1
|
Liang JH, Akhanov V, Ho A, Tawfik M, D'Souza SP, Cameron MA, Lang RA, Samuel MA. Dopamine signaling from ganglion cells directs layer-specific angiogenesis in the retina. Curr Biol 2023; 33:3821-3834.e5. [PMID: 37572663 PMCID: PMC10529464 DOI: 10.1016/j.cub.2023.07.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/26/2023] [Accepted: 07/20/2023] [Indexed: 08/14/2023]
Abstract
During central nervous system (CNS) development, a precisely patterned vasculature emerges to support CNS function. How neurons control angiogenesis is not well understood. Here, we show that the neuromodulator dopamine restricts vascular development in the retina via temporally limited production by an unexpected neuron subset. Our genetic and pharmacological experiments demonstrate that elevating dopamine levels inhibits tip-cell sprouting and vessel growth, whereas reducing dopamine production by all retina neurons increases growth. Dopamine production by canonical dopaminergic amacrine interneurons is dispensable for these events. Instead, we found that temporally restricted dopamine production by retinal ganglion cells (RGCs) modulates vascular development. RGCs produce dopamine precisely during angiogenic periods. Genetically limiting dopamine production by ganglion cells, but not amacrines, decreases angiogenesis. Conversely, elevating ganglion-cell-derived dopamine production inhibits early vessel growth. These vasculature outcomes occur downstream of vascular endothelial growth factor receptor (VEGFR) activation and Notch-Jagged1 signaling. Jagged1 is increased and subsequently inhibits Notch signaling when ganglion cell dopamine production is reduced. Our findings demonstrate that dopaminergic neural activity from a small neuron subset functions upstream of VEGFR to serve as developmental timing cue that regulates vessel growth.
Collapse
Affiliation(s)
- Justine H Liang
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Huffington Center on Aging, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Visual Systems Group, Abrahamson Pediatric Eye Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Viktor Akhanov
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Huffington Center on Aging, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Anthony Ho
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Huffington Center on Aging, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Mohamed Tawfik
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Huffington Center on Aging, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Shane P D'Souza
- Divisions of Pediatric Ophthalmology and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Science of Light Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Visual Systems Group, Abrahamson Pediatric Eye Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Morven A Cameron
- School of Medicine, Western Sydney University, Western Sydney University Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Richard A Lang
- Divisions of Pediatric Ophthalmology and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Science of Light Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Visual Systems Group, Abrahamson Pediatric Eye Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Ophthalmology, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Melanie A Samuel
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Huffington Center on Aging, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| |
Collapse
|
2
|
Elabi OF, Espa E, Skovgård K, Fanni S, Cenci MA. Ropinirole Cotreatment Prevents Perivascular Glial Recruitment in a Rat Model of L-DOPA-Induced Dyskinesia. Cells 2023; 12:1859. [PMID: 37508522 PMCID: PMC10378233 DOI: 10.3390/cells12141859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/30/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Dopamine replacement therapy for Parkinson's disease is achieved using L-DOPA or dopamine D2/3 agonists, such as ropinirole. Here, we compare the effects of L-DOPA and ropinirole, alone or in combination, on patterns of glial and microvascular reactivity in the striatum. Rats with unilateral 6-hydroxydopamine lesions were treated with therapeutic-like doses of L-DOPA (6 mg/kg), an equipotent L-DOPA-ropinirole combination (L-DOPA 3 mg/kg plus ropinirole 0.5 mg/kg), or ropinirole alone. Immunohistochemistry was used to examine the reactivity of microglia (ionized calcium-binding adapter molecule 1, IBA-1) and astroglia (glial fibrillary acidic protein, GFAP), as well as blood vessel density (rat endothelial cell antigen 1, RECA-1) and albumin extravasation. L-DOPA monotreatment and L-DOPA-ropinirole cotreatment induced moderate-severe dyskinesia, whereas ropinirole alone had negligible dyskinetic effects. Despite similar dyskinesia severity, striking differences in perivascular microglia and astroglial reactivity were found between animals treated with L-DOPA vs. L-DOPA-ropinirole. The former exhibited a marked upregulation of perivascular IBA-1 cells (in part CD68-positive) and IBA-1-RECA-1 contact points, along with an increased microvessel density and strong perivascular GFAP expression. None of these markers were significantly upregulated in animals treated with L-DOPA-ropinirole or ropinirole alone. In summary, although ropinirole cotreatment does not prevent L-DOPA-induced dyskinesia, it protects from maladaptive gliovascular changes otherwise associated with this disorder, with potential long-term benefits to striatal tissue homeostasis.
Collapse
Affiliation(s)
- Osama F Elabi
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Elena Espa
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Katrine Skovgård
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Silvia Fanni
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Maria Angela Cenci
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| |
Collapse
|
3
|
Grigoriou S, Espa E, Odin P, Timpka J, von Grothusen G, Jakobsson A, Cenci MA. Comparison of dyskinesia profiles after L-DOPA dose challenges with or without dopamine agonist coadministration. Neuropharmacology 2023:109630. [PMID: 37315840 DOI: 10.1016/j.neuropharm.2023.109630] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/22/2023] [Accepted: 06/05/2023] [Indexed: 06/16/2023]
Abstract
Many patients with Parkinson's disease (PD) experiencing l-DOPA-induced dyskinesia (LID) receive adjunct treatment with dopamine agonists, whose functional impact on LID is unknown. We set out to compare temporal and topographic profiles of abnormal involuntary movements (AIMs) after l-DOPA dose challenges including or not the dopamine agonist ropinirole. Twenty-five patients with PD and a history of dyskinesias were sequentially administered either l-DOPA alone (150% of usual morning dose) or an equipotent combination of l-DOPA and ropinirole in random order. Involuntary movements were assessed by two blinded raters prior and every 30 min after drug dosing using the Clinical Dyskinesia Rating Scale (CDRS). A sensor-recording smartphone was secured to the patients' abdomen during the test sessions. The two raters' CDRS scores were highly reliable and concordant with models of hyperkinesia presence and severity trained on accelerometer data. The dyskinesia time curves differed between treatments as the l-DOPA-ropinirole combination resulted in lower peak severity but longer duration of the AIMs compared with l-DOPA alone. At the peak of the AIMs curve (60-120 min), l-DOPA induced a significantly higher total hyperkinesia score, whereas in the end phase (240-270 min), both hyperkinesia and dystonia tended to be more severe after the l-DOPA-ropinirole combination (though reaching statistical significance only for the item, arm dystonia). Our results pave the way for the introduction of a combined l-DOPA-ropinirole challenge test in the early clinical evaluation of antidyskinetic treatments. Furthermore, we propose a machine-learning method to predict CDRS hyperkinesia severity using accelerometer data.
Collapse
Affiliation(s)
- Sotirios Grigoriou
- Division of Neurology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden; Department of Neurology, Rehabilitation Medicine, Memory and Geriatrics, Skane University Hospital, Sweden.
| | - Elena Espa
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Per Odin
- Division of Neurology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden; Department of Neurology, Rehabilitation Medicine, Memory and Geriatrics, Skane University Hospital, Sweden
| | - Jonathan Timpka
- Division of Neurology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden; Department of Neurology, Rehabilitation Medicine, Memory and Geriatrics, Skane University Hospital, Sweden
| | - Gustaf von Grothusen
- Division of Mathematical Statistics, Center for Mathematical Sciences, Lund University, Lund, Sweden
| | - Andreas Jakobsson
- Division of Mathematical Statistics, Center for Mathematical Sciences, Lund University, Lund, Sweden
| | - M Angela Cenci
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
4
|
Espa E, Song L, Skovgård K, Fanni S, Cenci MA. Dopamine Agonist Cotreatment Alters Neuroplasticity and Pharmacology of Levodopa-Induced Dyskinesia. Mov Disord 2023; 38:410-422. [PMID: 36656044 PMCID: PMC10114531 DOI: 10.1002/mds.29301] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/17/2022] [Accepted: 12/05/2022] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Current models of levodopa (L-dopa)-induced dyskinesia (LID) are obtained by treating dopamine-depleted animals with L-dopa. However, patients with LID receive combination therapies that often include dopamine agonists. OBJECTIVE Using 6-hydroxydopamine-lesioned rats as a model, we aimed to establish whether an adjunct treatment with the D2/3 agonist ropinirole impacts on patterns of LID-related neuroplasticity and drug responses. METHODS Different regimens of L-dopa monotreatment and L-dopa-ropinirole cotreatment were compared using measures of hypokinesia and dyskinesia. Striatal expression of ∆FosB and angiogenesis markers were studied immunohistochemically. Antidyskinetic effects of different drug categories were investigated in parallel groups of rats receiving either L-dopa monotreatment or L-dopa combined with ropinirole. RESULTS We defined chronic regimens of L-dopa monotreatment and L-dopa-ropinirole cotreatment inducing overall similar abnormal involuntary movement scores. Compared with the monotreatment group, animals receiving the L-dopa-ropinirole combination exhibited an overall lower striatal expression of ∆FosB with a distinctive compartmental distribution. The expression of angiogenesis markers and blood-brain barrier hyperpermeability was markedly reduced after L-dopa-ropinirole cotreatment compared with L-dopa monotreatment. Moreover, significant group differences were detected upon examining the response to candidate antidyskinetic drugs. In particular, compounds modulating D1 receptor signaling had a stronger effect in the L-dopa-only group, whereas both amantadine and the selective NMDA antagonist MK801 produced a markedly larger antidyskinetic effect in L-dopa-ropinirole cotreated animals. CONCLUSIONS Cotreatment with ropinirole altered LID-related neuroplasticity and pharmacological response profiles. The impact of adjuvant dopamine agonist treatment should be taken into consideration when investigating LID mechanisms and candidate interventions in both clinical and experimental settings. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Elena Espa
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Lu Song
- Department of Neurology, XinhuaHospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Katrine Skovgård
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Silvia Fanni
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - M. Angela Cenci
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
5
|
Yuan Y, Zhang X, Wu Y, Lian P, Cao X, Xu Y. ONO-2506 Can Delay Levodopa-induced Dyskinesia in the Early Stage. Neuroscience 2023:S0306-4522(23)00068-4. [PMID: 36796751 DOI: 10.1016/j.neuroscience.2023.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/03/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023]
Abstract
BACKGROUND Levodopa-induced dyskinesia (LID) is a common motor complication of levodopa (L-DOPA) treatment for Parkinson's disease (PD). In recent years, the role of astrocytes in LID has increasingly attracted attention. OBJECTIVE To explore the effect of an astrocyte regulator (ONO-2506) on LID in a rat model and the potential underlying physiological mechanism. METHODS Unilateral LID rat models, established by administering 6-hydroxydopamine (6-OHDA) into the right medial forebrain bundle through stereotactic injection, were injected with ONO-2506 or saline into the striatum through brain catheterization and were administered L-DOPA to induce LID. Through a series of behavioral experiments, LID performance was observed. Relevant indicators were assessed through biochemical experiments. RESULTS In the LID model of 6-OHDA rats, ONO-2506 significantly delayed the development and reduced the degree of abnormal involuntary movement in the early stage of L-DOPA treatment and increased glial fibrillary acidic protein and glutamate transporter 1 (GLT-1) expression in the striatum compared to saline. However, there was no significant difference in the improvement in motor function between the ONO-2506 and saline groups. CONCLUSIONS ONO-2506 delays the emergence of L-DOPA-induced abnormal involuntary movements in the early stage of L-DOPA administration, without affecting the anti-PD effect of L-DOPA. The delaying effect of ONO-2506 on LID may be linked to the increased expression of GLT-1 in the rat striatum. Interventions targeting astrocytes and glutamate transporters are potential therapeutic strategies to delay the development of LID.
