1
|
Oner M, Chen MC, Cheng PT, Li YH, Cheng YC, Celik A, Soong SW, Hsu LW, Lin DY, Hossain Prince GMS, Dhar T, Cheng HC, Tang PC, Lin H. Impact of metformin on neocortical development during pregnancy: Involvement of ERK and p35/CDK5 pathways. CHEMOSPHERE 2024; 358:142124. [PMID: 38677614 DOI: 10.1016/j.chemosphere.2024.142124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/18/2024] [Accepted: 04/21/2024] [Indexed: 04/29/2024]
Abstract
Metformin, the most commonly prescribed drug for the treatment of diabetes, is increasingly used during pregnancy to address various disorders such as diabetes, obesity, preeclampsia, and metabolic diseases. However, its impact on neocortex development remains unclear. Here, we investigated the direct effects of metformin on neocortex development, focusing on ERK and p35/CDK5 regulation. Using a pregnant rat model, we found that metformin treatment during pregnancy induces small for gestational age (SGA) and reduces relative cortical thickness in embryos and neonates. Additionally, we discovered that metformin inhibits neural progenitor cell proliferation in the sub-ventricular zone (SVZ)/ventricular zone (VZ) of the developing neocortex, a process possibly mediated by ERK inactivation. Furthermore, metformin induces neuronal apoptosis in the SVZ/VZ area of the developing neocortex. Moreover, metformin retards neuronal migration, cortical lamination, and differentiation, potentially through p35/CDK5 inhibition in the developing neocortex. Remarkably, compensating for p35 through in utero electroporation partially rescues metformin-impaired neuronal migration and development. In summary, our study reveals that metformin disrupts neocortex development by inhibiting neuronal progenitor proliferation, neuronal migration, cortical layering, and cortical neuron maturation, likely via ERK and p35/CDK5 inhibition. Consequently, our findings advocate for caution in metformin usage during pregnancy, given its potential adverse effects on fetal brain development.
Collapse
Affiliation(s)
- Muhammet Oner
- Department of Life Sciences, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Mei-Chih Chen
- Translational Cell Therapy Center, Department of Medical Research, China Medical University Hospital, Taichung, 40447, Taiwan
| | - Pang-Ting Cheng
- Department of Life Sciences, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Yu-Hsuan Li
- Translational Cell Therapy Center, Department of Medical Research, China Medical University Hospital, Taichung, 40447, Taiwan
| | - Yu-Chiao Cheng
- Department of Life Sciences, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Ayse Celik
- Department of Life Sciences, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Shiuan-Woei Soong
- Department of Life Sciences, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Li-Wen Hsu
- Department of Life Sciences, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Din-You Lin
- Department of Life Sciences, National Chung Hsing University, Taichung, 40227, Taiwan
| | | | - Trayee Dhar
- Department of Life Sciences, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Hsu-Chen Cheng
- Department of Life Sciences, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Pin-Chi Tang
- Department of Animal Science, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Ho Lin
- Department of Life Sciences, National Chung Hsing University, Taichung, 40227, Taiwan.
| |
Collapse
|
2
|
Hansen AH, Pauler FM, Riedl M, Streicher C, Heger A, Laukoter S, Sommer C, Nicolas A, Hof B, Tsai LH, Rülicke T, Hippenmeyer S. Tissue-Wide Effects Override Cell-Intrinsic Gene Function in Radial Neuron Migration. OXFORD OPEN NEUROSCIENCE 2022; 1:kvac009. [PMID: 38596707 PMCID: PMC10939316 DOI: 10.1093/oons/kvac009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/26/2022] [Accepted: 05/15/2022] [Indexed: 04/11/2024]
Abstract
The mammalian neocortex is composed of diverse neuronal and glial cell classes that broadly arrange in six distinct laminae. Cortical layers emerge during development and defects in the developmental programs that orchestrate cortical lamination are associated with neurodevelopmental diseases. The developmental principle of cortical layer formation depends on concerted radial projection neuron migration, from their birthplace to their final target position. Radial migration occurs in defined sequential steps, regulated by a large array of signaling pathways. However, based on genetic loss-of-function experiments, most studies have thus far focused on the role of cell-autonomous gene function. Yet, cortical neuron migration in situ is a complex process and migrating neurons traverse along diverse cellular compartments and environments. The role of tissue-wide properties and genetic state in radial neuron migration is however not clear. Here we utilized mosaic analysis with double markers (MADM) technology to either sparsely or globally delete gene function, followed by quantitative single-cell phenotyping. The MADM-based gene ablation paradigms in combination with computational modeling demonstrated that global tissue-wide effects predominate cell-autonomous gene function albeit in a gene-specific manner. Our results thus suggest that the genetic landscape in a tissue critically affects the overall migration phenotype of individual cortical projection neurons. In a broader context, our findings imply that global tissue-wide effects represent an essential component of the underlying etiology associated with focal malformations of cortical development in particular, and neurological diseases in general.
Collapse
Affiliation(s)
- Andi H Hansen
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Florian M Pauler
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Michael Riedl
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Carmen Streicher
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Anna Heger
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Susanne Laukoter
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Christoph Sommer
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Armel Nicolas
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Björn Hof
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Li Huei Tsai
- Picower Institute for Learning and Memory, MIT, Cambridge, MA 02139, USA
| | - Thomas Rülicke
- Department of Biomedical Sciences, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Simon Hippenmeyer
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| |
Collapse
|
3
|
Abstract
The human brain is characterized by the large size and intricate folding of its cerebral cortex, which are fundamental for our higher cognitive function and frequently altered in pathological dysfunction. Cortex folding is not unique to humans, nor even to primates, but is common across mammals. Cortical growth and folding are the result of complex developmental processes that involve neural stem and progenitor cells and their cellular lineages, the migration and differentiation of neurons, and the genetic programs that regulate and fine-tune these processes. All these factors combined generate mechanical stress and strain on the developing neural tissue, which ultimately drives orderly cortical deformation and folding. In this review we examine and summarize the current knowledge on the molecular, cellular, histogenic and mechanical mechanisms that are involved in and influence folding of the cerebral cortex, and how they emerged and changed during mammalian evolution. We discuss the main types of pathological malformations of human cortex folding, their specific developmental origin, and how investigating their genetic causes has illuminated our understanding of key events involved. We close our review by presenting the state-of-the-art animal and in vitro models of cortex folding that are currently used to study these devastating developmental brain disorders in children, and what are the main challenges that remain ahead of us to fully understand brain folding.
Collapse
Affiliation(s)
- Lucia Del Valle Anton
- Instituto de Neurociencias, Agencia Estatal Consejo Superior de Investigaciones Científicas, San Juan de Alicante, Alicante, Spain
| | - Victor Borrell
- Instituto de Neurociencias, Agencia Estatal Consejo Superior de Investigaciones Científicas, San Juan de Alicante, Alicante, Spain
| |
Collapse
|
4
|
Idzhilova OS, Roshchin MV, Smirnova GR, Malyshev AY. Central Targeting of Channelrhodopsin2 by the Motif of Potassium Channel Kv2.1 Can be Altered Due to Overexpression of the Construct. BIONANOSCIENCE 2021. [DOI: 10.1007/s12668-021-00863-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Meyerink BL, Tiwari NK, Pilaz LJ. Ariadne's Thread in the Developing Cerebral Cortex: Mechanisms Enabling the Guiding Role of the Radial Glia Basal Process during Neuron Migration. Cells 2020; 10:E3. [PMID: 33375033 PMCID: PMC7822038 DOI: 10.3390/cells10010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/17/2020] [Accepted: 12/17/2020] [Indexed: 11/16/2022] Open
Abstract
Radial neuron migration in the developing cerebral cortex is a complex journey, starting in the germinal zones and ending in the cortical plate. In mice, migratory distances can reach several hundreds of microns, or millimeters in humans. Along the migratory path, radially migrating neurons slither through cellularly dense and complex territories before they reach their final destination in the cortical plate. This task is facilitated by radial glia, the neural stem cells of the developing cortex. Indeed, radial glia have a unique bipolar morphology, enabling them to serve as guides for neuronal migration. The key guiding structure of radial glia is the basal process, which traverses the entire thickness of the developing cortex. Neurons recognize the basal process as their guide and maintain physical interactions with this structure until the end of migration. Thus, the radial glia basal process plays a key role during radial migration. In this review, we highlight the pathways enabling neuron-basal process interactions during migration, as well as the known mechanisms regulating the morphology of the radial glia basal process. Throughout, we describe how dysregulation of these interactions and of basal process morphology can have profound effects on cortical development, and therefore lead to neurodevelopmental diseases.
Collapse
Affiliation(s)
- Brandon L. Meyerink
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA; (B.L.M.); (N.K.T.)
- Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA
| | - Neeraj K. Tiwari
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA; (B.L.M.); (N.K.T.)
| | - Louis-Jan Pilaz
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA; (B.L.M.); (N.K.T.)
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA
| |
Collapse
|
6
|
Hansen AH, Hippenmeyer S. Non-Cell-Autonomous Mechanisms in Radial Projection Neuron Migration in the Developing Cerebral Cortex. Front Cell Dev Biol 2020; 8:574382. [PMID: 33102480 PMCID: PMC7545535 DOI: 10.3389/fcell.2020.574382] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/08/2020] [Indexed: 01/30/2023] Open
Abstract
Concerted radial migration of newly born cortical projection neurons, from their birthplace to their final target lamina, is a key step in the assembly of the cerebral cortex. The cellular and molecular mechanisms regulating the specific sequential steps of radial neuronal migration in vivo are however still unclear, let alone the effects and interactions with the extracellular environment. In any in vivo context, cells will always be exposed to a complex extracellular environment consisting of (1) secreted factors acting as potential signaling cues, (2) the extracellular matrix, and (3) other cells providing cell–cell interaction through receptors and/or direct physical stimuli. Most studies so far have described and focused mainly on intrinsic cell-autonomous gene functions in neuronal migration but there is accumulating evidence that non-cell-autonomous-, local-, systemic-, and/or whole tissue-wide effects substantially contribute to the regulation of radial neuronal migration. These non-cell-autonomous effects may differentially affect cortical neuron migration in distinct cellular environments. However, the cellular and molecular natures of such non-cell-autonomous mechanisms are mostly unknown. Furthermore, physical forces due to collective migration and/or community effects (i.e., interactions with surrounding cells) may play important roles in neocortical projection neuron migration. In this concise review, we first outline distinct models of non-cell-autonomous interactions of cortical projection neurons along their radial migration trajectory during development. We then summarize experimental assays and platforms that can be utilized to visualize and potentially probe non-cell-autonomous mechanisms. Lastly, we define key questions to address in the future.
