1
|
Xie N, Sharma C, Rusche K, Wang X. Phosphoketolase and KDPG aldolase metabolisms modulate photosynthetic carbon yield in cyanobacteria. THE PLANT CELL 2024; 37:koae291. [PMID: 39471324 DOI: 10.1093/plcell/koae291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/09/2024] [Accepted: 10/21/2024] [Indexed: 11/01/2024]
Abstract
Cyanobacteria contribute to roughly a quarter of global net carbon fixation. During diel light/dark growth, dark respiration substantially lowers the overall photosynthetic carbon yield in cyanobacteria and other phototrophs. How respiratory pathways participate in carbon resource allocation at night to optimize dark survival and support daytime photosynthesis remains unclear. Here, using the cyanobacterium Synechococcus elongatus PCC 7942, we show that phosphoketolase integrates into a respiratory network in the dark to best allocate carbon resources for amino acid biosynthesis and to prepare for photosynthesis reinitiation upon photoinduction. Moreover, we show that the respiratory Entner-Doudoroff pathway in S. elongatus is incomplete, with its key enzyme 2-keto-3-deoxy-6-phosphogluconate aldolase exhibiting alternative oxaloacetate decarboxylation activity that modulates daytime photosynthesis. This activity allows for the bypassing of the tricarboxylic acid cycle when ATP and NADPH consumption for biosynthesis is excessive and imbalanced relative to their production by the light reactions, thereby preventing relative NADPH accumulation and ensuring optimal photosynthetic carbon yield. Optimizing these metabolic processes offers opportunities to enhance photosynthetic carbon yield in cyanobacteria and other photosynthetic organisms under diel light/dark cycles.
Collapse
Affiliation(s)
- Ningdong Xie
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Chetna Sharma
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Katherine Rusche
- Department of Microbiology, Miami University, Oxford, OH 45056, USA
| | - Xin Wang
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
2
|
Tanaka K, Kondo A, Hasunuma T. Minimized Dark Consumption of Calvin Cycle Intermediates Facilitates the Initiation of Photosynthesis in Synechocystis sp. PCC 6803. PLANT & CELL PHYSIOLOGY 2024; 65:1812-1820. [PMID: 39238237 DOI: 10.1093/pcp/pcae102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/22/2024] [Accepted: 09/05/2024] [Indexed: 09/07/2024]
Abstract
Cyanobacteria intricately regulate their metabolic pathways during the diurnal cycle to ensure survival and growth. Under dark conditions, the breakdown of glycogen, an energy reserve, in these organisms replenishes Calvin cycle intermediates, especially downstream glycolytic metabolites, which are necessary for photosynthesis initiation upon light irradiation. However, it remains unclear how the accumulation of these intermediates is maintained in the dark despite limited glycogen availability. Therefore, in this study, we investigated the regulation of downstream glycolytic metabolites of the Calvin cycle under dark and light conditions using Synechocystis sp. PCC 6803. Our results showed that during the dark period, low pyruvate kinase (Pyk) activity ensured metabolite accumulation, while endogenous Pyk overexpression significantly lowered the accumulation of glycolytic intermediates. Remarkably, wild-type Synechocystis maintained oxygen evolution ability throughout dark treatment for over 2 d, while Pyk overexpression resulted in decreased oxygen evolution after 16 h of dark treatment. These results indicated that limiting Pyk activity via darkness treatment facilitates photosynthetic initiation by maintaining glycolytic intermediates. Similarly, phosphoenolpyruvate carboxylase (PepC) overexpression decreased oxygen evolution under dark treatment; however, its effect was lower than that of Pyk. Furthermore, we noted that as PepC overexpression decreased the levels of glycolytic intermediates in the dark, sugar phosphates in the Calvin-Benson-Bassham (CBB) cycle showed high accumulation, suggesting that sugar phosphates play important roles in supporting photosynthesis initiation. Therefore, our study highlights the importance of controlling the metabolic pathways through which glycolytic and CBB cycle intermediates are consumed (defined as cataplerosis of the CBB cycle) to ensure stable photosynthesis.
Collapse
Affiliation(s)
- Kenya Tanaka
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
- Graduate School of Science, Innovation and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
- Research Center for Solar Energy Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Akihiko Kondo
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
- Graduate School of Science, Innovation and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
- Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Tomohisa Hasunuma
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
- Graduate School of Science, Innovation and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
- Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
3
|
Song N, Xia H, Xie Y, Guo S, Zhou R, Shangguan L, Zhuang K, Zhang H, An F, Zheng X, Yao L, Yang S, Chen X, Dai J. Semi-rational design and modification of phosphoketolase to improve the yield of tyrosol in Saccharomyces cerevisiae. Synth Syst Biotechnol 2024; 10:294-306. [PMID: 39686978 PMCID: PMC11648648 DOI: 10.1016/j.synbio.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/23/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Tyrosol is an important component of pharmaceuticals, nutraceuticals, and cosmetics, and their biosynthetic pathways are currently a hot research topic. d-Erythrose 4-phosphate is a key precursor for the biosynthesis of tyrosol in Saccharomyces cerevisiae. Hence, the flux of d-Erythrose 4-phosphate determined the yield of tyrosol synthesis. In this study, we first obtained an S. cerevisiae strain S19 with a tyrosol yield of 247.66 mg/L by metabolic engineering strategy. To increase the production of d-Erythrose 4-phosphate, highly active phosphoketolase BA-C was obtained by bioinformatics combined with tyrosol yield assay. The key residue sites 183, 217, and 320 were obtained by molecular docking, kinetic simulation, and tyrosol yield verification. After mutation, the highly efficient phosphoketolase BA-CHis320Met was obtained, with a 37.32 % increase in enzyme activity. The tyrosol production of strain S26 with BA-CHis320Arg increased by 43.05 % than strain S25 with BA-C and increased by 151.19 % compared with the strain S19 without phosphoketolase in a 20 L fermenter. The mining and modification of phosphoketolase will provide strong support for the de novo synthesis of aromatic compounds.
Collapse
Affiliation(s)
- Na Song
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, Hubei, 430068, PR China
| | - Huili Xia
- College of Biological and Food Engineering, Huanghuai University, Zhumadian, 463000, PR China
| | - Yaoru Xie
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, Hubei, 430068, PR China
| | - Shuaikang Guo
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, Hubei, 430068, PR China
| | - Rong Zhou
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, Hubei, 430068, PR China
| | - Lingling Shangguan
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, Hubei, 430068, PR China
| | - Kun Zhuang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, Hubei, 430068, PR China
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, PR China
| | - Huiyan Zhang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, Hubei, 430068, PR China
| | - Feiran An
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, Hubei, 430068, PR China
| | - Xueyun Zheng
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, Hubei, 430068, PR China
| | - Lan Yao
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, Hubei, 430068, PR China
| | - Shihui Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, PR China
| | - Xiong Chen
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, Hubei, 430068, PR China
| | - Jun Dai
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, Hubei, 430068, PR China
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, PR China
| |
Collapse
|
4
|
Shen L, Peraglie C, Podlesainski D, Stracke C, Ojha RS, Caliebe F, Kaiser M, Forchhammer K, Hagemann M, Gutekunst K, Snoep JL, Bräsen C, Siebers B. Structure function analysis of ADP-dependent cyanobacterial phosphofructokinase reveals new phylogenetic grouping in the PFK-A family. J Biol Chem 2024; 300:107868. [PMID: 39393572 DOI: 10.1016/j.jbc.2024.107868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/19/2024] [Accepted: 10/01/2024] [Indexed: 10/13/2024] Open
Abstract
Depending on the light conditions, photosynthetic organisms switch between carbohydrate synthesis or breakdown, for which the reversibility of carbohydrate metabolism, including glycolysis, is essential. Kinetic regulation of phosphofructokinase (PFK), a key-control point in glycolysis, was studied in the cyanobacterium Synechocystis sp. PCC 6803. The two PFK iso-enzymes (PFK- A1, PFK-A2), were found to use ADP instead of ATP, and have similar kinetic characteristics, but differ in their allosteric regulation. PFK-A1 is inhibited by 3-phosphoglycerate, a product of the Calvin-Benson-Bassham cycle, while PFK-A2 is inhibited by ATP, which is provided by photosynthesis. This regulation enables cyanobacteria to switch PFK off in light, and on in darkness. ADP dependence has not been reported before for the PFK-A enzyme family and was thought to be restricted to the PFK-B ribokinase superfamily. Phosphate donor specificity within the PFK-A family could be related to specific binding motifs in ATP-, ADP-, and PPi-dependent PFK-As. Phylogenetic analysis revealed a distribution of ADP-PFK-As in cyanobacteria and in a few alphaproteobacteria, which was confirmed in enzymatic studies.
Collapse
Affiliation(s)
- Lu Shen
- Molecular Enzyme Technology and Biochemistry (MEB), Environmental Microbiology and Biotechnology (EMB), Centre for Water and Environmental Research (CWE), Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Carmen Peraglie
- Molecular Enzyme Technology and Biochemistry (MEB), Environmental Microbiology and Biotechnology (EMB), Centre for Water and Environmental Research (CWE), Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - David Podlesainski
- Chemical Biology, Centre of Medical Biotechnology (ZMB), Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Christina Stracke
- Molecular Enzyme Technology and Biochemistry (MEB), Environmental Microbiology and Biotechnology (EMB), Centre for Water and Environmental Research (CWE), Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Ravi Shankar Ojha
- Molecular Enzyme Technology and Biochemistry (MEB), Environmental Microbiology and Biotechnology (EMB), Centre for Water and Environmental Research (CWE), Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Frauke Caliebe
- Molekulare Pflanzenphysiologie, University of Kassel, Kassel, Germany
| | - Markus Kaiser
- Chemical Biology, Centre of Medical Biotechnology (ZMB), Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | | | | | - Kirstin Gutekunst
- Molekulare Pflanzenphysiologie, University of Kassel, Kassel, Germany
| | - Jacky L Snoep
- Biochemistry, University of Stellenbosch, Stellenbosch, South Africa; Molecular Cell Biology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Christopher Bräsen
- Molecular Enzyme Technology and Biochemistry (MEB), Environmental Microbiology and Biotechnology (EMB), Centre for Water and Environmental Research (CWE), Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany.
| | - Bettina Siebers
- Molecular Enzyme Technology and Biochemistry (MEB), Environmental Microbiology and Biotechnology (EMB), Centre for Water and Environmental Research (CWE), Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
5
|
Ding Q, Liu L. Reprogramming cellular metabolism to increase the efficiency of microbial cell factories. Crit Rev Biotechnol 2024; 44:892-909. [PMID: 37380349 DOI: 10.1080/07388551.2023.2208286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 04/11/2023] [Indexed: 06/30/2023]
Abstract
Recent studies are increasingly focusing on advanced biotechnological tools, self-adjusting smart microorganisms, and artificial intelligent networks, to engineer microorganisms with various functions. Microbial cell factories are a vital platform for improving the bioproduction of medicines, biofuels, and biomaterials from renewable carbon sources. However, these processes are significantly affected by cellular metabolism, and boosting the efficiency of microbial cell factories remains a challenge. In this review, we present a strategy for reprogramming cellular metabolism to enhance the efficiency of microbial cell factories for chemical biosynthesis, which improves our understanding of microbial physiology and metabolic control. Current methods are mainly focused on synthetic pathways, metabolic resources, and cell performance. This review highlights the potential biotechnological strategy to reprogram cellular metabolism and provide novel guidance for designing more intelligent industrial microbes with broader applications in this growing field.
Collapse
Affiliation(s)
- Qiang Ding
- School of Life Sciences, Anhui University, Hefei, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, Anhui, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui, China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
6
|
Zhang C, Zhou DF, Wang MY, Song YZ, Zhang C, Zhang MM, Sun J, Yao L, Mo XH, Ma ZX, Yuan XJ, Shao Y, Wang HR, Dong SH, Bao K, Lu SH, Sadilek M, Kalyuzhnaya MG, Xing XH, Yang S. Phosphoribosylpyrophosphate synthetase as a metabolic valve advances Methylobacterium/Methylorubrum phyllosphere colonization and plant growth. Nat Commun 2024; 15:5969. [PMID: 39013920 PMCID: PMC11252147 DOI: 10.1038/s41467-024-50342-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 07/06/2024] [Indexed: 07/18/2024] Open
Abstract
The proficiency of phyllosphere microbiomes in efficiently utilizing plant-provided nutrients is pivotal for their successful colonization of plants. The methylotrophic capabilities of Methylobacterium/Methylorubrum play a crucial role in this process. However, the precise mechanisms facilitating efficient colonization remain elusive. In the present study, we investigate the significance of methanol assimilation in shaping the success of mutualistic relationships between methylotrophs and plants. A set of strains originating from Methylorubrum extorquens AM1 are subjected to evolutionary pressures to thrive under low methanol conditions. A mutation in the phosphoribosylpyrophosphate synthetase gene is identified, which converts it into a metabolic valve. This valve redirects limited C1-carbon resources towards the synthesis of biomass by up-regulating a non-essential phosphoketolase pathway. These newly acquired bacterial traits demonstrate superior colonization capabilities, even at low abundance, leading to increased growth of inoculated plants. This function is prevalent in Methylobacterium/Methylorubrum strains. In summary, our findings offer insights that could guide the selection of Methylobacterium/Methylorubrum strains for advantageous agricultural applications.
