1
|
Stenner MP, Nossa CM, Zaehle T, Azañón E, Heinze HJ, Deliano M, Büntjen L. Prior knowledge changes initial sensory processing in the human spinal cord. SCIENCE ADVANCES 2025; 11:eadl5602. [PMID: 39813342 PMCID: PMC11734707 DOI: 10.1126/sciadv.adl5602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/13/2024] [Indexed: 01/18/2025]
Abstract
Prior knowledge changes how the brain processes sensory input. Whether knowledge influences initial sensory processing upstream of the brain, in the spinal cord, is unknown. Studying electric potentials recorded invasively and noninvasively from the human spinal cord at millisecond resolution, we find that the cord generates electric potentials at 600 hertz that are modulated by prior knowledge about the time of sensory input, as early as 13 to 16 milliseconds after stimulation. Our results reveal that already in the spinal cord, sensory processing is under top-down, cognitive control, and that 600-hertz signals, which have been identified as a macroscopic marker of population spiking in other regions of the nervous system, play a role in early, context-dependent sensory processing. The possibility to examine these signals noninvasively in humans opens up avenues for research into the physiology of the spinal cord and its interaction with the brain.
Collapse
Affiliation(s)
- Max-Philipp Stenner
- Leibniz Institute for Neurobiology Magdeburg, Magdeburg, Germany
- Department of Neurology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Center for Behavioral Brain Sciences Magdeburg, Magdeburg, Germany
- Center for Intervention and Research on adaptive and Maladaptive Brain Circuits Underlying Mental Health, Jena-Magdeburg-Halle, Magdeburg, Germany
| | - Cindy Márquez Nossa
- Leibniz Institute for Neurobiology Magdeburg, Magdeburg, Germany
- Department of Neurology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Tino Zaehle
- Department of Neurology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Center for Behavioral Brain Sciences Magdeburg, Magdeburg, Germany
- Center for Intervention and Research on adaptive and Maladaptive Brain Circuits Underlying Mental Health, Jena-Magdeburg-Halle, Magdeburg, Germany
| | - Elena Azañón
- Leibniz Institute for Neurobiology Magdeburg, Magdeburg, Germany
- Department of Neurology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Center for Behavioral Brain Sciences Magdeburg, Magdeburg, Germany
- Center for Intervention and Research on adaptive and Maladaptive Brain Circuits Underlying Mental Health, Jena-Magdeburg-Halle, Magdeburg, Germany
| | - Hans-Jochen Heinze
- Leibniz Institute for Neurobiology Magdeburg, Magdeburg, Germany
- Department of Neurology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Center for Behavioral Brain Sciences Magdeburg, Magdeburg, Germany
| | - Matthias Deliano
- Leibniz Institute for Neurobiology Magdeburg, Magdeburg, Germany
| | - Lars Büntjen
- Department of Neurosurgery, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Department of Stereotactic Neurosurgery, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
2
|
Gracies J, Alter KE, Biering‐Sørensen B, Dewald JP, Dressler D, Esquenazi A, Franco JH, Jech R, Kaji R, Jin L, Lim EC, Raghavan P, Rosales R, Shalash AS, Simpson DM, Suputtitada A, Vecchio M, Wissel J. Spastic Paresis: A Treatable Movement Disorder. Mov Disord 2025; 40:44-50. [PMID: 39548808 PMCID: PMC11752976 DOI: 10.1002/mds.30038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/30/2024] [Accepted: 10/07/2024] [Indexed: 11/18/2024] Open
Affiliation(s)
- Jean‐Michel Gracies
- Service de Rééducation Neurolocomotrice, Hôpitaux Universitaires Henri Mondor, Assistance Publique‐Hôpitaux de ParisParisFrance
- UR BIOTN, Université Paris Est Créteil (UPEC)CréteilFrance
| | - Katharine E. Alter
- Mount Washington Pediatric Hospital, An Affiliate of The University of Maryland System and Johns Hopkins Medical InstitutionBaltimoreMarylandUSA
| | - Bo Biering‐Sørensen
- Movement Disorder Clinic, Spasticity Clinic and Neuropathic Pain and CRPS Clinic, Neurological DepartmentCopenhagen University Hospital, RigshospitaletGlostrupDenmark
| | - Julius P.A. Dewald
- Department of Physical Therapy and Human Movement Sciences, Department of Biomedical EngineeringNorthwestern UniversityChicagoIllinoisUSA
| | - Dirk Dressler
- Movement Disorders Section, Department of NeurologyHannover Medical SchoolHannoverGermany
| | - Alberto Esquenazi
- Department of PM&RMoss Rehab Gait and Motion Analysis Laboratory, Elkins Park, Albert Einstein Medical CenterPennsylvaniaUSA
| | - Jorge Hernandez Franco
- Department of RehabilitationNational Institute of Neurology and Neurosurgery MVS, Universidad Nacional Autónoma de MéxicoMexico CityMexico
| | - Robert Jech
- Department of Neurology and Center of Clinical NeuroscienceFirst Faculty of Medicine Charles University and General University HospitalPragueCzech Republic
| | - Ryuji Kaji
- Tokushima University Graduate School of MedicineTokushimaJapan
| | - Lingjing Jin
- Department of NeurologySchool of Medicine, Tongji Hospital and Shanghai Sunshine Rehabilitation Hospital, Tongji University School of MedicineShanghaiChina
| | - Erle C.H. Lim
- Division of NeurologyNational University Health System, National University of SingaporeSingaporeSingapore
| | - Preeti Raghavan
- Department of Physical Medicine and Rehabilitation and Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Raymond Rosales
- Metropolitan Medical Center, Faculty of Medicine and Surgery, University of Santo Tomas Manila and Clinical Neurophysiology and Movement Disorders, St. Luke's Medical CenterQuezon CityPhilippines
| | - Ali S. Shalash
- Ain Shams Movement Disorders Group, Department of NeurologyAin Shams UniversityCairoEgypt
| | - David M. Simpson
- Department of NeurologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Areerat Suputtitada
- Department of Rehabilitation MedicineFaculty of Medicine, Chulalongkorn UniversityBangkokThailand
| | - Michele Vecchio
- Department of Biomedical and Biotechnological SciencesUniversity of Catania, Physical Medicine and Rehabilitation Unit, “AOU Policlinico G. Rodolico”CataniaItaly
| | - Jörg Wissel
- Neurology and Psychosomatic at WittenbergplatzBerlinGermany
- Center of Sports Medicine, University Outpatient ClinicUniversity of PotsdamPotsdamGermany
| |
Collapse
|
3
|
Okada K, Okawada M, Yoneta M, Kuwahara W, Unai K, Kawakami M, Tsuji T, Kaneko F. Cognitive effect of passively induced kinesthetic perception associated with virtual body augmentation modulates spinal reflex. J Neurophysiol 2025; 133:69-77. [PMID: 39531281 DOI: 10.1152/jn.00042.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 10/07/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024] Open
Abstract
The virtual movement of an augmented body, perceived as part of oneself, forms the basis of kinesthetic perception induced by visual stimulation (KINVIS). KINVIS is a visually induced virtual kinesthetic perception that clinically suppresses spasticity. The present study hypothesized that central neural network activity during KINVIS affects subcortical neural circuits. The present study aimed to elucidate whether reciprocal and presynaptic inhibition occurs during KINVIS. Seventeen healthy participants were recruited (mean age: 27.9 ± 3.6 yr), and their soleus Hoffmann-reflexes (H-reflexes) were recorded by peripheral nerve stimulation while perceiving the dorsiflexion kinesthetic illusion in the right-side foot (seated in a comfortable chair). Two control conditions were set to observe the same foot video without the kinesthetic illusion while focusing on the static foot image. Unconditioned H-reflex and two types of conditioned H-reflexes were measured: Ia (reciprocal inhibition) and D1 (presynaptic inhibition). Reciprocal Ia and D1 inhibition of the soleus muscle was significantly enhanced during the kinesthetic illusion compared with the condition without kinesthetic illusion (a post hoc analysis using the Bonferroni test: Ia inhibition, P = 0.002; D1 inhibition, P = 0.049). This study indicates that kinesthetic illusion elicits an inhibitory effect on the monosynaptic reflex loop of Ia afferents, potentially inhibiting the hyperexcitability of the stretch reflex. These findings demonstrate that brain activity associated with visually induced kinesthetic illusions acts on spinal inhibition circuits. These insights may be valuable in clinical rehabilitation practice, specifically for the treatment of spasticity.NEW & NOTEWORTHY Neural effects in visual-induced kinesthetic illusion expand into the spinal reflex. Kinesthetic illusion inhibits the monosynaptic reflex in an antagonistic muscle via reciprocal and presynaptic inhibition. Visually induced kinesthetic illusion is a suitable treatment for spasticity in patients with stroke.
Collapse
Affiliation(s)
- Kohsuke Okada
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan
- Saiseikai Higashi-Kanagawa Rehabilitation Hospital, Yokohama, Japan
- Department of Physical Therapy, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Megumi Okawada
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan
- Department of Physical Therapy, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Masaki Yoneta
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan
- Department of Home Care, Social Welfare Cooperation Kitano-Aikoukai, Kitami, Japan
| | - Wataru Kuwahara
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan
- Department of Physical Therapy, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Kei Unai
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan
- Saiseikai Higashi-Kanagawa Rehabilitation Hospital, Yokohama, Japan
- Hatsudai Rehabilitation Hospital, Tokyo, Japan
| | - Michiyuki Kawakami
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Tetsuya Tsuji
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Fuminari Kaneko
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan
- Department of Physical Therapy, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
| |
Collapse
|
4
|
Umeda T, Yokoyama O, Suzuki M, Kaneshige M, Isa T, Nishimura Y. Future spinal reflex is embedded in primary motor cortex output. SCIENCE ADVANCES 2024; 10:eadq4194. [PMID: 39693430 DOI: 10.1126/sciadv.adq4194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 11/13/2024] [Indexed: 12/20/2024]
Abstract
Mammals can execute intended limb movements despite the fact that spinal reflexes involuntarily modulate muscle activity. To generate appropriate muscle activity, the cortical descending motor output must coordinate with spinal reflexes, yet the underlying neural mechanism remains unclear. We simultaneously recorded activities in motor-related cortical areas, afferent neurons, and forelimb muscles of monkeys performing reaching movements. Motor-related cortical areas, predominantly primary motor cortex (M1), encode subsequent afferent activities attributed to forelimb movement. M1 also encodes a subcomponent of muscle activity evoked by these afferent activities, corresponding to spinal reflexes. Furthermore, selective disruption of the afferent pathway specifically reduced this subcomponent of muscle activity, suggesting that M1 output drives muscle activity not only through direct descending pathways but also through the "transafferent" pathway composed of descending plus subsequent spinal reflex pathways. Thus, M1 provides optimal motor output based on an internal forward model that prospectively computes future spinal reflexes.
Collapse
Affiliation(s)
- Tatsuya Umeda
- Department of Developmental Physiology, National Institute for Physiological Sciences, National Institute of Natural Sciences, Okazaki, Aichi 4448585, Japan
- Department of Integrated Neuroanatomy and Neuroimaging, Graduate School of Medicine, Kyoto University, Kyoto 6068501, Japan
- Department of Neurophysiology, National Center of Neurology and Psychiatry, Kodaira, Tokyo 1878502, Japan
| | - Osamu Yokoyama
- Neural Prosthetics Project, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 1568506, Japan
| | - Michiaki Suzuki
- Neural Prosthetics Project, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 1568506, Japan
| | - Miki Kaneshige
- Neural Prosthetics Project, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 1568506, Japan
| | - Tadashi Isa
- Department of Developmental Physiology, National Institute for Physiological Sciences, National Institute of Natural Sciences, Okazaki, Aichi 4448585, Japan
- Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto 6068501, Japan
- Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto 6068507, Japan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto 6068510, Japan
- School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Hayama, Kanagawa 2400193, Japan
| | - Yukio Nishimura
- Department of Developmental Physiology, National Institute for Physiological Sciences, National Institute of Natural Sciences, Okazaki, Aichi 4448585, Japan
- Neural Prosthetics Project, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 1568506, Japan
- School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Hayama, Kanagawa 2400193, Japan
- PRESTO, Japan Science and Technology Agency (JST), Kawaguchi, Saitama 3320012, Japan
| |
Collapse
|
5
|
Mahrous AA, Liang L, Balaguer JM, Ho JC, Grigsby EM, Karapetyan V, Damiani A, Fields DP, Gonzalez-Martinez JA, Gerszten PC, Bennett DJ, Heckman CJ, Pirondini E, Capogrosso M. Pharmacological blocking of spinal GABA A receptors in monkeys reduces sensory transmission to the spinal cord, thalamus, and cortex. Cell Rep 2024; 44:115100. [PMID: 39700009 DOI: 10.1016/j.celrep.2024.115100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/31/2024] [Accepted: 12/03/2024] [Indexed: 12/21/2024] Open
Abstract
A century of research established that GABA inhibits proprioceptive inputs presynaptically to sculpt spinal neural inputs into skilled motor output. Recent results in mice challenged this theory by showing that GABA can also facilitate action potential conduction in proprioceptive afferents. Here, we tackle this controversy in monkeys, the most human-relevant animal model, and show that GABAA receptors (GABAARs) indeed facilitate sensory inputs to spinal motoneurons and interneurons and that this mechanism also influences sensory transmission to supraspinal centers. We performed causal manipulations of GABAARs with intrathecal pharmacology in anesthetized monkeys while recording electrical signals in the muscles, spinal cord, thalamus, and cortex. We show that blocking GABAARs suppresses spinal reflexes to hand muscles, sensory-evoked single-unit firing in the spinal cord, and sensory-evoked potentials in the thalamus and somatosensory cortex. Our results portray a sophisticated picture of presynaptic modulation of sensory inputs by GABA in the spinal cord.