Collapse
Affiliation(s)
- Yuhao Yuan
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaoqian Zhang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yi Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Piaopiao Lian
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xuebing Cao
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Yan Xu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
6
|
Zhang X, Chen W, Wu Y, Zeng W, Yuan Y, Cheng C, Yang X, Wang J, Yang X, Xu Y, Lei H, Cao X, Xu Y. Histological Correlates of Neuroanatomical Changes in a Rat Model of Levodopa-Induced Dyskinesia Based on Voxel-Based Morphometry. Front Aging Neurosci 2021; 13:759934. [PMID: 34776935 PMCID: PMC8581620 DOI: 10.3389/fnagi.2021.759934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/07/2021] [Indexed: 11/22/2022] Open
Abstract
Long-term therapy with levodopa (L-DOPA) in patients with Parkinson’s disease (PD) often triggers motor complications termed as L-DOPA-induced dyskinesia (LID). However, few studies have explored the pathogenesis of LID from the perspective of neuroanatomy. This study aimed to investigate macroscopic structural changes in a rat model of LID and the underlying histological mechanisms. First, we established the hemiparkinsonism rat model through stereotaxic injection of 6-hydroxydopamine (6-OHDA) into the right medial forebrain bundle, followed by administration of saline (PD) or L-DOPA to induce LID. Magnetic resonance imaging (MRI) and behavioral evaluations were performed at different time points. Histological analysis was conducted to assess the correlations between MRI signal changes and cellular contributors. Voxel-based morphometry (VBM) analysis revealed progressive bilateral volume reduction in the cortical and subcortical areas in PD rats compared with the sham rats. These changes were partially reversed by chronic L-DOPA administration; moreover, there was a significant volume increase mainly in the dorsolateral striatum, substantia nigra, and piriform cortex of the lesioned side compared with that of PD rats. At the striatal cellular level, glial fibrillary acidic protein-positive (GFAP+) astrocytes were significantly increased in the lesioned dorsolateral striatum of PD rats compared with the intact side and the sham group. Prolonged L-DOPA treatment further increased GFAP levels. Neither 6-OHDA damage nor L-DOPA treatment influenced the striatal expression of vascular endothelial growth factor (VEGF). Additionally, there was a considerable increase in synapse-associated proteins (SYP, PSD95, and SAP97) in the lesioned striatum of LID rats relative to the PD rats. Golgi-Cox staining analysis of the dendritic spine morphology revealed an increased density of dendritic spines after chronic L-DOPA treatment. Taken together, our findings suggest that striatal volume changes in LID rats involve astrocyte activation, enrichment of synaptic ultrastructure and signaling proteins in the ipsilateral striatum. Meanwhile, the data highlight the enormous potential of structural MRI, especially VBM analysis, in determining the morphological phenotype of rodent models of LID.
Collapse
Affiliation(s)
- Xiaoqian Zhang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, National Center for Magnetic Resonance in Wuhan, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yi Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weiqi Zeng
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuhao Yuan
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chi Cheng
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoman Yang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jialing Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaomei Yang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Xu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Lei
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, National Center for Magnetic Resonance in Wuhan, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xuebing Cao
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Xu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Booth S, Ramadan A, Zhang D, Lu L, Kirouac G, Jackson MF, Anderson C, Ko JH. The Vasomotor Response to Dopamine Is Altered in the Rat Model of l-dopa-Induced Dyskinesia. Mov Disord 2021; 36:938-947. [PMID: 33135810 PMCID: PMC8246949 DOI: 10.1002/mds.28357] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/08/2020] [Accepted: 10/01/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Levodopa (l-dopa) is the frontline treatment for motor symptoms of Parkinson's disease. However, prolonged use of l-dopa results in a motor complication known as levodopa-induced dyskinesia (LID) in ~50% of patients over 5 years. OBJECTIVES We investigated neurovascular abnormalities in a rat model of LID by examining changes in angiogenesis and dopamine-dependent vessel diameter changes. METHODS Differences in striatal and nigral angiogenesis in a parkinsonian rat model (6-OHDA lesion) treated with 2 doses of l-dopa (saline, 2, and 10 mg/kg/day subcutaneous l-dopa treatment for 22 days) by 5-bromo-2'-deoxyuridine (BrdU)-RECA1 co-immunofluorescence. Difference in the vasomotor response to dopamine was examined with 2-photon laser scanning microscopy and Dodt gradient imaging. RESULTS We found that the 10 mg/kg l-dopa dosing regimen induced LID in all animals (n = 5) and induced significant angiogenesis in the striatum and substantia nigra. In contrast, the 2 mg/kg treatment induced LID in 6 out of 12 rats and led to linearly increasing LID severity over the 22-day treatment period, making this a promising model for studying LID progression longitudinally. However, no significantly different level of angiogenesis was observed between LID versus non-LID animals. Dopamine-induced vasodilatory responses were exaggerated only in rats that show LID-like signs compared to the rest of groups. Additionally, in juvenile rats, we showed that DA-induced vasodilation is preceded by increased Ca2+ release in the adjacent astrocytes. CONCLUSION This finding supports that astrocytic dopamine signaling controls striatal blood flow bidirectionally, and the balance is altered in LID. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Samuel Booth
- Department of Human Anatomy and Cell ScienceUniversity of ManitobaWinnipegManitobaCanada
- Kleyson Institute for Advanced MedicineHealth Science CentreWinnipegManitobaCanada
| | - Abdullah Ramadan
- Department of Human Anatomy and Cell ScienceUniversity of ManitobaWinnipegManitobaCanada
- Kleyson Institute for Advanced MedicineHealth Science CentreWinnipegManitobaCanada
| | - Dali Zhang
- Department of Human Anatomy and Cell ScienceUniversity of ManitobaWinnipegManitobaCanada
- Kleyson Institute for Advanced MedicineHealth Science CentreWinnipegManitobaCanada
| | - Lingling Lu
- Kleyson Institute for Advanced MedicineHealth Science CentreWinnipegManitobaCanada
- Department of Pharmacology and TherapeuticsUniversity of ManitobaWinnipegManitobaCanada
| | - Gilbert Kirouac
- Department of Oral BiologyUniversity of ManitobaWinnipegManitobaCanada
| | - Michael F. Jackson
- Kleyson Institute for Advanced MedicineHealth Science CentreWinnipegManitobaCanada
- Department of Pharmacology and TherapeuticsUniversity of ManitobaWinnipegManitobaCanada
| | - Chris Anderson
- Kleyson Institute for Advanced MedicineHealth Science CentreWinnipegManitobaCanada
- Department of Pharmacology and TherapeuticsUniversity of ManitobaWinnipegManitobaCanada
| | - Ji Hyun Ko
- Department of Human Anatomy and Cell ScienceUniversity of ManitobaWinnipegManitobaCanada
- Kleyson Institute for Advanced MedicineHealth Science CentreWinnipegManitobaCanada
| |
Collapse
|
8
|
Chen J, Wang Q, Li N, Huang S, Li M, Cai J, Wang Y, Wen H, Lv S, Wang N, Wang J, Luo F, Zhang W. Dyskinesia is Closely Associated with Synchronization of Theta Oscillatory Activity Between the Substantia Nigra Pars Reticulata and Motor Cortex in the Off L-dopa State in Rats. Neurosci Bull 2021; 37:323-338. [PMID: 33210188 PMCID: PMC7955013 DOI: 10.1007/s12264-020-00606-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/13/2020] [Indexed: 10/22/2022] Open
Abstract
Excessive theta (θ) frequency oscillation and synchronization in the basal ganglia (BG) has been reported in elderly parkinsonian patients and animal models of levodopa (L-dopa)-induced dyskinesia (LID), particularly the θ oscillation recorded during periods when L-dopa is withdrawn (the off L-dopa state). To gain insight into processes underlying this activity, we explored the relationship between primary motor cortex (M1) oscillatory activity and BG output in LID. We recorded local field potentials in the substantia nigra pars reticulata (SNr) and M1 of awake, inattentive resting rats before and after L-dopa priming in Sham control, Parkinson disease model, and LID model groups. We found that chronic L-dopa increased θ synchronization and information flow between the SNr and M1 in off L-dopa state LID rats, with a SNr-to-M1 flow directionality. Compared with the on state, θ oscillational activity (θ synchronization and information flow) during the off state were more closely associated with abnormal involuntary movements. Our findings indicate that θ oscillation in M1 may be consequent to abnormal synchronous discharges in the BG and support the notion that M1 θ oscillation may participate in the induction of dyskinesia.
Collapse
Affiliation(s)
- Jiazhi Chen
- The National Key Clinic Specialty, The Engineering Technology Research Center of the Ministry of Education of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Qiang Wang
- The National Key Clinic Specialty, The Engineering Technology Research Center of the Ministry of Education of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
- Movement Disorders and Neuromodulation Unit, Department for Neurology, Charité - University Medicine Berlin, 10117, Berlin, Germany
| | - Nanxiang Li
- The National Key Clinic Specialty, The Engineering Technology Research Center of the Ministry of Education of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Shujie Huang
- The National Key Clinic Specialty, The Engineering Technology Research Center of the Ministry of Education of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Min Li
- The National Key Clinic Specialty, The Engineering Technology Research Center of the Ministry of Education of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Junbin Cai
- The National Key Clinic Specialty, The Engineering Technology Research Center of the Ministry of Education of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Yuzheng Wang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Huantao Wen
- The National Key Clinic Specialty, The Engineering Technology Research Center of the Ministry of Education of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Siyuan Lv
- The National Key Clinic Specialty, The Engineering Technology Research Center of the Ministry of Education of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Ning Wang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jinyan Wang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Fei Luo
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Wangming Zhang
- The National Key Clinic Specialty, The Engineering Technology Research Center of the Ministry of Education of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
| |
Collapse
|
9
|
Fletcher EJR, Finlay CJ, Amor Lopez A, Crum WR, Vernon AC, Duty S. Neuroanatomical and Microglial Alterations in the Striatum of Levodopa-Treated, Dyskinetic Hemi-Parkinsonian Rats. Front Neurosci 2020; 14:567222. [PMID: 33041762 PMCID: PMC7522511 DOI: 10.3389/fnins.2020.567222] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/17/2020] [Indexed: 02/02/2023] Open
Abstract
Dyskinesia associated with chronic levodopa treatment in Parkinson’s disease is associated with maladaptive striatal plasticity. The objective of this study was to examine whether macroscale structural changes, as captured by magnetic resonance imaging (MRI) accompany this plasticity and to identify plausible cellular contributors in a rodent model of levodopa-induced dyskinesia. Adult male Sprague-Dawley rats were rendered hemi-parkinsonian by stereotaxic injection of 6-hydroxydopamine into the left medial forebrain bundle prior to chronic treatment with saline (control) or levodopa to induce abnormal involuntary movements (AIMs), reflective of dyskinesia. Perfusion-fixed brains underwent ex vivo structural MRI before sectioning and staining for cellular markers. Chronic treatment with levodopa induced significant AIMs (p < 0.0001 versus saline). The absolute volume of the ipsilateral, lesioned striatum was increased in levodopa-treated rats resulting in a significant difference in percentage volume change when compared to saline-treated rats (p < 0.01). Moreover, a significant positive correlation was found between this volume change and AIMs scores for individual levodopa-treated rats (r = 0.96; p < 0.01). The density of Iba1+ cells was increased within the lesioned versus intact striatum (p < 0.01) with no difference between treatment groups. Conversely, Iba1+ microglia soma size was significantly increased (p < 0.01) in the lesioned striatum of levodopa-treated but not saline-treated rats. Soma size was not, however, significantly correlated with either AIMs or MRI volume change. Although GFAP+ astrocytes were elevated in the lesioned versus intact striatum (p < 0.001), there was no difference between treatment groups. No statistically significant effects of either lesion or treatment on RECA1, a marker for blood vessels, were observed. Collectively, these data suggest chronic levodopa treatment in 6-hydroxydopamine lesioned rats is associated with increased striatal volume that correlates with the development of AIMs. The accompanying increase in number and size of microglia, however, cannot alone explain this volume expansion. Further multi-modal studies are warranted to establish the brain-wide effects of chronic levodopa treatment.