Collapse
Affiliation(s)
- Cong Zhang
- School of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong, PR China
- Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, Shandong, PR China
- Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong, PR China
| | - Di-Fei Zhou
- School of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong, PR China
- Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, Shandong, PR China
- Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong, PR China
| | - Meng-Ying Wang
- School of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong, PR China
- Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, Shandong, PR China
- Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong, PR China
| | - Ya-Zhen Song
- School of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong, PR China
- Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, Shandong, PR China
- Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong, PR China
| | - Chong Zhang
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, PR China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing, PR China
| | - Ming-Ming Zhang
- School of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong, PR China
- Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, Shandong, PR China
- Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong, PR China
| | - Jing Sun
- School of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong, PR China
- Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, Shandong, PR China
- Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong, PR China
| | - Lu Yao
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong, PR China
| | - Xu-Hua Mo
- School of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong, PR China
- Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, Shandong, PR China
- Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong, PR China
| | - Zeng-Xin Ma
- School of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong, PR China
- Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, Shandong, PR China
- Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong, PR China
| | - Xiao-Jie Yuan
- School of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong, PR China
- Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, Shandong, PR China
- Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong, PR China
| | - Yi Shao
- School of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong, PR China
- Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, Shandong, PR China
- Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong, PR China
| | - Hao-Ran Wang
- School of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong, PR China
- Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, Shandong, PR China
- Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong, PR China
| | - Si-Han Dong
- School of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong, PR China
- Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, Shandong, PR China
- Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong, PR China
| | - Kai Bao
- School of Life Sciences, Hubei University, Wuhan, Hubei, PR China
| | - Shu-Huan Lu
- CABIO Biotech (Wuhan) Co. Ltd., Wuhan, Hubei, PR China
| | - Martin Sadilek
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | | | - Xin-Hui Xing
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, PR China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing, PR China
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen, PR China
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, PR China
| | - Song Yang
- School of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong, PR China.
- Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, Shandong, PR China.
- Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong, PR China.
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong, PR China.
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, PR China.
| |
Collapse
|
7
|
Lucius S, Hagemann M. The primary carbon metabolism in cyanobacteria and its regulation. FRONTIERS IN PLANT SCIENCE 2024; 15:1417680. [PMID: 39036361 PMCID: PMC11257934 DOI: 10.3389/fpls.2024.1417680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/24/2024] [Indexed: 07/23/2024]
Abstract
Cyanobacteria are the only prokaryotes capable of performing oxygenic photosynthesis. Many cyanobacterial strains can live in different trophic modes, ranging from photoautotrophic and heterotrophic to mixotrophic growth. However, the regulatory mechanisms allowing a flexible switch between these lifestyles are poorly understood. As anabolic fixation of CO2 in the Calvin-Benson-Bassham (CBB) cycle and catabolic sugar-degradation pathways share intermediates and enzymatic capacity, a tight regulatory network is required to enable simultaneous opposed metabolic fluxes. The Entner-Doudoroff (ED) pathway was recently predicted as one glycolytic route, which cooperates with other pathways in glycogen breakdown. Despite low carbon flux through the ED pathway, metabolite analyses of mutants deficient in the ED pathway revealed a distinct phenotype pointing at a strong regulatory impact of this route. The small Cp12 protein downregulates the CBB cycle in darkness by inhibiting phosphoribulokinase and glyceraldehyde 3-phosphate dehydrogenase. New results of metabolomic and redox level analyses on strains with Cp12 variants extend the known role of Cp12 regulation towards the acclimation to external glucose supply under diurnal conditions as well as to fluctuations in CO2 levels in the light. Moreover, carbon and nitrogen metabolism are closely linked to maintain an essential C/N homeostasis. The small protein PirC was shown to be an important regulator of phosphoglycerate mutase, which identified this enzyme as central branching point for carbon allocation from CBB cycle towards lower glycolysis. Altered metabolite levels in the mutant ΔpirC during nitrogen starvation experiments confirm this regulatory mechanism. The elucidation of novel mechanisms regulating carbon allocation at crucial metabolic branching points could identify ways for targeted redirection of carbon flow towards desired compounds, and thus help to further establish cyanobacteria as green cell factories for biotechnological applications with concurrent utilization of sunlight and CO2.
Collapse
Affiliation(s)
| | - Martin Hagemann
- Department Plant Physiology, University of Rostock, Rostock, Germany
| |
Collapse
|
8
|
Domínguez-Lobo MT, Roldán M, Gutiérrez-Diánez AM, Florencio FJ, Muro-Pastor MI. Double blocking of carbon metabolism causes a large increase of Calvin-Benson cycle compounds in cyanobacteria. PLANT PHYSIOLOGY 2024; 195:1491-1505. [PMID: 38377468 PMCID: PMC11142378 DOI: 10.1093/plphys/kiae083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/08/2024] [Accepted: 01/19/2024] [Indexed: 02/22/2024]
Abstract
Carbon-flow-regulator A (CfrA) adapts carbon flux to nitrogen conditions in nondiazotrophic cyanobacteria. Under nitrogen deficiency, CfrA leads to the storage of excess carbon, which cannot combine with nitrogen, mainly as glycogen. cfrA overexpression from the arsenite-inducible, nitrogen-independent ParsB promoter allows analysis of the metabolic effects of CfrA accumulation. Considering that the main consequence of cfrA overexpression is glycogen accumulation, we examined carbon distribution in response to cfrA expression in Synechocystis sp. PCC 6803 strains impaired in synthesizing this polymer. We carried out a comparative phenotypic analysis to evaluate cfrA overexpression in the wild-type strain and in a mutant of ADP-glucose pyrophosphorylase (ΔglgC), which is unable to synthesize glycogen. The accumulation of CfrA in the wild-type background caused a photosynthetic readjustment although growth was not affected. However, in a ΔglgC strain, growth decreased depending on CfrA accumulation and photosynthesis was severely affected. An elemental analysis of the H, C, and N content of cells revealed that cfrA expression in the wild-type caused an increase in the C/N ratio, due to decreased nitrogen assimilation. Metabolomic study indicated that these cells store sucrose and glycosylglycerol, in addition to the previously described glycogen accumulation. However, cells deficient in glycogen synthesis accumulated large amounts of Calvin-Benson cycle intermediates as cfrA was expressed. These cells also showed increased levels of some amino acids, mainly alanine, serine, valine, isoleucine, and leucine. The findings suggest that by controlling cfrA expression, in different conditions and strains, we could change the distribution of fixed carbon, with potential biotechnological benefits.
Collapse
Affiliation(s)
| | - Miguel Roldán
- Instituto de Bioquímica Vegetal y Fotosíntesis (IBVF), CSIC-Universidad de Sevilla, Sevilla 41092, Spain
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Biología, Universidad de Sevilla, Sevilla 41012, Spain
| | - Alba María Gutiérrez-Diánez
- Instituto de Bioquímica Vegetal y Fotosíntesis (IBVF), CSIC-Universidad de Sevilla, Sevilla 41092, Spain
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Biología, Universidad de Sevilla, Sevilla 41012, Spain
| | - Francisco Javier Florencio
- Instituto de Bioquímica Vegetal y Fotosíntesis (IBVF), CSIC-Universidad de Sevilla, Sevilla 41092, Spain
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Biología, Universidad de Sevilla, Sevilla 41012, Spain
| | - María Isabel Muro-Pastor
- Instituto de Bioquímica Vegetal y Fotosíntesis (IBVF), CSIC-Universidad de Sevilla, Sevilla 41092, Spain
| |
Collapse
|
9
|
Li L, Xie G, Dong P, Tang H, Wu L, Zhang L. Anticyanobacterial effect of p-coumaric acid on Limnothrix sp. determined by proteomic and metabolomic analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171632. [PMID: 38471589 DOI: 10.1016/j.scitotenv.2024.171632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/23/2024] [Accepted: 03/08/2024] [Indexed: 03/14/2024]
Abstract
Regulating photosynthetic machinery is a powerful but challenging strategy for selectively inhibiting bloom-forming cyanobacteria, in which photosynthesis mainly occurs in thylakoids. P-coumaric acid (p-CA) has several biological properties, including free radical scavenging and antibacterial effects, and studies have shown that it can damage bacterial cell membranes, reduce chlorophyll a in cyanobacteria, and effectively inhibit algal growth at concentrations exceeding 0.127 g/L. Allelochemicals typically inhibit cyanobacteria by inhibiting photosynthesis; however, research on inhibiting harmful algae using phenolic acids has focused mainly on their inhibitory and toxic effects and metabolite levels, and the molecular mechanism by which p-CA inhibits photosynthesis remains unclear. Thus, we examined the effect of p-CA on the photosynthesis of Limnothrix sp. in detail. We found that p-CA inhibits algal growth and damages photosynthesis-related proteins in Limnothrix sp., reduces carotenoid and allophycocyanin levels, and diminishes the actual quantum yield of Photosystem II (PSII). Moreover, p-CA significantly altered algal cell membrane protein systems, and PSII loss resulting from p-CA exposure promoted reactive oxygen species production. It significantly altered algae cell membrane protein systems. Finally, p-CA was found to be environmentally nontoxic; 80 % of 48-h-old Daphnia magna larvae survived when exposed to 0.15 g/L p-CA. These findings provide insight into the mechanism of cyanobacterial inhibition by p-CA, providing a more practical approach to controlling harmful algal blooms.
Collapse
Affiliation(s)
- Lingzhi Li
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Gengxin Xie
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China.
| | - Pan Dong
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Hui Tang
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Liping Wu
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Liang Zhang
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| |
Collapse
|
10
|
Hudson EP. The Calvin Benson cycle in bacteria: New insights from systems biology. Semin Cell Dev Biol 2024; 155:71-83. [PMID: 37002131 DOI: 10.1016/j.semcdb.2023.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 02/21/2023] [Accepted: 03/16/2023] [Indexed: 03/31/2023]
Abstract
The Calvin Benson cycle in phototrophic and chemolithoautotrophic bacteria has ecological and biotechnological importance, which has motivated study of its regulation. I review recent advances in our understanding of how the Calvin Benson cycle is regulated in bacteria and the technologies used to elucidate regulation and modify it, and highlight differences between and photoautotrophic and chemolithoautotrophic models. Systems biology studies have shown that in oxygenic phototrophic bacteria, Calvin Benson cycle enzymes are extensively regulated at post-transcriptional and post-translational levels, with multiple enzyme activities connected to cellular redox status through thioredoxin. In chemolithoautotrophic bacteria, regulation is primarily at the transcriptional level, with effector metabolites transducing cell status, though new methods should now allow facile, proteome-wide exploration of biochemical regulation in these models. A biotechnological objective is to enhance CO2 fixation in the cycle and partition that carbon to a product of interest. Flux control of CO2 fixation is distributed over multiple enzymes, and attempts to modulate gene Calvin cycle gene expression show a robust homeostatic regulation of growth rate, though the synthesis rates of products can be significantly increased. Therefore, de-regulation of cycle enzymes through protein engineering may be necessary to increase fluxes. Non-canonical Calvin Benson cycles, if implemented with synthetic biology, could have reduced energy demand and enzyme loading, thus increasing the attractiveness of these bacteria for industrial applications.
Collapse
Affiliation(s)
- Elton P Hudson
- Department of Protein Science, Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden.
| |
Collapse
|
11
|
Kugler A, Stensjö K. Machine learning predicts system-wide metabolic flux control in cyanobacteria. Metab Eng 2024; 82:171-182. [PMID: 38395194 DOI: 10.1016/j.ymben.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/14/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
Metabolic fluxes and their control mechanisms are fundamental in cellular metabolism, offering insights for the study of biological systems and biotechnological applications. However, quantitative and predictive understanding of controlling biochemical reactions in microbial cell factories, especially at the system level, is limited. In this work, we present ARCTICA, a computational framework that integrates constraint-based modelling with machine learning tools to address this challenge. Using the model cyanobacterium Synechocystis sp. PCC 6803 as chassis, we demonstrate that ARCTICA effectively simulates global-scale metabolic flux control. Key findings are that (i) the photosynthetic bioproduction is mainly governed by enzymes within the Calvin-Benson-Bassham (CBB) cycle, rather than by those involve in the biosynthesis of the end-product, (ii) the catalytic capacity of the CBB cycle limits the photosynthetic activity and downstream pathways and (iii) ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) is a major, but not the most, limiting step within the CBB cycle. Predicted metabolic reactions qualitatively align with prior experimental observations, validating our modelling approach. ARCTICA serves as a valuable pipeline for understanding cellular physiology and predicting rate-limiting steps in genome-scale metabolic networks, and thus provides guidance for bioengineering of cyanobacteria.
Collapse
Affiliation(s)
- Amit Kugler
- Microbial Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523, SE-751 20, Uppsala, Sweden
| | - Karin Stensjö
- Microbial Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523, SE-751 20, Uppsala, Sweden.
| |
Collapse
|
12
|
Law RC, Nurwono G, Park JO. A parallel glycolysis provides a selective advantage through rapid growth acceleration. Nat Chem Biol 2024; 20:314-322. [PMID: 37537378 PMCID: PMC10987256 DOI: 10.1038/s41589-023-01395-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 07/06/2023] [Indexed: 08/05/2023]
Abstract
Glycolysis is a universal metabolic process that breaks down glucose to produce adenosine triphosphate (ATP) and biomass precursors. The Entner-Doudoroff (ED) pathway is a glycolytic pathway that parallels textbook glycolysis but yields half as much ATP. Accordingly, in organisms that possess both glycolytic pathways (for example, Escherichia coli), its raison d'être remains a mystery. In this study, we found that the ED pathway provides a selective advantage during growth acceleration. Upon carbon and nitrogen upshifts, E. coli accelerates growth faster with than without the ED pathway. Concurrent isotope tracing reveals that the ED pathway flux increases faster than that of textbook glycolysis. We attribute the fast response time of the ED pathway to its strong thermodynamic driving force and streamlining of glucose import. Intermittent nutrient supply manifests the evolutionary advantage of the parallel glycolysis; thus, the dynamic nature of an ostensibly redundant pathway's role in promoting rapid adaptation constitutes a metabolic design principle.
