1
|
van Veen H, Müller JT, Bartylla MM, Akman M, Sasidharan R, Mustroph A. Phylotranscriptomics provides a treasure trove of flood-tolerance mechanisms in the Cardamineae tribe. PLANT, CELL & ENVIRONMENT 2024; 47:4464-4480. [PMID: 39012097 DOI: 10.1111/pce.15033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/10/2024] [Accepted: 06/29/2024] [Indexed: 07/17/2024]
Abstract
Flooding events are highly detrimental to most terrestrial plant species. However, there is an impressive diversity of plant species that thrive in flood-prone regions and represent a treasure trove of unexplored flood-resilience mechanisms. Here we surveyed a panel of four species from the Cardamineae tribe representing a broad tolerance range. This included the flood-tolerant Cardamine pratensis, Rorippa sylvestris and Rorippa palustris and the flood-sensitive species Cardamine hirsuta. All four species displayed a quiescent strategy, evidenced by the repression of shoot growth underwater. Comparative transcriptomics analyses between the four species and the sensitive model species Arabidopsis thaliana were facilitated via de novo transcriptome assembly and identification of 16 902 universal orthogroups at a high resolution. Our results suggest that tolerance likely evolved separately in the Cardamine and Rorippa species. While the Rorippa response was marked by a strong downregulation of cell-cycle genes, Cardamine minimized overall transcriptional regulation. However, a weak starvation response was a universal trait of tolerant species, potentially achieved in multiple ways. It could result from a strong decline in cell-cycle activity, but is also intertwined with autophagy, senescence, day-time photosynthesis and night-time fermentation capacity. Our data set provides a rich source to study adaptational mechanisms of flooding tolerance.
Collapse
Affiliation(s)
- Hans van Veen
- Plant Stress Resilience, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
- Evolutionary Plant Ecophysiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Jana T Müller
- Department of Plant Physiology, University of Bayreuth, Bayreuth, Germany
| | - Malte M Bartylla
- Department of Plant Physiology, University of Bayreuth, Bayreuth, Germany
| | - Melis Akman
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| | - Rashmi Sasidharan
- Plant Stress Resilience, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| | - Angelika Mustroph
- Department of Plant Physiology, University of Bayreuth, Bayreuth, Germany
| |
Collapse
|
2
|
Jakobson L, Mõttus J, Suurväli J, Sõmera M, Tarassova J, Nigul L, Smolander OP, Sarmiento C. Phylogenetic insight into ABCE gene subfamily in plants. Front Genet 2024; 15:1408665. [PMID: 38911295 PMCID: PMC11190730 DOI: 10.3389/fgene.2024.1408665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/09/2024] [Indexed: 06/25/2024] Open
Abstract
ATP-BINDING CASSETTE SUBFAMILY E MEMBER (ABCE) proteins are one of the most conserved proteins across eukaryotes and archaea. Yeast and most animals possess a single ABCE gene encoding the critical translational factor ABCE1. In several plant species, including Arabidopsis thaliana and Oryza sativa, two or more ABCE gene copies have been identified, however information related to plant ABCE gene family is still missing. In this study we retrieved ABCE gene sequences of 76 plant species from public genome databases and comprehensively analyzed them with the reference to A. thaliana ABCE2 gene (AtABCE2). Using bioinformatic approach we assessed the conservation and phylogeny of plant ABCEs. In addition, we performed haplotype analysis of AtABCE2 and its paralogue AtABCE1 using genomic sequences of 1,135 A. thaliana ecotypes. Plant ABCE proteins showed overall high sequence conservation, sharing at least 78% of amino acid sequence identity with AtABCE2. We found that over half of the selected species have two to eight ABCE genes, suggesting that in plants ABCE genes can be classified as a low-copy gene family, rather than a single-copy gene family. The phylogenetic trees of ABCE protein sequences and the corresponding coding sequences demonstrated that Brassicaceae and Poaceae families have independently undergone lineage-specific split of the ancestral ABCE gene. Other plant species have gained ABCE gene copies through more recent duplication events. We also noticed that ploidy level but not ancient whole genome duplications experienced by a species impacts ABCE gene family size. Deeper analysis of AtABCE2 and AtABCE1 from 1,135 A. thaliana ecotypes revealed four and 35 non-synonymous SNPs, respectively. The lower natural variation in AtABCE2 compared to AtABCE1 is in consistence with its crucial role for plant viability. Overall, while the sequence of the ABCE protein family is highly conserved in the plant kingdom, many plants have evolved to have more than one copy of this essential translational factor.
Collapse
Affiliation(s)
- Liina Jakobson
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Jelena Mõttus
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Jaanus Suurväli
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Merike Sõmera
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Jemilia Tarassova
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Lenne Nigul
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Olli-Pekka Smolander
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Cecilia Sarmiento
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| |
Collapse
|
3
|
Sakamoto T, Ikematsu S, Nakayama H, Mandáková T, Gohari G, Sakamoto T, Li G, Hou H, Matsunaga S, Lysak MA, Kimura S. A chromosome-level genome assembly for the amphibious plant Rorippa aquatica reveals its allotetraploid origin and mechanisms of heterophylly upon submergence. Commun Biol 2024; 7:431. [PMID: 38637665 PMCID: PMC11026429 DOI: 10.1038/s42003-024-06088-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 03/21/2024] [Indexed: 04/20/2024] Open
Abstract
The ability to respond to varying environments is crucial for sessile organisms such as plants. The amphibious plant Rorippa aquatica exhibits a striking type of phenotypic plasticity known as heterophylly, a phenomenon in which leaf form is altered in response to environmental factors. However, the underlying molecular mechanisms of heterophylly are yet to be fully understood. To uncover the genetic basis and analyze the evolutionary processes driving heterophylly in R. aquatica, we assembled the chromosome-level genome of the species. Comparative chromosome painting and chromosomal genomics revealed that allopolyploidization and subsequent post-polyploid descending dysploidy occurred during the speciation of R. aquatica. Based on the obtained genomic data, the transcriptome analyses revealed that ethylene signaling plays a central role in regulating heterophylly under submerged conditions, with blue light signaling acting as an attenuator of ethylene signal. The assembled R. aquatica reference genome provides insights into the molecular mechanisms and evolution of heterophylly.
Collapse
Affiliation(s)
- Tomoaki Sakamoto
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-ku, Kyoto, Japan
- Center for Plant Sciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-ku, Kyoto, Japan
| | - Shuka Ikematsu
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-ku, Kyoto, Japan
- Center for Plant Sciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-ku, Kyoto, Japan
| | - Hokuto Nakayama
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-ku, Kyoto, Japan
- Graduate School of Science, Department of Biological Sciences, The University of Tokyo, Science Build. #2, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
- Department of Plant Biology, University of California Davis, One Shields Avenue, Davis, CA, USA
| | - Terezie Mandáková
- CEITEC - Central European Institute of Technology, Masaryk University, CZ-625 00, Brno, Czech Republic
| | - Gholamreza Gohari
- Department of Horticulture, Faculty of Agriculture, University of Maragheh, Maragheh, Iran
| | - Takuya Sakamoto
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, Japan
- Faculty of Science, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama, Kanagawa, Japan
| | - Gaojie Li
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Hongwei Hou
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Sachihiro Matsunaga
- Department of Integrated Biosciences, Graduate School of Frontier Science, The University of Tokyo, Chiba, Japan
| | - Martin A Lysak
- CEITEC - Central European Institute of Technology, Masaryk University, CZ-625 00, Brno, Czech Republic
| | - Seisuke Kimura
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-ku, Kyoto, Japan.
- Center for Plant Sciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-ku, Kyoto, Japan.
| |
Collapse
|
4
|
Zhang ZB, Xiong T, Wang XJ, Chen YR, Wang JL, Guo CL, Ye ZY. Lineage-specific gene duplication and expansion of DUF1216 gene family in Brassicaceae. PLoS One 2024; 19:e0302292. [PMID: 38626181 PMCID: PMC11020792 DOI: 10.1371/journal.pone.0302292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/01/2024] [Indexed: 04/18/2024] Open
Abstract
Proteins containing domain of unknown function (DUF) are prevalent in eukaryotic genome. The DUF1216 proteins possess a conserved DUF1216 domain resembling to the mediator protein of Arabidopsis RNA polymerase II transcriptional subunit-like protein. The DUF1216 family are specifically existed in Brassicaceae, however, no comprehensive evolutionary analysis of DUF1216 genes have been performed. We performed a first comprehensive genome-wide analysis of DUF1216 proteins in Brassicaceae. Totally 284 DUF1216 genes were identified in 27 Brassicaceae species and classified into four subfamilies on the basis of phylogenetic analysis. The analysis of gene structure and conserved motifs revealed that DUF1216 genes within the same subfamily exhibited similar intron/exon patterns and motif composition. The majority members of DUF1216 genes contain a signal peptide in the N-terminal, and the ninth position of the signal peptide in most DUF1216 is cysteine. Synteny analysis revealed that segmental duplication is a major mechanism for expanding of DUF1216 genes in Brassica oleracea, Brassica juncea, Brassica napus, Lepidium meyneii, and Brassica carinata, while in Arabidopsis thaliana and Capsella rubella, tandem duplication plays a major role in the expansion of the DUF1216 gene family. The analysis of Ka/Ks (non-synonymous substitution rate/synonymous substitution rate) ratios for DUF1216 paralogous indicated that most of gene pairs underwent purifying selection. DUF1216 genes displayed a specifically high expression in reproductive tissues in most Brassicaceae species, while its expression in Brassica juncea was specifically high in root. Our studies offered new insights into the phylogenetic relationships, gene structures and expressional patterns of DUF1216 members in Brassicaceae, which provides a foundation for future functional analysis.
Collapse
Affiliation(s)
- Zai-Bao Zhang
- School of Life and Health Science, Huzhou College, Huzhou, Zhejiang, China
| | - Tao Xiong
- College of Life Science, Xinyang Normal University, Xinyang, Henan, China
| | - Xiao-Jia Wang
- College of International Education, Xinyang Normal University, Xinyang, Henan, China
| | - Yu-Rui Chen
- College of International Education, Xinyang Normal University, Xinyang, Henan, China
| | - Jing-Lei Wang
- College of International Education, Xinyang Normal University, Xinyang, Henan, China
| | - Cong-Li Guo
- College of International Education, Xinyang Normal University, Xinyang, Henan, China
| | - Zi-Yi Ye
- School of Life and Health Science, Huzhou College, Huzhou, Zhejiang, China
| |
Collapse
|
5
|
Fuster-Pons A, Murillo-Sánchez A, Méndez-Vigo B, Marcer A, Pieper B, Torres-Pérez R, Oliveros JC, Tsiantis M, Picó FX, Alonso-Blanco C. The trichome pattern diversity of Cardamine shares genetic mechanisms with Arabidopsis but differs in environmental drivers. PLANT PHYSIOLOGY 2024:kiae213. [PMID: 38606947 DOI: 10.1093/plphys/kiae213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/29/2024] [Accepted: 03/29/2024] [Indexed: 04/13/2024]
Abstract
Natural variation in trichome pattern (amount and distribution) is prominent among populations of many angiosperms. However, the degree of parallelism in the genetic mechanisms underlying this diversity and its environmental drivers in different species remain unclear. To address these questions, we analyzed the genomic and environmental bases of leaf trichome pattern diversity in Cardamine hirsuta, a relative of Arabidopsis (Arabidopsis thaliana). We characterized 123 wild accessions for their genomic diversity, leaf trichome patterns at different temperatures, and environmental adjustments. Nucleotide diversities and biogeographical distribution models identified two major genetic lineages with distinct demographic and adaptive histories. Additionally, C. hirsuta showed substantial variation in trichome pattern and plasticity to temperature. Trichome amount in C. hirsuta correlated positively with spring precipitation but negatively with temperature, which is opposite to climatic patterns in A. thaliana. Contrastingly, genetic analysis of C. hirsuta glabrous accessions indicated that, like for A. thaliana, glabrousness is caused by null mutations in ChGLABRA1 (ChGL1). Phenotypic genome-wide association studies (GWAS) further identified a ChGL1 haplogroup associated with low trichome density and ChGL1 expression. Therefore, a ChGL1 series of null and partial loss-of-function alleles accounts for the parallel evolution of leaf trichome pattern in C. hirsuta and A. thaliana. Finally, GWAS also detected other candidate genes (e.g. ChETC3, ChCLE17) that might affect trichome pattern. Accordingly, the evolution of this trait in C. hirsuta and A. thaliana shows partially conserved genetic mechanisms but is likely involved in adaptation to different environments.
Collapse
Affiliation(s)
- Alberto Fuster-Pons
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid 28049, Spain
| | - Alba Murillo-Sánchez
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid 28049, Spain
| | - Belén Méndez-Vigo
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid 28049, Spain
| | - Arnald Marcer
- CREAF, Cerdanyola del Vallès 08193, Spain
- Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain
| | - Bjorn Pieper
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Cologne, Germany
| | - Rafael Torres-Pérez
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid 28049, Spain
| | - Juan Carlos Oliveros
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid 28049, Spain
| | - Miltos Tsiantis
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Cologne, Germany
| | - Francisco Xavier Picó
- Departamento de Biología evolutiva, Estación Biológica de Doñana (EBD), Consejo Superior de Investigaciones Científicas (CSIC), Sevilla 41092, Spain
| | - Carlos Alonso-Blanco
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid 28049, Spain
| |
Collapse
|
6
|
Hightower AT, Chitwood DH, Josephs EB. Herbarium specimens reveal links between Capsella bursa-pastoris leaf shape and climate. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.13.580180. [PMID: 38405842 PMCID: PMC10888959 DOI: 10.1101/2024.02.13.580180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Studies into the evolution and development of leaf shape have connected variation in plant form, function, and fitness. For species with consistent leaf margin features, patterns in leaf architecture are related to both biotic and abiotic factors. However, for species with inconsistent leaf margin features, quantifying leaf shape variation and the effects of environmental factors on leaf shape has proven challenging. To investigate leaf shape variation in species with inconsistent shapes, we analyzed approximately 500 digitized Capsella bursa-pastoris specimens collected throughout the continental U.S. over a 100-year period with geometric morphometric modeling and deterministic techniques. We generated a morphospace of C. bursa-pastoris leaf shapes and modeled leaf shape as a function of environment and time. Our results suggest C. bursa-pastoris leaf shape variation is strongly associated with temperature over the C. bursa-pastoris growing season, with lobing decreasing as temperature increases. While we expected to see changes in variation over time, our results show that level of leaf shape variation is consistent over the 100-year period. Our findings showed that species with inconsistent leaf shape variation can be quantified using geometric morphometric modeling techniques and that temperature is the main environmental factor influencing leaf shape variation.
