1
|
Qi X, Lee C, Ursprung B, Skripka A, Schuck PJ, Chan EM, Cohen BE. Short-Wave Infrared Upconverting Nanoparticles. J Am Chem Soc 2024; 146:29292-29296. [PMID: 39432884 DOI: 10.1021/jacs.4c11181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Optical technologies enable real-time, noninvasive analysis of complex systems but are limited to discrete regions of the optical spectrum. While wavelengths in the short-wave infrared (SWIR) window (typically, 1700-3000 nm) should enable deep subsurface penetration and reduced photodamage, there are few luminescent probes that can be excited in this region. Here, we report the discovery of lanthanide-based upconverting nanoparticles (UCNPs) that efficiently convert 1740 or 1950 nm excitation to wavelengths compatible with conventional silicon detectors. Screening of Ln3+ ion combinations by differential rate equation modeling identifies Ho3+/Tm3+ or Tm3+ dopants with strong visible or NIR-I emission following SWIR excitation. Experimental upconverted photoluminescence excitation (U-PLE) spectra find that 10% Tm3+-doped NaYF4 core/shell UCNPs have the strongest 800 nm emission from SWIR wavelengths, while UCNPs with an added 2% or 10% Ho3+ show the strongest red emission when excited at 1740 or 1950 nm. Mechanistic modeling shows that addition of a low percentage of Ho3+ to Tm3+-doped UCNPs shifts their emission from 800 to 652 nm by acting as a hub of efficient SWIR energy acceptance and redistribution up to visible emission manifolds. Parallel experimental and computational analysis shows rate equation models are able to predict compositions for specific wavelengths of both excitation and emission. These SWIR-responsive probes open a new IR bioimaging window, and are responsive at wavelengths important for vision technologies.
Collapse
Affiliation(s)
- Xiao Qi
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Changhwan Lee
- Department of Mechanical Engineering, Columbia University, New York, New York 10027, United States
| | - Benedikt Ursprung
- Department of Mechanical Engineering, Columbia University, New York, New York 10027, United States
| | - Artiom Skripka
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - P James Schuck
- Department of Mechanical Engineering, Columbia University, New York, New York 10027, United States
| | - Emory M Chan
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Bruce E Cohen
- Division of Molecular Biophysics & Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
2
|
Vonk SW, Maris JJE, Dekker AJH, de Wit JW, van Swieten TP, Cocina A, Rabouw FT. Rise and Decay of Photoluminescence in Upconverting Lanthanide-Doped Nanocrystals. ACS NANO 2024; 18:28325-28334. [PMID: 39368106 PMCID: PMC11483940 DOI: 10.1021/acsnano.4c09945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/07/2024]
Abstract
Nanocrystals (NCs) doped with lanthanides are capable of efficient photon upconversion, i.e., absorbing long-wavelength light and emitting shorter-wavelength light. The internal processes that enable upconversion are a complex network of electronic transitions within and energy transfer between dopant centers. In this work, we study the rise and decay dynamics of upconversion emission from β-NaYF4 NCs codoped with Er3+ and Yb3+. The rise dynamics of the red and green upconverted emissions are nonlinear, reflecting the nonlinear nature of upconversion and revealing the mechanisms that populate the emitting states. The excited-state decay dynamics are nonexponential. We unravel the underlying decay pathways using photonic experiments. These reveal the contributions of different upconversion pathways visually, as each pathway exhibits a distinct response to systematic variation of the local density of optical states. Moreover, the effect of the local density of optical states on core-only NCs is qualitatively different from core-shell NCs. This is due to the different balance between feeding and decay of the electronic levels that produce upconverted emission. The understanding of the upconversion dynamics provided here could lead to better imaging and sensing methods relying on upconversion lifetimes or guide the rational optimization of the dopant concentrations for brighter upconversion.
Collapse
Affiliation(s)
- Sander
J. W. Vonk
- Soft
Condensed Matter & Biophysics, Debye Institute for Nanomaterials
Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
- Inorganic
Chemistry & Catalysis, Debye Institute for Nanomaterials Science
& Institute for Sustainable and Circular Chemistry, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - J. J. Erik Maris
- Optical
Materials Engineering Laboratory, ETH Zürich, Leonhardstrasse 21, 8092 Zürich, Switzerland
| | - Ayla J. H. Dekker
- Soft
Condensed Matter & Biophysics, Debye Institute for Nanomaterials
Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
- Organic
Chemistry & Catalysis, Institute for Sustainable and Circular
Chemistry, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Jur W. de Wit
- Soft
Condensed Matter & Biophysics, Debye Institute for Nanomaterials
Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
| | - Thomas P. van Swieten
- Soft
Condensed Matter & Biophysics, Debye Institute for Nanomaterials
Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
| | - Ario Cocina
- Optical
Materials Engineering Laboratory, ETH Zürich, Leonhardstrasse 21, 8092 Zürich, Switzerland
| | - Freddy T. Rabouw
- Soft
Condensed Matter & Biophysics, Debye Institute for Nanomaterials
Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
- Inorganic
Chemistry & Catalysis, Debye Institute for Nanomaterials Science
& Institute for Sustainable and Circular Chemistry, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
3
|
Lamon S, Yu H, Zhang Q, Gu M. Lanthanide ion-doped upconversion nanoparticles for low-energy super-resolution applications. LIGHT, SCIENCE & APPLICATIONS 2024; 13:252. [PMID: 39277593 PMCID: PMC11401911 DOI: 10.1038/s41377-024-01547-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/31/2024] [Accepted: 07/22/2024] [Indexed: 09/17/2024]
Abstract
Energy-intensive technologies and high-precision research require energy-efficient techniques and materials. Lens-based optical microscopy technology is useful for low-energy applications in the life sciences and other fields of technology, but standard techniques cannot achieve applications at the nanoscale because of light diffraction. Far-field super-resolution techniques have broken beyond the light diffraction limit, enabling 3D applications down to the molecular scale and striving to reduce energy use. Typically targeted super-resolution techniques have achieved high resolution, but the high light intensity needed to outperform competing optical transitions in nanomaterials may result in photo-damage and high energy consumption. Great efforts have been made in the development of nanomaterials to improve the resolution and efficiency of these techniques toward low-energy super-resolution applications. Lanthanide ion-doped upconversion nanoparticles that exhibit multiple long-lived excited energy states and emit upconversion luminescence have enabled the development of targeted super-resolution techniques that need low-intensity light. The use of lanthanide ion-doped upconversion nanoparticles in these techniques for emerging low-energy super-resolution applications will have a significant impact on life sciences and other areas of technology. In this review, we describe the dynamics of lanthanide ion-doped upconversion nanoparticles for super-resolution under low-intensity light and their use in targeted super-resolution techniques. We highlight low-energy super-resolution applications of lanthanide ion-doped upconversion nanoparticles, as well as the related research directions and challenges. Our aim is to analyze targeted super-resolution techniques using lanthanide ion-doped upconversion nanoparticles, emphasizing fundamental mechanisms governing transitions in lanthanide ions to surpass the diffraction limit with low-intensity light, and exploring their implications for low-energy nanoscale applications.
Collapse
Affiliation(s)
- Simone Lamon
- School of Artificial Intelligence Science and Technology, University of Shanghai for Science and Technology, 200093, Shanghai, China.
- Institute of Photonic Chips, University of Shanghai for Science and Technology, 200093, Shanghai, China.
| | - Haoyi Yu
- School of Artificial Intelligence Science and Technology, University of Shanghai for Science and Technology, 200093, Shanghai, China
- Institute of Photonic Chips, University of Shanghai for Science and Technology, 200093, Shanghai, China
| | - Qiming Zhang
- School of Artificial Intelligence Science and Technology, University of Shanghai for Science and Technology, 200093, Shanghai, China
- Institute of Photonic Chips, University of Shanghai for Science and Technology, 200093, Shanghai, China
| | - Min Gu
- School of Artificial Intelligence Science and Technology, University of Shanghai for Science and Technology, 200093, Shanghai, China.
- Institute of Photonic Chips, University of Shanghai for Science and Technology, 200093, Shanghai, China.
| |
Collapse
|
4
|
Cai Y, Shang Y, Lu M, Jin D, Zhou J. Polarized Upconversion of sub-100 nm Single Nanoparticles. NANO LETTERS 2024; 24:10915-10920. [PMID: 39167685 DOI: 10.1021/acs.nanolett.4c02652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Upconversion nanoparticles are popular as imaging probes due to their advantages in photostability and controllable emission dimensions. However, upconversion polarization remains largely uncharted with previous reports limited to microstructures. In this work, we report the observation of polarized upconversion emissions from β-NaYF4 single nanostructures below 100 nm. At the sub-100 nm scale, nanorods, nanodiscs, and nanoplates exhibit distinctive polarization degrees despite the same doping concentrations of lanthanides. We find this varied polarization degree results from the crystallographic orientation of nanostructure in relation to the light field and can be linked to the distinctive emission spectrum profile with varied Stark splitting transition ratios from Er3+. Our findings provide a comprehensive understanding of the polarization properties of upconversion nanoparticles, revealing a previously unexplored aspect of light emission. This discovery expands our knowledge of upconversion nanoparticles and also opens new possibilities for their use in future imaging and sensing applications, where polarization sensitivity is crucial.
Collapse
Affiliation(s)
- Yangjian Cai
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
- UTS-SUStech Joint Research Centre for Biomedical Materials & Devices, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen Guangdong 518055, P. R. China
| | - Yunfei Shang
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Ming Lu
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Dayong Jin
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Jiajia Zhou
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| |
Collapse
|
5
|
Peng CS, Zhang Y, Liu Q, Marti GE, Huang YWA, Südhof TC, Cui B, Chu S. Nanometer-resolution tracking of single cargo reveals dynein motor mechanisms. Nat Chem Biol 2024:10.1038/s41589-024-01694-2. [PMID: 39090313 DOI: 10.1038/s41589-024-01694-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 07/09/2024] [Indexed: 08/04/2024]
Abstract
Cytoplasmic dynein is essential for intracellular transport. Despite extensive in vitro characterizations, how the dynein motors transport vesicles by processive steps in live cells remains unclear. To dissect the molecular mechanisms of dynein, we develop optical probes that enable long-term single-particle tracking in live cells with high spatiotemporal resolution. We find that the number of active dynein motors transporting cargo switches stochastically between one and five dynein motors during long-range transport in neuronal axons. Our very bright optical probes allow the observation of individual molecular steps. Strikingly, these measurements reveal that the dwell times between steps are controlled by two temperature-dependent rate constants in which two ATP molecules are hydrolyzed sequentially during each dynein step. Thus, our observations uncover a previously unknown chemomechanical cycle of dynein-mediated cargo transport in living cells.
Collapse
Affiliation(s)
- Chunte Sam Peng
- Department of Physics, Stanford University, Stanford, CA, USA
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Yunxiang Zhang
- Department of Physics, Stanford University, Stanford, CA, USA
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, China
| | - Qian Liu
- Department of Physics, Stanford University, Stanford, CA, USA
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, China
| | - G Edward Marti
- Department of Physics, Stanford University, Stanford, CA, USA
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
| | - Yu-Wen Alvin Huang
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA
| | - Thomas C Südhof
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Bianxiao Cui
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Steven Chu
- Department of Physics, Stanford University, Stanford, CA, USA.
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
6
|
Casillas-Rubio A, Mendez-Gonzalez D, Laurenti M, Rubio-Retama J, Calderón OG, Melle S. Impact of excitation pulse width on the upconversion luminescence lifetime of NaYF 4:Yb 3+,Er 3+ nanoparticles. NANOSCALE 2024; 16:12184-12195. [PMID: 38842018 DOI: 10.1039/d4nr00718b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
The upconversion luminescence (UCL) lifetime has a wide range of applications, serving as a critical parameter for optimizing the performance of upconversion nanoparticles (UCNPs) in various fields. It is crucial to understand that this lifetime does not directly correlate with the decay time of the emission level; rather, it represents a compilation of all the physical phenomena taking place in the upconversion process. To delve deeper into this, we analyzed the dependence of the UCL lifetime on the excitation pulse width for β-NaYF4:Yb3+,Er3+ nanoparticles. The results revealed a significant increase in the UCL lifetime with both the excitation pulse width and the excitation intensity. The laser fluence was identified as the parameter governing the UCL decay dynamics. We showcased the universality of the pulse-width-dependent UCL lifetime phenomenon by employing UCNPs of various sizes, surface coatings, host matrices, Yb3+ and Er3+ ratios, and dispersing UCNPs in different solvents. Theoretical explanations for the experimental findings were derived through a rate equation analysis. Finally, we discussed the implications of these results in UCNP-FRET (Förster resonance energy transfer)-based applications.
Collapse
Affiliation(s)
| | - Diego Mendez-Gonzalez
- Department of Chemistry in Pharmaceutical Sciences, Complutense University of Madrid, E-28040 Madrid, Spain
| | - Marco Laurenti
- Department of Chemistry in Pharmaceutical Sciences, Complutense University of Madrid, E-28040 Madrid, Spain
| | - Jorge Rubio-Retama
- Department of Chemistry in Pharmaceutical Sciences, Complutense University of Madrid, E-28040 Madrid, Spain
| | - Oscar G Calderón
- Department of Optics, Complutense University of Madrid, E-28037 Madrid, Spain.
| | - Sonia Melle
- Department of Optics, Complutense University of Madrid, E-28037 Madrid, Spain.
| |
Collapse
|
7
|
Li J, Wang P, Zhang Y, Xiao D, Zhou C. Tm 3+ mediated multicolor luminescence of NaYbF 4:Er,Tm@NaYF 4 for advanced anti-counterfeiting. Dalton Trans 2024; 53:9380-9386. [PMID: 38757515 DOI: 10.1039/d4dt00540f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Lanthanide doped multicolor luminescent materials have attracted extensive attention due to their advanced anti-counterfeiting properties. However, designing a simple, hard-to-copy and multicolor anti-counterfeiting strategy based on upconversion nanoparticles (UCNPs) remains a huge challenge. Herein, a strategy to modulate luminescence color by altering the mediating action of Tm3+ was proposed. As a proof of concept, the mediating action of Tm3+ was explored in NaYbF4:30%Er,1%Tm@NaYF4 by changing the doping ratio of Yb3+/Er3+/Tm3+, and red, yellow and blue luminescence was successfully obtained. Then, NaYbF4:x%Er,1%Tm@NaYF4 (x = 2, 10, 30, 50, 99), NaYbF4:x%Er@NaYF4 (x = 2, 10, 30, 50, 100) and NaYbF4:1%Tm@NaYF4:x%Er@NaYF4 (x = 2, 10, 30, 50, 100) were synthesized to further identify that the mediating action of Tm3+ was related to the doping ratio and distance between dopant ions. In addition, the luminescence color of NaYbF4:30%Er,1%Tm@NaYF4 changed from red to yellow with the increase of excitation power density. Based on the above, NaYbF4:Er,Tm@NaYF4 UCNPs show excellent performance in anti-counterfeiting of paintings, thus revealing their great potential in advanced anti-counterfeiting applications.
