1
|
Farfurnik D, Singh H, Luo Z, Bracker AS, Carter SG, Pettit RM, Waks E. All-Optical Noise Spectroscopy of a Solid-State Spin. NANO LETTERS 2023; 23:1781-1786. [PMID: 36847503 DOI: 10.1021/acs.nanolett.2c04552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Noise spectroscopy elucidates the fundamental noise sources in spin systems, thereby serving as an essential tool toward developing spin qubits with long coherence times for quantum information processing, communication, and sensing. But existing techniques for noise spectroscopy that rely on microwave fields become infeasible when the microwave power is too weak to generate Rabi rotations of the spin. Here, we demonstrate an alternative all-optical approach to performing noise spectroscopy. Our approach utilizes coherent Raman rotations of the spin state with controlled timing and phase to implement Carr-Purcell-Meiboom-Gill pulse sequences. Analyzing the spin dynamics under these sequences enables us to extract the noise spectrum of a dense ensemble of nuclear spins interacting with a single spin in a quantum dot, which has thus far been modeled only theoretically. By providing spectral bandwidths of over 100 MHz, our approach enables studies of spin dynamics and decoherence for a broad range of solid-state spin qubits.
Collapse
Affiliation(s)
- Demitry Farfurnik
- Department of Electrical and Computer Engineering, Institute for Research in Electronics and Applied Physics, and Joint Quantum Institute, University of Maryland, College Park, Maryland 20742, United States
| | - Harjot Singh
- Department of Electrical and Computer Engineering, Institute for Research in Electronics and Applied Physics, and Joint Quantum Institute, University of Maryland, College Park, Maryland 20742, United States
| | - Zhouchen Luo
- Department of Electrical and Computer Engineering, Institute for Research in Electronics and Applied Physics, and Joint Quantum Institute, University of Maryland, College Park, Maryland 20742, United States
| | - Allan S Bracker
- Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, D.C. 20375, United States
| | - Samuel G Carter
- Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, D.C. 20375, United States
| | - Robert M Pettit
- Department of Electrical and Computer Engineering, Institute for Research in Electronics and Applied Physics, and Joint Quantum Institute, University of Maryland, College Park, Maryland 20742, United States
- Intelligence Community Postrdoctoral Research Fellowship Program, University of Maryland, College Park, Maryland 20742, United States
| | - Edo Waks
- Department of Electrical and Computer Engineering, Institute for Research in Electronics and Applied Physics, and Joint Quantum Institute, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
2
|
Zaporski L, Shofer N, Bodey JH, Manna S, Gillard G, Appel MH, Schimpf C, Covre da Silva SF, Jarman J, Delamare G, Park G, Haeusler U, Chekhovich EA, Rastelli A, Gangloff DA, Atatüre M, Le Gall C. Ideal refocusing of an optically active spin qubit under strong hyperfine interactions. NATURE NANOTECHNOLOGY 2023; 18:257-263. [PMID: 36702953 DOI: 10.1038/s41565-022-01282-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 10/28/2022] [Indexed: 06/18/2023]
Abstract
Combining highly coherent spin control with efficient light-matter coupling offers great opportunities for quantum communication and computing. Optically active semiconductor quantum dots have unparalleled photonic properties but also modest spin coherence limited by their resident nuclei. The nuclear inhomogeneity has thus far bound all dynamical decoupling measurements to a few microseconds. Here, we eliminate this inhomogeneity using lattice-matched GaAs-AlGaAs quantum dot devices and demonstrate dynamical decoupling of the electron spin qubit beyond 0.113(3) ms. Leveraging the 99.30(5)% visibility of our optical π-pulse gates, we use up to Nπ = 81 decoupling pulses and find a coherence time scaling of [Formula: see text]. This scaling manifests an ideal refocusing of strong interactions between the electron and the nuclear spin ensemble, free of extrinsic noise, which holds the promise of lifetime-limited spin coherence. Our findings demonstrate that the most punishing material science challenge for such quantum dot devices has a remedy and constitute the basis for highly coherent spin-photon interfaces.