Collapse
Affiliation(s)
- Andi H Hansen
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Simon Hippenmeyer
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| |
Collapse
|
7
|
Jossin Y. Molecular mechanisms of cell polarity in a range of model systems and in migrating neurons. Mol Cell Neurosci 2020; 106:103503. [PMID: 32485296 DOI: 10.1016/j.mcn.2020.103503] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/20/2020] [Accepted: 05/23/2020] [Indexed: 01/09/2023] Open
Abstract
Cell polarity is defined as the asymmetric distribution of cellular components along an axis. Most cells, from the simplest single-cell organisms to highly specialized mammalian cells, are polarized and use similar mechanisms to generate and maintain polarity. Cell polarity is important for cells to migrate, form tissues, and coordinate activities. During development of the mammalian cerebral cortex, cell polarity is essential for neurogenesis and for the migration of newborn but as-yet undifferentiated neurons. These oriented migrations include both the radial migration of excitatory projection neurons and the tangential migration of inhibitory interneurons. In this review, I will first describe the development of the cerebral cortex, as revealed at the cellular level. I will then define the core molecular mechanisms - the Par/Crb/Scrib polarity complexes, small GTPases, the actin and microtubule cytoskeletons, and phosphoinositides/PI3K signaling - that are required for asymmetric cell division, apico-basal and front-rear polarity in model systems, including C elegans zygote, Drosophila embryos and cultured mammalian cells. As I go through each core mechanism I will explain what is known about its importance in radial and tangential migration in the developing mammalian cerebral cortex.
Collapse
Affiliation(s)
- Yves Jossin
- Laboratory of Mammalian Development & Cell Biology, Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium.
| |
Collapse
|
8
|
Martínez-Martínez MÁ, Ciceri G, Espinós A, Fernández V, Marín O, Borrell V. Extensive branching of radially-migrating neurons in the mammalian cerebral cortex. J Comp Neurol 2019; 527:1558-1576. [PMID: 30520050 DOI: 10.1002/cne.24597] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 11/22/2018] [Accepted: 11/28/2018] [Indexed: 11/06/2022]
Abstract
Excitatory neurons of the cerebral cortex migrate radially from their place of birth to their final position in the cortical plate during development. Radially-migrating neurons display a single leading process that establishes the direction of movement. This leading process has been described as being unbranched, and the occurrence of branches proposed to impair radial migration. Here we have analyzed the detailed morphology of leading process in radially-migrating pyramidal neurons and its impact on radial migration. We have compared ferret and mouse to identify differences between cortices that undergo folding or not. In mouse, we find that half of radially-migrating neurons exhibit a branched leading process, this being even more frequent in ferret. Branched leading processes are less parallel to radial glia fibers than those unbranched, suggesting some independence from radial glia fibers. Two-photon videomicroscopy revealed that a vast majority of neurons branch their leading process at some point during radial migration, but this does not reduce their migration speed. We have tested the functional impact of exuberant leading process branching by expressing a dominant negative Cdk5. We confirm that loss of Cdk5 function significantly impairs radial migration, but this is independent from increased branching of the leading process. We propose that excitatory neurons may branch their leading process as an evolutionary mechanism to allow cells changing their trajectory of migration to disperse laterally, such that increased branching in gyrencephalic species favors the tangential dispersion of radially-migrating neurons, and cortical folding.
Collapse
Affiliation(s)
- Maria Á Martínez-Martínez
- Instituto de Neurociencias, Agencia Estatal Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, San Juan de Alicante, Spain
| | - Gabriele Ciceri
- Instituto de Neurociencias, Agencia Estatal Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, San Juan de Alicante, Spain
| | - Alexandre Espinós
- Instituto de Neurociencias, Agencia Estatal Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, San Juan de Alicante, Spain
| | - Virginia Fernández
- Instituto de Neurociencias, Agencia Estatal Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, San Juan de Alicante, Spain
| | - Oscar Marín
- Instituto de Neurociencias, Agencia Estatal Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, San Juan de Alicante, Spain.,Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Víctor Borrell
- Instituto de Neurociencias, Agencia Estatal Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, San Juan de Alicante, Spain
| |
Collapse
|
9
|
Lintas C, Sacco R, Tabolacci C, Brogna C, Canali M, Picinelli C, Tomaiuolo P, Castronovo P, Baccarin M, Persico AM. An Interstitial 17q11.2 de novo Deletion Involving the CDK5R1 Gene in a High-Functioning Autistic Patient. Mol Syndromol 2018; 9:247-252. [PMID: 30733659 DOI: 10.1159/000491802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2018] [Indexed: 11/19/2022] Open
Abstract
We describe a 32-year-old male patient diagnosed with high-functioning autism spectrum disorder carrying a de novo 196-kb interstitial deletion at chromosome 17q11.2. The deletion was detected by array CGH (180K Agilent) and confirmed by quantitative PCR on genomic DNA. The deleted region spans the entire PSMD11 and CDK5R1 genes and partially the MYO1D gene. The CDK5R1 gene encodes for a regulatory subunit of the cyclin-dependent kinase 5 responsible for its brain-specific activation. This gene has been previously associated with intellectual disability in humans. A reduction in CDK5R1 transcript was detected, consistent with the genomic deletion. Based on the functional role of CDK5R1, this gene appears as the best candidate to explain the clinical phenotype of our patient, whose neuropsychological profile has more resemblance with some of the higher brain function anomalies recently described in the CreER-p35 conditional knockout mouse model than previously described patients with intellectual disability.
Collapse
Affiliation(s)
- Carla Lintas
- Service for Neurodevelopmental Disorders, Department of Medicine, University Campus Bio-Medico, Rome, Italy.,Laboratory of Molecular Psychiatry and Neurogenetics, Department of Medicine, University Campus Bio-Medico, Rome, Italy
| | - Roberto Sacco
- Service for Neurodevelopmental Disorders, Department of Medicine, University Campus Bio-Medico, Rome, Italy.,Laboratory of Molecular Psychiatry and Neurogenetics, Department of Medicine, University Campus Bio-Medico, Rome, Italy
| | - Claudio Tabolacci
- Laboratory of Molecular Psychiatry and Neurogenetics, Department of Medicine, University Campus Bio-Medico, Rome, Italy
| | - Claudia Brogna
- Service for Neurodevelopmental Disorders, Department of Medicine, University Campus Bio-Medico, Rome, Italy
| | - Marco Canali
- Laboratory of Molecular Psychiatry and Neurogenetics, Department of Medicine, University Campus Bio-Medico, Rome, Italy
| | - Chiara Picinelli
- Mafalda Luce Center for Pervasive Developmental Disorders, Milan, Italy
| | | | - Paola Castronovo
- Mafalda Luce Center for Pervasive Developmental Disorders, Milan, Italy
| | - Marco Baccarin
- Mafalda Luce Center for Pervasive Developmental Disorders, Milan, Italy
| | - Antonio M Persico
- Mafalda Luce Center for Pervasive Developmental Disorders, Milan, Italy.,Interdepartmental Program "Autism 0-90," "G. Martino" University Hospital, University of Messina, Messina, Italy
| |
Collapse
|
10
|
BIG2-ARF1-RhoA-mDia1 Signaling Regulates Dendritic Golgi Polarization in Hippocampal Neurons. Mol Neurobiol 2018; 55:7701-7716. [PMID: 29455446 DOI: 10.1007/s12035-018-0954-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 02/05/2018] [Indexed: 01/08/2023]
Abstract
Proper dendrite development is essential for establishing neural circuitry, and Rho GTPases play key regulatory roles in this process. From mouse brain lysates, we identified Brefeldin A-inhibited guanine exchange factor 2 (BIG2) as a novel Rho GTPase regulatory protein involved in dendrite growth and maintenance. BIG2 was highly expressed during early development, and knockdown of the ARFGEF2 gene encoding BIG2 significantly reduced total dendrite length and the number of branches. Expression of the constitutively active ADP-ribosylation factor 1 ARF1 Q71L rescued the defective dendrite morphogenesis of ARFGEF2-null neurons, indicating that BIG2 controls dendrite growth and maintenance by activating ARF1. Moreover, BIG2 co-localizes with the Golgi apparatus and is required for Golgi deployment into major dendrites in cultured hippocampal neurons. Simultaneous overexpression of BIG2 and ARF1 activated RhoA, and treatment with the RhoA activator lysophosphatidic acid in neurons lacking BIG2 or ARF1 increased the number of cells with dendritic Golgi, suggesting that BIG2 and ARF1 activate RhoA to promote dendritic Golgi polarization. mDia1 was identified as a downstream effector of BIG2-ARF1-RhoA axis, mediating Golgi polarization and dendritic morphogenesis. Furthermore, in utero electroporation of ARFGEF2 shRNA into the embryonic mouse brain confirmed an in vivo role of BIG2 for Golgi deployment into the apical dendrite. Taken together, our results suggest that BIG2-ARF1-RhoA-mDia1 signaling regulates dendritic Golgi polarization and dendrite growth and maintenance in hippocampal neurons.
Collapse
|
11
|
Sox11 Balances Dendritic Morphogenesis with Neuronal Migration in the Developing Cerebral Cortex. J Neurosci 2017; 36:5775-84. [PMID: 27225767 DOI: 10.1523/jneurosci.3250-15.2016] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 04/12/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED The coordinated mechanisms balancing promotion and suppression of dendritic morphogenesis are crucial for the development of the cerebral cortex. Although previous studies have revealed important transcription factors that promote dendritic morphogenesis during development, those that suppress dendritic morphogenesis are still largely unknown. Here we found that the expression levels of the transcription factor Sox11 decreased dramatically during dendritic morphogenesis. Our loss- and gain-of-function studies using postnatal electroporation and in utero electroporation indicate that Sox11 is necessary and sufficient for inhibiting dendritic morphogenesis of excitatory neurons in the mouse cerebral cortex during development. Interestingly, we found that precocious suppression of Sox11 expression caused precocious branching of neurites and a neuronal migration defect. We also found that the end of radial migration induced the reduction of Sox11 expression. These findings indicate that suppression of dendritic morphogenesis by Sox11 during radial migration is crucial for the formation of the cerebral cortex. SIGNIFICANCE STATEMENT Because dendritic morphology has profound impacts on neuronal information processing, the mechanisms underlying dendritic morphogenesis during development are of great interest. Our loss- and gain-of-function studies indicate that Sox11 is necessary and sufficient for inhibiting dendritic morphogenesis of excitatory neurons in the mouse cerebral cortex during development. Interestingly, we found that precocious suppression of Sox11 expression caused a neuronal migration defect. These findings indicate that suppression of dendritic morphogenesis by Sox11 during radial migration is crucial for the formation of the cerebral cortex.