Collapse
Affiliation(s)
- Jiaxin Li
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Pengli Wang
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Yujiao Zhang
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Dan Xiao
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Cuisong Zhou
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| |
Collapse
|
8
|
Huang Z, Miyashita T, Tang ML. Photon Upconversion at Organic-Inorganic Interfaces. Annu Rev Phys Chem 2024; 75:329-346. [PMID: 38382565 DOI: 10.1146/annurev-physchem-090722-011335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Photon upconversion is a process that combines low-energy photons to form useful high-energy photons. There are potential applications in photovoltaics, photocatalysis, biological imaging, etc. Semiconductor quantum dots (QDs) are promising for the absorption of these low-energy photons due to the high extinction coefficient of QDs, especially in the near infrared (NIR). This allows the intriguing use of diffuse light sources such as solar irradiation. In this review, we describe the development of this organic-QD upconversion platform based on triplet-triplet annihilation, focusing on the dark exciton in QDs with triplet character. Then we introduce the underlying energy transfer steps, starting from QD triplet photosensitization, triplet exciton transport, triplet-triplet annihilation, and ending with the upconverted emission. Design principles to improve the total upconversion efficiency are presented. We end with limitations in current reports and proposed future directions. This review provides a guide for designing efficient organic-QD upconversion platforms for future applications, including overcoming the Shockley-Queisser limit for more efficient solar energy conversion, NIR-based phototherapy, and diagnostics in vivo.
Collapse
Affiliation(s)
- Zhiyuan Huang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, People's Republic of China;
| | - Tsumugi Miyashita
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA;
| | - Ming Lee Tang
- Department of Chemistry, University of Utah, Salt Lake City, Utah, USA;
| |
Collapse
|
9
|
Ling H, Guan D, Wen R, Hu J, Zhang Y, Zhao F, Zhang Y, Liu Q. Effect of Surface Modification on the Luminescence of Individual Upconversion Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309035. [PMID: 38234137 DOI: 10.1002/smll.202309035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/03/2024] [Indexed: 01/19/2024]
Abstract
Lanthanide-doped upconversion nanoparticles (UCNPs) hold promise for single-molecule imaging owing to their excellent photostability and minimal autofluorescence. However, their limited water dispersibility, often from the hydrophobic oleic acid ligand during synthesis, is a challenge. To address this, various surface modification strategies' impact on single-particle upconversion luminescence are studied. UCNPs are made hydrophilic through methods like ligand exchange with dye IR806, HCl or NOBF4 treatment, silica coating (SiO2 or mesoporous mSiO2), and self-assembly with polymer of DSPE-PEG or F127. The studies revealed that UCNPs modified with NOBF4 and DSPE-PEG exhibited notably higher single-particle brightness with minimal quenching (3% and 8%, respectively), followed by SiO2, F127, IR806, mSiO2, and HCl (84% quenching). HCl disrupted UCNPs's crystal lattice, weakening luminescence, while mSiO2 absorbed solvent molecules, causing luminescence quenching. Energy transfer to IR806 also reduced the brightness. Additionally, a prevalence of upconversion red emission over green is observed, with the red-to-green ratio increasing with irradiance. UCNPs coated with DSPE-PEG exhibited the brightest single-particle luminescence in water, retaining 48% of its original emission due to a lower critical micelle concentration and superior water protection. In summary, the investigation provides valuable insights into the role of surface chemistry on UCNPs at the single-particle level.
Collapse
Affiliation(s)
- Huan Ling
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Daoming Guan
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Rongrong Wen
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Jialing Hu
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Yanxin Zhang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Fei Zhao
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Yunxiang Zhang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Qian Liu
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| |
Collapse
|
10
|
Shi R, Lin L, Wang Z, Zou Q, Mudring AV. Manipulation of Luminescence via Surface Site Occupation in Ln 3+-Doped Nanocrystals. J Am Chem Soc 2024; 146:11924-11931. [PMID: 38625035 PMCID: PMC11066861 DOI: 10.1021/jacs.4c00052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/17/2024]
Abstract
Ln3+-doped (Ln = lanthanide) nanocrystals are garnering strong interest for their potential as optical materials in various applications. For that reason, a thorough understanding of photophysical processes and ways to tune them in these materials is of great importance. This study, using Eu3+-doped Sr2YF7 as a well-suited model system, underscores the (not unexpected) significance of surface site occupation of Ln3+ and also challenges the prevailing views about their contribution to the luminescence of the system. High-temperature cation exchange and epitaxial shell growth allow nanocrystals to exclusively feature Eu3+ residing at the surface or in the interior, thereby separating their spectral responses. Meticulous experiments reveal that nanocrystals with high doping concentrations exhibit luminescence primarily from surface Eu3+, in contrast to the popular belief that luminescence from surface Ln3+ is largely negligible. The present study shows, on the one hand, the necessity to revise common ideas and also reveals the potential for manipulating the luminescence of such materials through an, until now, unperceived way of surface engineering.
Collapse
Affiliation(s)
- Rui Shi
- Intelligent
Advanced Materials, Department of Biological and Chemical Engineering
and iNANO, Aarhus University, Aarhus C 8000, Denmark
| | - Litian Lin
- State
Key Laboratory of Rare Metals Separation and Comprehensive Utilization,
Guangdong Provincial Key Laboratory of Rare Earth Development and
Application, Institute of Resources Utilization
and Rare Earth Development, Guangdong Academy of Sciences, Guangzhou 510651, China
| | - Zijun Wang
- IMRB,
Université Paris Est Créteil, INSERM U955, CNRS, EMR
7000, 94010 Créteil, France
| | - Qilin Zou
- Laboratoire
de Physique de la Matière Condensée, Ecole Polytechnique, CNRS, IP Paris, 91128 Palaiseau, France
| | - Anja-Verena Mudring
- Intelligent
Advanced Materials, Department of Biological and Chemical Engineering
and iNANO, Aarhus University, Aarhus C 8000, Denmark
- Department
of Physics, Umeå University, Linnaeus väg 24, 901 87 Umeå, Sweden
| |
Collapse
|
11
|
F Shida J, Ma K, Toll HW, Salinas O, Ma X, Peng CS. Multicolor Long-Term Single-Particle Tracking Using 10 nm Upconverting Nanoparticles. NANO LETTERS 2024; 24:4194-4201. [PMID: 38497588 PMCID: PMC11555556 DOI: 10.1021/acs.nanolett.4c00207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Single-particle tracking (SPT) is a powerful technique to unveil molecular behaviors crucial to the understanding of many biological processes, but it is limited by factors such as probe photostability and spectral orthogonality. To overcome these limitations, we develop upconverting nanoparticles (UCNPs), which are photostable over several hours at the single-particle level, enabling long-term multicolor SPT. We investigate the brightness of core-shell UCNPs as a function of inert shell thickness to minimize particle size while maintaining sufficient signal for SPT. We explore different rare-earth dopants to optimize for the brightest probes and find that UCNPs doped with 2% Tm3+/30% Yb3+, 10% Er3+/90% Yb3+, and 15% Tm3+/85% Yb3+ represent the optimal probes for blue, green, and near-infrared emission, respectively. The multiplexed 10 nm probes enable three-color single-particle tracking on live HeLa cells for tens of minutes using a single, near-infrared excitation source. These photostable and multiplexed probes open new avenues for numerous biological applications.
Collapse
Affiliation(s)
- João F Shida
- Department of Chemistry, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, United States
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02139, United States
| | - Kaibo Ma
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02139, United States
| | - Harrison W Toll
- Department of Chemistry, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, United States
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02139, United States
| | - Omar Salinas
- Department of Chemistry, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, United States
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02139, United States
| | - Xiaojie Ma
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02139, United States
| | - Chunte Sam Peng
- Department of Chemistry, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, United States
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
12
|
Schroter A, Hirsch T. Control of Luminescence and Interfacial Properties as Perspective for Upconversion Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306042. [PMID: 37986189 DOI: 10.1002/smll.202306042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/19/2023] [Indexed: 11/22/2023]
Abstract
Near-infrared (NIR) light is highly suitable for studying biological systems due to its minimal scattering and lack of background fluorescence excitation, resulting in high signal-to-noise ratios. By combining NIR light with lanthanide-based upconversion nanoparticles (UCNPs), upconversion is used to generate UV or visible light within tissue. This remarkable property has gained significant research interest over the past two decades. Synthesis methods are developed to produce particles of various sizes, shapes, and complex core-shell architectures and new strategies are explored to optimize particle properties for specific bioapplications. The diverse photophysics of lanthanide ions offers extensive possibilities to tailor spectral characteristics by incorporating different ions and manipulating their arrangement within the nanocrystal. However, several challenges remain before UCNPs can be widely applied. Understanding the behavior of particle surfaces when exposed to complex biological environments is crucial. In applications where deep tissue penetration is required, such as photodynamic therapy and optogenetics, UCNPs show great potential as nanolamps. These nanoparticles can combine diagnostics and therapeutics in a minimally invasive, efficient manner, making them ideal upconversion probes. This article provides an overview of recent UCNP design trends, highlights past research achievements, and outlines potential future directions to bring upconversion research to the next level.
Collapse
Affiliation(s)
- Alexandra Schroter
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Universitaetsstraße 31, 93053, Regensburg, Germany
| | - Thomas Hirsch
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Universitaetsstraße 31, 93053, Regensburg, Germany
| |
Collapse
|
13
|
Zhang F, Oiticica PRA, Abad-Arredondo J, Arai MS, Oliveira ON, Jaque D, Fernandez Dominguez AI, de Camargo ASS, Haro-González P. Brownian Motion Governs the Plasmonic Enhancement of Colloidal Upconverting Nanoparticles. NANO LETTERS 2024; 24:3785-3792. [PMID: 38497999 PMCID: PMC10979430 DOI: 10.1021/acs.nanolett.4c00379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/19/2024]
Abstract
Upconverting nanoparticles are essential in modern photonics due to their ability to convert infrared light to visible light. Despite their significance, they exhibit limited brightness, a key drawback that can be addressed by combining them with plasmonic nanoparticles. Plasmon-enhanced upconversion has been widely demonstrated in dry environments, where upconverting nanoparticles are immobilized, but constitutes a challenge in liquid media where Brownian motion competes against immobilization. This study employs optical tweezers for the three-dimensional manipulation of an individual upconverting nanoparticle, enabling the exploration of plasmon-enhanced upconversion luminescence in water. Contrary to expectation, experiments reveal a long-range (micrometer scale) and moderate (20%) enhancement in upconversion luminescence due to the plasmonic resonances of gold nanostructures. Comparison between experiments and numerical simulations evidences the key role of Brownian motion. It is demonstrated how the three-dimensional Brownian fluctuations of the upconverting nanoparticle lead to an "average effect" that explains the magnitude and spatial extension of luminescence enhancement.
Collapse
Affiliation(s)
- Fengchan Zhang
- Nanomaterials
for Bioimaging Group (nanoBIG), Departamento de Física de Materiales,
Facultad de Ciencias, Universidad Autónoma
de Madrid, Madrid 28049, Spain
- Instituto
Nicolás Cabrera, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | | | - Jaime Abad-Arredondo
- Departamento
de Física Teórica de la Materia Condensada and Condensed
Matter Physics Center (IFIMAC), Facultad de Ciencias, Universidad Autónoma de Madrid, E28049 Madrid, Spain
| | - Marylyn Setsuko Arai
- São
Carlos Institute of Physics, University
of São Paulo (USP), 13566-590 São Carlos, São Paulo, Brazil
| | - Osvaldo N. Oliveira
- São
Carlos Institute of Physics, University
of São Paulo (USP), 13566-590 São Carlos, São Paulo, Brazil
| | - Daniel Jaque
- Nanomaterials
for Bioimaging Group (nanoBIG), Departamento de Física de Materiales,
Facultad de Ciencias, Universidad Autónoma
de Madrid, Madrid 28049, Spain
- Institute
for Advanced Research in Chemical Sciences, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Antonio I. Fernandez Dominguez
- Departamento
de Física Teórica de la Materia Condensada and Condensed
Matter Physics Center (IFIMAC), Facultad de Ciencias, Universidad Autónoma de Madrid, E28049 Madrid, Spain
| | - Andrea Simone Stucchi de Camargo
- Federal
Institute for Materials Research and Testing (BAM), Berlin 12489, Germany
- Friedrich
Schiller University (FSU), Jena 07737, Germany
| | - Patricia Haro-González
- Nanomaterials
for Bioimaging Group (nanoBIG), Departamento de Física de Materiales,
Facultad de Ciencias, Universidad Autónoma
de Madrid, Madrid 28049, Spain
- Instituto
Nicolás Cabrera, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid 28049, Spain
- Institute
for Advanced Research in Chemical Sciences, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
14
|
Bredillet K, Riporto F, Guo T, Dhouib A, Multian V, Monnier V, Figueras Llussà P, Beauquis S, Bonacina L, Mugnier Y, Le Dantec R. Dual second harmonic generation and up-conversion photoluminescence emission in highly-optimized LiNbO 3 nanocrystals doped and co-doped with Er 3+ and Yb 3. NANOSCALE 2024. [PMID: 38497193 DOI: 10.1039/d4nr00431k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Preparation from the aqueous alkoxide route of doped and co-doped lithium niobate nanocrystals with Er3+ and Yb3+ ions, and detailed investigations of their optical properties are presented in this comprehensive work. Simultaneous emission under femtosecond laser excitation of second harmonic generation (SHG) and up-conversion photoluminescence (UC-PL) is studied from colloidal suspensions according to the lanthanide ion contents. Special attention has been paid to produce phase pure nanocrystals of constant size (∼20 nm) thus allowing a straightforward comparison and optimization of the Er content for increasing the green UC-PL signals under 800 nm excitation. An optimal molar concentration at about 4 molar% in erbium ions is demonstrated, that is well above the concentration usually achieved in bulk crystals. Similarly, for co-doped LiNbO3 nanocrystals, different lanthanide concentrations and Yb/Er content ratios are tested allowing optimization of the green and red up-conversion excited at 980 nm, and analysis of the underlying mechanisms from excitation spectra. All together, these findings provide valuable insights into the wet-chemical synthesis and potential of doped and co-doped LiNbO3 nanocrystals for advanced applications, combining both SHG and UC-PL emissions from the particle core.