Collapse
Affiliation(s)
- Amr A Mahrous
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Lucy Liang
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, Pittsburgh, PA, USA
| | - Josep-Maria Balaguer
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, Pittsburgh, PA, USA
| | - Jonathan C Ho
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Erinn M Grigsby
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA
| | - Vahagn Karapetyan
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, Pittsburgh, PA, USA
| | - Arianna Damiani
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, Pittsburgh, PA, USA
| | - Daryl P Fields
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Peter C Gerszten
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - David J Bennett
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada; Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB, Canada
| | - C J Heckman
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Department of Physical Medicine and Rehabilitation, Shirley Ryan AbilityLab, Chicago, IL, USA
| | - Elvira Pirondini
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, Pittsburgh, PA, USA; Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA; Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA; Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Marco Capogrosso
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, Pittsburgh, PA, USA; Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA; Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
6
|
Marques Dantas RL, Vilela DN, Melo MC, Fernandes G, Lemos N, Faber J. Neurostimulation on lumbosacral nerves as a new treatment for spinal cord injury impairments and its impact on cortical activity: a narrative review. Front Hum Neurosci 2024; 18:1478423. [PMID: 39734668 PMCID: PMC11671511 DOI: 10.3389/fnhum.2024.1478423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/29/2024] [Indexed: 12/31/2024] Open
Abstract
Spinal cord injury (SCI) can cause significant motor, sensory, and autonomic dysfunction by disrupting neural connections. As a result, it is a global health challenge that requires innovative interventions to improve outcomes. This review assesses the wide-ranging impacts of SCI and focuses on the laparoscopic implantation of neuroprosthesis (LION) as an emerging and promising rehabilitation technique. The LION technique involves the surgical implantation of electrodes on lumbosacral nerves to stimulate paralyzed muscles. Recent findings have demonstrated significant improvements in mobility, sexual function, and bladder/bowel control in chronic SCI patients following LION therapy. This manuscript revisits the potential physiological mechanisms underlying these results, including neuroplasticity and modulation of autonomic activity. Additionally, we discuss potential future applications and amendments of LION therapy. This study emphasizes the potential of neuromodulation as a complementary approach to traditional rehabilitation, that can provide a beacon of hope for improving functionality and quality of life for individuals with SCI.
Collapse
Affiliation(s)
- Rodrigo Lantyer Marques Dantas
- Neuroscience Division, Department of Neurology and Neurosurgery, Escola Paulista de Medicina, Federal University of São Paulo, São Paulo, Brazil
| | - Diego N. Vilela
- Neuroscience Division, Department of Neurology and Neurosurgery, Escola Paulista de Medicina, Federal University of São Paulo, São Paulo, Brazil
| | - Mariana Cardoso Melo
- Biomedical Engineering Division, Institute of Science and Technology, Federal University of São Paulo, São José dos Campos, Brazil
| | - Gustavo Fernandes
- Department of Gynecology, Federal University of São Paulo, São Paulo, Brazil
- Department of Gynecology and Neuropelveology, Increasing-Institute of Care and Rehabilitation in Neuropelveology and Gynecology, São Paulo, Brazil
- Department of Obstetrics and Gynecology, Santa Casa de São Paulo School of Medical Sciences, São Paulo, Brazil
| | - Nucelio Lemos
- Department of Gynecology, Federal University of São Paulo, São Paulo, Brazil
- Department of Gynecology and Neuropelveology, Increasing-Institute of Care and Rehabilitation in Neuropelveology and Gynecology, São Paulo, Brazil
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Jean Faber
- Neuroscience Division, Department of Neurology and Neurosurgery, Escola Paulista de Medicina, Federal University of São Paulo, São Paulo, Brazil
- Biomedical Engineering Division, Institute of Science and Technology, Federal University of São Paulo, São José dos Campos, Brazil
| |
Collapse
|
7
|
Giangrande A, Mujunen T, Luigi Cerone G, Botter A, Piitulainen H. Maintained volitional activation of the muscle alters the cortical processing of proprioceptive afference from the ankle joint. Neuroscience 2024; 560:314-325. [PMID: 39357642 DOI: 10.1016/j.neuroscience.2024.09.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/25/2024] [Accepted: 09/28/2024] [Indexed: 10/04/2024]
Abstract
Cortical proprioceptive processing of intermittent, passive movements can be assessed by extracting evoked and induced electroencephalographic (EEG) responses to somatosensory stimuli. Although the existent prior research on somatosensory stimulations, it remains unknown to what extent ongoing volitional muscle activation modulates the proprioceptive cortical processing of passive ankle-joint rotations. Twenty-five healthy volunteers (28.8 ± 7 yr, 14 males) underwent a total of 100 right ankle-joint passive rotations (4° dorsiflexions, 4 ± 0.25 s inter-stimulus interval, 30°/s peak angular velocity) evoked by a movement actuator during passive condition with relaxed ankle and active condition with a constant plantarflexion torque of 5 ± 2.5 Nm. Simultaneously, EEG, electromyographic (EMG) and kinematic signals were collected. Spatiotemporal features of evoked and induced EEG responses to the stimuli were extracted to estimate the modulation of the cortical proprioceptive processing between the active and passive conditions. Proprioceptive stimuli during the active condition elicited robustly ∼26 % larger evoked response and ∼38 % larger beta suppression amplitudes, but ∼42 % weaker beta rebound amplitude over the primary sensorimotor cortex than the passive condition, with no differences in terms of response latencies. These findings indicate that the active volitional motor task during naturalistic proprioceptive stimulation of the ankle joint enhances related cortical activation and reduces related cortical inhibition with respect to the passive condition. Possible factors explaining these results include mechanisms occurring at several levels of the proprioceptive processing from the peripheral muscle (i.e. mechanical, muscle spindle status, etc.) to the different central (i.e. spinal, sub-cortical and cortical) levels.
Collapse
Affiliation(s)
- Alessandra Giangrande
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland; Laboratory of Neuromuscular System and Rehabilitation Engineering, Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy.
| | - Toni Mujunen
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Giacinto Luigi Cerone
- Laboratory of Neuromuscular System and Rehabilitation Engineering, Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy
| | - Alberto Botter
- Laboratory of Neuromuscular System and Rehabilitation Engineering, Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy
| | - Harri Piitulainen
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
8
|
Bandres MF, Gomes JL, McPherson JG. Intraspinal microstimulation of the ventral horn has therapeutically relevant cross-modal effects on nociception. Brain Commun 2024; 6:fcae280. [PMID: 39355006 PMCID: PMC11444082 DOI: 10.1093/braincomms/fcae280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/05/2024] [Accepted: 08/15/2024] [Indexed: 10/03/2024] Open
Abstract
Electrical stimulation of spinal networks below a spinal cord injury is a promising approach to restore functions compromised by inadequate and/or inappropriate neural drive. The most translationally successful examples are paradigms intended to increase neural transmission in weakened yet spared descending motor pathways and spinal motoneurons rendered dormant after being severed from their inputs by lesion. Less well understood is whether spinal stimulation is also capable of reducing neural transmission in pathways made pathologically overactive by spinal cord injury. Debilitating spasms, spasticity and neuropathic pain are all common manifestations of hyperexcitable spinal responses to sensory feedback. Whereas spasms and spasticity can often be managed pharmacologically, spinal cord injury-related neuropathic pain is notoriously medically refractory. Interestingly, however, spinal stimulation is a clinically available option for ameliorating neuropathic pain arising from aetiologies other than spinal cord injury, and the limited evidence available to date suggests that it holds considerable promise for reducing spinal cord injury-related neuropathic pain, as well. Spinal stimulation for pain amelioration has traditionally been assumed to modulate sensorimotor networks overlapping with those engaged by spinal stimulation for rehabilitation of movement impairments. Thus, we hypothesize that spinal stimulation intended to increase the ability to move voluntarily may simultaneously reduce transmission in spinal pain pathways. To test this hypothesis, we coupled a rat model of incomplete thoracic spinal cord injury, which results in moderate to severe bilateral movement impairments and spinal cord injury-related neuropathic pain, with in vivo electrophysiological measures of neural transmission in networks of spinal neurons integral to the development and persistence of the neuropathic pain state. We find that when intraspinal microstimulation is delivered to the ventral horn with the intent of enhancing voluntary movement, transmission through nociceptive specific and wide dynamic range neurons is significantly depressed in response to pain-related sensory feedback. By comparison, spinal responsiveness to non-pain-related sensory feedback is largely preserved. These results suggest that spinal stimulation paradigms could be intentionally designed to afford multi-modal therapeutic benefits, directly addressing the diverse, intersectional rehabilitation goals of people living with spinal cord injury.
Collapse
Affiliation(s)
- Maria F Bandres
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
- Program in Physical Therapy, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Jefferson L Gomes
- Program in Physical Therapy, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Jacob Graves McPherson
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
- Program in Physical Therapy, Washington University School of Medicine, St. Louis, MO 63108, USA
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63108, USA
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO 63108, USA
- Program in Neurosciences, Washington University School of Medicine, St. Louis, MO 63108, USA
| |
Collapse
|
9
|
Arikan BE, Voudouris D, Straube B, Fiehler K. Distinct role of central predictive mechanisms in tactile suppression. iScience 2024; 27:110582. [PMID: 39188983 PMCID: PMC11345528 DOI: 10.1016/j.isci.2024.110582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 05/14/2024] [Accepted: 07/22/2024] [Indexed: 08/28/2024] Open
Abstract
Tactile sensitivity on a limb is reduced during movement. This tactile suppression results presumably from central predictive mechanisms that downregulate sensations caused during voluntary action. Suppression also occurs during passive movements, indicating a role for peripheral mechanisms, questioning the predictive nature of suppression. Yet, predictions existing beyond the motor domain (non-motor predictions) can also modulate tactile suppression. This study aimed to disentangle central motor predictive and peripheral feedback mechanisms while accounting for non-motor predictions. Participants detected tactile stimuli on their limb shortly before it moved in an active or passive manner. Passive movements were either fully (100%) or partially (50%) predictable. We found tactile suppression during both active and passive movements irrespective of whether the passive movements were predictable. Importantly, tactile suppression was stronger in active than passive movements highlighting the specific role of central predictive mechanisms.
Collapse
Affiliation(s)
- Belkis Ezgi Arikan
- Department of Experimental Psychology, Justus Liebig University Giessen, Otto-Behaghel Strasse 10F, Philosophikum I, 35394 Giessen, Germany
- Center for Mind, Brain and Behavior (CMBB) of the University of Marburg, Justus Liebig University Giessen and University of Darmstadt, Hans-Meerwein-Strasse 6, 35032 Marburg, Germany
| | - Dimitris Voudouris
- Department of Experimental Psychology, Justus Liebig University Giessen, Otto-Behaghel Strasse 10F, Philosophikum I, 35394 Giessen, Germany
- Center for Mind, Brain and Behavior (CMBB) of the University of Marburg, Justus Liebig University Giessen and University of Darmstadt, Hans-Meerwein-Strasse 6, 35032 Marburg, Germany
| | - Benjamin Straube
- Center for Mind, Brain and Behavior (CMBB) of the University of Marburg, Justus Liebig University Giessen and University of Darmstadt, Hans-Meerwein-Strasse 6, 35032 Marburg, Germany
- Department of Psychiatry and Psychotherapy, University of Marburg; Rudolf-Bultmann-Strasse 8, 35039 Marburg, Germany
| | - Katja Fiehler
- Department of Experimental Psychology, Justus Liebig University Giessen, Otto-Behaghel Strasse 10F, Philosophikum I, 35394 Giessen, Germany
- Center for Mind, Brain and Behavior (CMBB) of the University of Marburg, Justus Liebig University Giessen and University of Darmstadt, Hans-Meerwein-Strasse 6, 35032 Marburg, Germany
| |
Collapse
|
10
|
Wu Y, Temple BA, Sevilla N, Zhang J, Zhu H, Zolotavin P, Jin Y, Duarte D, Sanders E, Azim E, Nimmerjahn A, Pfaff SL, Luan L, Xie C. Ultraflexible electrodes for recording neural activity in the mouse spinal cord during motor behavior. Cell Rep 2024; 43:114199. [PMID: 38728138 PMCID: PMC11233142 DOI: 10.1016/j.celrep.2024.114199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/10/2024] [Accepted: 04/22/2024] [Indexed: 05/12/2024] Open
Abstract
Implantable electrode arrays are powerful tools for directly interrogating neural circuitry in the brain, but implementing this technology in the spinal cord in behaving animals has been challenging due to the spinal cord's significant motion with respect to the vertebral column during behavior. Consequently, the individual and ensemble activity of spinal neurons processing motor commands remains poorly understood. Here, we demonstrate that custom ultraflexible 1-μm-thick polyimide nanoelectronic threads can conduct laminar recordings of many neuronal units within the lumbar spinal cord of unrestrained, freely moving mice. The extracellular action potentials have high signal-to-noise ratio, exhibit well-isolated feature clusters, and reveal diverse patterns of activity during locomotion. Furthermore, chronic recordings demonstrate the stable tracking of single units and their functional tuning over multiple days. This technology provides a path for elucidating how spinal circuits compute motor actions.