Collapse
Affiliation(s)
- Edward J R Fletcher
- Wolfson Centre for Age Related Diseases, Wolfson Wing, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Clare J Finlay
- Wolfson Centre for Age Related Diseases, Wolfson Wing, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Ana Amor Lopez
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - William R Crum
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Anthony C Vernon
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Susan Duty
- Wolfson Centre for Age Related Diseases, Wolfson Wing, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
10
|
Bishop C. Neuroinflammation: Fanning the fire of l-dopa-induced dyskinesia. Mov Disord 2020; 34:1758-1760. [PMID: 31845761 DOI: 10.1002/mds.27900] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 10/06/2019] [Indexed: 12/25/2022] Open
Affiliation(s)
- Christopher Bishop
- Binghamton University, Department of Psychology, Binghamton, New York, USA
| |
Collapse
|
11
|
Kuter KZ, Cenci MA, Carta AR. The role of glia in Parkinson's disease: Emerging concepts and therapeutic applications. PROGRESS IN BRAIN RESEARCH 2020; 252:131-168. [PMID: 32247363 DOI: 10.1016/bs.pbr.2020.02.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Originally believed to primarily affect neurons, Parkinson's disease (PD) has recently been recognized to also affect the functions and integrity of microglia and astroglia, two cell categories of fundamental importance to brain tissue homeostasis, defense, and repair. Both a loss of glial supportive-defensive functions and a toxic gain of glial functions are implicated in the neurodegenerative process. Moreover, the chronic treatment with L-DOPA may cause maladaptive glial plasticity favoring a development of therapy complications. This chapter focuses on the pathophysiology of PD from a glial point of view, presenting this rapidly growing field from the first discoveries made to the most recent developments. We report and compare histopathological and molecular findings from experimental models of PD and human studies. We moreover discuss the important role played by astrocytes in compensatory adaptations taking place during presymptomatic disease stages. We finally describe examples of potential therapeutic applications stemming from an increased understanding of the important roles of glia in PD.
Collapse
Affiliation(s)
- Katarzyna Z Kuter
- Department of Neuropsychopharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland.
| | - M Angela Cenci
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Anna R Carta
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Cagliari, Italy.
| |
Collapse
|
12
|
β-arrestin2 alleviates L-dopa-induced dyskinesia via lower D1R activity in Parkinson's rats. Aging (Albany NY) 2019; 11:12315-12327. [PMID: 31891566 PMCID: PMC6949085 DOI: 10.18632/aging.102574] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 11/24/2019] [Indexed: 12/13/2022]
Abstract
The cause of the L-dopa–induced dyskinesia (LID) has been ascribed to G-protein coupled receptor (GPCR) supersensitivity and uncontrolled downstream signaling. It is now supposed that β-arrestin2 affects GPCR signaling through its ability to scaffold various intracellular molecules. We used the rAAV (recombinant adeno-associated virus) vectors to overexpress and ablation of β-arrestin2. L-dopa-induced changes in expression of signaling molecules and other proteins in the striatum were examined by western blot and immunohistochemically. Our data demonstrated that via AAV-mediated overexpression of β-arrestin2 attenuated LID performance in 6-OHDA-lesioned rodent models. β-arrestin2 suppressed LID behavior without compromising the antiparkinsonian effects of L-dopa. Moreover, we also found that the anti-dyskinetic effect of β-arrestin2 was reversed by SKF38393, a D1R agonist. On the contrary, the rat knockdown study demonstrated that reduced availability of β-arrestin2 deteriorated LID performance, which was counteracted by SCH23390, a D1R antagonist. These data not only demonstrate a central role for β-arrestin2/GPCR signaling in LID, but also show the D1R signal pathway changes occurring in response to dopaminergic denervation and pulsatile administration of L-dopa.
Collapse
|
13
|
Boi L, Pisanu A, Greig NH, Scerba MT, Tweedie D, Mulas G, Fenu S, Carboni E, Spiga S, Carta AR. Immunomodulatory drugs alleviate l-dopa-induced dyskinesia in a rat model of Parkinson's disease. Mov Disord 2019; 34:1818-1830. [PMID: 31335998 DOI: 10.1002/mds.27799] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 06/05/2019] [Accepted: 06/14/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Thalidomide and closely related analogues are used clinically for their immunomodulatory and antiangiogenic properties mediated by the inhibition of the proinflammatory cytokine tumor necrosis factor α. Neuroinflammation and angiogenesis contribute to classical neuronal mechanisms underpinning the pathophysiology of l-dopa-induced dyskinesia, a motor complication associated with l-dopa therapy in Parkinson's disease. The efficacy of thalidomide and the more potent derivative 3,6'-dithiothalidomide on dyskinesia was tested in the 6-hydroxydopamine Parkinson's disease model. METHODS Three weeks after 6-hydroxydopamine infusion, rats received 10 days of treatment with l-dopa plus benserazide (6 mg/kg each) and thalidomide (70 mg/kg) or 3,6'-dithiothalidomide (56 mg/kg), and dyskinesia and contralateral turning were recorded daily. Rats were euthanized 1 hour after the last l-dopa injection, and levels of tumor necrosis factor-α, interleukin-10, OX-42, vimentin, and vascular endothelial growth factor immunoreactivity were measured in their striatum and substantia nigra reticulata to evaluate neuroinflammation and angiogenesis. Striatal levels of GLUR1 were measured as a l-dopa-induced postsynaptic change that is under tumor necrosis factor-α control. RESULTS Thalidomide and 3,6'-dithiothalidomide significantly attenuated the severity of l-dopa-induced dyskinesia while not affecting contralateral turning. Moreover, both compounds inhibited the l-dopa-induced microgliosis and excessive tumor necrosis factor-α in the striatum and substantia nigra reticulata, while restoring physiological levels of the anti-inflammatory cytokine interleukin-10. l-Dopa-induced angiogenesis was inhibited in both basal ganglia nuclei, and l-dopa-induced GLUR1 overexpression in the dorsolateral striatum was restored to normal levels. CONCLUSIONS These data suggest that decreasing tumor necrosis factor-α levels may be useful to reduce the appearance of dyskinesia, and thalidomide, and more potent derivatives may provide an effective therapeutic approach to dyskinesia. © 2019 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Laura Boi
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Augusta Pisanu
- CNR Institute of Neuroscience, Cagliari, Cagliari, Italy
| | - Nigel H Greig
- Drug Design & Development Section, Translational Gerontology Branch, National Institute of Aging, Baltimore, Maryland, USA
| | - Michael T Scerba
- Drug Design & Development Section, Translational Gerontology Branch, National Institute of Aging, Baltimore, Maryland, USA
| | - David Tweedie
- Drug Design & Development Section, Translational Gerontology Branch, National Institute of Aging, Baltimore, Maryland, USA
| | - Giovanna Mulas
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Sandro Fenu
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Ezio Carboni
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Saturnino Spiga
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Anna R Carta
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy.,National Institute of Neuroscience (INN), University of Cagliari, Cagliari, Italy
| |
Collapse
|
14
|
Park HJ, Zhao TT, Park KH, Lee MK. Repeated treatments with the D 1 dopamine receptor agonist SKF-38393 modulate cell viability via sustained ERK-Bad-Bax activation in dopaminergic neuronal cells. Behav Brain Res 2019; 367:166-175. [PMID: 30930179 DOI: 10.1016/j.bbr.2019.03.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/21/2019] [Accepted: 03/19/2019] [Indexed: 01/23/2023]
Abstract
The D1 dopamine receptor agonist, SKF-38393, induces cytotoxicity in striatal dopaminergic neurons via an extracellular signal-regulated kinase (ERK) signaling cascade. However, the underlying mechanism remains unclear. We hypothesized that repeated activation of dopaminergic receptors by agonists could lead to neuronal cell death. This study investigated the effects of SKF-38393 on dopaminergic neuronal cell death in a 6-hydroxydopamine-lesioned rat model of Parkinson's disease (PD) and PC12 cells. In the PD model, SKF-38393 administration (3 and 10 mg/kg per day, s.c.) for 8 weeks significantly increased the number of tyrosine hydroxylase-immunopositive neuronal cells in nigrostriatal regions. SKF-38393 administration for 8 weeks induced phosphorylation of sustained ERK1/2 and Bad (Bcl-2-associated death promoter) at Ser155 (BadSer155), and augmented Bax (Bcl-2-associated X protein) expression. However, SKF-38393 only increased Bad phosphorylation at Ser112 (BadSer112) when administered for 4 weeks. In PC12 cells, toxic levels of SKF-38393 (20 and 50 μM) rapidly induced formation of neurite-like processes, but not in the presence of an adenylyl cyclase inhibitor (MDL-12330 A). SKF-38393 (20 and 50 μM) induced sustained ERK1/2 and BadSer155 phosphorylation as well as caspase-3 activation. At a non-toxic level (5 μM), SKF-38393 produced only transient ERK1/2 and BadSer112 phosphorylation. Repeated treatments with SKF-38393 (5 μM) for 1-3 days activated BadSer112. Repeated treatments for 4-7 days induced sustained ERK1/2 and BadSer155 phosphorylation as well as Bax and caspase-3 activation. These results suggest that SKF-38393 induces neurotoxicity by activation of the sustained ERK-Bad-Bax system. These findings contribute to an understanding of the adverse effects of D1 dopamine receptor agonists in patients with PD.