Collapse
Affiliation(s)
- Leon Zaporski
- Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom.
| | - Noah Shofer
- Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Jonathan H Bodey
- Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Santanu Manna
- Institute of Semiconductor and Solid State Physics, Johannes Kepler University, Linz, Austria
- Department of Electrical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - George Gillard
- Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
| | | | - Christian Schimpf
- Institute of Semiconductor and Solid State Physics, Johannes Kepler University, Linz, Austria
| | | | - John Jarman
- Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Geoffroy Delamare
- Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Gunhee Park
- Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Urs Haeusler
- Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Evgeny A Chekhovich
- Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
| | - Armando Rastelli
- Institute of Semiconductor and Solid State Physics, Johannes Kepler University, Linz, Austria
| | - Dorian A Gangloff
- Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
- Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Mete Atatüre
- Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom.
| | - Claire Le Gall
- Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
3
|
Cerfontaine P, Hangleiter T, Bluhm H. Filter Functions for Quantum Processes under Correlated Noise. PHYSICAL REVIEW LETTERS 2021; 127:170403. [PMID: 34739277 DOI: 10.1103/physrevlett.127.170403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
Many qubit implementations are afflicted by correlated noise not captured by standard theoretical tools that are based on Markov approximations. While independent gate operations are a key concept for quantum computing, it is actually not possible to fully describe noisy gates locally in time if noise is correlated on times longer than their duration. To address this issue, we develop a method based on the filter function formalism to perturbatively compute quantum processes in the presence of correlated classical noise. We derive a composition rule for the filter function of a sequence of gates in terms of those of the individual gates. The joint filter function allows us to efficiently compute the quantum process of the whole sequence. Moreover, we show that correlation terms arise which capture the effects of the concatenation and, thus, yield insight into the effect of noise correlations on gate sequences. Our generalization of the filter function formalism enables both qualitative and quantitative studies of algorithms and state-of-the-art tools widely used for the experimental verification of gate fidelities like randomized benchmarking, even in the presence of noise correlations.
Collapse
Affiliation(s)
- Pascal Cerfontaine
- JARA-FIT Institute for Quantum Information, Forschungszentrum Jülich GmbH and RWTH Aachen University, 52074 Aachen, Germany
| | - Tobias Hangleiter
- JARA-FIT Institute for Quantum Information, Forschungszentrum Jülich GmbH and RWTH Aachen University, 52074 Aachen, Germany
| | - Hendrik Bluhm
- JARA-FIT Institute for Quantum Information, Forschungszentrum Jülich GmbH and RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
4
|
Hays M, Fatemi V, Bouman D, Cerrillo J, Diamond S, Serniak K, Connolly T, Krogstrup P, Nygård J, Levy Yeyati A, Geresdi A, Devoret MH. Coherent manipulation of an Andreev spin qubit. Science 2021; 373:430-433. [PMID: 34437115 DOI: 10.1126/science.abf0345] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 05/27/2021] [Indexed: 01/26/2023]
Abstract
Two promising architectures for solid-state quantum information processing are based on electron spins electrostatically confined in semiconductor quantum dots and the collective electrodynamic modes of superconducting circuits. Superconducting electrodynamic qubits involve macroscopic numbers of electrons and offer the advantage of larger coupling, whereas semiconductor spin qubits involve individual electrons trapped in microscopic volumes but are more difficult to link. We combined beneficial aspects of both platforms in the Andreev spin qubit: the spin degree of freedom of an electronic quasiparticle trapped in the supercurrent-carrying Andreev levels of a Josephson semiconductor nanowire. We performed coherent spin manipulation by combining single-shot circuit-quantum-electrodynamics readout and spin-flipping Raman transitions and found a spin-flip time T S = 17 microseconds and a spin coherence time T 2E = 52 nanoseconds. These results herald a regime of supercurrent-mediated coherent spin-photon coupling at the single-quantum level.
Collapse
Affiliation(s)
- M Hays
- Department of Applied Physics, Yale University, New Haven, CT 06520, USA.
| | - V Fatemi
- Department of Applied Physics, Yale University, New Haven, CT 06520, USA.