Collapse
Affiliation(s)
- Yu Wu
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA; Rice Neuroengineering Initiative, Rice University, Houston, TX 77030, USA
| | - Benjamin A Temple
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA 92037, USA
| | - Nicole Sevilla
- Rice Neuroengineering Initiative, Rice University, Houston, TX 77030, USA; Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Jiaao Zhang
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA; Rice Neuroengineering Initiative, Rice University, Houston, TX 77030, USA
| | - Hanlin Zhu
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA; Rice Neuroengineering Initiative, Rice University, Houston, TX 77030, USA
| | - Pavlo Zolotavin
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA; Rice Neuroengineering Initiative, Rice University, Houston, TX 77030, USA
| | - Yifu Jin
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA; Rice Neuroengineering Initiative, Rice University, Houston, TX 77030, USA
| | - Daniela Duarte
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Elischa Sanders
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Eiman Azim
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Axel Nimmerjahn
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Samuel L Pfaff
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| | - Lan Luan
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA; Rice Neuroengineering Initiative, Rice University, Houston, TX 77030, USA; Department of Bioengineering, Rice University, Houston, TX 77030, USA.
| | - Chong Xie
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA; Rice Neuroengineering Initiative, Rice University, Houston, TX 77030, USA; Department of Bioengineering, Rice University, Houston, TX 77030, USA.
| |
Collapse
|
11
|
Dallmann CJ, Luo Y, Agrawal S, Chou GM, Cook A, Brunton BW, Tuthill JC. Presynaptic inhibition selectively suppresses leg proprioception in behaving Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.20.563322. [PMID: 37961558 PMCID: PMC10634730 DOI: 10.1101/2023.10.20.563322] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Controlling arms and legs requires feedback from proprioceptive sensory neurons that detect joint position and movement. Proprioceptive feedback must be tuned for different behavioral contexts, but the underlying circuit mechanisms remain poorly understood. Using calcium imaging in behaving Drosophila, we find that the axons of position-encoding leg proprioceptors are active across behaviors, whereas the axons of movement-encoding leg proprioceptors are suppressed during walking and grooming. Using connectomics, we identify a specific class of interneurons that provide GABAergic presynaptic inhibition to the axons of movement-encoding proprioceptors. The predominant synaptic inputs to these interneurons are descending neurons, suggesting they are driven by predictions of leg movement originating in the brain. Calcium imaging from both the interneurons and their descending inputs confirmed that their activity is correlated with self-generated but not passive leg movements. Overall, our findings elucidate a neural circuit for suppressing specific proprioceptive feedback signals during self-generated movements.
Collapse
Affiliation(s)
- Chris J. Dallmann
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
- Present address: Department of Neurobiology and Genetics, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Yichen Luo
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Sweta Agrawal
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
- Present address: School of Neuroscience, Virginia Tech, Blacksburg, VA, USA
| | - Grant M. Chou
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Andrew Cook
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | | | - John C. Tuthill
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
- Lead contact
| |
Collapse
|
12
|
Zobeiri OA, Cullen KE. Cerebellar Purkinje cells in male macaques combine sensory and motor information to predict the sensory consequences of active self-motion. Nat Commun 2024; 15:4003. [PMID: 38734715 PMCID: PMC11088633 DOI: 10.1038/s41467-024-48376-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Accurate perception and behavior rely on distinguishing sensory signals arising from unexpected events from those originating from our own voluntary actions. In the vestibular system, sensory input that is the consequence of active self-motion is canceled early at the first central stage of processing to ensure postural and perceptual stability. However, the source of the required cancellation signal was unknown. Here, we show that the cerebellum combines sensory and motor-related information to predict the sensory consequences of active self-motion. Recordings during attempted but unrealized head movements in two male rhesus monkeys, revealed that the motor-related signals encoded by anterior vermis Purkinje cells explain their altered sensitivity to active versus passive self-motion. Further, a model combining responses from ~40 Purkinje cells accounted for the cancellation observed in early vestibular pathways. These findings establish how cerebellar Purkinje cells predict sensory outcomes of self-movements, resolving a long-standing issue of sensory signal suppression during self-motion.
Collapse
Affiliation(s)
- Omid A Zobeiri
- Department of Biomedical Engineering, McGill University, Montréal, QC, Canada
| | - Kathleen E Cullen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
13
|
Wang H, Ali Y, Max L. Perceptual formant discrimination during speech movement planning. PLoS One 2024; 19:e0301514. [PMID: 38564597 PMCID: PMC10986972 DOI: 10.1371/journal.pone.0301514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/15/2024] [Indexed: 04/04/2024] Open
Abstract
Evoked potential studies have shown that speech planning modulates auditory cortical responses. The phenomenon's functional relevance is unknown. We tested whether, during this time window of cortical auditory modulation, there is an effect on speakers' perceptual sensitivity for vowel formant discrimination. Participants made same/different judgments for pairs of stimuli consisting of a pre-recorded, self-produced vowel and a formant-shifted version of the same production. Stimuli were presented prior to a "go" signal for speaking, prior to passive listening, and during silent reading. The formant discrimination stimulus /uh/ was tested with a congruent productions list (words with /uh/) and an incongruent productions list (words without /uh/). Logistic curves were fitted to participants' responses, and the just-noticeable difference (JND) served as a measure of discrimination sensitivity. We found a statistically significant effect of condition (worst discrimination before speaking) without congruency effect. Post-hoc pairwise comparisons revealed that JND was significantly greater before speaking than during silent reading. Thus, formant discrimination sensitivity was reduced during speech planning regardless of the congruence between discrimination stimulus and predicted acoustic consequences of the planned speech movements. This finding may inform ongoing efforts to determine the functional relevance of the previously reported modulation of auditory processing during speech planning.
Collapse
Affiliation(s)
- Hantao Wang
- Department of Speech and Hearing Sciences, University of Washington, Seattle, Washington, United States of America
| | - Yusuf Ali
- Department of Speech and Hearing Sciences, University of Washington, Seattle, Washington, United States of America
| | - Ludo Max
- Department of Speech and Hearing Sciences, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
14
|
Kubota S, Sasaki C, Kikuta S, Yoshida J, Ito S, Gomi H, Oya T, Seki K. Modulation of somatosensory signal transmission in the primate cuneate nucleus during voluntary hand movement. Cell Rep 2024; 43:113884. [PMID: 38458194 DOI: 10.1016/j.celrep.2024.113884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 01/02/2024] [Accepted: 02/14/2024] [Indexed: 03/10/2024] Open
Abstract
Primate hands house an array of mechanoreceptors and proprioceptors, which are essential for tactile and kinematic information crucial for daily motor action. While the regulation of these somatosensory signals is essential for hand movements, the specific central nervous system (CNS) location and mechanism remain unclear. Our study demonstrates the attenuation of somatosensory signals in the cuneate nucleus during voluntary movement, suggesting significant modulation at this initial relay station in the CNS. The attenuation is comparable to the cerebral cortex but more pronounced than in the spinal cord, indicating the cuneate nuclei's role in somatosensory perception modulation during movement. Moreover, our findings suggest that the descending motor tract may regulate somatosensory transmission in the cuneate nucleus, enhancing relevant signals and suppressing unnecessary ones for the regulation of movement. This process of recurrent somatosensory modulation between cortical and subcortical areas could be a basic mechanism for modulating somatosensory signals to achieve active perception.
Collapse
Affiliation(s)
- Shinji Kubota
- Department of Neurophysiology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8502, Japan
| | - Chika Sasaki
- Department of Neurophysiology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8502, Japan
| | - Satomi Kikuta
- Department of Neurophysiology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8502, Japan
| | - Junichiro Yoshida
- Department of Neurophysiology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8502, Japan
| | - Sho Ito
- NTT Communication Science Laboratories, Nippon Telegraph and Telephone Co., Atsugi, Kanagawa 243-0198, Japan
| | - Hiroaki Gomi
- NTT Communication Science Laboratories, Nippon Telegraph and Telephone Co., Atsugi, Kanagawa 243-0198, Japan
| | - Tomomichi Oya
- Department of Neurophysiology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8502, Japan
| | - Kazuhiko Seki
- Department of Neurophysiology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8502, Japan.
| |
Collapse
|
15
|
Fisher KM, Garner JP, Darian-Smith C. Chronic Adaptations in the Dorsal Horn Following a Cervical Spinal Cord Injury in Primates. J Neurosci 2024; 44:e0877232023. [PMID: 38233220 PMCID: PMC10860610 DOI: 10.1523/jneurosci.0877-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 11/21/2023] [Accepted: 12/01/2023] [Indexed: 01/19/2024] Open
Abstract
Spinal cord injury (SCI) is devastating, with limited treatment options and variable outcomes. Most in vivo SCI research has focused on the acute and early post-injury periods, and the promotion of axonal growth, so little is understood about the clinically stable chronic state, axonal growth over time, and what plasticity endures. Here, we followed animals into the chronic phase following SCI, to address this gap. Male macaques received targeted deafferentation, affecting three digits of one hand, and were divided into short (4-6 months) or long-term (11-12 months) groups, based on post-injury survival times. Monkeys were assessed behaviorally, where possible, and all exhibited an initial post-injury deficit in manual dexterity, with gradual functional recovery over 2 months. We previously reported extensive sprouting of somatosensory corticospinal (S1 CST) fibers in the dorsal horn in the first five post-injury months. Here, we show that by 1 year, the S1 CST sprouting is pruned, with the terminal territory resembling control animals. This was reflected in the number of putatively "functional" synapses observed, which increased over the first 4-5 months, and then returned to baseline by 1 year. Microglia density also increased in the affected dorsal horn at 4-6 months and then decreased, but did not return to baseline by 1 year, suggesting refinement continues beyond this time. Overall, there is a long period of reorganization and consolidation of adaptive circuitry in the dorsal horn, extending well beyond the initial behavioral recovery. This provides a potential window to target therapeutic opportunities during the chronic phase.
Collapse
Affiliation(s)
- Karen M Fisher
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford 94305-5342, California
| | - Joseph P Garner
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford 94305-5342, California
| | - Corinna Darian-Smith
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford 94305-5342, California
| |
Collapse
|
16
|
Mahrous AA, Liang L, Balaguer JM, Ho JC, Hari K, Grigsby EM, Karapetyan V, Damiani A, Fields DP, Gonzalez-Martinez JA, Gerszten PC, Bennett DJ, Heckman CJ, Pirondini E, Capogrosso M. GABA Increases Sensory Transmission In Monkeys. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.28.573467. [PMID: 38234767 PMCID: PMC10793394 DOI: 10.1101/2023.12.28.573467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Sensory input flow is central to voluntary movements. For almost a century, GABA was believed to modulate this flow by inhibiting sensory axons in the spinal cord to sculpt neural inputs into skilled motor output. Instead, here we show that GABA can also facilitate sensory transmission in monkeys and consequently increase spinal and cortical neural responses to sensory inputs challenging our understanding of generation and perception of movement.
Collapse
|
17
|
Tomatsu S, Kim G, Kubota S, Seki K. Presynaptic gating of monkey proprioceptive signals for proper motor action. Nat Commun 2023; 14:6537. [PMID: 37880215 PMCID: PMC10600222 DOI: 10.1038/s41467-023-42077-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 09/28/2023] [Indexed: 10/27/2023] Open
Abstract
Our rich behavioural repertoire is supported by complicated synaptic connectivity in the central nervous system, which must be modulated to prevent behavioural control from being overwhelmed. For this modulation, presynaptic inhibition is an efficient mechanism because it can gate specific synaptic input without interfering with main circuit operations. Previously, we reported the task-dependent presynaptic inhibition of the cutaneous afferent input to the spinal cord in behaving monkeys. Here, we report presynaptic inhibition of the proprioceptive afferent input. We found that the input from shortened muscles is transiently facilitated, whereas that from lengthened muscles is persistently reduced. This presynaptic inhibition could be generated by cortical signals because it started before movement onset, and its size was correlated with the performance of stable motor output. Our findings demonstrate that presynaptic inhibition acts as a dynamic filter of proprioceptive signals, enabling the integration of task-relevant signals into spinal circuits.