Collapse
Affiliation(s)
- Asia T Hightower
- Department of Plant Biology, Michigan State University, 612 Wilson Rd, East Lansing, MI, 48824-1226
- Ecology, Evolution, & Behavior Program, Michigan State University, 567 Wilson Rd, East Lansing, MI 48824-1226
- Plant Resilience Institute, Michigan State University, East Lansing, MI, 48824-1226
| | - Daniel H Chitwood
- Department of Horticulture, Michigan State University, 1066 Bogue Street, East Lansing, MI 48824-1226
- Department of Computational Mathematics, Science, and Engineering, Michigan State University, 428 S Shaw Ln, East Lansing, MI 48824-1226
| | - Emily B Josephs
- Department of Plant Biology, Michigan State University, 612 Wilson Rd, East Lansing, MI, 48824-1226
- Ecology, Evolution, & Behavior Program, Michigan State University, 567 Wilson Rd, East Lansing, MI 48824-1226
- Plant Resilience Institute, Michigan State University, East Lansing, MI, 48824-1226
| |
Collapse
|
7
|
Baumgarten L, Pieper B, Song B, Mane S, Lempe J, Lamb J, Cooke EL, Srivastava R, Strütt S, Žanko D, Casimiro PGP, Hallab A, Cartolano M, Tattersall AD, Huettel B, Filatov DA, Pavlidis P, Neuffer B, Bazakos C, Schaefer H, Mott R, Gan X, Alonso-Blanco C, Laurent S, Tsiantis M. Pan-European study of genotypes and phenotypes in the Arabidopsis relative Cardamine hirsuta reveals how adaptation, demography, and development shape diversity patterns. PLoS Biol 2023; 21:e3002191. [PMID: 37463141 PMCID: PMC10353826 DOI: 10.1371/journal.pbio.3002191] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 06/10/2023] [Indexed: 07/20/2023] Open
Abstract
We study natural DNA polymorphisms and associated phenotypes in the Arabidopsis relative Cardamine hirsuta. We observed strong genetic differentiation among several ancestry groups and broader distribution of Iberian relict strains in European C. hirsuta compared to Arabidopsis. We found synchronization between vegetative and reproductive development and a pervasive role for heterochronic pathways in shaping C. hirsuta natural variation. A single, fast-cycling ChFRIGIDA allele evolved adaptively allowing range expansion from glacial refugia, unlike Arabidopsis where multiple FRIGIDA haplotypes were involved. The Azores islands, where Arabidopsis is scarce, are a hotspot for C. hirsuta diversity. We identified a quantitative trait locus (QTL) in the heterochronic SPL9 transcription factor as a determinant of an Azorean morphotype. This QTL shows evidence for positive selection, and its distribution mirrors a climate gradient that broadly shaped the Azorean flora. Overall, we establish a framework to explore how the interplay of adaptation, demography, and development shaped diversity patterns of 2 related plant species.
Collapse
Affiliation(s)
- Lukas Baumgarten
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Bjorn Pieper
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Baoxing Song
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Sébastien Mane
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Janne Lempe
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Jonathan Lamb
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Elizabeth L. Cooke
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Rachita Srivastava
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Stefan Strütt
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Danijela Žanko
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | | | - Asis Hallab
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Maria Cartolano
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | | | - Bruno Huettel
- Max Planck Genome Centre Cologne, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | | | - Pavlos Pavlidis
- Institute of Computer Science, Foundation for Research and Technology, Crete, Greece
| | - Barbara Neuffer
- Department of Botany, University of Osnabrück, Osnabrück, Germany
| | - Christos Bazakos
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Hanno Schaefer
- Department Life Science Systems, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Richard Mott
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Xiangchao Gan
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Carlos Alonso-Blanco
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Stefan Laurent
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Miltos Tsiantis
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| |
Collapse
|
8
|
Zhang Y, Kan L, Hu S, Liu Z, Kang C. Roles and evolution of four LEAFY homologs in floral patterning and leaf development in woodland strawberry. PLANT PHYSIOLOGY 2023; 192:240-255. [PMID: 36732676 PMCID: PMC10152680 DOI: 10.1093/plphys/kiad067] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 05/03/2023]
Abstract
The plant-specific transcription factor LEAFY (LFY), generally maintained as a single-copy gene in most angiosperm species, plays critical roles in flower development. The woodland strawberry (Fragaria vesca) possesses four LFY homologs in the genome; however, their respective functions and evolution remain unknown. Here, we identified and validated that mutations in one of the four LFY homologs, FveLFYa, cause homeotic conversion of floral organs and reiterative outgrowth of ectopic flowers. In contrast to FveLFYa, FveLFYb/c/d appear dispensable under normal growth conditions, as fvelfyc mutants are indistinguishable from wild type and FveLFYb and FveLFYd are barely expressed. Transgenic analysis and yeast one-hybrid assay showed that FveLFYa and FveLFYb, but not FveLFYc and FveLFYd, are functionally conserved with AtLFY in Arabidopsis (Arabidopsis thaliana). Unexpectedly, LFY-binding site prediction and yeast one-hybrid assay revealed that the transcriptional links between LFY and the APETALA1 (AP1) promoter/the large AGAMOUS (AG) intron are missing in F. vesca, which is due to the loss of LFY-binding sites. The data indicate that mutations in cis-regulatory elements could contribute to LFY evolution. Moreover, we showed that FveLFYa is involved in leaf development, as approximately 30% of mature leaves have smaller or fewer leaflets in fvelfya. Phylogenetic analysis indicated that LFY homologs in Fragaria species may arise from recent duplication events in their common ancestor and are undergoing convergent gene loss. Together, these results provide insight into the role of LFY in flower and leaf development in strawberry and have important implications for the evolution of LFY.
Collapse
Affiliation(s)
- Yunming Zhang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Lijun Kan
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Shaoqiang Hu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Zhongchi Liu
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Chunying Kang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
9
|
Walden N, Schranz ME. Synteny Identifies Reliable Orthologs for Phylogenomics and Comparative Genomics of the Brassicaceae. Genome Biol Evol 2023; 15:7059155. [PMID: 36848527 PMCID: PMC10016055 DOI: 10.1093/gbe/evad034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/27/2023] [Accepted: 02/17/2023] [Indexed: 03/01/2023] Open
Abstract
Large genomic data sets are becoming the new normal in phylogenetic research, but the identification of true orthologous genes and the exclusion of problematic paralogs is still challenging when applying commonly used sequencing methods such as target enrichment. Here, we compared conventional ortholog detection using OrthoFinder with ortholog detection through genomic synteny in a data set of 11 representative diploid Brassicaceae whole-genome sequences spanning the entire phylogenetic space. Then, we evaluated the resulting gene sets regarding gene number, functional annotation, and gene and species tree resolution. Finally, we used the syntenic gene sets for comparative genomics and ancestral genome analysis. The use of synteny resulted in considerably more orthologs and also allowed us to reliably identify paralogs. Surprisingly, we did not detect notable differences between species trees reconstructed from syntenic orthologs when compared with other gene sets, including the Angiosperms353 set and a Brassicaceae-specific target enrichment gene set. However, the synteny data set comprised a multitude of gene functions, strongly suggesting that this method of marker selection for phylogenomics is suitable for studies that value downstream gene function analysis, gene interaction, and network studies. Finally, we present the first ancestral genome reconstruction for the Core Brassicaceae which predating the Brassicaceae lineage diversification ∼25 million years ago.
Collapse
Affiliation(s)
- Nora Walden
- Biosystematics Group, Wageningen University, Wageningen, The Netherlands.,Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | | |
Collapse
|
10
|
Novikova PY, Kolesnikova UK, Scott AD. Ancestral self-compatibility facilitates the establishment of allopolyploids in Brassicaceae. PLANT REPRODUCTION 2023; 36:125-138. [PMID: 36282331 PMCID: PMC9957919 DOI: 10.1007/s00497-022-00451-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/20/2022] [Indexed: 05/15/2023]
Abstract
Self-incompatibility systems based on self-recognition evolved in hermaphroditic plants to maintain genetic variation of offspring and mitigate inbreeding depression. Despite these benefits in diploid plants, for polyploids who often face a scarcity of mating partners, self-incompatibility can thwart reproduction. In contrast, self-compatibility provides an immediate advantage: a route to reproductive viability. Thus, diploid selfing lineages may facilitate the formation of new allopolyploid species. Here, we describe the mechanism of establishment of at least four allopolyploid species in Brassicaceae (Arabidopsis suecica, Arabidopsis kamchatica, Capsella bursa-pastoris, and Brassica napus), in a manner dependent on the prior loss of the self-incompatibility mechanism in one of the ancestors. In each case, the degraded S-locus from one parental lineage was dominant over the functional S-locus of the outcrossing parental lineage. Such dominant loss-of-function mutations promote an immediate transition to selfing in allopolyploids and may facilitate their establishment.
Collapse
Affiliation(s)
- Polina Yu Novikova
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, 50829, Cologne, Germany.
| | - Uliana K Kolesnikova
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, 50829, Cologne, Germany
| | - Alison Dawn Scott
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, 50829, Cologne, Germany
| |
Collapse
|
11
|
Czerniawski P, Piślewska-Bednarek M, Piasecka A, Kułak K, Bednarek P. Loss of MYB34 Transcription Factor Supports the Backward Evolution of Indole Glucosinolate Biosynthesis in a Subclade of the Camelineae Tribe and Releases the Feedback Loop in This Pathway in Arabidopsis. PLANT & CELL PHYSIOLOGY 2023; 64:80-93. [PMID: 36222356 DOI: 10.1093/pcp/pcac142] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/12/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Glucosinolates are specialized defensive metabolites characteristic of the Brassicales order. Among them, aliphatic and indolic glucosinolates (IGs) are usually highly abundant in species from the Brassicaceae family. The exceptions this trend are species representing a subclade of the Camelineae tribe, including Capsella and Camelina genera, which have reduced capacity to produce and metabolize IGs. Our study addresses the contribution of specific glucosinolate-related myeloblastosis (MYB) transcription factors to this unprecedented backward evolution of IG biosynthesis. To this end, we performed phylogenomic and functional studies of respective MYB proteins. The obtained results revealed weakened conservation of glucosinolate-related MYB transcription factors, including loss of functional MYB34 protein, in the investigated species. We showed that the introduction of functional MYB34 from Arabidopsis thaliana partially restores IG biosynthesis in Capsella rubella, indicating that the loss of this transcription factor contributes to the backward evolution of this metabolic pathway. Finally, we performed an analysis of the impact of particular myb mutations on the feedback loop in IG biosynthesis, which drives auxin overproduction, metabolic dysregulation and strong growth retardation caused by mutations in IG biosynthetic genes. This uncovered the unique function of MYB34 among IG-related MYBs in this feedback regulation and consequently in IG conservation in Brassicaceae plants.
Collapse
Affiliation(s)
- Paweł Czerniawski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, Poznań 61-704, Poland
| | - Mariola Piślewska-Bednarek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, Poznań 61-704, Poland
| | - Anna Piasecka
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, Poznań 61-704, Poland
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, Poznań 60-479, Poland
| | - Karolina Kułak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, Poznań 61-704, Poland
- Department of General Botany, Institute of Experimental Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, Poznań 61-614, Poland
| | - Paweł Bednarek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, Poznań 61-704, Poland
| |
Collapse
|
12
|
Ikematsu S, Umase T, Shiozaki M, Nakayama S, Noguchi F, Sakamoto T, Hou H, Gohari G, Kimura S, Torii KU. Rewiring of hormones and light response pathways underlies the inhibition of stomatal development in an amphibious plant Rorippa aquatica underwater. Curr Biol 2023; 33:543-556.e4. [PMID: 36696900 DOI: 10.1016/j.cub.2022.12.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 11/12/2022] [Accepted: 12/22/2022] [Indexed: 01/26/2023]
Abstract
Land plants have evolved the ability to cope with submergence. Amphibious plants are adapted to both aerial and aquatic environments through phenotypic plasticity in leaf form and function, known as heterophylly. In general, underwater leaves of amphibious plants are devoid of stomata, yet their molecular regulatory mechanisms remain elusive. Using the emerging model of the Brassicaceae amphibious species Rorippa aquatica, we lay the foundation for the molecular physiological basis of the submergence-triggered inhibition of stomatal development. A series of temperature shift experiments showed that submergence-induced inhibition of stomatal development is largely uncoupled from morphological heterophylly and likely regulated by independent pathways. Submergence-responsive transcriptome analysis revealed rapid reprogramming of gene expression, exemplified by the suppression of RaSPEECHLESS and RaMUTE within 1 h and the involvement of light and hormones in the developmental switch from terrestrial to submerged leaves. Further physiological studies place ethylene as a central regulator of the submergence-triggered inhibition of stomatal development. Surprisingly, red and blue light have opposing functions in this process: blue light promotes, whereas red light inhibits stomatal development, through influencing the ethylene pathway. Finally, jasmonic acid counteracts the inhibition of stomatal development, which can be attenuated by the red light. The actions and interactions of light and hormone pathways in regulating stomatal development in R. aquatica are different from those in the terrestrial species, Arabidopsis thaliana. Thus, our work suggests that extensive rewiring events of red light to ethylene signaling might underlie the evolutionary adaption to water environment in Brassicaceae.
Collapse
Affiliation(s)
- Shuka Ikematsu
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-Ku, Kyoto 603-8555, Japan; Institute of Transformative Biomolecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, Aichi 464-8601, Japan; Center for Plant Sciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-Ku, Kyoto 603-8555, Japan
| | - Tatsushi Umase
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-Ku, Kyoto 603-8555, Japan
| | - Mako Shiozaki
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-Ku, Kyoto 603-8555, Japan
| | - Sodai Nakayama
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-Ku, Kyoto 603-8555, Japan
| | - Fuko Noguchi
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-Ku, Kyoto 603-8555, Japan
| | - Tomoaki Sakamoto
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-Ku, Kyoto 603-8555, Japan; Center for Plant Sciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-Ku, Kyoto 603-8555, Japan
| | - Hongwei Hou
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gholamreza Gohari
- Department of Horticultural Sciences, Faculty of Agriculture, University of Maragheh, Maragheh 83111-55181, East Azerbaijan, Iran
| | - Seisuke Kimura
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-Ku, Kyoto 603-8555, Japan; Center for Plant Sciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-Ku, Kyoto 603-8555, Japan.
| | - Keiko U Torii
- Institute of Transformative Biomolecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, Aichi 464-8601, Japan; Howard Hughes Medical Institute, The University of Texas at Austin, Austin, TX 78712, USA; Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
13
|
Li LZ, Xu ZG, Chang TG, Wang L, Kang H, Zhai D, Zhang LY, Zhang P, Liu H, Zhu XG, Wang JW. Common evolutionary trajectory of short life-cycle in Brassicaceae ruderal weeds. Nat Commun 2023; 14:290. [PMID: 36653415 PMCID: PMC9849336 DOI: 10.1038/s41467-023-35966-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 01/10/2023] [Indexed: 01/19/2023] Open
Abstract
Weed species are detrimental to crop yield. An understanding of how weeds originate and adapt to field environments is needed for successful crop management and reduction of herbicide use. Although early flowering is one of the weed trait syndromes that enable ruderal weeds to overcome frequent disturbances, the underlying genetic basis is poorly understood. Here, we establish Cardamine occulta as a model to study weed ruderality. By genome assembly and QTL mapping, we identify impairment of the vernalization response regulator gene FLC and a subsequent dominant mutation in the blue-light receptor gene CRY2 as genetic drivers for the establishment of short life cycle in ruderal weeds. Population genomics study further suggests that the mutations in these two genes enable individuals to overcome human disturbances through early deposition of seeds into the soil seed bank and quickly dominate local populations, thereby facilitating their spread in East China. Notably, functionally equivalent dominant mutations in CRY2 are shared by another weed species, Rorippa palustris, suggesting a common evolutionary trajectory of early flowering in ruderal weeds in Brassicaceae.