Collapse
Affiliation(s)
- Hyun Jin Park
- Department of Pharmacy and Research Center for Bioresource and Health, College of Pharmacy, Chungbuk National University, 194-21, Osongsaengmyeong 1-ro, Osong, Heungduk-gu, Cheongju 28160, Republic of Korea
| | - Ting Ting Zhao
- Department of Pharmacy and Research Center for Bioresource and Health, College of Pharmacy, Chungbuk National University, 194-21, Osongsaengmyeong 1-ro, Osong, Heungduk-gu, Cheongju 28160, Republic of Korea
| | - Keun Hong Park
- Department of Pharmacy and Research Center for Bioresource and Health, College of Pharmacy, Chungbuk National University, 194-21, Osongsaengmyeong 1-ro, Osong, Heungduk-gu, Cheongju 28160, Republic of Korea
| | - Myung Koo Lee
- Department of Pharmacy and Research Center for Bioresource and Health, College of Pharmacy, Chungbuk National University, 194-21, Osongsaengmyeong 1-ro, Osong, Heungduk-gu, Cheongju 28160, Republic of Korea.
| |
Collapse
|
15
|
Bordia T, Perez XA. Cholinergic control of striatal neurons to modulate L-dopa-induced dyskinesias. Eur J Neurosci 2018; 49:859-868. [PMID: 29923650 DOI: 10.1111/ejn.14048] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 06/06/2018] [Accepted: 06/12/2018] [Indexed: 12/28/2022]
Abstract
L-dopa induced dyskinesias (LIDs) are a disabling motor complication of L-dopa therapy for Parkinson's disease (PD) management. Treatment options remain limited and the underlying network mechanisms remain unclear due to a complex pathophysiology. What is well-known, however, is that aberrant striatal signaling plays a key role in LIDs development. Here, we discuss the specific contribution of striatal cholinergic interneurons (ChIs) and GABAergic medium spiny projection neurons (MSNs) with a particular focus on how cholinergic signaling may integrate multiple striatal systems to modulate LIDs expression. Enhanced ChI transmission, altered MSN activity and the associated abnormal downstream signaling responses that arise with nigrostriatal damage are well known to contribute to LIDs development. In fact, enhancing M4 muscarinic receptor activity, a receptor favorably expressed on D1 dopamine receptor-expressing MSNs dampens their activity to attenuate LIDs. Likewise, ChI activation via thalamostriatal neurons is shown to interrupt cortical signaling to enhance D2 dopamine receptor-expressing MSN activity via M1 muscarinic receptors, which may interrupt ongoing motor activity. Notably, numerous preclinical studies also show that reducing nicotinic cholinergic receptor activity decreases LIDs. Taken together, these studies indicate the importance of cholinergic control of striatal neuronal activity and point to muscarinic and nicotinic receptors as significant pharmacological targets for alleviating LIDs in PD patients.
Collapse
Affiliation(s)
- Tanuja Bordia
- Center for Health Sciences, SRI International, 333 Ravenswood Ave, Menlo Park, CA, 94025, USA
| | - Xiomara A Perez
- Center for Health Sciences, SRI International, 333 Ravenswood Ave, Menlo Park, CA, 94025, USA
| |
Collapse
|
16
|
Lanza K, Meadows SM, Chambers NE, Nuss E, Deak MM, Ferré S, Bishop C. Behavioral and cellular dopamine D 1 and D 3 receptor-mediated synergy: Implications for L-DOPA-induced dyskinesia. Neuropharmacology 2018; 138:304-314. [PMID: 29936243 DOI: 10.1016/j.neuropharm.2018.06.024] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/01/2018] [Accepted: 06/18/2018] [Indexed: 01/23/2023]
Abstract
Individually, D1 and D3 dopamine receptors (D1R and D3R, respectively) have been implicated in L-DOPA-induced dyskinesia (LID). Of late, direct D1R-D3R interactions have been linked to LID yet remain enigmatic. Therefore, the current research sought to characterize consequences of putative D1R-D3R interactions in dyskinesia expression and in LID-associated downstream cellular signaling. To do so, adult male Sprague-Dawley hemi-parkinsonian rats were given daily L-DOPA (6 mg/kg; s.c.) for 2 weeks to establish stable LID, as measured via the abnormal voluntary movements (AIMs) scale. Thereafter, rats underwent dose-response AIMs testing for the D1R agonist SKF38393 (0, 0.3, 1.0, 3.0 mg/kg) and the D3R agonist, PD128907 (0, 0.1, 0.3, 1.0 mg/kg). Each agonist dose-dependently induced dyskinesia, implicating individual receptor involvement. More importantly, when threshold doses were co-administered, rats displayed synergistic exacerbation of dyskinesia. Interestingly, this observation was not mirrored in general locomotor behaviors, highlighting a potentially dyskinesia-specific effect. To illuminate the mechanisms by which D1R-D3R co-stimulation led to in vivo synergy, levels of striatal phosphorylated extracellular signal-regulated kinase 1/2 (pERK1/2) were quantified after administration of SKF38393 and/or PD128907. Combined agonist treatment synergistically drove striatal pERK1/2 expression. Together, these results support the presence of a functional, synergistic interaction between D1R and D3R that manifests both behaviorally and biochemically to drive dyskinesia in hemi-parkinsonian rats.
Collapse
Affiliation(s)
- Kathryn Lanza
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, 4400 Vestal Parkway East, Binghamton, NY 13902, USA.
| | - Samantha M Meadows
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, 4400 Vestal Parkway East, Binghamton, NY 13902, USA.
| | - Nicole E Chambers
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, 4400 Vestal Parkway East, Binghamton, NY 13902, USA.
| | - Emily Nuss
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, 4400 Vestal Parkway East, Binghamton, NY 13902, USA.
| | - Molly M Deak
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, 4400 Vestal Parkway East, Binghamton, NY 13902, USA.
| | - Sergi Ferré
- National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Department of Health and Human Services, 251 Bayview Blvd #200, Baltimore, MD 21224, USA.
| | - Christopher Bishop
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, 4400 Vestal Parkway East, Binghamton, NY 13902, USA.
| |
Collapse
|
17
|
The striatal cholinergic system in L-dopa-induced dyskinesias. J Neural Transm (Vienna) 2018; 125:1251-1262. [PMID: 29492663 DOI: 10.1007/s00702-018-1845-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 01/23/2018] [Indexed: 12/18/2022]
Abstract
Cholinergic signaling plays a key role in regulating striatal function. The principal source of acetylcholine in the striatum is the cholinergic interneurons which, although low in number, densely arborize to modulate striatal neurotransmission. This modulation occurs via strategically positioned nicotinic and muscarinic acetylcholine receptors that influence striatal dopamine, GABA and other neurotransmitter release. Cholinergic interneurons integrate multiple striatal synaptic inputs and outputs to regulate motor activity under normal physiological conditions. Consequently, an imbalance between these systems is associated with basal ganglia disorders. Here, we provide an overview of how striatal cholinergic interneurons modulate striatal activity under normal and pathological conditions. Numerous studies show that nigrostriatal damage such as that occurs with Parkinson's disease affects cholinergic receptor-mediated striatal activity. This altered cholinergic signaling is an important contributor to Parkinson's disease as well as to the dyskinesias that develop with L-dopa therapy, the gold standard for treatment. Indeed, multiple preclinical studies show that cholinergic receptor drugs may be beneficial for the treatment of L-dopa-induced dyskinesias. In this review, we discuss the evidence indicating that therapeutic modulation of the cholinergic system, particularly targeting of nicotinic cholinergic receptors, may offer a novel approach to manage this debilitating side effect of dopamine replacement therapy for Parkinson's disease.
Collapse
|
18
|
Lerner RP, Francardo V, Fujita K, Bimpisidis Z, Jourdain VA, Tang CC, Dewey SL, Chaly T, Cenci MA, Eidelberg D. Levodopa-induced abnormal involuntary movements correlate with altered permeability of the blood-brain-barrier in the basal ganglia. Sci Rep 2017; 7:16005. [PMID: 29167476 PMCID: PMC5700135 DOI: 10.1038/s41598-017-16228-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 11/09/2017] [Indexed: 01/24/2023] Open
Abstract
Chronic levodopa treatment leads to the appearance of dyskinesia in the majority of Parkinson’s disease patients. Neurovascular dysregulation in putaminal and pallidal regions is thought to be an underlying feature of this complication of treatment. We used microPET to study unilaterally lesioned 6-hydroxydopamine rats that developed levodopa-induced abnormal involuntary movements (AIMs) after three weeks of drug treatment. Animals were scanned with [15O]-labeled water and [18F]-fluorodeoxyglucose, to map regional cerebral blood flow and glucose metabolism, and with [11C]-isoaminobutyric acid (AIB), to assess blood-brain-barrier (BBB) permeability, following separate injections of levodopa or saline. Multitracer scan data were acquired in each animal before initiating levodopa treatment, and again following the period of daily drug administration. Significant dissociation of vasomotor and metabolic levodopa responses was seen in the striatum/globus pallidus (GP) of the lesioned hemisphere. These changes were accompanied by nearby increases in [11C]-AIB uptake in the ipsilateral GP, which correlated with AIMs scores. Histopathological analysis revealed high levels of microvascular nestin immunoreactivity in the same region. The findings demonstrate that regional flow-metabolism dissociation and increased BBB permeability are simultaneously induced by levodopa within areas of active microvascular remodeling, and that such changes correlate with the severity of dyskinesia.
Collapse
Affiliation(s)
- Renata P Lerner
- Center for Neurosciences, The Feinstein Institute for Medical Research, Manhasset, NY, 11030, USA
| | - Veronica Francardo
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Koji Fujita
- Center for Neurosciences, The Feinstein Institute for Medical Research, Manhasset, NY, 11030, USA
| | - Zisis Bimpisidis
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Vincent A Jourdain
- Center for Neurosciences, The Feinstein Institute for Medical Research, Manhasset, NY, 11030, USA
| | - Chris C Tang
- Center for Neurosciences, The Feinstein Institute for Medical Research, Manhasset, NY, 11030, USA
| | - Stephen L Dewey
- Center for Neurosciences, The Feinstein Institute for Medical Research, Manhasset, NY, 11030, USA
| | - Thomas Chaly
- Center for Neurosciences, The Feinstein Institute for Medical Research, Manhasset, NY, 11030, USA
| | - M Angela Cenci
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - David Eidelberg
- Center for Neurosciences, The Feinstein Institute for Medical Research, Manhasset, NY, 11030, USA.
| |
Collapse
|
19
|
Jourdain VA, Schindlbeck KA, Tang CC, Niethammer M, Choi YY, Markowitz D, Nazem A, Nardi D, Carras N, Feigin A, Ma Y, Peng S, Dhawan V, Eidelberg D. Increased putamen hypercapnic vasoreactivity in levodopa-induced dyskinesia. JCI Insight 2017; 2:96411. [PMID: 29046477 DOI: 10.1172/jci.insight.96411] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 09/07/2017] [Indexed: 12/29/2022] Open
Abstract
In a rodent model of Parkinson's disease (PD), levodopa-induced involuntary movements have been linked to striatal angiogenesis - a process that is difficult to document in living human subjects. Angiogenesis can be accompanied by localized increases in cerebral blood flow (CBF) responses to hypercapnia. We therefore explored the possibility that, in the absence of levodopa, local hypercapnic CBF responses are abnormally increased in PD patients with levodopa-induced dyskinesias (LID) but not in their nondyskinetic (NLID) counterparts. We used H215O PET to scan 24 unmedicated PD subjects (12 LID and 12 NLID) and 12 matched healthy subjects in the rest state under normocapnic and hypercapnic conditions. Hypercapnic CBF responses were compared to corresponding levodopa responses from the same subjects. Group differences in hypercapnic vasoreactivity were significant only in the posterior putamen, with greater CBF responses in LID subjects compared with the other subjects. Hypercapnic and levodopa-mediated CBF responses measured in this region exhibited distinct associations with disease severity: the former correlated with off-state motor disability ratings but not symptom duration, whereas the latter correlated with symptom duration but not motor disability. These are the first in vivo human findings linking LID to microvascular changes in the basal ganglia.