Collapse
Affiliation(s)
- K Bredillet
- Université Savoie Mont Blanc, SYMME, F-74000, Annecy, France.
| | - F Riporto
- Université Savoie Mont Blanc, SYMME, F-74000, Annecy, France.
| | - T Guo
- Université Savoie Mont Blanc, SYMME, F-74000, Annecy, France.
| | - A Dhouib
- Université Savoie Mont Blanc, SYMME, F-74000, Annecy, France.
| | - V Multian
- Université Savoie Mont Blanc, SYMME, F-74000, Annecy, France.
| | - V Monnier
- Univ. Lyon, Ecole Centrale de Lyon, CNRS, INSA Lyon, Université Claude Bernard Lyon 1, CPE Lyon, CNRS, INL, UMR5270, 69130 Ecully, France
| | - P Figueras Llussà
- Department of Applied Physics, Université de Genève, 1211 Genève 4, Switzerland
| | - S Beauquis
- Université Savoie Mont Blanc, SYMME, F-74000, Annecy, France.
| | - L Bonacina
- Department of Applied Physics, Université de Genève, 1211 Genève 4, Switzerland
| | - Y Mugnier
- Université Savoie Mont Blanc, SYMME, F-74000, Annecy, France.
| | - R Le Dantec
- Université Savoie Mont Blanc, SYMME, F-74000, Annecy, France.
| |
Collapse
|
15
|
Dukhno O, Ghosh S, Greiner V, Bou S, Godet J, Muhr V, Buchner M, Hirsch T, Mély Y, Przybilla F. Targeted Single Particle Tracking with Upconverting Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2024; 16:11217-11227. [PMID: 38386424 DOI: 10.1021/acsami.3c17116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Single particle tracking (SPT) is a powerful technique for real-time microscopic visualization of the movement of individual biomolecules within or on the surface of living cells. However, SPT often suffers from the suboptimal performance of the photon-emitting labels used to tag the biomolecules of interest. For example, fluorescent dyes have poor photostability, while quantum dots suffer from blinking that hampers track acquisition and interpretation. Upconverting nanoparticles (UCNPs) have recently emerged as a promising anti-Stokes luminescent label for SPT. In this work, we demonstrated targeted SPT using UCNPs. For this, we synthesized 30 nm diameter doped UCNPs and coated them with amphiphilic polymers decorated with polyethylene glycol chains to make them water-dispersible and minimize their nonspecific interactions with cells. Coated UCNPs highly homogeneous in brightness (as confirmed by a single particle investigation) were functionalized by immunoglobulin E (IgE) using a biotin-streptavidin strategy. Using these IgE-UCNP SPT labels, we tracked high-affinity IgE receptors (FcεRI) on the membrane of living RBL-2H3 mast cells at 37 °C in the presence and absence of antigen and obtained good agreement with the literature. Moreover, we used the FcεRI-IgE receptor-antibody system to directly compare the performance of UCNP-based SPT labels to organic dyes (AlexaFluor647) and quantum dots (QD655). Due to their photostability as well as their backgroundless and continuous luminescence, SPT trajectories obtained with UCNP labels are no longer limited by the photophysics of the label but only by the dynamics of the system and, in particular, the movement of the label out of the field of view and/or focal plane.
Collapse
Affiliation(s)
- Oleksii Dukhno
- Laboratory of Biomaging and Pathologies, UMR 7021 CNRS, University of Strasbourg, Strasbourg 67000, France
| | - Srijayee Ghosh
- Laboratory of Biomaging and Pathologies, UMR 7021 CNRS, University of Strasbourg, Strasbourg 67000, France
| | - Vanille Greiner
- Laboratory of Biomaging and Pathologies, UMR 7021 CNRS, University of Strasbourg, Strasbourg 67000, France
| | - Sophie Bou
- Laboratory of Biomaging and Pathologies, UMR 7021 CNRS, University of Strasbourg, Strasbourg 67000, France
| | - Julien Godet
- Laboratory of Biomaging and Pathologies, UMR 7021 CNRS, University of Strasbourg, Strasbourg 67000, France
- IMAGeS team at ICube, UMR 7357, CNRS, Université de Strasbourg, Strasbourg 67000, France
| | - Verena Muhr
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93040 Regensburg, Germany
| | - Markus Buchner
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93040 Regensburg, Germany
| | - Thomas Hirsch
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93040 Regensburg, Germany
| | - Yves Mély
- Laboratory of Biomaging and Pathologies, UMR 7021 CNRS, University of Strasbourg, Strasbourg 67000, France
| | - Frédéric Przybilla
- Laboratory of Biomaging and Pathologies, UMR 7021 CNRS, University of Strasbourg, Strasbourg 67000, France
| |
Collapse
|
16
|
Harrington B, Ye Z, Signor L, Pickel AD. Luminescence Thermometry Beyond the Biological Realm. ACS NANOSCIENCE AU 2024; 4:30-61. [PMID: 38406316 PMCID: PMC10885336 DOI: 10.1021/acsnanoscienceau.3c00051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 02/27/2024]
Abstract
As the field of luminescence thermometry has matured, practical applications of luminescence thermometry techniques have grown in both frequency and scope. Due to the biocompatibility of most luminescent thermometers, many of these applications fall within the realm of biology. However, luminescence thermometry is increasingly employed beyond the biological realm, with expanding applications in areas such as thermal characterization of microelectronics, catalysis, and plasmonics. Here, we review the motivations, methodologies, and advances linked to nonbiological applications of luminescence thermometry. We begin with a brief overview of luminescence thermometry probes and techniques, focusing on those most commonly used for nonbiological applications. We then address measurement capabilities that are particularly relevant for these applications and provide a detailed survey of results across various application categories. Throughout the review, we highlight measurement challenges and requirements that are distinct from those of biological applications. Finally, we discuss emerging areas and future directions that present opportunities for continued research.
Collapse
Affiliation(s)
- Benjamin Harrington
- Materials
Science Program, University of Rochester, Rochester, New York 14627, United States
| | - Ziyang Ye
- Materials
Science Program, University of Rochester, Rochester, New York 14627, United States
| | - Laura Signor
- The
Institute of Optics, University of Rochester, Rochester, New York 14627, United States
| | - Andrea D. Pickel
- Department
of Mechanical Engineering and Materials Science Program, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
17
|
Ding L, Chen C, Shan X, Liu B, Wang D, Du Z, Zhao G, Su QP, Yang Y, Halkon B, Tran TT, Liao J, Aharonovich I, Zhang M, Cheng F, Fu L, Xu X, Wang F. Optical Nonlinearity Enabled Super-Resolved Multiplexing Microscopy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308844. [PMID: 37972577 DOI: 10.1002/adma.202308844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/04/2023] [Indexed: 11/19/2023]
Abstract
Optical multiplexing for nanoscale object recognition is of great significance within the intricate domains of biology, medicine, anti-counterfeiting, and microscopic imaging. Traditionally, the multiplexing dimensions of nanoscopy are limited to emission intensity, color, lifetime, and polarization. Here, a novel dimension, optical nonlinearity, is proposed for super-resolved multiplexing microscopy. This optical nonlinearity is attributable to the energy transitions between multiple energy levels of the doped lanthanide ions in upconversion nanoparticles (UCNPs), resulting in unique optical fingerprints for UCNPs with different compositions. A vortex beam is applied to transport the optical nonlinearity onto the imaging point-spread function (PSF), creating a robust super-resolved multiplexing imaging strategy for differentiating UCNPs with distinctive optical nonlinearities. The composition information of the nanoparticles can be retrieved with variations of the corresponding PSF in the obtained image. Four channels multiplexing super-resolved imaging with a single scanning, applying emission color and nonlinearity of two orthogonal imaging dimensions with a spatial resolution higher than 150 nm (1/6.5λ), are demonstrated. This work provides a new and orthogonal dimension - optical nonlinearity - to existing multiplexing dimensions, which shows great potential in bioimaging, anti-counterfeiting, microarray assays, deep tissue multiplexing detection, and high-density data storage.
Collapse
Affiliation(s)
- Lei Ding
- Guangdong Engineering and Technology Research Center for Advanced Nanomaterials, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, China
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, NSW, 2007, Australia
| | - Chaohao Chen
- Guangdong Engineering and Technology Research Center for Advanced Nanomaterials, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, China
- Australian Research Council Centre of Excellence for Transformative Meta-Optical Systems, Department of Electronic Materials Engineering, Research School of Physics, The Australian National University, Canberra, ACT, 2600, Australia
- School of Electrical and Data Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, NSW, 2007, Australia
| | - Xuchen Shan
- School of Physics, Beihang University, Beijing, 100191, China
| | - Baolei Liu
- School of Physics, Beihang University, Beijing, 100191, China
| | - Dajing Wang
- School of Physics, Beihang University, Beijing, 100191, China
| | - Ziqing Du
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, NSW, 2007, Australia
| | - Guanshu Zhao
- School of Electrical and Data Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, NSW, 2007, Australia
| | - Qian Peter Su
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, NSW, 2007, Australia
| | - Yang Yang
- School of Electrical and Data Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, NSW, 2007, Australia
| | - Benjamin Halkon
- Centre for Audio, Acoustics and Vibration, Faculty of Engineering and IT, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Toan Trong Tran
- School of Electrical and Data Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, NSW, 2007, Australia
| | - Jiayan Liao
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, NSW, 2007, Australia
| | - Igor Aharonovich
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, NSW, 2007, Australia
| | - Min Zhang
- Guangdong Engineering and Technology Research Center for Advanced Nanomaterials, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Faliang Cheng
- Guangdong Engineering and Technology Research Center for Advanced Nanomaterials, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Lan Fu
- Australian Research Council Centre of Excellence for Transformative Meta-Optical Systems, Department of Electronic Materials Engineering, Research School of Physics, The Australian National University, Canberra, ACT, 2600, Australia
| | - Xiaoxue Xu
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, NSW, 2007, Australia
| | - Fan Wang
- School of Physics, Beihang University, Beijing, 100191, China
| |
Collapse
|
18
|
Han Y, Zhang X, Huang L. Novel Aspects about "Lifetime" in Upconversion Luminescence. Chemistry 2023; 29:e202302633. [PMID: 37697454 DOI: 10.1002/chem.202302633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/13/2023]
Abstract
Recent progress on the temporal response (TR) of lanthanide-doped upconversion luminescence (UCL) has enriched the means of UCL regulation, promoted advanced designs for customized applications such as biological diagnosis, high-capacity optical coding, and dynamic optical anti-counterfeiting, and pushed us to reacquaint the dynamic responses of sensitizer/activator ions in UCL systems. In particular, the lifetime of UCL should be revisited after discovery of novel experimental phenomena and luminescence mechanisms, i. e., it should be understood as the collective TR (in the decay edge) of all the involved ions rather than the reciprocal of the radiative rate of an individual ion. In this Concept, we retraced the latest understanding of the dynamics in UCL with special attention to the relationship between excitation and emission, means of TR regulation, and discussed existing challenges. It is expected to provide some fundamental insights to deepened understanding, further regulation, and frontier applications of TR features of UCL.
Collapse
Affiliation(s)
- Yingdong Han
- College of Science, Civil Aviation University of China, Tianjin, 300300, China
- Institute of Environment and Sustainable Development, Civil Aviation University of China, Tianjin, 300300, China
| | - Xingxing Zhang
- College of Science, Civil Aviation University of China, Tianjin, 300300, China
| | - Ling Huang
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
| |
Collapse
|
19
|
Xia X, Sivonxay E, Helms BA, Blau SM, Chan EM. Accelerating the Design of Multishell Upconverting Nanoparticles through Bayesian Optimization. NANO LETTERS 2023. [PMID: 38038194 DOI: 10.1021/acs.nanolett.3c03568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
The photon upconverting properties of lanthanide-doped nanoparticles drive their applications in imaging, optoelectronics, and additive manufacturing. To maximize their brightness, these upconverting nanoparticles (UCNPs) are often synthesized as core/shell heterostructures. However, the large numbers of compositional and structural parameters in multishell heterostructures make optimizing optical properties challenging. Here, we demonstrate the use of Bayesian optimization (BO) to learn the structure and design rules for multishell UCNPs with bright ultraviolet and violet emission. We leverage an automated workflow that iteratively recommends candidate UCNP structures and then simulates their emission spectra using kinetic Monte Carlo. Yb3+/Er3+- and Yb3+/Er3+/Tm3+-codoped UCNP nanostructures optimized with this BO workflow achieve 10- and 110-fold brighter emission within 22 and 40 iterations, respectively. This workflow can be expanded to structures with higher compositional and structural complexity, accelerating the discovery of novel UCNPs while domain-specific knowledge is being developed.
