimental research on the differing mechanisms of rodent versus human neocortical development.
Collapse
Affiliation(s)
- Julia M Gohlke
- Department of Environmental and Occupational Health Sciences, University of Washington, 4225 Roosevelt Way NE, Seattle, WA 98105, USA
| | | | | |
Collapse
|
22
|
Kapellou O, Counsell SJ, Kennea N, Dyet L, Saeed N, Stark J, Maalouf E, Duggan P, Ajayi-Obe M, Hajnal J, Allsop JM, Boardman J, Rutherford MA, Cowan F, Edwards AD. Abnormal cortical development after premature birth shown by altered allometric scaling of brain growth. PLoS Med 2006; 3:e265. [PMID: 16866579 PMCID: PMC1523379 DOI: 10.1371/journal.pmed.0030265] [Citation(s) in RCA: 284] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2005] [Accepted: 04/20/2006] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND We postulated that during ontogenesis cortical surface area and cerebral volume are related by a scaling law whose exponent gives a quantitative measure of cortical development. We used this approach to investigate the hypothesis that premature termination of the intrauterine environment by preterm birth reduces cortical development in a dose-dependent manner, providing a neural substrate for functional impairment. METHODS AND FINDINGS We analyzed 274 magnetic resonance images that recorded brain growth from 23 to 48 wk of gestation in 113 extremely preterm infants born at 22 to 29 wk of gestation, 63 of whom underwent neurodevelopmental assessment at a median age of 2 y. Cortical surface area was related to cerebral volume by a scaling law with an exponent of 1.29 (95% confidence interval, 1.25-1.33), which was proportional to later neurodevelopmental impairment. Increasing prematurity and male gender were associated with a lower scaling exponent (p < 0.0001) independent of intrauterine or postnatal somatic growth. CONCLUSIONS Human brain growth obeys an allometric scaling relation that is disrupted by preterm birth in a dose-dependent, sexually dimorphic fashion that directly parallels the incidence of neurodevelopmental impairments in preterm infants. This result focuses attention on brain growth and cortical development during the weeks following preterm delivery as a neural substrate for neurodevelopmental impairment after premature delivery.
Collapse
Affiliation(s)
- Olga Kapellou
- Department of Paediatrics, Imperial College, Hammersmith Hospital, London, United Kingdom
| | - Serena J Counsell
- Division of Clinical Sciences, Imperial College, and MRC Clinical Sciences Centre, Hammersmith Hospital, London, United Kingdom
| | - Nigel Kennea
- Department of Paediatrics, Imperial College, Hammersmith Hospital, London, United Kingdom
| | - Leigh Dyet
- Department of Paediatrics, Imperial College, Hammersmith Hospital, London, United Kingdom
- Division of Clinical Sciences, Imperial College, and MRC Clinical Sciences Centre, Hammersmith Hospital, London, United Kingdom
| | - Nadeem Saeed
- Division of Clinical Sciences, Imperial College, and MRC Clinical Sciences Centre, Hammersmith Hospital, London, United Kingdom
| | - Jaroslav Stark
- Department of Mathematics, Imperial College, London, United Kingdom
| | - Elia Maalouf
- Department of Paediatrics, Imperial College, Hammersmith Hospital, London, United Kingdom
| | - Philip Duggan
- Department of Paediatrics, Imperial College, Hammersmith Hospital, London, United Kingdom
| | - Morenike Ajayi-Obe
- Department of Paediatrics, Imperial College, Hammersmith Hospital, London, United Kingdom
| | - Jo Hajnal
- Division of Clinical Sciences, Imperial College, and MRC Clinical Sciences Centre, Hammersmith Hospital, London, United Kingdom
| | - Joanna M Allsop
- Division of Clinical Sciences, Imperial College, and MRC Clinical Sciences Centre, Hammersmith Hospital, London, United Kingdom
| | - James Boardman
- Department of Paediatrics, Imperial College, Hammersmith Hospital, London, United Kingdom
- Division of Clinical Sciences, Imperial College, and MRC Clinical Sciences Centre, Hammersmith Hospital, London, United Kingdom
| | - Mary A Rutherford
- Division of Clinical Sciences, Imperial College, and MRC Clinical Sciences Centre, Hammersmith Hospital, London, United Kingdom
| | - Frances Cowan
- Department of Paediatrics, Imperial College, Hammersmith Hospital, London, United Kingdom