Collapse
Affiliation(s)
- Ling-Zi Li
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, 200032, China
| | - Zhou-Geng Xu
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, 200032, China
- University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Tian-Gen Chang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, 200032, China
| | - Long Wang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, 200032, China
| | - Heng Kang
- Department of Computer Science and Technology, Nanjing University, Nanjing, 210093, China
| | - Dong Zhai
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, 200032, China
- University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Lu-Yi Zhang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, 200032, China
- University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Peng Zhang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, 200032, China
| | - Hongtao Liu
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, 200032, China
| | - Xin-Guang Zhu
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, 200032, China
| | - Jia-Wei Wang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, 200032, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
14
|
Cantila AY, Thomas WJW, Bayer PE, Edwards D, Batley J. Predicting Cloned Disease Resistance Gene Homologs (CDRHs) in Radish, Underutilised Oilseeds, and Wild Brassicaceae Species. PLANTS (BASEL, SWITZERLAND) 2022; 11:3010. [PMID: 36432742 PMCID: PMC9693284 DOI: 10.3390/plants11223010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Brassicaceae crops, including Brassica, Camelina and Raphanus species, are among the most economically important crops globally; however, their production is affected by several diseases. To predict cloned disease resistance (R) gene homologs (CDRHs), we used the protein sequences of 49 cloned R genes against fungal and bacterial diseases in Brassicaceae species. In this study, using 20 Brassicaceae genomes (17 wild and 3 domesticated species), 3172 resistance gene analogs (RGAs) (2062 nucleotide binding-site leucine-rich repeats (NLRs), 497 receptor-like protein kinases (RLKs) and 613 receptor-like proteins (RLPs)) were identified. CDRH clusters were also observed in Arabis alpina, Camelina sativa and Cardamine hirsuta with assigned chromosomes, consisting of 62 homogeneous (38 NLR, 17 RLK and 7 RLP clusters) and 10 heterogeneous RGA clusters. This study highlights the prevalence of CDRHs in the wild relatives of the Brassicaceae family, which may lay the foundation for rapid identification of functional genes and genomics-assisted breeding to develop improved disease-resistant Brassicaceae crop cultivars.
Collapse
|
15
|
Ru Y, Mandáková TM, Lysak MA, Koch MA. The evolutionary history of Cardamine bulbifera shows a successful rapid postglacial Eurasian range expansion in the absence of sexual reproduction. ANNALS OF BOTANY 2022; 130:245-263. [PMID: 35789248 PMCID: PMC9445599 DOI: 10.1093/aob/mcac088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND AIMS Sexual reproduction is known to drive plant diversification and adaptation. Here we investigate the evolutionary history and spatiotemporal origin of a dodecaploid (2n = 12x = 96) Eurasian deciduous woodland species, Cardamine bulbifera, which reproduces and spreads via vegetative bulb-like structures only. The species has been among the most successful range-expanding understorey woodland plants in Europe, which raises the question of the genetic architecture of its gene pool, since its hexaploid (2n = 6x = 48) but putatively outcrossing closest relative, C. quinquefolia, displays a smaller distribution range in Eastern Europe towards the Caucasus region. Cardamine bulbifera belongs to a small monophyletic clade of four species comprising also C. abchasica (2n = 2x = 16) and C. bipinnata (unknown ploidy) from the Caucasus region. METHODS We sequenced the genomes of the two polyploids and their two putative ancestors using Illumina short-read sequencing technology (×7-8 coverage). Covering the entire distribution range, genomic data were generated for 67 samples of the two polyploids (51 samples of C. bulbifera, 16 samples of C. quinquefolia) and 6 samples of the putative diploid taxa (4 samples of C. abchasica, 2 samples of C. bipinnata) to unravel the evolutionary origin of the polyploid taxa using phylogenetic reconstructions of biparentally and maternally inherited genetic sequence data. Ploidy levels of C. bulbifera and C. quinquefolia were analysed by comparative chromosome painting. We used genetic assignment analysis (STRUCTURE) and approximate Bayesian computation (ABC) modelling to test whether C. bulbifera represents genetically differentiated lineages and addressed the hypothesis of its hybrid origin. Comparative ecological modelling was applied to unravel possible niche differentiation among the two polyploid species. KEY RESULTS Cardamine bulbifera was shown to be a non-hybridogenous, auto-dodecaploid taxon of early Pleistocene origin, but with a history of past gene flow with its hexaploid sister species C. quinquefolia, likely during the last glacial maximum in shared refuge areas in Eastern Europe towards Western Turkey and the Crimean Peninsula region. The diploid Caucasian endemic C. abchasica is considered an ancestral species, which also provides evidence for the origin of the species complex in the Caucasus region. Cardamine bulbifera successfully expanded its distribution range postglacially towards Central and Western Europe accompanied by a transition to exclusively vegetative propagation. CONCLUSIONS A transition to vegetative propagation in C. bulbifera is hypothesized as the major innovation to rapidly expand its distribution range following postglacially progressing woodland vegetation throughout Europe. Preceding and introgressive gene flow from its sister species C. quinquefolia in the joint refuge area is documented. This transition and ecological differentiation may have been triggered by preceding introgressive gene flow from its sister species in the joint East European refuge areas.
Collapse
Affiliation(s)
- Yalu Ru
- Centre for Organismal Studies Heidelberg (COS), Department of Biodiversity and Plant Systematics, Heidelberg University, Heidelberg, Germany
| | - Terezie M Mandáková
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Martin A Lysak
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
- National Centre for Biomolecular Research (NCBR), Faculty of Science, Masaryk University, Brno, Czech Republic
| | | |
Collapse
|
16
|
Palos K, Nelson Dittrich AC, Yu L, Brock JR, Railey CE, Wu HYL, Sokolowska E, Skirycz A, Hsu PY, Gregory BD, Lyons E, Beilstein MA, Nelson ADL. Identification and functional annotation of long intergenic non-coding RNAs in Brassicaceae. THE PLANT CELL 2022; 34:3233-3260. [PMID: 35666179 PMCID: PMC9421480 DOI: 10.1093/plcell/koac166] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 05/05/2022] [Indexed: 06/01/2023]
Abstract
Long intergenic noncoding RNAs (lincRNAs) are a large yet enigmatic class of eukaryotic transcripts that can have critical biological functions. The wealth of RNA-sequencing (RNA-seq) data available for plants provides the opportunity to implement a harmonized identification and annotation effort for lincRNAs that enables cross-species functional and genomic comparisons as well as prioritization of functional candidates. In this study, we processed >24 Tera base pairs of RNA-seq data from >16,000 experiments to identify ∼130,000 lincRNAs in four Brassicaceae: Arabidopsis thaliana, Camelina sativa, Brassica rapa, and Eutrema salsugineum. We used nanopore RNA-seq, transcriptome-wide structural information, peptide data, and epigenomic data to characterize these lincRNAs and identify conserved motifs. We then used comparative genomic and transcriptomic approaches to highlight lincRNAs in our data set with sequence or transcriptional conservation. Finally, we used guilt-by-association analyses to assign putative functions to lincRNAs within our data set. We tested this approach on a subset of lincRNAs associated with germination and seed development, observing germination defects for Arabidopsis lines harboring T-DNA insertions at these loci. LincRNAs with Brassicaceae-conserved putative miRNA binding motifs, small open reading frames, or abiotic-stress modulated expression are a few of the annotations that will guide functional analyses into this cryptic portion of the transcriptome.
Collapse
Affiliation(s)
- Kyle Palos
- The Boyce Thompson Institute, Cornell University, Ithaca, New York, USA
| | | | - Li’ang Yu
- The Boyce Thompson Institute, Cornell University, Ithaca, New York, USA
| | - Jordan R Brock
- Department of Horticulture, Michigan State University, East Lansing, Michigan, USA
| | - Caylyn E Railey
- The Boyce Thompson Institute, Cornell University, Ithaca, New York, USA
| | - Hsin-Yen Larry Wu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | | | | | - Polly Yingshan Hsu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - Brian D Gregory
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Eric Lyons
- The School of Plant Sciences, University of Arizona, Tucson, Arizona, USA
| | - Mark A Beilstein
- The School of Plant Sciences, University of Arizona, Tucson, Arizona, USA
| | | |
Collapse
|
17
|
Kuczynski C, McCorkle S, Keereetaweep J, Shanklin J, Schwender J. An expanded role for the transcription factor WRINKLED1 in the biosynthesis of triacylglycerols during seed development. FRONTIERS IN PLANT SCIENCE 2022; 13:955589. [PMID: 35991420 PMCID: PMC9389262 DOI: 10.3389/fpls.2022.955589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 06/28/2022] [Indexed: 06/12/2023]
Abstract
The transcription factor WRINKLED1 (WRI1) is known as a master regulator of fatty acid synthesis in developing oilseeds of Arabidopsis thaliana and other species. WRI1 is known to directly stimulate the expression of many fatty acid biosynthetic enzymes and a few targets in the lower part of the glycolytic pathway. However, it remains unclear to what extent and how the conversion of sugars into fatty acid biosynthetic precursors is controlled by WRI1. To shortlist possible gene targets for future in-planta experimental validation, here we present a strategy that combines phylogenetic foot printing of cis-regulatory elements with additional layers of evidence. Upstream regions of protein-encoding genes in A. thaliana were searched for the previously described DNA-binding consensus for WRI1, the ASML1/WRI1 (AW)-box. For about 900 genes, AW-box sites were found to be conserved across orthologous upstream regions in 11 related species of the crucifer family. For 145 select potential target genes identified this way, affinity of upstream AW-box sequences to WRI1 was assayed by Microscale Thermophoresis. This allowed definition of a refined WRI1 DNA-binding consensus. We find that known WRI1 gene targets are predictable with good confidence when upstream AW-sites are phylogenetically conserved, specifically binding WRI1 in the in vitro assay, positioned in proximity to the transcriptional start site, and if the gene is co-expressed with WRI1 during seed development. When targets predicted in this way are mapped to central metabolism, a conserved regulatory blueprint emerges that infers concerted control of contiguous pathway sections in glycolysis and fatty acid biosynthesis by WRI1. Several of the newly predicted targets are in the upper glycolysis pathway and the pentose phosphate pathway. Of these, plastidic isoforms of fructokinase (FRK3) and of phosphoglucose isomerase (PGI1) are particularly corroborated by previously reported seed phenotypes of respective null mutations.
Collapse
|
18
|
Explosive seed dispersal depends on SPL7 to ensure sufficient copper for localized lignin deposition via laccases. Proc Natl Acad Sci U S A 2022; 119:e2202287119. [PMID: 35666865 PMCID: PMC9214497 DOI: 10.1073/pnas.2202287119] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The sudden explosion of seed pods in popping cress (Cardamine hirsuta) takes less than 3 ms to accelerate seeds away from the plant. This explosive mechanism relies on polar deposition of the cell-wall polymer lignin. To investigate the genetic basis for polar lignin deposition, we conducted a mutant screen and identified SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE 7 (SPL7)—a transcriptional regulator of copper homeostasis. We discovered three multicopper laccases, LAC4, 11, and 17, that precisely colocalize with, and are required for, the polar deposition of lignin in explosive seed pods. Activity of these three laccases depends on SPL7 to acclimate to copper deficiency. Our findings demonstrate how mineral nutrition is integrated with polar lignin deposition to facilitate dispersal. Exploding seed pods evolved in the Arabidopsis relative Cardamine hirsuta via morphomechanical innovations that allow the storage and rapid release of elastic energy. Asymmetric lignin deposition within endocarpb cell walls is one such innovation that is required for explosive seed dispersal and evolved in association with the trait. However, the genetic control of this novel lignin pattern is unknown. Here, we identify three lignin-polymerizing laccases, LAC4, 11, and 17, that precisely colocalize with, and are redundantly required for, asymmetric lignification of endocarpb cells. By screening for C. hirsuta mutants with less lignified fruit valves, we found that loss of function of the transcription factor gene SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE 7 (SPL7) caused a reduction in endocarpb cell-wall lignification and a consequent reduction in seed dispersal range. SPL7 is a conserved regulator of copper homeostasis and is both necessary and sufficient for copper to accumulate in the fruit. Laccases are copper-requiring enzymes. We discovered that laccase activity in endocarpb cell walls depends on the SPL7 pathway to acclimate to copper deficiency and provide sufficient copper for lignin polymerization. Hence, SPL7 links mineral nutrition to efficient dispersal of the next generation.
Collapse
|
19
|
Chen H, Wang T, He X, Cai X, Lin R, Liang J, Wu J, King G, Wang X. BRAD V3.0: an upgraded Brassicaceae database. Nucleic Acids Res 2022; 50:D1432-D1441. [PMID: 34755871 PMCID: PMC8728314 DOI: 10.1093/nar/gkab1057] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/14/2021] [Accepted: 10/19/2021] [Indexed: 11/13/2022] Open
Abstract
The Brassicaceae Database (BRAD version 3.0, BRAD V3.0; http://brassicadb.cn) has evolved from the former Brassica Database (BRAD V2.0), and represents an important community portal hosting genome information for multiple Brassica and related Brassicaceae plant species. Since the last update in 2015, the complex genomes of numerous Brassicaceae species have been decoded, accompanied by many omics datasets. To provide an up-to-date service, we report here a major upgrade of the portal. The Model-View-ViewModel (MVVM) framework of BRAD has been re-engineered to enable easy and sustainable maintenance of the database. The collection of genomes has been increased to 26 species, along with optimization of the user interface. Features of the previous version have been retained, with additional new tools for exploring syntenic genes, gene expression and variation data. In the 'Syntenic Gene @ Subgenome' module, we added features to view the sequence alignment and phylogenetic relationships of syntenic genes. New modules include 'MicroSynteny' for viewing synteny of selected fragment pairs, and 'Polymorph' for retrieval of variation data. The updated BRAD provides a substantial expansion of genomic data and a comprehensive improvement of the service available to the Brassicaceae research community.