Collapse
|
12
|
Balancing Dendrite Morphogenesis and Neuronal Migration during Cortical Development. J Neurosci 2016; 36:10726-10728. [PMID: 27798127 DOI: 10.1523/jneurosci.2425-16.2016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 09/07/2016] [Indexed: 11/21/2022] Open
|
13
|
Zhang Z, Zheng F, You Y, Ma Y, Lu T, Yue W, Zhang D. Growth arrest specific gene 7 is associated with schizophrenia and regulates neuronal migration and morphogenesis. Mol Brain 2016; 9:54. [PMID: 27189492 PMCID: PMC4870797 DOI: 10.1186/s13041-016-0238-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 05/10/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Schizophrenia is a highly heritable chronic mental disorder with significant abnormalities in brain function. The neurodevelopmental hypothesis proposes that schizophrenia originates in the prenatal period due to impairments in neuronal developmental processes such as migration and arborization, leading to abnormal brain maturation. Previous studies have identified multiple promising candidate genes that drive functions in neurodevelopment and are associated with schizophrenia. However, the molecular mechanisms of how they exert effects on the pathophysiology of schizophrenia remain largely unknown. RESULTS In our research, we identified growth arrest specific gene 7 (GAS7) as a schizophrenia risk gene in two independent Han Chinese populations using a two-stage association study. Functional experiments were done to further explore the underlying mechanisms of the role of Gas7 in cortical development. In vitro, we discovered that Gas7 contributed to neurite outgrowth through the F-BAR domain. In vivo, overexpression of Gas7 arrested neuronal migration by increasing leading process branching, while suppression of Gas7 could inhibit neuronal migration by lengthening leading processes. Through a series of behavioral tests, we also found that Gas7-deficient mice showed sensorimotor gating deficits. CONCLUSIONS Our results demonstrate GAS7 as a susceptibility gene for schizophrenia. Gas7 might participate in the pathogenesis of schizophrenia by regulating neurite outgrowth and neuronal migration through its C-terminal F-BAR domain. The impaired pre-pulse inhibition (PPI) of Gas7-deficient mice might mirror the disease-related behavior in schizophrenia.
Collapse
Affiliation(s)
- Zhengrong Zhang
- Institute of Mental Health, The Sixth Hospital, Peking University, 51 Hua Yuan Bei Road, Hai Dian District, Beijing, 100191, China.,Key Laboratory of Mental Health, Ministry of Health & National Clinical Research Center for Mental Disorders (Peking University), Beijing, 100191, China
| | - Fanfan Zheng
- Institute of Mental Health, The Sixth Hospital, Peking University, 51 Hua Yuan Bei Road, Hai Dian District, Beijing, 100191, China. .,Key Laboratory of Mental Health, Ministry of Health & National Clinical Research Center for Mental Disorders (Peking University), Beijing, 100191, China. .,Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, 95 Zhong Guan Cun East Road, Hai Dian District, Beijing, 100190, China.
| | - Yang You
- Institute of Mental Health, The Sixth Hospital, Peking University, 51 Hua Yuan Bei Road, Hai Dian District, Beijing, 100191, China.,Key Laboratory of Mental Health, Ministry of Health & National Clinical Research Center for Mental Disorders (Peking University), Beijing, 100191, China
| | - Yuanlin Ma
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.,PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - Tianlan Lu
- Institute of Mental Health, The Sixth Hospital, Peking University, 51 Hua Yuan Bei Road, Hai Dian District, Beijing, 100191, China.,Key Laboratory of Mental Health, Ministry of Health & National Clinical Research Center for Mental Disorders (Peking University), Beijing, 100191, China
| | - Weihua Yue
- Institute of Mental Health, The Sixth Hospital, Peking University, 51 Hua Yuan Bei Road, Hai Dian District, Beijing, 100191, China.,Key Laboratory of Mental Health, Ministry of Health & National Clinical Research Center for Mental Disorders (Peking University), Beijing, 100191, China
| | - Dai Zhang
- Institute of Mental Health, The Sixth Hospital, Peking University, 51 Hua Yuan Bei Road, Hai Dian District, Beijing, 100191, China. .,Key Laboratory of Mental Health, Ministry of Health & National Clinical Research Center for Mental Disorders (Peking University), Beijing, 100191, China. .,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China. .,PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China.
| |
Collapse
|
14
|
Fernández V, Llinares-Benadero C, Borrell V. Cerebral cortex expansion and folding: what have we learned? EMBO J 2016; 35:1021-44. [PMID: 27056680 PMCID: PMC4868950 DOI: 10.15252/embj.201593701] [Citation(s) in RCA: 227] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/23/2016] [Accepted: 03/17/2016] [Indexed: 01/22/2023] Open
Abstract
One of the most prominent features of the human brain is the fabulous size of the cerebral cortex and its intricate folding. Cortical folding takes place during embryonic development and is important to optimize the functional organization and wiring of the brain, as well as to allow fitting a large cortex in a limited cranial volume. Pathological alterations in size or folding of the human cortex lead to severe intellectual disability and intractable epilepsy. Hence, cortical expansion and folding are viewed as key processes in mammalian brain development and evolution, ultimately leading to increased intellectual performance and, eventually, to the emergence of human cognition. Here, we provide an overview and discuss some of the most significant advances in our understanding of cortical expansion and folding over the last decades. These include discoveries in multiple and diverse disciplines, from cellular and molecular mechanisms regulating cortical development and neurogenesis, genetic mechanisms defining the patterns of cortical folds, the biomechanics of cortical growth and buckling, lessons from human disease, and how genetic evolution steered cortical size and folding during mammalian evolution.
Collapse
Affiliation(s)
- Virginia Fernández
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d'Alacant, Spain
| | - Cristina Llinares-Benadero
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d'Alacant, Spain
| | - Víctor Borrell
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d'Alacant, Spain
| |
Collapse
|
15
|
Singh S, Howell D, Trivedi N, Kessler K, Ong T, Rosmaninho P, Raposo AA, Robinson G, Roussel MF, Castro DS, Solecki DJ. Zeb1 controls neuron differentiation and germinal zone exit by a mesenchymal-epithelial-like transition. eLife 2016; 5. [PMID: 27178982 PMCID: PMC4891180 DOI: 10.7554/elife.12717] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 05/03/2016] [Indexed: 12/13/2022] Open
Abstract
In the developing mammalian brain, differentiating neurons mature morphologically via neuronal polarity programs. Despite discovery of polarity pathways acting concurrently with differentiation, it's unclear how neurons traverse complex polarity transitions or how neuronal progenitors delay polarization during development. We report that zinc finger and homeobox transcription factor-1 (Zeb1), a master regulator of epithelial polarity, controls neuronal differentiation by transcriptionally repressing polarity genes in neuronal progenitors. Necessity-sufficiency testing and functional target screening in cerebellar granule neuron progenitors (GNPs) reveal that Zeb1 inhibits polarization and retains progenitors in their germinal zone (GZ). Zeb1 expression is elevated in the Sonic Hedgehog (SHH) medulloblastoma subgroup originating from GNPs with persistent SHH activation. Restored polarity signaling promotes differentiation and rescues GZ exit, suggesting a model for future differentiative therapies. These results reveal unexpected parallels between neuronal differentiation and mesenchymal-to-epithelial transition and suggest that active polarity inhibition contributes to altered GZ exit in pediatric brain cancers. DOI:http://dx.doi.org/10.7554/eLife.12717.001 During the formation of the brain, developing neurons are faced with a logistical problem. After newborn neurons form they must change in shape and move to their final location in the brain. Despite much speculation, little is known about these processes. Neurons mature via the activity of several pathways that control the activity, or expression, of the neuron’s genes. One way of controlling such gene expression is through proteins called transcription factors. At the same time, the developing neurons go through a process called polarization, where different regions of the cell develop different characteristics. However, it was not known how the maturation and polarization processes are linked, or how the developing neurons actively regulate polarization. By studying the developing mouse brain, Singh et al. found that a transcription factor called Zeb1 keeps neurons in a immature state, stopping them from becoming polarized. Further investigation revealed that Zeb1 does this by preventing the production of a group of proteins that helps to polarize the cells. The most common type of malignant brain tumour in children is called a medulloblastoma. Singh et al. analyzed the genes expressed in mice that have a type of medulloblastoma that results from the constant activity of a gene called Sonic Hedgehog in developing neurons. This revealed that these tumour cells contain abnormally high levels of Zeb1, and so do not take on a polarized form. However, artificially restoring other factors that encourage the cells to polarize caused the neurons to mature normally. Further investigation is now needed to find out whether the activity of the Sonic Hedgehog gene regulates Zeb1 activity, and to discover whether inhibiting Zeb1 could prevent brain tumours from developing. DOI:http://dx.doi.org/10.7554/eLife.12717.002
Collapse
Affiliation(s)
- Shalini Singh
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, United States
| | - Danielle Howell
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, United States
| | - Niraj Trivedi
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, United States
| | | | - Taren Ong
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, United States
| | - Pedro Rosmaninho
- Department of Molecular Neurobiology, Instituto Gulbenkian de Ciência Oeiras, Oeiras, Portugal
| | - Alexandre Asf Raposo
- Department of Molecular Neurobiology, Instituto Gulbenkian de Ciência Oeiras, Oeiras, Portugal
| | - Giles Robinson
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, United States
| | - Martine F Roussel
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, United States
| | - Diogo S Castro
- Department of Molecular Neurobiology, Instituto Gulbenkian de Ciência Oeiras, Oeiras, Portugal
| | - David J Solecki
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, United States
| |
Collapse
|
16
|
Piccini A, Perlini LE, Cancedda L, Benfenati F, Giovedì S. Phosphorylation by PKA and Cdk5 Mediates the Early Effects of Synapsin III in Neuronal Morphological Maturation. J Neurosci 2015; 35:13148-59. [PMID: 26400944 PMCID: PMC6605445 DOI: 10.1523/jneurosci.1379-15.2015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 08/13/2015] [Accepted: 08/19/2015] [Indexed: 12/27/2022] Open
Abstract
Synapsin III (SynIII) is a neuron-specific phosphoprotein that plays a unique role in neuronal development. SynIII is phosphorylated by cAMP-dependent protein kinase (PKA) at a highly conserved phosphorylation site and by cyclin-dependent kinase-5 (Cdk5) at a newly described site. Although SynIII is known to be involved in axon elongation in vitro, the role of its phosphorylation by PKA and Cdk5 in the modulation of this process is unknown. We expressed either wild-type (WT) or phosphorylation-site mutants of SynIII in primary SynIII knock-out (KO) mouse neurons at early stages of in vitro development. Whereas the neurite elongation phenotype of SynIII KO neurons was fully rescued by the expression of WT SynIII, the expression of nonphosphorylatable and pseudo-phosphorylated PKA mutants was ineffective. Also, the nonphosphorylatable Cdk5 mutant was unable to rescue the neurite elongation phenotype of SynIII KO neurons. By contrast, the pseudo-phosphorylated mutant rescued the delay in neuronal maturation and axonal elongation, revealing a Cdk5-dependent regulation of SynIII function. Interestingly, SynIII KO neurons also exhibited decreased survival that was fully rescued by the expression of WT SynIII, but not by its phosphorylation mutants, and was associated with increased activated caspase3 and altered tropomyosin receptor kinase B isoform expression. These results indicate that PKA and Cdk5 phosphorylation is required for the physiological action of SynIII on axon specification and neurite outgrowth and that the expression of a functional SynIII is crucial for cell survival. Significance statement: Synapsin III is an atypical member of the synapsin family of synaptic vesicle-associated phosphoproteins that is precociously expressed in neurons and is downregulated afterward. Although experimental evidence suggests a specific role for Synapsin III in neuronal development, the molecular mechanisms are still largely unknown. We found that Synapsin III plays a central role in early stages of neuronal development involving neuronal survival, polarization, and neuritic growth and that these effects are dependent on phosphorylation by cAMP-dependent protein kinase and cyclin-dependent protein kinase-5. These results explain the recently described neurodevelopmental defects in the migration and orientation of Synapsin III-depleted cortical neurons and support the potential association of Synapsin III with neurodevelopmental disorders such as schizophrenia.