Collapse
Affiliation(s)
- Xiaojing Xia
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Eric Sivonxay
- Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Brett A Helms
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Samuel M Blau
- Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Emory M Chan
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
20
|
Mangnus MJJ, Benning VRM, Baumgartner B, Prins PT, van Swieten TP, Dekker AJH, van Blaaderen A, Weckhuysen BM, Meijerink A, Rabouw FT. Probing nearby molecular vibrations with lanthanide-doped nanocrystals. NANOSCALE 2023; 15:16601-16611. [PMID: 37812063 PMCID: PMC10600830 DOI: 10.1039/d3nr02997b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/30/2023] [Indexed: 10/10/2023]
Abstract
The photoluminescence (PL) of lanthanide-doped nanocrystals can be quenched by energy transfer to vibrations of molecules located within a few nanometers from the dopants. Such short-range electronic-to-vibrational energy transfer (EVET) is often undesired as it reduces the photoluminescence efficiency. On the other hand, EVET may be exploited to extract information about molecular vibrations in the local environment of the nanocrystals. Here, we investigate the influence of solvent and gas environments on the PL properties of NaYF4:Er3+,Yb3+ upconversion nanocrystals. We relate changes in the PL spectrum and excited-state lifetimes in different solvents and their deuterated analogues to quenching of specific lanthanide levels by EVET to molecular vibrations. Similar but weaker changes are induced when we expose a film of nanocrystals to a gas environment with different amounts of H2O or D2O vapor. Quenching of green- and red-emitting levels of Er3+ can be explained in terms of EVET-mediated quenching that involves molecular vibrations with energies resonant with the gap between the energy levels of the lanthanide. Quenching of the near-infrared-emitting level is more complex and may involve EVET to combination-vibrations or defect-mediated quenching. EVET-mediated quenching holds promise as a mechanism to probe the local chemical environment-both for nanocrystals dispersed in a liquid and for nanocrystals exposed to gaseous molecules that adsorb onto the nanocrystal surface.
Collapse
Affiliation(s)
- Mark J J Mangnus
- Inorganic Chemistry and Catalysis group, Debye Institute for Nanomaterials Science and Institute for Sustainable and Circular Chemistry, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands.
- Soft Condensed Matter group, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
| | - Vincent R M Benning
- Inorganic Chemistry and Catalysis group, Debye Institute for Nanomaterials Science and Institute for Sustainable and Circular Chemistry, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands.
- Soft Condensed Matter group, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
| | - Bettina Baumgartner
- Inorganic Chemistry and Catalysis group, Debye Institute for Nanomaterials Science and Institute for Sustainable and Circular Chemistry, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands.
| | - P Tim Prins
- Inorganic Chemistry and Catalysis group, Debye Institute for Nanomaterials Science and Institute for Sustainable and Circular Chemistry, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands.
| | - Thomas P van Swieten
- Inorganic Chemistry and Catalysis group, Debye Institute for Nanomaterials Science and Institute for Sustainable and Circular Chemistry, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands.
- Condensed Matter and Interfaces group, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
| | - Ayla J H Dekker
- Inorganic Chemistry and Catalysis group, Debye Institute for Nanomaterials Science and Institute for Sustainable and Circular Chemistry, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands.
- Soft Condensed Matter group, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
| | - Alfons van Blaaderen
- Soft Condensed Matter group, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
| | - Bert M Weckhuysen
- Inorganic Chemistry and Catalysis group, Debye Institute for Nanomaterials Science and Institute for Sustainable and Circular Chemistry, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands.
| | - Andries Meijerink
- Condensed Matter and Interfaces group, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
| | - Freddy T Rabouw
- Inorganic Chemistry and Catalysis group, Debye Institute for Nanomaterials Science and Institute for Sustainable and Circular Chemistry, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands.
- Soft Condensed Matter group, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
| |
Collapse
|
21
|
Fu W, Yin J, Cao H, Zhou Z, Zhang J, Fu J, Warner JH, Wang C, Jia X, Greaves GN, Cheetham AK. Non-Blinking Luminescence from Charged Single Graphene Quantum Dots. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304074. [PMID: 37395476 DOI: 10.1002/adma.202304074] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 07/04/2023]
Abstract
Photoluminescence blinking behavior from single quantum dots under steady illumination is an important but controversial topic. Its occurrence has impeded the use of single quantum dots in bioimaging. Different mechanisms have been proposed to account for it, although controversial, the most important of which is the non-radiative Auger recombination mechanism whereby photocharging of quantum dots can lead to the blinking phenomenon. Here, the singly charged trion, which maintains photon emission, including radiative recombination and non-radiative Auger recombination, leads to fluorescence non-blinking which is observed in photocharged single graphene quantum dots (GQDs). This phenomenon can be explained in terms of different energy levels in the GQDs, caused by various oxygen-containing functional groups in the single GQDs. The suppressed blinking is due to the filling of trap sites owing to a Coulomb blockade. These results provide a profound understanding of the special optical properties of GQDs, affording a reference for further in-depth research.
Collapse
Affiliation(s)
- Wei Fu
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jiefu Yin
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Huaqiang Cao
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Zhongfu Zhou
- State Key Laboratory of Advanced Special Steel, Shanghai Key Laboratory of Advanced Ferrometallurgy, Shanghai University, Shanghai, 200072, China
| | - Junying Zhang
- School of Physics, Beihang University, Beijing, 100191, China
| | - Jingjing Fu
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Jamie H Warner
- Department of Mechanical Engineering, The University of Texas at Austin, 204 East Dean Keeton Street, Austin, TX, 78712, USA
| | - Cheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Xiaofang Jia
- School of Physics, Beihang University, Beijing, 100191, China
| | - G Neville Greaves
- Department of Physics, Aberystwyth University, Aberystwyth, SY23 3BZ, UK
- Department of Materials Science and Metallurgy, The University of Cambridge, Cambridge, CB3 0FS, UK
| | - Anthony K Cheetham
- Department of Materials Science and Metallurgy, The University of Cambridge, Cambridge, CB3 0FS, UK
- Materials Research Laboratory, University of California, Santa Barbara, CA, 93106, USA
| |
Collapse
|
22
|
Chen C, Cai QW, Zhan CZ, Wang BC, Li PF, Xie R, Ju XJ, Liu Z, Wang W, Chu LY. Controllable Fabrication of Highly Uniform Sub-10 nm Nanoparticles from Spontaneous Confined Nanoemulsification. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300801. [PMID: 37072877 DOI: 10.1002/smll.202300801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/30/2023] [Indexed: 05/03/2023]
Abstract
Sub-10 nm nanoparticles are known to exhibit extraordinary size-dependent properties for wide applications. Many approaches have been developed for synthesizing sub-10 nm inorganic nanoparticles, but the fabrication of sub-10 nm polymeric nanoparticles is still challenging. Here, a scalable, spontaneous confined nanoemulsification strategy that produces uniform sub-10 nm nanodroplets for template synthesis of sub-10 nm polymeric nanoparticles is proposed. This strategy introduces a high-concentration interfacial reaction to create overpopulated surfactants that are insoluble at the droplet surface. These overpopulated surfactants act as barriers, resulting in highly accumulated surfactants inside the droplet via a confined reaction. These surfactants exhibit significantly changed packing geometry, solubility, and interfacial activity to enhance the molecular-level impact on interfacial instability for creating sub-10 nm nanoemulsions via self-burst nanoemulsification. Using the nanodroplets as templates, the fabrication of uniform sub-10 nm polymeric nanoparticles, as small as 3.5 nm, made from biocompatible polymers and capable of efficient drug encapsulation is demonstrated. This work opens up brand-new opportunities to easily create sub-10 nm nanoemulsions and advanced ultrasmall functional nanoparticles.
Collapse
Affiliation(s)
- Chen Chen
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
- Department of Chemical Engineering, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Quan-Wei Cai
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Cai-Zhen Zhan
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Bi-Cong Wang
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Ping-Fan Li
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Rui Xie
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Xiao-Jie Ju
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Zhuang Liu
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Wei Wang
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Liang-Yin Chu
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| |
Collapse
|
23
|
Asaithambi A, Kazemi Tofighi N, Ghini M, Curreli N, Schuck PJ, Kriegel I. Energy transfer and charge transfer between semiconducting nanocrystals and transition metal dichalcogenide monolayers. Chem Commun (Camb) 2023; 59:7717-7730. [PMID: 37199319 PMCID: PMC10281493 DOI: 10.1039/d3cc01125a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/02/2023] [Indexed: 05/19/2023]
Abstract
Nowadays, as a result of the emergence of low-dimensional hybrid structures, the scientific community is interested in their interfacial carrier dynamics, including charge transfer and energy transfer. By combining the potential of transition metal dichalcogenides (TMDs) and nanocrystals (NCs) with low-dimensional extension, hybrid structures of semiconducting nanoscale matter can lead to fascinating new technological scenarios. Their characteristics make them intriguing candidates for electronic and optoelectronic devices, like transistors or photodetectors, bringing with them challenges but also opportunities. Here, we will review recent research on the combined TMD/NC hybrid system with an emphasis on two major interaction mechanisms: energy transfer and charge transfer. With a focus on the quantum well nature in these hybrid semiconductors, we will briefly highlight state-of-the-art protocols for their structure formation and discuss the interaction mechanisms of energy versus charge transfer, before concluding with a perspective section that highlights novel types of interactions between NCs and TMDs.
Collapse
Affiliation(s)
- Aswin Asaithambi
- Functional Nanosystems, Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16163, Italy.
| | - Nastaran Kazemi Tofighi
- Functional Nanosystems, Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16163, Italy.
| | - Michele Ghini
- Functional Nanosystems, Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16163, Italy.
- Nanoelectronic Devices Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland
| | - Nicola Curreli
- Functional Nanosystems, Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16163, Italy.
| | - P James Schuck
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Ilka Kriegel
- Functional Nanosystems, Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16163, Italy.
| |
Collapse
|
24
|
Lee C, Xu EZ, Kwock KWC, Teitelboim A, Liu Y, Park HS, Ursprung B, Ziffer ME, Karube Y, Fardian-Melamed N, Pedroso CCS, Kim J, Pritzl SD, Nam SH, Lohmueller T, Owen JS, Ercius P, Suh YD, Cohen BE, Chan EM, Schuck PJ. Indefinite and bidirectional near-infrared nanocrystal photoswitching. Nature 2023:10.1038/s41586-023-06076-7. [PMID: 37258675 DOI: 10.1038/s41586-023-06076-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 04/12/2023] [Indexed: 06/02/2023]
Abstract
Materials whose luminescence can be switched by optical stimulation drive technologies ranging from superresolution imaging1-4, nanophotonics5, and optical data storage6,7, to targeted pharmacology, optogenetics, and chemical reactivity8. These photoswitchable probes, including organic fluorophores and proteins, can be prone to photodegradation and often operate in the ultraviolet or visible spectral regions. Colloidal inorganic nanoparticles6,9 can offer improved stability, but the ability to switch emission bidirectionally, particularly with near-infrared (NIR) light, has not, to our knowledge, been reported in such systems. Here, we present two-way, NIR photoswitching of avalanching nanoparticles (ANPs), showing full optical control of upconverted emission using phototriggers in the NIR-I and NIR-II spectral regions useful for subsurface imaging. Employing single-step photodarkening10-13 and photobrightening12,14-16, we demonstrate indefinite photoswitching of individual nanoparticles (more than 1,000 cycles over 7 h) in ambient or aqueous conditions without measurable photodegradation. Critical steps of the photoswitching mechanism are elucidated by modelling and by measuring the photon avalanche properties of single ANPs in both bright and dark states. Unlimited, reversible photoswitching of ANPs enables indefinitely rewritable two-dimensional and three-dimensional multilevel optical patterning of ANPs, as well as optical nanoscopy with sub-Å localization superresolution that allows us to distinguish individual ANPs within tightly packed clusters.
Collapse
Affiliation(s)
- Changhwan Lee
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Emma Z Xu
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Kevin W C Kwock
- Department of Electrical Engineering, Columbia University, New York, NY, USA
| | - Ayelet Teitelboim
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Yawei Liu
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Hye Sun Park
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Cheongju, South Korea
| | - Benedikt Ursprung
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Mark E Ziffer
- Department of Physics, Columbia University, New York, NY, USA
| | - Yuzuka Karube
- Department of Chemistry, Columbia University, New York, NY, USA
| | | | - Cassio C S Pedroso
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jongwoo Kim
- Laboratory for Advanced Molecular Probing (LAMP), Korea Research Institute of Chemical Technology (KRICT), Daejeon, South Korea
| | - Stefanie D Pritzl
- Chair for Photonics and Optoelectronics, Nano-Institute Munich, Ludwig-Maximilians Universität München, Munich, Germany
- Department of Physics and Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, The Netherlands
| | - Sang Hwan Nam
- Laboratory for Advanced Molecular Probing (LAMP), Korea Research Institute of Chemical Technology (KRICT), Daejeon, South Korea
| | - Theobald Lohmueller
- Chair for Photonics and Optoelectronics, Nano-Institute Munich, Ludwig-Maximilians Universität München, Munich, Germany
| | - Jonathan S Owen
- Department of Chemistry, Columbia University, New York, NY, USA
| | - Peter Ercius
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Yung Doug Suh
- Laboratory for Advanced Molecular Probing (LAMP), Korea Research Institute of Chemical Technology (KRICT), Daejeon, South Korea.
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea.
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea.
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan, South Korea.
| | - Bruce E Cohen
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Division of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Emory M Chan
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - P James Schuck
- Department of Mechanical Engineering, Columbia University, New York, NY, USA.
| |
Collapse
|
25
|
Khosh Abady K, Dankhar D, Krishnamoorthi A, Rentzepis PM. Enhancing the upconversion efficiency of NaYF 4:Yb,Er microparticles for infrared vision applications. Sci Rep 2023; 13:8408. [PMID: 37225762 DOI: 10.1038/s41598-023-35164-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/13/2023] [Indexed: 05/26/2023] Open
Abstract
In this study, (NaYF4:Yb,Er) microparticles dispersed in water and ethanol, were used to generate 540 nm visible light from 980 nm infrared light by means of a nonlinear stepwise two-photon process. IR-reflecting mirrors placed on four sides of the cuvette that contained the microparticles increased the intensity of the upconverted 540 nm light by a factor of three. We also designed and constructed microparticle-coated lenses that can be used as eyeglasses, making it possible to see rather intense infrared light images that are converted to visible.