Collapse
Affiliation(s)
- Haixu Chen
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, No.12, Haidian District, Beijing 100081, China
| | - Tianpeng Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, No.12, Haidian District, Beijing 100081, China
| | - Xiaoning He
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, No.12, Haidian District, Beijing 100081, China
| | - Xu Cai
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, No.12, Haidian District, Beijing 100081, China
| | - Runmao Lin
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, No.12, Haidian District, Beijing 100081, China
| | - Jianli Liang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, No.12, Haidian District, Beijing 100081, China
| | - Jian Wu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, No.12, Haidian District, Beijing 100081, China
| | - Graham King
- Southern Cross Plant Science, Southern Cross University, Lismore, New South Wales, Australia
| | - Xiaowu Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, No.12, Haidian District, Beijing 100081, China
| |
Collapse
|
20
|
Zong Y, Hao Z, Tu Z, Shen Y, Zhang C, Wen S, Yang L, Ma J, Li H. Genome-wide survey and identification of AP2/ERF genes involved in shoot and leaf development in Liriodendron chinense. BMC Genomics 2021; 22:807. [PMID: 34749659 PMCID: PMC8576965 DOI: 10.1186/s12864-021-08119-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/23/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Liriodendron chinense is a distinctive ornamental tree species due to its unique leaves and tulip-like flowers. The discovery of genes involved in leaf development and morphogenesis is critical for uncovering the underlying genetic basis of these traits. Genes in the AP2/ERF family are recognized as plant-specific transcription factors that contribute to plant growth, hormone-induced development, ethylene response factors, and stress responses. RESULTS In this study, we identified 104 putative AP2/ERF genes in the recently released L. chinense genome and transcriptome database. In addition, all 104 genes were grouped into four subfamilies, the AP2, ERF, RAV, and Soloist subfamilies. This classification was further supported by the results of gene structure and conserved motif analyses. Intriguingly, after application of a series test of cluster analysis, three AP2 genes, LcERF 94, LcERF 96, and LcERF 98, were identified as tissue-specific in buds based on the expression profiles of various tissues. These results were further validated via RT-qPCR assays and were highly consistent with the STC analysis. We further investigated the dynamic changes of immature leaves by dissecting fresh shoots into seven discontinuous periods, which were empirically identified as shoot apical meristem (SAM), leaf primordia and tender leaf developmental stages according to the anatomic structure. Subsequently, these three candidates were highly expressed in SAM and leaf primordia but rarely in tender leaves, indicating that they were mainly involved in early leaf development and morphogenesis. Moreover, these three genes displayed nuclear subcellular localizations through the transient transformation of tobacco epidermal cells. CONCLUSIONS Overall, we identified 104 AP2/ERF family members at the genome-wide level and discerned three candidate genes that might participate in the development and morphogenesis of the leaf primordium in L. chinense.
Collapse
Affiliation(s)
- Yaxian Zong
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, 210037, China
| | - Ziyuan Hao
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, 210037, China
| | - Zhonghua Tu
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, 210037, China
| | - Yufang Shen
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, 210037, China
| | - Chengge Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, 210037, China
| | - Shaoying Wen
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, 210037, China
| | - Lichun Yang
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, 210037, China
| | - Jikai Ma
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, 210037, China
| | - Huogen Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
21
|
Huang C, Ying H, Yang X, Gao Y, Li T, Wu B, Ren M, Zhang Z, Ding J, Gao J, Wen D, Ye X, Liu L, Wang H, Sun G, Zou Y, Chen N, Wang L. The Cardamine enshiensis genome reveals whole genome duplication and insight into selenium hyperaccumulation and tolerance. Cell Discov 2021; 7:62. [PMID: 34373445 PMCID: PMC8352907 DOI: 10.1038/s41421-021-00286-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 05/26/2021] [Indexed: 02/05/2023] Open
Abstract
Cardamine enshiensis is a well-known selenium (Se)-hyperaccumulating plant. Se is an essential trace element associated with many health benefits. Despite its critical importance, genomic information of this species is limited. Here, we report a chromosome-level genome assembly of C. enshiensis, which consists of 443.4 Mb in 16 chromosomes with a scaffold N50 of 24 Mb. To elucidate the mechanism of Se tolerance and hyperaccumulation in C. enshiensis, we generated and analyzed a dataset encompassing genomes, transcriptomes, and metabolomes. The results reveal that flavonoid, glutathione, and lignin biosynthetic pathways may play important roles in protecting C. enshiensis from stress induced by Se. Hi-C analysis of chromatin interaction patterns showed that the chromatin of C. enshiensis is partitioned into A and B compartments, and strong interactions between the two telomeres of each chromosome were correlated with histone modifications, epigenetic markers, DNA methylation, and RNA abundance. Se supplementation could affect the 3D chromatin architecture of C. enshiensis at the compartment level. Genes with compartment changes after Se treatment were involved in selenocompound metabolism, and genes in regions with topologically associated domain insulation participated in cellular responses to Se, Se binding, and flavonoid biosynthesis. This multiomics research provides molecular insight into the mechanism underlying Se tolerance and hyperaccumulation in C. enshiensis.
Collapse
Affiliation(s)
- Chuying Huang
- Hubei Minzu University Affiliated Enshi Clinical Medical School, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, China. .,Hubei Selenium and Human Health Institute, Enshi, Hubei, China.
| | - Hongqin Ying
- Hubei Selenium Industrial Technology Research Institute, Enshi Autonomous Prefecture Academy of Agriculture Sciences, Enshi, Hubei, China
| | - Xibiao Yang
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yuan Gao
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE 405 30, Gothenburg, Sweden
| | - Tuo Li
- Hubei Minzu University Affiliated Enshi Clinical Medical School, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, China.,Hubei Selenium and Human Health Institute, Enshi, Hubei, China
| | - Bo Wu
- Hubei Minzu University Affiliated Enshi Clinical Medical School, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, China.,Hubei Selenium and Human Health Institute, Enshi, Hubei, China
| | - Meng Ren
- Center for Bioinformatics and Computational Biology, and the Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China
| | - Zixiong Zhang
- Hubei Minzu University Affiliated Enshi Clinical Medical School, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, China.,Hubei Selenium and Human Health Institute, Enshi, Hubei, China
| | - Jun Ding
- Hubei Minzu University Affiliated Enshi Clinical Medical School, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, China.,Hubei Selenium and Human Health Institute, Enshi, Hubei, China
| | - Jianhua Gao
- South China Potato Research Center, Enshi Autonomous Prefecture Academy of Agricultural Sciences, Enshi, Hubei, China
| | - Dan Wen
- Bureau of Agricultural & Rural Affairs of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, China
| | - Xingzhi Ye
- South China Potato Research Center, Enshi Autonomous Prefecture Academy of Agricultural Sciences, Enshi, Hubei, China
| | - Ling Liu
- Wuhan Frasergen Bioinformatics Co., Ltd., Wuhan, Hubei, China
| | - Huan Wang
- Wuhan Frasergen Bioinformatics Co., Ltd., Wuhan, Hubei, China
| | - Guogen Sun
- Hubei Minzu University Affiliated Enshi Clinical Medical School, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, China.,Hubei Selenium and Human Health Institute, Enshi, Hubei, China
| | - Yi Zou
- Hubei Minzu University Affiliated Enshi Clinical Medical School, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, China.,Hubei Selenium and Human Health Institute, Enshi, Hubei, China
| | - Nansheng Chen
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong, China.,Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada
| | - Li Wang
- Hubei Minzu University Affiliated Enshi Clinical Medical School, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, China.,Hubei Selenium and Human Health Institute, Enshi, Hubei, China
| |
Collapse
|
22
|
Winkelmüller TM, Entila F, Anver S, Piasecka A, Song B, Dahms E, Sakakibara H, Gan X, Kułak K, Sawikowska A, Krajewski P, Tsiantis M, Garrido-Oter R, Fukushima K, Schulze-Lefert P, Laurent S, Bednarek P, Tsuda K. Gene expression evolution in pattern-triggered immunity within Arabidopsis thaliana and across Brassicaceae species. THE PLANT CELL 2021; 33:1863-1887. [PMID: 33751107 PMCID: PMC8290292 DOI: 10.1093/plcell/koab073] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 02/24/2021] [Indexed: 05/20/2023]
Abstract
Plants recognize surrounding microbes by sensing microbe-associated molecular patterns (MAMPs) to activate pattern-triggered immunity (PTI). Despite their significance for microbial control, the evolution of PTI responses remains largely uncharacterized. Here, by employing comparative transcriptomics of six Arabidopsis thaliana accessions and three additional Brassicaceae species to investigate PTI responses, we identified a set of genes that commonly respond to the MAMP flg22 and genes that exhibit species-specific expression signatures. Variation in flg22-triggered transcriptome responses across Brassicaceae species was incongruent with their phylogeny, while expression changes were strongly conserved within A. thaliana. We found the enrichment of WRKY transcription factor binding sites in the 5'-regulatory regions of conserved and species-specific responsive genes, linking the emergence of WRKY-binding sites with the evolution of gene expression patterns during PTI. Our findings advance our understanding of the evolution of the transcriptome during biotic stress.
Collapse
Affiliation(s)
- Thomas M Winkelmüller
- Department of Plant–Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Frederickson Entila
- Department of Plant–Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Shajahan Anver
- Department of Plant–Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
- Present address: Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Anna Piasecka
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Baoxing Song
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
- Present address: Institute for Genomic Diversity, Cornell University, Ithaca, New York
| | - Eik Dahms
- Department of Plant–Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Hitoshi Sakakibara
- RIKEN Center for Sustainable Resource Science, 230-0045 Yokohama, Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Xiangchao Gan
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Karolina Kułak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
- Present address: Department of Computational Biology, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - Aneta Sawikowska
- Department of Mathematical and Statistical Methods, Poznań University of Life Sciences, 60-628 Poznań, Poland
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznań, Poland
| | - Paweł Krajewski
- Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznań, Poland
| | - Miltos Tsiantis
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Ruben Garrido-Oter
- Department of Plant–Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Kenji Fukushima
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, 97082 Würzburg, Germany
| | - Paul Schulze-Lefert
- Department of Plant–Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Stefan Laurent
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Paweł Bednarek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Kenichi Tsuda
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Interdisciplinary Science Research Institute, Huazhong Agricultural University, 430070 Wuhan, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, 430070 Wuhan, China
- Department of Plant–Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
- Author for correspondence:
| |
Collapse
|
23
|
Agerbirk N, Hansen CC, Kiefer C, Hauser TP, Ørgaard M, Asmussen Lange CB, Cipollini D, Koch MA. Comparison of glucosinolate diversity in the crucifer tribe Cardamineae and the remaining order Brassicales highlights repetitive evolutionary loss and gain of biosynthetic steps. PHYTOCHEMISTRY 2021; 185:112668. [PMID: 33743499 DOI: 10.1016/j.phytochem.2021.112668] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 01/05/2021] [Accepted: 01/09/2021] [Indexed: 06/12/2023]
Abstract
We review glucosinolate (GSL) diversity and analyze phylogeny in the crucifer tribe Cardamineae as well as selected species from Brassicaceae (tribe Brassiceae) and Resedaceae. Some GSLs occur widely, while there is a scattered distribution of many less common GSLs, tentatively sorted into three classes: ancient, intermediate and more recently evolved. The number of conclusively identified GSLs in the tribe (53 GSLs) constitute 60% of all GSLs known with certainty from any plant (89 GSLs) and apparently unique GSLs in the tribe constitute 10 of those GSLs conclusively identified (19%). Intraspecific, qualitative GSL polymorphism is known from at least four species in the tribe. The most ancient GSL biosynthesis in Brassicales probably involved biosynthesis from Phe, Val, Leu, Ile and possibly Trp, and hydroxylation at the β-position. From a broad comparison of families in Brassicales and tribes in Brassicaceae, we estimate that a common ancestor of the tribe Cardamineae and the family Brassicaceae exhibited GSL biosynthesis from Phe, Val, Ile, Leu, possibly Tyr, Trp and homoPhe (ancient GSLs), as well as homologs of Met and possibly homoIle (intermediate age GSLs). From the comparison of phylogeny and GSL diversity, we also suggest that hydroxylation and subsequent methylation of indole GSLs and usual modifications of Met-derived GSLs (formation of sulfinyls, sulfonyls and alkenyls) occur due to conserved biochemical mechanisms and was present in a common ancestor of the family. Apparent loss of homologs of Met as biosynthetic precursors was deduced in the entire genus Barbarea and was frequent in Cardamine (e.g. C. pratensis, C. diphylla, C. concatenata, possibly C. amara). The loss was often associated with appearance of significant levels of unique or rare GSLs as well as recapitulation of ancient types of GSLs. Biosynthetic traits interpreted as de novo evolution included hydroxylation at rare positions, acylation at the thioglucose and use of dihomoIle and possibly homoIle as biosynthetic precursors. Biochemical aspects of the deduced evolution are discussed and testable hypotheses proposed. Biosyntheses from Val, Leu, Ile, Phe, Trp, homoPhe and homologs of Met are increasingly well understood, while GSL biosynthesis from mono- and dihomoIle is poorly understood. Overall, interpretation of known diversity suggests that evolution of GSL biosynthesis often seems to recapitulate ancient biosynthesis. In contrast, unprecedented GSL biosynthetic innovation seems to be rare.
