1
|
Satao KS, Doshi GM. Intercellular communication via exosomes: A new paradigm in the pathophysiology of neurodegenerative disorders. Life Sci 2025; 365:123468. [PMID: 39954940 DOI: 10.1016/j.lfs.2025.123468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 02/11/2025] [Accepted: 02/12/2025] [Indexed: 02/17/2025]
Abstract
Neurodegenerative disorders are one of the leading causes of death and disability and pose a great economic burden on healthcare systems. Generally, these neurodegenerative disorders have a progressive deterioration in neural function and structure, and deposition of misfolded proteins commonly occurs, such as amyloid-β in AD and α-synuclein in PD. However, there exists a special class of exosomes, which acts like a transmitter and enhances communication between cells. The present review discusses the significant role of exosomes in neurodegenerative diseases, with a focus on Amyotrophic lateral Sclerosis (ALS), AD, PD, and Huntington's disease (HD). In this review, the biogenesis of exosomes is discussed from multivesicular bodies and onwards to their release into the extracellular environment. The present review focuses on recent data concerning the possible use of modified exosomes as ND therapy. Indeed, future work is needed to explain the processes driving exosome biogenesis and cargo selection, while opening new routes by the use of exosome-based therapeutics in neurodegenerative disease diagnosis and treatment.
Collapse
Affiliation(s)
- Kiran S Satao
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Department of Pharmacology, V. M. Road, Vile Parle (W), Mumbai 400 056, Maharashtra, India
| | - Gaurav M Doshi
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Department of Pharmacology, V. M. Road, Vile Parle (W), Mumbai 400 056, Maharashtra, India.
| |
Collapse
|
2
|
Jin S, Tian Y, Hacker J, Chen X, Bertolio M, Reynolds C, Jarvis R, Hu J, Promes V, Halim D, Gao FB, Yang Y. Inflammatory cytokines disrupt astrocyte exosomal HepaCAM-mediated protection against neuronal excitotoxicity in the SOD1G93A ALS model. SCIENCE ADVANCES 2024; 10:eadq3350. [PMID: 39602529 PMCID: PMC11601204 DOI: 10.1126/sciadv.adq3350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024]
Abstract
Astrocyte secreted signals substantially affect disease pathology in neurodegenerative diseases. It remains little understood about how proinflammatory cytokines, such as interleukin-1α/tumor necrosis factor-α/C1q (ITC), often elevated in neurodegenerative diseases, alter astrocyte-secreted signals and their effects in disease pathogenesis. By selectively isolating astrocyte exosomes (A-Exo.) and employing cell type-specific exosome reporter mice, our current study showed that ITC cytokines significantly reduced A-Exo. secretion and decreased spreading of focally labeled A-Exo. in diseased SOD1G93A mice. Our results also found that A-Exo. were minimally associated with misfolded SOD1 and elicited no toxicity to mouse spinal and human iPSC-derived motor neurons. In contrast, A-Exo. were neuroprotective against excitotoxicity, which was completely diminished by ITC cytokines and partially abolished by SOD1G93A expression. Subsequent proteomic characterization of A-Exo. and genetic analysis identified that surface expression of glial-specific HepaCAM preferentially mediates A-Exo's axon protection effect. Together, our study defines a cytokine-induced loss-of-function mechanism of A-Exo. in protecting neurons from excitotoxicity in amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Shijie Jin
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Yang Tian
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Jonathan Hacker
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA
- Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Xuan Chen
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Marcela Bertolio
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Caroline Reynolds
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA
- Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Rachel Jarvis
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Jingwen Hu
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA
- Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Vanessa Promes
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Dilara Halim
- Frontotemporal Dementia Research Center, RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Fen-Biao Gao
- Frontotemporal Dementia Research Center, RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Yongjie Yang
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA
- Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| |
Collapse
|
3
|
Leykam L, Forsberg KME, Nordström U, Hjertkvist K, Öberg A, Jonsson E, Andersen PM, Marklund SL, Zetterström P. Specific analysis of SOD1 enzymatic activity in CSF from ALS patients with and without SOD1 mutations. Neurobiol Dis 2024; 202:106718. [PMID: 39490682 DOI: 10.1016/j.nbd.2024.106718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/06/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024] Open
Abstract
Mutations in superoxide dismutase-1 (SOD1) are a cause of hereditary amyotrophic lateral sclerosis (ALS) through a gain-of-function mechanism involving unfolded mutant SOD1. Intrathecal gene therapy using the antisense-oligo-nucleotide drug tofersen to reduce SOD1 expression delays disease progression and has recently been approved in the United States and the European Union. However, the discovery of children homozygous for inactivating SOD1 mutations developing the SOD1 Deficiency Syndrome (ISODDES) with injury to the motor system suggests that a too low SOD1 antioxidant activity may be deleterious in humans. Measuring SOD1 activity in cerebrospinal fluid (CSF) in tofersen-treated patients is recommended but difficult due to low concentration and the presence of the isoenzyme SOD3. We here present a sensitive method to assess SOD1 activity by removing SOD3 from CSF samples using highly specific immobilized antibodies and subsequent measurement of the SOD activity. We validated the method on 171 CSF samples from ALS patients with and without mutations and controls and used paired erythrocyte samples for comparison. We found that in ALS patients with wildtype SOD1, the SOD1 activity in CSF was equal to controls, but patients with mutant SOD1 show lower activity in CSF, even for patients with mutants previously reported to have full activity in erythrocytes. Activity variation in CSF was large among patients carrying the same SOD1 mutation and larger than in erythrocytes and in post-mortem nervous tissue. Additionally, we identified a discrepancy between the SOD1 activity and protein level measured with ELISA in both CSF and erythrocytes. Since antibodies used for SOD1 ELISA-quantification are raised against the natively folded wildtype SOD1, the concentration of mutant SOD1s may be underestimated. Analysis of SOD1 enzymatic activity in CSF is therefore a more reliable way to monitor the effect of SOD1-lowering drugs.
Collapse
Affiliation(s)
- Laura Leykam
- Department of Medical Biosciences, Clinical Chemistry, Umeå University, SE-901 85 Umeå, Sweden
| | - Karin M E Forsberg
- Department of Clinical Sciences, Neuroscience, Umeå University, SE-901 85 Umeå, Sweden
| | - Ulrika Nordström
- Department of Clinical Sciences, Neuroscience, Umeå University, SE-901 85 Umeå, Sweden
| | - Karin Hjertkvist
- Department of Clinical Sciences, Neuroscience, Umeå University, SE-901 85 Umeå, Sweden
| | - Agneta Öberg
- Department of Medical Biosciences, Clinical Chemistry, Umeå University, SE-901 85 Umeå, Sweden
| | - Eva Jonsson
- Department of Clinical Sciences, Neuroscience, Umeå University, SE-901 85 Umeå, Sweden
| | - Peter M Andersen
- Department of Clinical Sciences, Neuroscience, Umeå University, SE-901 85 Umeå, Sweden
| | - Stefan L Marklund
- Department of Medical Biosciences, Clinical Chemistry, Umeå University, SE-901 85 Umeå, Sweden
| | - Per Zetterström
- Department of Medical Biosciences, Clinical Chemistry, Umeå University, SE-901 85 Umeå, Sweden.
| |
Collapse
|
4
|
Alshehri RS, Abuzinadah AR, Alrawaili MS, Alotaibi MK, Alsufyani HA, Alshanketi RM, AlShareef AA. A Review of Biomarkers of Amyotrophic Lateral Sclerosis: A Pathophysiologic Approach. Int J Mol Sci 2024; 25:10900. [PMID: 39456682 PMCID: PMC11507293 DOI: 10.3390/ijms252010900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/03/2024] [Accepted: 10/05/2024] [Indexed: 10/28/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive degeneration of upper and lower motor neurons. The heterogeneous nature of ALS at the clinical, genetic, and pathological levels makes it challenging to develop diagnostic and prognostic tools that fit all disease phenotypes. Limitations associated with the functional scales and the qualitative nature of mainstay electrophysiological testing prompt the investigation of more objective quantitative assessment. Biofluid biomarkers have the potential to fill that gap by providing evidence of a disease process potentially early in the disease, its progression, and its response to therapy. In contrast to other neurodegenerative diseases, no biomarker has yet been validated in clinical use for ALS. Several fluid biomarkers have been investigated in clinical studies in ALS. Biofluid biomarkers reflect the different pathophysiological processes, from protein aggregation to muscle denervation. This review takes a pathophysiologic approach to summarizing the findings of clinical studies utilizing quantitative biofluid biomarkers in ALS, discusses the utility and shortcomings of each biomarker, and highlights the superiority of neurofilaments as biomarkers of neurodegeneration over other candidate biomarkers.
Collapse
Affiliation(s)
- Rawiah S. Alshehri
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah 22252, Saudi Arabia; (R.S.A.); (H.A.A.)
| | - Ahmad R. Abuzinadah
- Department of Neurology, Faculty of Medicine, King Abdulaziz University, Jeddah 22252, Saudi Arabia; (M.S.A.); (A.A.A.)
- Neuromuscular Medicine Unit, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah 22252, Saudi Arabia
| | - Moafaq S. Alrawaili
- Department of Neurology, Faculty of Medicine, King Abdulaziz University, Jeddah 22252, Saudi Arabia; (M.S.A.); (A.A.A.)
- Neuromuscular Medicine Unit, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah 22252, Saudi Arabia
| | - Muteb K. Alotaibi
- Neurology Department, Prince Sultan Military Medical City, Riyadh 12233, Saudi Arabia;
| | - Hadeel A. Alsufyani
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah 22252, Saudi Arabia; (R.S.A.); (H.A.A.)
| | - Rajaa M. Alshanketi
- Internal Medicine Department, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah 22252, Saudi Arabia;
| | - Aysha A. AlShareef
- Department of Neurology, Faculty of Medicine, King Abdulaziz University, Jeddah 22252, Saudi Arabia; (M.S.A.); (A.A.A.)
- Neuromuscular Medicine Unit, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah 22252, Saudi Arabia
| |
Collapse
|
5
|
Wenzhi Y, Xiangyi L, Dongsheng F. The prion-like effect and prion-like protein targeting strategy in amyotrophic lateral sclerosis. Heliyon 2024; 10:e34963. [PMID: 39170125 PMCID: PMC11336370 DOI: 10.1016/j.heliyon.2024.e34963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/09/2024] [Accepted: 07/19/2024] [Indexed: 08/23/2024] Open
Abstract
Pathological proteins in amyotrophic lateral sclerosis (ALS), such as superoxide dismutase 1, TAR DNA-binding protein 43, and fused in sarcoma, exhibit a prion-like pattern. All these proteins have a low-complexity domain and seeding activity in cells. In this review, we summarize the studies on the prion-like effect of these proteins and list six prion-like protein targeting strategies that we believe have potential for ALS therapy, including antisense oligonucleotides, antibody-based technology, peptide, protein chaperone, autophagy enhancement, and heteromultivalent compounds. Considering the pathological complexity and heterogeneity of ALS, we believe that the final solution to ALS therapy is most likely to be an individualized cocktail therapy, including clearance of toxicity, blockage of pathological progress, and protection of neurons.
Collapse
Affiliation(s)
- Yang Wenzhi
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
| | - Liu Xiangyi
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
| | - Fan Dongsheng
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
| |
Collapse
|
6
|
Jacob SM, Lee S, Kim SH, Sharkey KA, Pfeffer G, Nguyen MD. Brain-body mechanisms contribute to sexual dimorphism in amyotrophic lateral sclerosis. Nat Rev Neurol 2024; 20:475-494. [PMID: 38965379 DOI: 10.1038/s41582-024-00991-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2024] [Indexed: 07/06/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common form of human motor neuron disease. It is characterized by the progressive degeneration of upper and lower motor neurons, leading to generalized motor weakness and, ultimately, respiratory paralysis and death within 3-5 years. The disease is shaped by genetics, age, sex and environmental stressors, but no cure or routine biomarkers exist for the disease. Male individuals have a higher propensity to develop ALS, and a different manifestation of the disease phenotype, than female individuals. However, the mechanisms underlying these sex differences remain a mystery. In this Review, we summarize the epidemiology of ALS, examine the sexually dimorphic presentation of the disease and highlight the genetic variants and molecular pathways that might contribute to sex differences in humans and animal models of ALS. We advance the idea that sexual dimorphism in ALS arises from the interactions between the CNS and peripheral organs, involving vascular, metabolic, endocrine, musculoskeletal and immune systems, which are strikingly different between male and female individuals. Finally, we review the response to treatments in ALS and discuss the potential to implement future personalized therapeutic strategies for the disease.
Collapse
Affiliation(s)
- Sarah M Jacob
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Sukyoung Lee
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Seung Hyun Kim
- Department of Neurology, Hanyang University Hospital, Seoul, South Korea
| | - Keith A Sharkey
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Gerald Pfeffer
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| | - Minh Dang Nguyen
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
- Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
7
|
Battaglini M, Marino A, Montorsi M, Carmignani A, Ceccarelli MC, Ciofani G. Nanomaterials as Microglia Modulators in the Treatment of Central Nervous System Disorders. Adv Healthc Mater 2024; 13:e2304180. [PMID: 38112345 DOI: 10.1002/adhm.202304180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Indexed: 12/21/2023]
Abstract
Microglia play a pivotal role in the central nervous system (CNS) homeostasis, acting as housekeepers and defenders of the surrounding environment. These cells can elicit their functions by shifting into two main phenotypes: pro-inflammatory classical phenotype, M1, and anti-inflammatory alternative phenotype, M2. Despite their pivotal role in CNS homeostasis, microglia phenotypes can influence the development and progression of several CNS disorders such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, multiple sclerosis, ischemic stroke, traumatic brain injuries, and even brain cancer. It is thus clear that the possibility of modulating microglia activation has gained attention as a therapeutic tool against many CNS pathologies. Nanomaterials are an unprecedented tool for manipulating microglia responses, in particular, to specifically target microglia and elicit an in situ immunomodulation activity. This review focuses the discussion on two main aspects: analyzing the possibility of using nanomaterials to stimulate a pro-inflammatory response of microglia against brain cancer and introducing nanostructures able to foster an anti-inflammatory response for treating neurodegenerative disorders. The final aim is to stimulate the analysis of the development of new microglia nano-immunomodulators, paving the way for innovative and effective therapeutic approaches for the treatment of CNS disorders.