Collapse
Affiliation(s)
- Keyvan Khosh Abady
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Dinesh Dankhar
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Arjun Krishnamoorthi
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Peter M Rentzepis
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
26
|
Lee C, Schuck PJ. Photodarkening, Photobrightening, and the Role of Color Centers in Emerging Applications of Lanthanide-Based Upconverting Nanomaterials. Annu Rev Phys Chem 2023; 74:415-438. [PMID: 37093661 DOI: 10.1146/annurev-physchem-082720-032137] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Upconverting nanoparticles (UCNPs) compose a class of luminescent materials that utilize the unique wavelength-converting properties of lanthanide (Ln) ions for light-harvesting applications, photonics technologies, and biological imaging and sensing experiments. Recent advances in UCNP design have shed light on the properties of local color centers, both intrinsic and controllably induced, within these materials and their potential influence on UCNP photophysics. In this review, we describe fundamental studies of color centers in Ln-based materials, including research into their origins and their roles in observed photodarkening and photobrightening mechanisms. We place particular focus on the new functionalities that are enabled by harnessing the properties of color centers within Ln-doped nanocrystals, illustrated through applications in afterglow-based bioimaging, X-ray detection, all-inorganic nanocrystal photoswitching, and fully rewritable optical patterning and memory.
Collapse
Affiliation(s)
- Changhwan Lee
- Department of Mechanical Engineering, Columbia University, New York, NY, USA; ,
| | - P James Schuck
- Department of Mechanical Engineering, Columbia University, New York, NY, USA; ,
| |
Collapse
|
27
|
Sharma KS, Melwani PK, Yadav HD, Joshi R, Shetake NG, Dubey AK, Singh BP, Phapale S, Phadnis PP, Vatsa RK, Ningthoujam RS, Pandey BN. Deoxyglucose-conjugated persistent luminescent nanoparticles for theragnostic application in fibrosarcoma tumor model. RSC Adv 2023; 13:13240-13251. [PMID: 37123999 PMCID: PMC10141588 DOI: 10.1039/d3ra01169k] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/10/2023] [Indexed: 05/02/2023] Open
Abstract
Deoxyglucose conjugated nanoparticles with persistent luminescence have shown theragnostic potential. In this study, deoxyglucose-conjugated nano-particles with persistent luminescence properties were synthesized, and their theragnostic potential was evaluated in fibrosarcoma cancer cells and a tumor model. The uptake of nano-formulation was found to be higher in mouse fibrosarcoma (WEHI-164) cells cultured in a medium without glucose. Nanoparticles showed a higher killing ability for cancer cells compared to normal cells. A significant accumulation of nanoparticles to the tumor site in mice was evident by the increased tumor/normal leg ratio, resulting in a significant decrease in tumor volume and weight. Histopathological studies showed a significant decrease in the number of dividing mitotic cells but a greater number of apoptotic/necrotic cells in nanoparticle-treated tumor tissues, which was correlated with a lower magnitude of Ki-67 expression (a proliferation marker). Consequently, our results showed the potential of our nano-formulation for cancer theragnosis.
Collapse
Affiliation(s)
- K S Sharma
- Chemistry Division, Bhabha Atomic Research Centre Mumbai 400085 India
| | - Pooja K Melwani
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre Mumbai 400085 India
- Homi Bhabha National Institute Anushakti Nagar Mumbai 400094 India
| | - Hansa D Yadav
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre Mumbai 400085 India
| | - Rashmi Joshi
- Chemistry Division, Bhabha Atomic Research Centre Mumbai 400085 India
- Homi Bhabha National Institute Anushakti Nagar Mumbai 400094 India
| | - Neena G Shetake
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre Mumbai 400085 India
- Homi Bhabha National Institute Anushakti Nagar Mumbai 400094 India
| | - Akhil K Dubey
- Bio-organic Division, Bhabha Atomic Research Centre Mumbai 400085 India
| | | | - Suhas Phapale
- Chemistry Division, Bhabha Atomic Research Centre Mumbai 400085 India
| | - Prasad P Phadnis
- Chemistry Division, Bhabha Atomic Research Centre Mumbai 400085 India
- Homi Bhabha National Institute Anushakti Nagar Mumbai 400094 India
| | - Rajesh K Vatsa
- Chemistry Division, Bhabha Atomic Research Centre Mumbai 400085 India
- Homi Bhabha National Institute Anushakti Nagar Mumbai 400094 India
| | - Raghumani Singh Ningthoujam
- Chemistry Division, Bhabha Atomic Research Centre Mumbai 400085 India
- Homi Bhabha National Institute Anushakti Nagar Mumbai 400094 India
| | - Badri N Pandey
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre Mumbai 400085 India
- Homi Bhabha National Institute Anushakti Nagar Mumbai 400094 India
| |
Collapse
|
28
|
Labrador-Páez L, Kankare J, Hyppänen I, Soukka T, Andresen E, Resch-Genger U, Widengren J, Liu H. Frequency-Domain Method for Characterization of Upconversion Luminescence Kinetics. J Phys Chem Lett 2023; 14:3436-3444. [PMID: 37010896 PMCID: PMC10108355 DOI: 10.1021/acs.jpclett.3c00269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/28/2023] [Indexed: 06/19/2023]
Abstract
The frequency-domain (FD) method provides an alternative to the commonly used time-domain (TD) approach in characterizing the luminescence kinetics of luminophores, with its own strengths, e.g., the capability to decouple multiple lifetime components with higher reliability and accuracy. While extensively explored for characterizing luminophores with down-shifted emission, this method has not been investigated for studying nonlinear luminescent materials such as lanthanide-doped upconversion nanoparticles (UCNPs), featuring more complicated kinetics. In this work, employing a simplified rate-equation model representing a standard two-photon energy-transfer upconversion process, we thoroughly analyzed the response of the luminescence of UCNPs in the FD method. We found that the FD method can potentially obtain from a single experiment the effective decay rates of three critical energy states of the sensitizer/activator ions involved in the upconversion process. The validity of the FD method is demonstrated by experimental data, agreeing reasonably well with the results obtained by TD methods.
Collapse
Affiliation(s)
- Lucía Labrador-Páez
- Department
of Applied Physics, KTH Royal Institute
of Technology, SE-10691 Stockholm, Sweden
| | - Jouko Kankare
- Department
of Chemistry, University of Turku, FI-20014 Turku, Finland
| | - Iko Hyppänen
- Department
of Chemistry, University of Turku, FI-20014 Turku, Finland
| | - Tero Soukka
- Department
of Life Technologies/Biotechnology, University
of Turku, FI-20520 Turku, Finland
| | - Elina Andresen
- Division
of Biophotonics, Federal Institute for Materials
Research and Testing (BAM), Richard-Willstätter-Str. 11, 12489 Berlin, Germany
| | - Ute Resch-Genger
- Division
of Biophotonics, Federal Institute for Materials
Research and Testing (BAM), Richard-Willstätter-Str. 11, 12489 Berlin, Germany
| | - Jerker Widengren
- Department
of Applied Physics, KTH Royal Institute
of Technology, SE-10691 Stockholm, Sweden
| | - Haichun Liu
- Department
of Applied Physics, KTH Royal Institute
of Technology, SE-10691 Stockholm, Sweden
| |
Collapse
|
29
|
Qiao L, Shen Y, Li G, Lv G, Li C. Hypochlorous Acid-Activated UCNPs-LMB/VQIVYK Multifunctional Nanosystem for Alzheimer's Disease Treatment. J Funct Biomater 2023; 14:jfb14040207. [PMID: 37103297 PMCID: PMC10143957 DOI: 10.3390/jfb14040207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 04/28/2023] Open
Abstract
The development of nanosystems, which can photooxygenate amyloid-β (Aβ), detect the Tau protein, and inhibit effectively the Tau aggregation, is increasingly important in the diagnosis and therapy of Alzheimer's disease (AD). Herein, UCNPs-LMB/VQIVYK (UCNPs: upconversion nanoparticles, LMB: Leucomethylene blue, and VQIVYK: Biocompatible peptide) is designed as a HOCl-controlled released nanosystem for AD synergistic treatment. Under exposure to high levels of HOCl, the released MB from UCNPs-LMB/VQIVYK will produce singlet oxygen (1O2) under red light to depolymerize Aβ aggregation and reduce cytotoxicity. Meanwhile, UCNPs-LMB/VQIVYK can act as an inhibitor to decrease Tau-induced neurotoxicity. Besides, UCNPs-LMB/VQIVYK can be used for upconversion luminescence (UCL) due to its unexceptionable luminescence properties. This HOCl-responsive nanosystem offers a new therapy for AD treatment.
Collapse
Affiliation(s)
- Luying Qiao
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinarity Science, Shandong University, Qingdao 266237, China
| | - Yang Shen
- Center for Biotechnology and Biomedical Engineering, Yiwu Research Institute of Fudan University, Yiwu 322000, China
| | - Guangzhi Li
- College of Pharmacy, Jiamusi University, Jiamusi 154007, China
| | - Guanglei Lv
- Center for Biotechnology and Biomedical Engineering, Yiwu Research Institute of Fudan University, Yiwu 322000, China
| | - Chunxia Li
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinarity Science, Shandong University, Qingdao 266237, China
| |
Collapse
|
30
|
Fang WK, Xu DD, Liu D, Li YY, Liu MH, Pang DW, Tang HW. Combining Upconversion Luminescence, Photothermy, and Electrochemistry for Highly Accurate Triple-Signal Detection of Hydrogen Sulfide by Optically Trapping Single Microbeads. Anal Chem 2023; 95:5443-5453. [PMID: 36930753 DOI: 10.1021/acs.analchem.3c00449] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
The detection of hydrogen sulfide (H2S), the third gas signaling molecule, is a promising strategy for identifying the occurrence of certain diseases. However, the conventional single- or dual-signal detection can introduce false-positive or false-negative results, which ultimately decreases the diagnostic accuracy. To address this limitation, we developed a luminescent, photothermal, and electrochemical triple-signal detection platform by optically trapping the synthetic highly doped upconversion coupled SiO2 microbeads coated with metal-organic frameworks H-UCNP-SiO2@HKUST-1 (H-USH) to detect the concentration of H2S. The H-USH was first synthesized and proved to have stable structure and excellent luminescent, photothermal, and electrochemical properties. Under 980 nm optical trapping and 808 nm irradiation, H-USH showed great detection linearity, a low limit of detection, and high specificity for H2S quantification via triple-signal detection. Moreover, H-USH was captured by optical tweezers to realize quantitative detection of H2S content in serum of acute pancreatitis and spontaneously hypertensive rats. Finally, by analyzing the receiver operating characteristic (ROC) curve, we concluded that triple-signal detection of H2S was more accurate than single- or dual-signal detection, which overcame the problem of false-negative/positive results in the detection of H2S in actual serum samples.
Collapse
Affiliation(s)
- Wen-Kai Fang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Da-Di Xu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Da Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Yu-Yao Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Meng-Han Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Dai-Wen Pang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, and College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Hong-Wu Tang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| |
Collapse
|
31
|
Li S, Wei J, Yao Q, Song X, Xie J, Yang H. Emerging ultrasmall luminescent nanoprobes for in vivo bioimaging. Chem Soc Rev 2023; 52:1672-1696. [PMID: 36779305 DOI: 10.1039/d2cs00497f] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Photoluminescence (PL) imaging has become a fundamental tool in disease diagnosis, therapeutic evaluation, and surgical navigation applications. However, it remains a big challenge to engineer nanoprobes for high-efficiency in vivo imaging and clinical translation. Recent years have witnessed increasing research efforts devoted into engineering sub-10 nm ultrasmall nanoprobes for in vivo PL imaging, which offer the advantages of efficient body clearance, desired clinical translation potential, and high imaging signal-to-noise ratio. In this review, we present a comprehensive summary and contrastive discussion of emerging ultrasmall luminescent nanoprobes towards in vivo PL bioimaging of diseases. We first summarize size-dependent nano-bio interactions and imaging features, illustrating the unique attributes and advantages/disadvantages of ultrasmall nanoprobes differentiating them from molecular and large-sized probes. We also discuss general design methodologies and PL properties of emerging ultrasmall luminescent nanoprobes, which are established based on quantum dots, metal nanoclusters, lanthanide-doped nanoparticles, and silicon nanoparticles. Then, recent advances of ultrasmall luminescent nanoprobes are highlighted by surveying their latest in vivo PL imaging applications. Finally, we discuss existing challenges in this exciting field and propose some strategies to improve in vivo PL bioimaging and further propel their clinical applications.
Collapse
Affiliation(s)
- Shihua Li
- Qingyuan Innovation Laboratory, 1# Xueyuan Road, Quanzhou, Fujian 362801, China.,MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| | - Jing Wei
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China. .,Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
| | - Qiaofeng Yao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore. .,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, Fujian 350207, China
| | - Xiaorong Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China. .,Fujian Science &Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| | - Jianping Xie
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore. .,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, Fujian 350207, China
| | - Huanghao Yang
- Qingyuan Innovation Laboratory, 1# Xueyuan Road, Quanzhou, Fujian 362801, China.,MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China. .,Fujian Science &Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| |
Collapse
|
32
|
Molkenova A, Choi HE, Park JM, Lee JH, Kim KS. Plasmon Modulated Upconversion Biosensors. BIOSENSORS 2023; 13:306. [PMID: 36979518 PMCID: PMC10046391 DOI: 10.3390/bios13030306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Over the past two decades, lanthanide-based upconversion nanoparticles (UCNPs) have been fascinating scientists due to their ability to offer unprecedented prospects to upconvert tissue-penetrating near-infrared light into color-tailorable optical illumination inside biological matter. In particular, luminescent behavior UCNPs have been widely utilized for background-free biorecognition and biosensing. Currently, a paramount challenge exists on how to maximize NIR light harvesting and upconversion efficiencies for achieving faster response and better sensitivity without damaging the biological tissue upon laser assisted photoactivation. In this review, we offer the reader an overview of the recent updates about exciting achievements and challenges in the development of plasmon-modulated upconversion nanoformulations for biosensing application.