Collapse
Affiliation(s)
- Niels Agerbirk
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark.
| | - Cecilie Cetti Hansen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Christiane Kiefer
- Department of Biodiversity and Plant Systematics, Centre for Organismal Studies, Heidelberg University, 69120, Heidelberg, Germany
| | - Thure P Hauser
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Marian Ørgaard
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Conny Bruun Asmussen Lange
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Don Cipollini
- Department of Biological Sciences, Wright State University, 3640 Colonel Glenn Highway, Dayton, OH, 45435, USA
| | - Marcus A Koch
- Department of Biodiversity and Plant Systematics, Centre for Organismal Studies, Heidelberg University, 69120, Heidelberg, Germany
| |
Collapse
|
24
|
Zhang Y, Liang J, Cai X, Chen H, Wu J, Lin R, Cheng F, Wang X. Divergence of three BRX homoeologs in Brassica rapa and its effect on leaf morphology. HORTICULTURE RESEARCH 2021; 8:68. [PMID: 33790228 PMCID: PMC8012600 DOI: 10.1038/s41438-021-00504-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/28/2020] [Accepted: 01/17/2021] [Indexed: 05/26/2023]
Abstract
The leafy head characteristic is a special phenotype of Chinese cabbage resulting from artificial selection during domestication and breeding. BREVIS RADIX (BRX) has been suggested to control root elongation, shoot growth, and tiller angle in Arabidopsis and rice. In Brassica rapa, three BrBRX homoeologs have been identified, but only BrBRX.1 and BrBRX.2 were found to be under selection in leaf-heading accessions, indicating their functional diversification in leafy head formation. Here, we show that these three BrBRX genes belong to a plant-specific BRX gene family but that they have significantly diverged from other BRX-like members on the basis of different phylogenetic classifications, motif compositions and expression patterns. Moreover, although the expression of these three BrBRX genes differed, compared with BrBRX.3, BrBRX.1, and BrBRX.2 displayed similar expression patterns. Arabidopsis mutant complementation studies showed that only BrBRX.1 could rescue the brx root phenotype, whereas BrBRX.2 and BrBRX.3 could not. However, overexpression of each of the three BrBRX genes in Arabidopsis resulted in similar pleiotropic leaf phenotypes, including epinastic leaf morphology, with an increase in leaf number and leaf petiole length and a reduction in leaf angle. These leaf traits are associated with leafy head formation. Further testing of a SNP (T/C) in BrBRX.2 confirmed that this allele in the heading accessions was strongly associated with the leaf-heading trait of B. rapa. Our results revealed that all three BrBRX genes may be involved in the leaf-heading trait, but they may have functionally diverged on the basis of their differential expression.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, Beijing, China
| | - Jianli Liang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, Beijing, China
| | - Xu Cai
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, Beijing, China
| | - Haixu Chen
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, Beijing, China
| | - Jian Wu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, Beijing, China
| | - Runmao Lin
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, Beijing, China
| | - Feng Cheng
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, Beijing, China
| | - Xiaowu Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, Beijing, China.
| |
Collapse
|
25
|
Akiyama R, Sun J, Hatakeyama M, Lischer HEL, Briskine RV, Hay A, Gan X, Tsiantis M, Kudoh H, Kanaoka MM, Sese J, Shimizu KK, Shimizu‐Inatsugi R. Fine-scale empirical data on niche divergence and homeolog expression patterns in an allopolyploid and its diploid progenitor species. THE NEW PHYTOLOGIST 2021; 229:3587-3601. [PMID: 33222195 PMCID: PMC7986779 DOI: 10.1111/nph.17101] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 11/09/2020] [Indexed: 05/09/2023]
Abstract
Polyploidization is pervasive in plants, but little is known about the niche divergence of wild allopolyploids (species that harbor polyploid genomes originating from different diploid species) relative to their diploid progenitor species and the gene expression patterns that may underlie such ecological divergence. We conducted a fine-scale empirical study on habitat and gene expression of an allopolyploid and its diploid progenitors. We quantified soil properties and light availability of habitats of an allotetraploid Cardamine flexuosa and its diploid progenitors Cardamine amara and Cardamine hirsuta in two seasons. We analyzed expression patterns of genes and homeologs (homeologous gene copies in allopolyploids) using RNA sequencing. We detected niche divergence between the allopolyploid and its diploid progenitors along water availability gradient at a fine scale: the diploids in opposite extremes and the allopolyploid in a broader range between diploids, with limited overlap with diploids at both ends. Most of the genes whose homeolog expression ratio changed among habitats in C. flexuosa varied spatially and temporally. These findings provide empirical evidence for niche divergence between an allopolyploid and its diploid progenitor species at a fine scale and suggest that divergent expression patterns of homeologs in an allopolyploid may underlie its persistence in diverse habitats.
Collapse
Affiliation(s)
- Reiko Akiyama
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichWinterthurerstrasse 190ZurichCH‐8057Switzerland
| | - Jianqiang Sun
- Research Center for Agricultural Information TechnologyNational Agriculture and Food Research Organization3‐1‐1 KannondaiTsukubaIbaraki305‐8517Japan
| | - Masaomi Hatakeyama
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichWinterthurerstrasse 190ZurichCH‐8057Switzerland
- Functional Genomics Center ZurichWinterthurerstrasse 190ZurichCH‐8057Switzerland
- Swiss Institute of BioinformaticsQuartier Sorge – Batiment GenopodeLausanneCH‐1015Switzerland
| | - Heidi E. L. Lischer
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichWinterthurerstrasse 190ZurichCH‐8057Switzerland
- Swiss Institute of BioinformaticsQuartier Sorge – Batiment GenopodeLausanneCH‐1015Switzerland
- Interfaculty Bioinformatics UnitUniversity of BernBaltzerstrasse 6BernCH‐3012Switzerland
| | - Roman V. Briskine
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichWinterthurerstrasse 190ZurichCH‐8057Switzerland
- Functional Genomics Center ZurichWinterthurerstrasse 190ZurichCH‐8057Switzerland
| | - Angela Hay
- Department of Comparative Development and GeneticsMax Planck Institute for Plant Breeding ResearchCarl‐von‐Linné‐Weg 10Köln50829Germany
| | - Xiangchao Gan
- Department of Comparative Development and GeneticsMax Planck Institute for Plant Breeding ResearchCarl‐von‐Linné‐Weg 10Köln50829Germany
| | - Miltos Tsiantis
- Department of Comparative Development and GeneticsMax Planck Institute for Plant Breeding ResearchCarl‐von‐Linné‐Weg 10Köln50829Germany
| | - Hiroshi Kudoh
- Center for Ecological ResearchKyoto UniversityHirano 2‐509‐3Otsu520‐2113Japan
| | - Masahiro M. Kanaoka
- Division of Biological Science, Graduate School of ScienceNagoya UniversityFuro‐cho, Chikusa‐kuNagoya464‐8602Japan
| | - Jun Sese
- Humanome Lab, Inc.L‐HUB 3F1‐4, Shumomiyabi‐choShinjukuTokyo162‐0822Japan
- Artificial Intelligence Research CenterAIST2‐3‐26 AomiKoto‐kuTokyo135‐0064Japan
- AIST‐Tokyo Tech RWBC‐OIL2‐12‐1 OkayamaMeguro‐kuTokyo152‐8550Japan
| | - Kentaro K. Shimizu
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichWinterthurerstrasse 190ZurichCH‐8057Switzerland
- Kihara Institute for Biological Research (KIBR)Yokohama City University641‐12 MaiokaTotsuka‐wardYokohama244‐0813Japan
| | - Rie Shimizu‐Inatsugi
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichWinterthurerstrasse 190ZurichCH‐8057Switzerland
| |
Collapse
|
26
|
Zeng X, Li H, Li K, Yuan R, Zhao S, Li J, Luo J, Li X, Ma H, Wu G, Yan X. Evolution of the Brassicaceae-specific MS5-Like family and neofunctionalization of the novel MALE STERILITY 5 gene essential for male fertility in Brassica napus. THE NEW PHYTOLOGIST 2021; 229:2339-2356. [PMID: 33128826 PMCID: PMC7894334 DOI: 10.1111/nph.17053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 10/08/2020] [Indexed: 05/22/2023]
Abstract
New genes (or lineage-specific genes) can facilitate functional innovations. MALE STERILITY 5 (MS5) in Brassica napus is a fertility-related new gene, which has two wild-type alleles (BnMS5a and BnMS5c ) and two mutant alleles (BnMS5b and BnMS5d ) that could induce male sterility. Here, we studied the history and functional evolution of MS5 homologs in plants by phylogenetic analysis and molecular genetic experiments. We identified 727 MS5 homologs and found that they define a Brassicaceae-specific gene family that has expanded partly via multiple tandem gene duplications and also probably transpositions. The MS5 in B. napus is inherited from a basic diploid ancestor of B. rapa. Molecular genetic experiments indicate that BnMS5a and BnMS5c are functionally distinct in B. napus and that BnMS5d can inhibit BnMS5a in B. napus in a dosage-dependent manner. The BnMS5a protein can move in coordination with meiotic telomeres and interact with the nuclear envelope protein SUN1, with a possible crucial role in meiotic chromosome behavior. In summary, BnMS5 belongs to a Brassicaceae-specific new gene family, and has gained a novel function that is essential for male fertility in B. napus through neofunctionalization that has likely occurred since the origin of B. rapa.
Collapse
Affiliation(s)
- Xinhua Zeng
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureWuhan430062China
| | - Hao Li
- Department of Biologythe Huck Institutes of the Life Sciencesthe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Keqi Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureWuhan430062China
| | - Rong Yuan
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureWuhan430062China
| | - Shengbo Zhao
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureWuhan430062China
| | - Jun Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureWuhan430062China
| | - Junling Luo
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureWuhan430062China
| | - Xiaofei Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureWuhan430062China
| | - Hong Ma
- Department of Biologythe Huck Institutes of the Life Sciencesthe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Gang Wu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureWuhan430062China
| | - Xiaohong Yan
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureWuhan430062China
| |
Collapse
|
27
|
Mitreiter S, Gigolashvili T. Regulation of glucosinolate biosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:70-91. [PMID: 33313802 DOI: 10.1093/jxb/eraa479] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 05/18/2023]
Abstract
Glucosinolates are secondary defense metabolites produced by plants of the order Brassicales, which includes the model species Arabidopsis and many crop species. In the past 13 years, the regulation of glucosinolate synthesis in plants has been intensively studied, with recent research revealing complex molecular mechanisms that connect glucosinolate production with responses to other central pathways. In this review, we discuss how the regulation of glucosinolate biosynthesis is ecologically relevant for plants, how it is controlled by transcription factors, and how this transcriptional machinery interacts with hormonal, environmental, and epigenetic mechanisms. We present the central players in glucosinolate regulation, MYB and basic helix-loop-helix transcription factors, as well as the plant hormone jasmonate, which together with other hormones and environmental signals allow the coordinated and rapid regulation of glucosinolate genes. Furthermore, we highlight the regulatory connections between glucosinolates, auxin, and sulfur metabolism and discuss emerging insights and open questions on the regulation of glucosinolate biosynthesis.
Collapse
Affiliation(s)
- Simon Mitreiter
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| | - Tamara Gigolashvili
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| |
Collapse
|
28
|
Genome-wide study of flowering-related MADS-box genes family in Cardamine hirsuta. 3 Biotech 2020; 10:518. [PMID: 33194522 DOI: 10.1007/s13205-020-02521-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 10/28/2020] [Indexed: 10/23/2022] Open
Abstract
MADS-box genes take part in diverse biological functions especially in development of reproductive structures and control of flowering time. Recently, Cardamine hirsuta has emerged as an exclusively powerful genetic system in comparative studies of development. Although the C. hirsuta genome sequence is available but a comprehensive analysis of its MADS-box family genes is still lacking. Here, we determined 50 Cardamine MADS-box genes through bioinformatics tools and classified them into 2 Mβ, 6 Mα and 2 Mγ and 40 MIKC-type (35 MIKCc and 5MIKC*) genes based on a phylogenetic analysis. The C. hirsuta MIKC subfamily could be further classified into 14 subgroups as Arabidopsis. However the number of MADS-box proteins was not equal among these subgroups. Based on the structural diversity among 50 MADS-box genes, 2 lineages were obtained, type I and type II. The lowest number of introns (0 or 1) was found in the Mα, Mβ, and Mγ groups of the type I genes. The most Cardamine MADS-box genes were randomly distributed on only three chromosomes. C. hirsuta had a relatively lower number of flowering MADS-box genes than A. thaliana and probably tandem duplication event resulted in the expansion of FLC, SQUA and TM3 family members in Arabidopsis. Moreover among the conserved motifs, ChMADS5 of SQUA, ChMADS34 of TM3 and ChMADS51 of AGL15 families had no K-domain. This study provides a basis for further functional investigation of MADS-box genes in C. hirsuta.
Collapse
|
29
|
Sun J, Shimizu-Inatsugi R, Hofhuis H, Shimizu K, Hay A, Shimizu KK, Sese J. A Recently Formed Triploid Cardamine insueta Inherits Leaf Vivipary and Submergence Tolerance Traits of Parents. Front Genet 2020; 11:567262. [PMID: 33133153 PMCID: PMC7573311 DOI: 10.3389/fgene.2020.567262] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/18/2020] [Indexed: 12/03/2022] Open
Abstract
Contemporary speciation provides a unique opportunity to directly observe the traits and environmental responses of a new species. Cardamine insueta is an allotriploid species that appeared within the past 150 years in a Swiss village, Urnerboden. In contrast to its two progenitor species, Cardamine amara and Cardamine rivularis that live in wet and open habitats, respectively, C. insueta is found in-between their habitats with temporal water level fluctuation. This triploid species propagates clonally and serves as a triploid bridge to form higher ploidy species. Although niche separation is observed in field studies, the mechanisms underlying the environmental robustness of C. insueta are not clear. To characterize responses to a fluctuating environment, we performed a time-course analysis of homeolog gene expression in C. insueta in response to submergence treatment. For this purpose, the two parental (C. amara and C. rivularis) genome sequences were assembled with a reference-guided approach, and homeolog-specific gene expression was quantified using HomeoRoq software. We found that C. insueta and C. rivularis initiated vegetative propagation by forming ectopic meristems on leaves, while C. amara did not. We examined homeolog-specific gene expression of three species at nine time points during the treatment. The genome-wide expression ratio of homeolog pairs was 2:1 over the time-course, consistent with the ploidy number. By searching the genes with high coefficient of variation of expression over time-course transcriptome data, we found many known key transcriptional factors related to meristem development and formation upregulated in both C. rivularis and rivularis-homeolog of C. insueta, but not in C. amara. Moreover, some amara-homeologs of these genes were also upregulated in the triploid, suggesting trans-regulation. In turn, Gene Ontology analysis suggested that the expression pattern of submergence tolerant genes in the triploid was inherited from C. amara. These results suggest that the triploid C. insueta combined advantageous patterns of parental transcriptomes to contribute to its establishment in a new niche along a water-usage gradient.
Collapse
Affiliation(s)
- Jianqiang Sun
- Research Center for Agricultural Information Technology, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Rie Shimizu-Inatsugi
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Hugo Hofhuis
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Kentaro Shimizu
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Angela Hay
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Kentaro K Shimizu
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.,Kihara Institute for Biological Research (KIBR), Yokohama City University, Yokohama, Japan
| | - Jun Sese
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology, Tokyo, Japan.,Humanome Lab, Inc., Tokyo, Japan
| |
Collapse
|
30
|
Minguet EG. Ares-GT: Design of guide RNAs targeting multiple genes for CRISPR-Cas experiments. PLoS One 2020; 15:e0241001. [PMID: 33085710 PMCID: PMC7577430 DOI: 10.1371/journal.pone.0241001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 10/06/2020] [Indexed: 12/26/2022] Open
Abstract
Guide RNA design for CRISPR genome editing of gene families is a challenging task as usually good candidate sgRNAs are tagged with low scores precisely because they match several locations in the genome, thus time-consuming manual evaluation of targets is required. To address this issues, I have developed ARES-GT, a Python local command line tool compatible with any operative system. ARES-GT allows the selection of candidate sgRNAs that match multiple input query sequences, in addition of candidate sgRNAs that specifically match each query sequence. It also contemplates the use of unmapped contigs apart from complete genomes thus allowing the use of any genome provided by user and being able to handle intraspecies allelic variability and individual polymorphisms. ARES-GT is available at GitHub (https://github.com/eugomin/ARES-GT.git).