Collapse
Affiliation(s)
- Saeka Tomatsu
- National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
- Division of Behavioral Development, Department of System Neuroscience, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
- Department of Physiological Sciences, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Hayama, Kanagawa, Japan
| | - GeeHee Kim
- National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
- Division of Behavioral Development, Department of Developmental Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
- Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Tokyo, Japan
| | - Shinji Kubota
- National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Kazuhiko Seki
- National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan.
- Department of Physiological Sciences, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Hayama, Kanagawa, Japan.
- Division of Behavioral Development, Department of Developmental Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi, Japan.
| |
Collapse
|
18
|
Wang H, Ali Y, Max L. Perceptual formant discrimination during speech movement planning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.11.561423. [PMID: 37873157 PMCID: PMC10592784 DOI: 10.1101/2023.10.11.561423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Evoked potential studies have shown that speech planning modulates auditory cortical responses. The phenomenon's functional relevance is unknown. We tested whether, during this time window of cortical auditory modulation, there is an effect on speakers' perceptual sensitivity for vowel formant discrimination. Participants made same/different judgments for pairs of stimuli consisting of a pre-recorded, self-produced vowel and a formant-shifted version of the same production. Stimuli were presented prior to a "go" signal for speaking, prior to passive listening, and during silent reading. The formant discrimination stimulus /uh/ was tested with a congruent productions list (words with /uh/) and an incongruent productions list (words without /uh/). Logistic curves were fitted to participants' responses, and the just-noticeable difference (JND) served as a measure of discrimination sensitivity. We found a statistically significant effect of condition (worst discrimination before speaking) without congruency effect. Post-hoc pairwise comparisons revealed that JND was significantly greater before speaking than during silent reading. Thus, formant discrimination sensitivity was reduced during speech planning regardless of the congruence between discrimination stimulus and predicted acoustic consequences of the planned speech movements. This finding may inform ongoing efforts to determine the functional relevance of the previously reported modulation of auditory processing during speech planning.
Collapse
Affiliation(s)
- Hantao Wang
- Department of Speech and Hearing Sciences, University of Washington, Seattle, Washington, United States of America
| | - Yusuf Ali
- Department of Speech and Hearing Sciences, University of Washington, Seattle, Washington, United States of America
| | - Ludo Max
- Department of Speech and Hearing Sciences, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
19
|
Cai NM, Medina EG, Gonzalez S, Duong A, Gurari N. Impact of Arm Dominance and Location on Detecting Electrotactile Stimuli During Voluntary Motor Activation in Older Adults. IEEE TRANSACTIONS ON HAPTICS 2023; 16:484-490. [PMID: 37074882 PMCID: PMC11403864 DOI: 10.1109/toh.2023.3268203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Activation-related sensory gating is important for sensorimotor control, filtering signals irrelevant to a task. Literature on brain lateralization suggests that motor activation patterns during sensorimotor control differ depending on arm dominance. Whether the lateralization effect extends to how sensory signals modulate during voluntary sensorimotor control remains unaddressed. We compared tactile sensory gating during voluntary motor activation between the arms of older adults. Eight right-arm dominant participants received a single-pulse, 100 μs square-wave electrotactile stimulus at their testing arm's fingertip or elbow. We identified at both arms the threshold at which the electrotactile stimulus was detected when participants were at rest (baseline) and isometrically flexing about the elbow to 25% and 50% of their maximum voluntary torque. Results reveal a difference in the detection threshold at the fingertip (p 0.001) between the arms, yet not the elbow (p = 0.264). Additionally, results demonstrate that greater isometric flexion about the elbow yields increased detection thresholds at the elbow (p = 0.005), yet not the fingertip (p = 0.069). However, the changes in detection threshold during motor activation did not significantly differ between the arms (p = 0.154). The findings regarding an impact of arm dominance and location on tactile perception are important when considering sensorimotorhaptic perception and training, including post-unilateral injury.
Collapse
Affiliation(s)
- Ninghe M. Cai
- NMC, SG, AG, and NG are with the Department of Physical Therapy and Human Movement Sciences, Northwestern University, 645 N Michigan Ave Suite 1100, Chicago, IL, 60611, USA
| | - Eileen G. Medina
- EGM and NG are with the Department of Biomedical Engineering & Mechanics, Virginia Polytechnic Institute and State University, 495 Old Turner St, Blacksburg, VA, 24061, USA
| | - Stefani Gonzalez
- NMC, SG, AG, and NG are with the Department of Physical Therapy and Human Movement Sciences, Northwestern University, 645 N Michigan Ave Suite 1100, Chicago, IL, 60611, USA
| | - Alan Duong
- NMC, SG, AG, and NG are with the Department of Physical Therapy and Human Movement Sciences, Northwestern University, 645 N Michigan Ave Suite 1100, Chicago, IL, 60611, USA
| | - Netta Gurari
- NMC, SG, AG, and NG are with the Department of Physical Therapy and Human Movement Sciences, Northwestern University, 645 N Michigan Ave Suite 1100, Chicago, IL, 60611, USA
- EGM and NG are with the Department of Biomedical Engineering & Mechanics, Virginia Polytechnic Institute and State University, 495 Old Turner St, Blacksburg, VA, 24061, USA
| |
Collapse
|
20
|
Shimizu T, Nakayama Y, Bokuda K, Takahashi K. Sensory Gating during Voluntary Finger Movement in Amyotrophic Lateral Sclerosis with Sensory Cortex Hyperexcitability. Brain Sci 2023; 13:1325. [PMID: 37759926 PMCID: PMC10526384 DOI: 10.3390/brainsci13091325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/06/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Cortical responses in somatosensory evoked potentials (SEP) are enhanced in patients with amyotrophic lateral sclerosis (ALS). This study investigated whether sensory gating is involved in the pathophysiology of sensory cortical hyperactivity in ALS patients. The median nerve SEP was recorded at rest and during voluntary finger movements in 14 ALS patients and 13 healthy control subjects. The parietal N20, P25, and frontal N30 were analyzed, and sensory gating was assessed by measuring the amplitude of each component during finger movement. The amplitudes of the N20 onset-peak, N20 peak-P25 peak, and N30 onset-peak were higher in ALS patients than in controls. Nonetheless, there were no significant differences in the amplitude reduction ratio of SEPs between patients and controls. There was a significant correlation between the baseline amplitudes of the N20 onset-peak or N20 peak-P25 peak and their gating ratios in patients with ALS. Our findings indicate that the excitability of the primary sensory cortex and secondary motor cortex is enhanced in ALS, while sensory gating is preserved in the early stages of ALS. This result suggests that enhanced SEP is caused by the hyperexcitability of the primary sensory and secondary motor cortices but not by the dysfunction of inhibitory mechanisms during voluntary movements.
Collapse
Affiliation(s)
- Toshio Shimizu
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Tokyo 183-0042, Japan; (K.B.); (K.T.)
| | - Yuki Nakayama
- Unit for Intractable Disease Nursing Care, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan;
| | - Kota Bokuda
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Tokyo 183-0042, Japan; (K.B.); (K.T.)
| | - Kazushi Takahashi
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Tokyo 183-0042, Japan; (K.B.); (K.T.)
| |
Collapse
|
21
|
Sutter C, Moinon A, Felicetti L, Massi F, Blouin J, Mouchnino L. Cortical facilitation of tactile afferents during the preparation of a body weight transfer when standing on a biomimetic surface. Front Neurol 2023; 14:1175667. [PMID: 37404946 PMCID: PMC10315651 DOI: 10.3389/fneur.2023.1175667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/30/2023] [Indexed: 07/06/2023] Open
Abstract
Self-generated movement shapes tactile perception, but few studies have investigated the brain mechanisms involved in the processing of the mechanical signals related to the static and transient skin deformations generated by forces and pressures exerted between the foot skin and the standing surface. We recently found that standing on a biomimetic surface (i.e., inspired by the characteristics of mechanoreceptors and skin dermatoglyphics), that magnified skin-surface interaction, increased the sensory flow to the somatosensory cortex and improved balance control compared to standing on control (e.g., smooth) surfaces. In this study, we tested whether the well-known sensory suppression that occurs during movements is alleviated when the tactile afferent signal becomes relevant with the use of a biomimetic surface. Eyes-closed participants (n = 25) self-stimulated their foot cutaneous receptors by shifting their body weight toward one of their legs while standing on either a biomimetic or a control (smooth) surface. In a control task, similar forces were exerted on the surfaces (i.e., similar skin-surface interaction) by passive translations of the surfaces. Sensory gating was assessed by measuring the amplitude of the somatosensory-evoked potential over the vertex (SEP, recorded by EEG). Significantly larger and shorter SEPs were found when participants stood on the biomimetic surface. This was observed whether the forces exerted on the surface were self-generated or passively generated. Contrary to our prediction, we found that the sensory attenuation related to the self-generated movement did not significantly differ between the biomimetic and control surfaces. However, we observed an increase in gamma activity (30-50 Hz) over centroparietal regions during the preparation phase of the weight shift only when participants stood on the biomimetic surface. This result might suggest that gamma-band oscillations play an important functional role in processing behaviorally relevant stimuli during the early stages of body weight transfer.
Collapse
Affiliation(s)
- Chloé Sutter
- Laboratoire de Neurosciences Cognitives, FR 3C, CNRS, Aix Marseille Université, Marseille, France
| | - Alix Moinon
- Laboratoire de Neurosciences Cognitives, FR 3C, CNRS, Aix Marseille Université, Marseille, France
| | - Livia Felicetti
- Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, Rome, Italy
- LAMCOS, INSA Lyon, CNRS, UMR5259, Université Lyon, Villeurbanne, France
| | - Francesco Massi
- Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, Rome, Italy
| | - Jean Blouin
- Laboratoire de Neurosciences Cognitives, FR 3C, CNRS, Aix Marseille Université, Marseille, France
| | - Laurence Mouchnino
- Laboratoire de Neurosciences Cognitives, FR 3C, CNRS, Aix Marseille Université, Marseille, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|
22
|
Metz K, Matos IC, Li Y, Afsharipour B, Thompson CK, Negro F, Quinlan KA, Bennett DJ, Gorassini MA. Facilitation of sensory transmission to motoneurons during cortical or sensory-evoked primary afferent depolarization (PAD) in humans. J Physiol 2023; 601:1897-1924. [PMID: 36916205 PMCID: PMC11037101 DOI: 10.1113/jp284275] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
Sensory and corticospinal tract (CST) pathways activate spinal GABAergic interneurons that have axoaxonic connections onto proprioceptive (Ia) afferents that cause long-lasting depolarizations (termed primary afferent depolarization, PAD). In rodents, sensory-evoked PAD is produced by GABAA receptors at nodes of Ranvier in Ia afferents, rather than at presynaptic terminals, and facilitates spike propagation to motoneurons by preventing branch-point failures, rather than causing presynaptic inhibition. We examined in 40 human participants whether putative activation of Ia-PAD by sensory or CST pathways can also facilitate Ia afferent activation of motoneurons via the H-reflex. H-reflexes in several leg muscles were facilitated by prior conditioning from low-threshold proprioceptive, cutaneous or CST pathways, with a similar long-lasting time course (∼200 ms) to phasic PAD measured in rodent Ia afferents. Long trains of cutaneous or proprioceptive afferent conditioning produced longer-lasting facilitation of the H-reflex for up to 2 min, consistent with tonic PAD in rodent Ia afferents mediated by nodal α5-GABAA receptors for similar stimulation trains. Facilitation of H-reflexes by this conditioning was likely not mediated by direct facilitation of the motoneurons because isolated stimulation of sensory or CST pathways did not alone facilitate the tonic firing rate of motor units. Furthermore, cutaneous conditioning increased the firing probability of single motor units (motoneurons) during the H-reflex without increasing their firing rate at this time, indicating that the underlying excitatory postsynaptic potential was more probable, but not larger. These results are consistent with sensory and CST pathways activating nodal GABAA receptors that reduce intermittent failure of action potentials propagating into Ia afferent branches. KEY POINTS: Controlled execution of posture and movement requires continually adjusted feedback from peripheral sensory pathways, especially those that carry proprioceptive information about body position, movement and effort. It was previously thought that the flow of proprioceptive feedback from Ia afferents was only reduced by GABAergic neurons in the spinal cord that sent axoaxonic projections to the terminal endings of sensory axons (termed GABAaxo neurons). Based on new findings in rodents, we provide complementary evidence in humans to suggest that sensory and corticospinal pathways known to activate GABAaxo neurons that project to dorsal parts of the Ia afferent also increase the flow of proprioceptive feedback to motoneurons in the spinal cord. These findings support a new role for spinal GABAaxo neurons in facilitating afferent feedback to the spinal cord during voluntary or reflexive movements.