Collapse
Affiliation(s)
- Anara Molkenova
- Institute of Advanced Organic Materials, Pusan National University, 2 Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Hye Eun Choi
- School of Chemical Engineering, College of Engineering, Pusan National University, 2 Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Jeong Min Park
- School of Chemical Engineering, College of Engineering, Pusan National University, 2 Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Jin-Ho Lee
- School of Biomedical Convergence Engineering, Pusan National University, 49 Busandaehak-ro, Yangsan 50612, Republic of Korea
| | - Ki Su Kim
- Institute of Advanced Organic Materials, Pusan National University, 2 Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
- School of Chemical Engineering, College of Engineering, Pusan National University, 2 Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
- Department of Organic Material Science & Engineering, Pusan National University, 2 Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| |
Collapse
|
33
|
K S, K M, Bankapur A, George SD. Energy transfer between optically trapped single ligand-free upconversion nanoparticle and dye. NANOTECHNOLOGY 2023; 34:175702. [PMID: 36706452 DOI: 10.1088/1361-6528/acb69f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
The quenching in luminescence emission of an optically trapped ligand-free hydrophilic NaYF4:Yb, Er upconversion nanoparticle (UCNP) as a function of rose Bengal dye molecule is investigated here. The removal of oleate capping of the as-prepared UCNPs was achieved via acid treatment and characterized via FTIR and Raman spectroscopic techniques. Further, the capping removed hydrophilic single UCNP is optically trapped and the emission studies were carried out as a function of excitation laser power. Compared to the studies using the bulk solution, the single UCNP luminescence spectrum exhibited additional spectral lines. The excitation laser power-dependent studies using the bulk solution yield a slope value between 1 and 2 for Blue, Green 1, Green 2, and Red emission and thus indicate that upconversion is a two-photon upconversion process. On the other hand, in the case of laser power-dependent studies on an optically trapped single-particle study, Blue and Green 1 yield a slope value of less than 1 whereas Green 2 and Red emission gave a slope value between 1 and 2. The energy transfer studies between an optically trapped ligand-free single UCNP and the rose Bengal dye show a concentration-dependent quenching in the emission of Green emissions and illustrate the potential of developing sensor platforms.
Collapse
Affiliation(s)
- Suresh K
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Monisha K
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Aseefhali Bankapur
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Sajan D George
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
- Centre for Applied Nanosciences (CAN), Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| |
Collapse
|
34
|
Tu L, Wu K, Luo Y, Wang E, Yuan J, Zuo J, Zhou D, Li B, Zhou J, Jin D, Zhang H. Significant Enhancement of the Upconversion Emission in Highly Er 3+ -Doped Nanoparticles at Cryogenic Temperatures. Angew Chem Int Ed Engl 2023; 62:e202217100. [PMID: 36511155 PMCID: PMC10107519 DOI: 10.1002/anie.202217100] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
Relatively low efficiency is the bottleneck for the application of lanthanide-doped upconversion nanoparticles (UCNPs). The high-level doping strategy realized in recent years has not improved the efficiency as much as expected. It is argued that cross relaxation (CR) is not detrimental to upconversion. Here we combine theoretical simulation and spectroscopy to elucidate the role of CR in upconversion process of Er3+ highly doped (HD) UCNPs. It is found that if CR is purposively suppressed, upconversion efficiency can be significantly improved. Specifically, we demonstrate experimentally that inhibition of CR by introducing cryogenic environment (40 K) enhances upconversion emission by more than two orders of magnitude. This work not only elucidates the nature of CR and its non-negligible adverse effects, but also provides a new perspective for improving upconversion efficiency. The result can be directly applied to cryogenic imaging and wide range temperature sensing.
Collapse
Grants
- nr. 731.015.206 Dutch Research Council (NWO) in the framework of the Fund New Chemical Innovation
- nr. 675743 NWO TTW perspective project MEDPHOT, EU H2020-MSCA-ITN-ETN Action program, ISPIC
- nr. 777682 EU H2020MSCA-RISE-2017 Action program, CANCER
- 20210101148JC,202512JC010475440 Jilin Provincial Department of Science and Technology
- KQTD20170810110913065, 20200925174735005 Shenzhen Science and Technology Program
- 12104179, 62075217, 11874355, 11874354, 61575194, 22172154, 62075215, 51720105015 Natural Science Foundation of China
- Jilin Provincial Department of Science and Technology
- Natural Science Foundation of China
Collapse
Affiliation(s)
- Langping Tu
- State Key Laboratory of Luminescence and ApplicationsChangchun Institute of OpticsFine Mechanics and PhysicsChinese Academy of SciencesChangchunJilin, 130033China
| | - Kefan Wu
- Van't Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 904Amsterdam1098XHThe Netherlands
| | - Yongshi Luo
- State Key Laboratory of Luminescence and ApplicationsChangchun Institute of OpticsFine Mechanics and PhysicsChinese Academy of SciencesChangchunJilin, 130033China
| | - Enhui Wang
- Key Laboratory of Automobile Materials (Ministry of Education)College of Materials Science and EngineeringJilin UniversityChangchun130025China
| | - Jun Yuan
- Van't Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 904Amsterdam1098XHThe Netherlands
| | - Jing Zuo
- Key Laboratory of Automobile Materials (Ministry of Education)College of Materials Science and EngineeringJilin UniversityChangchun130025China
| | - Ding Zhou
- State Key Laboratory of Luminescence and ApplicationsChangchun Institute of OpticsFine Mechanics and PhysicsChinese Academy of SciencesChangchunJilin, 130033China
| | - Bin Li
- State Key Laboratory of Luminescence and ApplicationsChangchun Institute of OpticsFine Mechanics and PhysicsChinese Academy of SciencesChangchunJilin, 130033China
| | - Jiajia Zhou
- Institute for Biomedical Materials and Devices (IBMD)Faculty of ScienceUniversity of Technology SydneySydneyNSWAustralia
| | - Dayong Jin
- Institute for Biomedical Materials and Devices (IBMD)Faculty of ScienceUniversity of Technology SydneySydneyNSWAustralia
- UTS-SUSTech Joint Research Centre for Biomedical Materials and DevicesDepartment of Biomedical EngineeringCollege of EngineeringSouthern University of Science and TechnologyShenzhenGuangdong 518055China
| | - Hong Zhang
- Van't Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 904Amsterdam1098XHThe Netherlands
| |
Collapse
|
35
|
Kim J, Park HS, Ahn Y, Cho YJ, Shin HH, Hong KS, Nam SH. Universal Emission Characteristics of Upconverting Nanoparticles Revealed by Single-Particle Spectroscopy. ACS NANO 2023; 17:648-656. [PMID: 36565305 DOI: 10.1021/acsnano.2c09896] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Upconverting nanoparticles (UCNPs) have been extensively investigated for nanophotonics and biomedical applications. However, establishing a unified view of their emission characteristics to elucidate the underlying photophysics and expand the application fields of these materials is a great challenge due to their sophisticated internal energy transfer and lack of standardized single-particle spectroscopy (SPS) platform. Here, we present an SPS technique called multiband single-particle irradiance-dependent imaging (multiband SPIDI). We demonstrate that the emission characteristics of Yb3+,Tm3+-doped UCNPs are universal for three emission bands over a wide range of irradiance and dependent on the Tm3+ doping concentration, indicating that the number of emitted photons of each band is proportional to the number of activator ions and is dependent on the number of absorbed photons and the activator interionic distance. We also suggest a cooperative energy transfer upconversion (CETU) mechanism for transition to a higher-energy state through photon accumulation. For a single UCNP, the emission at 800 nm is detectable at an ultralow irradiance of 4.9 W cm-2; moreover, that at 450 nm is measurable at 98 W cm-2, based on the optimal concentration. These findings based on the multiband SPIDI platform can provide insights into the interionic energy transfer by studying irradiance-dependent steady-state dynamics to achieve brighter UCNPs and their broader applications.
Collapse
Affiliation(s)
- Jongwoo Kim
- Laboratory for Advanced Molecular Probing (LAMP), Korea Research Institute of Chemical Technology, Daejeon34114, Republic of Korea
| | - Hye Sun Park
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju28119, Republic of Korea
| | - Yun Ahn
- Department of Physics, Chungbuk National University, Cheongju, Chungbuk28644, Republic of Korea
| | - Youn-Joo Cho
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju28119, Republic of Korea
| | - Hyeon Ho Shin
- Laboratory for Advanced Molecular Probing (LAMP), Korea Research Institute of Chemical Technology, Daejeon34114, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seongbuk-gu, Seoul02841, Republic of Korea
| | - Kwan Soo Hong
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju28119, Republic of Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon34134, Republic of Korea
| | - Sang Hwan Nam
- Laboratory for Advanced Molecular Probing (LAMP), Korea Research Institute of Chemical Technology, Daejeon34114, Republic of Korea
| |
Collapse
|
36
|
Zhang Z, Skripka A, Dahl JC, Dun C, Urban JJ, Jaque D, Schuck PJ, Cohen BE, Chan EM. Tuning Phonon Energies in Lanthanide-doped Potassium Lead Halide Nanocrystals for Enhanced Nonlinearity and Upconversion. Angew Chem Int Ed Engl 2023; 62:e202212549. [PMID: 36377596 DOI: 10.1002/anie.202212549] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/16/2022]
Abstract
Optical applications of lanthanide-doped nanoparticles require materials with low phonon energies to minimize nonradiative relaxation and promote nonlinear processes like upconversion. Heavy halide hosts offer low phonon energies but are challenging to synthesize as nanocrystals. Here, we demonstrate the size-controlled synthesis of low-phonon-energy KPb2 X5 (X=Cl, Br) nanoparticles and the ability to tune nanocrystal phonon energies as low as 128 cm-1 . KPb2 Cl5 nanoparticles are moisture resistant and can be efficiently doped with lighter lanthanides. The low phonon energies of KPb2 X5 nanoparticles promote upconversion luminescence from higher lanthanide excited states and enable highly nonlinear, avalanche-like emission from KPb2 Cl5 : Nd3+ nanoparticles. The realization of nanoparticles with tunable, ultra-low phonon energies facilitates the discovery of nanomaterials with phonon-dependent properties, precisely engineered for applications in nanoscale imaging, sensing, luminescence thermometry and energy conversion.
Collapse
Affiliation(s)
- Zhuolei Zhang
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Load, Wuhan, 430074, China.,The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Artiom Skripka
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.,Nanomaterials for Bioimaging Group (nanoBIG), Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Jakob C Dahl
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.,Department of Chemistry, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Chaochao Dun
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jeffrey J Urban
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Daniel Jaque
- Nanomaterials for Bioimaging Group (nanoBIG), Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - P James Schuck
- Department of Mechanical Engineering, Columbia University, New York, NY 10027, USA
| | - Bruce E Cohen
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.,Division of Molecular Biophysics & Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Emory M Chan
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
37
|
Lv F, La J, He S, Liu Y, Huang Y, Wang Y, Wang W. Off-Angle Amplified Spontaneous Emission of Upconversion Nanoparticles by Propagating Lattice Plasmons. ACS APPLIED MATERIALS & INTERFACES 2022; 14:54304-54312. [PMID: 36416183 DOI: 10.1021/acsami.2c13385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Lanthanide-doped upconversion nanoparticles (UCNPs) are appealing for light emitting applications because their high internal conversion efficiency facilitates the amplified spontaneous emission (ASE) under low pumping. In addition, the integration of photonic crystals and microcavities with optical quantum emitters provides a unique opportunity to manipulate their light emissions and generate coherent light sources for quantum photonics. Here, this work describes a two-dimensional (2D) plasmonic lattice of Al nanocone array (Al NCA), which can confine the light at the tip. Light confinement by the enhancement effect supports narrow linewidth resonances as optical feedback for the ASE of UCNPs doped with sensitizer Yb3+ ions/emitter Ho3+ ions/relaxator Ce3+ ions. An off-angle ASE with an enhancement of 19-fold from UCNPs is achieved by propagating lattice plasmons from the Al NCA. Moreover, this upconverting ASE can be switched on or off by adjusting the polarization state of the incident pump light, and photonic band engineering can be used to manipulate it intentionally. This composite plasmonic system opens prospective applications for the ASE as directional emission, real-time tunable wavelengths, controlled multimode lasing, and optical switches.
Collapse
Affiliation(s)
- Fanzhou Lv
- College of Physics and Optoelectronic Engineering, Harbin Engineering University, 150001 Harbin, China
| | - Junqiao La
- College of Physics and Optoelectronic Engineering, Harbin Engineering University, 150001 Harbin, China
- Qingdao Innovation and Development Center of Harbin Engineering University, Harbin Engineering University, 266000 Qingdao, China
| | - Shijia He
- College of Physics and Optoelectronic Engineering, Harbin Engineering University, 150001 Harbin, China
- Qingdao Innovation and Development Center of Harbin Engineering University, Harbin Engineering University, 266000 Qingdao, China
| | - Yujun Liu
- College of Physics and Optoelectronic Engineering, Harbin Engineering University, 150001 Harbin, China
| | - Yudie Huang
- College of Physics and Optoelectronic Engineering, Harbin Engineering University, 150001 Harbin, China
| | - Yi Wang
- College of Physics and Optoelectronic Engineering, Harbin Engineering University, 150001 Harbin, China
- Qingdao Innovation and Development Center of Harbin Engineering University, Harbin Engineering University, 266000 Qingdao, China
| | - Wenxin Wang
- College of Physics and Optoelectronic Engineering, Harbin Engineering University, 150001 Harbin, China
- Qingdao Innovation and Development Center of Harbin Engineering University, Harbin Engineering University, 266000 Qingdao, China
| |
Collapse
|
38
|
Pu R, Zhan Q, Peng X, Liu S, Guo X, Liang L, Qin X, Zhao ZW, Liu X. Super-resolution microscopy enabled by high-efficiency surface-migration emission depletion. Nat Commun 2022; 13:6636. [PMID: 36333290 PMCID: PMC9636245 DOI: 10.1038/s41467-022-33726-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 09/28/2022] [Indexed: 11/06/2022] Open
Abstract
Nonlinear depletion of fluorescence states by stimulated emission constitutes the basis of stimulated emission depletion (STED) microscopy. Despite significant efforts over the past decade, achieving super-resolution at low saturation intensities by STED remains a major technical challenge. By harnessing the surface quenching effect in NaGdF4:Yb/Tm nanocrystals, we report here high-efficiency emission depletion through surface migration. Using a dual-beam, continuous-wave laser manipulation scheme (975-nm excitation and 730-nm de-excitation), we achieved an emission depletion efficiency of over 95% and a low saturation intensity of 18.3 kW cm-2. Emission depletion by surface migration through gadolinium sublattices enables super-resolution imaging with sub-20 nm lateral resolution. Our approach circumvents the fundamental limitation of high-intensity STED microscopy, providing autofluorescence-free, re-excitation-background-free imaging with a saturation intensity over three orders of magnitude lower than conventional fluorophores. We also demonstrated super-resolution imaging of actin filaments in Hela cells labeled with 8-nm nanoparticles. Combined with the highly photostable lanthanide luminescence, surface-migration emission depletion (SMED) could provide a powerful mechanism for low-power, super-resolution imaging or biological tracking as well as super-resolved optical sensing/writing and lithography.