Collapse
Affiliation(s)
- Vincent A Jourdain
- Center for Neurosciences, Feinstein Institute for Medical Research, Manhasset, New York, USA
| | - Katharina A Schindlbeck
- Center for Neurosciences, Feinstein Institute for Medical Research, Manhasset, New York, USA
| | - Chris C Tang
- Center for Neurosciences, Feinstein Institute for Medical Research, Manhasset, New York, USA
| | - Martin Niethammer
- Center for Neurosciences, Feinstein Institute for Medical Research, Manhasset, New York, USA.,Department of Neurology, Northwell Health, Manhasset, New York, USA
| | - Yoon Young Choi
- Center for Neurosciences, Feinstein Institute for Medical Research, Manhasset, New York, USA
| | | | - Amir Nazem
- Center for Neurosciences, Feinstein Institute for Medical Research, Manhasset, New York, USA
| | - Dominic Nardi
- Department of Anesthesiology, Northwell Health, Manhasset, New York, USA
| | - Nicholas Carras
- Department of Anesthesiology, Northwell Health, Manhasset, New York, USA
| | - Andrew Feigin
- Center for Neurosciences, Feinstein Institute for Medical Research, Manhasset, New York, USA.,Department of Neurology, Northwell Health, Manhasset, New York, USA
| | - Yilong Ma
- Center for Neurosciences, Feinstein Institute for Medical Research, Manhasset, New York, USA
| | - Shichun Peng
- Center for Neurosciences, Feinstein Institute for Medical Research, Manhasset, New York, USA
| | - Vijay Dhawan
- Center for Neurosciences, Feinstein Institute for Medical Research, Manhasset, New York, USA
| | - David Eidelberg
- Center for Neurosciences, Feinstein Institute for Medical Research, Manhasset, New York, USA.,Department of Neurology, Northwell Health, Manhasset, New York, USA
| |
Collapse
|
20
|
Dorofeeva NA, Nikitina LS, Zosen DV, Glazova MV, Chernigovskaya EV. Functional state of the nigrostriatal system of Krushinsky–Molodkina rats during audiogenic seizure expression. ACTA ACUST UNITED AC 2017. [DOI: 10.1134/s2079059717030029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Sun J, Nan G. The extracellular signal-regulated kinase 1/2 pathway in neurological diseases: A potential therapeutic target (Review). Int J Mol Med 2017; 39:1338-1346. [PMID: 28440493 PMCID: PMC5428947 DOI: 10.3892/ijmm.2017.2962] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 04/12/2017] [Indexed: 02/06/2023] Open
Abstract
Signaling pathways are critical modulators of a variety of physiological and pathological processes, and the abnormal activation of some signaling pathways can contribute to disease progression in various conditions. As a result, signaling pathways have emerged as an important tool through which the occurrence and development of diseases can be studied, which may then lead to the development of novel drugs. Accumulating evidence supports a key role for extracellular signal-regulated kinase 1/2 (ERK1/2) signaling in the embryonic development of the central nervous system (CNS) and in the regulation of adult brain function. ERK1/2, one of the most well characterized members of the mitogen-activated protein kinase family, regulates a range of processes, from metabolism, motility and inflammation, to cell death and survival. In the nervous system, ERK1/2 regulates synaptic plasticity, brain development and repair as well as memory formation. ERK1/2 is also a potent effector of neuronal death and neuroinflammation in many CNS diseases. This review summarizes recent findings in neurobiological ERK1/2 research, with a special emphasis on findings that clarify our understanding of the processes that regulate the plethora of isoform-specific ERK functions under physiological and pathological conditions. Finally, we suggest some potential therapeutic strategies associated with agents acting on the ERK1/2 signaling to prevent or treat neurological diseases.
Collapse
Affiliation(s)
- Jing Sun
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Guangxian Nan
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| |
Collapse
|
22
|
Chen G, Nie S, Han C, Ma K, Xu Y, Zhang Z, Papa SM, Cao X. Antidyskinetic Effects of MEK Inhibitor Are Associated with Multiple Neurochemical Alterations in the Striatum of Hemiparkinsonian Rats. Front Neurosci 2017; 11:112. [PMID: 28337120 PMCID: PMC5343040 DOI: 10.3389/fnins.2017.00112] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 02/21/2017] [Indexed: 12/12/2022] Open
Abstract
L-DOPA-induced dyskinesia (LID) represents one of the major problems of the long-term therapy of patients with Parkinson's disease (PD). Although, the pathophysiologic mechanisms underlying LID are not completely understood, activation of the extracellular signal regulated kinase (ERK) is recognized to play a key role. ERK is phosphorylated by mitogen-activated protein kinase kinase (MEK), and thus MEK inhibitor can prevent ERK activation. Here the effect of the MEK inhibitor PD98059 on LID and the associated molecular changes were examined. Rats with unilateral 6-OHDA lesions of the nigrostriatal pathway received daily L-DOPA treatment for 3 weeks, and abnormal involuntary movements (AIMs) were assessed every other day. PD98059 was injected in the lateral ventricle daily for 12 days starting from day 10 of L-DOPA treatment. Striatal molecular markers of LID were analyzed together with gene regulation using microarray. The administration of PD98059 significantly reduced AIMs. In addition, ERK activation and other associated molecular changes including ΔFosB were reversed in rats treated with the MEK inhibitor. PD98059 induced significant up-regulation of 418 transcripts and down-regulation of 378 transcripts in the striatum. Tyrosine hydroxylase (Th) and aryl hydrocarbon receptor nuclear translocator (Arnt) genes were down-regulated in lesioned animals and up-regulated in L-DOPA-treated animals. Analysis of protein levels showed that PD98059 reduced the striatal TH. These results support the association of p-ERK1/2, ΔFosB, p-H3 to the regulation of TH and ARNT in the mechanisms of LID, and pinpoint other gene regulatory changes, thus providing clues for identifying new targets for LID therapy.
Collapse
Affiliation(s)
- Guiqin Chen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Shuke Nie
- Department of Neurology, Renmin Hospital of Wuhan University Wuhan, China
| | - Chao Han
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Kai Ma
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Yan Xu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University Wuhan, China
| | - Stella M Papa
- Department of Neurology, Yerkes National Primate Research Center, Emory University School of Medicine Atlanta, GA, USA
| | - Xuebing Cao
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| |
Collapse
|
23
|
Perez XA, Zhang D, Bordia T, Quik M. Striatal D1 medium spiny neuron activation induces dyskinesias in parkinsonian mice. Mov Disord 2017; 32:538-548. [PMID: 28256010 DOI: 10.1002/mds.26955] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 12/21/2016] [Accepted: 01/19/2017] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Dyskinesias are a disabling motor complication that arises with prolonged l-dopa treatment. Studies using D1 receptor drugs and genetically modified mice suggest that medium spiny neurons expressing D1 receptors play a primary role in l-dopa-induced dyskinesias. However, the specific role of these neurons in dyskinesias is not fully understood. METHODS We used optogenetics, which allows for precise modulation of select neurons in vivo, to investigate whether striatal D1-expressing medium spiny neuron activity regulates abnormal involuntary movements or dyskinesia in parkinsonian mice. D1-cre mice unilaterally lesioned with 6-hydroxydopamine received striatal injections of cre-dependent channelrhodopsin2 virus or control virus. After stable virus expression, the effect of optical stimulation on dyskinesia was tested in l-dopa-naïve and l-dopa-primed mice. RESULTS Single-pulse and burst-optical stimulation of D1-expressing medium spiny neurons induced dyskinesias in l-dopa-naïve channelrhodopsin2 mice. In stably dyskinetic mice, l-dopa injection induced dyskinesia to a similar or somewhat greater extent than optical stimulation. Combined l-dopa administration and stimulation resulted in an additive increase in dyskinesias, indicating that other mechanisms also contribute. Molecular studies indicate that changes in extracellular signal-regulated kinase phosphorylation in D1-expressing medium spiny neurons are involved. Optical stimulation did not ameliorate parkinsonism in l-dopa-naïve mice. However, it improved parkinsonism in l-dopa-primed mice to a similar extent as l-dopa administration. None of the stimulation paradigms enhanced dyskinesia or modified parkinsonism in l-dopa-naïve or l-dopa-primed control virus mice. CONCLUSION The data provide direct evidence that striatal D1-expressing medium spiny neuron stimulation is sufficient to induce dyskinesias and contributes to the regulation of motor control. © 2017 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Xiomara A Perez
- Bioscience Division, SRI International, Menlo Park, California, USA
| | - Danhui Zhang
- Bioscience Division, SRI International, Menlo Park, California, USA
| | - Tanuja Bordia
- Bioscience Division, SRI International, Menlo Park, California, USA
| | - Maryka Quik
- Bioscience Division, SRI International, Menlo Park, California, USA
| |
Collapse
|
24
|
Breger LS, Kienle K, Smith GA, Dunnett SB, Lane EL. Influence of chronic L-DOPA treatment on immune response following allogeneic and xenogeneic graft in a rat model of Parkinson's disease. Brain Behav Immun 2017; 61:155-164. [PMID: 27864045 PMCID: PMC5325122 DOI: 10.1016/j.bbi.2016.11.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 11/07/2016] [Accepted: 11/14/2016] [Indexed: 12/19/2022] Open
Abstract
Although intrastriatal transplantation of fetal cells for the treatment of Parkinson's disease had shown encouraging results in initial open-label clinical trials, subsequent double-blind studies reported more debatable outcomes. These studies highlighted the need for greater preclinical analysis of the parameters that may influence the success of cell therapy. While much of this has focused on the cells and location of the transplants, few have attempted to replicate potentially critical patient centered factors. Of particular relevance is that patients will be under continued L-DOPA treatment prior to and following transplantation, and that typically the grafts will not be immunologically compatible with the host. The aim of this study was therefore to determine the effect of chronic L-DOPA administered during different phases of the transplantation process on the survival and function of grafts with differing degrees of immunological compatibility. To that end, unilaterally 6-OHDA lesioned rats received sham surgery, allogeneic or xenogeneic transplants, while being treated with L-DOPA before and/or after transplantation. Irrespective of the L-DOPA treatment, dopaminergic grafts improved function and reduced the onset of L-DOPA induced dyskinesia. Importantly, although L-DOPA administered post transplantation was found to have no detrimental effect on graft survival, it did significantly promote the immune response around xenogeneic transplants, despite the administration of immunosuppressive treatment (cyclosporine). This study is the first to systematically examine the effect of L-DOPA on graft tolerance, which is dependent on the donor-host compatibility. These findings emphasize the importance of using animal models that adequately represent the patient paradigm.
