1
|
Baillou R, Ranft J. Nonequilibrium cluster-cluster aggregation in the presence of anchoring sites. Phys Rev E 2024; 110:034410. [PMID: 39425304 DOI: 10.1103/physreve.110.034410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 08/15/2024] [Indexed: 10/21/2024]
Abstract
Nonequilibrium cluster-cluster aggregation of particles diffusing in or at the cell membrane has been hypothesized to lead to domains of finite size in different biological contexts, such as lipid rafts, cell adhesion complexes, or postsynaptic domains in neurons. In this scenario, the desorption of particles balances a continuous flux to the membrane, imposing a cutoff on possible aggregate sizes and giving rise to a stationary size distribution. Here, we investigate the case of nonequilibrium cluster-cluster aggregation in two dimensions where diffusing particles and/or clusters remain fixed in space at specific anchoring sites, which should be particularly relevant for synapses but may also be present in other biological or physical systems. Using an effective mean-field description of the concentration field around anchored clusters, we derive an expression for their average size as a function of parameters such as the anchoring site density. We furthermore propose and solve appropriate rate equations that allow us to predict the size distributions of both diffusing and fixed clusters. We confirm our results with particle-based simulations and discuss potential implications for biological and physical systems.
Collapse
|
2
|
Sullivan KT, Hayward RC, Grason GM. Self-limiting stacks of curvature-frustrated colloidal plates: Roles of intraparticle versus interparticle deformations. Phys Rev E 2024; 110:024602. [PMID: 39294950 DOI: 10.1103/physreve.110.024602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 07/16/2024] [Indexed: 09/21/2024]
Abstract
In geometrically frustrated assemblies local intersubunit misfits propagate to intra-assembly strain gradients, giving rise to anomalous self-limiting assembly thermodynamics. Here we use theory and coarse-grained simulation to study a recently developed class of "curvamer" particles, flexible shell-like particles that exhibit self-limiting assembly due to the build up of curvature deformation in cohesive stacks. To address a generic, yet poorly understood aspect of frustrated assembly, we introduce a model of curvamer assembly that incorporates both intraparticle shape deformation as well as compliance of interparticle cohesive gaps, an effect we can attribute to a finite range of attraction between particles. We show that the ratio of intraparticle (bending elasticity) to interparticle stiffness not only controls the regimes of self-limitation but also the nature of frustration propagation through curvamer stacks. We find a transition from uniformly bound, curvature-focusing stacks at small size to gap opened, uniformly curved stacks at large size is controlled by a dimensionless measure of inter- versus intracurvamer stiffness. The finite range of interparticle attraction determines the range of cohesion in stacks that are self-limiting, a prediction which is in strong agreement with numerical studies of our coarse-grained colloidal model. These predictions provide critical guidance for experimental realizations of frustrated particle systems designed to exhibit self-limitation at especially large multiparticle scales.
Collapse
|
3
|
Chawla A, Kumar D. Geometry-induced friction at a soft interface. Proc Natl Acad Sci U S A 2024; 121:e2320068121. [PMID: 39024108 PMCID: PMC11287152 DOI: 10.1073/pnas.2320068121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 06/20/2024] [Indexed: 07/20/2024] Open
Abstract
Soft and biological matter come in a variety of shapes and geometries. When soft surfaces that do not fit into each other due to a mismatch in Gaussian curvatures form an interface, beautiful geometry-induced patterns are known to emerge. In this paper, we study the effect of geometry on the dynamical response of soft surfaces moving relative to each other. Using a simple experimental scheme, we measure friction between a highly bendable thin polymer sheet and a hydrogel substrate. At this soft and low-friction interface, we find a strong dependence of friction on the relative geometry of the two surfaces-a flat sheet experiences significantly larger friction on a spherical substrate than on flat or cylindrical substrate. We show that the stress developed in the sheet due to its geometrically incompatible confinement is responsible for the enhanced friction. This mechanism also leads to a transition in the nature of friction as the sheet radius is increased beyond a critical value. Our finding reveals a hitherto unnoticed mechanism based on an interplay between geometry and elasticity that may influence friction significantly in soft, biological, and nanoscale systems. In particular, it provokes us to reexamine our understanding of phenomena such as the curvature dependence of biological cell mobility.
Collapse
Affiliation(s)
- Aashna Chawla
- Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi110016, India
| | - Deepak Kumar
- Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi110016, India
| |
Collapse
|
4
|
Spirandelli I, Coles R, Friesecke G, Evans ME. Exotic self-assembly of hard spheres in a morphometric solvent. Proc Natl Acad Sci U S A 2024; 121:e2314959121. [PMID: 38573965 PMCID: PMC11009619 DOI: 10.1073/pnas.2314959121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 02/09/2024] [Indexed: 04/06/2024] Open
Abstract
The self-assembly of spheres into geometric structures, under various theoretical conditions, offers valuable insights into complex self-assembly processes in soft systems. Previous studies have utilized pair potentials between spheres to assemble maximum contact clusters in simulations and experiments. The morphometric approach to solvation free energy that we utilize here goes beyond pair potentials; it is a geometry-based theory that incorporates a weighted combination of geometric measures over the solvent accessible surface for solute configurations in a solvent. In this paper, we demonstrate that employing the morphometric model of solvation free energy in simulating the self-assembly of sphere clusters results, under most conditions, in the previously observed maximum contact clusters. Under other conditions, it unveils an assortment of extraordinary sphere configurations, such as double helices and rhombohedra. These exotic structures arise specifically under conditions where the interactions take multibody potentials into account. This investigation establishes a foundation for comprehending the diverse range of geometric forms in self-assembled structures, emphasizing the significance of the morphometric approach in this context.