Collapse
Affiliation(s)
- Matteo Battaglini
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, Pontedera, 56025, Italy
| | - Attilio Marino
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, Pontedera, 56025, Italy
| | - Margherita Montorsi
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, Pontedera, 56025, Italy
- Scuola Superiore Sant'Anna, The BioRobotics Institute, Viale Rinaldo Piaggio 34, Pontedera, 56025, Italy
| | - Alessio Carmignani
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, Pontedera, 56025, Italy
- Scuola Superiore Sant'Anna, The BioRobotics Institute, Viale Rinaldo Piaggio 34, Pontedera, 56025, Italy
| | - Maria Cristina Ceccarelli
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, Pontedera, 56025, Italy
- Scuola Superiore Sant'Anna, The BioRobotics Institute, Viale Rinaldo Piaggio 34, Pontedera, 56025, Italy
| | - Gianni Ciofani
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, Pontedera, 56025, Italy
| |
Collapse
|
8
|
Lumi R, Petri S, Siwy J, Latosinska A, Raad J, Zürbig P, Skripuletz T, Mischak H, Beige J. Small peptide CSF fingerprint of amyotrophic lateral sclerosis. PLoS One 2024; 19:e0302280. [PMID: 38687737 PMCID: PMC11060592 DOI: 10.1371/journal.pone.0302280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/01/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by abnormal protein aggregation in the motor neurons. Present and earlier proteomic studies to characterize peptides in cerebrospinal fluid (CSF) associated with motoneuron pathology did not target low molecular weight proteins and peptides. We hypothesized that specific changes in CSF peptides or low molecular weight proteins are significantly altered in ALS, and that these changes may support deciphering molecular pathophysiology and even guide approaches towards therapeutic interventions. METHODS Cerebrospinal fluid (CSF) from 50 ALS patients and 50 non-ALS controls was collected, centrifuged immediately after collection, aliquoted into polypropylene test tubes, frozen within 30-40 min after the puncture, and stored at -80°C until use. Peptides were sequenced using capillary electrophoresis or liquid chromatography/mass spectrometry (CE-MS/MS or LC-MS/MS). FINDINGS In the CSF of 50 patients and 50 non-ALS controls 33 peptides were found, of which 14 could be sequenced using a non-lytic single-pot proteomic detection method, CE/MS. ALS deregulated peptides vs. controls included Integral membrane protein 2B, Neurosecretory protein VGF, Osteopontin, Neuroendocrine protein 7B2 (Secretogranin-V), EGF-containing fibulin-like extracellular matrix protein 1, Xylosyltransferase 1 XT-1, Chromogranin-A, Superoxide dismutase SOD-1, Secretogranin-1 (Chromogranin B), NR2F2 Nuclear Receptor Subfamily 2 Group F Member 2 and Collagen alpha-1(VII) chain. INTERPRETATION Most striking deregulations in CSF from ALS patients were found in VGF, Osteopontin, SOD-1 and EFEMP1 peptides. No associations of disease severity, duration and region of onset with sequenced peptides were found.
Collapse
Affiliation(s)
- Rea Lumi
- Department of Neurology, Hannover University Medical School, Hannover, Germany
| | - Susanne Petri
- Department of Neurology, Hannover University Medical School, Hannover, Germany
| | | | | | - Julia Raad
- Mosaiques Diagnostics GmbH, Hannover, Germany
| | | | - Thomas Skripuletz
- Department of Neurology, Hannover University Medical School, Hannover, Germany
| | | | - Joachim Beige
- Kuratorium for Dialysis and Kidney Transplantation, Neu-Isenburg, Germany
- Martin-Luther-University Halle/Wittenberg, Halle/Saale, Germany
- Hospital Sankt Georg gGmbH, Leipzig, Germany
| |
Collapse
|
9
|
Jiao LL, Dong HL, Liu MM, Wu PL, Cao Y, Zhang Y, Gao FG, Zhu HY. The potential roles of salivary biomarkers in neurodegenerative diseases. Neurobiol Dis 2024; 193:106442. [PMID: 38382884 DOI: 10.1016/j.nbd.2024.106442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/01/2024] [Accepted: 02/18/2024] [Indexed: 02/23/2024] Open
Abstract
Current research efforts on neurodegenerative diseases are focused on identifying novel and reliable biomarkers for early diagnosis and insight into disease progression. Salivary analysis is gaining increasing interest as a promising source of biomarkers and matrices for measuring neurodegenerative diseases. Saliva collection offers multiple advantages over the currently detected biofluids as it is easily accessible, non-invasive, and repeatable, allowing early diagnosis and timely treatment of the diseases. Here, we review the existing findings on salivary biomarkers and address the potential value in diagnosing neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease and Amyotrophic lateral sclerosis. Based on the available research, β-amyloid, tau protein, α-synuclein, DJ-1, Huntington protein in saliva profiles display reliability and validity as the biomarkers of neurodegenerative diseases.
Collapse
Affiliation(s)
- Ling-Ling Jiao
- China Tobacco Jiangsu Industrial Co Ltd, Nanjing 210019, China; School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Hui-Lin Dong
- China Tobacco Jiangsu Industrial Co Ltd, Nanjing 210019, China
| | - Meng-Meng Liu
- China Tobacco Jiangsu Industrial Co Ltd, Nanjing 210019, China
| | - Peng-Lin Wu
- China Tobacco Jiangsu Industrial Co Ltd, Nanjing 210019, China
| | - Yi Cao
- China Tobacco Jiangsu Industrial Co Ltd, Nanjing 210019, China
| | - Yuan Zhang
- China Tobacco Jiangsu Industrial Co Ltd, Nanjing 210019, China
| | - Fu-Gao Gao
- Xuzhou Cigarette Factory, China Tobacco Jiangsu Industrial Co Ltd, Xuzhou 221005, China.
| | - Huai-Yuan Zhu
- China Tobacco Jiangsu Industrial Co Ltd, Nanjing 210019, China; School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| |
Collapse
|
10
|
Graber DJ, Cook WJ, Sentman ML, Murad-Mabaera JM, Sentman CL. Human CD4+CD25+ T cells expressing a chimeric antigen receptor against aberrant superoxide dismutase 1 trigger antigen-specific immunomodulation. Cytotherapy 2024; 26:126-135. [PMID: 38043051 PMCID: PMC10872388 DOI: 10.1016/j.jcyt.2023.11.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/12/2023] [Accepted: 11/14/2023] [Indexed: 12/04/2023]
Abstract
BACKGROUND AIMS Amyotrophic lateral sclerosis (ALS) is a fatal disease associated with motor neuron degeneration, accumulation of aggregated misfolded proteins and neuroinflammation in motor regions of the central nervous system (CNS). Clinical trials using regulatory T cells (Tregs) are ongoing because of Tregs' immunomodulatory function, ability to traffic to the CNS, high numbers correlating with slower disease in ALS and disease-modifying activity in ALS mouse models. In the current study, a chimeric antigen receptor (CAR) was developed and characterized in human Tregs to enhance their immunomodulatory activity when in contact with an ALS protein aggregate. METHODS A CAR (DG05-28-3z) consisting of a human superoxide dismutase 1 (hSOD1)-binding single-chain variable fragment, CD28 hinge, transmembrane and co-stimulatory domain and CD3ζ signaling domain was created and expressed in human Tregs. Human Tregs were isolated by either magnetic enrichment for CD4+CD25hi cells (Enr-Tregs) or cell sorting for CD4+CD25hiCD127lo cells (FP-Tregs), transduced and expanded for 17 days. RESULTS The CAR bound preferentially to the ALS mutant G93A-hSOD1 protein relative to the wild-type hSOD1 protein. The CAR Tregs produced IL-10 when cultured with aggregated G93A-hSOD1 proteins or spinal cord explants from G93A-hSOD1 transgenic mice. Co-culturing DG05-28-3z CAR Tregs with human monocytes/macrophages inhibited production of tumor necrosis factor alpha and reactive oxygen species. Expanded FP-Tregs resulted in more robust Tregs compared with Enr-Tregs. FP-Tregs produced similar IL-10 and less interferon gamma, had lower Treg-specific demethylated region methylation and expressed higher FoxP3 and CD39. CONCLUSIONS Taken together, this study demonstrates that gene-modified Tregs can be developed to target an aggregated ALS-relevant protein to elicit CAR-mediated Treg effector functions and provides an approach for generating Treg therapies for ALS with the goal of enhanced disease site-specific immunomodulation.
Collapse
Affiliation(s)
- David J Graber
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA; Center for Synthetic Immunity, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - W James Cook
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA; Center for Synthetic Immunity, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Marie-Louise Sentman
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA; Center for Synthetic Immunity, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | | | - Charles L Sentman
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA; Center for Synthetic Immunity, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA.
| |
Collapse
|
11
|
Xu Y, Gao W, Sun Y, Wu M. New insight on microglia activation in neurodegenerative diseases and therapeutics. Front Neurosci 2023; 17:1308345. [PMID: 38188026 PMCID: PMC10770846 DOI: 10.3389/fnins.2023.1308345] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/06/2023] [Indexed: 01/09/2024] Open
Abstract
Microglia are immune cells within the central nervous system (CNS) closely linked to brain health and neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. In response to changes in the surrounding environment, microglia activate and change their state and function. Several factors, example for circadian rhythm disruption and the development of neurodegenerative diseases, influence microglia activation. In this review, we explore microglia's function and the associated neural mechanisms. We elucidate that circadian rhythms are essential factors influencing microglia activation and function. Circadian rhythm disruption affects microglia activation and, consequently, neurodegenerative diseases. In addition, we found that abnormal microglia activation is a common feature of neurodegenerative diseases and an essential factor of disease development. Here we highlight the importance of microglia activation in neurodegenerative diseases. Targeting microglia for neurodegenerative disease treatment is a promising direction. We introduce the progress of methods targeting microglia for the treatment of neurodegenerative diseases and summarize the progress of drugs developed with microglia as targets, hoping to provide new ideas for treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Yucong Xu
- Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Wei Gao
- Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yingnan Sun
- Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Minghua Wu
- Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| |
Collapse
|
12
|
Rubino V, La Rosa G, Pipicelli L, Carriero F, Damiano S, Santillo M, Terrazzano G, Ruggiero G, Mondola P. Insights on the Multifaceted Roles of Wild-Type and Mutated Superoxide Dismutase 1 in Amyotrophic Lateral Sclerosis Pathogenesis. Antioxidants (Basel) 2023; 12:1747. [PMID: 37760050 PMCID: PMC10525763 DOI: 10.3390/antiox12091747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a progressive motor neurodegenerative disease. Cell damage in ALS is the result of many different, largely unknown, pathogenetic mechanisms. Astrocytes and microglial cells play a critical role also for their ability to enhance a deranged inflammatory response. Excitotoxicity, due to excessive glutamate levels and increased intracellular Ca2+ concentration, has also been proposed to play a key role in ALS pathogenesis/progression. Reactive Oxygen Species (ROS) behave as key second messengers for multiple receptor/ligand interactions. ROS-dependent regulatory networks are usually mediated by peroxides. Superoxide Dismutase 1 (SOD1) physiologically mediates intracellular peroxide generation. About 10% of ALS subjects show a familial disease associated with different gain-of-function SOD1 mutations. The occurrence of sporadic ALS, not clearly associated with SOD1 defects, has been also described. SOD1-dependent pathways have been involved in neuron functional network as well as in immune-response regulation. Both, neuron depolarization and antigen-dependent T-cell activation mediate SOD1 exocytosis, inducing increased interaction of the enzyme with a complex molecular network involved in the regulation of neuron functional activity and immune response. Here, alteration of SOD1-dependent pathways mediating increased intracellular Ca2+ levels, altered mitochondria functions and defective inflammatory process regulation have been proposed to be relevant for ALS pathogenesis/progression.
Collapse
Affiliation(s)
- Valentina Rubino
- Dipartimento di Scienze Mediche Traslazionali, Università di Napoli “Federico II”, Via Pansini 5, 80131 Naples, Italy;
| | - Giuliana La Rosa
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli “Federico II”, Via Pansini 5, 80131 Naples, Italy; (G.L.R.); (L.P.); (S.D.); (M.S.)
| | - Luca Pipicelli
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli “Federico II”, Via Pansini 5, 80131 Naples, Italy; (G.L.R.); (L.P.); (S.D.); (M.S.)
| | - Flavia Carriero
- Dipartimento di Scienze, Università della Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (F.C.); (G.T.)
| | - Simona Damiano
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli “Federico II”, Via Pansini 5, 80131 Naples, Italy; (G.L.R.); (L.P.); (S.D.); (M.S.)
| | - Mariarosaria Santillo
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli “Federico II”, Via Pansini 5, 80131 Naples, Italy; (G.L.R.); (L.P.); (S.D.); (M.S.)
| | - Giuseppe Terrazzano
- Dipartimento di Scienze, Università della Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (F.C.); (G.T.)
| | - Giuseppina Ruggiero
- Dipartimento di Scienze Mediche Traslazionali, Università di Napoli “Federico II”, Via Pansini 5, 80131 Naples, Italy;
| | - Paolo Mondola
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli “Federico II”, Via Pansini 5, 80131 Naples, Italy; (G.L.R.); (L.P.); (S.D.); (M.S.)
| |
Collapse
|
13
|
Rojas F, Aguilar R, Almeida S, Fritz E, Corvalán D, Ampuero E, Abarzúa S, Garcés P, Amaro A, Diaz I, Arredondo C, Cortes N, Sanchez M, Mercado C, Varela-Nallar L, Gao FB, Montecino M, van Zundert B. Mature iPSC-derived astrocytes of an ALS/FTD patient carrying the TDP43 A90V mutation display a mild reactive state and release polyP toxic to motoneurons. Front Cell Dev Biol 2023; 11:1226604. [PMID: 37645251 PMCID: PMC10461635 DOI: 10.3389/fcell.2023.1226604] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 07/14/2023] [Indexed: 08/31/2023] Open
Abstract
Astrocytes play a critical role in the maintenance of a healthy central nervous system and astrocyte dysfunction has been implicated in various neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). There is compelling evidence that mouse and human ALS and ALS/FTD astrocytes can reduce the number of healthy wild-type motoneurons (MNs) in co-cultures or after treatment with astrocyte conditioned media (ACM), independently of their genotype. A growing number of studies have shown that soluble toxic factor(s) in the ACM cause non-cell autonomous MN death, including our recent identification of inorganic polyphosphate (polyP) that is excessively released from mouse primary astrocytes (SOD1, TARDBP, and C9ORF72) and human induced pluripotent stem cells (iPSC)-derived astrocytes (TARDBP) to kill MNs. However, others have reported that astrocytes carrying mutant TDP43 do not produce detectable MN toxicity. This controversy is likely to arise from the findings that human iPSC-derived astrocytes exhibit a rather immature and/or reactive phenotype in a number of studies. Here, we have succeeded in generating a highly homogenous population of functional quiescent mature astrocytes from control subject iPSCs. Using identical conditions, we also generated mature astrocytes from an ALS/FTD patient carrying the TDP43A90V mutation. These mutant TDP43 patient-derived astrocytes exhibit key pathological hallmarks, including enhanced cytoplasmic TDP-43 and polyP levels. Additionally, mutant TDP43 astrocytes displayed a mild reactive signature and an aberrant function as they were unable to promote synaptogenesis of hippocampal neurons. The polyP-dependent neurotoxic nature of the TDP43A90V mutation was further confirmed as neutralization of polyP in ACM derived from mutant TDP43 astrocytes prevented MN death. Our results establish that human astrocytes carrying the TDP43A90V mutation exhibit a cell-autonomous pathological signature, hence providing an experimental model to decipher the molecular mechanisms underlying the generation of the neurotoxic phenotype.