Collapse
Affiliation(s)
- Richard C Law
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Glenn Nurwono
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Junyoung O Park
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
13
|
Mrowicka M, Mrowicki J, Dragan G, Majsterek I. The importance of thiamine (vitamin B1) in humans. Biosci Rep 2023; 43:BSR20230374. [PMID: 37389565 PMCID: PMC10568373 DOI: 10.1042/bsr20230374] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/11/2023] [Accepted: 06/14/2023] [Indexed: 07/01/2023] Open
Abstract
Thiamine (thiamin, B1) is a vitamin necessary for proper cell function. It exists in a free form as a thiamine, or as a mono-, di- or triphosphate. Thiamine plays a special role in the body as a coenzyme necessary for the metabolism of carbohydrates, fats and proteins. In addition, it participates in the cellular respiration and oxidation of fatty acids: in malnourished people, high doses of glucose result in acute thiamine deficiency. It also participates in energy production in the mitochondria and protein synthesis. In addition, it is also needed to ensure the proper functioning of the central and peripheral nervous system, where it is involved in neurotransmitter synthesis. Its deficiency leads to mitochondrial dysfunction, lactate and pyruvate accumulation, and consequently to focal thalamic degeneration, manifested as Wernicke's encephalopathy or Wernicke-Korsakoff syndrome. It can also lead to severe or even fatal neurologic and cardiovascular complications, including heart failure, neuropathy leading to ataxia and paralysis, confusion, or delirium. The most common risk factor for thiamine deficiency is alcohol abuse. This paper presents current knowledge of the biological functions of thiamine, its antioxidant properties, and the effects of its deficiency in the body.
Collapse
Affiliation(s)
- Małgorzata Mrowicka
- Małgorzata Mrowicka, Jerzy Mrowicki, Grzegorz Dragan, Ireneusz Majsterek, Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland
| | - Jerzy Mrowicki
- Małgorzata Mrowicka, Jerzy Mrowicki, Grzegorz Dragan, Ireneusz Majsterek, Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland
| | - Grzegorz Dragan
- Małgorzata Mrowicka, Jerzy Mrowicki, Grzegorz Dragan, Ireneusz Majsterek, Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland
| | - Ireneusz Majsterek
- Małgorzata Mrowicka, Jerzy Mrowicki, Grzegorz Dragan, Ireneusz Majsterek, Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland
| |
Collapse
|
14
|
Kugler A, Stensjö K. Optimal energy and redox metabolism in the cyanobacterium Synechocystis sp. PCC 6803. NPJ Syst Biol Appl 2023; 9:47. [PMID: 37739963 PMCID: PMC10516873 DOI: 10.1038/s41540-023-00307-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 09/01/2023] [Indexed: 09/24/2023] Open
Abstract
Understanding energy and redox homeostasis and carbon partitioning is crucial for systems metabolic engineering of cell factories. Carbon metabolism alone cannot achieve maximal accumulation of metabolites in production hosts, since an efficient production of target molecules requires energy and redox balance, in addition to carbon flow. The interplay between cofactor regeneration and heterologous production in photosynthetic microorganisms is not fully explored. To investigate the optimality of energy and redox metabolism, while overproducing alkenes-isobutene, isoprene, ethylene and 1-undecene, in the cyanobacterium Synechocystis sp. PCC 6803, we applied stoichiometric metabolic modelling. Our network-wide analysis indicates that the rate of NAD(P)H regeneration, rather than of ATP, controls ATP/NADPH ratio, and thereby bioproduction. The simulation also implies that energy and redox balance is interconnected with carbon and nitrogen metabolism. Furthermore, we show that an auxiliary pathway, composed of serine, one-carbon and glycine metabolism, supports cellular redox homeostasis and ATP cycling. The study revealed non-intuitive metabolic pathways required to enhance alkene production, which are mainly driven by a few key reactions carrying a high flux. We envision that the presented comparative in-silico metabolic analysis will guide the rational design of Synechocystis as a photobiological production platform of target chemicals.
Collapse
Affiliation(s)
- Amit Kugler
- Microbial Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523, SE-751 20, Uppsala, Sweden
| | - Karin Stensjö
- Microbial Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523, SE-751 20, Uppsala, Sweden.
| |
Collapse
|
15
|
Stebegg R, Schmetterer G, Rompel A. Heterotrophy among Cyanobacteria. ACS OMEGA 2023; 8:33098-33114. [PMID: 37744813 PMCID: PMC10515406 DOI: 10.1021/acsomega.3c02205] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 07/10/2023] [Indexed: 09/26/2023]
Abstract
Cyanobacteria have been studied in recent decades to investigate the principle mechanisms of plant-type oxygenic photosynthesis, as they are the inventors of this process, and their cultivation and research is much easier compared to land plants. Nevertheless, many cyanobacterial strains possess the capacity for at least some forms of heterotrophic growth. This review demonstrates that cyanobacteria are much more than simple photoautotrophs, and their flexibility toward different environmental conditions has been underestimated in the past. It summarizes the strains capable of heterotrophy known by date structured by their phylogeny and lists the possible substrates for heterotrophy for each of them in a table in the Supporting Information. The conditions are discussed in detail that cause heterotrophic growth for each strain in order to allow for reproduction of the results. The review explains the importance of this knowledge for the use of new methods of cyanobacterial cultivation, which may be advantageous under certain conditions. It seeks to stimulate other researchers to identify new strains capable of heterotrophy that have not been known so far.
Collapse
Affiliation(s)
- Ronald Stebegg
- Universität Wien, Fakultät für Chemie, Institut für
Biophysikalische Chemie, 1090 Wien, Austria
| | - Georg Schmetterer
- Universität Wien, Fakultät für Chemie, Institut für
Biophysikalische Chemie, 1090 Wien, Austria
| | - Annette Rompel
- Universität Wien, Fakultät für Chemie, Institut für
Biophysikalische Chemie, 1090 Wien, Austria
| |
Collapse
|
16
|
Santos-Merino M, Ducat DC. Switching off the lights to illuminate a photosynthetic brake in cyanobacteria. Nat Metab 2023; 5:1078-1079. [PMID: 37349484 DOI: 10.1038/s42255-023-00827-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/24/2023]
Affiliation(s)
- María Santos-Merino
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
| | - Daniel C Ducat
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, USA.
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
17
|
Lu KJ, Chang CW, Wang CH, Chen FYH, Huang IY, Huang PH, Yang CH, Wu HY, Wu WJ, Hsu KC, Ho MC, Tsai MD, Liao JC. An ATP-sensitive phosphoketolase regulates carbon fixation in cyanobacteria. Nat Metab 2023; 5:1111-1126. [PMID: 37349485 PMCID: PMC10365998 DOI: 10.1038/s42255-023-00831-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 05/25/2023] [Indexed: 06/24/2023]
Abstract
Regulation of CO2 fixation in cyanobacteria is important both for the organism and global carbon balance. Here we show that phosphoketolase in Synechococcus elongatus PCC7942 (SeXPK) possesses a distinct ATP-sensing mechanism, where a drop in ATP level allows SeXPK to divert precursors of the RuBisCO substrate away from the Calvin-Benson-Bassham cycle. Deleting the SeXPK gene increased CO2 fixation particularly during light-dark transitions. In high-density cultures, the Δxpk strain showed a 60% increase in carbon fixation and unexpectedly resulted in sucrose secretion without any pathway engineering. Using cryo-EM analysis, we discovered that these functions were enabled by a unique allosteric regulatory site involving two subunits jointly binding two ATP, which constantly suppresses the activity of SeXPK until the ATP level drops. This magnesium-independent ATP allosteric site is present in many species across all three domains of life, where it may also play important regulatory functions.
Collapse
Affiliation(s)
- Kuan-Jen Lu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Chiung-Wen Chang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Chun-Hsiung Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | | | - Irene Y Huang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Pin-Hsuan Huang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Cheng-Han Yang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Hsiang-Yi Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Wen-Jin Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Kai-Cheng Hsu
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan
| | - Meng-Chiao Ho
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Ming-Daw Tsai
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan.
| | - James C Liao
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
18
|
Gonzalez-Nayeck AC, Grim SL, Waldbauer J, Dick GJ, Pearson A. Isotopic Signatures of Carbon Transfer in a Proterozoic Analogue Microbial Mat. Appl Environ Microbiol 2023; 89:e0187022. [PMID: 37093010 PMCID: PMC10231192 DOI: 10.1128/aem.01870-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 03/24/2023] [Indexed: 04/25/2023] Open
Abstract
Modern microbial mats are potential analogues for Proterozoic ecosystems, yet only a few studies have characterized mats under low-oxygen conditions that are relevant to Proterozoic environments. Here, we use protein-stable isotope fingerprinting (P-SIF) to determine the protein carbon isotope (δ13C) values of autotrophic, heterotrophic, and mixotrophic organisms in a benthic microbial mat from the low-oxygen Middle Island Sinkhole, Lake Huron, USA (MIS). We also measure the δ13C values of the sugar moieties of exopolysaccharides (EPS) within the mat to explore the relationships between cyanobacterial exudates and heterotrophic anabolic carbon uptake. Our results show that Cyanobacteria (autotrophs) are 13C-depleted, relative to sulfate-reducing bacteria (heterotrophs), and 13C-enriched, relative to sulfur oxidizing bacteria (autotrophs or mixotrophs). We also find that the pentose moieties of EPS are systematically enriched in 13C, relative to the hexose moieties of EPS. We hypothesize that these isotopic patterns reflect cyanobacterial metabolic pathways, particularly phosphoketolase, that are relatively more active in low-oxygen mat environments, rather than oxygenated mat environments. This results in isotopically more heterogeneous C sources in low-oxygen mats. While this might partially explain the isotopic variability observed in Proterozoic mat facies, further work is necessary to systematically characterize the isotopic fractionations that are associated with the synthesis of cyanobacterial exudates. IMPORTANCE The δ13C compositions of heterotrophic microorganisms are dictated by the δ13C compositions of their organic carbon sources. In both modern and ancient photosynthetic microbial mats, photosynthetic exudates are the most likely source of organic carbon for heterotrophs. We measured the δ13C values of autotrophic, heterotrophic, and mixotrophic bacteria as well as the δ13C value of the most abundant photosynthetic exudate (exopolysaccharide) in a modern analogue for a Proterozoic environment. Given these data, future studies will be better equipped to estimate the most likely carbon source for heterotrophs in both modern environments as well as in Proterozoic environments preserved in the rock record.
Collapse
Affiliation(s)
- Ana C. Gonzalez-Nayeck
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts, USA
| | - Sharon L. Grim
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Jacob Waldbauer
- Department of the Geophysical Sciences, University of Chicago, Chicago, Illinois, USA
| | - Gregory J. Dick
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Ann Pearson
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
19
|
Witthohn M, Strieth D, Kollmen J, Schwarz A, Ulber R, Muffler K. Process Technologies of Cyanobacteria. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2022. [PMID: 36571615 DOI: 10.1007/10_2022_214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Although the handling and exploitation of cyanobacteria is associated with some challenges, these phototrophic bacteria offer great opportunities for innovative biotechnological processes. This chapter covers versatile aspects of working with cyanobacteria, starting with up-to-date in silico and in vitro screening methods for bioactive substances. Subsequently, common conservation techniques and vitality/viability estimation methods are compared and supplemented by own data regarding the non-invasive vitality evaluation via pulse amplitude modulated fluorometry. Moreover, novel findings about the influence the state of the pre-cultures have on main cultures are presented. The following sub-chapters deal with different photobioreactor-designs, with special regard to biofilm photobioreactors, as well as with heterotrophic and mixotrophic cultivation modes. The latter topic provides information from literature on successfully enhanced cyanobacterial production processes, augmented by own data.
Collapse
Affiliation(s)
- Marco Witthohn
- Department of Life Sciences and Engineering, University of Applied Sciences Bingen, Bingen, Germany
| | - Dorina Strieth
- Chair of Bioprocess Engineering, Technical University of Kaiserslautern, Kaiserslautern, Germany
| | - Jonas Kollmen
- Chair of Bioprocess Engineering, Technical University of Kaiserslautern, Kaiserslautern, Germany
| | - Anna Schwarz
- Department of Life Sciences and Engineering, University of Applied Sciences Bingen, Bingen, Germany
| | - Roland Ulber
- Chair of Bioprocess Engineering, Technical University of Kaiserslautern, Kaiserslautern, Germany.
| | - Kai Muffler
- Department of Life Sciences and Engineering, University of Applied Sciences Bingen, Bingen, Germany
| |
Collapse
|
20
|
Kumar N, Kar S, Shukla P. Role of regulatory pathways and multi-omics approaches for carbon capture and mitigation in cyanobacteria. BIORESOURCE TECHNOLOGY 2022; 366:128104. [PMID: 36257524 DOI: 10.1016/j.biortech.2022.128104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Cyanobacteria are known for their metabolic potential and carbon capture and sequestration capabilities. These cyanobacteria are not only an effective source for carbon minimization and resource mobilization into value-added products for biotechnological gains. The present review focuses on the detailed description of carbon capture mechanisms exerted by the various cyanobacterial strains, the role of important regulatory pathways, and their subsequent genes responsible for such mechanisms. Moreover, this review will also describe effectual mechanisms of central carbon metabolism like isoprene synthesis, ethylene production, MEP pathway, and the role of Glyoxylate shunt in the carbon sequestration mechanisms. This review also describes some interesting facets of using carbon assimilation mechanisms for valuable bio-products. The role of regulatory pathways and multi-omics approaches in cyanobacteria will not only be crucial towards improving carbon utilization but also will give new insights into utilizing cyanobacterial bioresource for carbon neutrality.