Collapse
Affiliation(s)
- Ivan Spirandelli
- Institute for Mathematics, University of Potsdam, Potsdam14476, Germany
| | - Rhoslyn Coles
- Institute for Mathematics, Technical University Berlin, Berlin10623, Germany
- Faculty of Mathematics, Technical University Chemnitz, Chemnitz09107, Germany
| | - Gero Friesecke
- Department of Mathematics, Technische Universität München, Garching85748, Germany
| | - Myfanwy E. Evans
- Institute for Mathematics, University of Potsdam, Potsdam14476, Germany
| |
Collapse
|
5
|
Wang M, Grason G. Thermal stability and secondary aggregation of self-limiting, geometrically frustrated assemblies: Chain assembly of incommensurate polybricks. Phys Rev E 2024; 109:014608. [PMID: 38366461 DOI: 10.1103/physreve.109.014608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 12/21/2023] [Indexed: 02/18/2024]
Abstract
In geometrically frustrated assemblies, equilibrium self-limitation manifests in the form of a minimum in the free energy per subunit at a finite, multisubunit size which results from the competition between the elastic costs of frustration within an assembly and the surface energy at its boundaries. Physical realizations-from ill-fitting particle assemblies to self-twisting protein superstructures-are capable of multiple mechanisms of escaping the cumulative costs of frustration, resulting in unlimited equilibrium assembly, including elastic modes of "shape flattening" and the formation of weak, defective bonds that screen intra-assembly stresses. Here we study a model of one-dimensional chain assembly of incommensurate "polybricks" and determine its equilibrium assembly as a function of temperature, concentration, degree of shape frustration, elasticity, and interparticle binding, notably focusing on how weakly cohesive, defective bonds give rise to strongly temperature-dependent assembly. Complex assembly behavior derives from the competition between multiple distinct local minima in the free-energy landscape, including self-limiting chains, weakly bound aggregates of self-limiting chains, and strongly bound, elastically defrustrated assemblies. We show that this scenario, in general, gives rise to anomalous multiple aggregation behavior, in which disperse subunits (stable at low concentration and high temperature) first exhibit a primary aggregation transition to self-limiting chains (at intermediate concentration and temperature) which are ultimately unstable to condensation into unlimited assembly of finite-chains through weak binding beyond a secondary aggregation transition (at low temperature and high concentration). We show that window of stable self-limitation is determined both by the elastic costs of frustration in the assembly as well as energetic and entropic features of intersubunit binding.
Collapse
Affiliation(s)
- Michael Wang
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Gregory Grason
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, Massachusetts 01003, USA
| |
Collapse
|
6
|
Cedano JA, Querol E, Mozo-Villarías A. How hydrophobicity shapes the architecture of protein assemblies. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2023; 46:62. [PMID: 37495860 PMCID: PMC10371886 DOI: 10.1140/epje/s10189-023-00320-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/07/2023] [Indexed: 07/28/2023]
Abstract
The interactions that give rise to protein self-assembly are basically electrical and hydrophobic in origin. The electrical interactions are approached in this study as the interaction between electrostatic dipoles originated by the asymmetric distribution of their charged amino acids. However, hydrophobicity is not easily derivable from basic physicochemical principles. Its treatment is carried out here considering a hydrophobic force field originated by "hydrophobic charges". These charges are indices obtained experimentally from the free energies of transferring amino acids from polar to hydrophobic media. Hydrophobic dipole moments are used here in a manner analogous to electric dipole moments, and an empirical expression of interaction energy between hydrophobic dipoles is derived. This methodology is used with two examples of self-assembly systems of different complexity. It was found that the hydrophobic dipole moments of proteins tend to interact in such a way that they align parallel to each other in a completely analogous way to how phospholipids are oriented in biological membranes to form the well-known double layer. In this biological membrane model (BM model), proteins tend to interact in a similar way, although in this case this alignment is modulated by the tendency of the corresponding electrostatic dipoles to counter-align. Helical conformation of influenza virus PDBid: 6Z5L. Two monomers are shown in cyan and green. The corresponding dipole moment vectors are shown in red (electric dipoles) and blue (hydrophobic dipoles). From the inset figure, it can be seen that the growth of the helix is due to electrical attraction of the monomers, overcoming a hydrophobic repulsion (see text).
Collapse
Affiliation(s)
- Juan A Cedano
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autónoma de Barcelona, Campus de Bellaterra, 08193, Bellaterra, Barcelona, Spain
| | - Enrique Querol
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autónoma de Barcelona, Campus de Bellaterra, 08193, Bellaterra, Barcelona, Spain
| | - Angel Mozo-Villarías
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autónoma de Barcelona, Campus de Bellaterra, 08193, Bellaterra, Barcelona, Spain.
| |
Collapse
|
7
|
Hall DM, Stevens MJ, Grason GM. Building blocks of non-Euclidean ribbons: size-controlled self-assembly via discrete frustrated particles. SOFT MATTER 2023; 19:858-881. [PMID: 36636841 DOI: 10.1039/d2sm01371a] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Geometric frustration offers a pathway to soft matter self-assembly with controllable finite sizes. While the understanding of frustration in soft matter assembly derives almost exclusively from continuum elastic descriptions, a current challenge is to understand the connection between microscopic physical properties of misfitting "building blocks" and emergent assembly behavior at the mesoscale. We present and analyze a particle-based description of what is arguably the best studied example for frustrated soft matter assembly, negative-curvature ribbon assembly, observed in both assemblies of chiral surfactants and shape-frustrated nanoparticles. Based on our particle model, known as saddle wedge monomers, we numerically test the connection between microscopic shape and interactions of the misfitting subunits and the emergent behavior at the supra-particle scale, specifically focussing on the propagation and relaxation of inter-particle strains, the emergent role of extrinsic shape on frustrated ribbons and the equilibrium regime of finite width selection. Beyond the intuitive role of shape misfit, we show that self-limitation is critically dependent on the finite range of cohesive interactions, with larger size finite assemblies requiring increasing short-range interparticle forces. Additionally, we demonstrate that non-linearities arising from discrete particle interactions alter self-limiting behavior due to both strain-softening in shape-flattened assembly and partial yielding of highly strained bonds, which in turn may give rise to states of hierarchical, multidomain assembly. Tracing the regimes of frustration-limited assembly to the specific microscopic features of misfitting particle shapes and interactions provides necessary guidance for translating the theory of size-programmable assembly into design of intentionally-frustrated colloidal particles.