Collapse
Affiliation(s)
- Fabiola Rojas
- Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences (ICB), Universidad Andres Bello, Santiago, Chile
| | - Rodrigo Aguilar
- Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences (ICB), Universidad Andres Bello, Santiago, Chile
| | - Sandra Almeida
- Department of Neurology, University of Massachusetts Chan Medical School (UMMS), Worcester, MA, United States
| | - Elsa Fritz
- Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences (ICB), Universidad Andres Bello, Santiago, Chile
| | - Daniela Corvalán
- Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences (ICB), Universidad Andres Bello, Santiago, Chile
| | - Estibaliz Ampuero
- Department of Biology, Faculty of Chemistry and Biology, Universidad de Santiago, Santiago, Chile
| | - Sebastián Abarzúa
- Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences (ICB), Universidad Andres Bello, Santiago, Chile
| | - Polett Garcés
- Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences (ICB), Universidad Andres Bello, Santiago, Chile
| | - Armando Amaro
- Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences (ICB), Universidad Andres Bello, Santiago, Chile
| | - Iván Diaz
- Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences (ICB), Universidad Andres Bello, Santiago, Chile
| | - Cristian Arredondo
- Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences (ICB), Universidad Andres Bello, Santiago, Chile
| | - Nicole Cortes
- Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences (ICB), Universidad Andres Bello, Santiago, Chile
| | - Mario Sanchez
- Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences (ICB), Universidad Andres Bello, Santiago, Chile
| | - Constanza Mercado
- Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences (ICB), Universidad Andres Bello, Santiago, Chile
| | - Lorena Varela-Nallar
- Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences (ICB), Universidad Andres Bello, Santiago, Chile
| | - Fen-Biao Gao
- Department of Neurology, University of Massachusetts Chan Medical School (UMMS), Worcester, MA, United States
| | - Martin Montecino
- Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences (ICB), Universidad Andres Bello, Santiago, Chile
- Millennium Institute Center for Genome Regulation CRG, Santiago, Chile
| | - Brigitte van Zundert
- Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences (ICB), Universidad Andres Bello, Santiago, Chile
- Department of Neurology, University of Massachusetts Chan Medical School (UMMS), Worcester, MA, United States
| |
Collapse
|
14
|
Zhang W, Xiao D, Mao Q, Xia H. Role of neuroinflammation in neurodegeneration development. Signal Transduct Target Ther 2023; 8:267. [PMID: 37433768 PMCID: PMC10336149 DOI: 10.1038/s41392-023-01486-5] [Citation(s) in RCA: 317] [Impact Index Per Article: 158.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 03/22/2023] [Accepted: 05/07/2023] [Indexed: 07/13/2023] Open
Abstract
Studies in neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease and Amyotrophic lateral sclerosis, Huntington's disease, and so on, have suggested that inflammation is not only a result of neurodegeneration but also a crucial player in this process. Protein aggregates which are very common pathological phenomenon in neurodegeneration can induce neuroinflammation which further aggravates protein aggregation and neurodegeneration. Actually, inflammation even happens earlier than protein aggregation. Neuroinflammation induced by genetic variations in CNS cells or by peripheral immune cells may induce protein deposition in some susceptible population. Numerous signaling pathways and a range of CNS cells have been suggested to be involved in the pathogenesis of neurodegeneration, although they are still far from being completely understood. Due to the limited success of traditional treatment methods, blocking or enhancing inflammatory signaling pathways involved in neurodegeneration are considered to be promising strategies for the therapy of neurodegenerative diseases, and many of them have got exciting results in animal models or clinical trials. Some of them, although very few, have been approved by FDA for clinical usage. Here we comprehensively review the factors affecting neuroinflammation and the major inflammatory signaling pathways involved in the pathogenicity of neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and Amyotrophic lateral sclerosis. We also summarize the current strategies, both in animal models and in the clinic, for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Weifeng Zhang
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, 199 South Chang'an Road, Xi'an, 710062, P.R. China
| | - Dan Xiao
- The State Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Air Force Medical University, No. 169 Changle West Road, Xi'an, 710032, P.R. China
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, No. 169 Changle West Road, Xi'an, 710032, China
| | - Qinwen Mao
- Department of Pathology, University of Utah, Huntsman Cancer Institute, 2000 Circle of Hope Drive, Salt Lake City, UT, 84112, USA
| | - Haibin Xia
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, 199 South Chang'an Road, Xi'an, 710062, P.R. China.
| |
Collapse
|
15
|
Hosomi A, Okachi C, Fujiwara Y. Human SOD1 is secreted via a conventional secretion pathway in Saccharomyces cerevisiae. Biochem Biophys Res Commun 2023; 666:101-106. [PMID: 37182284 DOI: 10.1016/j.bbrc.2023.05.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 04/27/2023] [Accepted: 05/04/2023] [Indexed: 05/16/2023]
Abstract
Soluble proteins sorted through the secretory pathway contain an N-terminal signal peptide that induces their translocation into the endoplasmic reticulum (ER) from the cytosol. However, a few proteins that lack a signal peptide are still translocated into the ER, such as SOD1. SOD1 is a causative gene of amyotrophic lateral sclerosis (ALS). A relationship has been suggested between the secretion of SOD1 and the pathogenesis of ALS; however, the transport mechanism of SOD1 remains unclear. We herein report that SOD1 was translocated into the ER lumen through the translocon Sec61 and was then secreted extracellularly. The present results indicate the potential of suppressing the secretion of SOD1 as a therapeutic target for ALS.
Collapse
Affiliation(s)
- Akira Hosomi
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, 8304 Minamiminowa, Kamiina, Nagano, 399-4598, Japan; Faculty of Agriculture, Shinshu University, 8304 Minamiminowa, Kamiina, Nagano, 399-4598, Japan.
| | - Chinatsu Okachi
- Faculty of Agriculture, Shinshu University, 8304 Minamiminowa, Kamiina, Nagano, 399-4598, Japan
| | - Yudai Fujiwara
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, 8304 Minamiminowa, Kamiina, Nagano, 399-4598, Japan
| |
Collapse
|
16
|
Muacevic A, Adler JR, Xu L, Collins L, Luo E, Ripple KM, de Castro GC, Boua JVK, Marius C, Giamberardino C, Lad SP, Islam Williams T, Bereman MS, Bedlack RS. Filtered Cerebrospinal Fluid From Patients With Amyotrophic Lateral Sclerosis Displays an Altered Proteome and Affects Motor Phenotype in a Mouse Model. Cureus 2022; 14:e32980. [PMID: 36712738 PMCID: PMC9877488 DOI: 10.7759/cureus.32980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/26/2022] [Indexed: 12/29/2022] Open
Abstract
INTRODUCTION Cerebrospinal fluid (CSF) has been implicated in amyotrophic lateral sclerosis (ALS) due to its ability to spread inflammatory proteins throughout the nervous system. We hypothesized that filtration of the CSF could remove pathogenic proteins and prevent them from altering motor phenotypes in a mouse model. METHODS We filtered the CSF from 11 ALS patients via 100 kilodaltons (kD) molecular weight cut-off filters. We used mass spectrometry-based discovery proteomics workflows to compare protein abundances before and after filtration. To test the effects of CSF filtration on motor function, we injected groups of mice with saline, filtered ALS-CSF, or unfiltered ALS-CSF (n=12 per group) and assessed motor function via pole descent and open field tests. RESULTS We identified proteins implicated in ALS pathogenesis and showed that these were removed in significant amounts in our workflow. Key filtered proteins included complement proteins, chitinases, serine protease inhibitors, and neuro-inflammatory proteins such as amyloid precursor protein, chromogranin A, and glial fibrillary acidic protein. Compared to the filtered ALS-CSF mice, unfiltered ALS-CSF mice took longer to descend a pole (10 days post-injection, 11.14 seconds vs 14.25 seconds, p = 0.02) and explored less on an open field (one day post-injection, 21.81 m vs 16.83 m, p = 0.0004). CONCLUSIONS We demonstrated the ability to filter proteins from the CSF of ALS patients and identified potentially pathologic proteins that were reduced in quantity. Additionally, we demonstrated the ability of unfiltered ALS-CSF to induce motor deficits in mice on the pole descent and open field tests and showed that filtration could prevent this deficit. Given the lack of effective treatments for ALS, this could be a novel solution for patients suffering from this deadly and irreversible condition.
Collapse
|
17
|
Amorós MA, Choi ES, Cofré AR, Dokholyan NV, Duzzioni M. Motor neuron-derived induced pluripotent stem cells as a drug screening platform for amyotrophic lateral sclerosis. Front Cell Dev Biol 2022; 10:962881. [PMID: 36105357 PMCID: PMC9467621 DOI: 10.3389/fcell.2022.962881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
The development of cell culture models that recapitulate the etiology and features of nervous system diseases is central to the discovery of new drugs and their translation onto therapies. Neuronal tissues are inaccessible due to skeletal constraints and the invasiveness of the procedure to obtain them. Thus, the emergence of induced pluripotent stem cell (iPSC) technology offers the opportunity to model different neuronal pathologies. Our focus centers on iPSCs derived from amyotrophic lateral sclerosis (ALS) patients, whose pathology remains in urgent need of new drugs and treatment. In this sense, we aim to revise the process to obtain motor neurons derived iPSCs (iPSC-MNs) from patients with ALS as a drug screening model, review current 3D-models and offer a perspective on bioinformatics as a powerful tool that can aid in the progress of finding new pharmacological treatments.
Collapse
Affiliation(s)
- Mariana A. Amorós
- Laboratory of Pharmacological Innovation, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceió, Alagoas, Brazil
| | - Esther S. Choi
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, United States
| | - Axel R. Cofré
- Laboratory of Pharmacological Innovation, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceió, Alagoas, Brazil
| | - Nikolay V. Dokholyan
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, United States
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA, United States
| | - Marcelo Duzzioni
- Laboratory of Pharmacological Innovation, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceió, Alagoas, Brazil
| |
Collapse
|
18
|
Gosset P, Camu W, Raoul C, Mezghrani A. Prionoids in amyotrophic lateral sclerosis. Brain Commun 2022; 4:fcac145. [PMID: 35783556 PMCID: PMC9242622 DOI: 10.1093/braincomms/fcac145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/16/2022] [Accepted: 06/01/2022] [Indexed: 12/20/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is the third most frequent neurodegenerative disease after Alzheimer’s and Parkinson’s disease. ALS is characterized by the selective and progressive loss of motoneurons in the spinal cord, brainstem and cerebral cortex. Clinical manifestations typically occur in midlife and start with focal muscle weakness, followed by the rapid and progressive wasting of muscles and subsequent paralysis. As with other neurodegenerative diseases, the condition typically begins at an initial point and then spreads along neuroanatomical tracts. This feature of disease progression suggests the spreading of prion-like proteins called prionoids in the affected tissues, which is similar to the spread of prion observed in Creutzfeldt-Jakob disease. Intensive research over the last decade has proposed the ALS-causing gene products Cu/Zn superoxide dismutase 1, TAR DNA-binding protein of 43 kDa, and fused in sarcoma as very plausible prionoids contributing to the spread of the pathology. In this review, we will discuss the molecular and cellular mechanisms leading to the propagation of these prionoids in ALS.
Collapse
Affiliation(s)
- Philippe Gosset
- INM, Univ Montpellier, INSERM, CNRS, Montpellier 34095, France
| | - William Camu
- INM, Univ Montpellier, INSERM, CNRS, Montpellier 34095, France
| | - Cedric Raoul
- INM, Univ Montpellier, INSERM, CNRS, Montpellier 34095, France
| | | |
Collapse
|
19
|
Kim G, Chen X, Yang Y. Pathogenic Extracellular Vesicle (EV) Signaling in Amyotrophic Lateral Sclerosis (ALS). Neurotherapeutics 2022; 19:1119-1132. [PMID: 35426061 PMCID: PMC9587178 DOI: 10.1007/s13311-022-01232-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2022] [Indexed: 02/06/2023] Open
Abstract
Extracellular vesicles (EVs), once considered a pathway for cells to remove waste, have now emerged as an important mechanism for intercellular communication. EVs are particularly appealing in understanding the central nervous system (CNS) communication, given that there are very diverse cell types in the CNS and constant communications among various cells to respond to the frequently changing environment. While they are heterogeneous and new vesicles are continuously to be discovered, EVs are primarily classified as plasma membrane-derived microvesicles (MVs) and endosome-derived exosomes. Secretion of EVs has been shown from all CNS cell types in vitro and intercellular EV signaling has been implicated in neural development, axon integrity, neuron to glia communication, and propagation of protein aggregates formed by disease pathogenic proteins. However, significant hurdles remain to be tackled in understanding their physiological and pathological roles as well as how they can be developed as biomarkers or new therapeutics. Here we provide our summary on the known cell biology of EVs and discuss opportunities and challenges in understanding EV biology in the CNS and particularly their involvement in ALS pathogenesis.
Collapse
Affiliation(s)
- Gloria Kim
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Ave, Boston, MA, 02111, USA
| | - Xuan Chen
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Ave, Boston, MA, 02111, USA
| | - Yongjie Yang
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Ave, Boston, MA, 02111, USA.