Collapse
|
31
|
Tirnaz S, Bayer PE, Inturrisi F, Zhang F, Yang H, Dolatabadian A, Neik TX, Severn-Ellis A, Patel DA, Ibrahim MI, Pradhan A, Edwards D, Batley J. Resistance Gene Analogs in the Brassicaceae: Identification, Characterization, Distribution, and Evolution. PLANT PHYSIOLOGY 2020; 184:909-922. [PMID: 32796089 PMCID: PMC7536671 DOI: 10.1104/pp.20.00835] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 07/21/2020] [Indexed: 05/02/2023]
Abstract
The Brassicaceae consists of a wide range of species, including important Brassica crop species and the model plant Arabidopsis (Arabidopsis thaliana). Brassica spp. crop diseases impose significant yield losses annually. A major way to reduce susceptibility to disease is the selection in breeding for resistance gene analogs (RGAs). Nucleotide binding site-leucine rich repeats (NLRs), receptor-like kinases (RLKs), and receptor-like proteins (RLPs) are the main types of RGAs; they contain conserved domains and motifs and play specific roles in resistance to pathogens. Here, all classes of RGAs have been identified using annotation and assembly-based pipelines in all available genome annotations from the Brassicaceae, including multiple genome assemblies of the same species where available (total of 32 genomes). The number of RGAs, based on genome annotations, varies within and between species. In total 34,065 RGAs were identified, with the majority being RLKs (21,691), then NLRs (8,588) and RLPs (3,786). Analysis of the RGA protein sequences revealed a high level of sequence identity, whereby 99.43% of RGAs fell into several orthogroups. This study establishes a resource for the identification and characterization of RGAs in the Brassicaceae and provides a framework for further studies of RGAs for an ultimate goal of assisting breeders in improving resistance to plant disease.
Collapse
Affiliation(s)
- Soodeh Tirnaz
- School of Biological Sciences, University of Western Australia, Perth, Western Australia WA 6009, Australia
| | - Philipp E Bayer
- School of Biological Sciences, University of Western Australia, Perth, Western Australia WA 6009, Australia
| | - Fabian Inturrisi
- School of Biological Sciences, University of Western Australia, Perth, Western Australia WA 6009, Australia
| | - Fangning Zhang
- School of Biological Sciences, University of Western Australia, Perth, Western Australia WA 6009, Australia
| | - Hua Yang
- School of Biological Sciences, University of Western Australia, Perth, Western Australia WA 6009, Australia
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, Queensland QLD 4072, Australia
| | - Aria Dolatabadian
- School of Biological Sciences, University of Western Australia, Perth, Western Australia WA 6009, Australia
| | - Ting X Neik
- School of Biological Sciences, University of Western Australia, Perth, Western Australia WA 6009, Australia
| | - Anita Severn-Ellis
- School of Biological Sciences, University of Western Australia, Perth, Western Australia WA 6009, Australia
| | - Dhwani A Patel
- School of Biological Sciences, University of Western Australia, Perth, Western Australia WA 6009, Australia
| | - Muhammad I Ibrahim
- School of Biological Sciences, University of Western Australia, Perth, Western Australia WA 6009, Australia
| | - Aneeta Pradhan
- School of Biological Sciences, University of Western Australia, Perth, Western Australia WA 6009, Australia
| | - David Edwards
- School of Biological Sciences, University of Western Australia, Perth, Western Australia WA 6009, Australia
| | - Jacqueline Batley
- School of Biological Sciences, University of Western Australia, Perth, Western Australia WA 6009, Australia
| |
Collapse
|
32
|
Israeli A, Reed JW, Ori N. Genetic dissection of the auxin response network. NATURE PLANTS 2020; 6:1082-1090. [PMID: 32807951 DOI: 10.1038/s41477-020-0739-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 07/06/2020] [Indexed: 05/24/2023]
Abstract
The expansion of gene families during evolution, which can generate functional overlap or specialization among their members, is a characteristic feature of signalling pathways in complex organisms. For example, families of transcriptional activators and repressors mediate responses to the plant hormone auxin. Although these regulators were identified more than 20 years ago, their overlapping functions and compensating negative feedbacks have hampered their functional analyses. Studies using loss-of-function approaches in basal land plants and gain-of-function approaches in angiosperms have in part overcome these issues but have still left an incomplete understanding. Here, we propose that renewed emphasis on genetic analysis of multiple mutants and species will shed light on the role of gene families in auxin response. Combining loss-of-function mutations in auxin-response activators and repressors can unravel complex outputs enabled by expanded gene families, such as fine-tuned developmental outcomes and robustness. Similar approaches and concepts may help to analyse other regulatory pathways whose components are also encoded by large gene families.
Collapse
Affiliation(s)
- Alon Israeli
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University, Rehovot, Israel
| | - Jason W Reed
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Naomi Ori
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University, Rehovot, Israel.
| |
Collapse
|
33
|
Forsythe ES, Nelson ADL, Beilstein MA. Biased Gene Retention in the Face of Introgression Obscures Species Relationships. Genome Biol Evol 2020; 12:1646-1663. [PMID: 33011798 PMCID: PMC7533067 DOI: 10.1093/gbe/evaa149] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2020] [Indexed: 12/13/2022] Open
Abstract
Phylogenomic analyses are recovering previously hidden histories of hybridization, revealing the genomic consequences of these events on the architecture of extant genomes. We applied phylogenomic techniques and several complementary statistical tests to show that introgressive hybridization appears to have occurred between close relatives of Arabidopsis, resulting in cytonuclear discordance and impacting our understanding of species relationships in the group. The composition of introgressed and retained genes indicates that selection against incompatible cytonuclear and nuclear-nuclear interactions likely acted during introgression, whereas linkage also contributed to genome composition through the retention of ancient haplotype blocks. We also applied divergence-based tests to determine the species branching order and distinguish donor from recipient lineages. Surprisingly, these analyses suggest that cytonuclear discordance arose via extensive nuclear, rather than cytoplasmic, introgression. If true, this would mean that most of the nuclear genome was displaced during introgression whereas only a small proportion of native alleles were retained.
Collapse
|
34
|
Neumann U, Hay A. Seed coat development in explosively dispersed seeds of Cardamine hirsuta. ANNALS OF BOTANY 2020; 126:39-59. [PMID: 31796954 PMCID: PMC7304473 DOI: 10.1093/aob/mcz190] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 11/22/2019] [Indexed: 05/28/2023]
Abstract
BACKGROUND AND AIMS Seeds are dispersed by explosive coiling of the fruit valves in Cardamine hirsuta. This rapid coiling launches the small seeds on ballistic trajectories to spread over a 2 m radius around the parent plant. The seed surface interacts with both the coiling fruit valve during launch and subsequently with the air during flight. We aim to identify features of the seed surface that may contribute to these interactions by characterizing seed coat differentiation. METHODS Differentiation of the outermost seed coat layers from the outer integuments of the ovule involves dramatic cellular changes that we characterize in detail at the light and electron microscopical level including immunofluorescence and immunogold labelling. KEY RESULTS We found that the two outer integument (oi) layers of the seed coat contributed differently to the topography of the seed surface in the explosively dispersed seeds of C. hirsuta vs. the related species Arabidopsis thaliana where seed dispersal is non-explosive. The surface of A. thaliana seeds is shaped by the columella and the anticlinal cell walls of the epidermal oi2 layer. In contrast, the surface of C. hirsuta seeds is shaped by a network of prominent ridges formed by the anticlinal walls of asymmetrically thickened cells of the sub-epidermal oi1 layer, especially at the seed margin. Both the oi2 and oi1 cell layers in C. hirsuta seeds are characterized by specialized, pectin-rich cell walls that are deposited asymmetrically in the cell. CONCLUSIONS The two outermost seed coat layers in C. hirsuta have distinct properties: the sub-epidermal oi1 layer determines the topography of the seed surface, while the epidermal oi2 layer accumulates mucilage. These properties are influenced by polar deposition of distinct pectin polysaccharides in the cell wall. Although the ridged seed surface formed by oi1 cell walls is associated with ballistic dispersal in C. hirsuta, it is not restricted to explosively dispersed seeds in the Brassicaceae.
Collapse
Affiliation(s)
- Ulla Neumann
- Max Planck Institute for Plant Breeding Research, Köln, Germany
| | - Angela Hay
- Max Planck Institute for Plant Breeding Research, Köln, Germany
| |
Collapse
|
35
|
Cesarino I, Dello Ioio R, Kirschner GK, Ogden MS, Picard KL, Rast-Somssich MI, Somssich M. Plant science's next top models. ANNALS OF BOTANY 2020; 126:1-23. [PMID: 32271862 PMCID: PMC7304477 DOI: 10.1093/aob/mcaa063] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 04/08/2020] [Indexed: 05/05/2023]
Abstract
BACKGROUND Model organisms are at the core of life science research. Notable examples include the mouse as a model for humans, baker's yeast for eukaryotic unicellular life and simple genetics, or the enterobacteria phage λ in virology. Plant research was an exception to this rule, with researchers relying on a variety of non-model plants until the eventual adoption of Arabidopsis thaliana as primary plant model in the 1980s. This proved to be an unprecedented success, and several secondary plant models have since been established. Currently, we are experiencing another wave of expansion in the set of plant models. SCOPE Since the 2000s, new model plants have been established to study numerous aspects of plant biology, such as the evolution of land plants, grasses, invasive and parasitic plant life, adaptation to environmental challenges, and the development of morphological diversity. Concurrent with the establishment of new plant models, the advent of the 'omics' era in biology has led to a resurgence of the more complex non-model plants. With this review, we introduce some of the new and fascinating plant models, outline why they are interesting subjects to study, the questions they will help to answer, and the molecular tools that have been established and are available to researchers. CONCLUSIONS Understanding the molecular mechanisms underlying all aspects of plant biology can only be achieved with the adoption of a comprehensive set of models, each of which allows the assessment of at least one aspect of plant life. The model plants described here represent a step forward towards our goal to explore and comprehend the diversity of plant form and function. Still, several questions remain unanswered, but the constant development of novel technologies in molecular biology and bioinformatics is already paving the way for the next generation of plant models.
Collapse
Affiliation(s)
- Igor Cesarino
- Department of Botany, Institute of Biosciences, University of São Paulo, Rua do Matão 277, Butantã, São Paulo, Brazil
| | - Raffaele Dello Ioio
- Dipartimento di Biologia e Biotecnologie, Università di Roma La Sapienza, Rome, Italy
| | - Gwendolyn K Kirschner
- University of Bonn, Institute of Crop Science and Resource Conservation (INRES), Division of Crop Functional Genomics, Bonn, Germany
| | - Michael S Ogden
- School of BioSciences, University of Melbourne, Parkville, VIC, Australia
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Kelsey L Picard
- School of Natural Sciences, University of Tasmania, Hobart, TAS, Australia
| | - Madlen I Rast-Somssich
- School of Biological Sciences, Monash University, Clayton Campus, Melbourne, VIC, Australia
| | - Marc Somssich
- School of BioSciences, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
36
|
Lang PLM, Weiß CL, Kersten S, Latorre SM, Nagel S, Nickel B, Meyer M, Burbano HA. Hybridization ddRAD-sequencing for population genomics of nonmodel plants using highly degraded historical specimen DNA. Mol Ecol Resour 2020; 20:1228-1247. [PMID: 32306514 DOI: 10.1111/1755-0998.13168] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 03/06/2020] [Accepted: 03/30/2020] [Indexed: 12/29/2022]
Abstract
Species' responses at the genetic level are key to understanding the long-term consequences of anthropogenic global change. Herbaria document such responses, and, with contemporary sampling, provide high-resolution time-series of plant evolutionary change. Characterizing genetic diversity is straightforward for model species with small genomes and a reference sequence. For nonmodel species-with small or large genomes-diversity is traditionally assessed using restriction-enzyme-based sequencing. However, age-related DNA damage and fragmentation preclude the use of this approach for ancient herbarium DNA. Here, we combine reduced-representation sequencing and hybridization-capture to overcome this challenge and efficiently compare contemporary and historical specimens. Specifically, we describe how homemade DNA baits can be produced from reduced-representation libraries of fresh samples, and used to efficiently enrich historical libraries for the same fraction of the genome to produce compatible sets of sequence data from both types of material. Applying this approach to both Arabidopsis thaliana and the nonmodel plant Cardamine bulbifera, we discovered polymorphisms de novo in an unbiased, reference-free manner. We show that the recovered genetic variation recapitulates known genetic diversity in A. thaliana, and recovers geographical origin in both species and over time, independent of bait diversity. Hence, our method enables fast, cost-efficient, large-scale integration of contemporary and historical specimens for assessment of genome-wide genetic trends over time, independent of genome size and presence of a reference genome.
Collapse
Affiliation(s)
- Patricia L M Lang
- Research Group for Ancient Genomics and Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany.,Department of Biology, Stanford University, Stanford, CA, USA
| | - Clemens L Weiß
- Research Group for Ancient Genomics and Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany.,Department of Genetics, Stanford University, Stanford, CA, USA
| | - Sonja Kersten
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Sergio M Latorre
- Research Group for Ancient Genomics and Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Sarah Nagel
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Birgit Nickel
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Matthias Meyer
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Hernán A Burbano
- Research Group for Ancient Genomics and Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany.,Centre for Life's Origins and Evolution, Department of Genetics, Evolution, and Environment, University College London, London, UK
| |
Collapse
|
37
|
Akiyama R, Milosavljevic S, Leutenegger M, Shimizu-Inatsugi R. Trait-dependent resemblance of the flowering phenology and floral morphology of the allopolyploid Cardamine flexuosa to those of the parental diploids in natural habitats. JOURNAL OF PLANT RESEARCH 2020; 133:147-155. [PMID: 31925575 PMCID: PMC7026219 DOI: 10.1007/s10265-019-01164-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 12/08/2019] [Indexed: 05/24/2023]
Abstract
Allopolyploids possess complete sets of genomes derived from different parental species and exhibit a range of variation in various traits. Reproductive traits may play a key role in the reproductive isolation between allopolyploids and their parental species, thus affecting the thriving of allopolyploids. However, empirical data, especially in natural habitats, comparing reproductive trait variation between allopolyploids and their parental species remain rare. Here, we documented the flowering phenology and floral morphology of the allopolyploid wild plant Cardamine flexuosa and its diploid parents C. amara and C. hirsuta in their native range in Switzerland. The flowering of C. flexuosa started at an intermediate time compared with those of the parents and the flowering period of C. flexuosa overlapped with those of the parents. Cardamine flexuosa resembled C. hirsuta in the size of flowers and petals and the length/width ratio of petals, while it resembled C. amara in the length/width ratio of flowers. These results provide empirical evidence of the trait-dependent variation of allopolyploid phenotypes in natural habitats at the local scale. They also suggest that the variation in some reproductive traits in C. flexuosa is associated with self-fertilization. Therefore, it is helpful to consider the mating system in furthering the understanding of the processes that may have shaped trait variation in polyploids in nature.