Collapse
Affiliation(s)
- Douglas M Hall
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, MA 01003, USA.
| | - Mark J Stevens
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, NM 87185, USA
| | - Gregory M Grason
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
8
|
Tyukodi B, Mohajerani F, Hall DM, Grason GM, Hagan MF. Thermodynamic Size Control in Curvature-Frustrated Tubules: Self-Limitation with Open Boundaries. ACS NANO 2022; 16:9077-9085. [PMID: 35638478 PMCID: PMC10362403 DOI: 10.1021/acsnano.2c00865] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We use computational modeling to investigate the assembly thermodynamics of a particle-based model for geometrically frustrated assembly, in which the local packing geometry of subunits is incompatible with uniform, strain-free large-scale assembly. The model considers discrete triangular subunits that drive assembly toward a closed, hexagonal-ordered tubule, but have geometries that locally favor negative Gaussian curvature. We use dynamical Monte Carlo simulations and enhanced sampling methods to compute the free energy landscape and corresponding self-assembly behavior as a function of experimentally accessible parameters that control assembly driving forces and the magnitude of frustration. The results determine the parameter range where finite-temperature self-limiting assembly occurs, in which the equilibrium assembly size distribution is sharply peaked around a well-defined finite size. The simulations also identify two mechanisms by which the system can escape frustration and assemble to unlimited size, and determine the particle-scale properties of subunits that suppress unbounded growth.
Collapse
Affiliation(s)
- Botond Tyukodi
- Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02454, United States
| | - Farzaneh Mohajerani
- Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02454, United States
| | - Douglas M Hall
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Gregory M Grason
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Michael F Hagan
- Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02454, United States
| |
Collapse
|
9
|
Mozo-Villarías A, Cedano JA, Querol E. The use of vector formalism in the analysis of hydrophobic and electric driving forces in biological assemblies. Q Rev Biophys 2022; 55:1-50. [PMID: 35400352 DOI: 10.1017/s0033583522000038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Abstract
Hydrophobic forces are known to have a crucial part not only in the conformation of the three-dimensional structure of proteins, but also in the build-up of DNA–protein complexes. Electric forces also play an important role both in the tertiary as well in the quaternary structure of macromolecular associations. Sometimes both hydrophobic and electric interactions add up their strengths to accomplish these structures but in most cases they act in opposite directions. This fact, together with being overall interactions with different ranges, provides a nuanced equilibrium also modulated by the need to comply with steric hindrances and geometric frustration effects. This review focuses on the utility of using the hydrophobic and electrical dipole moment vectors to describe the interactions that give rise to the structures of biological macromolecules. Although different definitions of both electric dipole and hydrophobic moments have been described in the literature, results obtained in biological assemblies demonstrate the principle of the biological membrane model. According to this model, postulated by our group, biological macromolecules tend to associate by aligning their hydrophobic moments in a similar manner to phospholipids in a membrane. Examples of both closed and open structures are used to assess the predictability of our model. We seek agreement between our results with those described in the current literature. The review ends with possible future projections using this formalism.
Collapse
Affiliation(s)
- Angel Mozo-Villarías
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Campus de Bellaterra, Universitat Autónoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Juan A Cedano
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Campus de Bellaterra, Universitat Autónoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Enrique Querol
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Campus de Bellaterra, Universitat Autónoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
10
|
Kumar M, Singh A, Del Secco B, Baranov MV, van den Bogaart G, Sacanna S, Thutupalli S. Assembling anisotropic colloids using curvature-mediated lipid sorting. SOFT MATTER 2022; 18:1757-1766. [PMID: 35072193 DOI: 10.1039/d1sm01517f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The use of colloid supported lipid bilayers (CSLBs) for assembling colloidal structures has been of recent interest. Here, we use multi-component lipid bilayer membranes formed around anisotropic colloids and show that the curvature anisotropy of the colloids drives a sorting of the lipids in the membrane along the colloids. We then exploit this curvature-sensitive lipid sorting to create "shape-anisotropic patchy colloids" - specifically, we use colloids with six rods sticking out of a central cubic core, "hexapods", for this purpose and demonstrate that membrane patches self-assemble at the tip of each of the six colloidal rods. The membrane patches are rendered sticky using biotinylated lipids in complement with a biotin-binding streptavidin protein. Finally, using these "shape-anisotropic patchy colloids", we demonstrate the directed assembly of colloidal links, paving the way for the creation of heterogeneous and flexible colloidal structures.
Collapse
Affiliation(s)
- Manoj Kumar
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India.
| | - Anupam Singh
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India.
| | - Benedetta Del Secco
- Molecular Design Institute, Department of Chemistry, New York University, New York, NY, USA
| | - Maksim V Baranov
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, The Netherlands
| | - Geert van den Bogaart
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, The Netherlands
| | - Stefano Sacanna
- Molecular Design Institute, Department of Chemistry, New York University, New York, NY, USA
| | - Shashi Thutupalli
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India.
- International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bangalore, India
| |
Collapse
|
11
|
Meiri S, Efrati E. Cumulative geometric frustration and superextensive energy scaling in a nonlinear classical XY-spin model. Phys Rev E 2022; 105:024703. [PMID: 35291144 DOI: 10.1103/physreve.105.024703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Geometric frustration results from a discrepancy between the locally favored arrangement of the constituents of a system and the geometry of the embedding space. Geometric frustration can be either noncumulative, which implies an extensive energy growth, or cumulative, which implies superextensive energy scaling and highly cooperative ground-state configurations which may depend on the dimensions of the system. Cumulative geometric frustration was identified in a variety of continuous systems including liquid crystals, filament bundles, and molecular crystals. However, a spin-lattice model which clearly demonstrates cumulative geometric frustration was lacking. In this paper we describe a nonlinear variation of the XY-spin model on a triangular lattice that displays cumulative geometric frustration. The model is studied numerically and analyzed in three distinct parameter regimes, which are associated with different energy minimizing configurations. We show that, despite the difference in the ground-state structure in the different regimes, in all cases the superextensive power-law growth of the frustration energy for small domains grows with the same universal exponent that is predicted from the structure of the underlying compatibility condition.