- Graduate School of Biomedical Sciences, Tufts University, 136 Harrison Ave, Boston, MA, 02111, USA.
| |
Collapse
|
20
|
Calabrese G, Molzahn C, Mayor T. Protein interaction networks in neurodegenerative diseases: from physiological function to aggregation. J Biol Chem 2022; 298:102062. [PMID: 35623389 PMCID: PMC9234719 DOI: 10.1016/j.jbc.2022.102062] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/26/2022] [Accepted: 05/18/2022] [Indexed: 11/25/2022] Open
Abstract
The accumulation of protein inclusions is linked to many neurodegenerative diseases that typically develop in older individuals, due to a combination of genetic and environmental factors. In rare familial neurodegenerative disorders, genes encoding for aggregation-prone proteins are often mutated. While the underlying mechanism leading to these diseases still remains to be fully elucidated, efforts in the past 20 years revealed a vast network of protein–protein interactions that play a major role in regulating the aggregation of key proteins associated with neurodegeneration. Misfolded proteins that can oligomerize and form insoluble aggregates associate with molecular chaperones and other elements of the proteolytic machineries that are the frontline workers attempting to protect the cells by promoting clearance and preventing aggregation. Proteins that are normally bound to aggregation-prone proteins can become sequestered and mislocalized in protein inclusions, leading to their loss of function. In contrast, mutations, posttranslational modifications, or misfolding of aggregation-prone proteins can lead to gain of function by inducing novel or altered protein interactions, which in turn can impact numerous essential cellular processes and organelles, such as vesicle trafficking and the mitochondria. This review examines our current knowledge of protein–protein interactions involving several key aggregation-prone proteins that are associated with Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, or amyotrophic lateral sclerosis. We aim to provide an overview of the protein interaction networks that play a central role in driving or mitigating inclusion formation, while highlighting some of the key proteomic studies that helped to uncover the extent of these networks.
Collapse
Affiliation(s)
- Gaetano Calabrese
- Michael Smith Laboratories, University of British Columbia, V6T 1Z4 Vancouver BC, Canada.
| | - Cristen Molzahn
- Michael Smith Laboratories, University of British Columbia, V6T 1Z4 Vancouver BC, Canada
| | - Thibault Mayor
- Michael Smith Laboratories, University of British Columbia, V6T 1Z4 Vancouver BC, Canada.
| |
Collapse
|
21
|
Salvany S, Casanovas A, Piedrafita L, Gras S, Calderó J, Esquerda JE. Accumulation of misfolded SOD1 outlines distinct patterns of motor neuron pathology and death during disease progression in a SOD1 G93A mouse model of amyotrophic lateral sclerosis. Brain Pathol 2022; 32:e13078. [PMID: 35584812 PMCID: PMC9616096 DOI: 10.1111/bpa.13078] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 04/11/2022] [Indexed: 12/12/2022] Open
Abstract
Early misfolded superoxide dismutase 1 (mfSOD1) accumulation, motor neuron (MN) degeneration, and microgliosis are hallmark pathological features in SOD1G93A amyotrophic lateral sclerosis (ALS) mice. Because of the different vulnerabilities of distinct MN subtypes, degenerating and surviving MNs coexist in different proportions during disease progression. By examining the expression of misfolded conformers of SOD1 using specific antibodies, we defined distinct MN phenotypes that were evaluated during disease progression and the local neuroinflammatory reaction. The most severe phenotype corresponded to somata of fast‐twitch subtype MNs, which exhibited highly positive mfSOD1 immunostaining and an extreme degree of vacuolar degeneration. Vacuoles, which are of mitochondrial origin, contain mfSOD1 in conjunction with nonmitochondrial proteins, such as chromogranin, CD81, and flotillin. The fusion of ER‐derived vesicles enriched in mfSOD1 with outer mitochondrial membranes is thought to be the primary mechanism for vacuole formation. In addition, the ulterior coalescence of enlarged mitochondria may lead to the formation of giant vacuoles. Vacuolar degeneration is a transient degenerative process occurring early during the presymptomatic stages of the disease in ALS mice. Some vacuolated MNs are also positive for pMLKL, the effector protein of necroptosis. This indicates a newly described mechanism in which extracellular vesicles derived from damaged MNs, via cellular secretion or necroptotic disruption, may be the triggers for initiating neuroinflammation, glial‐mediated neurotoxicity, and disease spreading. Furthermore, as MN degeneration in mutant SOD1 mice is noncell autonomous, the effects of experimentally increasing or decreasing the microglial response on the expression of MN phenotypes were also evaluated, demonstrating bidirectional cross talk signaling between the degree of expression of mfSOD1 and local neuroinflammation. More detailed knowledge regarding these processes occurring long before the end stages of the disease is necessary to identify novel molecular targets for future preclinical testing.
Collapse
Affiliation(s)
- Sara Salvany
- Patologia Neuromuscular Experimental, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Catalonia, Spain
| | - Anna Casanovas
- Patologia Neuromuscular Experimental, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Catalonia, Spain
| | - Lídia Piedrafita
- Patologia Neuromuscular Experimental, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Catalonia, Spain
| | - Sílvia Gras
- Patologia Neuromuscular Experimental, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Catalonia, Spain
| | - Jordi Calderó
- Patologia Neuromuscular Experimental, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Catalonia, Spain
| | - Josep E Esquerda
- Patologia Neuromuscular Experimental, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Catalonia, Spain
| |
Collapse
|
22
|
Arredondo C, Cefaliello C, Dyrda A, Jury N, Martinez P, Díaz I, Amaro A, Tran H, Morales D, Pertusa M, Stoica L, Fritz E, Corvalán D, Abarzúa S, Méndez-Ruette M, Fernández P, Rojas F, Kumar MS, Aguilar R, Almeida S, Weiss A, Bustos FJ, González-Nilo F, Otero C, Tevy MF, Bosco DA, Sáez JC, Kähne T, Gao FB, Berry JD, Nicholson K, Sena-Esteves M, Madrid R, Varela D, Montecino M, Brown RH, van Zundert B. Excessive release of inorganic polyphosphate by ALS/FTD astrocytes causes non-cell-autonomous toxicity to motoneurons. Neuron 2022; 110:1656-1670.e12. [PMID: 35276083 PMCID: PMC9119918 DOI: 10.1016/j.neuron.2022.02.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/01/2021] [Accepted: 02/15/2022] [Indexed: 12/13/2022]
Abstract
Non-cell-autonomous mechanisms contribute to neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), in which astrocytes release unidentified factors that are toxic to motoneurons (MNs). We report here that mouse and patient iPSC-derived astrocytes with diverse ALS/FTD-linked mutations (SOD1, TARDBP, and C9ORF72) display elevated levels of intracellular inorganic polyphosphate (polyP), a ubiquitous, negatively charged biopolymer. PolyP levels are also increased in astrocyte-conditioned media (ACM) from ALS/FTD astrocytes. ACM-mediated MN death is prevented by degrading or neutralizing polyP in ALS/FTD astrocytes or ACM. Studies further reveal that postmortem familial and sporadic ALS spinal cord sections display enriched polyP staining signals and that ALS cerebrospinal fluid (CSF) exhibits increased polyP concentrations. Our in vitro results establish excessive astrocyte-derived polyP as a critical factor in non-cell-autonomous MN degeneration and a potential therapeutic target for ALS/FTD. The CSF data indicate that polyP might serve as a new biomarker for ALS/FTD.
Collapse
Affiliation(s)
- Cristian Arredondo
- Institute of Biomedical Sciences (ICB), Faculty of Medicine & Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370186, Chile; CARE Biomedical Research Center, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Carolina Cefaliello
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Agnieszka Dyrda
- Institute of Biomedical Sciences (ICB), Faculty of Medicine & Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370186, Chile; CARE Biomedical Research Center, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Nur Jury
- Institute of Biomedical Sciences (ICB), Faculty of Medicine & Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370186, Chile; CARE Biomedical Research Center, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Pablo Martinez
- Institute of Biomedical Sciences (ICB), Faculty of Medicine & Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370186, Chile; CARE Biomedical Research Center, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Iván Díaz
- Institute of Biomedical Sciences (ICB), Faculty of Medicine & Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370186, Chile; CARE Biomedical Research Center, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Armando Amaro
- Institute of Biomedical Sciences (ICB), Faculty of Medicine & Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370186, Chile; CARE Biomedical Research Center, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Helene Tran
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Danna Morales
- Program of Physiology and Biophysics, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Santiago 9160000, Chile
| | - Maria Pertusa
- Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Santiago 9160000, Chile; Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago 9160000, Chile; Department of Biology, Faculty of Chemistry and Biology, Universidad de Santiago de Chile, Santiago 9160000, Chile
| | - Lorelei Stoica
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA; Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Elsa Fritz
- Institute of Biomedical Sciences (ICB), Faculty of Medicine & Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370186, Chile; CARE Biomedical Research Center, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Daniela Corvalán
- Institute of Biomedical Sciences (ICB), Faculty of Medicine & Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370186, Chile; CARE Biomedical Research Center, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Sebastián Abarzúa
- Institute of Biomedical Sciences (ICB), Faculty of Medicine & Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370186, Chile; CARE Biomedical Research Center, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile; FONDAP Center for Genome Regulation, Santiago 8370146, Chile
| | - Maxs Méndez-Ruette
- Institute of Biomedical Sciences (ICB), Faculty of Medicine & Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370186, Chile; CARE Biomedical Research Center, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Paola Fernández
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, Valparaíso 2340000, Chile
| | - Fabiola Rojas
- Institute of Biomedical Sciences (ICB), Faculty of Medicine & Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370186, Chile; CARE Biomedical Research Center, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Meenakshi Sundaram Kumar
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Rodrigo Aguilar
- Institute of Biomedical Sciences (ICB), Faculty of Medicine & Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370186, Chile
| | - Sandra Almeida
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Alexandra Weiss
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Fernando J Bustos
- Institute of Biomedical Sciences (ICB), Faculty of Medicine & Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370186, Chile
| | - Fernando González-Nilo
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, Valparaíso 2340000, Chile; Center for Bioinformatics and Integrative Biology (CBIB), Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370186, Chile
| | - Carolina Otero
- School of Chemistry and Pharmacy, Faculty of Medicine, Universidad Andres Bello, Santiago 8320000, Chile
| | - Maria Florencia Tevy
- Cell Biology Laboratory, INTA, University of Chile and GEDIS Biotech, Santiago 7810000, Chile
| | - Daryl A Bosco
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Juan C Sáez
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, Valparaíso 2340000, Chile
| | - Thilo Kähne
- Institute of Experimental Internal Medicine, Medical School, Otto von Guericke University Magdeburg, Magdeburg 39120, Germany
| | - Fen-Biao Gao
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - James D Berry
- Massachusetts General Hospital Neurological Clinical Research Institute and Harvard Medical School, Boston, MA 02114, USA
| | - Katharine Nicholson
- Massachusetts General Hospital Neurological Clinical Research Institute and Harvard Medical School, Boston, MA 02114, USA
| | - Miguel Sena-Esteves
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA; Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Rodolfo Madrid
- Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Santiago 9160000, Chile; Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago 9160000, Chile; Department of Biology, Faculty of Chemistry and Biology, Universidad de Santiago de Chile, Santiago 9160000, Chile
| | - Diego Varela
- Program of Physiology and Biophysics, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Santiago 9160000, Chile
| | - Martin Montecino
- Institute of Biomedical Sciences (ICB), Faculty of Medicine & Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370186, Chile; FONDAP Center for Genome Regulation, Santiago 8370146, Chile
| | - Robert H Brown
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Brigitte van Zundert
- Institute of Biomedical Sciences (ICB), Faculty of Medicine & Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370186, Chile; CARE Biomedical Research Center, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile; Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.
| |
Collapse
|
23
|
Yoshida S, Hasegawa T. Deciphering the prion-like behavior of pathogenic protein aggregates in neurodegenerative diseases. Neurochem Int 2022; 155:105307. [PMID: 35181393 DOI: 10.1016/j.neuint.2022.105307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/12/2022] [Accepted: 02/13/2022] [Indexed: 12/12/2022]
Abstract
Neurodegenerative diseases are hitherto classified based on their core clinical features, the anatomical distribution of neurodegeneration, and the cell populations mainly affected. On the other hand, the wealth of neuropathological, genetic, molecular and biochemical studies have identified the existence of distinct insoluble protein aggregates in the affected brain regions. These findings have spread the use of a collective term, proteinopathy, for neurodegenerative disorders with particular type of structurally altered protein accumulation. Particularly, a recent breakthrough in this field came with the discovery that these protein aggregates can transfer from one cell to another, thereby converting normal proteins to potentially toxic, misfolded species in a prion-like manner. In this review, we focus specifically on the molecular and cellular basis that underlies the seeding activity and transcellular spreading phenomenon of neurodegeneration-related protein aggregates, and discuss how these events contribute to the disease progression.