Collapse
Affiliation(s)
- Reiko Akiyama
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrase 190, 8057, Zurich, Switzerland
| | - Stefan Milosavljevic
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrase 190, 8057, Zurich, Switzerland
| | - Matthias Leutenegger
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrase 190, 8057, Zurich, Switzerland
| | - Rie Shimizu-Inatsugi
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrase 190, 8057, Zurich, Switzerland.
| |
Collapse
|
38
|
CRISPR/Cas9-Mediated Mutagenesis of RCO in Cardamine hirsuta. PLANTS 2020; 9:plants9020268. [PMID: 32085527 PMCID: PMC7076481 DOI: 10.3390/plants9020268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 11/17/2022]
Abstract
The small crucifer Cardamine hirsuta bears complex leaves divided into leaflets. This is in contrast to its relative, the reference plant Arabidopsis thaliana, which has simple leaves. Comparative studies between these species provide attractive opportunities to study the diversification of form. Here, we report on the implementation of the CRISPR/Cas9 genome editing methodology in C. hirsuta and with it the generation of novel alleles in the RCO gene, which was previously shown to play a major role in the diversification of form between the two species. Thus, genome editing can now be deployed in C. hirsuta, thereby increasing its versatility as a model system to study gene function and evolution.
Collapse
|
39
|
Strauss S, Lempe J, Prusinkiewicz P, Tsiantis M, Smith RS. Phyllotaxis: is the golden angle optimal for light capture? THE NEW PHYTOLOGIST 2020; 225:499-510. [PMID: 31254398 DOI: 10.1111/nph.16040] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 06/24/2019] [Indexed: 05/26/2023]
Abstract
Phyllotactic patterns are some of the most conspicuous in nature. To create these patterns plants must control the divergence angle between the appearance of successive organs, sometimes to within a fraction of a degree. The most common angle is the Fibonacci or golden angle, and its prevalence has led to the hypothesis that it has been selected by evolution as optimal for plants with respect to some fitness benefits, such as light capture. We explore arguments for and against this idea with computer models. We have used both idealized and scanned leaves from Arabidopsis thaliana and Cardamine hirsuta to measure the overlapping leaf area of simulated plants after varying parameters such as leaf shape, incident light angles, and other leaf traits. We find that other angles generated by Fibonacci-like series found in nature are equally optimal for light capture, and therefore should be under similar evolutionary pressure. Our findings suggest that the iterative mechanism for organ positioning itself is a more likely target for evolutionary pressure, rather than a specific divergence angle, and our model demonstrates that the heteroblastic progression of leaf shape in A. thaliana can provide a potential fitness benefit via light capture.
Collapse
Affiliation(s)
- Sören Strauss
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
| | - Janne Lempe
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
| | | | - Miltos Tsiantis
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
| | - Richard S Smith
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
| |
Collapse
|
40
|
Maughan PJ, Lee R, Walstead R, Vickerstaff RJ, Fogarty MC, Brouwer CR, Reid RR, Jay JJ, Bekele WA, Jackson EW, Tinker NA, Langdon T, Schlueter JA, Jellen EN. Genomic insights from the first chromosome-scale assemblies of oat (Avena spp.) diploid species. BMC Biol 2019; 17:92. [PMID: 31757219 PMCID: PMC6874827 DOI: 10.1186/s12915-019-0712-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/21/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cultivated hexaploid oat (Common oat; Avena sativa) has held a significant place within the global crop community for centuries; although its cultivation has decreased over the past century, its nutritional benefits have garnered increased interest for human consumption. We report the development of fully annotated, chromosome-scale assemblies for the extant progenitor species of the As- and Cp-subgenomes, Avena atlantica and Avena eriantha respectively. The diploid Avena species serve as important genetic resources for improving common oat's adaptive and food quality characteristics. RESULTS The A. atlantica and A. eriantha genome assemblies span 3.69 and 3.78 Gb with an N50 of 513 and 535 Mb, respectively. Annotation of the genomes, using sequenced transcriptomes, identified ~ 50,000 gene models in each species-including 2965 resistance gene analogs across both species. Analysis of these assemblies classified much of each genome as repetitive sequence (~ 83%), including species-specific, centromeric-specific, and telomeric-specific repeats. LTR retrotransposons make up most of the classified elements. Genome-wide syntenic comparisons with other members of the Pooideae revealed orthologous relationships, while comparisons with genetic maps from common oat clarified subgenome origins for each of the 21 hexaploid linkage groups. The utility of the diploid genomes was demonstrated by identifying putative candidate genes for flowering time (HD3A) and crown rust resistance (Pc91). We also investigate the phylogenetic relationships among other A- and C-genome Avena species. CONCLUSIONS The genomes we report here are the first chromosome-scale assemblies for the tribe Poeae, subtribe Aveninae. Our analyses provide important insight into the evolution and complexity of common hexaploid oat, including subgenome origin, homoeologous relationships, and major intra- and intergenomic rearrangements. They also provide the annotation framework needed to accelerate gene discovery and plant breeding.
Collapse
Affiliation(s)
- Peter J Maughan
- Department of Plant & Wildlife Sciences, Brigham Young University, 4105 LSB, Provo, UT, 84602, USA.
| | - Rebekah Lee
- Department of Plant & Wildlife Sciences, Brigham Young University, 4105 LSB, Provo, UT, 84602, USA
| | - Rachel Walstead
- University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | | | - Melissa C Fogarty
- Department of Plant & Wildlife Sciences, Brigham Young University, 4105 LSB, Provo, UT, 84602, USA
| | - Cory R Brouwer
- University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Robert R Reid
- University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Jeremy J Jay
- University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | | | | | | | - Tim Langdon
- IBERS, Aberystwyth University, Aberystwyth, Wales, UK
| | | | - Eric N Jellen
- Department of Plant & Wildlife Sciences, Brigham Young University, 4105 LSB, Provo, UT, 84602, USA
| |
Collapse
|
41
|
Hajheidari M, Wang Y, Bhatia N, Vuolo F, Franco-Zorrilla JM, Karady M, Mentink RA, Wu A, Oluwatobi BR, Müller B, Dello Ioio R, Laurent S, Ljung K, Huijser P, Gan X, Tsiantis M. Autoregulation of RCO by Low-Affinity Binding Modulates Cytokinin Action and Shapes Leaf Diversity. Curr Biol 2019; 29:4183-4192.e6. [PMID: 31761704 DOI: 10.1016/j.cub.2019.10.040] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/08/2019] [Accepted: 10/21/2019] [Indexed: 11/28/2022]
Abstract
Mechanisms through which the evolution of gene regulation causes morphological diversity are largely unclear. The tremendous shape variation among plant leaves offers attractive opportunities to address this question. In cruciferous plants, the REDUCED COMPLEXITY (RCO) homeodomain protein evolved via gene duplication and acquired a novel expression domain that contributed to leaf shape diversity. However, the molecular pathways through which RCO regulates leaf growth are unknown. A key question is to identify genome-wide transcriptional targets of RCO and the DNA sequences to which RCO binds. We investigate this question using Cardamine hirsuta, which has complex leaves, and its relative Arabidopsis thaliana, which evolved simple leaves through loss of RCO. We demonstrate that RCO directly regulates genes controlling homeostasis of the hormone cytokinin to repress growth at the leaf base. Elevating cytokinin signaling in the RCO expression domain is sufficient to both transform A. thaliana simple leaves into complex ones and partially bypass the requirement for RCO in C. hirsuta complex leaf development. We also identify RCO as its own target gene. RCO directly represses its own transcription via an array of low-affinity binding sites, which evolved after RCO duplicated from its progenitor sequence. This autorepression is required to limit RCO expression. Thus, evolution of low-affinity binding sites created a negative autoregulatory loop that facilitated leaf shape evolution by defining RCO expression and fine-tuning cytokinin activity. In summary, we identify a transcriptional mechanism through which conflicts between novelty and pleiotropy are resolved during evolution and lead to morphological differences between species.
Collapse
Affiliation(s)
- Mohsen Hajheidari
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Yi Wang
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Neha Bhatia
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Francesco Vuolo
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - José Manuel Franco-Zorrilla
- Unidad de Genómica and Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Calle Darwin 3, 28049 Madrid, Spain
| | - Michal Karady
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden
| | - Remco A Mentink
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Anhui Wu
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Bello Rilwan Oluwatobi
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Bruno Müller
- Leibniz Institute of Plant Genetics and Crop Plant Research, Correnstr. 3, 06466 Seeland, Gatersleben, Germany
| | - Raffaele Dello Ioio
- Department of Biology and Biotechnology, Laboratory of Functional Genomics and Proteomics of Model Systems, Sapienza University of Rome, Via dei Sardi 70, 00185 Rome, Italy
| | - Stefan Laurent
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Karin Ljung
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden
| | - Peter Huijser
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Xiangchao Gan
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Miltos Tsiantis
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany.
| |
Collapse
|
42
|
Song B, Sang Q, Wang H, Pei H, Gan X, Wang F. Complement Genome Annotation Lift Over Using a Weighted Sequence Alignment Strategy. Front Genet 2019; 10:1046. [PMID: 31850053 PMCID: PMC6902276 DOI: 10.3389/fgene.2019.01046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/30/2019] [Indexed: 12/14/2022] Open
Abstract
With the broad application of high-throughput sequencing, more whole-genome resequencing data and de novo assemblies of natural populations are becoming available. For a particular species, in general, only the reference genome is well established and annotated. Computational tools based on sequence alignment have been developed to investigate the gene models of individuals belonging to the same or closely related species. During this process, inconsistent alignment often obscures genome annotation lift over and leads to improper functional impact prediction for a genomic variant, especially in plant species. Here, we proposed the zebraic striped dynamic programming algorithm, which provides different weights to genetic features to refine genome annotation lift over. Testing of our zebraic striped dynamic programming algorithm on both plant and animal genomic data showed complementation to standard sequence approach for highly diverse individuals. Using the lift over genome annotation as anchors, a base-pair resolution genome-wide sequence alignment and variant calling pipeline for de novo assembly has been implemented in the GEAN software. GEAN could be used to compare haplotype diversity, refine the genetic variant functional annotation, annotate de novo assembly genome sequence, detect homologous syntenic blocks, improve the quantification of gene expression levels using RNA-seq data, and unify genomic variants for population genetic analysis. We expect that GEAN will be a standard tool for the coming of age of de novo assembly population genetics.
Collapse
Affiliation(s)
- Baoxing Song
- The Department of Life Science, Qiannan Normal College for Nationalities, Duyun, China
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Köln, Germany
- Institute for Genomic Diversity, Cornell University, Ithaca, NY, United States
| | - Qing Sang
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Köln, Germany
| | - Hai Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huimin Pei
- The Department of Life Science, Qiannan Normal College for Nationalities, Duyun, China
| | - XiangChao Gan
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Köln, Germany
| | - Fen Wang
- The Department of Life Science, Qiannan Normal College for Nationalities, Duyun, China
| |
Collapse
|
43
|
Molina-Contreras MJ, Paulišić S, Then C, Moreno-Romero J, Pastor-Andreu P, Morelli L, Roig-Villanova I, Jenkins H, Hallab A, Gan X, Gomez-Cadenas A, Tsiantis M, Rodríguez-Concepción M, Martínez-García JF. Photoreceptor Activity Contributes to Contrasting Responses to Shade in Cardamine and Arabidopsis Seedlings. THE PLANT CELL 2019; 31:2649-2663. [PMID: 31530733 PMCID: PMC6881134 DOI: 10.1105/tpc.19.00275] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/22/2019] [Accepted: 09/13/2019] [Indexed: 05/08/2023]
Abstract
Plants have evolved two major ways to deal with nearby vegetation or shade: avoidance and tolerance. Moreover, some plants respond to shade in different ways; for example, Arabidopsis (Arabidopsis thaliana) undergoes an avoidance response to shade produced by vegetation, but its close relative Cardamine hirsuta tolerates shade. How plants adopt opposite strategies to respond to the same environmental challenge is unknown. Here, using a genetic strategy, we identified the C. hirsuta slender in shade1 mutants, which produce strongly elongated hypocotyls in response to shade. These mutants lack the phytochrome A (phyA) photoreceptor. Our findings suggest that C. hirsuta has evolved a highly efficient phyA-dependent pathway that suppresses hypocotyl elongation when challenged by shade from nearby vegetation. This suppression relies, at least in part, on stronger phyA activity in C. hirsuta; this is achieved by increased ChPHYA expression and protein accumulation combined with a stronger specific intrinsic repressor activity. We suggest that modulation of photoreceptor activity is a powerful mechanism in nature to achieve physiological variation (shade tolerance versus avoidance) for species to colonize different habitats.
Collapse
Affiliation(s)
- Maria Jose Molina-Contreras
- Centre for Research in Agricultural Genomics, Consejo Superior de Investigaciones Científicas -Institut de Recerca i Tecnologies Agroalimentaries - Universitat Autònoma de Barcelona - Universitat de Barcelona, 08193 Barcelona, Spain
| | - Sandi Paulišić
- Centre for Research in Agricultural Genomics, Consejo Superior de Investigaciones Científicas -Institut de Recerca i Tecnologies Agroalimentaries - Universitat Autònoma de Barcelona - Universitat de Barcelona, 08193 Barcelona, Spain
| | - Christiane Then
- Centre for Research in Agricultural Genomics, Consejo Superior de Investigaciones Científicas -Institut de Recerca i Tecnologies Agroalimentaries - Universitat Autònoma de Barcelona - Universitat de Barcelona, 08193 Barcelona, Spain
| | - Jordi Moreno-Romero
- Centre for Research in Agricultural Genomics, Consejo Superior de Investigaciones Científicas -Institut de Recerca i Tecnologies Agroalimentaries - Universitat Autònoma de Barcelona - Universitat de Barcelona, 08193 Barcelona, Spain
| | - Pedro Pastor-Andreu
- Centre for Research in Agricultural Genomics, Consejo Superior de Investigaciones Científicas -Institut de Recerca i Tecnologies Agroalimentaries - Universitat Autònoma de Barcelona - Universitat de Barcelona, 08193 Barcelona, Spain
| | - Luca Morelli
- Centre for Research in Agricultural Genomics, Consejo Superior de Investigaciones Científicas -Institut de Recerca i Tecnologies Agroalimentaries - Universitat Autònoma de Barcelona - Universitat de Barcelona, 08193 Barcelona, Spain
| | - Irma Roig-Villanova
- Centre for Research in Agricultural Genomics, Consejo Superior de Investigaciones Científicas -Institut de Recerca i Tecnologies Agroalimentaries - Universitat Autònoma de Barcelona - Universitat de Barcelona, 08193 Barcelona, Spain
| | - Huw Jenkins
- Department of Plant Sciences, University of Oxford, Oxford OX1 3BR, United Kingdom
| | - Asis Hallab
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Xiangchao Gan
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Aurelio Gomez-Cadenas
- Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I, 12071 Castello de la Plana, Spain
| | - Miltos Tsiantis
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Manuel Rodríguez-Concepción
- Centre for Research in Agricultural Genomics, Consejo Superior de Investigaciones Científicas -Institut de Recerca i Tecnologies Agroalimentaries - Universitat Autònoma de Barcelona - Universitat de Barcelona, 08193 Barcelona, Spain
| | - Jaime F Martínez-García
- Centre for Research in Agricultural Genomics, Consejo Superior de Investigaciones Científicas -Institut de Recerca i Tecnologies Agroalimentaries - Universitat Autònoma de Barcelona - Universitat de Barcelona, 08193 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
| |
Collapse
|
44
|
Kiefer C, Willing EM, Jiao WB, Sun H, Piednoël M, Hümann U, Hartwig B, Koch MA, Schneeberger K. Interspecies association mapping links reduced CG to TG substitution rates to the loss of gene-body methylation. NATURE PLANTS 2019; 5:846-855. [PMID: 31358959 DOI: 10.1038/s41477-019-0486-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 06/25/2019] [Indexed: 05/18/2023]
Abstract
Comparative genomics can unravel the genetic basis of species differences; however, successful reports on quantitative traits are still scarce. Here we present genome assemblies of 31 so-far unassembled Brassicaceae plant species and combine them with 16 previously published assemblies to establish the Brassicaceae Diversity Panel. Using a new interspecies association strategy for quantitative traits, we found a so-far unknown association between the unexpectedly high variation in CG to TG substitution rates in genes and the absence of CHROMOMETHYLASE3 (CMT3) orthologues. Low substitution rates were associated with the loss of CMT3, while species with conserved CMT3 orthologues showed high substitution rates. Species without CMT3 also lacked gene-body methylation (gbM), suggesting an evolutionary trade-off between the unknown function of gbM and low substitution rates in Brassicaceae, possibly due to low mutability of non-methylated cytosines.