- Division of Clinical Sciences, Imperial College, and MRC Clinical Sciences Centre, Hammersmith Hospital, London, United Kingdom
| | - A. David Edwards
- Department of Paediatrics, Imperial College, Hammersmith Hospital, London, United Kingdom
- Division of Clinical Sciences, Imperial College, and MRC Clinical Sciences Centre, Hammersmith Hospital, London, United Kingdom
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
23
|
Molnár Z, Métin C, Stoykova A, Tarabykin V, Price DJ, Francis F, Meyer G, Dehay C, Kennedy H. Comparative aspects of cerebral cortical development. Eur J Neurosci 2006; 23:921-34. [PMID: 16519657 PMCID: PMC1931431 DOI: 10.1111/j.1460-9568.2006.04611.x] [Citation(s) in RCA: 183] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This review aims to provide examples of how both comparative and genetic analyses contribute to our understanding of the rules for cortical development and evolution. Genetic studies have helped us to realize the evolutionary rules of telencephalic organization in vertebrates. The control of the establishment of conserved telencephalic subdivisions and the formation of boundaries between these subdivisions has been examined and the very specific alterations at the striatocortical junction have been revealed. Comparative studies and genetic analyses both demonstrate the differential origin and migratory pattern of the two basic neuron types of the cerebral cortex. GABAergic interneurons are mostly generated in the subpallium and a common mechanism governs their migration to the dorsal cortex in both mammals and sauropsids. The pyramidal neurons are generated within the cortical germinal zone and migrate radially, the earliest generated cell layers comprising preplate cells. Reelin-positive Cajal-Retzius cells are a general feature of all vertebrates studied so far; however, there is a considerable amplification of the Reelin signalling with cortical complexity, which might have contributed to the establishment of the basic mammalian pattern of cortical development. Based on numerous recent observations we shall present the argument that specialization of the mitotic compartments may constitute a major drive behind the evolution of the mammalian cortex. Comparative developmental studies have revealed distinct features in the early compartments of the developing macaque brain, drawing our attention to the limitations of some of the current model systems for understanding human developmental abnormalities of the cortex. Comparative and genetic aspects of cortical development both reveal the workings of evolution.
Collapse
Affiliation(s)
- Zoltán Molnár
- Department of Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Francis F, Meyer G, Fallet-Bianco C, Moreno S, Kappeler C, Socorro AC, Tuy FPD, Beldjord C, Chelly J. Human disorders of cortical development: from past to present. Eur J Neurosci 2006; 23:877-93. [PMID: 16519653 DOI: 10.1111/j.1460-9568.2006.04649.x] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Epilepsy and mental retardation, originally of unknown cause, are now known to result from many defects including cortical malformations, neuronal circuitry disorders and perturbations of neuronal communication and synapse function. Genetic approaches in combination with MRI and related imaging techniques continually allow a re-evaluation and better classification of these disorders. Here we review our current understanding of some of the primary defects involved, with insight from recent molecular biology advances, the study of mouse models and the results of neuropathology analyses. Through these studies the molecular determinants involved in the control of neuron number, neuronal migration, generation of cortical laminations and convolutions, integrity of the basement membrane at the pial surface, and the establishment of neuronal circuitry are being elucidated. We have attempted to integrate these results with the available data concerning, in particular, human brain development, and to emphasize the limitations in some cases of extrapolating from rodent models. Taking such species differences into account is clearly critical for understanding the pathophysiological mechanisms associated with these disorders.
Collapse
Affiliation(s)
- Fiona Francis
- Institut Cochin, Département de Génétique et Développement, Paris, F-75014 France.
| | | | | | | | | | | | | | | | | |
Collapse
|