Collapse
Affiliation(s)
- Alessandra Piccini
- Department of Experimental Medicine, University of Genova, 16132 Genova, Italy, and
| | - Laura E Perlini
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Laura Cancedda
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Fabio Benfenati
- Department of Experimental Medicine, University of Genova, 16132 Genova, Italy, and Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Silvia Giovedì
- Department of Experimental Medicine, University of Genova, 16132 Genova, Italy, and
| |
Collapse
|
17
|
Stouffer MA, Golden JA, Francis F. Neuronal migration disorders: Focus on the cytoskeleton and epilepsy. Neurobiol Dis 2015; 92:18-45. [PMID: 26299390 DOI: 10.1016/j.nbd.2015.08.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 08/05/2015] [Accepted: 08/12/2015] [Indexed: 01/28/2023] Open
Abstract
A wide spectrum of focal, regional, or diffuse structural brain abnormalities, collectively known as malformations of cortical development (MCDs), frequently manifest with intellectual disability (ID), epilepsy, and/or autistic spectrum disorder (ASD). As the acronym suggests, MCDs are perturbations of the normal architecture of the cerebral cortex and hippocampus. The pathogenesis of these disorders remains incompletely understood; however, one area that has provided important insights has been the study of neuronal migration. The amalgamation of human genetics and experimental studies in animal models has led to the recognition that common genetic causes of neurodevelopmental disorders, including many severe epilepsy syndromes, are due to mutations in genes regulating the migration of newly born post-mitotic neurons. Neuronal migration genes often, though not exclusively, code for proteins involved in the function of the cytoskeleton. Other cellular processes, such as cell division and axon/dendrite formation, which similarly depend on cytoskeletal functions, may also be affected. We focus here on how the susceptibility of the highly organized neocortex and hippocampus may be due to their laminar organization, which involves the tight regulation, both temporally and spatially, of gene expression, specialized progenitor cells, the migration of neurons over large distances and a birthdate-specific layering of neurons. Perturbations in neuronal migration result in abnormal lamination, neuronal differentiation defects, abnormal cellular morphology and circuit formation. Ultimately this results in disorganized excitatory and inhibitory activity leading to the symptoms observed in individuals with these disorders.
Collapse
Affiliation(s)
- Melissa A Stouffer
- INSERM UMRS 839, Paris, France; Sorbonne Universités, Université Pierre et Marie Curie, Paris, France; Institut du Fer à Moulin, Paris, France
| | - Jeffrey A Golden
- Department of Pathology, Brigham & Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Fiona Francis
- INSERM UMRS 839, Paris, France; Sorbonne Universités, Université Pierre et Marie Curie, Paris, France; Institut du Fer à Moulin, Paris, France.
| |
Collapse
|
18
|
Phosphorylation of Connexin 43 by Cdk5 Modulates Neuronal Migration During Embryonic Brain Development. Mol Neurobiol 2015; 53:2969-2982. [DOI: 10.1007/s12035-015-9190-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 04/22/2015] [Indexed: 11/25/2022]
|
19
|
Skorput AGJ, Yeh HH. Effects of ethanol exposure in utero on Cajal-Retzius cells in the developing cortex. Alcohol Clin Exp Res 2015; 39:853-62. [PMID: 25845402 DOI: 10.1111/acer.12696] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 01/31/2015] [Indexed: 11/28/2022]
Abstract
BACKGROUND Prenatal exposure to ethanol exerts teratogenic effects on the developing brain. Here, we tested the hypothesis that exposure to ethanol in utero alters the disposition of Cajal-Retzius cells that play a key role in orchestrating proliferation, migration, and laminar integration of cortical neurons in the embryonic cortex. METHODS Pregnant Ebf2-EGFP mice, harboring EGFP-fluorescent Cajal-Retzius cells, were subjected to a 2% w/w ethanol consumption regimen starting at neural tube closure and lasting throughout gestation. Genesis of Cajal-Retzius cells was assessed by means of 5-bromo-2-deoxyuridine (BrdU) immunofluorescence at embryonic day 12.5, their counts and distribution were determined between postnatal day (P)0 and P4, patch clamp electrophysiology was performed between P2 and P3 to analyze GABA-mediated synaptic activity, and open-field behavioral testing was conducted in P45-P50 adolescents. RESULTS In Ebf2-EGFP embryos exposed to ethanol in utero, we found increased BrdU labeling and expanded distribution of Cajal-Retzius cells in the cortical hem, pointing to increased genesis and proliferation. Postnatally, we found an increase in Cajal-Retzius cell number in cortical layer I. In addition, they displayed altered patterning of spontaneous GABA-mediated synaptic barrages and enhanced GABA-mediated synaptic activity, suggesting enhanced GABAergic tone. CONCLUSIONS These findings, together, underscore that Cajal-Retzius cells contribute to the ethanol-induced aberration of cortical development and abnormal GABAergic neurotransmission at the impactful time when intracortical circuits form.
Collapse
Affiliation(s)
- Alexander G J Skorput
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| | | |
Collapse
|
20
|
Perlini LE, Szczurkowska J, Ballif BA, Piccini A, Sacchetti S, Giovedì S, Benfenati F, Cancedda L. Synapsin III acts downstream of semaphorin 3A/CDK5 signaling to regulate radial migration and orientation of pyramidal neurons in vivo. Cell Rep 2015; 11:234-48. [PMID: 25843720 PMCID: PMC4405008 DOI: 10.1016/j.celrep.2015.03.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 02/13/2015] [Accepted: 03/06/2015] [Indexed: 11/04/2022] Open
Abstract
Synapsin III (SynIII) is a phosphoprotein that is highly expressed at early stages of neuronal development. Whereas in vitro evidence suggests a role for SynIII in neuronal differentiation, in vivo evidence is lacking. Here, we demonstrate that in vivo downregulation of SynIII expression affects neuronal migration and orientation. By contrast, SynIII overexpression affects neuronal migration, but not orientation. We identify a cyclin-dependent kinase-5 (CDK5) phosphorylation site on SynIII and use phosphomutant rescue experiments to demonstrate its role in SynIII function. Finally, we show that SynIII phosphorylation at the CDK5 site is induced by activation of the semaphorin-3A (Sema3A) pathway, which is implicated in migration and orientation of cortical pyramidal neurons (PNs) and is known to activate CDK5. Thus, fine-tuning of SynIII expression and phosphorylation by CDK5 activation through Sema3A activity is essential for proper neuronal migration and orientation. Precise regulation of SynIII expression is essential during brain development SynIII regulates neuronal migration, orientation, and morphological maturation SynIII acts downstream of the Sema3A pathway, which involves NP1 and kinase CDK5 Phosphorylation of SynIII by CDK5 on Ser404 is essential for SynIII function
Collapse
Affiliation(s)
- Laura E Perlini
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genoa 16163, Italy; Department of Experimental Medicine, University of Genoa, Genoa 16132, Italy
| | - Joanna Szczurkowska
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genoa 16163, Italy
| | - Bryan A Ballif
- Department of Biology, University of Vermont, Burlington, VT 05405-0086, USA
| | - Alessandra Piccini
- Department of Experimental Medicine, University of Genoa, Genoa 16132, Italy
| | - Silvio Sacchetti
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genoa 16163, Italy
| | - Silvia Giovedì
- Department of Experimental Medicine, University of Genoa, Genoa 16132, Italy
| | - Fabio Benfenati
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genoa 16163, Italy; Department of Experimental Medicine, University of Genoa, Genoa 16132, Italy
| | - Laura Cancedda
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genoa 16163, Italy.
| |
Collapse
|
21
|
Azzarelli R, Guillemot F, Pacary E. Function and regulation of Rnd proteins in cortical projection neuron migration. Front Neurosci 2015; 9:19. [PMID: 25705175 PMCID: PMC4319381 DOI: 10.3389/fnins.2015.00019] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 01/13/2015] [Indexed: 01/08/2023] Open
Abstract
The mammalian cerebral cortex contains a high variety of neuronal subtypes that acquire precise spatial locations and form long or short-range connections to establish functional neuronal circuits. During embryonic development, cortical projection neurons are generated in the areas lining the lateral ventricles and they subsequently undergo radial migration to reach the position of their final maturation within the cortical plate. The control of the neuroblast migratory behavior and the coordination of the migration process with other neurogenic events such as cell cycle exit, differentiation and final maturation are crucial to normal brain development. Among the key regulators of cortical neuron migration, the small GTP binding proteins of the Rho family and the atypical Rnd members play important roles in integrating intracellular signaling pathways into changes in cytoskeletal dynamics and motility behavior. Here we review the role of Rnd proteins during cortical neuronal migration and we discuss both the upstream mechanisms that regulate Rnd protein activity and the downstream molecular pathways that mediate Rnd effects on cell cytoskeleton.