Collapse
Affiliation(s)
- Ludivine S. Breger
- School of Pharmacy & Pharmaceutical Sciences, Redwood Building, King Edward VII Avenue, CF10 3NB Cardiff, UK,Brain Repair Group, Cardiff School of Biosciences, Museum Avenue, CF10 3AX Cardiff, UK,Corresponding author at: Dept of Experimental Medical Science, Wallenberg Neuroscience Centre, Lund University, BMC A11, 221 84 Lund, Sweden.Dept of Experimental Medical ScienceWallenberg Neuroscience CentreLund UniversityBMC A11221 84 LundSweden
| | - Korbinian Kienle
- School of Pharmacy & Pharmaceutical Sciences, Redwood Building, King Edward VII Avenue, CF10 3NB Cardiff, UK.
| | - Gaynor A. Smith
- Brain Repair Group, Cardiff School of Biosciences, Museum Avenue, CF10 3AX Cardiff, UK
| | - Stephen B. Dunnett
- Brain Repair Group, Cardiff School of Biosciences, Museum Avenue, CF10 3AX Cardiff, UK
| | - Emma L. Lane
- School of Pharmacy & Pharmaceutical Sciences, Redwood Building, King Edward VII Avenue, CF10 3NB Cardiff, UK
| |
Collapse
|
25
|
Carta AR, Mulas G, Bortolanza M, Duarte T, Pillai E, Fisone G, Vozari RR, Del-Bel E. l-DOPA-induced dyskinesia and neuroinflammation: do microglia and astrocytes play a role? Eur J Neurosci 2016; 45:73-91. [DOI: 10.1111/ejn.13482] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 11/07/2016] [Accepted: 11/11/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Anna R. Carta
- Department of Biomedical Sciences; University of Cagliari, Cittadella Universitaria di Monserrato; S.P. N. 8 09042 Monserrato Cagliari Italy
| | - Giovanna Mulas
- Department of Biomedical Sciences; University of Cagliari, Cittadella Universitaria di Monserrato; S.P. N. 8 09042 Monserrato Cagliari Italy
| | - Mariza Bortolanza
- School of Odontology of Ribeirão Preto; Department of Morphology, Physiology and Basic Pathology; University of São Paulo (USP); Av. Café S/N 14040-904 Ribeirão Preto SP Brazil
- USP, Center for Interdisciplinary Research on Applied Neurosciences (NAPNA); São Paulo Brazil
| | - Terence Duarte
- School of Odontology of Ribeirão Preto; Department of Morphology, Physiology and Basic Pathology; University of São Paulo (USP); Av. Café S/N 14040-904 Ribeirão Preto SP Brazil
- USP, Center for Interdisciplinary Research on Applied Neurosciences (NAPNA); São Paulo Brazil
| | - Elisabetta Pillai
- Department of Biomedical Sciences; University of Cagliari, Cittadella Universitaria di Monserrato; S.P. N. 8 09042 Monserrato Cagliari Italy
| | - Gilberto Fisone
- Department of Neuroscience; Karolinska Institutet; Retzius väg 8 17177 Stockholm Sweden
| | - Rita Raisman Vozari
- INSERM U 1127; CNRS UMR 7225; UPMC Univ Paris 06; UMR S 1127; Institut Du Cerveau et de La Moelle Epiniére; ICM; Paris France
| | - Elaine Del-Bel
- School of Odontology of Ribeirão Preto; Department of Morphology, Physiology and Basic Pathology; University of São Paulo (USP); Av. Café S/N 14040-904 Ribeirão Preto SP Brazil
| |
Collapse
|
26
|
Han C, Nie S, Chen G, Ma K, Xiong N, Zhang Z, Xu Y, Wang T, Papa SM, Cao X. Intrastriatal injection of ionomycin profoundly changes motor response to l-DOPA and its underlying molecular mechanisms. Neuroscience 2016; 340:23-33. [PMID: 27771532 DOI: 10.1016/j.neuroscience.2016.10.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 10/08/2016] [Accepted: 10/11/2016] [Indexed: 10/20/2022]
Abstract
Long-term l-DOPA treatment of Parkinson's disease is accompanied with fluctuations of motor responses and l-DOPA-induced dyskinesia (LID). Phosphorylation of the dopamine and c-AMP regulated phosphoprotein of 32kDa (DARPP-32) plays a role in the pathogenesis of LID, and thus dephosphorylation of this protein by activated calcineurin may help reduce LID. One important activator of calcineurin is the Ca2+ ionophore ionomycin. Here, we investigated whether intrastriatal injection of ionomycin to hemiparkinsonian rats produced changes in l-DOPA responses including LID. We also analyzed the effects of ionomycin on key molecular mediators of LID. Results confirmed our hypothesis that ionomycin could downregulate the phosphorylation of DARPP32 at Thr-34 and reduce LID. Besides, ionomycin decreased two established molecular markers of LID, FosB/ΔFosB and phosphorylated ERK1/2. Ionomycin also decreased the phosphorylation of three main subunits of the NMDA receptor, NR1 phosphorylated at ser896, NR2A phosphorylated at Tyr-1325, and NR2B phosphorylated at Tyr-1472. Furthermore, the anti-LID effect of striatally injected ionomycin was not accompanied by reduction of the antiparkinsonian action of l-DOPA. These data indicate that ionomycin largely interacts with striatal mechanisms that are critical to the l-DOPA motor response highlighting the role of protein dephosphorylation by calcineurin.
Collapse
Affiliation(s)
- Chao Han
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shuke Nie
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Guiqin Chen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kai Ma
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Nian Xiong
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yan Xu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Tao Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Stella M Papa
- Yerkes National Primate Research Center, Department of Neurology, Emory University School of Medicine, Atlanta, GA 30329, USA
| | - Xuebing Cao
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
27
|
Jourdain VA, Tang CC, Holtbernd F, Dresel C, Choi YY, Ma Y, Dhawan V, Eidelberg D. Flow-metabolism dissociation in the pathogenesis of levodopa-induced dyskinesia. JCI Insight 2016; 1:e86615. [PMID: 27699242 DOI: 10.1172/jci.insight.86615] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Levodopa-induced dyskinesia (LID) is the most common, disruptive complication of Parkinson's disease (PD) pharmacotherapy, yet despite decades of research, the changes in regional brain function underlying LID remain largely unknown. We previously found that the cerebral vasomotor and metabolic responses to levodopa are dissociated in PD subjects. Nonetheless, it is unclear whether levodopa-mediated dissociation is exaggerated in LID or distinguishes LID from non-LID subjects. To explore this possibility, we used dual-tracer positron emission tomography to quantify regional cerebral blood flow and metabolic activity in 28 PD subjects (14 LID, 14 non-LID), scanned before and during intravenous levodopa infusion. Levodopa-mediated dissociation was most prominent in the posterior putamen (P < 0.0001) and greater in LID than in non-LID and test-retest subjects. Strikingly, LID subjects also showed increased sensorimotor cortex (SMC) activity in the baseline, unmedicated state. Imaging data from an independent PD sample (106 subjects) linked these differences to loss of mesocortical dopamine terminals in advanced patients. In aggregate, the data suggest that LID results from an overactive vasomotor response to levodopa in the putamen on a background of disease-related increases in SMC activity. LID may thus be amenable to treatment that modulates the function of these 2 regions.
Collapse
|
28
|
Lerner RP, Bimpisidis Z, Agorastos S, Scherrer S, Dewey SL, Cenci MA, Eidelberg D. Dissociation of metabolic and hemodynamic levodopa responses in the 6-hydroxydopamine rat model. Neurobiol Dis 2016; 96:31-37. [PMID: 27544483 DOI: 10.1016/j.nbd.2016.08.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 08/03/2016] [Accepted: 08/16/2016] [Indexed: 11/17/2022] Open
Abstract
Dissociation of vasomotor and metabolic responses to levodopa has been observed in human subjects with Parkinson's disease (PD) studied with PET and in autoradiograms from 6-hydroxydopamine (6-OHDA) rat. In both species, acute levodopa administration was associated with increases in basal ganglia cerebral blood flow (CBF) with concurrent reductions in cerebral metabolic rate (CMR) for glucose in the same brain regions. In this study, we used a novel dual-tracer microPET technique to measure CBF and CMR levodopa responses in the same animal. Rats with unilateral 6-OHDA or sham lesion underwent sequential 15O-water (H215O) and 18F-fluorodeoxyglucose (FDG) microPET to map CBF and CMR following the injection of levodopa or saline. A subset of animals was separately scanned under ketamine/xylazine and isoflurane to compare the effects of these anesthetics. Regardless of anesthetic agent, 6-OHDA animals exhibited significant dissociation of vasomotor (ΔCBF) and metabolic (ΔCMR) responses to levodopa, with stereotyped increases in CBF and reductions in CMR in the basal ganglia ipsilateral to the dopamine lesion. No significant changes were seen in sham-lesioned animals. These data faithfully recapitulate analogous dissociation effects observed previously in human PD subjects scanned sequentially during levodopa infusion. This approach may have utility in the assessment of new drugs targeting the exaggerated regional vasomotor responses seen in human PD and in experimental models of levodopa-induced dyskinesia.
Collapse
Affiliation(s)
- Renata P Lerner
- Center for Neurosciences, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA.
| | - Zisis Bimpisidis
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden.
| | - Stergiani Agorastos
- Center for Neurosciences, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA.
| | - Sandra Scherrer
- Center for Neurosciences, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA.
| | - Stephen L Dewey
- Center for Neurosciences, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA.
| | - M Angela Cenci
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden.
| | - David Eidelberg
- Center for Neurosciences, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA.
| |
Collapse
|
29
|
Teema AM, Zaitone SA, Moustafa YM. Ibuprofen or piroxicam protects nigral neurons and delays the development of l-dopa induced dyskinesia in rats with experimental Parkinsonism: Influence on angiogenesis. Neuropharmacology 2016; 107:432-450. [PMID: 27016022 DOI: 10.1016/j.neuropharm.2016.03.034] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 03/04/2016] [Accepted: 03/22/2016] [Indexed: 12/21/2022]
Abstract
Neuroinflammation and angiogenesis have been involved in the pathogenesis of Parkinson's disease (PD). This study investigated the effect of ibuprofen or piroxicam on the motor response to l-dopa and development of dyskinesia in Parkinsonian rats focusing on the anti-angiogenic role of the two non-steroidal anti-inflammatory drugs (NSAIDs). Rats were divided into nine groups as follows: Group I: the vehicle group, Group II: rotenone group, rats were injected with nine doses of rotenone (1 mg/kg/48 h), group III&IV: rats received rotenone + ibuprofen (10 or 30 mg/kg), Group V-VI: rats received rotenone + piroxicam (1 or 3 mg/kg), Group VII: rats received rotenone + l-dopa/carbidopa (100/10 mg/kg), Group VIII-IX: rats received rotenone + l-dopa/carbidopa + ibuprofen (30 mg/kg) or piroxicam (3 mg/kg). In general, drugs were administered daily for ten weeks. Rotenone-treated rats showed motor dysfunction, lower striatal dopamine, lower staining for nigral tyrosine hydroxylase but higher level of striatal cyclooxygenase-2 (COX-2) and vascular endothelial growth factor (VEGF) compared to vehicle-treated rats (P < 0.05). Treatment with l-dopa showed wearing-off over the course of the experiment in addition to development of abnormal involuntary movements and upregulated striatal VEGF level. Treatment with ibuprofen or piroxicam in combination with l-dopa preserved the effect of l-dopa at the end of week 10, delayed the development of dyskinesia and decreased striatal COX-2 and VEGF levels. In conclusion, the current study suggests that ibuprofen and piroxicam are promising candidates for neuroprotection in PD and may have utility in conjunction with l-dopa in order to ensure the longevity of its action and to delay the development of dyskinesia.