Collapse
Affiliation(s)
- Snir Meiri
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Efi Efrati
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
12
|
Meiri S, Efrati E. Cumulative geometric frustration in physical assemblies. Phys Rev E 2021; 104:054601. [PMID: 34942847 DOI: 10.1103/physreve.104.054601] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 10/13/2021] [Indexed: 11/07/2022]
Abstract
Geometric frustration arises whenever the constituents of a physical assembly locally favor an arrangement that cannot be realized globally. Recently, such frustrated assemblies were shown to exhibit filamentation, size limitation, large morphological variations and other exotic response properties. While these unique characteristics can be shown to be a direct outcome of the geometric frustration, some geometrically frustrated systems do not exhibit any of the above phenomena. In this work we exploit the intrinsic approach to provide a framework for directly addressing the frustration in physical assemblies. The framework highlights the role of the compatibility conditions associated with the intrinsic fields describing the physical assembly. We show that the structure of the compatibility conditions determines the behavior of small assemblies and in particular predicts their superextensive energy growth exponent. We illustrate the use of this framework to several well-known frustrated assemblies.
Collapse
Affiliation(s)
- Snir Meiri
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Efi Efrati
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
13
|
Visheratina A, Kumar P, Kotov N. Engineering of inorganic nanostructures with hierarchy of chiral geometries at multiple scales. AIChE J 2021. [DOI: 10.1002/aic.17438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
| | - Prashant Kumar
- Biointerfaces Institute University of Michigan Ann Arbor Michigan USA
| | - Nicholas Kotov
- Biointerfaces Institute University of Michigan Ann Arbor Michigan USA
| |
Collapse
|
14
|
Serafin F, Lu J, Kotov N, Sun K, Mao X. Frustrated self-assembly of non-Euclidean crystals of nanoparticles. Nat Commun 2021; 12:4925. [PMID: 34389712 PMCID: PMC8363672 DOI: 10.1038/s41467-021-25139-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 07/16/2021] [Indexed: 02/07/2023] Open
Abstract
Self-organized complex structures in nature, e.g., viral capsids, hierarchical biopolymers, and bacterial flagella, offer efficiency, adaptability, robustness, and multi-functionality. Can we program the self-assembly of three-dimensional (3D) complex structures using simple building blocks, and reach similar or higher level of sophistication in engineered materials? Here we present an analytic theory for the self-assembly of polyhedral nanoparticles (NPs) based on their crystal structures in non-Euclidean space. We show that the unavoidable geometrical frustration of these particle shapes, combined with competing attractive and repulsive interparticle interactions, lead to controllable self-assembly of structures of complex order. Applying this theory to tetrahedral NPs, we find high-yield and enantiopure self-assembly of helicoidal ribbons, exhibiting qualitative agreement with experimental observations. We expect that this theory will offer a general framework for the self-assembly of simple polyhedral building blocks into rich complex morphologies with new material capabilities such as tunable optical activity, essential for multiple emerging technologies.
Collapse
Affiliation(s)
| | - Jun Lu
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Nicholas Kotov
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Kai Sun
- Department of Physics, University of Michigan, Ann Arbor, MI, USA
| | - Xiaoming Mao
- Department of Physics, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
15
|
Kumar D, Gohil S, Gokhale M, Chalke B, Ghosh S. Revisiting the problem of crystallisation and melting of selenium. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:295402. [PMID: 33975297 DOI: 10.1088/1361-648x/ac0025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 05/11/2021] [Indexed: 06/12/2023]
Abstract
In this paper, we study the structure of the solid selenium (Se) formed by the vapor deposition method. We provide direct visual evidence that faceted crystal-like shapes obtained from vapor phase deposition are a self-assembly of linear strands that have a persistence length of 10μm. These strands are held together by weak forces and can easily be separated. These chains occasionally get entangled to form chiral structures and often meander about destroying long range orientation and translation order in a continuous manner. Moreover, it is easy for the long strands of linear chains to slide past the neighboring ones, and hence the system has a large concentration of disinclination like defects in addition to the defects caused by the entanglement of the chains. Like organic polymers, the obtained Se structures also exhibit a spread in the melting temperature. This spread is closely related to the density of the sub-structures present in the system. The infrared imaging shows that these structures heat up in an inhomogeneous manner and the cross polarized images show that the process of melting initiates in the bulk.
Collapse
Affiliation(s)
- Dinesh Kumar
- Department of Condensed Matter Physics and Materials Science, Tata Institute of Fundamental Research, Mumbai 400005, India
| | - Smita Gohil
- Department of Condensed Matter Physics and Materials Science, Tata Institute of Fundamental Research, Mumbai 400005, India
| | - Mahesh Gokhale
- Department of Condensed Matter Physics and Materials Science, Tata Institute of Fundamental Research, Mumbai 400005, India
| | - Bhagyashree Chalke
- Department of Condensed Matter Physics and Materials Science, Tata Institute of Fundamental Research, Mumbai 400005, India
| | - Shankar Ghosh
- Department of Condensed Matter Physics and Materials Science, Tata Institute of Fundamental Research, Mumbai 400005, India
| |
Collapse
|
16
|
Shi AC. Frustration in block copolymer assemblies. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:253001. [PMID: 33862614 DOI: 10.1088/1361-648x/abf8d0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 04/16/2021] [Indexed: 06/12/2023]
Abstract
Frustration is ubiquitous in condensed matter systems and it provides a central concept to understand the self-assembly of soft matter. Frustration is found at multiple scales in polymeric systems containing block copolymers. At the molecular scale, frustration arises because the chemically distinct blocks repel each other whereas the chain connectivity prevents a macroscopic separation. At the mesoscopic scale, frustration occurs due to the competition between the tendency for the block copolymer assemblies to maintain their native shape and the requirement to fill the space. At an even larger scale, frustrations could be induced by external fields or spatial confinement. Recent theoretical and experimental studies provide a good understanding of the origin of various frustrations in the self-assembly of block copolymers. Furthermore, it has been demonstrated that designed block copolymer systems, either in the form of multiblock copolymers with different architectures or block copolymer blends, could be utilized to regulate frustrations resulting in the formation of complex ordered and hierarchically structured phases.