Collapse
Affiliation(s)
- Krista Metz
- Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Isabel Concha Matos
- Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Yaqing Li
- Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Babak Afsharipour
- Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | | | - Francesco Negro
- Clinical and Experimental Sciences, Universita degli Studi di Brescia, Brescia, Italy
| | - Katharina A Quinlan
- George and Anne Ryan Institute for Neuroscience, Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, USA
| | - David J Bennett
- Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Monica A Gorassini
- Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| |
Collapse
|
23
|
Bandres MF, Gomes JL, McPherson JG. Motor-targeted spinal stimulation promotes concurrent rebalancing of pathologic nociceptive transmission in chronic spinal cord injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.12.536477. [PMID: 37090665 PMCID: PMC10120632 DOI: 10.1101/2023.04.12.536477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Electrical stimulation of spinal networks below a spinal cord injury (SCI) is a promising approach to restore functions compromised by inadequate excitatory neural drive. The most translationally successful examples are paradigms intended to increase neural transmission in weakened yet spared motor pathways and spinal motor networks rendered dormant after being severed from their inputs by lesion. Less well understood is whether spinal stimulation is also capable of reducing neural transmission in pathways made pathologically overactive by SCI. Debilitating spasms, spasticity, and neuropathic pain are all common manifestations of hyperexcitable spinal responses to sensory feedback. But whereas spasms and spasticity can often be managed pharmacologically, SCI-related neuropathic pain is notoriously medically refractory. Interestingly, however, spinal stimulation is a clinically available option for ameliorating neuropathic pain arising from etiologies other than SCI, and it has traditionally been assumed to modulate sensorimotor networks overlapping with those engaged by spinal stimulation for motor rehabilitation. Thus, we reasoned that spinal stimulation intended to increase transmission in motor pathways may simultaneously reduce transmission in spinal pain pathways. Using a well-validated pre-clinical model of SCI that results in severe bilateral motor impairments and SCI-related neuropathic pain, we show that the responsiveness of neurons integral to the development and persistence of the neuropathic pain state can be enduringly reduced by motor-targeted spinal stimulation while preserving spinal responses to non-pain-related sensory feedback. These results suggest that spinal stimulation paradigms could be intentionally designed to afford multi-modal therapeutic benefits, directly addressing the diverse, intersectional rehabilitation goals of people living with SCI.
Collapse
|
24
|
Trevarrow MP, Bergwell HE, Groff BR, Wiesman AI, Wilson TW, Kurz MJ. Youth with Cerebral Palsy Display Abnormal Somatosensory Cortical Activity During a Haptic Exploration Task. Neuroscience 2023; 515:53-61. [PMID: 36796750 PMCID: PMC10023489 DOI: 10.1016/j.neuroscience.2023.01.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 01/22/2023] [Accepted: 01/25/2023] [Indexed: 02/16/2023]
Abstract
There are numerous clinical reports that youth with cerebral palsy (CP) have proprioceptive, stereognosis and tactile discrimination deficits. The growing consensus is that the altered perceptions in this population are attributable to aberrant somatosensory cortical activity seen during stimulus processing. It has been inferred from these results that youth with CP likely do not adequately process ongoing sensory feedback during motor performance. However, this conjecture has not been tested. Herein, we address this knowledge gap using magnetoencephalographic (MEG) brain imaging by applying electrical stimulation to the median nerve of youth with CP (N = 15, Age = 15.8 ± 0.83 yrs, Males = 12, MACS levels I-III) and neurotypical (NT) controls (N = 18, Age = 14.1 ± 2.4 yrs, Males = 9) while at rest (i.e., passive) and during a haptic exploration task. The results illustrated that the somatosensory cortical activity was reduced in the group with CP compared to controls during the passive and haptic conditions. Furthermore, the strength of the somatosensory cortical responses during the passive condition were positively associated with the strength of somatosensory cortical responses during the haptic condition (r = 0.75, P = 0.004). This indicates that the aberrant somatosensory cortical responses seen in youth with CP during rest are a good predictor of the extent of somatosensory cortical dysfunction during the performance of motor actions. These data provide novel evidence that aberrations in somatosensory cortical function in youth with CP likely contribute to the difficulties in sensorimotor integration and the ability to effectively plan and execute motor actions.
Collapse
Affiliation(s)
- Michael P Trevarrow
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA
| | - Hannah E Bergwell
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA
| | - Boman R Groff
- Department of Psychology & Neuroscience, University of Colorado, Boulder, CO, USA
| | | | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA; Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA
| | - Max J Kurz
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA; Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA.
| |
Collapse
|
25
|
Kitamura T, Masugi Y, Yamamoto SI, Ogata T, Kawashima N, Nakazawa K. Modulation of corticospinal excitability related to the forearm muscle during robot-assisted stepping in humans. Exp Brain Res 2023; 241:1089-1100. [PMID: 36928923 PMCID: PMC10082104 DOI: 10.1007/s00221-023-06565-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 01/28/2023] [Indexed: 03/18/2023]
Abstract
In recent years, the neural control mechanisms of the arms and legs during human bipedal walking have been clarified. Rhythmic leg stepping leads to suppression of monosynaptic reflex excitability in forearm muscles. However, it is unknown whether and how corticospinal excitability of the forearm muscle is modulated during leg stepping. The purpose of the present study was to investigate the excitability of the corticospinal tract in the forearm muscle during passive and voluntary stepping. To compare the neural effects on corticospinal excitability to those on monosynaptic reflex excitability, the present study also assessed the excitability of the H-reflex in the forearm muscle during both types of stepping. A robotic gait orthosis was used to produce leg stepping movements similar to those of normal walking. Motor evoked potentials (MEPs) and H-reflexes were evoked in the flexor carpi radialis (FCR) muscle during passive and voluntary stepping. The results showed that FCR MEP amplitudes were significantly enhanced during the mid-stance and terminal-swing phases of voluntary stepping, while there was no significant difference between the phases during passive stepping. Conversely, the FCR H-reflex was suppressed during both voluntary and passive stepping, compared to the standing condition. The present results demonstrated that voluntary commands to leg muscles, combined with somatosensory inputs, may facilitate corticospinal excitability in the forearm muscle, and that somatosensory inputs during walking play a major role in monosynaptic reflex suppression in forearm muscle.
Collapse
Affiliation(s)
- Taku Kitamura
- Department of Bio-Science and Engineering, Graduate School of Engineering and Science, Shibaura Institute of Technology, Saitama-shi, Saitama, Japan.,Motor Control Section, Department of Rehabilitation for Movement Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Tokorozawa-shi, Saitama, Japan.,Robotics Program, Tokyo Metropolitan College of Industrial Technology, Arakawa-ku, Tokyo, Japan
| | - Yohei Masugi
- Motor Control Section, Department of Rehabilitation for Movement Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Tokorozawa-shi, Saitama, Japan.,Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-Ku, Tokyo, 153-8902, Japan.,Department of Physical Therapy, School of Health Sciences, Tokyo International University, Kawagoe-shi, Saitama, Japan
| | - Shin-Ichiroh Yamamoto
- Department of Bio-Science and Engineering, College of Systems Engineering and Science, Shibaura Institute of Technology, Saitama-shi, Saitama, Japan
| | - Toru Ogata
- Motor Control Section, Department of Rehabilitation for Movement Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Tokorozawa-shi, Saitama, Japan.,Department of Rehabilitation Medicine, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Noritaka Kawashima
- Motor Control Section, Department of Rehabilitation for Movement Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Tokorozawa-shi, Saitama, Japan
| | - Kimitaka Nakazawa
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-Ku, Tokyo, 153-8902, Japan.
| |
Collapse
|
26
|
Modulation of sensorimotor oscillation by sensory gating in the frontal cortex. Neuroreport 2023; 34:9-16. [PMID: 36504037 DOI: 10.1097/wnr.0000000000001850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVES To reveal that nonprimary motor-related areas located in the upper stream of the sensorimotor area are associated with self-regulated local electroencephalogram changes in the sensorimotor area during motor tasks. METHODS Among healthy participants, we measured the gating of somatosensory-evoked potentials (SEPs) in nonprimary motor-related areas and the sensorimotor area, and event-related desynchronisation, which reflects the excitability changes of the neurons localised in the sensorimotor area during motor execution and imagery. RESULTS We confirmed significant correlations between beta-band event-related desynchronisation and the somatosensory-evoked potential gating of frontal N30 during motor imagery and execution (motor imagery: r = 0.723; P < 0.05; motor execution: r = 0.873; P < 0.05), and nonsignificant correlations between beta-band event-related desynchronisation and the somatosensory-evoked potential gating of N20 (motor imagery: r = 0.079; P > 0.05; motor execution: r = 0.449; P > 0.05). CONCLUSIONS The N30 gating of SEPs, with which the beta-band event-related desynchronisation was associated, implies that they modulate sensory input to the supplementary motor area/premotor cortex during motor tasks, the beta-band self-regulated local electroencephalogram changes in the sensorimotor area related sensory input to the supplementary motor area/premotor cortex, and not to primary sensory area derived from N20 gating. This study suggests that some motor commands are derived from sensory gating in the supplementary motor area/premotor cortex.
Collapse
|
27
|
Krotov V, Agashkov K, Krasniakova M, Safronov BV, Belan P, Voitenko N. Segmental and descending control of primary afferent input to the spinal lamina X. Pain 2022; 163:2014-2020. [PMID: 35297816 PMCID: PMC9339045 DOI: 10.1097/j.pain.0000000000002597] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 01/03/2022] [Accepted: 01/20/2022] [Indexed: 02/04/2023]
Abstract
ABSTRACT Despite being involved in a number of functions, such as nociception and locomotion, spinal lamina X remains one of the least studied central nervous system regions. Here, we show that Aδ- and C-afferent inputs to lamina X neurons are presynaptically inhibited by homo- and heterosegmental afferents as well as by descending fibers from the corticospinal tract, dorsolateral funiculus, and anterior funiculus. Activation of descending tracts suppresses primary afferent-evoked action potentials and also elicits excitatory (mono- and polysynaptic) and inhibitory postsynaptic responses in lamina X neurons. Thus, primary afferent input to lamina X is subject to both spinal and supraspinal control being regulated by at least 5 distinct pathways.
Collapse
Affiliation(s)
- Volodymyr Krotov
- Departments of Sensory Signaling and
- Molecular Biophysics, Bogomoletz Institute of Physiology, Kyiv, Ukraine
| | | | | | - Boris V. Safronov
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Neuronal Networks Group, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Pavel Belan
- Molecular Biophysics, Bogomoletz Institute of Physiology, Kyiv, Ukraine
- Kyiv Academic University, Kyiv, Ukraine
| | - Nana Voitenko
- Departments of Sensory Signaling and
- Kyiv Academic University, Kyiv, Ukraine
- Private Institution Dobrobut Academy, Kyiv, Ukraine
| |
Collapse
|
28
|
Barra B, Conti S, Perich MG, Zhuang K, Schiavone G, Fallegger F, Galan K, James ND, Barraud Q, Delacombaz M, Kaeser M, Rouiller EM, Milekovic T, Lacour S, Bloch J, Courtine G, Capogrosso M. Epidural electrical stimulation of the cervical dorsal roots restores voluntary upper limb control in paralyzed monkeys. Nat Neurosci 2022; 25:924-934. [PMID: 35773543 DOI: 10.1038/s41593-022-01106-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 05/19/2022] [Indexed: 11/09/2022]
Abstract
Regaining arm control is a top priority for people with paralysis. Unfortunately, the complexity of the neural mechanisms underlying arm control has limited the effectiveness of neurotechnology approaches. Here, we exploited the neural function of surviving spinal circuits to restore voluntary arm and hand control in three monkeys with spinal cord injury, using spinal cord stimulation. Our neural interface leverages the functional organization of the dorsal roots to convey artificial excitation via electrical stimulation to relevant spinal segments at appropriate movement phases. Stimulation bursts targeting specific spinal segments produced sustained arm movements, enabling monkeys with arm paralysis to perform an unconstrained reach-and-grasp task. Stimulation specifically improved strength, task performances and movement quality. Electrophysiology suggested that residual descending inputs were necessary to produce coordinated movements. The efficacy and reliability of our approach hold realistic promises of clinical translation.