Collapse
Affiliation(s)
- Roberta Azzarelli
- Cambridge Department of Oncology, Hutchison/MRC Research Centre, University of Cambridge Cambridge, UK
| | - François Guillemot
- Division of Molecular Neurobiology, MRC National Institute for Medical Research London, UK
| | - Emilie Pacary
- Institut National de la Santé et de la Recherche Médicale U862, Neurocentre Magendie Bordeaux, France ; Université de Bordeaux Bordeaux, France
| |
Collapse
|
22
|
Cooper JA. Molecules and mechanisms that regulate multipolar migration in the intermediate zone. Front Cell Neurosci 2014; 8:386. [PMID: 25452716 PMCID: PMC4231986 DOI: 10.3389/fncel.2014.00386] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 10/29/2014] [Indexed: 01/05/2023] Open
Abstract
Most neurons migrate with an elongated, “bipolar” morphology, extending a long leading process that explores the environment. However, when immature projection neurons enter the intermediate zone (IZ) of the neocortex they become “multipolar”. Multipolar cells extend and retract cytoplasmic processes in different directions and move erratically—sideways, up and down. Multipolar cells extend axons while they are in the lower half of the IZ. Remarkably, the cells then resume radial migration: they reorient their centrosome and Golgi apparatus towards the pia, transform back to bipolar morphology, and commence locomotion along radial glia (RG) fibers. This reorientation implies the existence of directional signals in the IZ that are ignored during the multipolar stage but sensed after axonogenesis. In vivo genetic manipulation has implicated a variety of candidate directional signals, cell surface receptors, and signaling pathways, that may be involved in polarizing multipolar cells and stabilizing a pia-directed leading process for radial migration. Other signals are implicated in starting multipolar migration and triggering axon outgrowth. Here we review the molecules and mechanisms that regulate multipolar migration, and also discuss how multipolar migration affects the orderly arrangement of neurons in layers and columns in the developing neocortex.
Collapse
Affiliation(s)
- Jonathan A Cooper
- Fred Hutchinson Cancer Research Center, Division of Basic Sciences Seattle, Washington, USA
| |
Collapse
|
23
|
Cyclin-dependent kinase 5 mediates adult OPC maturation and myelin repair through modulation of Akt and GsK-3β signaling. J Neurosci 2014; 34:10415-29. [PMID: 25080600 DOI: 10.1523/jneurosci.0710-14.2014] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Failure of remyelination in diseases, such as multiple sclerosis (MS), leads to permanent axonal damage and irreversible functional loss. The mechanisms controlling remyelination are currently poorly understood. Recent studies implicate the cyclin-dependent kinase 5 (Cdk5) in regulating oligodendrocyte (OL) development and myelination in CNS. In this study, we show that Cdk5 is also an important regulator of remyelination. Pharmacological inhibition of Cdk5 inhibits repair of lysolecithin lesions. This inhibition is a consequence of Cdk5 disruption in neural cells because remyelination in slice cultures is blocked by Cdk5 inhibitors, whereas specific deletion of Cdk5 in OLs inhibits myelin repair. In CNP-Cre;Cdk5(fl/fl) conditional knock-out mouse (Cdk5 cKO), myelin repair was delayed significantly in response to focal demyelinating lesions compared with wild-type animals. The lack of myelin repair was reflected in decreased expression of MBP and proteolipid protein and a reduction in the total number of myelinated axons in the lesion. The number of CC1(+) cells in the lesion sites was significantly reduced in Cdk5 cKO compared with wild-type animals although the total number of oligodendrocyte lineage cells (Olig2(+) cells) was increased, suggesting that Cdk5 loss perturbs the transition of early OL lineage cell into mature OL and subsequent remyelination. The failure of remyelination in Cdk5 cKO animals was associated with a reduction in signaling through the Akt pathway and an enhancement of Gsk-3β signaling pathways. Together, these data suggest that Cdk5 is critical in regulating the transition of adult oligodendrocyte precursor cells to mature OLs that is essential for myelin repair in adult CNS.
Collapse
|
24
|
Louvi A, Nishimura S, Günel M. Ccm3, a gene associated with cerebral cavernous malformations, is required for neuronal migration. Development 2014; 141:1404-15. [PMID: 24595293 DOI: 10.1242/dev.093526] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Loss of function of cerebral cavernous malformation 3 (CCM3) results in an autosomal dominant cerebrovascular disorder. Here, we uncover a developmental role for CCM3 in regulating neuronal migration in the neocortex. Using cell type-specific gene inactivation in mice, we show that CCM3 has both cell autonomous and cell non-autonomous functions in neural progenitors and is specifically required in radial glia and newly born pyramidal neurons migrating through the subventricular zone, but not in those migrating through the cortical plate. Loss of CCM3 function leads to RhoA activation, alterations in the actin and microtubule cytoskeleton affecting neuronal morphology, and abnormalities in laminar positioning of primarily late-born neurons, indicating CCM3 involvement in radial glia-dependent locomotion and possible interaction with the Cdk5/RhoA pathway. Thus, we identify a novel cytoplasmic regulator of neuronal migration and demonstrate that its inactivation in radial glia progenitors and nascent neurons produces severe malformations of cortical development.
Collapse
Affiliation(s)
- Angeliki Louvi
- Departments of Neurosurgery and Neurobiology, Yale Program on Neurogenetics, Yale School of Medicine, New Haven, CT 06520, USA
| | | | | |
Collapse
|
25
|
Lysko DE, Putt M, Golden JA. SDF1 reduces interneuron leading process branching through dual regulation of actin and microtubules. J Neurosci 2014; 34:4941-62. [PMID: 24695713 PMCID: PMC3972721 DOI: 10.1523/jneurosci.4351-12.2014] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 02/18/2014] [Accepted: 02/20/2014] [Indexed: 11/21/2022] Open
Abstract
Normal cerebral cortical function requires a highly ordered balance between projection neurons and interneurons. During development these two neuronal populations migrate from distinct progenitor zones to form the cerebral cortex, with interneurons originating in the more distant ganglionic eminences. Moreover, deficits in interneurons have been linked to a variety of neurodevelopmental disorders underscoring the importance of understanding interneuron development and function. We, and others, have identified SDF1 signaling as one important modulator of interneuron migration speed and leading process branching behavior in mice, although how SDF1 signaling impacts these behaviors remains unknown. We previously found SDF1 inhibited leading process branching while increasing the rate of migration. We have now mechanistically linked SDF1 modulation of leading process branching behavior to a dual regulation of both actin and microtubule organization. We find SDF1 consolidates actin at the leading process tip by de-repressing calpain protease and increasing proteolysis of branched-actin-supporting cortactin. Additionally, SDF1 stabilizes the microtubule array in the leading process through activation of the microtubule-associated protein doublecortin (DCX). DCX stabilizes the microtubule array by bundling microtubules within the leading process, reducing branching. These data provide mechanistic insight into the regulation of interneuron leading process dynamics during neuronal migration in mice and provides insight into how cortactin and DCX, a known human neuronal migration disorder gene, participate in this process.
Collapse
Affiliation(s)
- Daniel E. Lysko
- Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Mary Putt
- Department of Biostatistics and Epidemiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, and
| | - Jeffrey A. Golden
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| |
Collapse
|
26
|
Abstract
Proper lamination of the cerebral cortex is precisely orchestrated, especially when neurons migrate from their place of birth to their final destination. The consequences of failure or delay in neuronal migration cause a wide range of disorders, such as lissencephaly, schizophrenia, autism and mental retardation. Neuronal migration is a dynamic process, which requires dynamic remodeling of the cytoskeleton. In this context microtubules and microtubule-related proteins have been suggested to play important roles in the regulation of neuronal migration. Here, we will review the dynamic aspects of neuronal migration and brain development, describe the molecular and cellular mechanisms of neuronal migration and elaborate on neuronal migration diseases.
Collapse
|
27
|
The Impact of JNK on Neuronal Migration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 800:37-57. [DOI: 10.1007/978-94-007-7687-6_3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
28
|
Hippenmeyer S. Molecular pathways controlling the sequential steps of cortical projection neuron migration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 800:1-24. [PMID: 24243097 DOI: 10.1007/978-94-007-7687-6_1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Coordinated migration of newly-born neurons to their target territories is essential for correct neuronal circuit assembly in the developing brain. Although a cohort of signaling pathways has been implicated in the regulation of cortical projection neuron migration, the precise molecular mechanisms and how a balanced interplay of cell-autonomous and non-autonomous functions of candidate signaling molecules controls the discrete steps in the migration process, are just being revealed. In this chapter, I will focally review recent advances that improved our understanding of the cell-autonomous and possible cell-nonautonomous functions of the evolutionarily conserved LIS1/NDEL1-complex in regulating the sequential steps of cortical projection neuron migration. I will then elaborate on the emerging concept that the Reelin signaling pathway, acts exactly at precise stages in the course of cortical projection neuron migration. Lastly, I will discuss how finely tuned transcriptional programs and downstream effectors govern particular aspects in driving radial migration at discrete stages and how they regulate the precise positioning of cortical projection neurons in the developing cerebral cortex.
Collapse
Affiliation(s)
- Simon Hippenmeyer
- Developmental Neurobiology, IST Austria (Institute of Science and Technology Austria), Am Campus 1, A-3400, Klosterneuburg, Austria,
| |
Collapse
|
29
|
Gil-Sanz C, Franco SJ, Martinez-Garay I, Espinosa A, Harkins-Perry S, Müller U. Cajal-Retzius cells instruct neuronal migration by coincidence signaling between secreted and contact-dependent guidance cues. Neuron 2013; 79:461-77. [PMID: 23931996 DOI: 10.1016/j.neuron.2013.06.040] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2013] [Indexed: 11/25/2022]
Abstract
Cajal-Retzius (CR) cells are a transient cell population of the CNS that is critical for brain development. In the neocortex, CR cells secrete reelin to instruct the radial migration of projection neurons. It has remained unexplored, however, whether CR cells provide additional molecular cues important for brain development. Here, we show that CR cells express the immunoglobulin-like adhesion molecule nectin1, whereas neocortical projection neurons express its preferred binding partner, nectin3. We demonstrate that nectin1- and nectin3-mediated interactions between CR cells and migrating neurons are critical for radial migration. Furthermore, reelin signaling to Rap1 promotes neuronal Cdh2 function via nectin3 and afadin, thus directing the broadly expressed homophilic cell adhesion molecule Cdh2 toward mediating heterotypic cell-cell interactions between neurons and CR cells. Our findings identify nectins and afadin as components of the reelin signaling pathway and demonstrate that coincidence signaling between CR cell-derived secreted and short-range guidance cues direct neuronal migration.