Collapse
Affiliation(s)
- An-Chang Shi
- Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4M1 Canada
| |
Collapse
|
17
|
Moradi MA, Eren ED, Chiappini M, Rzadkiewicz S, Goudzwaard M, van Rijt MMJ, Keizer ADA, Routh AF, Dijkstra M, de With G, Sommerdijk N, Friedrich H, Patterson JP. Spontaneous organization of supracolloids into three-dimensional structured materials. NATURE MATERIALS 2021; 20:541-547. [PMID: 33510444 DOI: 10.1038/s41563-020-00900-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 12/04/2020] [Indexed: 05/16/2023]
Abstract
Periodic nano- or microscale structures are used to control light, energy and mass transportation. Colloidal organization is the most versatile method used to control nano- and microscale order, and employs either the enthalpy-driven self-assembly of particles at a low concentration or the entropy-driven packing of particles at a high concentration. Nonetheless, it cannot yet provide the spontaneous three-dimensional organization of multicomponent particles at a high concentration. Here we combined these two concepts into a single strategy to achieve hierarchical multicomponent materials. We tuned the electrostatic attraction between polymer and silica nanoparticles to create dynamic supracolloids whose components, on drying, reorganize by entropy into three-dimensional structured materials. Cryogenic electron tomography reveals the kinetic pathways, whereas Monte Carlo simulations combined with a kinetic model provide design rules to form the supracolloids and control the kinetic pathways. This approach may be useful to fabricate hierarchical hybrid materials for distinct technological applications.
Collapse
Affiliation(s)
- Mohammad-Amin Moradi
- Laboratory of Materials and Interface Chemistry and Centre for Multiscale Electron Microscopy, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - E Deniz Eren
- Laboratory of Materials and Interface Chemistry and Centre for Multiscale Electron Microscopy, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Massimiliano Chiappini
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, The Netherlands
| | - Sebastian Rzadkiewicz
- Laboratory of Materials and Interface Chemistry and Centre for Multiscale Electron Microscopy, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Maurits Goudzwaard
- Laboratory of Materials and Interface Chemistry and Centre for Multiscale Electron Microscopy, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Mark M J van Rijt
- Laboratory of Materials and Interface Chemistry and Centre for Multiscale Electron Microscopy, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Arthur D A Keizer
- Laboratory of Materials and Interface Chemistry and Centre for Multiscale Electron Microscopy, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Alexander F Routh
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Marjolein Dijkstra
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, The Netherlands
| | - Gijsbertus de With
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Nico Sommerdijk
- Laboratory of Materials and Interface Chemistry and Centre for Multiscale Electron Microscopy, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands.
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Heiner Friedrich
- Laboratory of Materials and Interface Chemistry and Centre for Multiscale Electron Microscopy, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands.
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | - Joseph P Patterson
- Laboratory of Materials and Interface Chemistry and Centre for Multiscale Electron Microscopy, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands.
- Department of Chemistry, University of California, Irvine (UCI), Irvine, CA, USA.
| |
Collapse
|
18
|
Hagan MF, Grason GM. Equilibrium mechanisms of self-limiting assembly. REVIEWS OF MODERN PHYSICS 2021; 93:025008. [PMID: 35221384 PMCID: PMC8880259 DOI: 10.1103/revmodphys.93.025008] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Self-assembly is a ubiquitous process in synthetic and biological systems, broadly defined as the spontaneous organization of multiple subunits (e.g. macromolecules, particles) into ordered multi-unit structures. The vast majority of equilibrium assembly processes give rise to two states: one consisting of dispersed disassociated subunits, and the other, a bulk-condensed state of unlimited size. This review focuses on the more specialized class of self-limiting assembly, which describes equilibrium assembly processes resulting in finite-size structures. These systems pose a generic and basic question, how do thermodynamic processes involving non-covalent interactions between identical subunits "measure" and select the size of assembled structures? In this review, we begin with an introduction to the basic statistical mechanical framework for assembly thermodynamics, and use this to highlight the key physical ingredients that ensure equilibrium assembly will terminate at finite dimensions. Then, we introduce examples of self-limiting assembly systems, and classify them within this framework based on two broad categories: self-closing assemblies and open-boundary assemblies. These include well-known cases in biology and synthetic soft matter - micellization of amphiphiles and shell/tubule formation of tapered subunits - as well as less widely known classes of assemblies, such as short-range attractive/long-range repulsive systems and geometrically-frustrated assemblies. For each of these self-limiting mechanisms, we describe the physical mechanisms that select equilibrium assembly size, as well as potential limitations of finite-size selection. Finally, we discuss alternative mechanisms for finite-size assemblies, and draw contrasts with the size-control that these can achieve relative to self-limitation in equilibrium, single-species assemblies.