| | - D Bouman
- QuTech and Delft University of Technology, 2600 GA Delft, Netherlands.,Kavli Institute of Nanoscience, Delft University of Technology, 2600 GA Delft, Netherlands
| | - J Cerrillo
- Área de Física Aplicada, Universidad Politécnica de Cartagena, E-30202 Cartagena, Spain.,Departamento de Física Teórica de la Materia Condensada C-V, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - S Diamond
- Department of Applied Physics, Yale University, New Haven, CT 06520, USA
| | - K Serniak
- Department of Applied Physics, Yale University, New Haven, CT 06520, USA
| | - T Connolly
- Department of Applied Physics, Yale University, New Haven, CT 06520, USA
| | - P Krogstrup
- Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - J Nygård
- Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - A Levy Yeyati
- Departamento de Física Teórica de la Materia Condensada C-V, Universidad Autónoma de Madrid, E-28049 Madrid, Spain.,Condensed Matter Physics Center (IFIMAC) and Instituto Nicolás Cabrera, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - A Geresdi
- QuTech and Delft University of Technology, 2600 GA Delft, Netherlands.,Kavli Institute of Nanoscience, Delft University of Technology, 2600 GA Delft, Netherlands.,Quantum Device Physics Laboratory, Department of Microtechnology and Nanoscience, Chalmers University of Technology, SE 41296 Gothenburg, Sweden
| | - M H Devoret
- Department of Applied Physics, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
5
|
Moon H, Lennon DT, Kirkpatrick J, van Esbroeck NM, Camenzind LC, Yu L, Vigneau F, Zumbühl DM, Briggs GAD, Osborne MA, Sejdinovic D, Laird EA, Ares N. Machine learning enables completely automatic tuning of a quantum device faster than human experts. Nat Commun 2020; 11:4161. [PMID: 32814777 PMCID: PMC7438325 DOI: 10.1038/s41467-020-17835-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 07/16/2020] [Indexed: 11/28/2022] Open
Abstract
Variability is a problem for the scalability of semiconductor quantum devices. The parameter space is large, and the operating range is small. Our statistical tuning algorithm searches for specific electron transport features in gate-defined quantum dot devices with a gate voltage space of up to eight dimensions. Starting from the full range of each gate voltage, our machine learning algorithm can tune each device to optimal performance in a median time of under 70 minutes. This performance surpassed our best human benchmark (although both human and machine performance can be improved). The algorithm is approximately 180 times faster than an automated random search of the parameter space, and is suitable for different material systems and device architectures. Our results yield a quantitative measurement of device variability, from one device to another and after thermal cycling. Our machine learning algorithm can be extended to higher dimensions and other technologies.
Collapse
Affiliation(s)
- H Moon
- Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH, UK
| | - D T Lennon
- Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH, UK
| | | | - N M van Esbroeck
- Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH, UK
- Department of Applied Physics, Eindhoven University of Technology, Eindhoven, MB, 5600, The Netherlands
| | - L C Camenzind
- Department of Physics, University of Basel, Basel, 4056, Switzerland
| | - Liuqi Yu
- Department of Physics, University of Basel, Basel, 4056, Switzerland
| | - F Vigneau
- Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH, UK
| | - D M Zumbühl
- Department of Physics, University of Basel, Basel, 4056, Switzerland
| | - G A D Briggs
- Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH, UK
| | - M A Osborne
- Department of Engineering, University of Oxford, Walton Well Road, Oxford, OX2 6ED, UK
| | - D Sejdinovic
- Department of Statistics, University of Oxford, 24-29 St Giles, Oxford, OX1 3LB, UK
| | - E A Laird
- Department of Physics, Lancaster University, Lancaster, LA1 4YB, UK
| | - N Ares
- Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH, UK.
| |
Collapse
|
6
|
Bethke P, McNeil RPG, Ritzmann J, Botzem T, Ludwig A, Wieck AD, Bluhm H. Measurement of Backaction from Electron Spins in a Gate-Defined GaAs Double Quantum dot Coupled to a Mesoscopic Nuclear Spin Bath. PHYSICAL REVIEW LETTERS 2020; 125:047701. [PMID: 32794820 DOI: 10.1103/physrevlett.125.047701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 06/18/2020] [Indexed: 06/11/2023]
Abstract
Decoherence of a quantum system arising from its interaction with an environment is a key concept for understanding the transition between the quantum and classical world as well as performance limitations in quantum technology applications. The effects of large, weakly coupled environments are often described as a classical, fluctuating field whose dynamics is unaffected by the qubit, whereas a fully quantum description still implies some backaction from the qubit on the environment. Here we show direct experimental evidence for such a backaction for an electron-spin qubit in a GaAs quantum dot coupled to a mesoscopic environment of order 10^{6} nuclear spins. By means of a correlation measurement technique, we detect the backaction of a single qubit-environment interaction whose duration is comparable to the qubit's coherence time, even in such a large system. We repeatedly let the qubit interact with the spin bath and measure its state. Between such cycles, the qubit is reinitialized to different states. The correlations of the measurement outcomes are strongly affected by the intermediate qubit state, which reveals the action of a single electron spin on the nuclear spins.