Collapse
Affiliation(s)
- Cristina Gil-Sanz
- Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
30
|
Li G, Pleasure SJ. The development of hippocampal cellular assemblies. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2013; 3:165-77. [PMID: 24719288 DOI: 10.1002/wdev.127] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2011] [Revised: 08/19/2013] [Accepted: 08/29/2013] [Indexed: 11/10/2022]
Abstract
The proper assembly of a cohort of distinct cell types is a prerequisite for building a functional hippocampus. In this review, we describe the major molecular events of the developmental program leading to the cellular construction of the hippocampus. Data from rodent studies are used here to elaborate on our understanding of these processes.
Collapse
Affiliation(s)
- Guangnan Li
- Department of Neurology, Programs in Neuroscience and Developmental Biology, Institute for Regenerative Medicine, University of California, San Francisco, CA, USA
| | | |
Collapse
|
31
|
Rakić S, Kanatani S, Hunt D, Faux C, Cariboni A, Chiara F, Khan S, Wansbury O, Howard B, Nakajima K, Nikolić M, Parnavelas JG. Cdk5 phosphorylation of ErbB4 is required for tangential migration of cortical interneurons. ACTA ACUST UNITED AC 2013; 25:991-1003. [PMID: 24142862 PMCID: PMC4380000 DOI: 10.1093/cercor/bht290] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Interneuron dysfunction in humans is often associated with neurological and psychiatric disorders, such as epilepsy, schizophrenia, and autism. Some of these disorders are believed to emerge during brain formation, at the time of interneuron specification, migration, and synapse formation. Here, using a mouse model and a host of histological and molecular biological techniques, we report that the signaling molecule cyclin-dependent kinase 5 (Cdk5), and its activator p35, control the tangential migration of interneurons toward and within the cerebral cortex by modulating the critical neurodevelopmental signaling pathway, ErbB4/phosphatidylinositol 3-kinase, that has been repeatedly linked to schizophrenia. This finding identifies Cdk5 as a crucial signaling factor in cortical interneuron development in mammals.
Collapse
Affiliation(s)
- Sonja Rakić
- Department of Cell and Developmental Biology, University College London, London WC1 6BT, UK
| | - Shigeaki Kanatani
- Department of Anatomy, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - David Hunt
- Department of Cell and Developmental Biology, University College London, London WC1 6BT, UK
| | - Clare Faux
- Department of Cell and Developmental Biology, University College London, London WC1 6BT, UK
| | - Anna Cariboni
- Department of Cell and Developmental Biology, University College London, London WC1 6BT, UK
| | - Francesca Chiara
- Department of Cell and Developmental Biology, University College London, London WC1 6BT, UK
| | - Shabana Khan
- Department of Cell and Developmental Biology, University College London, London WC1 6BT, UK
| | - Olivia Wansbury
- Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, London SW3 6JB, UK
| | - Beatrice Howard
- Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, London SW3 6JB, UK
| | - Kazunori Nakajima
- Department of Anatomy, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Margareta Nikolić
- Department of Cellular and Molecular Neuroscience, Imperial College School of Medicine, London W12 0NN, UK
| | - John G Parnavelas
- Department of Cell and Developmental Biology, University College London, London WC1 6BT, UK
| |
Collapse
|
32
|
Evsyukova I, Plestant C, Anton ES. Integrative mechanisms of oriented neuronal migration in the developing brain. Annu Rev Cell Dev Biol 2013; 29:299-353. [PMID: 23937349 DOI: 10.1146/annurev-cellbio-101512-122400] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The emergence of functional neuronal connectivity in the developing cerebral cortex depends on neuronal migration. This process enables appropriate positioning of neurons and the emergence of neuronal identity so that the correct patterns of functional synaptic connectivity between the right types and numbers of neurons can emerge. Delineating the complexities of neuronal migration is critical to our understanding of normal cerebral cortical formation and neurodevelopmental disorders resulting from neuronal migration defects. For the most part, the integrated cell biological basis of the complex behavior of oriented neuronal migration within the developing mammalian cerebral cortex remains an enigma. This review aims to analyze the integrative mechanisms that enable neurons to sense environmental guidance cues and translate them into oriented patterns of migration toward defined areas of the cerebral cortex. We discuss how signals emanating from different domains of neurons get integrated to control distinct aspects of migratory behavior and how different types of cortical neurons coordinate their migratory activities within the developing cerebral cortex to produce functionally critical laminar organization.
Collapse
Affiliation(s)
- Irina Evsyukova
- Neuroscience Center and the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599;
| | | | | |
Collapse
|
33
|
Vaškovičová K, Žárský V, Rösel D, Nikolič M, Buccione R, Cvrčková F, Brábek J. Invasive cells in animals and plants: searching for LECA machineries in later eukaryotic life. Biol Direct 2013; 8:8. [PMID: 23557484 PMCID: PMC3663805 DOI: 10.1186/1745-6150-8-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 03/21/2013] [Indexed: 02/08/2023] Open
Abstract
Invasive cell growth and migration is usually considered a specifically metazoan phenomenon. However, common features and mechanisms of cytoskeletal rearrangements, membrane trafficking and signalling processes contribute to cellular invasiveness in organisms as diverse as metazoans and plants – two eukaryotic realms genealogically connected only through the last common eukaryotic ancestor (LECA). By comparing current understanding of cell invasiveness in model cell types of both metazoan and plant origin (invadopodia of transformed metazoan cells, neurites, pollen tubes and root hairs), we document that invasive cell behavior in both lineages depends on similar mechanisms. While some superficially analogous processes may have arisen independently by convergent evolution (e.g. secretion of substrate- or tissue-macerating enzymes by both animal and plant cells), at the heart of cell invasion is an evolutionarily conserved machinery of cellular polarization and oriented cell mobilization, involving the actin cytoskeleton and the secretory pathway. Its central components - small GTPases (in particular RHO, but also ARF and Rab), their specialized effectors, actin and associated proteins, the exocyst complex essential for polarized secretion, or components of the phospholipid- and redox- based signalling circuits (inositol-phospholipid kinases/PIP2, NADPH oxidases) are aparently homologous among plants and metazoans, indicating that they were present already in LECA. Reviewer: This article was reviewed by Arcady Mushegian, Valerian Dolja and Purificacion Lopez-Garcia.
Collapse
Affiliation(s)
- Katarína Vaškovičová
- Department of Cell Biology, Faculty of Science, Charles University in Prague, Vinicna 7, 128 43, Prague 2, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
34
|
Umeshima H, Kengaku M. Differential roles of cyclin-dependent kinase 5 in tangential and radial migration of cerebellar granule cells. Mol Cell Neurosci 2013; 52:62-72. [DOI: 10.1016/j.mcn.2012.08.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 08/06/2012] [Accepted: 08/10/2012] [Indexed: 01/24/2023] Open
|
35
|
Cameron DA, Middleton FA, Chenn A, Olson EC. Hierarchical clustering of gene expression patterns in the Eomes + lineage of excitatory neurons during early neocortical development. BMC Neurosci 2012; 13:90. [PMID: 22852769 PMCID: PMC3583225 DOI: 10.1186/1471-2202-13-90] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 07/11/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cortical neurons display dynamic patterns of gene expression during the coincident processes of differentiation and migration through the developing cerebrum. To identify genes selectively expressed by the Eomes + (Tbr2) lineage of excitatory cortical neurons, GFP-expressing cells from Tg(Eomes::eGFP) Gsat embryos were isolated to > 99% purity and profiled. RESULTS We report the identification, validation and spatial grouping of genes selectively expressed within the Eomes + cortical excitatory neuron lineage during early cortical development. In these neurons 475 genes were expressed ≥ 3-fold, and 534 genes ≤ 3-fold, compared to the reference population of neuronal precursors. Of the up-regulated genes, 328 were represented at the Genepaint in situ hybridization database and 317 (97%) were validated as having spatial expression patterns consistent with the lineage of differentiating excitatory neurons. A novel approach for quantifying in situ hybridization patterns (QISP) across the cerebral wall was developed that allowed the hierarchical clustering of genes into putative co-regulated groups. Forty four candidate genes were identified that show spatial expression with Intermediate Precursor Cells, 49 candidate genes show spatial expression with Multipolar Neurons, while the remaining 224 genes achieved peak expression in the developing cortical plate. CONCLUSIONS This analysis of differentiating excitatory neurons revealed the expression patterns of 37 transcription factors, many chemotropic signaling molecules (including the Semaphorin, Netrin and Slit signaling pathways), and unexpected evidence for non-canonical neurotransmitter signaling and changes in mechanisms of glucose metabolism. Over half of the 317 identified genes are associated with neuronal disease making these findings a valuable resource for studies of neurological development and disease.
Collapse
Affiliation(s)
- David A Cameron
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | | | | | | |
Collapse
|
36
|
Knight LS, Wenzel HJ, Schwartzkroin PA. Inhibition and interneuron distribution in the dentate gyrus of p35 knockout mice. Epilepsia 2012; 53 Suppl 1:161-70. [PMID: 22612821 DOI: 10.1111/j.1528-1167.2012.03487.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The p35 knockout (p35-/-) mouse is an animal model of temporal lobe epilepsy that recapitulates key neuroanatomic abnormalities-granule cell dispersion and mossy fiber sprouting-observed in the hippocampal formation of humans, as well as spontaneous seizure activity. It is a useful model in which to study the relationship between the abnormal neuronal structure and seizure activity to further our understanding of cortical dysplasia in epileptogenesis. Our previous work using this mouse model characterized the anatomic features of the dentate granule cells and the functional implications of these abnormalities on increased recurrent excitation. These data also suggested that there might be compromised inhibition in this animal model. We pursued this possibility, focusing our investigation on inhibitory circuitry. In preliminary investigations using neuroanatomic tools (immunocytochemistry, camera lucida reconstructions of individually labeled interneurons, and electron microscopy) combined with intracellular electrophysiology, we observed no significant reduction in the number of symmetric versus asymmetric synaptic contacts on dentate granule cell somata, and no statistically significant changes in evoked early or late inhibition. Although there were some abnormalities in the morphology/distribution of inhibitory interneurons (as well as a larger population of dentate granule cells) of the dentate gyrus, overall inhibition in the p35 knockout mouse appeared to be largely intact.