Collapse
Affiliation(s)
| | - Sawsan A Zaitone
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt.
| | - Yasser M Moustafa
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
30
|
Gangarossa G, Guzman M, Prado VF, Prado MA, Daumas S, El Mestikawy S, Valjent E. Role of the atypical vesicular glutamate transporter VGLUT3 in l-DOPA-induced dyskinesia. Neurobiol Dis 2016; 87:69-79. [DOI: 10.1016/j.nbd.2015.12.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 12/14/2015] [Accepted: 12/18/2015] [Indexed: 10/22/2022] Open
|
31
|
Bastide MF, Meissner WG, Picconi B, Fasano S, Fernagut PO, Feyder M, Francardo V, Alcacer C, Ding Y, Brambilla R, Fisone G, Jon Stoessl A, Bourdenx M, Engeln M, Navailles S, De Deurwaerdère P, Ko WKD, Simola N, Morelli M, Groc L, Rodriguez MC, Gurevich EV, Quik M, Morari M, Mellone M, Gardoni F, Tronci E, Guehl D, Tison F, Crossman AR, Kang UJ, Steece-Collier K, Fox S, Carta M, Angela Cenci M, Bézard E. Pathophysiology of L-dopa-induced motor and non-motor complications in Parkinson's disease. Prog Neurobiol 2015. [PMID: 26209473 DOI: 10.1016/j.pneurobio.2015.07.002] [Citation(s) in RCA: 347] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Involuntary movements, or dyskinesia, represent a debilitating complication of levodopa (L-dopa) therapy for Parkinson's disease (PD). L-dopa-induced dyskinesia (LID) are ultimately experienced by the vast majority of patients. In addition, psychiatric conditions often manifested as compulsive behaviours, are emerging as a serious problem in the management of L-dopa therapy. The present review attempts to provide an overview of our current understanding of dyskinesia and other L-dopa-induced dysfunctions, a field that dramatically evolved in the past twenty years. In view of the extensive literature on LID, there appeared a critical need to re-frame the concepts, to highlight the most suitable models, to review the central nervous system (CNS) circuitry that may be involved, and to propose a pathophysiological framework was timely and necessary. An updated review to clarify our understanding of LID and other L-dopa-related side effects was therefore timely and necessary. This review should help in the development of novel therapeutic strategies aimed at preventing the generation of dyskinetic symptoms.
Collapse
Affiliation(s)
- Matthieu F Bastide
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Wassilios G Meissner
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; Department of Neurology, University Hospital Bordeaux, France
| | - Barbara Picconi
- Laboratory of Neurophysiology, Fondazione Santa Lucia, IRCCS, Rome, Italy
| | - Stefania Fasano
- Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Pierre-Olivier Fernagut
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Michael Feyder
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Veronica Francardo
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Cristina Alcacer
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Yunmin Ding
- Department of Neurology, Columbia University, New York, USA
| | - Riccardo Brambilla
- Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Gilberto Fisone
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - A Jon Stoessl
- Pacific Parkinson's Research Centre and National Parkinson Foundation Centre of Excellence, University of British Columbia, Vancouver, Canada
| | - Mathieu Bourdenx
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Michel Engeln
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Sylvia Navailles
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Philippe De Deurwaerdère
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Wai Kin D Ko
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Nicola Simola
- Department of Biomedical Sciences, Section of Neuropsychopharmacology, Cagliari University, 09124 Cagliari, Italy
| | - Micaela Morelli
- Department of Biomedical Sciences, Section of Neuropsychopharmacology, Cagliari University, 09124 Cagliari, Italy
| | - Laurent Groc
- Univ. de Bordeaux, Institut Interdisciplinaire de neurosciences, UMR 5297, 33000 Bordeaux, France; CNRS, Institut Interdisciplinaire de neurosciences, UMR 5297, 33000 Bordeaux, France
| | - Maria-Cruz Rodriguez
- Department of Neurology, Hospital Universitario Donostia and Neuroscience Unit, Bio Donostia Research Institute, San Sebastian, Spain
| | - Eugenia V Gurevich
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Maryka Quik
- Center for Health Sciences, SRI International, CA 94025, USA
| | - Michele Morari
- Department of Medical Sciences, Section of Pharmacology, University of Ferrara, Ferrara, Italy
| | - Manuela Mellone
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milano, Italy
| | - Fabrizio Gardoni
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milano, Italy
| | - Elisabetta Tronci
- Department of Biomedical Sciences, Physiology Section, Cagliari University, Cagliari, Italy
| | - Dominique Guehl
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - François Tison
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; Department of Neurology, University Hospital Bordeaux, France
| | | | - Un Jung Kang
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Kathy Steece-Collier
- Michigan State University, College of Human Medicine, Department of Translational Science and Molecular Medicine & The Udall Center of Excellence in Parkinson's Disease Research, 333 Bostwick Ave NE, Grand Rapids, MI 49503, USA
| | - Susan Fox
- Morton & Gloria Shulman Movement Disorders Center, Toronto Western Hospital, Toronto, Ontario M4T 2S8, Canada
| | - Manolo Carta
- Department of Biomedical Sciences, Physiology Section, Cagliari University, Cagliari, Italy
| | - M Angela Cenci
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Erwan Bézard
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; Motac Neuroscience Ltd, Manchester, UK.
| |
Collapse
|
32
|
Gene expression analyses identify Narp contribution in the development of L-DOPA-induced dyskinesia. J Neurosci 2015; 35:96-111. [PMID: 25568106 DOI: 10.1523/jneurosci.5231-13.2015] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
In Parkinson's disease, long-term dopamine replacement therapy is complicated by the appearance of L-DOPA-induced dyskinesia (LID). One major hypothesis is that LID results from an aberrant transcriptional program in striatal neurons induced by L-DOPA and triggered by the activation of ERK. To identify these genes, we performed transcriptome analyses in the striatum in 6-hydroxydopamine-lesioned mice. A time course analysis (0-6 h after treatment with L-DOPA) identified an acute signature of 709 genes, among which genes involved in protein phosphatase activity were overrepresented, suggesting a negative feedback on ERK activation by l-DOPA. l-DOPA-dependent deregulation of 28 genes was blocked by pretreatment with SL327, an inhibitor of ERK activation, and 26 genes were found differentially expressed between highly and weakly dyskinetic animals after treatment with L-DOPA. The intersection list identified five genes: FosB, Th, Nptx2, Nedd4l, and Ccrn4l. Nptx2 encodes neuronal pentraxin II (or neuronal activity-regulated pentraxin, Narp), which is involved in the clustering of glutamate receptors. We confirmed increased Nptx2 expression after L-DOPA and its blockade by SL327 using quantitative RT-PCR in independent experiments. Using an escalating L-DOPA dose protocol, LID severity was decreased in Narp knock-out mice compared with their wild-type littermates or after overexpression of a dominant-negative form of Narp in the striatum. In conclusion, we have identified a molecular signature induced by L-DOPA in the dopamine-denervated striatum that is dependent on ERK and associated with LID. Here, we demonstrate the implication of one of these genes, Nptx2, in the development of LID.
Collapse
|
33
|
Cenci MA. Presynaptic Mechanisms of l-DOPA-Induced Dyskinesia: The Findings, the Debate, and the Therapeutic Implications. Front Neurol 2014; 5:242. [PMID: 25566170 PMCID: PMC4266027 DOI: 10.3389/fneur.2014.00242] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 11/10/2014] [Indexed: 12/24/2022] Open
Abstract
The dopamine (DA) precursor l-DOPA has been the most effective treatment for Parkinson’s disease (PD) for over 40 years. However, the response to this treatment changes with disease progression, and most patients develop dyskinesias (abnormal involuntary movements) and motor fluctuations within a few years of l-DOPA therapy. There is wide consensus that these motor complications depend on both pre- and post-synaptic disturbances of nigrostriatal DA transmission. Several presynaptic mechanisms converge to generate large DA swings in the brain concomitant with the peaks-and-troughs of plasma l-DOPA levels, while post-synaptic changes engender abnormal functional responses in dopaminoceptive neurons. While this general picture is well-accepted, the relative contribution of different factors remains a matter of debate. A particularly animated debate has been growing around putative players on the presynaptic side of the cascade. To what extent do presynaptic disturbances in DA transmission depend on deficiency/dysfunction of the DA transporter, aberrant release of DA from serotonin neurons, or gliovascular mechanisms? And does noradrenaline (which is synthetized from DA) play a role? This review article will summarize key findings, controversies, and pending questions regarding the presynaptic mechanisms of l-DOPA-induced dyskinesia. Intriguingly, the debate around these mechanisms has spurred research into previously unexplored facets of brain plasticity that have far-reaching implications to the treatment of neuropsychiatric disease.
Collapse
Affiliation(s)
- M Angela Cenci
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University , Lund , Sweden
| |
Collapse
|
34
|
Fuxe K, Guidolin D, Agnati LF, Borroto-Escuela DO. Dopamine heteroreceptor complexes as therapeutic targets in Parkinson's disease. Expert Opin Ther Targets 2014; 19:377-98. [PMID: 25486101 DOI: 10.1517/14728222.2014.981529] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Several types of D2R and D1R heteroreceptor complexes were discovered in the indirect and direct pathways of the striatum, respectively. The hypothesis is given that changes in the function of the dopamine heteroreceptor complexes may help us understand the molecular mechanisms underlying the motor complications of long-term therapy in Parkinson's disease (PD) with l-DOPA and dopamine receptor agonists. AREAS COVERED In the indirect pathway, the potential role of the A2AR-D2R, A2AR-D2R-mGluR5 and D2R-NMDAR heteroreceptor complexes in PD are covered and in the direct pathway, the D1R-D3R, A1R-D1R, D1R-NMDAR and putative A1R-D1R-D3R heteroreceptor complexes. EXPERT OPINION One explanation for the more powerful ability of l-DOPA treatment versus treatment with the partial dopamine receptor agonist/antagonist activity to induce dyskinesias, may be that dopamine formed from l-DOPA acts as a full agonist. The field of D1R and D2R heteroreceptor complexes in the CNS opens up a new understanding of the wearing off of the antiparkinson actions of l-DOPA and dopamine receptor agonists and the production of l-DOPA-induced dyskinesias. It can involve a reorganization of the D1R and D2R heteroreceptor complexes and a disbalance of the D1R and D2R homomers versus non-dopamine receptor homomers in the direct and indirect pathways.
Collapse
Affiliation(s)
- Kjell Fuxe
- Karolinska Institutet, Department of Neuroscience , Retzius väg 8, 17177 Stockholm , Sweden +46 852 487 077 ; +46 8 315 721 ;
| | | | | | | |
Collapse
|
35
|
Schaeffer E, Pilotto A, Berg D. Pharmacological strategies for the management of levodopa-induced dyskinesia in patients with Parkinson's disease. CNS Drugs 2014; 28:1155-84. [PMID: 25342080 DOI: 10.1007/s40263-014-0205-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
L-Dopa-induced dyskinesias (LID) are the most common adverse effects of long-term dopaminergic therapy in Parkinson's disease (PD). However, the exact mechanisms underlying dyskinesia are still unclear. For a long time, nigrostriatal degeneration and pulsatile stimulation of striatal postsynaptic receptors have been highlighted as the key factors for the development of LID. In recent years, PD models have revealed a wide range of non-dopaminergic neurotransmitter systems involved in pre- and postsynaptic changes and thereby contributing to the pathophysiology of LID. In the current review, we focus on therapeutic LID targets, mainly based on agents acting on dopaminergic, glutamatergic, serotoninergic, adrenergic, and cholinergic systems. Despite a large number of clinical trials, currently only amantadine and, to a lesser extent, clozapine are being used as effective strategies in the treatment of LID in clinical settings. Thus, in the second part of the article, we review the placebo-controlled trials on LID treatment in order to disentangle the changing scenario of drug development. Promising results include the extension of L-dopa action without inducing LID of the novel monoamine oxidase B- and glutamate-release inhibitor safinamide; however, this had no obvious effect on existing LID. Others, like the metabotropic glutamate-receptor antagonist AFQ056, showed promising results in some of the studies; however, confirmation is still lacking. Thus, to date, strategies of continuous dopaminergic stimulation seem the most promising to prevent or ameliorate LID. The success of future therapeutic strategies once moderate to severe LID occur will depend on the translation from preclinical experimental models into clinical practice in a bidirectional process.