Collapse
Affiliation(s)
- Michael F Hagan
- Martin Fisher School of Physics, Brandeis University, Waltham, MA 02454, USA
| | - Gregory M Grason
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
19
|
Jangizehi A, Schmid F, Besenius P, Kremer K, Seiffert S. Defects and defect engineering in Soft Matter. SOFT MATTER 2020; 16:10809-10859. [PMID: 33306078 DOI: 10.1039/d0sm01371d] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Soft matter covers a wide range of materials based on linear or branched polymers, gels and rubbers, amphiphilic (macro)molecules, colloids, and self-assembled structures. These materials have applications in various industries, all highly important for our daily life, and they control all biological functions; therefore, controlling and tailoring their properties is crucial. One way to approach this target is defect engineering, which aims to control defects in the material's structure, and/or to purposely add defects into it to trigger specific functions. While this approach has been a striking success story in crystalline inorganic hard matter, both for mechanical and electronic properties, and has also been applied to organic hard materials, defect engineering is rarely used in soft matter design. In this review, we present a survey on investigations on defects and/or defect engineering in nine classes of soft matter composed of liquid crystals, colloids, linear polymers with moderate degree of branching, hyperbranched polymers and dendrimers, conjugated polymers, polymeric networks, self-assembled amphiphiles and proteins, block copolymers and supramolecular polymers. This overview proposes a promising role of this approach for tuning the properties of soft matter.
Collapse
Affiliation(s)
- Amir Jangizehi
- Johannes Gutenberg University Mainz, Department of Chemistry, Duesbergweg 10-14, D-55128 Mainz, Germany
| | | | | | | | | |
Collapse
|
20
|
Berengut JF, Wong CK, Berengut JC, Doye JPK, Ouldridge TE, Lee LK. Self-Limiting Polymerization of DNA Origami Subunits with Strain Accumulation. ACS NANO 2020; 14:17428-17441. [PMID: 33232603 DOI: 10.1021/acsnano.0c07696] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Biology demonstrates how a near infinite array of complex systems and structures at many scales can originate from the self-assembly of component parts on the nanoscale. But to fully exploit the benefits of self-assembly for nanotechnology, a crucial challenge remains: How do we rationally encode well-defined global architectures in subunits that are much smaller than their assemblies? Strain accumulation via geometric frustration is one mechanism that has been used to explain the self-assembly of global architectures in diverse and complex systems a posteriori. Here we take the next step and use strain accumulation as a rational design principle to control the length distributions of self-assembling polymers. We use the DNA origami method to design and synthesize a molecular subunit known as the PolyBrick, which perturbs its shape in response to local interactions via flexible allosteric blocking domains. These perturbations accumulate at the ends of polymers during growth, until the deformation becomes incompatible with further extension. We demonstrate that the key thermodynamic factors for controlling length distributions are the intersubunit binding free energy and the fundamental strain free energy, both which can be rationally encoded in a PolyBrick subunit. While passive polymerization yields geometrical distributions, which have the highest statistical length uncertainty for a given mean, the PolyBrick yields polymers that approach Gaussian length distributions whose variance is entirely determined by the strain free energy. We also show how strain accumulation can in principle yield length distributions that become tighter with increasing subunit affinity and approach distributions with uniform polymer lengths. Finally, coarse-grained molecular dynamics and Monte Carlo simulations delineate and quantify the dominant forces influencing strain accumulation in a molecular system. This study constitutes a fundamental investigation of the use of strain accumulation as a rational design principle in molecular self-assembly.
Collapse
Affiliation(s)
- Jonathan F Berengut
- EMBL Australia Node for Single Molecule Science, School of Medical Sciences, University of New South Wales Sydney 2052, Australia
| | - Chak Kui Wong
- Physical & Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Julian C Berengut
- School of Physics, University of New South Wales, Sydney 2052, Australia
| | - Jonathan P K Doye
- Physical & Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Thomas E Ouldridge
- Department of Bioengineering and Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Lawrence K Lee
- EMBL Australia Node for Single Molecule Science, School of Medical Sciences, University of New South Wales Sydney 2052, Australia
- ARC Centre of Excellence in Synthetic Biology, University of New South Wales, Sydney, Australia
| |
Collapse
|
21
|
Michaels TCT, Memet E, Mahadevan L. Mechanical basis for fibrillar bundle morphology. SOFT MATTER 2020; 16:9306-9318. [PMID: 32935723 DOI: 10.1039/d0sm01145b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Understanding the morphology of self-assembled fibrillar bundles and aggregates is relevant to a range of problems in molecular biology, supramolecular chemistry and materials science. Here, we propose a coarse-grained approach that averages over specific molecular details and yields an effective mechanical theory for the spatial complexity of self-assembling fibrillar structures that arises due to the competing effects of (the bending and twisting) elasticity of individual filaments and the adhesive interactions between them. We show that our theoretical framework accounting for this allows us to capture a number of diverse fibril morphologies observed in natural and synthetic systems, ranging from Filopodia to multi-walled carbon nanotubes, and leads to a phase diagram of possible fibril shapes. We also show how the extreme sensitivity of these morphologies can lead to spatially chaotic structures. Together, these results suggest a common mechanical basis for mesoscale fibril morphology as a function of the nanoscale mechanical properties of its filamentous constituents.
Collapse
Affiliation(s)
- Thomas C T Michaels
- Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Edvin Memet
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - L Mahadevan
- Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA and Department of Physics, Harvard University, Cambridge, MA 02138, USA and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
22
|
Ronceray P, Le Floch B. Range of geometrical frustration in lattice spin models. Phys Rev E 2019; 100:052150. [PMID: 31869895 DOI: 10.1103/physreve.100.052150] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Indexed: 11/07/2022]
Abstract
The concept of geometrical frustration in condensed matter physics refers to the fact that a system has a locally preferred structure with an energy density lower than the infinite ground state. This notion is, however, often used in a qualitative sense only. In this article, we discuss a quantitative definition of geometrical frustration in the context of lattice models of binary spins. To this aim, we introduce the framework of local energy landscapes, within which frustration can be quantified as the discrepancy between the energy of locally preferred structures and the ground state. Our definition is scale dependent and involves an optimization over a gauge class of equivalent local energy landscapes, related to one another by local energy displacements. This ensures that frustration depends only on the physical Hamiltonian and its range, and not on unphysical choices in how it is written. Our framework shows that a number of popular frustrated models, including the antiferromagnetic Ising model on a triangular lattice, only have finite-range frustration: geometrical incompatibilities are local and can be eliminated by an exact coarse graining of the local energies.