Collapse
Affiliation(s)
- Beatrice Barra
- Platform of Translational Neuroscience, Department of Neuroscience and Movement Sciences, Faculty of Sciences and Medicine, University of Fribourg, Fribourg, Switzerland.,Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sara Conti
- Platform of Translational Neuroscience, Department of Neuroscience and Movement Sciences, Faculty of Sciences and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Matthew G Perich
- Department of Fundamental Neuroscience, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Katie Zhuang
- Platform of Translational Neuroscience, Department of Neuroscience and Movement Sciences, Faculty of Sciences and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Giuseppe Schiavone
- Bertarelli Foundation Chair in Neuroprosthetic Technology, Laboratory for Soft Bioelectronic Interfaces, Institute of Microengineering, Institute of Bioengineering, Centre for Neuroprosthetics, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Florian Fallegger
- Bertarelli Foundation Chair in Neuroprosthetic Technology, Laboratory for Soft Bioelectronic Interfaces, Institute of Microengineering, Institute of Bioengineering, Centre for Neuroprosthetics, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Katia Galan
- Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Defitech Center for Interventional Neurotherapies (NeuroRestore), University Hospital Lausanne (CHUV), University of Lausanne (UNIL) and École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Nicholas D James
- Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Quentin Barraud
- Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Defitech Center for Interventional Neurotherapies (NeuroRestore), University Hospital Lausanne (CHUV), University of Lausanne (UNIL) and École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Maude Delacombaz
- Platform of Translational Neuroscience, Department of Neuroscience and Movement Sciences, Faculty of Sciences and Medicine, University of Fribourg, Fribourg, Switzerland.,Defitech Center for Interventional Neurotherapies (NeuroRestore), University Hospital Lausanne (CHUV), University of Lausanne (UNIL) and École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Mélanie Kaeser
- Platform of Translational Neuroscience, Department of Neuroscience and Movement Sciences, Faculty of Sciences and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Eric M Rouiller
- Platform of Translational Neuroscience, Department of Neuroscience and Movement Sciences, Faculty of Sciences and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Tomislav Milekovic
- Department of Fundamental Neuroscience, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Defitech Center for Interventional Neurotherapies (NeuroRestore), University Hospital Lausanne (CHUV), University of Lausanne (UNIL) and École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Stephanie Lacour
- Bertarelli Foundation Chair in Neuroprosthetic Technology, Laboratory for Soft Bioelectronic Interfaces, Institute of Microengineering, Institute of Bioengineering, Centre for Neuroprosthetics, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Jocelyne Bloch
- Defitech Center for Interventional Neurotherapies (NeuroRestore), University Hospital Lausanne (CHUV), University of Lausanne (UNIL) and École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Department of Neurosurgery, CHUV, Lausanne, Switzerland
| | - Grégoire Courtine
- Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Defitech Center for Interventional Neurotherapies (NeuroRestore), University Hospital Lausanne (CHUV), University of Lausanne (UNIL) and École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Department of Neurosurgery, CHUV, Lausanne, Switzerland
| | - Marco Capogrosso
- Platform of Translational Neuroscience, Department of Neuroscience and Movement Sciences, Faculty of Sciences and Medicine, University of Fribourg, Fribourg, Switzerland. .,Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA. .,Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
29
|
Misencoding of ankle joint angle control system via cutaneous afferents reflex pathway in chronic ankle instability. Exp Brain Res 2022; 240:2327-2337. [PMID: 35764722 DOI: 10.1007/s00221-022-06406-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 06/21/2022] [Indexed: 11/04/2022]
Abstract
This study aimed to investigate how the cutaneous reflexes in the peroneus longus (PL) muscle are affected by changing the ankle joint position in patients with chronic ankle instability (CAI). We also investigated the correlation between the degree of reflex modulation and angle position sense of the ankle joint. The participants were 19 patients with CAI and 20 age-matched controls. Cutaneous reflexes were elicited by applying non-noxious electrical stimulation to the sural nerve at the ankle joint in the neutral standing and eversion/inversion standing positions. The suppressive middle latency cutaneous reflex (MLR; ~ 70-120 ms) and angle position sense of the ankle joint were assessed. During neutral standing, the gain of the suppressive MLR was more prominent in the CAI patients than in controls, although no significant difference was seen during 30° inversion standing. In addition, the ratios of the suppressive MLR and background electromyography in a neutral position were significantly larger than those at the 15°, 25°, and 30° inversion positions in CAI patients. No such difference was seen in control individuals. Furthermore, the correlations between reflex modulation degree and position sense error were quite different in CAI patients compared to controls. These findings suggest that the sensory-motor system was deteriorated in CAI patients due to changes in the PL cutaneous reflex pathway excitability and position sense of the ankle joint.
Collapse
|
30
|
Fujiwara Y, Ushiba J. Deep Residual Convolutional Neural Networks for Brain-Computer Interface to Visualize Neural Processing of Hand Movements in the Human Brain. Front Comput Neurosci 2022; 16:882290. [PMID: 35669388 PMCID: PMC9165810 DOI: 10.3389/fncom.2022.882290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/19/2022] [Indexed: 11/29/2022] Open
Abstract
Concomitant with the development of deep learning, brain-computer interface (BCI) decoding technology has been rapidly evolving. Convolutional neural networks (CNNs), which are generally used as electroencephalography (EEG) classification models, are often deployed in BCI prototypes to improve the estimation accuracy of a participant's brain activity. However, because most BCI models are trained, validated, and tested via within-subject cross-validation and there is no corresponding generalization model, their applicability to unknown participants is not guaranteed. In this study, to facilitate the generalization of BCI model performance to unknown participants, we trained a model comprising multiple layers of residual CNNs and visualized the reasons for BCI classification to reveal the location and timing of neural activities that contribute to classification. Specifically, to develop a BCI that can distinguish between rest, left-hand movement, and right-hand movement tasks with high accuracy, we created multilayers of CNNs, inserted residual networks into the multilayers, and used a larger dataset than in previous studies. The constructed model was analyzed with gradient-class activation mapping (Grad-CAM). We evaluated the developed model via subject cross-validation and found that it achieved significantly improved accuracy (85.69 ± 1.10%) compared with conventional models or without residual networks. Grad-CAM analysis of the classification of cases in which our model produced correct answers showed localized activity near the premotor cortex. These results confirm the effectiveness of inserting residual networks into CNNs for tuning BCI. Further, they suggest that recording EEG signals over the premotor cortex and some other areas contributes to high classification accuracy.
Collapse
Affiliation(s)
- Yosuke Fujiwara
- Graduate School of Science and Technology, Keio University, Yokohama, Japan
- Information Services International-Dentsu, Ltd., Tokyo, Japan
| | - Junichi Ushiba
- Faculty of Science and Technology, Keio University, Yokohama, Japan
| |
Collapse
|
31
|
Kilteni K, Ehrsson HH. Predictive attenuation of touch and tactile gating are distinct perceptual phenomena. iScience 2022; 25:104077. [PMID: 35372807 PMCID: PMC8968059 DOI: 10.1016/j.isci.2022.104077] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/21/2021] [Accepted: 03/11/2022] [Indexed: 01/26/2023] Open
Abstract
In recent decades, research on somatosensory perception has led to two important observations. First, self-generated touches that are predicted by voluntary movements become attenuated compared with externally generated touches of the same intensity (attenuation). Second, externally generated touches feel weaker and are more difficult to detect during movement than at rest (gating). At present, researchers often consider gating and attenuation the same suppression process; however, this assumption is unwarranted because, despite more than 40 years of research, no study has combined them in a single paradigm. We quantified how people perceive self-generated and externally generated touches during movement and rest. We show that whereas voluntary movement gates the precision of both self-generated and externally generated touch, the amplitude of self-generated touch is robustly attenuated compared with externally generated touch. Furthermore, attenuation and gating do not interact and are not correlated, and we conclude that they represent distinct perceptual phenomena.
Collapse
Affiliation(s)
- Konstantina Kilteni
- Department of Neuroscience, Karolinska Institutet, Solnavägen 9, 17165 Stockholm, Sweden
| | - H Henrik Ehrsson
- Department of Neuroscience, Karolinska Institutet, Solnavägen 9, 17165 Stockholm, Sweden
| |
Collapse
|
32
|
Non-invasive recording of high-frequency signals from the human spinal cord. Neuroimage 2022; 253:119050. [PMID: 35276364 DOI: 10.1016/j.neuroimage.2022.119050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 02/16/2022] [Accepted: 03/01/2022] [Indexed: 11/24/2022] Open
Abstract
Throughout the somatosensory system, neuronal ensembles generate high-frequency signals in the range of several hundred Hertz in response to sensory input. High-frequency signals have been related to neuronal spiking, and could thus help clarify the functional architecture of sensory processing. Recording high-frequency signals from subcortical regions, however, has been limited to clinical pathology whose treatment allows for invasive recordings. Here, we demonstrate the feasibility to record 200-1200 Hz signals from the human spinal cord non-invasively, and in healthy individuals. Using standard electroencephalography equipment in a cervical electrode montage, we observed high-frequency signals between 200 and 1200 Hz in a time window between 8 and 16 ms after electric median nerve stimulation (n = 15). These signals overlapped in latency, and, partly, in frequency, with signals obtained via invasive, epidural recordings from the spinal cord in a patient with neuropathic pain. Importantly, the observed high-frequency signals were dissociable from classic spinal evoked responses. A spatial filter that optimized the signal-to-noise ratio of high-frequency signals led to submaximal amplitudes of the evoked response, and vice versa, ruling out the possibility that high-frequency signals are merely a spectral representation of the evoked response. Furthermore, we observed spontaneous fluctuations in the amplitude of high-frequency signals over time, in the absence of any concurrent, systematic change to the evoked response. High-frequency, "spike-like" signals from the human spinal cord thus carry information that is complementary to the evoked response. The possibility to assess these signals non-invasively provides a novel window onto the neurophysiology of the human spinal cord, both in a context of top-down control over perception, as well as in pathology.
Collapse
|
33
|
Takahashi Y, Kawakami M, Mikami R, Nakajima T, Nagumo T, Yamaguchi T, Honaga K, Kondo K, Ishii R, Fujiwara T, Liu M. Relationship between spinal reflexes and leg motor function in sub-acute and chronic stroke patients. Clin Neurophysiol 2022; 138:74-83. [DOI: 10.1016/j.clinph.2022.02.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 01/27/2022] [Accepted: 02/27/2022] [Indexed: 11/03/2022]
|
34
|
Kenar SG, Dirik EB, Tutal Gursoy G, Kayali N, Bilen S. F wave in restless legs syndrome, as an electrophysiological response of clinical relief. Neurol Res 2022; 44:719-725. [PMID: 35184694 DOI: 10.1080/01616412.2022.2042123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | | | | | - Nuriye Kayali
- Neurology Department of Ankara City Hospital, Ankara, Turkey
| | - Sule Bilen
- Neurology Department of Ankara City Hospital, Ankara, Turkey
| |
Collapse
|
35
|
Contreras-Hernández E, Chávez D, Hernández E, Rudomin P. Discrete field potentials produced by coherent activation of spinal dorsal horn neurons. Exp Brain Res 2022; 240:665-686. [PMID: 35001174 DOI: 10.1007/s00221-021-06286-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 12/03/2021] [Indexed: 11/28/2022]
Abstract
In addition to the action potentials generated by the ongoing activation of single dorsal horn neurons in the anesthetized cat, we often recorded small negative field potentials with a fast-rising phase and a slow decay (dIFPs). These potentials could be separated in different classes, each with a specific and rather constant shape and amplitude. They were largest in spinal laminae III-V and gradually faded at deeper locations, without showing the polarity reversal displayed at these depths by the focal potentials produced by stimulation of muscle and cutaneous afferents. We propose that the dIFPs are postsynaptic field potentials generated by strongly coupled sets of dorsal horn neurons displaying a spatial orientation that generates closed field potentials in response to stimulation of high-threshold cutaneous and muscle afferents. These neuronal sets could form part of the spinal inhibitory circuitry that mediates presynaptic inhibition and Ib non-reciprocal postsynaptic inhibition and could be involved in the sensory-motor transformations activated by stimulation of high-threshold cutaneous afferents.
Collapse
Affiliation(s)
- Enrique Contreras-Hernández
- Department of Physiology, Biophysics and Neurosciences, Center for Research and Advanced Studies, National Polytechnic Institute, Ciudad de México, México
| | - Diógenes Chávez
- Department of Physiology, Biophysics and Neurosciences, Center for Research and Advanced Studies, National Polytechnic Institute, Ciudad de México, México
| | - Edson Hernández
- Department of Physiology, Biophysics and Neurosciences, Center for Research and Advanced Studies, National Polytechnic Institute, Ciudad de México, México
| | - Pablo Rudomin
- Department of Physiology, Biophysics and Neurosciences, Center for Research and Advanced Studies, National Polytechnic Institute, Ciudad de México, México. .,El Colegio Nacional, Ciudad de México, México.
| |
Collapse
|
36
|
Danna J, Nordlund M, Louber D, Moré S, Mouchnino L. Overpressure on fingertips prevents state estimation of the pen grip force and movement accuracy. Exp Brain Res 2021; 240:189-198. [PMID: 34689223 DOI: 10.1007/s00221-021-06246-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 10/12/2021] [Indexed: 10/20/2022]
Abstract
We tested the hypothesis that the inability to move a pen accurately in a graphic task is partly due to a decrease of afferent somatosensory information resulting from overpressure on the tactile receptors of the fingers holding the pen. To disentangle the depressed somatosensory origin from an altered motor command, we compared a condition in which the participant actively produces pressure on the pen (active grip) with a condition in which pressure is passively applied (passive grip, no grip-related motor command). We expected that the response of the somatosensory cortex to electric stimulation of the wrist's tactile nerve (i.e., SEP) would be greater in the natural pen grip (baseline condition) than in the two overpressure conditions (actively or passively induced). Fifteen adults were required to trace a geometrical shape in the three grip conditions. The SEP amplitude was not significantly different between the baseline and both overpressure conditions. However, behavioral results showed that drawing accuracy is impaired when the pressure on the pen is increased (passively or actively). Cortical source analyses revealed that the activity of the superior parietal areas (SPL) increased in both overpressure conditions. Our findings suggest that the SPL is critical for sensorimotor integration, by maintaining an internal representation of pen holding. These cortical changes might witness the impaired updating of the finger-pen interaction force for such drawing actions under visual guidance.