Collapse
Affiliation(s)
- Christiane Kiefer
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Department of Biodiversity and Plant Systematics, Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Eva-Maria Willing
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
- NEO New Oncology, Cologne, Germany
| | - Wen-Biao Jiao
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Hequan Sun
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Mathieu Piednoël
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Ulrike Hümann
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Benjamin Hartwig
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
- NEO New Oncology, Cologne, Germany
| | - Marcus A Koch
- Department of Biodiversity and Plant Systematics, Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Korbinian Schneeberger
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany.
| |
Collapse
|
45
|
Kierzkowski D, Runions A, Vuolo F, Strauss S, Lymbouridou R, Routier-Kierzkowska AL, Wilson-Sánchez D, Jenke H, Galinha C, Mosca G, Zhang Z, Canales C, Dello Ioio R, Huijser P, Smith RS, Tsiantis M. A Growth-Based Framework for Leaf Shape Development and Diversity. Cell 2019; 177:1405-1418.e17. [PMID: 31130379 PMCID: PMC6548024 DOI: 10.1016/j.cell.2019.05.011] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 02/15/2019] [Accepted: 05/03/2019] [Indexed: 12/22/2022]
Abstract
How do genes modify cellular growth to create morphological diversity? We study this problem in two related plants with differently shaped leaves: Arabidopsis thaliana (simple leaf shape) and Cardamine hirsuta (complex shape with leaflets). We use live imaging, modeling, and genetics to deconstruct these organ-level differences into their cell-level constituents: growth amount, direction, and differentiation. We show that leaf shape depends on the interplay of two growth modes: a conserved organ-wide growth mode that reflects differentiation; and a local, directional mode that involves the patterning of growth foci along the leaf edge. Shape diversity results from the distinct effects of two homeobox genes on these growth modes: SHOOTMERISTEMLESS broadens organ-wide growth relative to edge-patterning, enabling leaflet emergence, while REDUCED COMPLEXITY inhibits growth locally around emerging leaflets, accentuating shape differences created by patterning. We demonstrate the predictivity of our findings by reconstructing key features of C. hirsuta leaf morphology in A. thaliana. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Daniel Kierzkowski
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | - Adam Runions
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | - Francesco Vuolo
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | - Sören Strauss
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | - Rena Lymbouridou
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | - Anne-Lise Routier-Kierzkowska
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | - David Wilson-Sánchez
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | - Hannah Jenke
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | - Carla Galinha
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Gabriella Mosca
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | - Zhongjuan Zhang
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | - Claudia Canales
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Raffaele Dello Ioio
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | - Peter Huijser
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | - Richard S Smith
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | - Miltos Tsiantis
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany.
| |
Collapse
|
46
|
Liu TJ, Zhang YJ, Agerbirk N, Wang HP, Wei XC, Song JP, He HJ, Zhao XZ, Zhang XH, Li XX. A high-density genetic map and QTL mapping of leaf traits and glucosinolates in Barbarea vulgaris. BMC Genomics 2019; 20:371. [PMID: 31088355 PMCID: PMC6518621 DOI: 10.1186/s12864-019-5769-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 05/03/2019] [Indexed: 01/03/2023] Open
Abstract
Background Barbarea vulgaris is a wild cruciferous plant and include two distinct types: the G- and P-types named after their glabrous and pubescent leaves, respectively. The types differ significantly in resistance to a range of insects and diseases as well as glucosinolates and other chemical defenses. A high-density linkage map was needed for further progress to be made in the molecular research of this plant. Results We performed restriction site-associated DNA sequencing (RAD-Seq) on an F2 population generated from G- and P-type B. vulgaris. A total of 1545 SNP markers were mapped and ordered in eight linkage groups, which represents the highest density linkage map to date for the crucifer tribe Cardamineae. A total of 722 previously published genome contigs (50.2 Mb, 30% of the total length) can be anchored to this high density genetic map, an improvement compared to a previously published map (431 anchored contigs, 38.7 Mb, 23% of the assembly genome). Most of these (572 contigs, 31.2 Mb) were newly anchored to the map, representing a significant improvement. On the basis of the present high-density genetic map, 37 QTL were detected for eleven traits, each QTL explaining 2.9–71.3% of the phenotype variation. QTL of glucosinolates, leaf size and color traits were in most cases overlapping, possibly implying a functional connection. Conclusions This high-density linkage map and the QTL obtained in this study will be useful for further understanding of the genetic of the B. vulgaris and molecular basis of these traits, many of which are shared in the related crop watercress. Electronic supplementary material The online version of this article (10.1186/s12864-019-5769-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tong-Jin Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing, 100081, China
| | - You-Jun Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing, 100081, China
| | - Niels Agerbirk
- Copenhagen Plant Science Center and Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Hai-Ping Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing, 100081, China
| | - Xiao-Chun Wei
- Henan Academy of Agricultural Sciences, Institute of Horticulture, Zhengzhou, 450002, China
| | - Jiang-Ping Song
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing, 100081, China
| | - Hong-Ju He
- Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Xue-Zhi Zhao
- Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Xiao-Hui Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing, 100081, China.
| | - Xi-Xiang Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing, 100081, China.
| |
Collapse
|
47
|
Recently duplicated sesterterpene (C25) gene clusters in Arabidopsis thaliana modulate root microbiota. SCIENCE CHINA-LIFE SCIENCES 2019; 62:947-958. [PMID: 31079337 DOI: 10.1007/s11427-019-9521-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 03/25/2019] [Indexed: 01/04/2023]
Abstract
Land plants co-speciate with a diversity of continually expanding plant specialized metabolites (PSMs) and root microbial communities (microbiota). Homeostatic interactions between plants and root microbiota are essential for plant survival in natural environments. A growing appreciation of microbiota for plant health is fuelling rapid advances in genetic mechanisms of controlling microbiota by host plants. PSMs have long been proposed to mediate plant and single microbe interactions. However, the effects of PSMs, especially those evolutionarily new PSMs, on root microbiota at community level remain to be elucidated. Here, we discovered sesterterpenes in Arabidopsis thaliana, produced by recently duplicated prenyltransferase-terpene synthase (PT-TPS) gene clusters, with neo-functionalization. A single-residue substitution played a critical role in the acquisition of sesterterpene synthase (sesterTPS) activity in Brassicaceae plants. Moreover, we found that the absence of two root-specific sesterterpenoids, with similar chemical structure, significantly affected root microbiota assembly in similar patterns. Our results not only demonstrate the sensitivity of plant microbiota to PSMs but also establish a complete framework of host plants to control root microbiota composition through evolutionarily dynamic PSMs.
Collapse
|
48
|
Nikolov LA, Shushkov P, Nevado B, Gan X, Al-Shehbaz IA, Filatov D, Bailey CD, Tsiantis M. Resolving the backbone of the Brassicaceae phylogeny for investigating trait diversity. THE NEW PHYTOLOGIST 2019; 222:1638-1651. [PMID: 30735246 DOI: 10.1111/nph.15732] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 01/10/2019] [Indexed: 05/03/2023]
Abstract
The Brassicaceae family comprises c. 4000 species including economically important crops and the model plant Arabidopsis thaliana. Despite their importance, the relationships among major lineages in the family remain unresolved, hampering comparative research. Here, we inferred a Brassicaceae phylogeny using newly generated targeted enrichment sequence data of 1827 exons (> 940 000 bases) representing 63 species, as well as sequenced genome data of 16 species, together representing 50 of the 52 currently recognized Brassicaceae tribes. A third of the samples were derived from herbarium material, facilitating broad taxonomic coverage of the family. Six major clades formed successive sister groups to the rest of Brassicaceae. We also recovered strong support for novel relationships among tribes, and resolved the position of 16 taxa previously not assigned to a tribe. The broad utility of these phylogenetic results is illustrated through a comparative investigation of genome-wide expression signatures that distinguish simple from complex leaves in Brassicaceae. Our study provides an easily extendable dataset for further advances in Brassicaceae systematics and a timely higher-level phylogenetic framework for a wide range of comparative studies of multiple traits in an intensively investigated group of plants.
Collapse
Affiliation(s)
- Lachezar A Nikolov
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
| | - Philip Shushkov
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Bruno Nevado
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK
| | - Xiangchao Gan
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
| | - Ihsan A Al-Shehbaz
- Missouri Botanical Garden, 4344 Shaw Boulevard, St Louis, MO, 63110, USA
| | - Dmitry Filatov
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK
| | - C Donovan Bailey
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Miltos Tsiantis
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
| |
Collapse
|
49
|
Oh DH, Dassanayake M. Landscape of gene transposition-duplication within the Brassicaceae family. DNA Res 2019; 26:21-36. [PMID: 30380026 PMCID: PMC6379040 DOI: 10.1093/dnares/dsy035] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 10/03/2018] [Indexed: 11/12/2022] Open
Abstract
We developed the CLfinder-OrthNet pipeline that detects co-linearity among multiple closely related genomes, finds orthologous gene groups, and encodes the evolutionary history of each orthologue group into a representative network (OrthNet). Using a search based on network topology, we identified 1,394 OrthNets that included gene transposition-duplication (tr-d) events, out of 17,432 identified in six Brassicaceae genomes. Occurrences of tr-d shared by subsets of Brassicaceae genomes mirrored the divergence times between the genomes and their repeat contents. The majority of tr-d events resulted in truncated open reading frames (ORFs) in the duplicated loci. However, the duplicates with complete ORFs were significantly more frequent than expected from random events. These were derived from older tr-d events and had a higher chance of being expressed. We also found an enrichment of tr-d events with complete loss of intergenic sequence conservation between the original and duplicated loci. Finally, we identified tr-d events uniquely found in two extremophytes among the six Brassicaceae genomes, including tr-d of SALT TOLERANCE 32 and ZINC TRANSPORTER 3 that relate to their adaptive evolution. CLfinder-OrthNet provides a flexible toolkit to compare gene order, visualize evolutionary paths among orthologues as networks, and identify gene loci that share an evolutionary history.
Collapse
Affiliation(s)
- Dong-Ha Oh
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Maheshi Dassanayake
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| |
Collapse
|
50
|
Wang L, Zhou CM, Mai YX, Li LZ, Gao J, Shang GD, Lian H, Han L, Zhang TQ, Tang HB, Ren H, Wang FX, Wu LY, Liu XL, Wang CS, Chen EW, Zhang XN, Liu C, Wang JW. A spatiotemporally regulated transcriptional complex underlies heteroblastic development of leaf hairs in Arabidopsis thaliana. EMBO J 2019; 38:embj.2018100063. [PMID: 30842098 DOI: 10.15252/embj.2018100063] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 02/08/2019] [Accepted: 02/15/2019] [Indexed: 11/09/2022] Open
Abstract
Heteroblasty refers to a phenomenon that a plant produces morphologically or functionally different lateral organs in an age-dependent manner. In the model plant Arabidopsis thaliana, the production of trichomes (epidermal leaf hairs) on the abaxial (lower) side of leaves is a heteroblastic mark for the juvenile-to-adult transition. Here, we show that the heteroblastic development of abaxial trichomes is regulated by a spatiotemporally regulated complex comprising the leaf abaxial fate determinant (KAN1) and the developmental timer (miR172-targeted AP2-like proteins). We provide evidence that a short-distance chromatin loop brings the downstream enhancer element into close association with the promoter elements of GL1, which encodes a MYB transcription factor essential for trichome initiation. During juvenile phase, the KAN1-AP2 repressive complex binds to the downstream sequence of GL1 and represses its expression through chromatin looping. As plants age, the gradual reduction in AP2-like protein levels leads to decreased amount of the KAN1-AP2 complex, thereby licensing GL1 expression and the abaxial trichome initiation. Our results thus reveal a novel molecular mechanism by which a heteroblastic trait is governed by integrating age and leaf polarity cue in plants.
Collapse
Affiliation(s)
- Long Wang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Chuan-Miao Zhou
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Yan-Xia Mai
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Ling-Zi Li
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China.,University of Chinese Academy of Sciences, Shanghai, China
| | - Jian Gao
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China.,University of Chinese Academy of Sciences, Shanghai, China
| | - Guang-Dong Shang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China.,University of Chinese Academy of Sciences, Shanghai, China
| | - Heng Lian
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Lin Han
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China.,University of Chinese Academy of Sciences, Shanghai, China
| | - Tian-Qi Zhang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Hong-Bo Tang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China.,University of Chinese Academy of Sciences, Shanghai, China
| | - Hang Ren
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China.,University of Chinese Academy of Sciences, Shanghai, China
| | - Fu-Xiang Wang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China.,University of Chinese Academy of Sciences, Shanghai, China
| | - Lian-Yu Wu
- ShanghaiTech University, Shanghai, China
| | | | - Chang-Sheng Wang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China.,University of Chinese Academy of Sciences, Shanghai, China
| | - Er-Wang Chen
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China.,University of Chinese Academy of Sciences, Shanghai, China
| | - Xue-Ning Zhang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China.,University of Chinese Academy of Sciences, Shanghai, China
| | - Chang Liu
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Jia-Wei Wang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China .,ShanghaiTech University, Shanghai, China
| |
Collapse
|