Collapse
Affiliation(s)
- Shun Yoshida
- Division of Neurology, Department of Neuroscience & Sensory Organs, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 9808574, Japan; Department of Neurology, National Hospital Organization Yonezawa Hospital, Yonezawa, Yamagata, 992-1202, Japan
| | - Takafumi Hasegawa
- Division of Neurology, Department of Neuroscience & Sensory Organs, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 9808574, Japan.
| |
Collapse
|
24
|
Funada C, Tanino N, Fukaya M, Mikajiri Y, Nishiguchi M, Otake M, Nakasuji H, Kawahito R, Abe F. SOD1 mutations cause hypersensitivity to high-pressure-induced oxidative stress in Saccharomyces cerevisiae. Biochim Biophys Acta Gen Subj 2022; 1866:130049. [PMID: 34728328 DOI: 10.1016/j.bbagen.2021.130049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/04/2021] [Accepted: 10/28/2021] [Indexed: 12/27/2022]
Abstract
Living organisms are subject to various mechanical stressors, such as high hydrostatic pressure. Empirical evidence shows that under high pressure, the oxidative stress response is activated in Saccharomyces cerevisiae. However, the mechanisms involved in its antioxidant systems are unclear. Here, we demonstrate that superoxide dismutase 1 (Sod1) plays a role in resisting high pressure for cell growth. Mutants lacking Sod1 or Ccs1, the copper chaperone for Sod1, displayed growth defects under 25 MPa. Of the various SOD1 mutations associated with familial amyotrophic lateral sclerosis, H46Q and S134N substitutions diminished SOD activity to levels comparable to those of catalytically deficient H63A and null mutants. When these mutant cells were cultured under 25 MPa, their intracellular O2•- levels increased while sod1∆ mutant genome stability was unaffected. The high-pressure sensitive sod1 mutants were also susceptible to sublethal levels of the O2•- generator paraquat. The sod1∆ mutant is known to exhibit methionine and lysine auxotrophy. However, excess methionine addition or overexpression of the lysine permease gene LYP1 did not counteract high-pressure sensitivity in the sod1 mutants, suggesting that their amino acid availability might be intact under 25 MPa. Interestingly, an exclusive localization of Sco2-Sod1 to the intermembrane space (IMS) of mitochondria appeared to partially restore the high-pressure growth ability in the sod1 mutants. Taken these results together, we suggest that high pressure enhances O2•- production and Sod1 within the IMS plays a role in scavenging O2•- allowing the cells to grow under high pressure. BACKGROUND Empirical evidence shows that under high hydrostatic pressure, the oxidative stress response is activated in Saccharomyces cerevisiae. However, the mechanisms involved in its antioxidant systems are unclear. In the current study, we aimed to explore the role of superoxide dismutase 1 (Sod1) in yeast able to grow under high pressure. METHODS Wild type and sod1 mutant cells were cultured in high-pressure chambers under 25 MPa (~250 kg/cm2). The SOD activity in whole cell extracts and 6His-tagged Sod1 recombinant proteins was analyzed using an SOD assay kit. The O2•- generation in cells was estimated by fluorescence staining. RESULTS Mutants lacking Sod1 or Ccs1, the copper chaperone for Sod1, displayed growth defects under 25 MPa. Of the various SOD1 mutations associated with familial amyotrophic lateral sclerosis, H46Q and S134N substitutions diminished SOD activity to levels comparable to those of catalytically deficient H63A and null mutants. The high-pressure sensitive sod1 mutants were also susceptible to sublethal levels of the O2•- generator paraquat. Exclusive localization of Sco2-Sod1 to the intermembrane space (IMS) of mitochondria partially restored the high-pressure growth ability in the sod1 mutants. CONCLUSIONS High pressure enhances O2•- production and Sod1 within the IMS plays a role in scavenging O2•- allowing the cells to grow under high pressure. GENERAL SIGNIFICANCE Unlike external free radical-generating compounds, high-pressure treatment appeared to increase endogenous O2•- levels in yeast cells. Our experimental system offers a unique approach to investigating the physiological responses to mechanical and oxidative stresses in human body.
Collapse
Affiliation(s)
- Chisako Funada
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Nanami Tanino
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Miina Fukaya
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Yu Mikajiri
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Masayoshi Nishiguchi
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Masato Otake
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Hiroko Nakasuji
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Reika Kawahito
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Fumiyoshi Abe
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan.
| |
Collapse
|
25
|
Chen QY, Wen T, Wu P, Jia R, Zhang R, Dang J. Exosomal Proteins and miRNAs as Mediators of Amyotrophic Lateral Sclerosis. Front Cell Dev Biol 2021; 9:718803. [PMID: 34568332 PMCID: PMC8461026 DOI: 10.3389/fcell.2021.718803] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/13/2021] [Indexed: 12/14/2022] Open
Abstract
Recent advances in the neurobiology and neurogenerative diseases have attracted growing interest in exosomes and their ability to carry and propagate active biomolecules as a means to reprogram recipient cells. Alterations in exosomal protein content and nucleic acid profiles found in human biological fluids have been correlated with various diseases including amyotrophic lateral sclerosis (ALS). In ALS pathogenesis, these lipid-bound nanoscale vesicles have emerged as valuable candidates for diagnostic biomarkers. Moreover, their capacity to spread misfolded proteins and functional non-coding RNAs to interconnected neuronal cells make them putative mediators for the progressive motor degeneration found remarkably apparent in ALS. This review outlines current knowledge concerning the biogenesis, heterogeneity, and function of exosomes in the brain as well as a comprehensive probe of currently available literature on ALS-related exosomal proteins and microRNAs. Lastly, with the rapid development of employing nanoparticles for drug delivery, we explore the therapeutic potentials of exosomes as well as underlying limitations in current isolation and detection methodologies.
Collapse
Affiliation(s)
- Qiao Yi Chen
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Ting Wen
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Peng Wu
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Rui Jia
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ronghua Zhang
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jingxia Dang
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
26
|
Muzio L, Viotti A, Martino G. Microglia in Neuroinflammation and Neurodegeneration: From Understanding to Therapy. Front Neurosci 2021; 15:742065. [PMID: 34630027 PMCID: PMC8497816 DOI: 10.3389/fnins.2021.742065] [Citation(s) in RCA: 252] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/25/2021] [Indexed: 12/19/2022] Open
Abstract
Microglia are the resident macrophages of the central nervous system (CNS) acting as the first line of defense in the brain by phagocytosing harmful pathogens and cellular debris. Microglia emerge from early erythromyeloid progenitors of the yolk sac and enter the developing brain before the establishment of a fully mature blood-brain barrier. In physiological conditions, during brain development, microglia contribute to CNS homeostasis by supporting cell proliferation of neural precursors. In post-natal life, such cells contribute to preserving the integrity of neuronal circuits by sculpting synapses. After a CNS injury, microglia change their morphology and down-regulate those genes supporting homeostatic functions. However, it is still unclear whether such changes are accompanied by molecular and functional modifications that might contribute to the pathological process. While comprehensive transcriptome analyses at the single-cell level have identified specific gene perturbations occurring in the "pathological" microglia, still the precise protective/detrimental role of microglia in neurological disorders is far from being fully elucidated. In this review, the results so far obtained regarding the role of microglia in neurodegenerative disorders will be discussed. There is solid and sound evidence suggesting that regulating microglia functions during disease pathology might represent a strategy to develop future therapies aimed at counteracting brain degeneration in multiple sclerosis, Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Luca Muzio
- Neuroimmunology Unit, Division of Neuroscience, IRCCS San Raffaele Hospital, Vita-Salute San Raffaele University, Milan, Italy
| | | | | |
Collapse
|
27
|
De Marchi F, Munitic I, Amedei A, Berry JD, Feldman EL, Aronica E, Nardo G, Van Weehaeghe D, Niccolai E, Prtenjaca N, Sakowski SA, Bendotti C, Mazzini L. Interplay between immunity and amyotrophic lateral sclerosis: Clinical impact. Neurosci Biobehav Rev 2021; 127:958-978. [PMID: 34153344 PMCID: PMC8428677 DOI: 10.1016/j.neubiorev.2021.06.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/07/2021] [Accepted: 06/17/2021] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a debilitating and rapidly fatal neurodegenerative disease. Despite decades of research and many new insights into disease biology over the 150 years since the disease was first described, causative pathogenic mechanisms in ALS remain poorly understood, especially in sporadic cases. Our understanding of the role of the immune system in ALS pathophysiology, however, is rapidly expanding. The aim of this manuscript is to summarize the recent advances regarding the immune system involvement in ALS, with particular attention to clinical translation. We focus on the potential pathophysiologic mechanism of the immune system in ALS, discussing local and systemic factors (blood, cerebrospinal fluid, and microbiota) that influence ALS onset and progression in animal models and people. We also explore the potential of Positron Emission Tomography to detect neuroinflammation in vivo, and discuss ongoing clinical trials of therapies targeting the immune system. With validation in human patients, new evidence in this emerging field will serve to identify novel therapeutic targets and provide realistic hope for personalized treatment strategies.
Collapse
Affiliation(s)
- Fabiola De Marchi
- Department of Neurology and ALS Centre, University of Piemonte Orientale, Maggiore Della Carità Hospital, Corso Mazzini 18, Novara, 28100, Italy
| | - Ivana Munitic
- Laboratory for Molecular Immunology, Department of Biotechnology, University of Rijeka, R. Matejcic 2, 51000, Rijeka, Croatia
| | - Amedeo Amedei
- Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
| | - James D Berry
- Sean M. Healey & AMG Center for ALS, Department of Neurology, Massachusetts General Hospital, 165 Cambridge Street, Suite 600, Boston, MA, 02114, USA
| | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Eleonora Aronica
- Amsterdam UMC, University of Amsterdam, Department of (Neuro) Pathology, Amsterdam Neuroscience, Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands
| | - Giovanni Nardo
- Laboratory of Molecular Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, Milanm, 20156, Italy
| | - Donatienne Van Weehaeghe
- Division of Nuclear Medicine, Department of Imaging and Pathology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Elena Niccolai
- Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
| | - Nikolina Prtenjaca
- Laboratory for Molecular Immunology, Department of Biotechnology, University of Rijeka, R. Matejcic 2, 51000, Rijeka, Croatia
| | - Stacey A Sakowski
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Caterina Bendotti
- Laboratory of Molecular Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, Milanm, 20156, Italy
| | - Letizia Mazzini
- Department of Neurology and ALS Centre, University of Piemonte Orientale, Maggiore Della Carità Hospital, Corso Mazzini 18, Novara, 28100, Italy.
| |
Collapse
|
28
|
Pascual M, Calvo-Rodriguez M, Núñez L, Villalobos C, Ureña J, Guerri C. Toll-like receptors in neuroinflammation, neurodegeneration, and alcohol-induced brain damage. IUBMB Life 2021; 73:900-915. [PMID: 34033211 DOI: 10.1002/iub.2510] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/05/2021] [Accepted: 05/22/2021] [Indexed: 12/12/2022]
Abstract
Toll-like receptors (TLRs) or pattern recognition receptors respond to pathogen-associated molecular patterns (PAMPs) or internal damage-associated molecular patterns (DAMPs). TLRs are integral membrane proteins with both extracellular leucine-rich and cytoplasmic domains that initiate downstream signaling through kinases by activating transcription factors like AP-1 and NF-κB, which lead to the release of various inflammatory cytokines and immune modulators. In the central nervous system, different TLRs are expressed mainly in microglia and astroglial cells, although some TLRs are also expressed in oligodendroglia and neurons. Activation of TLRs triggers signaling cascades by the host as a defense mechanism against invaders to repair damaged tissue. However, overactivation of TLRs disrupts the sustained immune homeostasis-induced production of pro-inflammatory molecules, such as cytokines, miRNAs, and inflammatory components of extracellular vesicles. These inflammatory mediators can, in turn, induce neuroinflammation, and neural tissue damage associated with many neurodegenerative diseases. This review discusses the critical role of TLRs response in Alzheimer's disease, Parkinson's disease, ischemic stroke, amyotrophic lateral sclerosis, and alcohol-induced brain damage and neurodegeneration.
Collapse
Affiliation(s)
- María Pascual
- Department of Physiology, School of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - Maria Calvo-Rodriguez
- Alzheimer's Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Lucía Núñez
- Institute of Biology and Molecular Genetics (IBGM), University of Valladolid and National Research Council (CSIC), Valladolid, Spain.,Department of Biochemistry and Molecular Biology and Physiology, University of Valladolid, Valladolid, Spain
| | - Carlos Villalobos
- Institute of Biology and Molecular Genetics (IBGM), University of Valladolid and National Research Council (CSIC), Valladolid, Spain
| | - Juan Ureña
- Department of Molecular and Cellular Pathology of Alcohol, Príncipe Felipe Research Center, Valencia, Spain
| | - Consuelo Guerri
- Department of Molecular and Cellular Pathology of Alcohol, Príncipe Felipe Research Center, Valencia, Spain
| |
Collapse
|
29
|
Cicardi ME, Marrone L, Azzouz M, Trotti D. Proteostatic imbalance and protein spreading in amyotrophic lateral sclerosis. EMBO J 2021; 40:e106389. [PMID: 33792056 PMCID: PMC8126909 DOI: 10.15252/embj.2020106389] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/18/2020] [Accepted: 02/25/2021] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder whose exact causative mechanisms are still under intense investigation. Several lines of evidence suggest that the anatomical and temporal propagation of pathological protein species along the neural axis could be among the main driving mechanisms for the fast and irreversible progression of ALS pathology. Many ALS-associated proteins form intracellular aggregates as a result of their intrinsic prion-like properties and/or following impairment of the protein quality control systems. During the disease course, these mutated proteins and aberrant peptides are released in the extracellular milieu as soluble or aggregated forms through a variety of mechanisms. Internalization by recipient cells may seed further aggregation and amplify existing proteostatic imbalances, thus triggering a vicious cycle that propagates pathology in vulnerable cells, such as motor neurons and other susceptible neuronal subtypes. Here, we provide an in-depth review of ALS pathology with a particular focus on the disease mechanisms of seeding and transmission of the most common ALS-associated proteins, including SOD1, FUS, TDP-43, and C9orf72-linked dipeptide repeats. For each of these proteins, we report historical, biochemical, and pathological evidence of their behaviors in ALS. We further discuss the possibility to harness pathological proteins as biomarkers and reflect on the implications of these findings for future research.
Collapse
Affiliation(s)
- Maria Elena Cicardi
- Department of NeuroscienceWeinberg ALS CenterVickie and Jack Farber Institute for NeuroscienceThomas Jefferson UniversityPhiladelphiaPAUSA
| | - Lara Marrone
- Department of NeuroscienceSheffield Institute for Translational Neuroscience (SITraN)University of SheffieldSheffieldUK
| | - Mimoun Azzouz
- Department of NeuroscienceSheffield Institute for Translational Neuroscience (SITraN)University of SheffieldSheffieldUK
| | - Davide Trotti
- Department of NeuroscienceWeinberg ALS CenterVickie and Jack Farber Institute for NeuroscienceThomas Jefferson UniversityPhiladelphiaPAUSA
| |
Collapse
|
30
|
A Metal-Free, Disulfide Oxidized Form of Superoxide Dismutase 1 as a Primary Misfolded Species with Prion-Like Properties in the Extracellular Environments Surrounding Motor Neuron-Like Cells. Int J Mol Sci 2021; 22:ijms22084155. [PMID: 33923808 PMCID: PMC8074096 DOI: 10.3390/ijms22084155] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 11/16/2022] Open
Abstract
Superoxide dismutase 1 (SOD1) is a metalloenzyme with high structural stability, but a lack of Cu and Zn ions decreases its stability and enhances the likelihood of misfolding, which is a pathological hallmark of amyotrophic lateral sclerosis (ALS). A growing body of evidence has demonstrated that misfolded SOD1 has prion-like properties such as transmissibility between cells and intracellular propagation of misfolding of natively folded SOD1. Recently, we found that SOD1 is misfolded in the cerebrospinal fluid of sporadic ALS patients, providing a route by which misfolded SOD1 spreads via the extracellular environment of the central nervous system. Unlike intracellular misfolded SOD1, it is unknown which extracellular misfolded species is most relevant to prion-like properties. Here, we determined a conformational feature of extracellular misfolded SOD1 that is linked to prion-like properties. Using culture media from motor neuron-like cells, NSC-34, extracellular misfolded wild-type, and four ALS-causing SOD1 mutants were characterized as a metal-free, disulfide oxidized form of SOD1 (apo-SOD1S-S). Extracellular misfolded apo-SOD1S-S exhibited cell-to-cell transmission from the culture medium to recipient cells as well as intracellular propagation of SOD1 misfolding in recipient cells. Furthermore, culture medium containing misfolded apo-SOD1S-S exerted cytotoxicity to motor neuron-like cells, which was blocked by removal of misfolded apo-SOD1S-S from the medium. We conclude that misfolded apo-SOD1S-S is a primary extracellular species that is linked to prion-like properties.