Collapse
Affiliation(s)
- P Bethke
- JARA-FIT Institute for Quantum Information, Forschungszentrum Jülich GmbH and RWTH Aachen University, 52074 Aachen, Germany
| | - R P G McNeil
- JARA-FIT Institute for Quantum Information, Forschungszentrum Jülich GmbH and RWTH Aachen University, 52074 Aachen, Germany
| | - J Ritzmann
- Lehrstuhl für Angewandte Festkörperphysik, Ruhr-Universität Bochum, D-44780 Bochum
| | - T Botzem
- JARA-FIT Institute for Quantum Information, Forschungszentrum Jülich GmbH and RWTH Aachen University, 52074 Aachen, Germany
| | - A Ludwig
- Lehrstuhl für Angewandte Festkörperphysik, Ruhr-Universität Bochum, D-44780 Bochum
| | - A D Wieck
- Lehrstuhl für Angewandte Festkörperphysik, Ruhr-Universität Bochum, D-44780 Bochum
| | - H Bluhm
- JARA-FIT Institute for Quantum Information, Forschungszentrum Jülich GmbH and RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
7
|
Fast two-qubit logic with holes in germanium. Nature 2020; 577:487-491. [DOI: 10.1038/s41586-019-1919-3] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 10/08/2019] [Indexed: 11/08/2022]
|
8
|
Pulse control protocols for preserving coherence in dipolar-coupled nuclear spin baths. Nat Commun 2019; 10:3157. [PMID: 31316057 PMCID: PMC6637143 DOI: 10.1038/s41467-019-11160-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 06/26/2019] [Indexed: 11/13/2022] Open
Abstract
Coherence of solid state spin qubits is limited by decoherence and random fluctuations in the spin bath environment. Here we develop spin bath control sequences which simultaneously suppress the fluctuations arising from intrabath interactions and inhomogeneity. Experiments on neutral self-assembled quantum dots yield up to a five-fold increase in coherence of a bare nuclear spin bath. Numerical simulations agree with experiments and reveal emergent thermodynamic behaviour where fluctuations are ultimately caused by irreversible conversion of coherence into many-body quantum entanglement. Simulations show that for homogeneous spin baths our sequences are efficient with non-ideal control pulses, while inhomogeneous bath coherence is inherently limited even under ideal-pulse control, especially for strongly correlated spin-9/2 baths. These results highlight the limitations of self-assembled quantum dots and advantages of strain-free dots, where our sequences can be used to control the fluctuations of a homogeneous nuclear spin bath and potentially improve electron spin qubit coherence. Fluctuating nuclear spin ensembles are a significant decoherence mechanism for solid-state spin qubits. Here the authors introduce an approach to controlling and extending the coherence of a nuclear spin bath around self-assembled quantum dots and gain insight into the many-body dynamics.
Collapse
|
9
|
Zhang X, Li HO, Cao G, Xiao M, Guo GC, Guo GP. Semiconductor quantum computation. Natl Sci Rev 2019; 6:32-54. [PMID: 34691830 PMCID: PMC8291422 DOI: 10.1093/nsr/nwy153] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 11/05/2018] [Accepted: 12/18/2018] [Indexed: 11/12/2022] Open
Abstract
Semiconductors, a significant type of material in the information era, are becoming more and more powerful in the field of quantum information. In recent decades, semiconductor quantum computation was investigated thoroughly across the world and developed with a dramatically fast speed. The research varied from initialization, control and readout of qubits, to the architecture of fault-tolerant quantum computing. Here, we first introduce the basic ideas for quantum computing, and then discuss the developments of single- and two-qubit gate control in semiconductors. Up to now, the qubit initialization, control and readout can be realized with relatively high fidelity and a programmable two-qubit quantum processor has even been demonstrated. However, to further improve the qubit quality and scale it up, there are still some challenges to resolve such as the improvement of the readout method, material development and scalable designs. We discuss these issues and introduce the forefronts of progress. Finally, considering the positive trend of the research on semiconductor quantum devices and recent theoretical work on the applications of quantum computation, we anticipate that semiconductor quantum computation may develop fast and will have a huge impact on our lives in the near future.