Collapse
Affiliation(s)
- Niwas Kumar
- Society for Research and Initiatives for Sustainable Technologies and Institutions, Navrangapura, Ahmedabad 380009, India
| | - Srabani Kar
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
21
|
Shi N, Yan X, Adeleye AS, Zhang X, Zhou D, Zhao L. Effects of WS 2 Nanosheets on N 2-fixing Cyanobacteria: ROS overproduction, cell membrane damage, and cell metabolic reprogramming. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 849:157706. [PMID: 35908696 DOI: 10.1016/j.scitotenv.2022.157706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
The ecotoxicity of tungsten disulfide (WS2) nanomaterials remains unclear so far. Here, the toxicity of WS2 nanosheets on N2-fixing cyanobacteria (Nostoc sphaeroides) was evaluated. Specifically, Nostoc were cultivated in media spiked with different concentrations of WS2 nanosheets (0, 0.05, 0.1 and 0.5 mg/L) for 96 h. Relative to unexposed cells, WS2 nanosheets at 0.5 mg/L significantly decreased cell density, content of total sugar and protein by 10.9 %, 0.43 %, and 6.1 %, respectively. Gas chromatography-mass spectrometry (GC-MS)-based metabolomics revealed that WS2 nanosheets exposure altered the metabolite profile of Nostoc in a dose-dependent manner. Energy metabolism related pathways, including the Calvin-Benson-Bassham (CBB) cycle and tricarboxylic acid (TCA) cycle, were significantly inhibited. In addition, WS2 nanosheets exposure resulted in downregulation (20-40 %) of S-containing amino acids (cystine, methionine, and cysteine) and sulfuric acid. Additionally, fatty acids and antioxidant-related compounds (formononetin, catechin, epigallocatechin, dehydroascorbic acid, and alpha-tocopherol) in Nostoc were drastically decreased by 4-50 % upon exposure to WS2 nanosheets, which implies oxidative stress induced by the nanomaterials. Biochemical assays for reactive oxygen species (ROS) and malondialdehyde (MDA) confirmed that WS2 nanosheets triggered ROS overproduction and induced lipid peroxidation. Taken together, WS2 exposure perturbed carbon (C), nitrogen (N), and sulfate (S) metabolism of Nostoc, which may influence C, N, and S cycling, given the important roles of cyanobacteria in these processes. These results highlight the need for caution in the application and environmental release of WS2 nanomaterials to prevent unintended environmental impacts due to their potential ecotoxicity.
Collapse
Affiliation(s)
- Nibin Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Xin Yan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Adeyemi S Adeleye
- Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697-2175, USA
| | - Xuxiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Lijuan Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
22
|
Bachhar A, Jablonsky J. Entner-Doudoroff pathway in Synechocystis PCC 6803: Proposed regulatory roles and enzyme multifunctionalities. Front Microbiol 2022; 13:967545. [PMID: 36051759 PMCID: PMC9424857 DOI: 10.3389/fmicb.2022.967545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
The Entner-Doudoroff pathway (ED-P) was established in 2016 as the fourth glycolytic pathway in Synechocystis sp. PCC 6803. ED-P consists of two reactions, the first catalyzed by 6-phosphogluconate dehydratase (EDD), the second by keto3-deoxygluconate-6-phosphate aldolase/4-hydroxy-2-oxoglutarate aldolase (EDA). ED-P was previously concluded to be a widespread (∼92%) pathway among cyanobacteria, but current bioinformatic analysis estimated the occurrence of ED-P to be either scarce (∼1%) or uncommon (∼47%), depending if dihydroxy-acid dehydratase (ilvD) also functions as EDD (currently assumed). Thus, the biochemical characterization of ilvD is a task pending to resolve this uncertainty. Next, we have provided new insights into several single and double glycolytic mutants based on kinetic model of central carbon metabolism of Synechocystis. The model predicted that silencing 6-phosphogluconate dehydrogenase (gnd) could be coupled with ∼90% down-regulation of G6P-dehydrogenase, also limiting the metabolic flux via ED-P. Furthermore, our metabolic flux estimation implied that growth impairment linked to silenced EDA under mixotrophic conditions is not caused by diminished carbon flux via ED-P but rather by a missing mechanism related to the role of EDA in metabolism. We proposed two possible, mutually non-exclusive explanations: (i) Δeda leads to disrupted carbon catabolite repression, regulated by 2-keto3-deoxygluconate-6-phosphate (ED-P intermediate), and (ii) EDA catalyzes the interconversion between glyoxylate and 4-hydroxy-2-oxoglutarate + pyruvate in the proximity of TCA cycle, possibly effecting the levels of 2-oxoglutarate under Δeda. We have also proposed a new pathway from EDA toward proline, which could explain the proline accumulation under Δeda. In addition, the presented in silico method provides an alternative to 13C metabolic flux analysis for marginal metabolic pathways around/below the threshold of ultrasensitive LC-MS. Finally, our in silico analysis provided alternative explanations for the role of ED-P in Synechocystis while identifying some severe uncertainties.
Collapse
|
23
|
Agarwal P, Soni R, Kaur P, Madan A, Mishra R, Pandey J, Singh S, Singh G. Cyanobacteria as a Promising Alternative for Sustainable Environment: Synthesis of Biofuel and Biodegradable Plastics. Front Microbiol 2022; 13:939347. [PMID: 35903468 PMCID: PMC9325326 DOI: 10.3389/fmicb.2022.939347] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/09/2022] [Indexed: 11/13/2022] Open
Abstract
With the aim to alleviate the increasing plastic burden and carbon footprint on Earth, the role of certain microbes that are capable of capturing and sequestering excess carbon dioxide (CO2) generated by various anthropogenic means was studied. Cyanobacteria, which are photosynthetic prokaryotes, are promising alternative for carbon sequestration as well as biofuel and bioplastic production because of their minimal growth requirements, higher efficiency of photosynthesis and growth rates, presence of considerable amounts of lipids in thylakoid membranes, and cosmopolitan nature. These microbes could prove beneficial to future generations in achieving sustainable environmental goals. Their role in the production of polyhydroxyalkanoates (PHAs) as a source of intracellular energy and carbon sink is being utilized for bioplastic production. PHAs have emerged as well-suited alternatives for conventional plastics and are a parallel competitor to petrochemical-based plastics. Although a lot of studies have been conducted where plants and crops are used as sources of energy and bioplastics, cyanobacteria have been reported to have a more efficient photosynthetic process strongly responsible for increased production with limited land input along with an acceptable cost. The biodiesel production from cyanobacteria is an unconventional choice for a sustainable future as it curtails toxic sulfur release and checks the addition of aromatic hydrocarbons having efficient oxygen content, with promising combustion potential, thus making them a better choice. Here, we aim at reporting the application of cyanobacteria for biofuel production and their competent biotechnological potential, along with achievements and constraints in its pathway toward commercial benefits. This review article also highlights the role of various cyanobacterial species that are a source of green and clean energy along with their high potential in the production of biodegradable plastics.
Collapse
|
24
|
Iacometti C, Marx K, Hönick M, Biletskaia V, Schulz-Mirbach H, Dronsella B, Satanowski A, Delmas VA, Berger A, Dubois I, Bouzon M, Döring V, Noor E, Bar-Even A, Lindner SN. Activating Silent Glycolysis Bypasses in Escherichia coli. BIODESIGN RESEARCH 2022; 2022:9859643. [PMID: 37850128 PMCID: PMC10521649 DOI: 10.34133/2022/9859643] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 04/08/2022] [Indexed: 10/19/2023] Open
Abstract
All living organisms share similar reactions within their central metabolism to provide precursors for all essential building blocks and reducing power. To identify whether alternative metabolic routes of glycolysis can operate in E. coli, we complementarily employed in silico design, rational engineering, and adaptive laboratory evolution. First, we used a genome-scale model and identified two potential pathways within the metabolic network of this organism replacing canonical Embden-Meyerhof-Parnas (EMP) glycolysis to convert phosphosugars into organic acids. One of these glycolytic routes proceeds via methylglyoxal and the other via serine biosynthesis and degradation. Then, we implemented both pathways in E. coli strains harboring defective EMP glycolysis. Surprisingly, the pathway via methylglyoxal seemed to immediately operate in a triosephosphate isomerase deletion strain cultivated on glycerol. By contrast, in a phosphoglycerate kinase deletion strain, the overexpression of methylglyoxal synthase was necessary to restore growth of the strain. Furthermore, we engineered the "serine shunt" which converts 3-phosphoglycerate via serine biosynthesis and degradation to pyruvate, bypassing an enolase deletion. Finally, to explore which of these alternatives would emerge by natural selection, we performed an adaptive laboratory evolution study using an enolase deletion strain. Our experiments suggest that the evolved mutants use the serine shunt. Our study reveals the flexible repurposing of metabolic pathways to create new metabolite links and rewire central metabolism.
Collapse
Affiliation(s)
- Camillo Iacometti
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Katharina Marx
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Maria Hönick
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Viktoria Biletskaia
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Helena Schulz-Mirbach
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Beau Dronsella
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Ari Satanowski
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Valérie A. Delmas
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057 Evry-Courcouronne, France
| | - Anne Berger
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057 Evry-Courcouronne, France
| | - Ivan Dubois
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057 Evry-Courcouronne, France
| | - Madeleine Bouzon
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057 Evry-Courcouronne, France
| | - Volker Döring
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057 Evry-Courcouronne, France
| | - Elad Noor
- Institute of Molecular Systems Biology, ETH Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Arren Bar-Even
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Steffen N. Lindner
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
- Department of Biochemistry, Charité Universitätsmedizin, Virchowweg 6, 10117 Berlin, Germany
| |
Collapse
|
25
|
Schulze D, Kohlstedt M, Becker J, Cahoreau E, Peyriga L, Makowka A, Hildebrandt S, Gutekunst K, Portais JC, Wittmann C. GC/MS-based 13C metabolic flux analysis resolves the parallel and cyclic photomixotrophic metabolism of Synechocystis sp. PCC 6803 and selected deletion mutants including the Entner-Doudoroff and phosphoketolase pathways. Microb Cell Fact 2022; 21:69. [PMID: 35459213 PMCID: PMC9034593 DOI: 10.1186/s12934-022-01790-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 04/05/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Cyanobacteria receive huge interest as green catalysts. While exploiting energy from sunlight, they co-utilize sugar and CO2. This photomixotrophic mode enables fast growth and high cell densities, opening perspectives for sustainable biomanufacturing. The model cyanobacterium Synechocystis sp. PCC 6803 possesses a complex architecture of glycolytic routes for glucose breakdown that are intertwined with the CO2-fixing Calvin-Benson-Bassham (CBB) cycle. To date, the contribution of these pathways to photomixotrophic metabolism has remained unclear. RESULTS Here, we developed a comprehensive approach for 13C metabolic flux analysis of Synechocystis sp. PCC 6803 during steady state photomixotrophic growth. Under these conditions, the Entner-Doudoroff (ED) and phosphoketolase (PK) pathways were found inactive but the microbe used the phosphoglucoisomerase (PGI) (63.1%) and the oxidative pentose phosphate pathway (OPP) shunts (9.3%) to fuel the CBB cycle. Mutants that lacked the ED pathway, the PK pathway, or phosphofructokinases were not affected in growth under metabolic steady-state. An ED pathway-deficient mutant (Δeda) exhibited an enhanced CBB cycle flux and increased glycogen formation, while the OPP shunt was almost inactive (1.3%). Under fluctuating light, ∆eda showed a growth defect, different to wild type and the other deletion strains. CONCLUSIONS The developed approach, based on parallel 13C tracer studies with GC-MS analysis of amino acids, sugars, and sugar derivatives, optionally adding NMR data from amino acids, is valuable to study fluxes in photomixotrophic microbes to detail. In photomixotrophic cells, PGI and OPP form glycolytic shunts that merge at switch points and result in synergistic fueling of the CBB cycle for maximized CO2 fixation. However, redirected fluxes in an ED shunt-deficient mutant and the impossibility to delete this shunt in a GAPDH2 knockout mutant, indicate that either minor fluxes (below the resolution limit of 13C flux analysis) might exist that could provide catalytic amounts of regulatory intermediates or alternatively, that EDA possesses additional so far unknown functions. These ideas require further experiments.