Collapse
Affiliation(s)
- Pierre Ronceray
- Center for the Physics of Biological Function, Princeton University, Princeton, New Jersey 08544, USA
| | - Bruno Le Floch
- Philippe Meyer Institute, Physics Department, École Normale Supérieure, PSL Research University, 75005 Paris, France
| |
Collapse
|
23
|
Entropic colloidal crystallization pathways via fluid-fluid transitions and multidimensional prenucleation motifs. Proc Natl Acad Sci U S A 2019; 116:14843-14851. [PMID: 31285316 DOI: 10.1073/pnas.1905929116] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Complex crystallization pathways are common in protein crystallization, tetrahedrally coordinated systems, and biomineralization, where single or multiple precursors temporarily appear before the formation of the crystal. The emergence of precursors is often explained by a unique property of the system, such as short-range attraction, directional bonding, or ion association. But, structural characteristics of the prenucleation phases found in multistep crystallization remain unclear, and models are needed for testing and expanding the understanding of fluid-to-solid ordering pathways. Here, we report 3 instances of 2-step crystallization of hard-particle fluids. Crystallization in these systems proceeds via a high-density precursor fluid phase with prenucleation motifs in the form of clusters, fibers and layers, and networks, respectively. The density and diffusivity change across the fluid-fluid phase transition increases with motif dimension. We observe crystal nucleation to be catalyzed by the interface between the 2 fluid phases. The crystals that form are complex, including, notably, a crystal with 432 particles in the cubic unit cell. Our results establish the existence of complex crystallization pathways in entropic systems and reveal prenucleation motifs of various dimensions.
Collapse
|
24
|
Chen J, Yan K, Xiong S, Wei T, Wu X, Chu PK. Controlled fiberization of dipeptide in merging phases leads to collagen-level strength and opto/electric mechanofunctionalities. Biomaterials 2019; 208:1-7. [DOI: 10.1016/j.biomaterials.2019.04.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 03/26/2019] [Accepted: 04/06/2019] [Indexed: 01/21/2023]
|
25
|
Ma L, Liu X, Soh AK, He L, Wu C, Ni Y. Growth of curved crystals: competition between topological defect nucleation and boundary branching. SOFT MATTER 2019; 15:4391-4400. [PMID: 31090782 DOI: 10.1039/c9sm00507b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Topological defect nucleation and boundary branching in crystal growth on a curved surface are two typical elastic instabilities driven by curvature induced stress, and have usually been discussed separately in the past. In this work they are simultaneously considered during crystal growth on a sphere. Phase diagrams with respect to sphere radius, size, edge energy and stiffness of the crystal for the equilibrium crystal morphologies are achieved by theoretical analysis and validated by Brownian dynamics simulations. The simulation results further demonstrate the detail of morphological evolution governed by these two different stress relaxation modes. Topological defect nucleation and boundary branching not only compete with each other but also coexist in a range of combinations of factors. Clarification of the interaction mechanism provides a better understanding of various curved crystal morphologies for their potential applications.
Collapse
Affiliation(s)
- Long Ma
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| | | | | | | | | | | |
Collapse
|
26
|
Abstract
Superparamagnetic filaments assemble, building one-layered aggregates due to the screening effect inherited from the dipole interaction potential in a colloidal blend. The magnetic energy of rectangular and irregular ribbons is computed to obtain their mean length at thermodynamic equilibrium, in good agreement with experimental measurements.
Collapse
Affiliation(s)
- N Rojas
- Centro de Física No Lineal y Sistemas Complejos de Santiago, Av. Vitacura 2902 dep. 606, Santiago, Chile
| |
Collapse
|
27
|
Mozo-Villarías A, Querol E. A protein self-assembly model guided by electrostatic and hydrophobic dipole moments. PLoS One 2019; 14:e0216253. [PMID: 31034513 PMCID: PMC6488083 DOI: 10.1371/journal.pone.0216253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 04/16/2019] [Indexed: 11/28/2022] Open
Abstract
Protein self-assembling is studied under the light of the Biological Membrane model. To this purpose we define a simplified formulation of hydrophobic interaction energy in analogy with electrostatic energy stored in an electric dipole. Self-assembly is considered to be the result of the balanced influence of electrostatic and hydrophobic interactions, limited by steric hindrance as a consequence of the relative proximity of their components. Our analysis predicts the type of interaction that drives an assembly. We study the growth of both electrostatic and hydrophobic energies stored by a protein system as it self-assembles. Each type of assembly is studied by using two examples, PDBid 2OM3 (hydrophobic) and PDBid 3ZEE (electrostatic). Other systems are presented to show the application of our procedure. We also study the relative orientation of the monomers constituting the first dimer of a protein assembly to check whether their relative position provides the optimal interaction energy (energy minimum). It is shown that the inherent orientation of the dimers corresponds to the optimum energy (energy minimum) of assembly compatible with steric limitations. These results confirm and refine our Biological Membrane model of protein self-assembly valid for all open and closed systems.
Collapse
Affiliation(s)
- Angel Mozo-Villarías
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain
- * E-mail:
| | - Enrique Querol
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
28
|
Abstract
Structural hierarchy, in which materials possess distinct features on multiple length scales, is ubiquitous in nature. Diverse biological materials, such as bone, cellulose, and muscle, have as many as 10 hierarchical levels. Structural hierarchy confers many mechanical advantages, including improved toughness and economy of material. However, it also presents a problem: Each hierarchical level adds a new source of assembly errors and substantially increases the information required for proper assembly. This seems to conflict with the prevalence of naturally occurring hierarchical structures, suggesting that a common mechanical source of hierarchical robustness may exist. However, our ability to identify such a unifying phenomenon is limited by the lack of a general mechanical framework for structures exhibiting organization on disparate length scales. Here, we use simulations to substantiate a generalized model for the tensile stiffness of hierarchical filamentous networks with a nested, dilute triangular lattice structure. Following seminal work by Maxwell and others on criteria for stiff frames, we extend the concept of connectivity in network mechanics and find a similar dependence of material stiffness upon each hierarchical level. Using this model, we find that stiffness becomes less sensitive to errors in assembly with additional levels of hierarchy; although surprising, we show that this result is analytically predictable from first principles and thus potentially model independent. More broadly, this work helps account for the success of hierarchical, filamentous materials in biology and materials design and offers a heuristic for ensuring that desired material properties are achieved within the required tolerance.