Collapse
Affiliation(s)
- Xin Zhang
- Key Laboratory of Quantum Information, CAS, University of Science and Technology of China, Hefei 230026, China
- Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Hai-Ou Li
- Key Laboratory of Quantum Information, CAS, University of Science and Technology of China, Hefei 230026, China
- Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Gang Cao
- Key Laboratory of Quantum Information, CAS, University of Science and Technology of China, Hefei 230026, China
- Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Ming Xiao
- Key Laboratory of Quantum Information, CAS, University of Science and Technology of China, Hefei 230026, China
- Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Guang-Can Guo
- Key Laboratory of Quantum Information, CAS, University of Science and Technology of China, Hefei 230026, China
- Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Guo-Ping Guo
- Key Laboratory of Quantum Information, CAS, University of Science and Technology of China, Hefei 230026, China
- Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
10
|
Single electron-photon pair creation from a single polarization-entangled photon pair. Sci Rep 2017; 7:16968. [PMID: 29208912 PMCID: PMC5717106 DOI: 10.1038/s41598-017-16899-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 11/15/2017] [Indexed: 12/02/2022] Open
Abstract
Quantum entanglement between different forms of qubits is an indication of the universality of quantum mechanics. Entanglement transfer between light and matter, especially photon and spin, has long been studied as the central concept, but it remains technically challenging for single photons and spins. In this paper, we show paired generation of a single electron in a GaAs quantum dot and a single photon from a single polarization-entangled photon pair. We measure temporal coincidence between the single photo-electron detection and the single photon detection. Considering a single photon polarization is converted to an electron spin via an optical selection rule, the present result indicates the capability of photon to spin entanglement transfer. This may be useful to explore the physics of entanglement transfer and also for applications to quantum teleportation based quantum communication.
Collapse
|
11
|
Martins F, Malinowski FK, Nissen PD, Fallahi S, Gardner GC, Manfra MJ, Marcus CM, Kuemmeth F. Negative Spin Exchange in a Multielectron Quantum Dot. PHYSICAL REVIEW LETTERS 2017; 119:227701. [PMID: 29286778 DOI: 10.1103/physrevlett.119.227701] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Indexed: 06/07/2023]
Abstract
We use a one-electron quantum dot as a spectroscopic probe to study the spin properties of a gate-controlled multielectron GaAs quantum dot at the transition between odd and even occupation numbers. We observe that the multielectron ground-state transitions from spin-1/2-like to singletlike to tripletlike as we increase the detuning towards the next higher charge state. The sign reversal in the inferred exchange energy persists at zero magnetic field, and the exchange strength is tunable by gate voltages and in-plane magnetic fields. Complementing spin leakage spectroscopy data, the inspection of coherent multielectron spin exchange oscillations provides further evidence for the sign reversal and, inferentially, for the importance of nontrivial multielectron spin exchange correlations.
Collapse
Affiliation(s)
- Frederico Martins
- Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Filip K Malinowski
- Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Peter D Nissen
- Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Saeed Fallahi
- Department of Physics and Astronomy, Station Q Purdue, and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, USA
| | - Geoffrey C Gardner
- Department of Physics and Astronomy, Station Q Purdue, and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, USA
| | - Michael J Manfra
- Department of Physics and Astronomy, Station Q Purdue, and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, USA
- School of Electrical and Computer Engineering and School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| | - Charles M Marcus
- Center for Quantum Devices and Station Q Copenhagen, Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Ferdinand Kuemmeth
- Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|
12
|