Collapse
|
31
|
Ribon M, Leone C, Chiot A, Berriat F, Rampanana M, Cottin J, Bohl D, Millecamps S, Lobsiger CS, Heneka MT, Boillée S. Deletion of the inflammatory S100-A9/MRP14 protein does not influence survival in hSOD1 G93A ALS mice. Neurobiol Aging 2021; 101:181-186. [PMID: 33626479 DOI: 10.1016/j.neurobiolaging.2021.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/22/2020] [Accepted: 01/15/2021] [Indexed: 11/15/2022]
Abstract
Neuroinflammation is a hallmark of Amyotrophic Lateral Sclerosis (ALS) in hSOD1G93A mouse models where microglial cells contribute to the progressive motor neuron degenerative process. S100-A8 and S100-A9 (also known as MRP8 and MRP14, respectively) are cytoplasmic proteins expressed by inflammatory myeloid cells, including microglia and macrophages. Mainly acting as a heterodimer, S100-A8/A9, when secreted, can activate Toll-like Receptor 4 on immune cells, leading to deleterious proinflammatory cytokine production. Deletion of S100a9 in Alzheimer's disease mouse models showed a positive outcome, reducing pathology. We now assessed its role in ALS. Unexpectedly, our results show that deleting S100a9 in hSOD1G93A ALS mice had no impact on mouse survival, but rather accelerated symptoms with no impact on microglial activation and motor neuron survival, suggesting that blocking S100-A9 would not be a valuable strategy for ALS.
Collapse
Affiliation(s)
- Matthieu Ribon
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Paris, France
| | - Céline Leone
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Paris, France
| | - Aude Chiot
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Paris, France
| | - Félix Berriat
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Paris, France
| | - Martine Rampanana
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Paris, France
| | - Julie Cottin
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Paris, France
| | - Delphine Bohl
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Paris, France
| | - Stéphanie Millecamps
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Paris, France
| | - Christian S Lobsiger
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Paris, France
| | - Michael T Heneka
- Department of Neurodegenerative Disease and Gerontopsychiatry/Neurology, University of Bonn Medical Center, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Séverine Boillée
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Paris, France.
| |
Collapse
|
32
|
Atypical Cadherin FAT3 Is a Novel Mediator for Morphological Changes of Microglia. eNeuro 2020; 7:ENEURO.0056-20.2020. [PMID: 32868309 PMCID: PMC7768282 DOI: 10.1523/eneuro.0056-20.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 12/17/2022] Open
Abstract
Microglia are resident macrophages that are critical for brain development and homeostasis. Microglial morphology is dynamically changed during postnatal stages, leading to regulating synaptogenesis and synapse pruning. Moreover, it has been well known that the shape of microglia is also altered in response to the detritus of the apoptotic cells and pathogens such as bacteria and viruses. Although the morphologic changes are crucial for acquiring microglial functions, the exact mechanism which controls their morphology is not fully understood. Here, we report that the FAT atypical cadherin family protein, FAT3, regulates the morphology of microglial cell line, BV2. We found that the shape of BV2 becomes elongated in a high-nutrient medium. Using microarray analysis, we identified that FAT3 expression is induced by culturing with a high-nutrient medium. In addition, we found that purinergic analog, hypoxanthine, promotes FAT3 expression in BV2 and mouse primary microglia. FAT3 expression induced by hypoxanthine extends the time of sustaining the elongated forms in BV2. These data suggest that the hypoxanthine-FAT3 axis is a novel pathway associated with microglial morphology. Our data provide a possibility that FAT3 may control microglial transitions involved in their morphologic changes during the postnatal stages in vivo.
Collapse
|
33
|
Mishra V, Re DB, Le Verche V, Alvarez MJ, Vasciaveo A, Jacquier A, Doulias PT, Greco TM, Nizzardo M, Papadimitriou D, Nagata T, Rinchetti P, Perez-Torres EJ, Politi KA, Ikiz B, Clare K, Than ME, Corti S, Ischiropoulos H, Lotti F, Califano A, Przedborski S. Systematic elucidation of neuron-astrocyte interaction in models of amyotrophic lateral sclerosis using multi-modal integrated bioinformatics workflow. Nat Commun 2020; 11:5579. [PMID: 33149111 PMCID: PMC7642391 DOI: 10.1038/s41467-020-19177-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 10/02/2020] [Indexed: 12/31/2022] Open
Abstract
Cell-to-cell communications are critical determinants of pathophysiological phenotypes, but methodologies for their systematic elucidation are lacking. Herein, we propose an approach for the Systematic Elucidation and Assessment of Regulatory Cell-to-cell Interaction Networks (SEARCHIN) to identify ligand-mediated interactions between distinct cellular compartments. To test this approach, we selected a model of amyotrophic lateral sclerosis (ALS), in which astrocytes expressing mutant superoxide dismutase-1 (mutSOD1) kill wild-type motor neurons (MNs) by an unknown mechanism. Our integrative analysis that combines proteomics and regulatory network analysis infers the interaction between astrocyte-released amyloid precursor protein (APP) and death receptor-6 (DR6) on MNs as the top predicted ligand-receptor pair. The inferred deleterious role of APP and DR6 is confirmed in vitro in models of ALS. Moreover, the DR6 knockdown in MNs of transgenic mutSOD1 mice attenuates the ALS-like phenotype. Our results support the usefulness of integrative, systems biology approach to gain insights into complex neurobiological disease processes as in ALS and posit that the proposed methodology is not restricted to this biological context and could be used in a variety of other non-cell-autonomous communication mechanisms.
Collapse
Affiliation(s)
- Vartika Mishra
- Departments of Pathology and Cell Biology, Columbia University, New York, NY, 10032, USA
- Center for Motor Neuron Biology and Diseases, Columbia University, New York, NY, 10032, USA
- Spark Therapeutics, 3737 Market Street, Philadelphia, PA, 19104, USA
| | - Diane B Re
- Center for Motor Neuron Biology and Diseases, Columbia University, New York, NY, 10032, USA
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA
| | - Virginia Le Verche
- Departments of Pathology and Cell Biology, Columbia University, New York, NY, 10032, USA
- Center for Motor Neuron Biology and Diseases, Columbia University, New York, NY, 10032, USA
- Center for Gene Therapy, City of Hope, 1500 E. Duarte Road, Duarte, CA, 91010, USA
| | - Mariano J Alvarez
- Department of Systems Biology, Columbia University, New York, NY, 10032, USA
- DarwinHealth Inc., New York, NY, 10032, USA
| | - Alessandro Vasciaveo
- Department of Systems Biology, Columbia University, New York, NY, 10032, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Arnaud Jacquier
- Departments of Pathology and Cell Biology, Columbia University, New York, NY, 10032, USA
- Center for Motor Neuron Biology and Diseases, Columbia University, New York, NY, 10032, USA
- Institut NeuroMyoGène, CNRS UMR 5310 - INSERM U1217 - Université de Lyon - Université Claude Bernard Lyon 1, Lyon, France
| | - Paschalis-Tomas Doulias
- Department of Pediatrics, Children's Hospital of Philadelphia Research Institute and the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Todd M Greco
- Department of Pediatrics, Children's Hospital of Philadelphia Research Institute and the University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Molecular Biology, Princeton University, Princeton, USA
| | - Monica Nizzardo
- Departments of Pathology and Cell Biology, Columbia University, New York, NY, 10032, USA
- Center for Motor Neuron Biology and Diseases, Columbia University, New York, NY, 10032, USA
- Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, 20122, Italy
| | - Dimitra Papadimitriou
- Departments of Pathology and Cell Biology, Columbia University, New York, NY, 10032, USA
- Center for Motor Neuron Biology and Diseases, Columbia University, New York, NY, 10032, USA
- Henry Dunant Hospital, BRFAA, Athens, Greece
| | - Tetsuya Nagata
- Departments of Pathology and Cell Biology, Columbia University, New York, NY, 10032, USA
- Center for Motor Neuron Biology and Diseases, Columbia University, New York, NY, 10032, USA
- Department of Neurology and Neurological Science, Tokyo Medical and Dental University, Tokyo, Japan
| | - Paola Rinchetti
- Departments of Pathology and Cell Biology, Columbia University, New York, NY, 10032, USA
- Center for Motor Neuron Biology and Diseases, Columbia University, New York, NY, 10032, USA
- Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, 20122, Italy
| | - Eduardo J Perez-Torres
- Departments of Pathology and Cell Biology, Columbia University, New York, NY, 10032, USA
- Center for Motor Neuron Biology and Diseases, Columbia University, New York, NY, 10032, USA
| | - Kristin A Politi
- Departments of Pathology and Cell Biology, Columbia University, New York, NY, 10032, USA
- Center for Motor Neuron Biology and Diseases, Columbia University, New York, NY, 10032, USA
| | - Burcin Ikiz
- Departments of Pathology and Cell Biology, Columbia University, New York, NY, 10032, USA
- Center for Motor Neuron Biology and Diseases, Columbia University, New York, NY, 10032, USA
| | - Kevin Clare
- Departments of Pathology and Cell Biology, Columbia University, New York, NY, 10032, USA
- Center for Motor Neuron Biology and Diseases, Columbia University, New York, NY, 10032, USA
- New York Medical College, Valhalla, NY, 10595, USA
| | - Manuel E Than
- Protein Crystallography Group, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Beutenbergstr. 11, 07745, Jena, Germany
| | - Stefania Corti
- Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, 20122, Italy
| | - Harry Ischiropoulos
- Department of Pediatrics, Children's Hospital of Philadelphia Research Institute and the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Francesco Lotti
- Departments of Pathology and Cell Biology, Columbia University, New York, NY, 10032, USA
- Center for Motor Neuron Biology and Diseases, Columbia University, New York, NY, 10032, USA
| | - Andrea Califano
- Center for Motor Neuron Biology and Diseases, Columbia University, New York, NY, 10032, USA.
- Department of Systems Biology, Columbia University, New York, NY, 10032, USA.
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA.
- J.P. Sulzberger Columbia Genome Center, Columbia University, New York, NY, USA.
- Department of Biomedical Informatics, Columbia University, New York, NY, USA.
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.
| | - Serge Przedborski
- Departments of Pathology and Cell Biology, Columbia University, New York, NY, 10032, USA.
- Center for Motor Neuron Biology and Diseases, Columbia University, New York, NY, 10032, USA.
- Departments of Neurology and Neuroscience, Columbia University, New York, NY, 10032, USA.
| |
Collapse
|
34
|
Ng Kee Kwong KC, Mehta AR, Nedergaard M, Chandran S. Defining novel functions for cerebrospinal fluid in ALS pathophysiology. Acta Neuropathol Commun 2020; 8:140. [PMID: 32819425 PMCID: PMC7439665 DOI: 10.1186/s40478-020-01018-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 08/10/2020] [Indexed: 12/11/2022] Open
Abstract
Despite the considerable progress made towards understanding ALS pathophysiology, several key features of ALS remain unexplained, from its aetiology to its epidemiological aspects. The glymphatic system, which has recently been recognised as a major clearance pathway for the brain, has received considerable attention in several neurological conditions, particularly Alzheimer's disease. Its significance in ALS has, however, been little addressed. This perspective article therefore aims to assess the possibility of CSF contribution in ALS by considering various lines of evidence, including the abnormal composition of ALS-CSF, its toxicity and the evidence for impaired CSF dynamics in ALS patients. We also describe a potential role for CSF circulation in determining disease spread as well as the importance of CSF dynamics in ALS neurotherapeutics. We propose that a CSF model could potentially offer additional avenues to explore currently unexplained features of ALS, ultimately leading to new treatment options for people with ALS.
Collapse
Affiliation(s)
- Koy Chong Ng Kee Kwong
- UK Dementia Research Institute at University of Edinburgh, Edinburgh, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh bioQuarter, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, UK
| | - Arpan R Mehta
- UK Dementia Research Institute at University of Edinburgh, Edinburgh, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh bioQuarter, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, UK
- Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Siddharthan Chandran
- UK Dementia Research Institute at University of Edinburgh, Edinburgh, UK.
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh bioQuarter, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK.
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, UK.
- Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh, UK.
- Centre for Brain Development and Repair, inStem, Bangalore, India.
| |
Collapse
|
35
|
Béland LC, Markovinovic A, Jakovac H, De Marchi F, Bilic E, Mazzini L, Kriz J, Munitic I. Immunity in amyotrophic lateral sclerosis: blurred lines between excessive inflammation and inefficient immune responses. Brain Commun 2020; 2:fcaa124. [PMID: 33134918 PMCID: PMC7585698 DOI: 10.1093/braincomms/fcaa124] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/07/2020] [Accepted: 07/13/2020] [Indexed: 12/11/2022] Open
Abstract
Despite wide genetic, environmental and clinical heterogeneity in amyotrophic lateral sclerosis, a rapidly fatal neurodegenerative disease targeting motoneurons, neuroinflammation is a common finding. It is marked by local glial activation, T cell infiltration and systemic immune system activation. The immune system has a prominent role in the pathogenesis of various chronic diseases, hence some of them, including some types of cancer, are successfully targeted by immunotherapeutic approaches. However, various anti-inflammatory or immunosuppressive therapies in amyotrophic lateral sclerosis have failed. This prompted increased scrutiny over the immune-mediated processes underlying amyotrophic lateral sclerosis. Perhaps the biggest conundrum is that amyotrophic lateral sclerosis pathogenesis exhibits features of three otherwise distinct immune dysfunctions-excessive inflammation, autoimmunity and inefficient immune responses. Epidemiological and genome-wide association studies show only minimal overlap between amyotrophic lateral sclerosis and autoimmune diseases, so excessive inflammation is usually thought to be secondary to protein aggregation, mitochondrial damage or other stresses. In contrast, several recently characterized amyotrophic lateral sclerosis-linked mutations, including those in TBK1, OPTN, CYLD and C9orf72, could lead to inefficient immune responses and/or damage pile-up, suggesting that an innate immunodeficiency may also be a trigger and/or modifier of this disease. In such cases, non-selective immunosuppression would further restrict neuroprotective immune responses. Here we discuss multiple layers of immune-mediated neuroprotection and neurotoxicity in amyotrophic lateral sclerosis. Particular focus is placed on individual patient mutations that directly or indirectly affect the immune system, and the mechanisms by which these mutations influence disease progression. The topic of immunity in amyotrophic lateral sclerosis is timely and relevant, because it is one of the few common and potentially malleable denominators in this heterogenous disease. Importantly, amyotrophic lateral sclerosis progression has recently been intricately linked to patient T cell and monocyte profiles, as well as polymorphisms in cytokine and chemokine receptors. For this reason, precise patient stratification based on immunophenotyping will be crucial for efficient therapies.