Collapse
|
29
|
Panaitescu A, Grason GM, Kudrolli A. Persistence of Perfect Packing in Twisted Bundles of Elastic Filaments. PHYSICAL REVIEW LETTERS 2018; 120:248002. [PMID: 29956973 DOI: 10.1103/physrevlett.120.248002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Indexed: 06/08/2023]
Abstract
It is generally understood that geometric frustration prevents maximal hexagonal packings in uniform filament bundles upon twist. We demonstrate that a hexagonal packed elastic filament bundle can preserve its order over a wide range of twist due to a subtle counteraction of geometric expansion with elastic contraction. Using x-ray scanning and by locating each filament in the bundle, we show the remarkable persistence of order even as the twist is increased well above 360°, by measuring the spatial correlation function across the bundle cross section. We introduce a model which analyzes the combined effects of elasticity including filament stretching and radial and hoop compression necessary to explain this generic preservation of order observed with Hookean filaments.
Collapse
Affiliation(s)
- Andreea Panaitescu
- Department of Physics, Clark University, Worcester, Massachusetts 01610, USA
| | - Gregory M Grason
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Arshad Kudrolli
- Department of Physics, Clark University, Worcester, Massachusetts 01610, USA
| |
Collapse
|
30
|
de Sousa TASL, Fernandes TFD, Matos MJS, Araujo END, Mazzoni MSC, Neves BRA, Plentz F. Thionine Self-Assembled Structures on Graphene: Formation, Organization, and Doping. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:6903-6911. [PMID: 29792809 DOI: 10.1021/acs.langmuir.8b00506] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The association of organic molecules with two-dimensional (2D) materials, creating hybrid systems with mutual influences, constitutes an important testbed for both basic science self-assembly studies and perspective applications. Following this concept, in this work, we show a rich phenomenology that is involved in the interaction of thionine with graphene, leading to a hybrid material formed by well-organized self-assembled structures atop graphene. This composite system is investigated by atomic force microscopy, electric transport measurements, Raman spectroscopy, and first principles calculations, which show (1) an interesting time evolution of thionine self-assembled structures atop graphene; (2) a highly oriented final molecular assembly (in accordance with the underlying graphene surface symmetry); and (3) a strong n-type doping effect introduced in graphene by thionine. The nature of the thionine-substrate interaction is further analyzed in experiments using mica as a polar substrate. The present results may help pave the way to achieve tailored 2D material hybrid devices via properly chosen molecular self-assembly processes.
Collapse
Affiliation(s)
- Thiago A S L de Sousa
- Departamento de Física, ICEx , Universidade Federal de Minas Gerais , Avenida Presidente Antônio Carlos 6627 , Belo Horizonte CEP 31270-901 , Brazil
| | - Thales F D Fernandes
- Departamento de Física, ICEx , Universidade Federal de Minas Gerais , Avenida Presidente Antônio Carlos 6627 , Belo Horizonte CEP 31270-901 , Brazil
| | - Matheus J S Matos
- Departamento de Física, ICEB , Universidade Federal de Ouro Preto , R. Diogo de Vasconcelos 122 , Ouro Preto CEP 35400-000 , Brazil
| | - Eduardo N D Araujo
- Departamento de Física, CCE , Universidade Federal de Viçosa , Avenida Peter Henry Rolfs, s/n , Viçosa CEP 36570-900 , Brazil
| | - Mario S C Mazzoni
- Departamento de Física, ICEx , Universidade Federal de Minas Gerais , Avenida Presidente Antônio Carlos 6627 , Belo Horizonte CEP 31270-901 , Brazil
| | - Bernardo R A Neves
- Departamento de Física, ICEx , Universidade Federal de Minas Gerais , Avenida Presidente Antônio Carlos 6627 , Belo Horizonte CEP 31270-901 , Brazil
| | - Flávio Plentz
- Departamento de Física, ICEx , Universidade Federal de Minas Gerais , Avenida Presidente Antônio Carlos 6627 , Belo Horizonte CEP 31270-901 , Brazil
| |
Collapse
|
31
|
Vargas-Lara F, Douglas JF. Fiber Network Formation in Semi-Flexible Polymer Solutions: An Exploratory Computational Study. Gels 2018; 4:E27. [PMID: 30674803 PMCID: PMC6209269 DOI: 10.3390/gels4020027] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/13/2018] [Accepted: 03/14/2018] [Indexed: 11/16/2022] Open
Abstract
The formation of gels through the bundling of semi-flexible polymer chains into fiber networks is ubiquitous in diverse manufactured and natural materials, and, accordingly, we perform exploratory molecular dynamics simulations of a coarse-grained model of semi-flexible polymers in a solution with attractive lateral interchain interactions to understand essential features of this type of gel formation. After showing that our model gives rise to fibrous gels resembling real gels of this kind, we investigate how the extent of fiber bundling influences the "melting" temperature, T m , and the emergent rigidification of model bundled fibers having a fixed number of chains, N, within them. Based on our preliminary observations, we suggest the fiber size is kinetically selected by a reduced thermodynamic driving force and a slowing of the dynamics within the fibers associated with their progressive rigidification with the inclusion of an increasing number of chains in the bundle.
Collapse
Affiliation(s)
- Fernando Vargas-Lara
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.
| | - Jack F Douglas
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.
| |
Collapse
|
32
|
Jiang D, Deng Y, Gao G, Wu L, Yang H. Self-assembly of silica nanowires in a microemulsion system and their adsorption capacity. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2017.11.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|