Collapse
Affiliation(s)
- Rui Pu
- Centre for Optical and Electromagnetic Research, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China
| | - Qiuqiang Zhan
- Centre for Optical and Electromagnetic Research, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China.
- National Center for International Research on Green Optoelectronics, Guangdong Engineering Research Centre of Optoelectronic Intelligent Information Perception, South China Normal University, Guangzhou, 510006, P. R. China.
- MOE Key laboratory & Guangdong Provincial Key laboratory of Laser Life Science, South China Normal University, Guangzhou, 510631, P. R. China.
| | - Xingyun Peng
- Centre for Optical and Electromagnetic Research, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China
| | - Siying Liu
- Centre for Optical and Electromagnetic Research, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China
| | - Xin Guo
- Centre for Optical and Electromagnetic Research, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China
| | - Liangliang Liang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Xian Qin
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Ziqing Winston Zhao
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
- Centre for BioImaging Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117557, Singapore
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Singapore, 117411, Singapore
| | - Xiaogang Liu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore.
- The N.1 Institute for Health, National University of Singapore, Singapore, 117456, Singapore.
| |
Collapse
|
39
|
Ding L, Shan X, Wang D, Liu B, Du Z, Di X, Chen C, Maddahfar M, Zhang L, Shi Y, Reece P, Halkon B, Aharonovich I, Xu X, Wang F. Lanthanide Ion Resonance-Driven Rayleigh Scattering of Nanoparticles for Dual-Modality Interferometric Scattering Microscopy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203354. [PMID: 35975425 PMCID: PMC9661846 DOI: 10.1002/advs.202203354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Light scattering from nanoparticles is significant in nanoscale imaging, photon confinement. and biosensing. However, engineering the scattering spectrum, traditionally by modifying the geometric feature of particles, requires synthesis and fabrication with nanometre accuracy. Here it is reported that doping lanthanide ions can engineer the scattering properties of low-refractive-index nanoparticles. When the excitation wavelength matches the ion resonance frequency of lanthanide ions, the polarizability and the resulted scattering cross-section of nanoparticles are dramatically enhanced. It is demonstrated that these purposely engineered nanoparticles can be used for interferometric scattering (iSCAT) microscopy. Conceptually, a dual-modality iSCAT microscopy is further developed to identify different nanoparticle types in living HeLa cells. The work provides insight into engineering the scattering features by doping elements in nanomaterials, further inspiring exploration of the geometry-independent scattering modulation strategy.
Collapse
Affiliation(s)
- Lei Ding
- School of Mathematical and Physical SciencesFaculty of ScienceUniversity of Technology SydneyUltimoNew South Wales2007Australia
- School of Electrical and Data EngineeringFaculty of Engineering and Information TechnologyUniversity of Technology SydneyUltimoNew South Wales2007Australia
| | - Xuchen Shan
- School of Mathematical and Physical SciencesFaculty of ScienceUniversity of Technology SydneyUltimoNew South Wales2007Australia
- School of Electrical and Data EngineeringFaculty of Engineering and Information TechnologyUniversity of Technology SydneyUltimoNew South Wales2007Australia
- School of PhysicsBeihang UniversityBeijing100191China
| | - Dejiang Wang
- School of Mathematical and Physical SciencesFaculty of ScienceUniversity of Technology SydneyUltimoNew South Wales2007Australia
| | - Baolei Liu
- School of PhysicsBeihang UniversityBeijing100191China
| | - Ziqing Du
- School of Mathematical and Physical SciencesFaculty of ScienceUniversity of Technology SydneyUltimoNew South Wales2007Australia
| | - Xiangjun Di
- School of Mathematical and Physical SciencesFaculty of ScienceUniversity of Technology SydneyUltimoNew South Wales2007Australia
| | - Chaohao Chen
- School of Electrical and Data EngineeringFaculty of Engineering and Information TechnologyUniversity of Technology SydneyUltimoNew South Wales2007Australia
| | - Mahnaz Maddahfar
- School of Mathematical and Physical SciencesFaculty of ScienceUniversity of Technology SydneyUltimoNew South Wales2007Australia
| | - Ling Zhang
- School of Electrical and Data EngineeringFaculty of Engineering and Information TechnologyUniversity of Technology SydneyUltimoNew South Wales2007Australia
| | - Yuzhi Shi
- National Key Laboratory of Science and Technology on Micro/Nano FabricationDepartment of Micro/Nano ElectronicsShanghai Jiao Tong UniversityShanghai200240P. R. China
| | - Peter Reece
- School of PhysicsThe University of New South WalesKensingtonNew South Wales2033Australia
| | - Benjamin Halkon
- Centre for Audio, Acoustics & VibrationFaculty of Engineering & ITUniversity of Technology SydneyUltimoNew South Wales2007Australia
| | - Igor Aharonovich
- School of Mathematical and Physical SciencesFaculty of ScienceUniversity of Technology SydneyUltimoNew South Wales2007Australia
- ARC Centre of Excellence for Transformative Meta‐Optical Systems (TMOS)Faculty of ScienceUniversity of Technology SydneyUltimoNew South Wales2007Australia
| | - Xiaoxue Xu
- School of Biomedical Engineering, Faculty of Engineering and Information TechnologyUniversity of Technology SydneyUltimoNew South Wales2007Australia
| | - Fan Wang
- School of Electrical and Data EngineeringFaculty of Engineering and Information TechnologyUniversity of Technology SydneyUltimoNew South Wales2007Australia
- School of PhysicsBeihang UniversityBeijing100191China
| |
Collapse
|
40
|
Calidonio JM, Gomez-Marquez J, Hamad-Schifferli K. Nanomaterial and interface advances in immunoassay biosensors. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2022; 126:17804-17815. [PMID: 38957865 PMCID: PMC11218816 DOI: 10.1021/acs.jpcc.2c05008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Biosensors have been used for a remarkable array of applications, including infectious diseases, environmental monitoring, cancer diagnosis, food safety, and numerous others. In particular, the global COVID-19 pandemic has exposed a need for rapid tests, so the type of biosensor that has gained considerable interest recently are immunoassays, which are used for rapid diagnostics. The performance of paper-based lateral flow and dipstick immunoassays is influenced by the physical properties of the nanoparticles (NPs), NP-antibody conjugates, and paper substrate. Many materials innovations have enhanced diagnostics by increasing sensitivity or enabling unique readouts. However, negative side effects can arise at the interface between the biological sample and biomolecules and the NP or paper substrate, such as non-specific adsorption and protein denaturation. In this Perspective, we discuss the immunoassay components and highlight chemistry and materials innovations that can improve sensitivity. We also explore the range of bio-interface issues that can present challenges for immunoassays.
Collapse
Affiliation(s)
| | | | - Kimberly Hamad-Schifferli
- Department of Engineering, University of Massachusetts Boston, Boston, MA 02125
- School for the Environment, University of Massachusetts Boston, Boston, MA 02125
| |
Collapse
|
41
|
Zhang Y, Wen R, Hu J, Guan D, Qiu X, Zhang Y, Kohane DS, Liu Q. Enhancement of single upconversion nanoparticle imaging by topologically segregated core-shell structure with inward energy migration. Nat Commun 2022; 13:5927. [PMID: 36207318 PMCID: PMC9546905 DOI: 10.1038/s41467-022-33660-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 09/27/2022] [Indexed: 11/09/2022] Open
Abstract
Manipulating topological arrangement is a powerful tool for tuning energy migration in natural photosynthetic proteins and artificial polymers. Here, we report an inorganic optical nanosystem composed of NaErF4 and NaYbF4, in which topological arrangement enhanced upconversion luminescence. Three architectures are designed for considerations pertaining to energy migration and energy transfer within nanoparticles: outside-in, inside-out, and local energy transfer. The outside-in architecture produces the maximum upconversion luminescence, around 6-times brighter than that of the inside-out at the single-particle level. Monte Carlo simulation suggests a topology-dependent energy migration favoring the upconversion luminescence of outside-in structure. The optimized outside-in structure shows more than an order of magnitude enhancement of upconversion brightness compared to the conventional core-shell structure at the single-particle level and is used for long-term single-particle tracking in living cells. Our findings enable rational nanoprobe engineering for single-molecule imaging and also reveal counter-intuitive relationships between upconversion nanoparticle structure and optical properties.
Collapse
Affiliation(s)
- Yanxin Zhang
- grid.8547.e0000 0001 0125 2443Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438 China
| | - Rongrong Wen
- grid.8547.e0000 0001 0125 2443Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438 China
| | - Jialing Hu
- grid.8547.e0000 0001 0125 2443Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438 China
| | - Daoming Guan
- grid.8547.e0000 0001 0125 2443Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438 China
| | - Xiaochen Qiu
- grid.8547.e0000 0001 0125 2443Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438 China
| | - Yunxiang Zhang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China.
| | - Daniel S. Kohane
- grid.38142.3c000000041936754XLaboratory for Biomaterials and Drug Delivery, Division of Critical Care Medicine, Children’s Hospital Boston, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115 USA
| | - Qian Liu
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
42
|
Cheng X, Zhou J, Yue J, Wei Y, Gao C, Xie X, Huang L. Recent Development in Sensitizers for Lanthanide-Doped Upconversion Luminescence. Chem Rev 2022; 122:15998-16050. [PMID: 36194772 DOI: 10.1021/acs.chemrev.1c00772] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The attractive features of lanthanide-doped upconversion luminescence (UCL), such as high photostability, nonphotobleaching or photoblinking, and large anti-Stokes shift, have shown great potentials in life science, information technology, and energy materials. Therefore, UCL modulation is highly demanded toward expected emission wavelength, lifetime, and relative intensity in order to satisfy stringent requirements raised from a wide variety of areas. Unfortunately, the majority of efforts have been devoted to either simple codoping of multiple activators or variation of hosts, while very little attention has been paid to the critical role that sensitizers have been playing. In fact, different sensitizers possess different excitation wavelengths and different energy transfer pathways (to different activators), which will lead to different UCL features. Thus, rational design of sensitizers shall provide extra opportunities for UCL tuning, particularly from the excitation side. In this review, we specifically focus on advances in sensitizers, including the current status, working mechanisms, design principles, as well as future challenges and endeavor directions.
Collapse
Affiliation(s)
- Xingwen Cheng
- Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing211816, China
| | - Jie Zhou
- Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing211816, China
| | - Jingyi Yue
- Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing211816, China
| | - Yang Wei
- Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing211816, China
| | - Chao Gao
- Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing211816, China
| | - Xiaoji Xie
- Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing211816, China
| | - Ling Huang
- Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing211816, China.,State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi830046, China
| |
Collapse
|
43
|
Bogachev NA, Betina AA, Bulatova TS, Nosov VG, Kolesnik SS, Tumkin II, Ryazantsev MN, Skripkin MY, Mereshchenko AS. Lanthanide-Ion-Doping Effect on the Morphology and the Structure of NaYF 4:Ln 3+ Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2972. [PMID: 36080009 PMCID: PMC9457563 DOI: 10.3390/nano12172972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/21/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
Two series of β-NaYF4:Ln3+ nanoparticles (Ln = La-Nd, Sm-Lu) containing 20 at. % and 40 at. % of Ln3+ with well-defined morphology and size were synthesized via a facile citric-acid-assisted hydrothermal method using rare-earth chlorides as the precursors. The materials were composed from the particles that have a shape of uniform hexagonal prisms with an approximate size of 80-1100 nm. The mean diameter of NaYF4:Ln3+ crystals non-monotonically depended on the lanthanide atomic number and the minimum size was observed for Gd3+-doped materials. At the same time, the unit cell parameters decreased from La to Lu according to XRD data analysis. The diameter-to-length ratio increased from La to Lu in both studied series. The effect of the doping lanthanide(III) ion nature on particle size and shape was explained in terms of crystal growth dynamics. This study reports the correlation between the nanoparticle morphologies and the type and content of doping lanthanide ions. The obtained results shed light on the understanding of intrinsic factors' effect on structural features of the nanocrystalline materials.