Collapse
Affiliation(s)
| | - Andrea Markovinovic
- Laboratory for Molecular Immunology, Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
- ENCALS Center Zagreb, 10000 Zagreb, Croatia
| | - Hrvoje Jakovac
- Department of Physiology and Immunology, Medical Faculty, University of Rijeka, 51000 Rijeka, Croatia
| | - Fabiola De Marchi
- Department of Neurology, ALS Centre, University of Piemonte Orientale, “Maggiore della Carità” Hospital, 28100 Novara, Italy
| | - Ervina Bilic
- Department of Neurology, Clinical Hospital Centre Zagreb, 10000 Zagreb, Croatia
- ENCALS Center Zagreb, 10000 Zagreb, Croatia
| | - Letizia Mazzini
- Department of Neurology, ALS Centre, University of Piemonte Orientale, “Maggiore della Carità” Hospital, 28100 Novara, Italy
| | - Jasna Kriz
- CERVO Research Centre, Laval University, Quebec City, Quebec G1J 2G3, Canada
| | - Ivana Munitic
- Laboratory for Molecular Immunology, Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
| |
Collapse
|
36
|
Muzio L, Sirtori R, Gornati D, Eleuteri S, Fossaghi A, Brancaccio D, Manzoni L, Ottoboni L, Feo LD, Quattrini A, Mastrangelo E, Sorrentino L, Scalone E, Comi G, Marinelli L, Riva N, Milani M, Seneci P, Martino G. Retromer stabilization results in neuroprotection in a model of Amyotrophic Lateral Sclerosis. Nat Commun 2020; 11:3848. [PMID: 32737286 PMCID: PMC7395176 DOI: 10.1038/s41467-020-17524-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 07/02/2020] [Indexed: 11/24/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a fatal disease characterized by the degeneration of upper and lower motor neurons (MNs). We find a significant reduction of the retromer complex subunit VPS35 in iPSCs-derived MNs from ALS patients, in MNs from ALS post mortem explants and in MNs from SOD1G93A mice. Being the retromer involved in trafficking of hydrolases, a pathological hallmark in ALS, we design, synthesize and characterize an array of retromer stabilizers based on bis-guanylhydrazones connected by a 1,3-phenyl ring linker. We select compound 2a as a potent and bioavailable interactor of VPS35-VPS29. Indeed, while increasing retromer stability in ALS mice, compound 2a attenuates locomotion impairment and increases MNs survival. Moreover, compound 2a increases VPS35 in iPSCs-derived MNs and shows brain bioavailability. Our results clearly suggest the retromer as a valuable druggable target in ALS. ALS is a neurodegenerative disease characterized by loss of motor neurons. Here, the authors showed that reduced levels of the VSP35 subunit in the retromer complex is a conserved ALS feature and identified a new lead compound increasing retromer stability ameliorating the disease phenotype.
Collapse
Affiliation(s)
- Luca Muzio
- INSPE-Institute of Experimental Neurology, San Raffaele Scientific Institute, Milano, Italy.
| | - Riccardo Sirtori
- INSPE-Institute of Experimental Neurology, San Raffaele Scientific Institute, Milano, Italy
| | - Davide Gornati
- Department of Chemistry, University of Milan, Milano, Italy
| | - Simona Eleuteri
- INSPE-Institute of Experimental Neurology, San Raffaele Scientific Institute, Milano, Italy
| | - Andrea Fossaghi
- INSPE-Institute of Experimental Neurology, San Raffaele Scientific Institute, Milano, Italy
| | - Diego Brancaccio
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - Leonardo Manzoni
- Institute of Molecular Science and Technology (ISTM), CNR, Milan, Italy
| | - Linda Ottoboni
- INSPE-Institute of Experimental Neurology, San Raffaele Scientific Institute, Milano, Italy
| | - Luca De Feo
- INSPE-Institute of Experimental Neurology, San Raffaele Scientific Institute, Milano, Italy
| | - Angelo Quattrini
- INSPE-Institute of Experimental Neurology, San Raffaele Scientific Institute, Milano, Italy
| | | | | | - Emanuele Scalone
- Department of Chemistry, University of Milan, Milano, Italy.,Institute of Biophysics (IBF), CNR, Milan, Italy
| | - Giancarlo Comi
- INSPE-Institute of Experimental Neurology, San Raffaele Scientific Institute, Milano, Italy
| | - Luciana Marinelli
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - Nilo Riva
- INSPE-Institute of Experimental Neurology, San Raffaele Scientific Institute, Milano, Italy
| | - Mario Milani
- Institute of Biophysics (IBF), CNR, Milan, Italy
| | | | - Gianvito Martino
- INSPE-Institute of Experimental Neurology, San Raffaele Scientific Institute, Milano, Italy
| |
Collapse
|
37
|
Une M, Yamakawa M, Watanabe Y, Uchino K, Honda N, Adachi M, Nakanishi M, Umezawa A, Kawata Y, Nakashima K, Hanajima R. SOD1-interacting proteins: Roles of aggregation cores and protein degradation systems. Neurosci Res 2020; 170:295-305. [PMID: 32726594 DOI: 10.1016/j.neures.2020.07.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/15/2020] [Accepted: 07/15/2020] [Indexed: 11/26/2022]
Abstract
Cu/Zn superoxide dismutase (SOD1) mutations are associated with amyotrophic lateral sclerosis (ALS). SOD1-positive aggregates in motor neurons, as well as proteins that interact with the aggregates are presumably involved in ALS neurotoxicity. We used a proteomics approach to compare differences in protein expression in spinal cord homogenates from non-transgenic (NTG) and ALS model mice. Using the homogenates, we identified proteins that interacted with SOD1 seeds in vitro. We assessed differences in SOD1-interacting proteins in cell cultures treated with proteasome or autophagy inhibitor. In the first experiment, intermediate filamentous and small heat shock proteins were upregulated in glial cells. We identified 26 protein types that interacted with aggregation cores in ALS model homogenates, and unexpectedly, 40 proteins in were detected in NTG mice. In cell cultures treated with proteasome and autophagy inhibitors, we identified 16 and 11 SOD1-interacting proteins, respectively, and seven proteins in untreated cells. These SOD1-interacting proteins were involved in multiple cellular functions such as protein quality control, cytoskeletal organization, and pathways involved in growth factor signaling and their downstream cascades. The complex interactions between pathways could cause further dysregulation, ultimately leading to fatal cellular dysfunction in ALS.
Collapse
Affiliation(s)
- Mio Une
- Division of Neurology, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Miho Yamakawa
- Division of Neurology, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Yasuhiro Watanabe
- Division of Neurology, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University, Yonago, Japan.
| | - Kazuyuki Uchino
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori, Japan
| | - Naoto Honda
- Division of Neurology, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Mayuka Adachi
- Division of Neurology, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Mami Nakanishi
- Division of Neurology, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Akihiro Umezawa
- Center for Regenerative Medicine, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Yasushi Kawata
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori, Japan
| | - Kenji Nakashima
- Department of Neurology, National Hospital Organization, Matsue Medical Center, Matsue, Japan
| | - Ritsuko Hanajima
- Division of Neurology, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University, Yonago, Japan
| |
Collapse
|
38
|
Li Q, Haney MS. The role of glia in protein aggregation. Neurobiol Dis 2020; 143:105015. [PMID: 32663608 DOI: 10.1016/j.nbd.2020.105015] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 06/01/2020] [Accepted: 07/07/2020] [Indexed: 01/20/2023] Open
Abstract
Protein aggregation diseases involve intracellular accumulation or extracellular deposition of certain protein species in neuronal or glial cells, leading to neurodegeneration and shortened lifespan. Prime examples include Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD), which are affected by overlapping or specific aggregation-prone proteins. Mounting evidence suggests that dysfunctional glial cells may be major drivers for some diseases, and when they are not causal factors, they could still significantly exacerbate or alleviate disease progression by playing a plethora of detrimental or beneficial roles. Here we review the diverse functions performed by glial cells in a variety of protein aggregation diseases, highlighting the complexity of the issue and the interconnected relationships between these multifaceted effects.
Collapse
Affiliation(s)
- Qingyun Li
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA; Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Michael S Haney
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
39
|
Mitigation of ALS Pathology by Neuron-Specific Inhibition of Nuclear Factor Kappa B Signaling. J Neurosci 2020; 40:5137-5154. [PMID: 32457070 PMCID: PMC7314413 DOI: 10.1523/jneurosci.0536-20.2020] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/12/2020] [Accepted: 05/18/2020] [Indexed: 12/14/2022] Open
Abstract
To investigate the role of neuronal NF-κB activity in pathogenesis of amyotrophic lateral sclerosis (ALS), we generated transgenic mice with neuron-specific expression of a super-repressor form of the NF-κB inhibitor (IκBα-SR), which were then crossed with mice of both sexes, expressing ALS-linked gene mutants for TAR DNA-binding protein (TDP-43) and superoxide dismutase 1 (SOD1). Remarkably, neuronal expression of IκBα-SR transgene in mice expressing TDP-43A315T or TDP-43G348C mice led to a decrease in cytoplasmic to nuclear ratio of human TDP-43. The mitigation of TDP-43 neuropathology by IκBα-SR, which is likely due to an induction of autophagy, was associated with amelioration of cognitive and motor deficits as well as reduction of motor neuron loss and gliosis. Neuronal suppression of NF-κB activity in SOD1G93A mice also resulted in neuroprotection with reduction of misfolded SOD1 levels and significant extension of life span. The results suggest that neuronal NF-κB signaling constitutes a novel therapeutic target for ALS disease and related disorders with TDP-43 proteinopathy. SIGNIFICANCE STATEMENT This study reports that neuron-specific expression of IκB super-repressor mitigated behavioral and pathologic changes in transgenic mouse models of amyotrophic lateral sclerosis expressing mutant forms of either Tar DNA-binding protein 43 or superoxide dismutase. The results suggest that neuronal NF-κB signaling constitutes a novel therapeutic target for amyotrophic lateral sclerosis and related disorders with Tar DNA-binding protein 43 proteinopathy.
Collapse
|
40
|
Christoforidou E, Joilin G, Hafezparast M. Potential of activated microglia as a source of dysregulated extracellular microRNAs contributing to neurodegeneration in amyotrophic lateral sclerosis. J Neuroinflammation 2020; 17:135. [PMID: 32345319 PMCID: PMC7187511 DOI: 10.1186/s12974-020-01822-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 04/21/2020] [Indexed: 02/07/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common form of motor neuron degeneration in adults, and several mechanisms underlying the disease pathology have been proposed. It has been shown that glia communicate with other cells by releasing extracellular vesicles containing proteins and nucleic acids, including microRNAs (miRNAs), which play a role in the post-transcriptional regulation of gene expression. Dysregulation of miRNAs is commonly observed in ALS patients, together with inflammation and an altered microglial phenotype. However, the role of miRNA-containing vesicles in microglia-to-neuron communication in the context of ALS has not been explored in depth. This review summarises the evidence for the presence of inflammation, pro-inflammatory microglia and dysregulated miRNAs in ALS, then explores how microglia may potentially be responsible for this miRNA dysregulation. The possibility of pro-inflammatory ALS microglia releasing miRNAs which may then enter neuronal cells to contribute to degeneration is also explored. Based on the literature reviewed here, microglia are a likely source of dysregulated miRNAs and potential mediators of neurodegenerative processes. Therefore, dysregulated miRNAs may be promising candidates for the development of therapeutic strategies.
Collapse
Affiliation(s)
| | - Greig Joilin
- School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, UK
| | - Majid Hafezparast
- School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, UK.
| |
Collapse
|
41
|
Synaptic Actions of Amyotrophic Lateral Sclerosis-Associated G85R-SOD1 in the Squid Giant Synapse. eNeuro 2020; 7:ENEURO.0369-19.2020. [PMID: 32188708 PMCID: PMC7177748 DOI: 10.1523/eneuro.0369-19.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 01/22/2020] [Accepted: 01/27/2020] [Indexed: 12/13/2022] Open
Abstract
Altered synaptic function is thought to play a role in many neurodegenerative diseases, but little is known about the underlying mechanisms for synaptic dysfunction. The squid giant synapse (SGS) is a classical model for studying synaptic electrophysiology and ultrastructure, as well as molecular mechanisms of neurotransmission. Here, we conduct a multidisciplinary study of synaptic actions of misfolded human G85R-SOD1 causing familial amyotrophic lateral sclerosis (ALS). G85R-SOD1, but not WT-SOD1, inhibited synaptic transmission, altered presynaptic ultrastructure, and reduced both the size of the readily releasable pool (RRP) of synaptic vesicles and mobility from the reserved pool (RP) to the RRP. Unexpectedly, intermittent high-frequency stimulation (iHFS) blocked inhibitory effects of G85R-SOD1 on synaptic transmission, suggesting aberrant Ca2+ signaling may underlie G85R-SOD1 toxicity. Ratiometric Ca2+ imaging showed significantly increased presynaptic Ca2+ induced by G85R-SOD1 that preceded synaptic dysfunction. Chelating Ca2+ using EGTA prevented synaptic inhibition by G85R-SOD1, confirming the role of aberrant Ca2+ in mediating G85R-SOD1 toxicity. These results extended earlier findings in mammalian motor neurons and advanced our understanding by providing possible molecular mechanisms and therapeutic targets for synaptic dysfunctions in ALS as well as a unique model for further studies.