Collapse
Affiliation(s)
- Dennis Schulze
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Michael Kohlstedt
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Judith Becker
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Edern Cahoreau
- Toulouse Biotechnology Institute, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France.,MetaboHUB-MetaToul, National Infrastructure of Metabolomics & Fluxomics, Toulouse, France.,RESTORE, Université de Toulouse, Inserm U1031, CNRS 5070, UPS, EFS, Toulouse, France
| | - Lindsay Peyriga
- Toulouse Biotechnology Institute, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France.,MetaboHUB-MetaToul, National Infrastructure of Metabolomics & Fluxomics, Toulouse, France.,RESTORE, Université de Toulouse, Inserm U1031, CNRS 5070, UPS, EFS, Toulouse, France
| | | | | | - Kirstin Gutekunst
- Institute of Botany, Christian-Albrecht University, Kiel, Germany.,Molecular Plant Physiology, Bioenergetics in Photoautotrophs, University of Kassel, Kassel, Germany
| | - Jean-Charles Portais
- Toulouse Biotechnology Institute, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France.,MetaboHUB-MetaToul, National Infrastructure of Metabolomics & Fluxomics, Toulouse, France.,RESTORE, Université de Toulouse, Inserm U1031, CNRS 5070, UPS, EFS, Toulouse, France
| | - Christoph Wittmann
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany.
| |
Collapse
|
26
|
Sun H, Yang S, Zhao W, Kong Q, Zhu C, Fu X, Zhang F, Liu Z, Zhan Y, Mou H, He Y. Fucoxanthin from marine microalgae: A promising bioactive compound for industrial production and food application. Crit Rev Food Sci Nutr 2022; 63:7996-8012. [PMID: 35319314 DOI: 10.1080/10408398.2022.2054932] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Fucoxanthin attracts increasing attentions due to its potential health benefits, which has been exploited in several food commodities. However, fucoxanthin available for industrial application is mainly derived from macroalgae, and is not yet sufficiently cost-effective compared with microalgae. This review focuses on the strategies to improve fucoxanthin productivity and approaches to reduce downstream costs in microalgal production. Here we comprehensively and critically discuss ways and methods to increase the cell growth rate and fucoxanthin content of marine microalgae, including strain screening, condition optimization, design of culture mode, metabolic and genetic engineering, and scale-up production of fucoxanthin. The approaches in downstream processes provide promising alternatives for fucoxanthin production from marine microalgae. Besides, this review summarizes fucoxanthin improvements in solubility and bioavailability by delivery system of emulsion, nanoparticle, and hydrogel, and discusses fucoxanthin metabolism with gut microbes. Fucoxanthin production from marine microalgae possesses numerous advantages in environmental sustainability and final profits to meet incremental global market demands of fucoxanthin. Strategies of adaptive evolution, multi-stage cultivation, and bioreactor improvements have tremendous potentials to improve economic viability of the production. Moreover, fucoxanthin is promising as the microbiota-targeted ingredient, and nanoparticles can protect fucoxanthin from external environmental factors for improving the solubility and bioavailability.
Collapse
Affiliation(s)
- Han Sun
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Shufang Yang
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Weiyang Zhao
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Qing Kong
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Changliang Zhu
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Xiaodan Fu
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Fang Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Zhemin Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Yuming Zhan
- Shandong Feed and Veterinary Drug Quality Center, Jinan, Shandong, China
| | - Haijin Mou
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Yongjin He
- College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, China
| |
Collapse
|
27
|
Yao J, Wang J, Ju Y, Dong Z, Song X, Chen L, Zhang W. Engineering a Xylose-Utilizing Synechococcus elongatus UTEX 2973 Chassis for 3-Hydroxypropionic Acid Biosynthesis under Photomixotrophic Conditions. ACS Synth Biol 2022; 11:678-688. [PMID: 35119824 DOI: 10.1021/acssynbio.1c00364] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Photomixotrophic cultivation of cyanobacteria is considered a promising strategy to achieve both high cell density and product accumulation, since cyanobacteria can obtain carbon and energy sources from organic matter in addition to those obtained from CO2 and sunlight. Acetyl coenzyme A (acetyl-CoA) is a key precursor used for the biosynthesis of a wide variety of important value-added chemicals. However, the acetyl-CoA content in cyanobacteria is typically low under photomixotrophic conditions, which limits the productivity of the derived chemicals. In this study, a xylose utilization pathway from Escherichia coli was first engineered into fast-growing Synechococcus elongatus UTEX 2973 (hereafter Synechococcus 2973), enabling the xylose based photomixotrophy. Metabolomics analysis of the engineered strain showed that the utilization of xylose enhanced the carbon flow to the oxidative pentose phosphate (OPP) pathway, along with an increase in the intracellular abundance of metabolites such as fructose-6-phosphate (F6P), fructose-1,6-bisphosphate (FBP), ribose-5-phosphate (R5P), erythrose-4-phosphate (E4P), and glyceraldehyde-3-phosphate (G3P). Then, the native glycolytic pathway was rewired via heterologous phosphoketolase (Pkt) gene expression, combined with phosphofructokinase (Pfk) gene knockout and fructose-1,6-bisphosphatase (Fbp) gene overexpression, to drive more carbon flux from xylose to acetyl-CoA. Finally, a heterologous 3-hydroxypropionic acid (3-HP) biosynthetic pathway was introduced. The results showed that 3-HP biosynthesis was improved by up to approximately 4.1-fold (from 22.5 mg/L to 91.3 mg/L) compared with the engineered strain without a rewired metabolism under photomixotrophic conditions and up to approximately 14-fold compared with the strain under photoautotrophic conditions. Using 3-HP as a "proof-of-molecule", our results demonstrated that this strategy could be applied to improve the intracellular pool of acetyl-CoA for the photomixotrophic production of value-added chemicals that require acetyl-CoA as a precursor in a cyanobacterial chassis.
Collapse
Affiliation(s)
- Jiaqi Yao
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, PR China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, PR China
| | - Jin Wang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, PR China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, PR China
| | - Yue Ju
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, PR China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, PR China
| | - Zhengxin Dong
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, PR China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, PR China
| | - Xinyu Song
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, PR China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, PR China
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin 300072, PR China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, PR China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, PR China
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, PR China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, PR China
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin 300072, PR China
| |
Collapse
|
28
|
Jin H, Wang Y, Zhao P, Wang L, Zhang S, Meng D, Yang Q, Cheong LZ, Bi Y, Fu Y. Potential of Producing Flavonoids Using Cyanobacteria As a Sustainable Chassis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:12385-12401. [PMID: 34649432 DOI: 10.1021/acs.jafc.1c04632] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Numerous plant secondary metabolites have remarkable impacts on both food supplements and pharmaceuticals for human health improvement. However, higher plants can only generate small amounts of these chemicals with specific temporal and spatial arrangements, which are unable to satisfy the expanding market demands. Cyanobacteria can directly utilize CO2, light energy, and inorganic nutrients to synthesize versatile plant-specific photosynthetic intermediates and organic compounds in large-scale photobioreactors with outstanding economic merit. Thus, they have been rapidly developed as a "green" chassis for the synthesis of bioproducts. Flavonoids, chemical compounds based on aromatic amino acids, are considered to be indispensable components in a variety of nutraceutical, pharmaceutical, and cosmetic applications. In contrast to heterotrophic metabolic engineering pioneers, such as yeast and Escherichia coli, information about the biosynthesis flavonoids and their derivatives is less comprehensive than that of their photosynthetic counterparts. Here, we review both benefits and challenges to promote cyanobacterial cell factories for flavonoid biosynthesis. With increasing concerns about global environmental issues and food security, we are confident that energy self-supporting cyanobacteria will attract increasing attention for the generation of different kinds of bioproducts. We hope that the work presented here will serve as an index and encourage more scientists to join in the relevant research area.
Collapse
Affiliation(s)
- Haojie Jin
- College of Forestry, Beijing Forestry University, Beijing 100083, P.R. China
| | - Yan Wang
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Pengquan Zhao
- College of Forestry, Beijing Forestry University, Beijing 100083, P.R. China
| | - Litao Wang
- College of Forestry, Beijing Forestry University, Beijing 100083, P.R. China
| | - Su Zhang
- College of Forestry, Beijing Forestry University, Beijing 100083, P.R. China
| | - Dong Meng
- College of Forestry, Beijing Forestry University, Beijing 100083, P.R. China
| | - Qing Yang
- College of Forestry, Beijing Forestry University, Beijing 100083, P.R. China
| | - Ling-Zhi Cheong
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China
| | - Yonghong Bi
- State Key Laboratory of Fresh Water Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430070, P.R. China
| | - Yujie Fu
- College of Forestry, Beijing Forestry University, Beijing 100083, P.R. China
| |
Collapse
|
29
|
Yu King Hing N, Aryal UK, Morgan JA. Probing Light-Dependent Regulation of the Calvin Cycle Using a Multi-Omics Approach. FRONTIERS IN PLANT SCIENCE 2021; 12:733122. [PMID: 34671374 PMCID: PMC8521058 DOI: 10.3389/fpls.2021.733122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
Photoautotrophic microorganisms are increasingly explored for the conversion of atmospheric carbon dioxide into biomass and valuable products. The Calvin-Benson-Bassham (CBB) cycle is the primary metabolic pathway for net CO2 fixation within oxygenic photosynthetic organisms. The cyanobacteria, Synechocystis sp. PCC 6803, is a model organism for the study of photosynthesis and a platform for many metabolic engineering efforts. The CBB cycle is regulated by complex mechanisms including enzymatic abundance, intracellular metabolite concentrations, energetic cofactors and post-translational enzymatic modifications that depend on the external conditions such as the intensity and quality of light. However, the extent to which each of these mechanisms play a role under different light intensities remains unclear. In this work, we conducted non-targeted proteomics in tandem with isotopically non-stationary metabolic flux analysis (INST-MFA) at four different light intensities to determine the extent to which fluxes within the CBB cycle are controlled by enzymatic abundance. The correlation between specific enzyme abundances and their corresponding reaction fluxes is examined, revealing several enzymes with uncorrelated enzyme abundance and their corresponding flux, suggesting flux regulation by mechanisms other than enzyme abundance. Additionally, the kinetics of 13C labeling of CBB cycle intermediates and estimated inactive pool sizes varied significantly as a function of light intensity suggesting the presence of metabolite channeling, an additional method of flux regulation. These results highlight the importance of the diverse methods of regulation of CBB enzyme activity as a function of light intensity, and highlights the importance of considering these effects in future kinetic models.
Collapse
Affiliation(s)
- Nathaphon Yu King Hing
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, United States
| | - Uma K. Aryal
- Purdue Proteomics Facility, Bindley Bioscience Center, Purdue University, West Lafayette, IN, United States
- Department of Comparative Pathobiology, Purdue University College of Veterinary Medicine, West Lafayette, IN, United States
| | - John A. Morgan
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, United States
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States
- Center for Plant Biology, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
30
|
Song X, Diao J, Yao J, Cui J, Sun T, Chen L, Zhang W. Engineering a Central Carbon Metabolism Pathway to Increase the Intracellular Acetyl-CoA Pool in Synechocystis sp. PCC 6803 Grown under Photomixotrophic Conditions. ACS Synth Biol 2021; 10:836-846. [PMID: 33779148 DOI: 10.1021/acssynbio.0c00629] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In cyanobacteria, photomixotrophic growth is considered as a promising strategy to achieve both high cell density and product accumulation. However, the conversion of glucose to acetyl coenzyme A (acetyl-CoA) in the native glycolytic pathway is insufficient, which decreases the carbon utilization and productivity of engineered cyanobacteria under photomixotrophic conditions. To increase the carbon flux from glucose to key intracellular precursor acetyl-CoA in Synechocystis sp. PCC 6803 (hereafter, Synechocystis 6803) under photomixotrophic conditions, a synthetic nonoxidative cyclic glycolysis (NOG) pathway was introduced into the wild type strain, which successfully increased the intracellular pool of acetyl-CoA by approximately 1-fold. To minimize the competition for glucose, the native Embden-Meyerhof-Parnas (EMP) and Entner-Doudoroff (ED) pathways were knocked out, respectively. Notably, eliminating the native ED pathway in the engineered strain carrying the NOG pathway further increased the intracellular pool of acetyl-CoA up to 2.8-fold. Another carbon consuming pathway in Synechocystis 6803, the glycogen biosynthesis pathway, was additionally knocked out in the above-mentioned engineered strain, which enabled an increase of the intracellular acetyl-CoA pool by up to 3.5-fold when compared with the wild type strain. Finally, the content of intracellular lipids was analyzed as an index of the productive capacity of the engineered Synechocystis 6803 cell factory under photomixotrophic conditions. The results showed the total lipids yield increased about 26% compared to the wild type (from 15.71% to 34.12%, g/g glucose), demonstrating that this integrated approach could represent a general strategy not only for the improvement of the intracellular concentration of acetyl-CoA, but also for the production of value-added chemicals that require acetyl-CoA as a key precursor in cyanobacteria.
Collapse
Affiliation(s)
- Xinyu Song
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin 300072, People’s Republic of China
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
- Law School of Tianjin University, Tianjin 300072, P.R. China
| | - Jinjin Diao
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, People’s Republic of China
| | - Jiaqi Yao
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, People’s Republic of China
| | - Jinyu Cui
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, People’s Republic of China
| | - Tao Sun
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin 300072, People’s Republic of China
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
- Law School of Tianjin University, Tianjin 300072, P.R. China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, People’s Republic of China
| | - Weiwen Zhang
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin 300072, People’s Republic of China
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
- Law School of Tianjin University, Tianjin 300072, P.R. China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, People’s Republic of China
| |
Collapse
|
31
|
Iijima H, Watanabe A, Sukigara H, Iwazumi K, Shirai T, Kondo A, Osanai T. Four-carbon dicarboxylic acid production through the reductive branch of the open cyanobacterial tricarboxylic acid cycle in Synechocystis sp. PCC 6803. Metab Eng 2021; 65:88-98. [PMID: 33722652 DOI: 10.1016/j.ymben.2021.03.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 02/23/2021] [Accepted: 03/06/2021] [Indexed: 11/18/2022]
Abstract
Succinate, fumarate, and malate are valuable four-carbon (C4) dicarboxylic acids used for producing plastics and food additives. C4 dicarboxylic acid is biologically produced by heterotrophic organisms. However, current biological production requires organic carbon sources that compete with food uses. Herein, we report C4 dicarboxylic acid production from CO2 using metabolically engineered Synechocystis sp. PCC 6803. Overexpression of citH, encoding malate dehydrogenase (MDH), resulted in the enhanced production of succinate, fumarate, and malate. citH overexpression increased the reductive branch of the open cyanobacterial tricarboxylic acid (TCA) cycle flux. Furthermore, product stripping by medium exchanges increased the C4 dicarboxylic acid levels; product inhibition and acidification of the media were the limiting factors for succinate production. Our results demonstrate that MDH is a key regulator that activates the reductive branch of the open cyanobacterial TCA cycle. The study findings suggest that cyanobacteria can act as a biocatalyst for converting CO2 to carboxylic acids.