Collapse
Affiliation(s)
- Jérémy Danna
- Aix Marseille Univ, CNRS, LNC, Marseille, France.
| | | | | | - Simon Moré
- Aix Marseille Univ, CNRS, LNC, Marseille, France
| | | |
Collapse
|
37
|
Moreno-Lopez Y, Bichara C, Delbecq G, Isope P, Cordero-Erausquin M. The corticospinal tract primarily modulates sensory inputs in the mouse lumbar cord. eLife 2021; 10:65304. [PMID: 34497004 PMCID: PMC8439650 DOI: 10.7554/elife.65304] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 07/27/2021] [Indexed: 01/01/2023] Open
Abstract
It is generally assumed that the main function of the corticospinal tract (CST) is to convey motor commands to bulbar or spinal motoneurons. Yet the CST has also been shown to modulate sensory signals at their entry point in the spinal cord through primary afferent depolarization (PAD). By sequentially investigating different routes of corticofugal pathways through electrophysiological recordings and an intersectional viral strategy, we here demonstrate that motor and sensory modulation commands in mice belong to segregated paths within the CST. Sensory modulation is executed exclusively by the CST via a population of lumbar interneurons located in the deep dorsal horn. In contrast, the cortex conveys the motor command via a relay in the upper spinal cord or supraspinal motor centers. At lumbar level, the main role of the CST is thus the modulation of sensory inputs, which is an essential component of the selective tuning of sensory feedback used to ensure well-coordinated and skilled movement.
Collapse
Affiliation(s)
- Yunuen Moreno-Lopez
- Institut des Neurosciences Cellulaires et Intégrées, CNRS - Université de Strasbourg, Strasbourg, France
| | - Charlotte Bichara
- Institut des Neurosciences Cellulaires et Intégrées, CNRS - Université de Strasbourg, Strasbourg, France
| | - Gilles Delbecq
- Institut des Neurosciences Cellulaires et Intégrées, CNRS - Université de Strasbourg, Strasbourg, France
| | - Philippe Isope
- Institut des Neurosciences Cellulaires et Intégrées, CNRS - Université de Strasbourg, Strasbourg, France
| | - Matilde Cordero-Erausquin
- Institut des Neurosciences Cellulaires et Intégrées, CNRS - Université de Strasbourg, Strasbourg, France
| |
Collapse
|
38
|
Spooner RK, Wiesman AI, Wilson TW. Peripheral Somatosensory Entrainment Modulates the Cross-Frequency Coupling of Movement-Related Theta-Gamma Oscillations. Brain Connect 2021; 12:524-537. [PMID: 34269624 PMCID: PMC9419931 DOI: 10.1089/brain.2021.0003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Background: Motor control requires a reciprocal volley between somatosensory and motor systems, with somatosensory feedback being essential for the online updating of motor commands to achieve behavioral outcomes. However, this dynamic interplay among sensorimotor brain systems serving motor control remains poorly understood. Methods: To address this, we designed a novel somatosensory entrainment-movement task, which 25 adults completed during magnetoencephalography (MEG). Specifically, participants completed a quasi-paced finger-tapping paradigm while subthreshold electrical stimulation was applied to the right median nerve at a sensorimotor-relevant frequency (15 Hz) and during a second condition where no electrical stimulation was applied. The MEG data were transformed into the time-frequency domain and imaged by using a beamformer to evaluate the effect of somatosensory feedback (i.e., entrainment) on movement-related oscillations and motor performance at the single trial level. Results: Our results indicated spectrally specific reductions in movement-related oscillatory power (i.e., theta, gamma) during 15 Hz stimulation in the contralateral motor cortex during motor execution. In addition, we observed robust cross-frequency coupling within the motor cortex and further, stronger theta-gamma coupling was predictive of faster reaction times, irrespective of condition (i.e., stim vs. no stim). Finally, in the presence of electrical stimulation, cross-frequency coupling of movement-related oscillations was reduced, and the stronger the entrained neuronal populations (i.e., increased oscillatory power) were before movement onset, the weaker the inherent theta-gamma coupling became in the motor cortex. Discussion: This novel exogenous manipulation paradigm provides key insights on how the somatosensory system modulates the motor cortical oscillations required for volitional movement in the normative sensorimotor system.
Collapse
Affiliation(s)
- Rachel K Spooner
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, Nebraska, USA.,College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Alex I Wiesman
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, Nebraska, USA.,College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, Nebraska, USA.,College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
39
|
Hibino H, Gorniak SL. Dependence and reduced motor function in heart failure: future directions for well-being. Heart Fail Rev 2021; 27:1043-1051. [PMID: 34302579 DOI: 10.1007/s10741-021-10145-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/08/2021] [Indexed: 11/26/2022]
Abstract
While patients with heart failure experience a wide range of symptoms, evidence is mounting that patients with heart failure suffer from reduced functional independence. Given that the number of patients with heart failure is rising and considering the adverse outcomes of reduced functional independence, understanding the underlying mechanisms of reduced functionality in patients with heart failure is of increasing importance. Yet, little information exists on how heart failure negatively affects functional independence, including motor function. This article summarizes reports of reduced independence and highlights its significant adverse outcomes in the patients with heart failure. Finally, this article discusses potential causes of reduced independence based on existing reports of impaired central and peripheral nervous systems in the patients with heart failure. Overall, the article provides a solid foundation for future studies investigating motor impairments in patients with heart failure. Such studies may lead to advances in treatment and prevention of reduced independence associated with heart failure, which ultimately contribute to the well-being of patients with heart failure.
Collapse
Affiliation(s)
- Hidetaka Hibino
- Department of Health and Human Performance, University of Houston, 3855 Holman St., Garrison 104, Houston, TX, 77204-6015, USA
| | - Stacey L Gorniak
- Department of Health and Human Performance, University of Houston, 3855 Holman St., Garrison 104, Houston, TX, 77204-6015, USA.
| |
Collapse
|
40
|
Poscente SV, Peters RM, Cashaback JGA, Cluff T. Rapid Feedback Responses Parallel the Urgency of Voluntary Reaching Movements. Neuroscience 2021; 475:163-184. [PMID: 34302907 DOI: 10.1016/j.neuroscience.2021.07.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 11/19/2022]
Abstract
Optimal feedback control is a prominent theory used to interpret human motor behaviour. The theory posits that skilled actions emerge from control policies that link voluntary motor control (feedforward) with flexible feedback corrections (feedback control). It is clear the nervous system can generate flexible motor corrections (reflexes) when performing actions with different goals. We know little, however, about shared features of voluntary actions and feedback control in human movement. Here we reveal a link between the timing demands of voluntary actions and flexible responses to mechanical perturbations. In two experiments, 40 human participants (21 females) made reaching movements with different timing demands. We disturbed the arm with mechanical perturbations at movement onset (Experiment 1) and at locations ranging from movement onset to completion (Experiment 2). We used the resulting muscle responses and limb displacements as a proxy for the control policies that support voluntary reaching movements. We observed an increase in the sensitivity of elbow and shoulder muscle responses and a reduction in limb motion when the task imposed greater urgency to respond to the same perturbations. The results reveal a relationship between voluntary actions and feedback control as the limb was displaced less when moving faster in perturbation trials. Muscle responses scaled with changes in the displacement of the limb in perturbation trials within each timing condition. Across both experiments, human behaviour was captured by simulations based on stochastic optimal feedback control. Taken together, the results highlight flexible control that links sensory processing with features of human reaching movements.
Collapse
Affiliation(s)
- Sophia V Poscente
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Ryan M Peters
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta T2N 1N4, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Joshua G A Cashaback
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta T2N 1N4, Canada; Department of Biomedical Engineering, University of Delaware, Newark, DE 19716, USA; Department of Mechanical Engineering, University of Delaware, Newark, DE 19716, USA; Biomechanics and Movement Science Program, University of Delaware, Newark, DE 19716, USA
| | - Tyler Cluff
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta T2N 1N4, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta T2N 1N4, Canada.
| |
Collapse
|
41
|
Ramírez-Morales A, Hernández E, Rudomin P. Nociception induces a differential presynaptic modulation of the synaptic efficacy of nociceptive and proprioceptive joint afferents. Exp Brain Res 2021; 239:2375-2397. [PMID: 34101000 DOI: 10.1007/s00221-021-06140-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 05/22/2021] [Indexed: 11/25/2022]
Abstract
A previous study has indicated that during the state of central sensitization induced by the intradermic injection of capsaicin, there is a gradual facilitation of the dorsal horn neuronal responses produced by stimulation of the high-threshold articular afferents that is counteracted by a concurrent increase of descending inhibitory actions. Since these changes occurred without significantly affecting the responses produced by stimulation of the low-threshold articular afferents, it was suggested that the capsaicin-induced descending inhibition included a preferential presynaptic modulation of the synaptic efficacy of the slow conducting nociceptive joint afferents (Ramírez-Morales et al., Exp Brain Res 237:1629-1641, 2019). The present study was aimed to investigate more directly the contribution of presynaptic mechanisms in this descending control. We found that in the barbiturate anesthetized cat, stimulation of the high-threshold myelinated afferents in the posterior articular nerve (PAN) produces primary afferent hyperpolarization (PAH) in the slow conducting (25-35 m/s) and primary afferent depolarization (PAD) in the fast conducting (40-50 m/s) articular fibers. During the state of central sensitization induced by capsaicin, there is a supraspinally mediated shift of the autogenic PAH to PAD that takes place in the slow conducting fibers, basically without affecting the autogenic PAD generated in the fast conducting afferents. It is suggested that the change of presynaptic facilitation to presynaptic inhibition induced by capsaicin on the slow articular afferents is part of an homeostatic process aimed to keep the nociceptive-induced neuronal activity within manageable limits while preserving the proprioceptive information required for proper control of movement.
Collapse
Affiliation(s)
- A Ramírez-Morales
- Department of Physiology, Biophysics and Neurosciences, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - E Hernández
- Department of Physiology, Biophysics and Neurosciences, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - P Rudomin
- Department of Physiology, Biophysics and Neurosciences, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico.
- El Colegio Nacional, Mexico City, Mexico.
| |
Collapse
|
42
|
Wasaka T, Kida T, Kakigi R. Dexterous manual movement facilitates information processing in the primary somatosensory cortex: A magnetoencephalographic study. Eur J Neurosci 2021; 54:4638-4648. [PMID: 33987876 PMCID: PMC8361953 DOI: 10.1111/ejn.15310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 11/30/2022]
Abstract
The interaction between the somatosensory and motor systems is important for control of movement in humans. Cortical activity related to somatosensory response and sensory perception is modulated by the influence of movement executing mechanisms. This phenomenon has been observed as inhibition in the short‐latency components of somatosensory evoked potentials and magnetic fields (SEPs/SEFs). Although finger is the most dexterous among all the body parts, the sensorimotor integration underlying this dexterity has not yet been elucidated. The purpose of this study was to examine the sensorimotor integration mechanisms in the primary somatosensory cortex (SI) during simple and complicated finger movement. The participant performed tasks that involved picking up a wooden block (PM task) and picking up and turning the wooden block 180° (PTM task) using the right‐hand fingers. During these tasks, the SEFs following right median nerve stimulation were recorded using magnetoencephalography. The amplitude of the M20 and M30 components showed a significant reduction during both manual tasks compared to the stationary task, whereas the M38 component showed a significant enhancement in amplitude. Furthermore, the SEFs recorded during continuous rotation of the block (rotation task) revealed a characteristic pattern of SI activity that was first suppressed and then facilitated. Since this facilitation is noticeable during complicated movement of the fingers, this phenomenon is thought to underlie a neural mechanism related to finger dexterity.