Russ M, Burkard G. Three-electron spin qubits. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:393001. [PMID: 28562367 DOI: 10.1088/1361-648x/aa761f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The goal of this article is to review the progress of three-electron spin qubits from their inception to the state of the art. We direct the main focus towards the exchange-only qubit (Bacon et al 2000 Phys. Rev. Lett. 85 1758-61, DiVincenzo et al 2000 Nature 408 339) and its derived versions, e.g. the resonant exchange (RX) qubit, but we also discuss other qubit implementations using three electron spins. For each three-spin qubit we describe the qubit model, the envisioned physical realization, the implementations of single-qubit operations, as well as the read-out and initialization schemes. Two-qubit gates and decoherence properties are discussed for the RX qubit and the exchange-only qubit, thereby completing the list of requirements for quantum computation for a viable candidate qubit implementation. We start by describing the full system of three electrons in a triple quantum dot, then discuss the charge-stability diagram, restricting ourselves to the relevant subsystem, introduce the qubit states, and discuss important transitions to other charge states (Russ et al 2016 Phys. Rev. B 94 165411). Introducing the various qubit implementations, we begin with the exchange-only qubit (DiVincenzo et al 2000 Nature 408 339, Laird et al 2010 Phys. Rev. B 82 075403), followed by the RX qubit (Medford et al 2013 Phys. Rev. Lett. 111 050501, Taylor et al 2013 Phys. Rev. Lett. 111 050502), the spin-charge qubit (Kyriakidis and Burkard 2007 Phys. Rev. B 75 115324), and the hybrid qubit (Shi et al 2012 Phys. Rev. Lett. 108 140503, Koh et al 2012 Phys. Rev. Lett. 109 250503, Cao et al 2016 Phys. Rev. Lett. 116 086801, Thorgrimsson et al 2016 arXiv:1611.04945). The main focus will be on the exchange-only qubit and its modification, the RX qubit, whose single-qubit operations are realized by driving the qubit at its resonant frequency in the microwave range similar to electron spin resonance. Two different types of two-qubit operations are presented for the exchange-only qubits which can be divided into short-ranged and long-ranged interactions. Both of these interaction types are expected to be necessary in a large-scale quantum computer. The short-ranged interactions use the exchange coupling by placing qubits next to each other and applying exchange-pulses (DiVincenzo et al 2000 Nature 408 339, Fong and Wandzura 2011 Quantum Inf. Comput. 11 1003, Setiawan et al 2014 Phys. Rev. B 89 085314, Zeuch et al 2014 Phys. Rev. B 90 045306, Doherty and Wardrop 2013 Phys. Rev. Lett. 111 050503, Shim and Tahan 2016 Phys. Rev. B 93 121410), while the long-ranged interactions use the photons of a superconducting microwave cavity as a mediator in order to couple two qubits over long distances (Russ and Burkard 2015 Phys. Rev. B 92 205412, Srinivasa et al 2016 Phys. Rev. B 94 205421). The nature of the three-electron qubit states each having the same total spin and total spin in z-direction (same Zeeman energy) provides a natural protection against several sources of noise (DiVincenzo et al 2000 Nature 408 339, Taylor et al 2013 Phys. Rev. Lett. 111 050502, Kempe et al 2001 Phys. Rev. A 63 042307, Russ and Burkard 2015 Phys. Rev. B 91 235411). The price to pay for this advantage is an increase in gate complexity. We also take into account the decoherence of the qubit through the influence of magnetic noise (Ladd 2012 Phys. Rev. B 86 125408, Mehl and DiVincenzo 2013 Phys. Rev. B 87 195309, Hung et al 2014 Phys. Rev. B 90 045308), in particular dephasing due to the presence of nuclear spins, as well as dephasing due to charge noise (Medford et al 2013 Phys. Rev. Lett. 111 050501, Taylor et al 2013 Phys. Rev. Lett. 111 050502, Shim and Tahan 2016 Phys. Rev. B 93 121410, Russ and Burkard 2015 Phys. Rev. B 91 235411, Fei et al 2015 Phys. Rev. B 91 205434), fluctuations of the energy levels on each dot due to noisy gate voltages or the environment. Several techniques are discussed which partly decouple the qubit from magnetic noise (Setiawan et al 2014 Phys. Rev. B 89 085314, West and Fong 2012 New J. Phys. 14 083002, Rohling and Burkard 2016 Phys. Rev. B 93 205434) while for charge noise it is shown that it is favorable to operate the qubit on the so-called '(double) sweet spots' (Taylor et al 2013 Phys. Rev. Lett. 111 050502, Shim and Tahan 2016 Phys. Rev. B 93 121410, Russ and Burkard 2015 Phys. Rev. B 91 235411, Fei et al 2015 Phys. Rev. B 91 205434, Malinowski et al 2017 arXiv: 1704.01298), which are least susceptible to noise, thus providing a longer lifetime of the qubit.
Collapse
Affiliation(s)
- Maximilian Russ
- Department of Physics, University of Konstanz, D-78457 Konstanz, Germany
| | | |
Collapse
|
13
|
Szańkowski P, Ramon G, Krzywda J, Kwiatkowski D, Cywiński Ł. Environmental noise spectroscopy with qubits subjected to dynamical decoupling. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:333001. [PMID: 28569239 DOI: 10.1088/1361-648x/aa7648] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A qubit subjected to pure dephasing due to classical Gaussian noise can be turned into a spectrometer of this noise by utilizing its readout under properly chosen dynamical decoupling (DD) sequences to reconstruct the power spectral density of the noise. We review the theory behind this DD-based noise spectroscopy technique, paying special attention to issues that arise when the environmental noise is non-Gaussian and/or it has truly quantum properties. While we focus on the theoretical basis of the method, we connect the discussed concepts with specific experiments, and provide an overview of environmental noise models relevant for solid-state based qubits, including quantum-dot based spin qubits, superconducting qubits, and NV centers in diamond.