Collapse
Affiliation(s)
- Hiroko Iijima
- School of Agriculture, Meiji University, 1-1-1, Higashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan
| | - Atsuko Watanabe
- School of Agriculture, Meiji University, 1-1-1, Higashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan
| | - Haruna Sukigara
- School of Agriculture, Meiji University, 1-1-1, Higashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan
| | - Kaori Iwazumi
- School of Agriculture, Meiji University, 1-1-1, Higashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan
| | - Tomokazu Shirai
- Center for Sustainable Resource Science, RIKEN, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Akihiko Kondo
- Center for Sustainable Resource Science, RIKEN, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan; Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Takashi Osanai
- School of Agriculture, Meiji University, 1-1-1, Higashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan.
| |
Collapse
|
32
|
A new insight into role of phosphoketolase pathway in Synechocystis sp. PCC 6803. Sci Rep 2020; 10:22018. [PMID: 33328526 PMCID: PMC7744508 DOI: 10.1038/s41598-020-78475-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 11/25/2020] [Indexed: 11/29/2022] Open
Abstract
Phosphoketolase (PKET) pathway is predominant in cyanobacteria (around 98%) but current opinion is that it is virtually inactive under autotrophic ambient CO2 condition (AC-auto). This creates an evolutionary paradox due to the existence of PKET pathway in obligatory photoautotrophs. We aim to answer the paradox with the aid of bioinformatic analysis along with metabolic, transcriptomic, fluxomic and mutant data integrated into a multi-level kinetic model. We discussed the problems linked to neglected isozyme, pket2 (sll0529) and inconsistencies towards the explanation of residual flux via PKET pathway in the case of silenced pket1 (slr0453) in Synechocystis sp. PCC 6803. Our in silico analysis showed: (1) 17% flux reduction via RuBisCO for Δpket1 under AC-auto, (2) 11.2–14.3% growth decrease for Δpket2 in turbulent AC-auto, and (3) flux via PKET pathway reaching up to 252% of the flux via phosphoglycerate mutase under AC-auto. All results imply that PKET pathway plays a crucial role under AC-auto by mitigating the decarboxylation occurring in OPP pathway and conversion of pyruvate to acetyl CoA linked to EMP glycolysis under the carbon scarce environment. Finally, our model predicted that PKETs have low affinity to S7P as a substrate.
Collapse
|
33
|
Chuang DSW, Liao JC. Role of cyanobacterial phosphoketolase in energy regulation and glucose secretion under dark anaerobic and osmotic stress conditions. Metab Eng 2020; 65:255-262. [PMID: 33326847 DOI: 10.1016/j.ymben.2020.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 11/20/2020] [Accepted: 12/06/2020] [Indexed: 01/10/2023]
Abstract
Primary metabolism in cyanobacteria is built on the Calvin-Benson-Bassham (CBB) cycle, oxidative pentose phosphate (OPP) pathway, Embden-Meyerhof-Parnas (EMP) pathway, and the tricarboxylic acid (TCA) cycle. Phosphoketolase (Xpk), commonly found in cyanobacteria, is an enzyme that is linked to all these pathways. However, little is known about its physiological role. Here, we show that most of the cyanobacterial Xpk surveyed are inhibited by ATP, and both copies of Xpk in nitrogen-fixing Cyanothece ATCC51142 are further activated by ADP, suggesting their role in energy regulation. Moreover, Xpk in Synechococcus elongatus PCC7942 and Cyanothece ATCC51142 show that their expressions are dusk-peaked, suggesting their roles in dark conditions. Finally, we find that Xpk in S. elongatus PCC7942 is responsible for survival using ATP produced from the glycogen-to-acetate pathway under dark, anaerobic condition. Interestingly, under this condition, xpk deletion causes glucose secretion in response to osmotic shock such as NaHCO3, KHCO3 and NaCl as part of incomplete glycogen degradation. These findings unveiled the role of this widespread enzyme and open the possibility for enhanced glucose secretion from cyanobacteria.
Collapse
Affiliation(s)
- Derrick Shih-Wei Chuang
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, USA
| | - James C Liao
- Institute of Biological Chemistry, Academia Sinica, Taiwan.
| |
Collapse
|
34
|
Antoniewicz MR. A guide to metabolic flux analysis in metabolic engineering: Methods, tools and applications. Metab Eng 2020; 63:2-12. [PMID: 33157225 DOI: 10.1016/j.ymben.2020.11.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 10/28/2020] [Accepted: 11/01/2020] [Indexed: 12/22/2022]
Abstract
The field of metabolic engineering is primarily concerned with improving the biological production of value-added chemicals, fuels and pharmaceuticals through the design, construction and optimization of metabolic pathways, redirection of intracellular fluxes, and refinement of cellular properties relevant for industrial bioprocess implementation. Metabolic network models and metabolic fluxes are central concepts in metabolic engineering, as was emphasized in the first paper published in this journal, "Metabolic fluxes and metabolic engineering" (Metabolic Engineering, 1: 1-11, 1999). In the past two decades, a wide range of computational, analytical and experimental approaches have been developed to interrogate the capabilities of biological systems through analysis of metabolic network models using techniques such as flux balance analysis (FBA), and quantify metabolic fluxes using constrained-based modeling approaches such as metabolic flux analysis (MFA) and more advanced experimental techniques based on the use of stable-isotope tracers, i.e. 13C-metabolic flux analysis (13C-MFA). In this review, we describe the basic principles of metabolic flux analysis, discuss current best practices in flux quantification, highlight potential pitfalls and alternative approaches in the application of these tools, and give a broad overview of pragmatic applications of flux analysis in metabolic engineering practice.
Collapse
Affiliation(s)
- Maciek R Antoniewicz
- Department of Chemical Engineering, Metabolic Engineering and Systems Biology Laboratory, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
35
|
Yao L, Shabestary K, Björk SM, Asplund-Samuelsson J, Joensson HN, Jahn M, Hudson EP. Pooled CRISPRi screening of the cyanobacterium Synechocystis sp PCC 6803 for enhanced industrial phenotypes. Nat Commun 2020; 11:1666. [PMID: 32245970 PMCID: PMC7125299 DOI: 10.1038/s41467-020-15491-7] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 03/13/2020] [Indexed: 11/09/2022] Open
Abstract
Cyanobacteria are model organisms for photosynthesis and are attractive for biotechnology applications. To aid investigation of genotype-phenotype relationships in cyanobacteria, we develop an inducible CRISPRi gene repression library in Synechocystis sp. PCC 6803, where we aim to target all genes for repression. We track the growth of all library members in multiple conditions and estimate gene fitness. The library reveals several clones with increased growth rates, and these have a common upregulation of genes related to cyclic electron flow. We challenge the library with 0.1 M L-lactate and find that repression of peroxiredoxin bcp2 increases growth rate by 49%. Transforming the library into an L-lactate-secreting Synechocystis strain and sorting top lactate producers enriches clones with sgRNAs targeting nutrient assimilation, central carbon metabolism, and cyclic electron flow. In many examples, productivity can be enhanced by repression of essential genes, which are difficult to access by transposon insertion.
Collapse
Affiliation(s)
- Lun Yao
- Science for Life Laboratory, KTH - Royal Institute of Technology, SE-171 21, Stockholm, Sweden.,Department of Protein Science, KTH - Royal Institute of Technology, SE-106 91, Stockholm, Sweden
| | - Kiyan Shabestary
- Science for Life Laboratory, KTH - Royal Institute of Technology, SE-171 21, Stockholm, Sweden.,Department of Protein Science, KTH - Royal Institute of Technology, SE-106 91, Stockholm, Sweden
| | - Sara M Björk
- Science for Life Laboratory, KTH - Royal Institute of Technology, SE-171 21, Stockholm, Sweden.,Department of Protein Science, KTH - Royal Institute of Technology, SE-106 91, Stockholm, Sweden
| | - Johannes Asplund-Samuelsson
- Science for Life Laboratory, KTH - Royal Institute of Technology, SE-171 21, Stockholm, Sweden.,Department of Protein Science, KTH - Royal Institute of Technology, SE-106 91, Stockholm, Sweden
| | - Haakan N Joensson
- Science for Life Laboratory, KTH - Royal Institute of Technology, SE-171 21, Stockholm, Sweden.,Department of Protein Science, KTH - Royal Institute of Technology, SE-106 91, Stockholm, Sweden
| | - Michael Jahn
- Science for Life Laboratory, KTH - Royal Institute of Technology, SE-171 21, Stockholm, Sweden.,Department of Protein Science, KTH - Royal Institute of Technology, SE-106 91, Stockholm, Sweden
| | - Elton P Hudson
- Science for Life Laboratory, KTH - Royal Institute of Technology, SE-171 21, Stockholm, Sweden. .,Department of Protein Science, KTH - Royal Institute of Technology, SE-106 91, Stockholm, Sweden.
| |
Collapse
|
36
|
Makowka A, Nichelmann L, Schulze D, Spengler K, Wittmann C, Forchhammer K, Gutekunst K. Glycolytic Shunts Replenish the Calvin-Benson-Bassham Cycle as Anaplerotic Reactions in Cyanobacteria. MOLECULAR PLANT 2020; 13:471-482. [PMID: 32044444 DOI: 10.1016/j.molp.2020.02.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 12/16/2019] [Accepted: 01/10/2020] [Indexed: 05/07/2023]
Abstract
The recent discovery of the Entner-Doudoroff (ED) pathway as a third glycolytic route beside Embden-Meyerhof-Parnas (EMP) and oxidative pentose phosphate (OPP) pathway in oxygenic photoautotrophs requires a revision of their central carbohydrate metabolism. In this study, unexpectedly, we observed that deletion of the ED pathway alone, and even more pronounced in combination with other glycolytic routes, diminished photoautotrophic growth in continuous light in the cyanobacterium Synechocystis sp. PCC 6803. Furthermore, we found that the ED pathway is required for optimal glycogen catabolism in parallel to an operating Calvin-Benson-Bassham (CBB) cycle. It is counter-intuitive that glycolytic routes, which are a reverse to the CBB cycle and do not provide any additional biosynthetic intermediates, are important under photoautotrophic conditions. However, observations on the ability to reactivate an arrested CBB cycle revealed that they form glycolytic shunts that tap the cellular carbohydrate reservoir to replenish the cycle. Taken together, our results suggest that the classical view of the CBB cycle as an autocatalytic, completely autonomous cycle that exclusively relies on its own enzymes and CO2 fixation to regenerate ribulose-1,5-bisphosphate for Rubisco is an oversimplification. We propose that in common with other known autocatalytic cycles, the CBB cycle likewise relies on anaplerotic reactions to compensate for the depletion of intermediates, particularly in transition states and under fluctuating light conditions that are common in nature.
Collapse
Affiliation(s)
- Alexander Makowka
- Department of Biology, Botanical Institute, University Kiel, 24118 Kiel, Germany
| | - Lars Nichelmann
- Department of Biology, Botanical Institute, University Kiel, 24118 Kiel, Germany
| | - Dennis Schulze
- Institute for Systems Biotechnology, Saarland University, 66123 Saarbrücken, Germany
| | - Katharina Spengler
- Department of Biology, Botanical Institute, University Kiel, 24118 Kiel, Germany
| | - Christoph Wittmann
- Institute for Systems Biotechnology, Saarland University, 66123 Saarbrücken, Germany
| | - Karl Forchhammer
- Organismic Interactions Department, Interfaculty Institute for Microbiology and Infection Medicine, University Tübingen, 72076 Tübingen, Germany
| | - Kirstin Gutekunst
- Department of Biology, Botanical Institute, University Kiel, 24118 Kiel, Germany.
| |
Collapse
|
37
|
Koendjbiharie JG, Hon S, Pabst M, Hooftman R, Stevenson DM, Cui J, Amador-Noguez D, Lynd LR, Olson DG, van Kranenburg R. The pentose phosphate pathway of cellulolytic clostridia relies on 6-phosphofructokinase instead of transaldolase. J Biol Chem 2020; 295:1867-1878. [PMID: 31871051 PMCID: PMC7029132 DOI: 10.1074/jbc.ra119.011239] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/16/2019] [Indexed: 01/24/2023] Open
Abstract
The genomes of most cellulolytic clostridia do not contain genes annotated as transaldolase. Therefore, for assimilating pentose sugars or for generating C5 precursors (such as ribose) during growth on other (non-C5) substrates, they must possess a pathway that connects pentose metabolism with the rest of metabolism. Here we provide evidence that for this connection cellulolytic clostridia rely on the sedoheptulose 1,7-bisphosphate (SBP) pathway, using pyrophosphate-dependent phosphofructokinase (PPi-PFK) instead of transaldolase. In this reversible pathway, PFK converts sedoheptulose 7-phosphate (S7P) to SBP, after which fructose-bisphosphate aldolase cleaves SBP into dihydroxyacetone phosphate and erythrose 4-phosphate. We show that PPi-PFKs of Clostridium thermosuccinogenes and Clostridium thermocellum indeed can convert S7P to SBP, and have similar affinities for S7P and the canonical substrate fructose 6-phosphate (F6P). By contrast, (ATP-dependent) PfkA of Escherichia coli, which does rely on transaldolase, had a very poor affinity for S7P. This indicates that the PPi-PFK of cellulolytic clostridia has evolved the use of S7P. We further show that C. thermosuccinogenes contains a significant SBP pool, an unusual metabolite that is elevated during growth on xylose, demonstrating its relevance for pentose assimilation. Last, we demonstrate that a second PFK of C. thermosuccinogenes that operates with ATP and GTP exhibits unusual kinetics toward F6P, as it appears to have an extremely high degree of cooperative binding, resulting in a virtual on/off switch for substrate concentrations near its K½ value. In summary, our results confirm the existence of an SBP pathway for pentose assimilation in cellulolytic clostridia.