Collapse
Affiliation(s)
- Leena S Knight
- Department of Biology, Whitman College, 345 Boyer Ave., Walla Walla, WA 99362, U.S.A.
| | | | | |
Collapse
|
37
|
Zgraggen E, Boitard M, Roman I, Kanemitsu M, Potter G, Salmon P, Vutskits L, Dayer AG, Kiss JZ. Early postnatal migration and development of layer II pyramidal neurons in the rodent cingulate/retrosplenial cortex. Cereb Cortex 2012; 22:144-57. [PMID: 21625013 DOI: 10.1093/cercor/bhr097] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
The cingulate and retrosplenial regions are major components of the dorsomedial (dm) limbic cortex and have been implicated in a range of cognitive functions such as emotion, attention, and spatial memory. While the structure and connectivity of these cortices are well characterized, little is known about their development. Notably, the timing and mode of migration that govern the appropriate positioning of late-born neurons remain unknown. Here, we analyzed migratory events during the early postnatal period from ventricular/subventricular zone (VZ/SVZ) to the cerebral cortex by transducing neuronal precursors in the VZ/SVZ of newborn rats/mice with Tomato/green fluorescent protein-encoding lentivectors. We have identified a pool of postmitotic pyramidal precursors in the dm part of the neonatal VZ/SVZ that migrate into the medial limbic cortex during the first postnatal week. Time-lapse imaging demonstrates that these cells migrate on radial glial fibers by locomotion and display morphological and behavioral changes as they travel through the white matter and enter into the cortical gray matter. In the granular retrosplenial cortex, these cells give rise to a Satb2+ pyramidal subtype and develop dendritic bundles in layer I. Our observations provide the first insight into the patterns and dynamics of cell migration into the medial limbic cortex.
Collapse
Affiliation(s)
- Eloisa Zgraggen
- Department of Neurosciences, University of Geneva Medical School, CH-1211 Geneva 4, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Crandall JE, Goodman T, McCarthy DM, Duester G, Bhide PG, Dräger UC, McCaffery P. Retinoic acid influences neuronal migration from the ganglionic eminence to the cerebral cortex. J Neurochem 2011; 119:723-35. [PMID: 21895658 DOI: 10.1111/j.1471-4159.2011.07471.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The ganglionic eminence contributes cells to several forebrain structures including the cerebral cortex, for which it provides GABAergic interneurons. Migration of neuronal precursors from the retinoic-acid rich embryonic ganglionic eminence to the cerebral cortex is known to be regulated by several factors, but retinoic acid has not been previously implicated. We found retinoic acid to potently inhibit cell migration in slice preparations of embryonic mouse forebrains, which was reversed by an antagonist of the dopamine-D(2) receptor, whose gene is transcriptionally regulated by retinoic acid. Histone-deacetylase inhibitors, which amplify nuclear receptor-mediated transcription, potentiated the inhibitory effect of retinoic acid. Surprisingly, when retinoic acid signalling was completely blocked with a pan-retinoic acid receptor antagonist, this also decreased cell migration into the cortex, implying that a minimal level of endogenous retinoic acid is necessary for tangential migration. Given these opposing effects of retinoic acid in vitro, the in vivo contribution of retinoic acid to migration was tested by counting GABAergic interneurons in cortices of adult mice with experimental reductions in retinoic acid signalling: a range of perturbations resulted in significant reductions in the numerical density of some GABAergic interneuron subpopulations. These observations suggest functions of retinoic acid in interneuron diversity and organization of cortical excitatory-inhibitory balance.
Collapse
Affiliation(s)
- James E Crandall
- Eunice Kennedy Shriver Center for Mental Retardation, University of Massachusetts Medical School, Waltham, Massachusetts, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Focal adhesion kinase modulates radial glia-dependent neuronal migration through connexin-26. J Neurosci 2011; 31:11678-91. [PMID: 21832197 DOI: 10.1523/jneurosci.2678-11.2011] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Focal adhesion kinase (FAK) is an intracellular kinase and scaffold protein that regulates migration in many different cellular contexts but whose function in neuronal migration remains controversial. Here, we have analyzed the function of FAK in two populations of neurons with very distinct migratory behaviors: cortical interneurons, which migrate tangentially and independently of radial glia; and pyramidal cells, which undergo glial-dependent migration. We found that FAK is dispensable for glial-independent migration but is cell-autonomously required for the normal interaction of pyramidal cells with radial glial fibers. Loss of FAK function disrupts the normal morphology of migrating pyramidal cells, delays migration, and increases the tangential dispersion of neurons arising from the same radial unit. FAK mediates this process by regulating the assembly of Connexin-26 contact points in the membrane of migrating pyramidal cells. These results indicate that FAK plays a fundamental role in the dynamic regulation of Gap-mediated adhesions during glial-guided neuronal migration in the mouse.
Collapse
|
40
|
Govek EE, Hatten ME, Van Aelst L. The role of Rho GTPase proteins in CNS neuronal migration. Dev Neurobiol 2011; 71:528-53. [PMID: 21557504 DOI: 10.1002/dneu.20850] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The architectonics of the mammalian brain arise from a remarkable range of directed cell migrations, which orchestrate the emergence of cortical neuronal layers and pattern brain circuitry. At different stages of cortical histogenesis, specific modes of cell motility are essential to the stepwise formation of cortical architecture. These movements range from interkinetic nuclear movements in the ventricular zone, to migrations of early-born, postmitotic polymorphic cells into the preplate, to the radial migration of precursors of cortical output neurons across the thickening cortical wall, and the vast, tangential migrations of interneurons from the basal forebrain into the emerging cortical layers. In all cases, actomyosin motors act in concert with cell adhesion receptor systems to provide the force and traction needed for forward movement. As key regulators of actin and microtubule cytoskeletons, cell polarity, and adhesion, the Rho GTPases play critical roles in CNS neuronal migration. This review will focus on the different types of migration in the developing neocortex and cerebellar cortex, and the role of the Rho GTPases, their regulators and effectors in these CNS migrations, with particular emphasis on their involvement in radial migration.
Collapse
Affiliation(s)
- Eve-Ellen Govek
- Laboratory of Developmental Neurobiology, The Rockefeller University, NY 10065, USA
| | | | | |
Collapse
|
41
|
Contreras-Vallejos E, Utreras E, Gonzalez-Billault C. Going out of the brain: non-nervous system physiological and pathological functions of Cdk5. Cell Signal 2011; 24:44-52. [PMID: 21924349 DOI: 10.1016/j.cellsig.2011.08.022] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 08/29/2011] [Indexed: 12/23/2022]
Abstract
Cyclin-dependent kinase 5 (Cdk5) is a proline-directed serine/threonine kinase that is mostly active in the nervous system, where it regulates several processes such as neuronal migration, actin and microtubule dynamics, axonal guidance, and synaptic plasticity, among other processes. In addition to these known functions, in the past few years, novel roles for Cdk5 outside of the nervous system have been proposed. These include roles in gene transcription, vesicular transport, apoptosis, cell adhesion, and migration in many cell types and tissues such as pancreatic cells, muscle cells, neutrophils, and others. In this review, we will summarize the recently studied non-neuronal functions of Cdk5, with a thorough analysis of the biological consequences of these novel roles.
Collapse
Affiliation(s)
- Erick Contreras-Vallejos
- Department of Biology and Institute for Cell Dynamics and Biotechnology, Faculty of Sciences, Universidad de Chile, Santiago, Chile.
| | | | | |
Collapse
|
42
|
Pacary E, Heng J, Azzarelli R, Riou P, Castro D, Lebel-Potter M, Parras C, Bell DM, Ridley AJ, Parsons M, Guillemot F. Proneural transcription factors regulate different steps of cortical neuron migration through Rnd-mediated inhibition of RhoA signaling. Neuron 2011; 69:1069-84. [PMID: 21435554 PMCID: PMC3383999 DOI: 10.1016/j.neuron.2011.02.018] [Citation(s) in RCA: 169] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2011] [Indexed: 12/12/2022]
Abstract
Little is known of the intracellular machinery that controls the motility of newborn neurons. We have previously shown that the proneural protein Neurog2 promotes the migration of nascent cortical neurons by inducing the expression of the atypical Rho GTPase Rnd2. Here, we show that another proneural factor, Ascl1, promotes neuronal migration in the cortex through direct regulation of a second Rnd family member, Rnd3. Both Rnd2 and Rnd3 promote neuronal migration by inhibiting RhoA signaling, but they control distinct steps of the migratory process, multipolar to bipolar transition in the intermediate zone and locomotion in the cortical plate, respectively. Interestingly, these divergent functions directly result from the distinct subcellular distributions of the two Rnd proteins. Because Rnd proteins also regulate progenitor divisions and neurite outgrowth, we propose that proneural factors, through spatiotemporal regulation of Rnd proteins, integrate the process of neuronal migration with other events in the neurogenic program.
Collapse
Affiliation(s)
- Emilie Pacary
- Division of Molecular Neurobiology, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Endocannabinoids regulate the migration of subventricular zone-derived neuroblasts in the postnatal brain. J Neurosci 2011; 31:4000-11. [PMID: 21411643 DOI: 10.1523/jneurosci.5483-10.2011] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In the adult brain, neural stem cells proliferate within the subventricular zone before differentiating into migratory neuroblasts that travel along the rostral migratory stream (RMS) to populate the olfactory bulb with new neurons. Because neuroblasts have been shown to migrate to areas of brain injury, understanding the cues regulating this migration could be important for brain repair. Recent studies have highlighted an important role for endocannabinoid (eCB) signaling in the proliferation of the stem cell population, but it remained to be determined whether this pathway also played a role in cell migration. We now show that mouse migratory neuroblasts express cannabinoid receptors, diacylglycerol lipase α (DAGLα), the enzyme that synthesizes the endocannabinoid 2-arachidonoylglycerol (2-AG), and monoacylglycerol lipase, the enzyme responsible for its degradation. Using a scratch wound assay for a neural stem cell line and RMS explant cultures, we show that inhibition of DAGL activity or CB(1)/CB(2) receptors substantially decreases migration. In contrast, direct activation of cannabinoid receptors or preventing the breakdown of 2-AG increases migration. Detailed analysis of primary neuroblast migration by time-lapse imaging reveals that nucleokinesis, as well as the length and branching of the migratory processes are under dynamic control of the eCB system. Finally, similar effects are observed in vivo by analyzing the morphology of green fluorescent protein-labeled neuroblasts in brain slices from mice treated with CB(1) or CB(2) antagonists. These results describe a novel role for the endocannabinoid system in neuroblast migration in vivo, highlighting its importance in regulating an additional essential step in adult neurogenesis.