Collapse
Affiliation(s)
- P Szańkowski
- Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02668 Warsaw, Poland
| | | | | | | | | |
Collapse
|
14
|
Zhang C, Throckmorton RE, Yang XC, Wang X, Barnes E, Das Sarma S. Randomized Benchmarking of Barrier versus Tilt Control of a Singlet-Triplet Qubit. PHYSICAL REVIEW LETTERS 2017; 118:216802. [PMID: 28598661 DOI: 10.1103/physrevlett.118.216802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Indexed: 06/07/2023]
Abstract
Decoherence due to charge noise is one of the central challenges in using spin qubits in semiconductor quantum dots as a platform for quantum information processing. Recently, it has been experimentally demonstrated in both Si and GaAs singlet-triplet qubits that the effects of charge noise can be suppressed if qubit operations are implemented using symmetric barrier control instead of the standard tilt control. Here, we investigate the key issue of whether the benefits of barrier control persist over the entire set of single-qubit gates by performing randomized benchmarking simulations. We find the surprising result that the improvement afforded by barrier control depends sensitively on the amount of spin noise: for the minimal nuclear spin noise levels present in Si, the coherence time improves by more than 2 orders of magnitude whereas in GaAs, by contrast the coherence time is essentially the same for barrier and tilt control. However, we establish that barrier control becomes beneficial if qubit operations are performed using a new family of composite pulses that reduce gate times by up to 90%. With these optimized pulses, barrier control is the best way to achieve high-fidelity quantum gates in singlet-triplet qubits.
Collapse
Affiliation(s)
- Chengxian Zhang
- Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, Guangdong 518057, China
| | - Robert E Throckmorton
- Condensed Matter Theory Center and Joint Quantum Institute, Department of Physics, University of Maryland, College Park, Maryland 20742, USA
| | - Xu-Chen Yang
- Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, Guangdong 518057, China
| | - Xin Wang
- Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, Guangdong 518057, China
| | - Edwin Barnes
- Department of Physics, Virginia Tech, Blacksburg, Virginia 24061, USA
| | - S Das Sarma
- Condensed Matter Theory Center and Joint Quantum Institute, Department of Physics, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
15
|
Malinowski FK, Martins F, Cywiński Ł, Rudner MS, Nissen PD, Fallahi S, Gardner GC, Manfra MJ, Marcus CM, Kuemmeth F. Spectrum of the Nuclear Environment for GaAs Spin Qubits. PHYSICAL REVIEW LETTERS 2017; 118:177702. [PMID: 28498694 DOI: 10.1103/physrevlett.118.177702] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Indexed: 05/25/2023]
Abstract
Using a singlet-triplet spin qubit as a sensitive spectrometer of the GaAs nuclear spin bath, we demonstrate that the spectrum of Overhauser noise agrees with a classical spin diffusion model over 6 orders of magnitude in frequency, from 1 mHz to 1 kHz, is flat below 10 mHz, and falls as 1/f^{2} for frequency f≳1 Hz. Increasing the applied magnetic field from 0.1 to 0.75 T suppresses electron-mediated spin diffusion, which decreases the spectral content in the 1/f^{2} region and lowers the saturation frequency, each by an order of magnitude, consistent with a numerical model. Spectral content at megahertz frequencies is accessed using dynamical decoupling, which shows a crossover from the few-pulse regime (≲16π pulses), where transverse Overhauser fluctuations dominate dephasing, to the many-pulse regime (≳32 π pulses), where longitudinal Overhauser fluctuations with a 1/f spectrum dominate.
Collapse
Affiliation(s)
- Filip K Malinowski
- Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Frederico Martins
- Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Łukasz Cywiński
- Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02668 Warsaw, Poland
| | - Mark S Rudner
- Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark
- Niels Bohr International Academy, Niels Bohr Institute, 2100 Copenhagen, Denmark
| | - Peter D Nissen
- Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Saeed Fallahi
- Department of Physics and Astronomy, Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, USA
| | - Geoffrey C Gardner
- Department of Physics and Astronomy, Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, USA
- School of Materials Engineering and School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| | - Michael J Manfra
- Department of Physics and Astronomy, Birck Nanotechnology Center, and Station Q Purdue, Purdue University, West Lafayette, Indiana 47907, USA
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| | - Charles M Marcus
- Center for Quantum Devices and Station Q Copenhagen, Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Ferdinand Kuemmeth
- Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|
16
|
Maurand R, Jehl X, Kotekar-Patil D, Corna A, Bohuslavskyi H, Laviéville R, Hutin L, Barraud S, Vinet M, Sanquer M, De Franceschi S. A CMOS silicon spin qubit. Nat Commun 2016; 7:13575. [PMID: 27882926 PMCID: PMC5123048 DOI: 10.1038/ncomms13575] [Citation(s) in RCA: 313] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 10/14/2016] [Indexed: 12/11/2022] Open
Abstract
Silicon, the main constituent of microprocessor chips, is emerging as a promising material for the realization of future quantum processors. Leveraging its well-established complementary metal-oxide-semiconductor (CMOS) technology would be a clear asset to the development of scalable quantum computing architectures and to their co-integration with classical control hardware. Here we report a silicon quantum bit (qubit) device made with an industry-standard fabrication process. The device consists of a two-gate, p-type transistor with an undoped channel. At low temperature, the first gate defines a quantum dot encoding a hole spin qubit, the second one a quantum dot used for the qubit read-out. All electrical, two-axis control of the spin qubit is achieved by applying a phase-tunable microwave modulation to the first gate. The demonstrated qubit functionality in a basic transistor-like device constitutes a promising step towards the elaboration of scalable spin qubit geometries in a readily exploitable CMOS platform.
