1
|
Song BG, Kwon SY, Kyung JW, Roh EJ, Choi H, Lim CS, An SB, Sohn S, Han I. Synaptic Cell Adhesion Molecule 3 (SynCAM3) Deletion Promotes Recovery from Spinal Cord Injury by Limiting Glial Scar Formation. Int J Mol Sci 2022; 23:ijms23116218. [PMID: 35682897 PMCID: PMC9181792 DOI: 10.3390/ijms23116218] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/26/2022] [Accepted: 05/31/2022] [Indexed: 02/07/2023] Open
Abstract
Synaptic cell adhesion molecules (SynCAMs) play an important role in the formation and maintenance of synapses and the regulation of synaptic plasticity. SynCAM3 is expressed in the synaptic cleft of the central nervous system (CNS) and is involved in the connection between axons and astrocytes. We hypothesized that SynCAM3 may be related to the astrocytic scar (glial scar, the most important factor of CNS injury treatment) through extracellular matrix (ECM) reconstitution. Thus, we investigated the influence of the selective removal of SynCAM3 on the outcomes of spinal cord injury (SCI). SynCAM3 knock-out (KO) mice were subjected to moderate compression injury of the lower thoracic spinal cord using wild-type (WT) (C57BL/6JJc1) mice as controls. Single-cell RNA sequencing analysis over time, quantitative real-time polymerase chain reaction (qRT-PCR) analysis, and immunohistochemistry (IHC) showed reduced scar formation in SynCAM3 KO mice compared to WT mice. SynCAM3 KO mice showed improved functional recovery from SCI by preventing the transformation of reactive astrocytes into scar-forming astrocytes, resulting in improved ECM reconstitution at four weeks after injury. Our findings suggest that SynCAM3 could be a novel therapeutic target for SCI.
Collapse
Affiliation(s)
- Byeong Gwan Song
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si 13496, Gyeonggi-do, Korea; (B.G.S.); (S.Y.K.); (J.W.K.); (E.J.R.); (H.C.); (C.S.L.); (S.B.A.); (S.S.)
- Department of Life Science, CHA University School of Medicine, Seongnam-si 13488, Gyeonggi-do, Korea
| | - Su Yeon Kwon
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si 13496, Gyeonggi-do, Korea; (B.G.S.); (S.Y.K.); (J.W.K.); (E.J.R.); (H.C.); (C.S.L.); (S.B.A.); (S.S.)
| | - Jae Won Kyung
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si 13496, Gyeonggi-do, Korea; (B.G.S.); (S.Y.K.); (J.W.K.); (E.J.R.); (H.C.); (C.S.L.); (S.B.A.); (S.S.)
| | - Eun Ji Roh
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si 13496, Gyeonggi-do, Korea; (B.G.S.); (S.Y.K.); (J.W.K.); (E.J.R.); (H.C.); (C.S.L.); (S.B.A.); (S.S.)
- Department of Life Science, CHA University School of Medicine, Seongnam-si 13488, Gyeonggi-do, Korea
| | - Hyemin Choi
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si 13496, Gyeonggi-do, Korea; (B.G.S.); (S.Y.K.); (J.W.K.); (E.J.R.); (H.C.); (C.S.L.); (S.B.A.); (S.S.)
| | - Chang Su Lim
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si 13496, Gyeonggi-do, Korea; (B.G.S.); (S.Y.K.); (J.W.K.); (E.J.R.); (H.C.); (C.S.L.); (S.B.A.); (S.S.)
| | - Seong Bae An
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si 13496, Gyeonggi-do, Korea; (B.G.S.); (S.Y.K.); (J.W.K.); (E.J.R.); (H.C.); (C.S.L.); (S.B.A.); (S.S.)
| | - Seil Sohn
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si 13496, Gyeonggi-do, Korea; (B.G.S.); (S.Y.K.); (J.W.K.); (E.J.R.); (H.C.); (C.S.L.); (S.B.A.); (S.S.)
| | - Inbo Han
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si 13496, Gyeonggi-do, Korea; (B.G.S.); (S.Y.K.); (J.W.K.); (E.J.R.); (H.C.); (C.S.L.); (S.B.A.); (S.S.)
- Correspondence:
| |
Collapse
|
2
|
Wang Z, Guo Q, Wang R, Xu G, Li P, Sun Y, She X, Liu Q, Chen Q, Yu Z, Liu C, Xiong J, Li G, Wu M. The D Domain of LRRC4 anchors ERK1/2 in the cytoplasm and competitively inhibits MEK/ERK activation in glioma cells. J Hematol Oncol 2016; 9:130. [PMID: 27884160 PMCID: PMC5123285 DOI: 10.1186/s13045-016-0355-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 11/08/2016] [Indexed: 12/30/2022] Open
Abstract
Background As a well-characterized key player in various signal transduction networks, extracellular-signal-regulated kinase (ERK1/2) has been widely implicated in the development of many malignancies. We previously found that Leucine-rich repeat containing 4 (LRRC4) was a tumor suppressor and a negative regulator of the ERK/MAPK pathway in glioma tumorigenesis. However, the precise molecular role of LRRC4 in ERK signal transmission is unclear. Methods The interaction between LRRC4 and ERK1/2 was assessed by co-immunoprecipitation and GST pull-down assays in vivo and in vitro. We also investigated the interaction of LRRC4 and ERK1/2 and the role of the D domain in ERK activation in glioma cells. Results Here, we showed that LRRC4 and ERK1/2 interact via the D domain and CD domain, respectively. Following EGF stimuli, the D domain of LRRC4 anchors ERK1/2 in the cytoplasm and abrogates ERK1/2 activation and nuclear translocation. In glioblastoma cells, ectopic LRRC4 expression competitively inhibited the interaction of endogenous mitogen-activated protein kinase (MEK) and ERK1/2. Mutation of the D domain decreased the LRRC4-mediated inhibition of MAPK signaling and its anti-proliferation and anti-invasion roles. Conclusions Our results demonstrated that the D domain of LRRC4 anchors ERK1/2 in the cytoplasm and competitively inhibits MEK/ERK activation in glioma cells. These findings identify a new mechanism underlying glioblastoma progression and suggest a novel therapeutic strategy by restoring the activity of LRRC4 to decrease MAPK cascade activation. Electronic supplementary material The online version of this article (doi:10.1186/s13045-016-0355-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zeyou Wang
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.,Cancer Research Institute, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, Hunan, 410008, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China.,Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Qin Guo
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Rong Wang
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.,Cancer Research Institute, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, Hunan, 410008, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Gang Xu
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.,Cancer Research Institute, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, Hunan, 410008, China.,Medical College, University of South China, Hengyang, Hunan, 421001, China
| | - Peiyao Li
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.,Cancer Research Institute, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, Hunan, 410008, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Yingnan Sun
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, 410013, Hunan, China
| | - Xiaoling She
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.,Cancer Research Institute, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, Hunan, 410008, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China.,Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Qiang Liu
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Qiong Chen
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, 410013, Hunan, China
| | - Zhibin Yu
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.,Cancer Research Institute, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, Hunan, 410008, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Changhong Liu
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.,Cancer Research Institute, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, Hunan, 410008, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Jing Xiong
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.,Cancer Research Institute, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, Hunan, 410008, China.,Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Guiyuan Li
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China. .,Cancer Research Institute, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, Hunan, 410008, China. .,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China.
| | - Minghua Wu
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China. .,Cancer Research Institute, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, Hunan, 410008, China. .,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China.
| |
Collapse
|