Collapse
|
44
|
Kraemer N, Issa L, Hauck SCR, Mani S, Ninnemann O, Kaindl AM. What's the hype about CDK5RAP2? Cell Mol Life Sci 2011; 68:1719-36. [PMID: 21327915 PMCID: PMC11115181 DOI: 10.1007/s00018-011-0635-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 01/18/2011] [Accepted: 02/01/2011] [Indexed: 12/11/2022]
Abstract
Cyclin dependent kinase 5 regulatory subunit-associated protein 2 (CDK5RAP2) has gained attention in the last years following the discovery, in 2005, that recessive mutations cause primary autosomal recessive microcephaly. This disease is seen as an isolated developmental defect of the brain, particularly of the cerebral cortex, and was thus historically also referred to as microcephalia vera. Unraveling the pathomechanisms leading to this human disease is fascinating scientists because it can convey insight into basic mechanisms of physiologic brain development (particularly of cortex formation). It also finds itself in the spotlight because of its implication in trends in mammalian evolution with a massive increase in the size of the cerebral cortex in primates. Here, we provide a timely overview of the current knowledge on the function of CDK5RAP2 and mechanisms that might lead to disease in humans when the function of this protein is disturbed.
Collapse
Affiliation(s)
- Nadine Kraemer
- Department of Pediatric Neurology, Charité, Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany
- Institute of Neuroanatomy and Cell Biology, Center for Anatomy, Charité, Universitätsmedizin Berlin, Campus Mitte, Charitéplatz 1, 10117 Berlin, Germany
| | - Lina Issa
- Department of Pediatric Neurology, Charité, Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany
- Institute of Neuroanatomy and Cell Biology, Center for Anatomy, Charité, Universitätsmedizin Berlin, Campus Mitte, Charitéplatz 1, 10117 Berlin, Germany
| | - Stefanie C. R. Hauck
- Department of Pediatric Neurology, Charité, Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany
- Institute of Neuroanatomy and Cell Biology, Center for Anatomy, Charité, Universitätsmedizin Berlin, Campus Mitte, Charitéplatz 1, 10117 Berlin, Germany
| | - Shyamala Mani
- Center for Neuroscience, Indian Institute of Science, Bangalore, 560 012 India
| | - Olaf Ninnemann
- Institute of Neuroanatomy and Cell Biology, Center for Anatomy, Charité, Universitätsmedizin Berlin, Campus Mitte, Charitéplatz 1, 10117 Berlin, Germany
| | - Angela M. Kaindl
- Department of Pediatric Neurology, Charité, Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany
- Institute of Neuroanatomy and Cell Biology, Center for Anatomy, Charité, Universitätsmedizin Berlin, Campus Mitte, Charitéplatz 1, 10117 Berlin, Germany
- Institute of Neuroanatomy and Cell Biology and Department of Pediatric Neurology, Charité, Universitätsmedizin Berlin, Center for Anatomy, Charité, Universitätsmedizin Berlin, Campus Mitte, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
45
|
Abstract
Neuronal migration is, along with axon guidance, one of the fundamental mechanisms underlying the wiring of the brain. As other organs, the nervous system has acquired the ability to grow both in size and complexity by using migration as a strategy to position cell types from different origins into specific coordinates, allowing for the generation of brain circuitries. Guidance of migrating neurons shares many features with axon guidance, from the use of substrates to the specific cues regulating chemotaxis. There are, however, important differences in the cell biology of these two processes. The most evident case is nucleokinesis, which is an essential component of migration that needs to be integrated within the guidance of the cell. Perhaps more surprisingly, the cellular mechanisms underlying the response of the leading process of migrating cells to guidance cues might be different to those involved in growth cone steering, at least for some neuronal populations.
Collapse
Affiliation(s)
- Oscar Marín
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas and Universidad Miguel Hernández, Sant Joan d'Alacant 03550, Spain.
| | | | | | | |
Collapse
|
46
|
Tsai HH, Macklin WB, Miller RH. Distinct modes of migration position oligodendrocyte precursors for localized cell division in the developing spinal cord. J Neurosci Res 2010; 87:3320-30. [PMID: 19301427 DOI: 10.1002/jnr.22058] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Establishment of the cytoarchitecture of the central nervous system reflects the stereotyped cell migration and proliferation of precursor cells during development. In vitro analyses have provided extensive information on the control of proliferation and differentiation of oligodendrocyte precursors (OPCs), but less is known about the migratory behavior of these cells in vivo. Here we utilize a transgenic mouse line expressing enhanced green fluorescent protein (EGFP) under the proteolipid protein promoter (PLP-EGFP mice) to visualize directly the behaviors of OPCs in developing spinal cord slices. During early development, OPCs disperse from their origin at the ventricular zone by using saltatory migration. This involves orientation of the cell with a leading edge toward the pial surface and alternating stationary and fast-moving phases and dramatic shape changes. Once cells exit the ventricular zone, they exhibit an exploratory mode of migration characterized by persistent translocation without dramatic changes in cell morphology. The control of migration, proliferation, and cytokinesis of OPCs appear to be closely linked. In netrin-1 mutant spinal cords that lack dispersal cues, OPC migration rates were not significantly different, but the trajectories were altered, and numbers of migrating cells were dramatically reduced. In contrast to DNA replication that occurs at the ventricular zone or throughout the spinal cord neuropil, cell division or cytokinesis of OPCs occurs predominantly at the interface between gray and white matters, with the majority of cleavage planes parallel to the pial surface. These studies suggest that positional cues are critical for regulating OPC behavior during spinal cord development.
Collapse
Affiliation(s)
- Hui-Hsin Tsai
- Center for Translational Neuroscience, Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | | | | |
Collapse
|
47
|
Serotonergic neurons migrate radially through the neuroepithelium by dynamin-mediated somal translocation. J Neurosci 2010; 30:420-30. [PMID: 20071506 DOI: 10.1523/jneurosci.2333-09.2010] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Embryonic CNS neurons can migrate from the ventricular zone to their final destination by radial glial-guided locomotion. Another less appreciated mechanism is somal translocation, where the young neuron maintains its primitive ventricular and pial processes, through which the cell body moves. A major problem in studying translocation has been the identification of neuronal-specific markers that appear in primitive, radially shaped cells. We used enhanced yellow fluorescent protein under control of the Pet-1 enhancer/promoter region (ePet-EYFP), a specific marker of early differentiated serotonergic neurons, to study their migration via immunohistology and time-lapse imaging of living slice cultures. As early as E10.0, ePet-EYFP-expressing neurons were axonless, radially oriented, and spanned the entire neuroepithelium. The soma translocated within the pial process toward the pial surface and could also translocate through its neurites, which sprouted from the pial process. The dynamin inhibitor dynasore significantly reduced translocation velocity, while the nonmuscle myosin II inhibitor blebbistatin and the kinesin inhibitor AMP-PNP had no significant effect. Here we show for the first time that serotonergic neurons migrate by somal translocation mediated, in part, by dynamin.
Collapse
|
48
|
Distinct dose-dependent cortical neuronal migration and neurite extension defects in Lis1 and Ndel1 mutant mice. J Neurosci 2010; 29:15520-30. [PMID: 20007476 DOI: 10.1523/jneurosci.4630-09.2009] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Haploinsufficiency of LIS1 results in lissencephaly, a human neuronal migration disorder. LIS1 is a microtubule- (MT) and centrosome- [microtubule organizing center (MTOC)] associated protein that regulates nucleokinesis via the regulation of dynein motor function and localization. NDEL1 (NudE isoform, NudE like) interacts with LIS1/dynein complex, and is phosphorylated by CDK5/P35. Previous reports using siRNA-mediated knock-down demonstrated similar critical roles for LIS1 and NDEL1 during neuronal migration, but neuronal migration has not been studied in genetic mutants for Lis1 and Ndel1 where protein levels are uniform in all cells. Brains from mice with complete loss of Lis1 and Ndel1 displayed severe cortical layering and hippocampal defects, but Lis1 mutants had more severe defects. Neuronal migration speed was reduced and neurite lengths were elongated in proportion to the reduction of LIS1 and NDEL1 protein levels in embryonic day 14.5 mutant cortical slices compared to wild type, using two-photon confocal time lapse videomicroscopy. Additionally, mice with 35% of wild-type NDEL1 levels displayed diverse branched migration modes with multiple leading processes, suggesting defects in adhesion and/or polarity. Complete loss of Lis1 or Ndel1 resulted in the total inhibition of nuclear movement in cortical slice assays, and in neurosphere assays, the percentage of migrating neurons with correctly polarized MTOC location was significantly reduced while nuclear-centrosomal distance was extended. Neurite lengths were increased after complete loss Ndel1 but reduced after complete loss of Lis1. Thus, Lis1 and Ndel1 are essential for normal cortical neuronal migration, neurite outgrowth, and function of the MTOC in a dose-dependent manner.
Collapse
|
49
|
Many roads lead to primary autosomal recessive microcephaly. Prog Neurobiol 2009; 90:363-83. [PMID: 19931588 DOI: 10.1016/j.pneurobio.2009.11.002] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Revised: 10/27/2009] [Accepted: 11/11/2009] [Indexed: 12/24/2022]
Abstract
Autosomal recessive primary microcephaly (MCPH), historically referred to as Microcephalia vera, is a genetically and clinically heterogeneous disease. Patients with MCPH typically exhibit congenital microcephaly as well as mental retardation, but usually no further neurological findings or malformations. Their microcephaly with grossly preserved macroscopic organization of the brain is a consequence of a reduced brain volume, which is evident particularly within the cerebral cortex and thus results to a large part from a reduction of grey matter. Some patients with MCPH further provide evidence of neuronal heterotopias, polymicrogyria or cortical dysplasia suggesting an associated neuronal migration defect. Genetic causes of MCPH subtypes 1-7 include mutations in genes encoding microcephalin, cyclin-dependent kinase 5 regulatory associated protein 2 (CDK5RAP2), abnormal spindle-like, microcephaly associated protein (ASPM), centromeric protein J (CENPJ), and SCL/TAL1-interrupting locus (STIL) as well as linkage to the two loci 19q13.1-13.2 and 15q15-q21. Here, we provide a timely overview of current knowledge on mechanisms leading to microcephaly in humans with MCPH and abnormalities in cell division/cell survival in corresponding animal models. Understanding the pathomechanisms leading to MCPH is of high importance not only for our understanding of physiologic brain development (particularly of cortex formation), but also for that of trends in mammalian evolution with a massive increase in size of the cerebral cortex in primates, of microcephalies of other etiologies including environmentally induced microcephalies, and of cancer formation.
Collapse
|
50
|
Nakamura F, Ugajin K, Yamashita N, Okada T, Uchida Y, Taniguchi M, Ohshima T, Goshima Y. Increased proximal bifurcation of CA1 pyramidal apical dendrites insema3Amutant mice. J Comp Neurol 2009; 516:360-75. [DOI: 10.1002/cne.22125] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|