Collapse
Affiliation(s)
| | - Shuen Hon
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755; Center for Bioenergy Innovation, Oak Ridge National Laboratories, Oak Ridge, Tennessee 37830
| | - Martin Pabst
- Cell Systems Engineering, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Robert Hooftman
- Laboratory of Microbiology, Wageningen University & Research, 6708 WE Wageningen, The Netherlands
| | - David M Stevenson
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Jingxuan Cui
- Center for Bioenergy Innovation, Oak Ridge National Laboratories, Oak Ridge, Tennessee 37830; Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, 03755
| | - Daniel Amador-Noguez
- Center for Bioenergy Innovation, Oak Ridge National Laboratories, Oak Ridge, Tennessee 37830; Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Lee R Lynd
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755; Center for Bioenergy Innovation, Oak Ridge National Laboratories, Oak Ridge, Tennessee 37830; Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, 03755
| | - Daniel G Olson
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755; Center for Bioenergy Innovation, Oak Ridge National Laboratories, Oak Ridge, Tennessee 37830
| | - Richard van Kranenburg
- Corbion, 4206 AC Gorinchem, The Netherlands; Laboratory of Microbiology, Wageningen University & Research, 6708 WE Wageningen, The Netherlands.
| |
Collapse
|
38
|
Francois JM, Alkim C, Morin N. Engineering microbial pathways for production of bio-based chemicals from lignocellulosic sugars: current status and perspectives. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:118. [PMID: 32670405 PMCID: PMC7341569 DOI: 10.1186/s13068-020-01744-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 06/01/2020] [Indexed: 05/08/2023]
Abstract
Lignocellulose is the most abundant biomass on earth with an annual production of about 2 × 1011 tons. It is an inedible renewable carbonaceous resource that is very rich in pentose and hexose sugars. The ability of microorganisms to use lignocellulosic sugars can be exploited for the production of biofuels and chemicals, and their concurrent biotechnological processes could advantageously replace petrochemicals' processes in a medium to long term, sustaining the emerging of a new economy based on bio-based products from renewable carbon sources. One of the major issues to reach this objective is to rewire the microbial metabolism to optimally configure conversion of these lignocellulosic-derived sugars into bio-based products in a sustainable and competitive manner. Systems' metabolic engineering encompassing synthetic biology and evolutionary engineering appears to be the most promising scientific and technological approaches to meet this challenge. In this review, we examine the most recent advances and strategies to redesign natural and to implement non-natural pathways in microbial metabolic framework for the assimilation and conversion of pentose and hexose sugars derived from lignocellulosic material into industrial relevant chemical compounds leading to maximal yield, titer and productivity. These include glycolic, glutaric, mesaconic and 3,4-dihydroxybutyric acid as organic acids, monoethylene glycol, 1,4-butanediol and 1,2,4-butanetriol, as alcohols. We also discuss the big challenges that still remain to enable microbial processes to become industrially attractive and economically profitable.
Collapse
Affiliation(s)
- Jean Marie Francois
- Toulouse Biotechnology Institute, CNRS, INRA, LISBP INSA, 135 Avenue de Rangueil, Toulouse Cedex 04, 31077 France
- Toulouse White Biotechnology (TWB, UMS INRA/INSA/CNRS), NAPA CENTER Bât B, 3 Rue Ariane 31520, Ramonville Saint-Agnes, France
| | - Ceren Alkim
- Toulouse Biotechnology Institute, CNRS, INRA, LISBP INSA, 135 Avenue de Rangueil, Toulouse Cedex 04, 31077 France
- Toulouse White Biotechnology (TWB, UMS INRA/INSA/CNRS), NAPA CENTER Bât B, 3 Rue Ariane 31520, Ramonville Saint-Agnes, France
| | - Nicolas Morin
- Toulouse Biotechnology Institute, CNRS, INRA, LISBP INSA, 135 Avenue de Rangueil, Toulouse Cedex 04, 31077 France
- Toulouse White Biotechnology (TWB, UMS INRA/INSA/CNRS), NAPA CENTER Bât B, 3 Rue Ariane 31520, Ramonville Saint-Agnes, France
| |
Collapse
|
39
|
Yu King Hing N, Liang F, Lindblad P, Morgan JA. Combining isotopically non-stationary metabolic flux analysis with proteomics to unravel the regulation of the Calvin-Benson-Bassham cycle in Synechocystis sp. PCC 6803. Metab Eng 2019; 56:77-84. [PMID: 31470115 DOI: 10.1016/j.ymben.2019.08.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/07/2019] [Accepted: 08/20/2019] [Indexed: 12/15/2022]
Abstract
Photosynthetic microorganisms are increasingly being investigated as a sustainable alternative to existing bio-industrial processes, converting CO2 into desirable end products without the use of carbohydrate feedstock. The Calvin-Benson-Bassham (CBB) cycle is the main pathway of carbon fixation metabolism in photosynthetic organisms. In this study, we analyzed the metabolic fluxes in two strains of the unicellular cyanobacterium Synechocystis sp. PCC 6803 (Synechocystis) that overexpressed fructose-1,6/sedoheptulose-1,7-bisphosphatase (FBP/SBPase) and transketolase (TK), respectively. These two potential carbon flux control enzymes in the CBB cycle had previously been shown to improve biomass accumulation when overexpressed under air and low light (15 μmol m-2 s-1) conditions (Liang and Lindblad, 2016). We measured the growth rates of Synechocystis under atmospheric and high (3% v/v) CO2 conditions at 80 μmol m-2 s-1. Surprisingly, the cells overexpressing transketolase (tktA) demonstrated no significant increase in growth rates when CO2 was increased, suggesting an altered carbon flux distribution and a potential metabolic bottleneck in carbon fixation. Moreover, the tktA strain had an increased susceptibility to oxidative stress under high light as revealed by its chlorotic phenotype under high light conditions. In contrast, the fructose-1,6/sedoheptulose-1,7-bisphosphatase (70glpX) and wild-type cells demonstrated increases in growth rates as expected. To investigate the disparate phenotypical responses of these different Synechocystis strains, isotopically non-stationary metabolic flux analysis (INST-MFA) was used to estimate the carbon flux distribution of tktA, 70glpX, and a kanamycin-resistant control (Km), under atmospheric conditions. In addition, untargeted label-free proteomics, which can detect changes in relative enzymatic abundance, was employed to study the possible effects caused by overexpressing each enzyme. Fluxomic and proteomic results indicated a decrease in oxidative pentose phosphate pathway activity when either FBP/SBPase or TK were overexpressed, resulting in increased carbon fixation efficiency. These results are an example of the integration of multiple omic-level experimental techniques and can be used to guide future metabolic engineering efforts to improve performances and efficiencies.
Collapse
Affiliation(s)
- Nathaphon Yu King Hing
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Feiyan Liang
- Microbial Chemistry, Department of Chemistry - Ångström, Uppsala University, 751 20, Uppsala, Sweden; Section of Plant Biochemistry, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Peter Lindblad
- Microbial Chemistry, Department of Chemistry - Ångström, Uppsala University, 751 20, Uppsala, Sweden
| | - John A Morgan
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA; Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
40
|
Lasry Testa R, Delpino C, Estrada V, Diaz SM. In silico strategies to couple production of bioethanol with growth in cyanobacteria. Biotechnol Bioeng 2019; 116:2061-2073. [DOI: 10.1002/bit.26998] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 04/11/2019] [Accepted: 04/25/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Romina Lasry Testa
- Planta Piloto de Ingeniería Química (PLAPIQUI)Universidad Nacional del Sur (UNS)‐CONICETBahía Blanca Argentina
| | - Claudio Delpino
- Planta Piloto de Ingeniería Química (PLAPIQUI)Universidad Nacional del Sur (UNS)‐CONICETBahía Blanca Argentina
| | - Vanina Estrada
- Planta Piloto de Ingeniería Química (PLAPIQUI)Universidad Nacional del Sur (UNS)‐CONICETBahía Blanca Argentina
| | - Soledad M. Diaz
- Planta Piloto de Ingeniería Química (PLAPIQUI)Universidad Nacional del Sur (UNS)‐CONICETBahía Blanca Argentina
| |
Collapse
|
41
|
Abernathy MH, Czajka JJ, Allen DK, Hill NC, Cameron JC, Tang YJ. Cyanobacterial carboxysome mutant analysis reveals the influence of enzyme compartmentalization on cellular metabolism and metabolic network rigidity. Metab Eng 2019; 54:222-231. [PMID: 31029860 DOI: 10.1016/j.ymben.2019.04.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 04/13/2019] [Accepted: 04/22/2019] [Indexed: 12/18/2022]
Abstract
Cyanobacterial carboxysomes encapsulate carbonic anhydrase and ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO). Genetic deletion of the major structural proteins encoded within the ccm operon in Synechococcus sp. PCC 7002 (ΔccmKLMN) disrupts carboxysome formation and significantly affects cellular physiology. Here we employed both metabolite pool size analysis and isotopically nonstationary metabolic flux analysis (INST-MFA) to examine metabolic regulation in cells lacking carboxysomes. Under high CO2 environments (1%), the ΔccmKLMN mutant could recover growth and had a similar central flux distribution as the control strain, with the exceptions of moderately decreased photosynthesis and elevated biomass protein content and photorespiration activity. Metabolite analyses indicated that the ΔccmKLMN strain had significantly larger pool sizes of pyruvate (>18 folds), UDPG (uridine diphosphate glucose), and aspartate as well as higher levels of secreted organic acids (e.g., malate and succinate). These results suggest that the ΔccmKLMN mutant is able to largely maintain a fluxome similar to the control strain by changing in intracellular metabolite concentrations and metabolite overflows under optimal growth conditions. When CO2 was insufficient (0.2%), provision of acetate moderately promoted mutant growth. Interestingly, the removal of microcompartments may loosen the flux network and promote RuBisCO side-reactions, facilitating redirection of central metabolites to competing pathways (i.e., pyruvate to heterologous lactate production). This study provides important insights into metabolic regulation via enzyme compartmentation and cyanobacterial compensatory responses.
Collapse
Affiliation(s)
- Mary H Abernathy
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, MO 63130, USA
| | - Jeffrey J Czajka
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, MO 63130, USA
| | - Douglas K Allen
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA; United States Department of Agriculture, Agricultural Research Service, St. Louis, MO 63132, USA
| | - Nicholas C Hill
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Jeffrey C Cameron
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80309, USA; Renewable and Sustainable Energy Institute, University of Colorado, Boulder, CO 80309, USA; National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO 80401, USA.
| | - Yinjie J Tang
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, MO 63130, USA.
| |
Collapse
|
42
|
Janasch M, Asplund-Samuelsson J, Steuer R, Hudson EP. Kinetic modeling of the Calvin cycle identifies flux control and stable metabolomes in Synechocystis carbon fixation. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:973-983. [PMID: 30371804 PMCID: PMC6363089 DOI: 10.1093/jxb/ery382] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 10/22/2018] [Indexed: 05/04/2023]
Abstract
Biological fixation of atmospheric CO2 via the Calvin-Benson-Bassham cycle has massive ecological impact and offers potential for industrial exploitation, either by improving carbon fixation in plants and autotrophic bacteria, or by installation into new hosts. A kinetic model of the Calvin-Benson-Bassham cycle embedded in the central carbon metabolism of the cyanobacterium Synechocystis sp. PCC 6803 was developed to investigate its stability and underlying control mechanisms. To reduce the uncertainty associated with a single parameter set, random sampling of the steady-state metabolite concentrations and the enzyme kinetic parameters was employed, resulting in millions of parameterized models which were analyzed for flux control and stability against perturbation. Our results show that the Calvin cycle had an overall high intrinsic stability, but a high concentration of ribulose 1,5-bisphosphate was associated with unstable states. Low substrate saturation and high product saturation of enzymes involved in highly interconnected reactions correlated with increased network stability. Flux control, that is the effect that a change in one reaction rate has on the other reactions in the network, was distributed and mostly exerted by energy supply (ATP), but also by cofactor supply (NADPH). Sedoheptulose 1,7-bisphosphatase/fructose 1,6-bisphosphatase, fructose-bisphosphate aldolase, and transketolase had a weak but positive effect on overall network flux, in agreement with published observations. The identified flux control and relationships between metabolite concentrations and system stability can guide metabolic engineering. The kinetic model structure and parameterizing framework can be expanded for analysis of metabolic systems beyond the Calvin cycle.