Collapse
|
42
|
Schepici G, Silvestro S, Trubiani O, Bramanti P, Mazzon E. Salivary Biomarkers: Future Approaches for Early Diagnosis of Neurodegenerative Diseases. Brain Sci 2020; 10:brainsci10040245. [PMID: 32326227 PMCID: PMC7226627 DOI: 10.3390/brainsci10040245] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/14/2020] [Accepted: 04/19/2020] [Indexed: 12/13/2022] Open
Abstract
Many neurological diseases are characterized by progressive neuronal degeneration. Early diagnosis and new markers are necessary for prompt therapeutic intervention. Several studies have aimed to identify biomarkers in different biological liquids. Furthermore, it is being considered whether saliva could be a potential biological sample for the investigation of neurodegenerative diseases. This work aims to provide an overview of the literature concerning biomarkers identified in saliva for the diagnosis of neurodegenerative diseases such as Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS). Specifically, the studies have revealed that is possible to quantify beta-amyloid1–42 and TAU protein from the saliva of AD patients. Instead, alpha-synuclein and protein deglycase (DJ-1) have been identified as new potential salivary biomarkers for the diagnosis of PD. Nevertheless, future studies will be needed to validate these salivary biomarkers in the diagnosis of neurological diseases.
Collapse
Affiliation(s)
- Giovanni Schepici
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (G.S.); (S.S.); (P.B.)
| | - Serena Silvestro
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (G.S.); (S.S.); (P.B.)
| | - Oriana Trubiani
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy;
| | - Placido Bramanti
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (G.S.); (S.S.); (P.B.)
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (G.S.); (S.S.); (P.B.)
- Correspondence: ; Tel.: +39-090-6012-8172
| |
Collapse
|
43
|
Laguerre F, Anouar Y, Montero-Hadjadje M. Chromogranin A in the early steps of the neurosecretory pathway. IUBMB Life 2019; 72:524-532. [PMID: 31891241 DOI: 10.1002/iub.2218] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 12/10/2019] [Indexed: 12/20/2022]
Abstract
Chromogranin A (CgA) is a soluble glycoprotein stored with hormones and neuropeptides in secretory granules (SG) of most (neuro)endocrine cells and neurons. Since its discovery in 1967, many studies have reported its structural characteristics, biological roles, and mechanisms of action. Indeed, CgA is both a precursor of various biologically active peptides and a granulogenic protein regulating the storage and secretion of hormones and neuropeptides. This review emphasizes the findings and theoretical concepts around the CgA-linked molecular machinery controlling hormone/neuropeptide aggregation and the interaction of CgA-hormone/neuropeptide aggregates with the trans-Golgi membrane to allow hormone/neuropeptide targeting and SG biogenesis. We will also discuss the intriguing alteration of CgA expression and secretion in various neurological disorders, which could provide insights to elucidate the molecular mechanisms underlying these pathophysiological conditions.
Collapse
Affiliation(s)
- Fanny Laguerre
- Normandie Univ, UNIROUEN, INSERM, U1239, Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine, Institut de Recherche et d'Innovation Biomédicale de Normandie, Rouen, France
| | - Youssef Anouar
- Normandie Univ, UNIROUEN, INSERM, U1239, Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine, Institut de Recherche et d'Innovation Biomédicale de Normandie, Rouen, France
| | - Maité Montero-Hadjadje
- Normandie Univ, UNIROUEN, INSERM, U1239, Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine, Institut de Recherche et d'Innovation Biomédicale de Normandie, Rouen, France
| |
Collapse
|
44
|
Abstract
Few proteins have come under such intense scrutiny as superoxide dismutase-1 (SOD1). For almost a century, scientists have dissected its form, function and then later its malfunction in the neurodegenerative disease amyotrophic lateral sclerosis (ALS). We now know SOD1 is a zinc and copper metalloenzyme that clears superoxide as part of our antioxidant defence and respiratory regulation systems. The possibility of reduced structural integrity was suggested by the first crystal structures of human SOD1 even before deleterious mutations in the sod1 gene were linked to the ALS. This concept evolved in the intervening years as an impressive array of biophysical studies examined the characteristics of mutant SOD1 in great detail. We now recognise how ALS-related mutations perturb the SOD1 maturation processes, reduce its ability to fold and reduce its thermal stability and half-life. Mutant SOD1 is therefore predisposed to monomerisation, non-canonical self-interactions, the formation of small misfolded oligomers and ultimately accumulation in the tell-tale insoluble inclusions found within the neurons of ALS patients. We have also seen that several post-translational modifications could push wild-type SOD1 down this toxic pathway. Recently we have come to view ALS as a prion-like disease where both the symptoms, and indeed SOD1 misfolding itself, are transmitted to neighbouring cells. This raises the possibility of intervention after the initial disease presentation. Several small-molecule and biologic-based strategies have been devised which directly target the SOD1 molecule to change the behaviour thought to be responsible for ALS. Here we provide a comprehensive review of the many biophysical advances that sculpted our view of SOD1 biology and the recent work that aims to apply this knowledge for therapeutic outcomes in ALS.
Collapse
|
45
|
Tokuda E, Takei YI, Ohara S, Fujiwara N, Hozumi I, Furukawa Y. Wild-type Cu/Zn-superoxide dismutase is misfolded in cerebrospinal fluid of sporadic amyotrophic lateral sclerosis. Mol Neurodegener 2019; 14:42. [PMID: 31744522 PMCID: PMC6862823 DOI: 10.1186/s13024-019-0341-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 10/31/2019] [Indexed: 02/06/2023] Open
Abstract
Background A subset of familial forms of amyotrophic lateral sclerosis (ALS) are caused by mutations in the gene coding Cu/Zn-superoxide dismutase (SOD1). Mutant SOD1 proteins are susceptible to misfolding and abnormally accumulated in spinal cord, which is most severely affected in ALS. It, however, remains quite controversial whether misfolding of wild-type SOD1 is involved in more prevalent sporadic ALS (sALS) cases without SOD1 mutations. Methods Cerebrospinal fluid (CSF) from patients including sALS as well as several other neurodegenerative diseases and non-neurodegenerative diseases was examined with an immunoprecipitation assay and a sandwich ELISA using antibodies specifically recognizing misfolded SOD1. Results We found that wild-type SOD1 was misfolded in CSF from all sALS cases examined in this study. The misfolded SOD1 was also detected in CSF from a subset of Parkinson’s disease and progressive supranuclear palsy, albeit with smaller amounts than those in sALS. Furthermore, the CSF samples containing the misfolded SOD1 exhibited significant toxicity toward motor neuron-like NSC-34 cells, which was ameliorated by removal of the misfolded wild-type SOD1 with immunoprecipitation. Conclusions Taken together, we propose that misfolding of wild-type SOD1 in CSF is a common pathological process of ALS cases regardless of SOD1 mutations.
Collapse
Affiliation(s)
- Eiichi Tokuda
- Laboratory for Mechanistic Chemistry of Biomolecules, Department of Chemistry, Keio University, Yokohama, 223-8522, Japan
| | - Yo-Ichi Takei
- Department of Neurology, Matsumoto Medical Center, Matsumoto, 399-0021, Japan
| | - Shinji Ohara
- Department of Neurology, Matsumoto Medical Center, Matsumoto, 399-0021, Japan.,Department of Neurology, Iida Hospital, Iida, 395-8505, Japan
| | - Noriko Fujiwara
- Department of Biochemistry, Hyogo College of Medicine, Nishinomiya, 663-8501, Japan
| | - Isao Hozumi
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical University, Gifu, 501-1196, Japan.,Department of Neurology and Geriatrics, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan
| | - Yoshiaki Furukawa
- Laboratory for Mechanistic Chemistry of Biomolecules, Department of Chemistry, Keio University, Yokohama, 223-8522, Japan.
| |
Collapse
|
46
|
Zhu S, Wuolikainen A, Wu J, Öhman A, Wingsle G, Moritz T, Andersen PM, Forsgren L, Trupp M. Targeted Multiple Reaction Monitoring Analysis of CSF Identifies UCHL1 and GPNMB as Candidate Biomarkers for ALS. J Mol Neurosci 2019; 69:643-657. [PMID: 31721001 PMCID: PMC6858390 DOI: 10.1007/s12031-019-01411-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 09/26/2019] [Indexed: 02/06/2023]
Abstract
The neurodegenerative diseases amyotrophic lateral sclerosis (ALS) and Parkinson’s disease (PD) share some common molecular deficits including disruption of protein homeostasis leading to disease-specific protein aggregation. While insoluble protein aggregates are the defining pathological confirmation of diagnosis, patient stratification based on early molecular etiologies may identify distinct subgroups within a clinical diagnosis that would respond differently in therapeutic development programs. We are developing targeted multiple reaction monitoring (MRM) mass spectrometry methods to rigorously quantify CSF proteins from known disease genes involved in lysosomal, ubiquitin-proteasomal, and autophagy pathways. Analysis of CSF from 21 PD, 21 ALS, and 25 control patients, rigorously matched for gender, age, and age of sample, revealed significant changes in peptide levels between PD, ALS, and control. In patients with PD, levels of two peptides for chromogranin B (CHGB, secretogranin 1) were significantly reduced. In CSF of patients with ALS, levels of two peptides from ubiquitin carboxy-terminal hydrolase like protein 1 (UCHL1) and one peptide each for glycoprotein non-metastatic melanoma protein B (GPNMB) and cathepsin D (CTSD) were all increased. Analysis of patients with ALS separated into two groups based on length of survival after CSF sampling revealed that the increases in GPNMB and UCHL1 were specific for short-lived ALS patients. While analysis of additional cohorts is required to validate these candidate biomarkers, this study suggests methods for stratification of ALS patients for clinical trials and identifies targets for drug efficacy measurements during therapeutic development.
Collapse
Affiliation(s)
- Shaochun Zhu
- Department of Clinical Science, Neurosciences, Umeå University, Building 10, NUS, Umeå, Sweden
| | | | - Junfang Wu
- Department of Chemistry, Umeå University, Umeå, Sweden
| | - Anders Öhman
- Department of Clinical Science, Neurosciences, Umeå University, Building 10, NUS, Umeå, Sweden
| | - Gunnar Wingsle
- Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Thomas Moritz
- Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Peter M Andersen
- Department of Clinical Science, Neurosciences, Umeå University, Building 10, NUS, Umeå, Sweden
| | - Lars Forsgren
- Department of Clinical Science, Neurosciences, Umeå University, Building 10, NUS, Umeå, Sweden
| | - Miles Trupp
- Department of Clinical Science, Neurosciences, Umeå University, Building 10, NUS, Umeå, Sweden.
| |
Collapse
|
47
|
|
48
|
Ivanova MV, Chekanova EO, Belugin BV, Tutykhina IL, Dolzhikova IV, Zakroishchikova IV, Vasil’ev AV, Zakharova MN. Exosomal Transport and Progression of Neurodegeneration in Amyotrophic Lateral Sclerosis. NEUROCHEM J+ 2019. [DOI: 10.1134/s1819712419030085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
49
|
Xu DJ, Wei LY, Li HF, Zhang WQ. Serum levels of chromogranins and secretogranins correlate with the progress and severity of Parkinson's disease. Kaohsiung J Med Sci 2019; 35:146-150. [PMID: 30887724 DOI: 10.1002/kjm2.12026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 11/22/2018] [Indexed: 12/13/2022] Open
Abstract
Little is known about the relevance of chromogranins (Cgs) and secretogranins (Sgs) in Parkinson's disease (PD). In this study, we determined serum levels of CgA, CgB, and SgII in PD patients and assessed their association with disease severity. PD patients were recruited, identified, and classified as having early (n = 14), intermediate (n = 18), or late (n = 4) stage disease according to Hoehn-Yahr scores. The serum concentrations of CgA, CgB, and SgII in patients with well-defined PD (n = 36) and in healthy controls (n = 52) were measured by enzyme-linked immunosorbent assay. Compared with controls, serum CgA levels were significantly elevated and serum SgII levels were significantly reduced in PD patients (both P < 0.05). There was no difference in serum CgB levels between the two groups. Both serum CgA and SgII levels changed progressively over time from early to intermediate to late stage (P < 0.05). Spearman correlation analysis revealed that serum CgA and SgII levels correlated with Hoehn-Yahr and UPDRS scores (P < 0.001). These results indicate that changes in serum levels of CgA and SgII may be closely related to the severity of PD.
Collapse
Affiliation(s)
- Dong-Juan Xu
- Department of Neurology, Dongyang People's Hospital, Zhejiang, China
| | - Lian-Yan Wei
- Department of Neurology, Dongyang People's Hospital, Zhejiang, China
| | - Hong-Fei Li
- Department of Neurology, Dongyang People's Hospital, Zhejiang, China
| | - Wei-Qiang Zhang
- Department of Neurology, Dongyang People's Hospital, Zhejiang, China
| |
Collapse
|
50
|
Cu/Zn-superoxide dismutase and wild-type like fALS SOD1 mutants produce cytotoxic quantities of H 2O 2 via cysteine-dependent redox short-circuit. Sci Rep 2019; 9:10826. [PMID: 31346243 PMCID: PMC6658568 DOI: 10.1038/s41598-019-47326-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 07/11/2019] [Indexed: 12/13/2022] Open
Abstract
The Cu/Zn−superoxide dismutase (SOD1) is a ubiquitous enzyme that catalyzes the dismutation of superoxide radicals to oxygen and hydrogen peroxide. In addition to this principal reaction, the enzyme is known to catalyze, with various efficiencies, several redox side-reactions using alternative substrates, including biological thiols, all involving the catalytic copper in the enzyme’s active-site, which is relatively surface exposed. The accessibility and reactivity of the catalytic copper is known to increase upon SOD1 misfolding, structural alterations caused by a mutation or environmental stresses. These competing side-reactions can lead to the formation of particularly toxic ROS, which have been proposed to contribute to oxidative damage in amyotrophic lateral sclerosis (ALS), a neurodegenerative disease that affects motor neurons. Here, we demonstrated that metal-saturated SOD1WT (holo-SOD1WT) and a familial ALS (fALS) catalytically active SOD1 mutant, SOD1G93A, are capable, under defined metabolic circumstances, to generate cytotoxic quantities of H2O2 through cysteine (CSH)/glutathione (GSH) redox short-circuit. Such activity may drain GSH stores, therefore discharging cellular antioxidant potential. By analyzing the distribution of thiol compounds throughout the CNS, the location of potential hot-spots of ROS production can be deduced. These hot-spots may constitute the origin of oxidative damage to neurons in ALS.
Collapse
|