Collapse
Affiliation(s)
- Nikita A. Bogachev
- Saint-Petersburg State University, 7/9 Universitetskaya emb., 199034 St. Petersburg, Russia
| | - Anna A. Betina
- Saint-Petersburg State University, 7/9 Universitetskaya emb., 199034 St. Petersburg, Russia
| | - Tatyana S. Bulatova
- Saint-Petersburg State University, 7/9 Universitetskaya emb., 199034 St. Petersburg, Russia
| | - Viktor G. Nosov
- Saint-Petersburg State University, 7/9 Universitetskaya emb., 199034 St. Petersburg, Russia
| | - Stefaniia S. Kolesnik
- Saint-Petersburg State University, 7/9 Universitetskaya emb., 199034 St. Petersburg, Russia
| | - Ilya I. Tumkin
- Saint-Petersburg State University, 7/9 Universitetskaya emb., 199034 St. Petersburg, Russia
| | - Mikhail N. Ryazantsev
- Saint-Petersburg State University, 7/9 Universitetskaya emb., 199034 St. Petersburg, Russia
- Nanotechnology Research and Education Centre RAS, Saint Petersburg Academic University, 8/3 Khlopina Street, 194021 St. Petersburg, Russia
| | - Mikhail Yu. Skripkin
- Saint-Petersburg State University, 7/9 Universitetskaya emb., 199034 St. Petersburg, Russia
| | - Andrey S. Mereshchenko
- Saint-Petersburg State University, 7/9 Universitetskaya emb., 199034 St. Petersburg, Russia
| |
Collapse
|
44
|
Lu D, Retama JR, Marin R, Marqués MI, Calderón OG, Melle S, Haro-González P, Jaque D. Thermoresponsive Polymeric Nanolenses Magnify the Thermal Sensitivity of Single Upconverting Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202452. [PMID: 35908155 DOI: 10.1002/smll.202202452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Lanthanide-based upconverting nanoparticles (UCNPs) are trustworthy workhorses in luminescent nanothermometry. The use of UCNPs-based nanothermometers has enabled the determination of the thermal properties of cell membranes and monitoring of in vivo thermal therapies in real time. However, UCNPs boast low thermal sensitivity and brightness, which, along with the difficulty in controlling individual UCNP remotely, make them less than ideal nanothermometers at the single-particle level. In this work, it is shown how these problems can be elegantly solved using a thermoresponsive polymeric coating. Upon decorating the surface of NaYF4 :Er3+ ,Yb3+ UCNPs with poly(N-isopropylacrylamide) (PNIPAM), a >10-fold enhancement in optical forces is observed, allowing stable trapping and manipulation of a single UCNP in the physiological temperature range (20-45 °C). This optical force improvement is accompanied by a significant enhancement of the thermal sensitivity- a maximum value of 8% °C+1 at 32 °C induced by the collapse of PNIPAM. Numerical simulations reveal that the enhancement in thermal sensitivity mainly stems from the high-refractive-index polymeric coating that behaves as a nanolens of high numerical aperture. The results in this work demonstrate how UCNP nanothermometers can be further improved by an adequate surface decoration and open a new avenue toward highly sensitive single-particle nanothermometry.
Collapse
Affiliation(s)
- Dasheng Lu
- Nanomaterials for Bioimaging Group (NanoBIG), Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Instituto Universitario de Ciencia de Materiales Nicolás Cabrera, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Nanomaterials for Bioimaging Group (NanoBIG), Instituto Ramón y Cajal de Investigación Sanitaria, IRYCIS, Ctra. Colmenar km. 9.100, Madrid, 28034, Spain
| | - Jorge Rubio Retama
- Nanomaterials for Bioimaging Group (NanoBIG), Instituto Ramón y Cajal de Investigación Sanitaria, IRYCIS, Ctra. Colmenar km. 9.100, Madrid, 28034, Spain
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Plaza de Ramón y Cajal, s/n, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - Riccardo Marin
- Nanomaterials for Bioimaging Group (NanoBIG), Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Nanomaterials for Bioimaging Group (NanoBIG), Instituto Ramón y Cajal de Investigación Sanitaria, IRYCIS, Ctra. Colmenar km. 9.100, Madrid, 28034, Spain
| | - Manuel I Marqués
- Instituto Universitario de Ciencia de Materiales Nicolás Cabrera, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Departamento de Física de Materiales and IFIMAC, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Oscar G Calderón
- Departamento de Óptica, Facultad de Óptica y Optometría, Universidad Complutense de Madrid, Madrid, 28037, Spain
| | - Sonia Melle
- Departamento de Óptica, Facultad de Óptica y Optometría, Universidad Complutense de Madrid, Madrid, 28037, Spain
| | - Patricia Haro-González
- Nanomaterials for Bioimaging Group (NanoBIG), Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Instituto Universitario de Ciencia de Materiales Nicolás Cabrera, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Daniel Jaque
- Nanomaterials for Bioimaging Group (NanoBIG), Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Nanomaterials for Bioimaging Group (NanoBIG), Instituto Ramón y Cajal de Investigación Sanitaria, IRYCIS, Ctra. Colmenar km. 9.100, Madrid, 28034, Spain
| |
Collapse
|
45
|
Li P, Guo Y, Liu A, Yue X, Yuan T, Zhu J, Zhang Y, Li F. Deterministic Relation between Optical Polarization and Lattice Symmetry Revealed in Ion-Doped Single Microcrystals. ACS NANO 2022; 16:9535-9545. [PMID: 35579446 DOI: 10.1021/acsnano.2c02756] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Rare-earth ion doped crystals are of great significance for microsensing and quantum information, while the ions in the crystals emit light with spontaneous partial polarization, which is, though believed to be originated from the crystal lattice structure, still lacking a deterministic explanation that can be tested with quantitative accuracy. We report experimental evidence showing the profound physical relation between the polarization degree of light emitted by the doped ion and the lattice symmetry by demonstrating, with high precision, that the lattice constant ratio c/a directly quantifies the macroscopic effective polar angle of the electric and magnetic dipoles, which essentially determines the linear polarization degree of the emission. Based on this result, we further propose a pure optical technology to identify the three-dimensional orientation of a rod-shaped single microcrystal using the polarization-resolved microspectroscopy. Our results, demonstrating the physical origin of light polarization in ion-doped crystals, allow work toward on-demand polarization control with crystallography and provide a versatile platform for polarization-based microscale sensing in dynamical systems.
Collapse
Affiliation(s)
- Peng Li
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education, School of Electronic Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - Yaxin Guo
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education, School of Electronic Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - Ao Liu
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education, School of Electronic Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - Xin Yue
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education, School of Electronic Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - Taoli Yuan
- School of Electronic Information and Artificial Intelligence, Shaanxi University of Science and Technology, Xi'an 710021, P.R. China
| | - Jingping Zhu
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education, School of Electronic Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - Yanpeng Zhang
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education, School of Electronic Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - Feng Li
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education, School of Electronic Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| |
Collapse
|
46
|
Wen S, Li D, Liu Y, Chen C, Wang F, Zhou J, Bao G, Zhang L, Jin D. Power-Dependent Optimal Concentrations of Tm 3+ and Yb 3+ in Upconversion Nanoparticles. J Phys Chem Lett 2022; 13:5316-5323. [PMID: 35675531 DOI: 10.1021/acs.jpclett.2c01186] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Lanthanide-doped upconversion nanoparticles (UCNPs) have enabled a broad range of emerging nanophotonics and biophotonics applications. Here, we provide a quantitative guide to the optimum concentrations of Yb3+ sensitizer and Tm3+ emitter ions, highly dependent on the excitation power densities. To achieve this, we fabricate the inert-core@active-shell@inert-shell architecture to sandwich the same volume of the optically active section. Our results show that highly doped UCNPs enable an approximately 18-fold enhancement in brightness over that of conventional ones. Increasing the Tm3+ concentration improves the brightness by 6 times and increases the NIR/blue ratio by 11 times, while the increase of Yb3+ concentration enhances the brightness by 3 times and only slightly affects the NIR/blue ratio. Moreover, the optimal doping concentration of Tm3+ varies from 2% to 16%, which is highly dependent on the excitation power density ranging from 102 to 107 W/cm2. This work provides a guideline for designing bright UCNPs under different excitation conditions.
Collapse
Affiliation(s)
- Shihui Wen
- Institute for Biomedical Materials and Devices (IBMD), School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Du Li
- Institute for Biomedical Materials and Devices (IBMD), School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Yongtao Liu
- Institute for Biomedical Materials and Devices (IBMD), School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Chaohao Chen
- Institute for Biomedical Materials and Devices (IBMD), School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Fan Wang
- Institute for Biomedical Materials and Devices (IBMD), School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Jiajia Zhou
- Institute for Biomedical Materials and Devices (IBMD), School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Guochen Bao
- Institute for Biomedical Materials and Devices (IBMD), School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Le Zhang
- Institute for Biomedical Materials and Devices (IBMD), School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Dayong Jin
- Institute for Biomedical Materials and Devices (IBMD), School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
- UTS-SUStech Joint Research Centre for Biomedical Materials and Devices, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
47
|
Gao C, Song Z, Li Y, Han Y, Wei T. Achieving Multicolor Upconversion Emissions without Changing Compositions. J Fluoresc 2022; 32:1679-1684. [PMID: 35665470 DOI: 10.1007/s10895-022-02963-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/25/2022] [Indexed: 10/18/2022]
Abstract
It is widely recognized that a proper way of adjusting fluorescence color is meaningful for pushing forward upconversion materials to be utilized in anti-counterfeiting, display and solid-state lightning applications. Traditional routes that apply different host materials and/or doping categories to adjust fluorescence color have shown large color region tunability yet have to rely on complex synthesis process accompanied with time and raw material consumption. In this work, in order to get a wide luminous color gamut without depending on reciprocating synthesis, we desinged and provided a high-sensitizer-concentration upconversion crystals, hexagonal NaLuF4:Yb3+/Er3+ (50/2 mol%), whose red-to-green emission intensity ratio can be conveniently tuned from 2.69 to 4.96 by simply modulating excitation power densities. The promoted three-photon-population progress of red emission achieved by using an intensive excitation laser is considered to be responsible for the facile upconversion modulation. The results may provide new ideas for emission color control that based on external parameters in identical host and the greatly amplified excitation power-sensitivity of NaLuF4:Yb3+/Er3+ (50/2 mol%) is highly potential for fluorescence anti-fake and colorful display applications.
Collapse
Affiliation(s)
- Chao Gao
- School of Inspection and Testing Certification, Changzhou Vocational Institute of Engineering, 213164, Changzhou, China
| | - Zhiqian Song
- School of Inspection and Testing Certification, Changzhou Vocational Institute of Engineering, 213164, Changzhou, China
| | - Yingxue Li
- School of Inspection and Testing Certification, Changzhou Vocational Institute of Engineering, 213164, Changzhou, China
| | - Yingdong Han
- College of Science, Civil Aviation University of China, 300300, Tianjin, China.
| | - Tian Wei
- Jiangsu New Horizon Advanced Functional Fiber Innovation Center Co., LTD, 215228, Suzhou, China
| |
Collapse
|
48
|
Lv R, Raab M, Wang Y, Tian J, Lin J, Prasad PN. Nanochemistry advancing photon conversion in rare-earth nanostructures for theranostics. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214486] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
49
|
De R, Song YH, Mahata MK, Lee KT. pH-responsive polyelectrolyte complexation on upconversion nanoparticles: a multifunctional nanocarrier for protection, delivery, and 3D-imaging of therapeutic protein. J Mater Chem B 2022; 10:3420-3433. [PMID: 35389393 DOI: 10.1039/d2tb00246a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The delicate tertiary structure of proteins, their susceptibility to heat- and enzyme-induced irreversible denaturation, and their tendency to get accumulated at the cell membrane during uptake are daunting challenges in proteinaceous therapeutic delivery. Herein, a polyelectrolyte complex having encapsulated therapeutic protein has been designed on the surface of upconverting luminescent nanoparticles (NaYF4:20%Yb3+,2%Er3+). This nanosized complex system has been found to overcome the challenges of protein aggregation at the cell membrane. It has also defended the cargo from denaturation against (a) enzymatic action of proteinase K and (b) heat (up to 60 °C). Additionally, the nanoparticles at the core of the loaded carrier served as near-infrared (980 nm) responsive probe to accomplish extended-duration 3D imaging during protein delivery. The outer layer of polymer played pivotal role to protect/retrieve the protein structure from denaturation as investigated by circular dichroism studies. Both the masked surface-charges of protein and the nanoscale size of the loaded carrier have facilitated their efficient passage through the cell membrane as observed through 3D images/videos. This nanocarrier is the first of its kind for direct delivery of protein. Thus, the findings can be useful to protect and transport various proteinaceous materials to overcome challenges of accumulation at the cell-membrane and low-temperature storage, as nature does.
Collapse
Affiliation(s)
- Ranjit De
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, South Korea. .,Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Yo Han Song
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, South Korea.
| | - Manoj Kumar Mahata
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, South Korea. .,Drittes Physikalisches Institut - Biophysik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077, Göttingen, Germany
| | - Kang Taek Lee
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, South Korea.
| |
Collapse
|
50
|
Mangnus MJJ, Zom J, Welling TAJ, Meijerink A, Rabouw FT. Finite-Size Effects on Energy Transfer between Dopants in Nanocrystals. ACS NANOSCIENCE AU 2022; 2:111-118. [PMID: 35481224 PMCID: PMC9026268 DOI: 10.1021/acsnanoscienceau.1c00033] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/30/2021] [Accepted: 11/01/2021] [Indexed: 11/28/2022]
Abstract
Many phosphor materials rely on energy transfer (ET) between optically active dopant ions. Typically, a donor species absorbs light of one color and transfers the energy to an acceptor species that emits light of a different color. For many applications, it is beneficial, or even crucial, that the phosphor is of nanocrystalline nature. Much unlike the widely recognized finite-size effects on the optical properties of quantum dots, the behavior of optically active ions is generally assumed to be independent of the size or shape of the optically inactive host material. Here, we demonstrate that ET between optically active dopants is also impacted by finite-size effects: Donor ions close to the surface of a nanocrystal (NC) are likely to have fewer acceptors in proximity compared to donors in a bulk-like coordination. As such, the rate and efficiency of ET in nanocrystalline phosphors are low in comparison to that of their bulk counterparts. Surprisingly, these undesired finite-size effects should be considered already for NCs with diameters as large as 12 nm. If we suppress radiative decay of the donor by embedding the NCs in media with low refractive indices, we can compensate for finite-size effects on the ET rate. Experimentally, we demonstrate these finite-size effects and how to compensate for them in YPO4 NCs co-doped with Tb3+ and Yb3+.
Collapse
Affiliation(s)
- Mark J J Mangnus
- Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
| | - Jeffrey Zom
- Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
| | - Tom A J Welling
- Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
| | - Andries Meijerink
- Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
| | - Freddy T Rabouw
- Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
| |
Collapse
|