Collapse
Affiliation(s)
- Markus Janasch
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Solna, Sweden
| | - Johannes Asplund-Samuelsson
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Solna, Sweden
| | - Ralf Steuer
- Fachinstitut für Theoretische Biologie (ITB), Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Elton P Hudson
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Solna, Sweden
- Correspondence:
| |
Collapse
|
43
|
Sarkar D, Mueller TJ, Liu D, Pakrasi HB, Maranas CD. A diurnal flux balance model of Synechocystis sp. PCC 6803 metabolism. PLoS Comput Biol 2019; 15:e1006692. [PMID: 30677028 PMCID: PMC6364703 DOI: 10.1371/journal.pcbi.1006692] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 02/05/2019] [Accepted: 12/03/2018] [Indexed: 11/26/2022] Open
Abstract
Phototrophic organisms such as cyanobacteria utilize the sun's energy to convert atmospheric carbon dioxide into organic carbon, resulting in diurnal variations in the cell's metabolism. Flux balance analysis is a widely accepted constraint-based optimization tool for analyzing growth and metabolism, but it is generally used in a time-invariant manner with no provisions for sequestering different biomass components at different time periods. Here we present CycleSyn, a periodic model of Synechocystis sp. PCC 6803 metabolism that spans a 12-hr light/12-hr dark cycle by segmenting it into 12 Time Point Models (TPMs) with a uniform duration of two hours. The developed framework allows for the flow of metabolites across TPMs while inventorying metabolite levels and only allowing for the utilization of currently or previously produced compounds. The 12 TPMs allow for the incorporation of time-dependent constraints that capture the cyclic nature of cellular processes. Imposing bounds on reactions informed by temporally-segmented transcriptomic data enables simulation of phototrophic growth as a single linear programming (LP) problem. The solution provides the time varying reaction fluxes over a 24-hour cycle and the accumulation/consumption of metabolites. The diurnal rhythm of metabolic gene expression driven by the circadian clock and its metabolic consequences is explored. Predicted flux and metabolite pools are in line with published studies regarding the temporal organization of phototrophic growth in Synechocystis PCC 6803 paving the way for constructing time-resolved genome-scale models (GSMs) for organisms with a circadian clock. In addition, the metabolic reorganization that would be required to enable Synechocystis PCC 6803 to temporally separate photosynthesis from oxygen-sensitive nitrogen fixation is also explored using the developed model formalism.
Collapse
Affiliation(s)
- Debolina Sarkar
- Department of Chemical Engineering, Pennsylvania State University,
University Park, Pennsylvania, United States of America
| | - Thomas J. Mueller
- Department of Chemical Engineering, Pennsylvania State University,
University Park, Pennsylvania, United States of America
| | - Deng Liu
- Department of Biology, Washington University, St. Louis, Missouri, United
States of America
| | - Himadri B. Pakrasi
- Department of Biology, Washington University, St. Louis, Missouri, United
States of America
| | - Costas D. Maranas
- Department of Chemical Engineering, Pennsylvania State University,
University Park, Pennsylvania, United States of America
| |
Collapse
|
44
|
Ni J, Liu H, Tao F, Wu Y, Xu P. Remodeling of the Photosynthetic Chain Promotes Direct CO
2
Conversion into Valuable Aromatic Compounds. Angew Chem Int Ed Engl 2018; 57:15990-15994. [DOI: 10.1002/anie.201808402] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 09/24/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Jun Ni
- State Key Laboratory of Microbial MetabolismJoint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences & BiotechnologyShanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Hong‐Yu Liu
- State Key Laboratory of Microbial MetabolismJoint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences & BiotechnologyShanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Fei Tao
- State Key Laboratory of Microbial MetabolismJoint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences & BiotechnologyShanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Yu‐Tong Wu
- State Key Laboratory of Microbial MetabolismJoint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences & BiotechnologyShanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Ping Xu
- State Key Laboratory of Microbial MetabolismJoint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences & BiotechnologyShanghai Jiao Tong University Shanghai 200240 P. R. China
| |
Collapse
|
45
|
Hu G, Li Y, Ye C, Liu L, Chen X. Engineering Microorganisms for Enhanced CO 2 Sequestration. Trends Biotechnol 2018; 37:532-547. [PMID: 30447878 DOI: 10.1016/j.tibtech.2018.10.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 10/19/2018] [Accepted: 10/22/2018] [Indexed: 12/12/2022]
Abstract
Microbial CO2 sequestration not only provides a green and sustainable approach for ameliorating global warming but also simultaneously produces biofuels and chemicals. However, the efficiency of microbial CO2 fixation is still very low. In addition, concomitant microbial CO2 emission decreases the carbon yield of desired chemicals. To address these issues, strategies including engineering CO2-fixing pathways and energy-harvesting systems have been developed to improve the efficiency of CO2 fixation in autotrophic and heterotrophic microorganisms. Furthermore, metabolic pathways and energy metabolism can be rewired to reduce microbial CO2 emissions and increase the carbon yield of value-added products. This review highlights the potential of biotechnology to promote microbial CO2 sequestration and provides guidance for the broader use of microorganisms as attractive carbon sinks.
Collapse
Affiliation(s)
- Guipeng Hu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; http://www.fmme.cn/
| | - Yin Li
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chao Ye
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; http://www.fmme.cn/
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China; http://www.fmme.cn/
| | - Xiulai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; http://www.fmme.cn/.
| |
Collapse
|
46
|
Ni J, Liu H, Tao F, Wu Y, Xu P. Remodeling of the Photosynthetic Chain Promotes Direct CO2Conversion into Valuable Aromatic Compounds. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201808402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jun Ni
- State Key Laboratory of Microbial MetabolismJoint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences & BiotechnologyShanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Hong‐Yu Liu
- State Key Laboratory of Microbial MetabolismJoint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences & BiotechnologyShanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Fei Tao
- State Key Laboratory of Microbial MetabolismJoint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences & BiotechnologyShanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Yu‐Tong Wu
- State Key Laboratory of Microbial MetabolismJoint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences & BiotechnologyShanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Ping Xu
- State Key Laboratory of Microbial MetabolismJoint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences & BiotechnologyShanghai Jiao Tong University Shanghai 200240 P. R. China
| |
Collapse
|
47
|
Sun H, Zhao W, Mao X, Li Y, Wu T, Chen F. High-value biomass from microalgae production platforms: strategies and progress based on carbon metabolism and energy conversion. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:227. [PMID: 30151055 PMCID: PMC6100726 DOI: 10.1186/s13068-018-1225-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 08/09/2018] [Indexed: 05/13/2023]
Abstract
Microalgae are capable of producing sustainable bioproducts and biofuels by using carbon dioxide or other carbon substances in various cultivation modes. It is of great significance to exploit microalgae for the economical viability of biofuels and the revenues from high-value bioproducts. However, the industrial performance of microalgae is still challenged with potential conflict between cost of microalgae cultivation and revenues from them, which is mainly ascribed to the lack of comprehensive understanding of carbon metabolism and energy conversion. In this review, we provide an overview of the recent advances in carbon and energy fluxes of light-dependent reaction, Calvin-Benson-Bassham cycle, tricarboxylic acid cycle, glycolysis pathway and processes of product biosynthesis in microalgae, with focus on the increased photosynthetic and carbon efficiencies. Recent strategies for the enhanced production of bioproducts and biofuels from microalgae are discussed in detail. Approaches to alter microbial physiology by controlling light, nutrient and other environmental conditions have the advantages of increasing biomass concentration and product yield through the efficient carbon conversion. Engineering strategies by regulating carbon partitioning and energy route are capable of improving the efficiencies of photosynthesis and carbon conversion, which consequently realize high-value biomass. The coordination of carbon and energy fluxes is emerging as the potential strategy to increase efficiency of carbon fixation and product biosynthesis. To achieve more desirable high-value products, coordination of multi-stage cultivation with engineering and stress-based strategies occupies significant positions in a long term.
Collapse
Affiliation(s)
- Han Sun
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing, 100871 China
- BIC-ESAT, College of Engineering, Peking University, Beijing, 100871 China
| | - Weiyang Zhao
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing, 100871 China
- BIC-ESAT, College of Engineering, Peking University, Beijing, 100871 China
| | - Xuemei Mao
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing, 100871 China
- BIC-ESAT, College of Engineering, Peking University, Beijing, 100871 China
| | - Yuelian Li
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing, 100871 China
- BIC-ESAT, College of Engineering, Peking University, Beijing, 100871 China
| | - Tao Wu
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing, 100871 China
- BIC-ESAT, College of Engineering, Peking University, Beijing, 100871 China
| | - Feng Chen
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing, 100871 China
- BIC-ESAT, College of Engineering, Peking University, Beijing, 100871 China
| |
Collapse
|
48
|
Woo HM. Metabolic pathway rewiring in engineered cyanobacteria for solar-to-chemical and solar-to-fuel production from CO 2. Bioengineered 2018; 9:2-5. [PMID: 28430539 PMCID: PMC5972923 DOI: 10.1080/21655979.2017.1317572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Photoautotrophic cyanobacteria have been developed to convert CO2 to valuable chemicals and fuels as solar-to-chemical (S2C) and solar-to-fuel (S2F) platforms. Here, I describe the rewiring of the metabolic pathways in cyanobacteria to better understand the endogenous carbon flux and to enhance the yield of heterologous products. The plasticity of the cyanobacterial metabolism has been proposed to be advantageous for the development of S2C and S2F processes. The rewiring of the sugar catabolism and of the phosphoketolase pathway in the central cyanobacterial metabolism allowed for an enhancement in the level of target products by redirecting the carbon fluxes. Thus, metabolic pathway rewiring can promote the development of more efficient cyanobacterial cell factories for the generation of feasible S2C and S2F platforms.
Collapse
Affiliation(s)
- Han Min Woo
- a Department of Food Science and Biotechnology , Sungkyunkwan University (SKKU) , Jangan-gu, Suwon , Republic of Korea
| |
Collapse
|
49
|
Takeya M, Iijima H, Sukigara H, Osanai T. Cluster-Level Relationships of Genes Involved in Carbon Metabolism in Synechocystis sp. PCC 6803: Development of a Novel Succinate-Producing Strain. PLANT & CELL PHYSIOLOGY 2018; 59:72-81. [PMID: 29069477 DOI: 10.1093/pcp/pcx162] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 10/19/2017] [Indexed: 06/07/2023]
Abstract
We quantified the transcript levels of 44 genes related to sugar catabolism in strains with altered primary carbon metabolism and discovered a consistent expression pattern among succinate-producing mutants. To identify factors that determine the expression pattern, we calculated Pearson's correlation coefficients, using the transcript data. Correlation analysis revealed positive and negative correlations among genes encoding sugar catabolic enzymes. On the basis of this analysis, we found that the mutant overexpressing both rre37 (encoding an OmpR-type response regulator) and sigE (encoding an RNA polymerase sigma factor) produced increased levels of succinate under dark, anaerobic conditions, with a maximum productivity of 420 mg l-1.
Collapse
Affiliation(s)
- Masahiro Takeya
- Department of Agricultural Chemistry, School of Agriculture, Meiji University, 1-1-1, Higashimita, Tamaku, Kawasaki, Kanagawa, 214-8571 Japan
| | - Hiroko Iijima
- Department of Agricultural Chemistry, School of Agriculture, Meiji University, 1-1-1, Higashimita, Tamaku, Kawasaki, Kanagawa, 214-8571 Japan
| | - Haruna Sukigara
- Department of Agricultural Chemistry, School of Agriculture, Meiji University, 1-1-1, Higashimita, Tamaku, Kawasaki, Kanagawa, 214-8571 Japan
| | - Takashi Osanai
- Department of Agricultural Chemistry, School of Agriculture, Meiji University, 1-1-1, Higashimita, Tamaku, Kawasaki, Kanagawa, 214-8571 Japan
| |
Collapse
|
50
|
Xiong W, Cano M, Wang B, Douchi D, Yu J. The plasticity of cyanobacterial carbon metabolism. Curr Opin Chem Biol 2017; 41:12-19. [PMID: 28968542 DOI: 10.1016/j.cbpa.2017.09.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 08/29/2017] [Accepted: 09/07/2017] [Indexed: 11/27/2022]
Abstract
This opinion article aims to raise awareness of a fundamental issue which governs sustainable production of biofuels and bio-chemicals from photosynthetic cyanobacteria. Discussed is the plasticity of carbon metabolism, by which the cyanobacterial cells flexibly distribute intracellular carbon fluxes towards target products and adapt to environmental/genetic alterations. This intrinsic feature in cyanobacterial metabolism is being understood through recent identification of new biochemical reactions and engineering on low-throughput pathways. We focus our discussion on new insights into the nature of metabolic plasticity in cyanobacteria and its impact on hydrocarbons (e.g. ethylene and isoprene) production. We discuss approaches that need to be developed to rationally rewire photosynthetic carbon fluxes throughout primary metabolism. We outline open questions about the regulatory mechanisms of the metabolic network that remain to be answered, which might shed light on photosynthetic carbon metabolism and help optimize design principles in order to improve the production of fuels and chemicals in cyanobacteria.
Collapse
Affiliation(s)
- Wei Xiong
- National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO 80401, USA.
| | - Melissa Cano
- National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO 80401, USA
| | - Bo Wang
- National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO 80401, USA
| | - Damien Douchi
- National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO 80401, USA
| | - Jianping Yu
- National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO 80401, USA.
| |
Collapse
|