Collapse
Affiliation(s)
- R. Maurand
- University Grenoble Alpes, F-38000 Grenoble, France
- CEA, INAC-PHELIQS, F-38000 Grenoble, France
| | - X. Jehl
- University Grenoble Alpes, F-38000 Grenoble, France
- CEA, INAC-PHELIQS, F-38000 Grenoble, France
| | - D. Kotekar-Patil
- University Grenoble Alpes, F-38000 Grenoble, France
- CEA, INAC-PHELIQS, F-38000 Grenoble, France
| | - A. Corna
- University Grenoble Alpes, F-38000 Grenoble, France
- CEA, INAC-PHELIQS, F-38000 Grenoble, France
| | - H. Bohuslavskyi
- University Grenoble Alpes, F-38000 Grenoble, France
- CEA, INAC-PHELIQS, F-38000 Grenoble, France
| | - R. Laviéville
- University Grenoble Alpes, F-38000 Grenoble, France
- CEA, LETI, MINATEC Campus, F-38054 Grenoble, France
| | - L. Hutin
- University Grenoble Alpes, F-38000 Grenoble, France
- CEA, LETI, MINATEC Campus, F-38054 Grenoble, France
| | - S. Barraud
- University Grenoble Alpes, F-38000 Grenoble, France
- CEA, LETI, MINATEC Campus, F-38054 Grenoble, France
| | - M. Vinet
- University Grenoble Alpes, F-38000 Grenoble, France
- CEA, LETI, MINATEC Campus, F-38054 Grenoble, France
| | - M. Sanquer
- University Grenoble Alpes, F-38000 Grenoble, France
- CEA, INAC-PHELIQS, F-38000 Grenoble, France
| | - S. De Franceschi
- University Grenoble Alpes, F-38000 Grenoble, France
- CEA, INAC-PHELIQS, F-38000 Grenoble, France
| |
Collapse
|
17
|
Stockill R, Le Gall C, Matthiesen C, Huthmacher L, Clarke E, Hugues M, Atatüre M. Quantum dot spin coherence governed by a strained nuclear environment. Nat Commun 2016; 7:12745. [PMID: 27615704 PMCID: PMC5027245 DOI: 10.1038/ncomms12745] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 07/28/2016] [Indexed: 11/12/2022] Open
Abstract
The interaction between a confined electron and the nuclei of an optically active quantum dot provides a uniquely rich manifestation of the central spin problem. Coherent qubit control combines with an ultrafast spin–photon interface to make these confined spins attractive candidates for quantum optical networks. Reaching the full potential of spin coherence has been hindered by the lack of knowledge of the key irreversible environment dynamics. Through all-optical Hahn echo decoupling we now recover the intrinsic coherence time set by the interaction with the inhomogeneously strained nuclear bath. The high-frequency nuclear dynamics are directly imprinted on the electron spin coherence, resulting in a dramatic jump of coherence times from few tens of nanoseconds to the microsecond regime between 2 and 3 T magnetic field and an exponential decay of coherence at high fields. These results reveal spin coherence can be improved by applying large magnetic fields and reducing strain inhomogeneity. Spins confined to quantum dots are a possible qubit, but the mechanism that limits their coherence is unclear. Here, the authors use an all-optical Hahn-echo technique to determine the intrinsic coherence time of such spins set by its interaction with the inhomogeneously strained nuclear bath.
Collapse
Affiliation(s)
- R Stockill
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
| | - C Le Gall
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
| | - C Matthiesen
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
| | - L Huthmacher
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
| | - E Clarke
- EPSRC National Centre for III-V Technologies, University of Sheffield, Sheffield, S1 3JD, UK
| | - M Hugues
- CNRS-CRHEA, rue Bernard Grégory, Valbonne 06560, France
| | - M Atatüre
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
| |
Collapse
|