Collapse
Affiliation(s)
- Toshiaki Wasaka
- Department of Engineering, Nagoya Institute of Technology, Nagoya, Japan.,Department of Integrative Physiology, National Institute for Physiological Sciences, Okazaki, Japan
| | - Tetsuo Kida
- Department of Integrative Physiology, National Institute for Physiological Sciences, Okazaki, Japan.,Higher Brain Function Unit, Department of Functioning and Disability, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Japan.,Section of Brain Function Information, Supportive Center for Brain Research, National Institute for Physiological Sciences, Okazaki, Japan
| | - Ryusuke Kakigi
- Department of Integrative Physiology, National Institute for Physiological Sciences, Okazaki, Japan
| |
Collapse
|
43
|
Cheung VCK, Seki K. Approaches to revealing the neural basis of muscle synergies: a review and a critique. J Neurophysiol 2021; 125:1580-1597. [PMID: 33729869 DOI: 10.1152/jn.00625.2019] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The central nervous system (CNS) may produce coordinated motor outputs via the combination of motor modules representable as muscle synergies. Identification of muscle synergies has hitherto relied on applying factorization algorithms to multimuscle electromyographic data (EMGs) recorded during motor behaviors. Recent studies have attempted to validate the neural basis of the muscle synergies identified by independently retrieving the muscle synergies through CNS manipulations and analytic techniques such as spike-triggered averaging of EMGs. Experimental data have demonstrated the pivotal role of the spinal premotor interneurons in the synergies' organization and the presence of motor cortical loci whose stimulations offer access to the synergies, but whether the motor cortex is also involved in organizing the synergies has remained unsettled. We argue that one difficulty inherent in current approaches to probing the synergies' neural basis is that the EMG generative model based on linear combination of synergies and the decomposition algorithms used for synergy identification are not grounded on enough prior knowledge from neurophysiology. Progress may be facilitated by constraining or updating the model and algorithms with knowledge derived directly from CNS manipulations or recordings. An investigative framework based on evaluating the relevance of neurophysiologically constrained models of muscle synergies to natural motor behaviors will allow a more sophisticated understanding of motor modularity, which will help the community move forward from the current debate on the neural versus nonneural origin of muscle synergies.
Collapse
Affiliation(s)
- Vincent C K Cheung
- School of Biomedical Sciences and The Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Hong Kong, China
| | - Kazuhiko Seki
- Department of Neurophysiology, National Institute of Neuroscience, Kodaira, Tokyo, Japan
| |
Collapse
|
44
|
Weiler J, Gribble PL, Pruszynski JA. Spinal stretch reflexes support efficient control of reaching. J Neurophysiol 2021; 125:1339-1347. [PMID: 33689494 DOI: 10.1152/jn.00487.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Efficiently controlling the movement of our hand requires coordinating the motion of multiple joints of the arm. Although it is widely assumed that this type of efficient control is implemented by processing that occurs in the cerebral cortex and brainstem, recent work has shown that spinal circuits can generate efficient motor output that supports keeping the hand in a static location. Here, we show that a spinal pathway can also efficiently control the hand during reaching. In our first experiment, we applied multijoint mechanical perturbations to participants' elbow and wrist as they began reaching toward a target. We found that spinal stretch reflexes evoked in elbow muscles were not proportional to how much the elbow muscles were stretched but instead were dependent on the hand's location relative to the target. In our second experiment, we applied the same elbow and wrist perturbations but had participants change how they grasped the manipulandum, diametrically altering how the same wrist perturbation moved the hand relative to the reach target. We found that changing the arm's orientation diametrically altered how spinal reflexes in the elbow muscles were evoked, and in such a way that were again dependent on the hand's location relative to the target. These findings demonstrate that spinal circuits can help efficiently control the hand during dynamic reaching actions and show that efficient and flexible motor control is not exclusively dependent on processing that occurs within supraspinal regions of the nervous system.NEW & NOTEWORTHY We have previously shown that spinal circuits can rapidly generate reflex responses that efficiently engage multiple joints to support postural hand control of the upper limb. Here, we show that spinal circuits can also rapidly generate such efficient responses during reaching actions.
Collapse
Affiliation(s)
- Jeffrey Weiler
- Brain and Mind Institute, Western University, London, Ontario, Canada.,Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
| | - Paul L Gribble
- Brain and Mind Institute, Western University, London, Ontario, Canada.,Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
| | - J Andrew Pruszynski
- Brain and Mind Institute, Western University, London, Ontario, Canada.,Department of Physiology and Pharmacology, Western University, London, Ontario, Canada.,Department of Psychology, Western University, London, Ontario, Canada
| |
Collapse
|
45
|
Lu X, Yao X, Thompson WF, Hu L. Movement-induced hypoalgesia: behavioral characteristics and neural mechanisms. Ann N Y Acad Sci 2021; 1497:39-56. [PMID: 33691345 DOI: 10.1111/nyas.14587] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/28/2020] [Accepted: 02/18/2021] [Indexed: 12/27/2022]
Abstract
Pain is essential for our survival because it helps to protect us from severe injuries. Nociceptive signals may be exacerbated by continued physical activities but can also be interrupted or overridden by physical movements, a process called movement-induced hypoalgesia. Several neural mechanisms have been proposed to account for this effect, including the reafference principle, non-nociceptive interference, and top-down descending modulation. Given that the hypoalgesic effects of these mechanisms temporally overlap during movement execution, it is unclear whether movement-induced hypoalgesia results from a single neural mechanism or from the joint action of multiple neural mechanisms. To address this question, we conducted five experiments on 129 healthy humans by assessing the hypoalgesic effect after movement execution. Combining psychophysics and electroencephalographic recordings, we quantified the relationship between the strength of voluntary movement and the hypoalgesic effect, as well as the temporal and spatial characteristics of the hypoalgesic effect. Our findings demonstrated that movement-induced hypoalgesia results from the joint action of multiple neural mechanisms. This investigation is the first to disentangle the distinct contributions of different neural mechanisms to the hypoalgesic effect of voluntary movement, which extends our understanding of sensory attenuation arising from voluntary movement and may prove instrumental in developing new strategies for pain management.
Collapse
Affiliation(s)
- Xuejing Lu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Xinru Yao
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | | | - Li Hu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
46
|
Lalonde NR, Bui TV. Do spinal circuits still require gating of sensory information by presynaptic inhibition after spinal cord injury? CURRENT OPINION IN PHYSIOLOGY 2021. [DOI: 10.1016/j.cophys.2020.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
47
|
Spinal Inhibitory Ptf1a-Derived Neurons Prevent Self-Generated Itch. Cell Rep 2020; 33:108422. [PMID: 33238109 DOI: 10.1016/j.celrep.2020.108422] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/27/2020] [Accepted: 11/02/2020] [Indexed: 01/13/2023] Open
Abstract
Chronic itch represents an incapacitating burden on patients suffering from a spectrum of diseases. Despite recent advances in our understanding of the cells and circuits implicated in the processing of itch information, chronic itch often presents itself without an apparent cause. Here, we identify a spinal subpopulation of inhibitory neurons defined by the expression of Ptf1a, involved in gating mechanosensory information self-generated during movement. These neurons receive tactile and motor input and establish presynaptic inhibitory contacts on mechanosensory afferents. Loss of Ptf1a neurons leads to increased hairy skin sensitivity and chronic itch, partially mediated by the classic itch pathway involving gastrin-releasing peptide receptor (GRPR) spinal neurons. Conversely, chemogenetic activation of GRPR neurons elicits itch, which is suppressed by concomitant activation of Ptf1a neurons. These findings shed light on the circuit mechanisms implicated in chronic itch and open novel targets for therapy developments.
Collapse
|
48
|
Diabetes Mellitus-Related Dysfunction of the Motor System. Int J Mol Sci 2020; 21:ijms21207485. [PMID: 33050583 PMCID: PMC7589125 DOI: 10.3390/ijms21207485] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/08/2020] [Accepted: 10/08/2020] [Indexed: 12/20/2022] Open
Abstract
Although motor deficits in humans with diabetic neuropathy have been extensively researched, its effect on the motor system is thought to be lesser than that on the sensory system. Therefore, motor deficits are considered to be only due to sensory and muscle impairment. However, recent clinical and experimental studies have revealed that the brain and spinal cord, which are involved in the motor control of voluntary movement, are also affected by diabetes. This review focuses on the most important systems for voluntary motor control, mainly the cortico-muscular pathways, such as corticospinal tract and spinal motor neuron abnormalities. Specifically, axonal damage characterized by the proximodistal phenotype occurs in the corticospinal tract and motor neurons with long axons, and the transmission of motor commands from the brain to the muscles is impaired. These findings provide a new perspective to explain motor deficits in humans with diabetes. Finally, pharmacological and non-pharmacological treatment strategies for these disorders are presented.
Collapse
|
49
|
McGuffin BJ, Liss JM, Daliri A. The Orofacial Somatosensory System Is Modulated During Speech Planning and Production. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2020; 63:2637-2648. [PMID: 32697611 PMCID: PMC7872732 DOI: 10.1044/2020_jslhr-19-00318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Purpose In our previous studies, we showed that the brain modulates the auditory system, and the modulation starts during speech planning. However, it remained unknown whether the brain uses similar mechanisms to modulate the orofacial somatosensory system. Here, we developed a novel behavioral paradigm to (a) examine whether the somatosensory system is modulated during speech planning and (b) determine the somatosensory modulation's time course during planning and production. Method Participants (N = 20) completed two experiments in which we applied electrical current stimulation to the lower lip to induce somatosensory sensation. In the first experiment, we used a staircase method (one-up, four-down) to determine each participant's perceptual threshold at rest (i.e., the stimulus that the participant detected on 85% of trials). In the second experiment, we estimated each participant's detection ratio of electrical stimuli (with a magnitude equivalent of their perceptual threshold) delivered at various time points before speaking and during a control condition (silent reading). Results We found that the overall detection ratio in the silent reading condition remained unchanged relative to the detection ratio at rest. Approximately 536 ms before speech onset, the detection ratio in the speaking condition was similar to that in the silent reading condition; however, the detection ratio in the speaking condition gradually started to decrease and reached its lowest level at 58 ms before speech onset. Conclusions Overall, we provided compelling behavioral evidence that, as the speech motor system prepares speech movements, it also modulates the orofacial somatosensory system in a temporally specific manner.
Collapse
Affiliation(s)
| | - Julie M. Liss
- College of Health Solutions, Arizona State University, Tempe
| | - Ayoub Daliri
- College of Health Solutions, Arizona State University, Tempe
| |
Collapse
|
50
|
Baker S, Trevarrow M, Gehringer J, Bergwell H, Arpin D, Heinrichs-Graham E, Wilson TW, Kurz MJ. Gamma somatosensory cortical oscillations are attenuated during the stance phase of human walking. Neurosci Lett 2020; 732:135090. [PMID: 32461106 DOI: 10.1016/j.neulet.2020.135090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/11/2020] [Accepted: 05/21/2020] [Indexed: 01/05/2023]
Abstract
It is well appreciated that processing of peripheral feedback by the somatosensory cortices plays a prominent role in the control of human motor actions like walking. However, very few studies have actually quantified the somatosensory cortical activity during walking. In this investigation, we used electroencephalography (EEG) and beamforming source reconstruction methods to quantify the frequency specific neural oscillations that are induced by an electrical stimulation that is applied to the right tibial nerve under the following experimental conditions: 1) sitting, 2) standing in place, and 3) treadmill walking. Our experimental results revealed that the peripheral stimulation induced a transient increase in theta-alpha (4-12 Hz; 50-350 ms) and gamma (40-80 Hz; 40-100 ms) activity in the leg region of the contralateral somatosensory cortices. The strength of the gamma oscillations were similar while sitting and standing, but were markedly attenuated while walking. Conversely, the strength of the theta-alpha oscillations were not different across the respective experimental conditions. Prior research suggests the afferent feedback from the Ia sensory fibers are likely attenuated during walking, while afferent feedback from the β polysynaptic sensory fibers are not. We suggest that the attenuated gamma oscillations seen during walking reflect the gating of the Ia afferents, while the similarity of theta-alpha oscillations across the experimental conditions is associated with the afferent information from the type II (Aα and β) polysynaptic sensory fibers.
Collapse
Affiliation(s)
- Sarah Baker
- Department of Physical Therapy, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE, United States; Center for Magnetoencephalography, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Mike Trevarrow
- Department of Physical Therapy, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE, United States; Center for Magnetoencephalography, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - James Gehringer
- Department of Physical Therapy, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE, United States
| | - Hannah Bergwell
- Department of Physical Therapy, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE, United States; Center for Magnetoencephalography, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - David Arpin
- Department of Physical Therapy, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE, United States
| | - Elizabeth Heinrichs-Graham
- Center for Magnetoencephalography, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States; Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, United States
| | - Tony W Wilson
- Center for Magnetoencephalography, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States; Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, United States
| | - Max J Kurz
- Department of Physical Therapy, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE, United States; Center for Magnetoencephalography, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States.
| |
Collapse
|