Collapse
Affiliation(s)
- Eva Schaeffer
- Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, University of Tuebingen, Hoppe Seyler-Strasse 3, 72076, Tübingen, Germany
| | | | | |
Collapse
|
36
|
Muñoz A, Garrido-Gil P, Dominguez-Meijide A, Labandeira-Garcia JL. Angiotensin type 1 receptor blockage reduces l-dopa-induced dyskinesia in the 6-OHDA model of Parkinson's disease. Involvement of vascular endothelial growth factor and interleukin-1β. Exp Neurol 2014; 261:720-32. [DOI: 10.1016/j.expneurol.2014.08.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 08/01/2014] [Accepted: 08/16/2014] [Indexed: 12/17/2022]
|
37
|
Ko JH, Lerner RP, Eidelberg D. Effects of levodopa on regional cerebral metabolism and blood flow. Mov Disord 2014; 30:54-63. [PMID: 25296957 DOI: 10.1002/mds.26041] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 09/01/2014] [Indexed: 01/24/2023] Open
Abstract
Levodopa (L-dopa) has been at the forefront of antiparkinsonian therapy for a half century. Recent advances in functional brain imaging have contributed substantially to the understanding of the effects of L-dopa and other dopaminergic treatment on the activity of abnormal motor and cognitive brain circuits in Parkinson's disease patients. Progress has also been made in understanding the functional pathology of dyskinesias, a common side effect of l-dopa treatment, at both regional and network levels. Here, we review these studies, focusing mainly on the new mechanistic insights provided by metabolic brain imaging and network analysis.
Collapse
Affiliation(s)
- Ji Hyun Ko
- Center for Neurosciences, The Feinstein Institute for Medical Research, Manhasset, New York, USA
| | | | | |
Collapse
|
38
|
Peters MAM, Walenkamp AME, Kema IP, Meijer C, de Vries EGE, Oosting SF. Dopamine and serotonin regulate tumor behavior by affecting angiogenesis. Drug Resist Updat 2014; 17:96-104. [PMID: 25269824 DOI: 10.1016/j.drup.2014.09.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The biogenic amines dopamine and serotonin are neurotransmitters and hormones, which are mainly produced in the central nervous system and in the gastro-intestinal tract. They execute local and systemic functions such as intestinal motility and tissue repair. Dopamine and serotonin are primarily stored in and transported by platelets. This review focuses on the recently recognized role of dopamine and serotonin in the regulation of tumor behavior by affecting angiogenesis and tumor cell proliferation. Preclinical studies demonstrate that dopamine inhibits tumor growth via activation of dopamine receptor D2 on endothelial and tumor cells. Serotonin stimulates tumor growth via activation of serotonin receptor 2B on endothelial cells and serotonin receptors on tumor cells. Drugs that stimulate dopamine receptor D2 or inhibit serotonin receptors are available and therefore clinical intervention studies for cancer patients are within reach.
Collapse
Affiliation(s)
- Marloes A M Peters
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Annemiek M E Walenkamp
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ido P Kema
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Coby Meijer
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Elisabeth G E de Vries
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Sjoukje F Oosting
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
39
|
Modeling dyskinesia in animal models of Parkinson disease. Exp Neurol 2014; 256:105-16. [DOI: 10.1016/j.expneurol.2013.01.024] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 01/12/2013] [Accepted: 01/21/2013] [Indexed: 01/23/2023]
|
40
|
Molecular adaptations of striatal spiny projection neurons during levodopa-induced dyskinesia. Proc Natl Acad Sci U S A 2014; 111:4578-83. [PMID: 24599591 DOI: 10.1073/pnas.1401819111] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Levodopa treatment is the major pharmacotherapy for Parkinson's disease. However, almost all patients receiving levodopa eventually develop debilitating involuntary movements (dyskinesia). Although it is known that striatal spiny projection neurons (SPNs) are involved in the genesis of this movement disorder, the molecular basis of dyskinesia is not understood. In this study, we identify distinct cell-type-specific gene-expression changes that occur in subclasses of SPNs upon induction of a parkinsonian lesion followed by chronic levodopa treatment. We identify several hundred genes, the expression of which is correlated with levodopa dose, many of which are under the control of activator protein-1 and ERK signaling. Despite homeostatic adaptations involving several signaling modulators, activator protein-1-dependent gene expression remains highly dysregulated in direct pathway SPNs upon chronic levodopa treatment. We also discuss which molecular pathways are most likely to dampen abnormal dopaminoceptive signaling in spiny projection neurons, hence providing potential targets for antidyskinetic treatments in Parkinson's disease.
Collapse
|
41
|
Czarnecka A, Lenda T, Domin H, Konieczny J, Śmiałowska M, Lorenc-Koci E. Alterations in the expression of nNOS in the substantia nigra and subthalamic nucleus of 6-OHDA-lesioned rats: The effects of chronic treatment with l-DOPA and the nitric oxide donor, molsidomine. Brain Res 2013; 1541:92-105. [DOI: 10.1016/j.brainres.2013.10.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 09/27/2013] [Accepted: 10/07/2013] [Indexed: 01/02/2023]
|
42
|
Lindenbach D, Dupre KB, Eskow Jaunarajs KL, Ostock CY, Goldenberg AA, Bishop C. Effects of 5-HT1A receptor stimulation on striatal and cortical M1 pERK induction by L-DOPA and a D1 receptor agonist in a rat model of Parkinson's disease. Brain Res 2013; 1537:327-39. [PMID: 24060645 DOI: 10.1016/j.brainres.2013.09.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 09/09/2013] [Accepted: 09/17/2013] [Indexed: 11/17/2022]
Abstract
Motor symptoms of Parkinson's disease are commonly treated using l-DOPA although long-term treatment usually causes debilitating motor side effects including dyskinesias. A putative source of dyskinesia is abnormally high levels of phosphorylated extracellular-regulated kinase (pERK) within the striatum. In animal models, the serotonin 1A receptor agonist ±8-OH-DPAT reduces dyskinesia, suggesting it may exhibit efficacy through the pERK pathway. The present study investigated the effects of ±8-OH-DPAT on pERK density in rats treated with l-DOPA or the D1 receptor agonist SKF81297. Rats were given a unilateral dopamine lesion with 6-hydroxydopamine and primed with a chronic regimen of l-DOPA, SKF81297 or their vehicles. On the final test day, rats were given two injections: first with ±8-OH-DPAT, the D1 receptor antagonist SCH23390 or their vehicles, and second with l-DOPA, SKF81297 or their vehicles. Rats were then transcardially perfused for immunohistological analysis of pERK expression in the striatum and primary motor cortex. Rats showed greater dyskinesia in response to l-DOPA and SKF81297 after repeated injections. Although striatal pERK induction was similar between acute and chronic l-DOPA, SKF81297 caused the largest increase in striatal pERK after the first exposure. Neither compound alone affected motor cortex pERK. Surprisingly, in the ventromedial striatum, ±8-OH-DPAT potentiated l-DOPA-induced pERK; in the motor cortex, ±8-OH-DPAT potentiated pERK with l-DOPA or SKF81297. Our results support previous work that the striatal pERK pathway is dysregulated after dopamine depletion, but call into question the utility of pERK as a biomarker of dyskinesia expression.
Collapse
Affiliation(s)
- David Lindenbach
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University - State University of New York, Binghamton, NY, USA
| | | | | | | | | | | |
Collapse
|
43
|
Iderberg H, Rylander D, Bimpisidis Z, Cenci MA. Modulating mGluR5 and 5-HT1A/1B receptors to treat l-DOPA-induced dyskinesia: effects of combined treatment and possible mechanisms of action. Exp Neurol 2013; 250:116-24. [PMID: 24029003 DOI: 10.1016/j.expneurol.2013.09.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 08/24/2013] [Accepted: 09/01/2013] [Indexed: 12/25/2022]
Abstract
l-DOPA-induced dyskinesia (LID) is a major complication of the pharmacotherapy of Parkinson's disease. Emerging approaches to the treatment of LID include negative modulation of metabotropic glutamate receptor type 5 (mGluR5) and positive modulation of serotonin receptors 5-HT1A/1B. We set out to compare the efficacy of these two approaches in alleviating the dyskinesias induced by either l-DOPA or a D1 receptor agonist. Rats with unilateral 6-OHDA lesions were treated chronically with either l-DOPA or the selective D1-class receptor agonist SKF38393 to induce abnormal involuntary movements (AIMs). Rats with stable AIM scores received challenge doses of the mGluR5 antagonist, MTEP (2.5 and 5mg/kg), or the 5-HT1A/1B agonists 8-OH-DPAT/CP94253 (0.035/0.75 and 0.05/1.0mg/kg). Treatments were given either alone or in combination. In agreement with previous studies, 5mg/kg MTEP and 0.05/1.0mg/kg 8-OH-DPAT/CP94253 significantly reduced l-DOPA-induced AIM scores. The two treatments in combination achieved a significantly greater effect than each treatment alone. Moreover, a significant attenuation of l-DOPA-induced AIM scores was achieved when combining doses of MTEP (2.5mg/kg) and 8-OH-DPAT/CP94253 (0.035/0.75mg/kg) that did not have a significant effect if given alone. SKF38393-induced AIM scores were reduced by MTEP at both doses tested, but not by 8-OH-DPAT/CP94253. The differential efficacy of MTEP and 8-OH-DPAT/CP94253 in reducing l-DOPA- versus SKF38393-induced dyskinesia indicates that these treatments have different mechanisms of action. This contention is supported by the efficacy of subthreshold doses of these compounds in reducing l-DOPA-induced AIMs. Combining negative modulators of mGluR5 with positive modulators of 5-HT1A/1B receptors may therefore achieve greater than additive antidyskinetic effects and reduce the dose requirement for these drugs in Parkinson's disease.
Collapse
Affiliation(s)
- Hanna Iderberg
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Sciences, Lund University, BMC F11, 221 84 Lund, Sweden.
| | | | | | | |
Collapse
|
44
|
Chen CCV, Chen YC, Hsiao HY, Chang C, Chern Y. Neurovascular abnormalities in brain disorders: highlights with angiogenesis and magnetic resonance imaging studies. J Biomed Sci 2013; 20:47. [PMID: 23829868 PMCID: PMC3729532 DOI: 10.1186/1423-0127-20-47] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 06/17/2013] [Indexed: 03/14/2023] Open
Abstract
The coupling between neuronal activity and vascular responses is controlled by the neurovascular unit (NVU), which comprises multiple cell types. Many different types of dysfunction in these cells may impair the proper control of vascular responses by the NVU. Magnetic resonance imaging, which is the most powerful tool available to investigate neurovascular structures or functions, will be discussed in the present article in relation to its applications and discoveries. Because aberrant angiogenesis and vascular remodeling have been increasingly reported as being implicated in brain pathogenesis, this review article will refer to this hallmark event when suitable.
Collapse
Affiliation(s)
- Chiao-Chi V Chen
- Institute of Biomedical Sciences, Academic Sinica, Taipei 11529, Taiwan
| | | | | | | | | |
Collapse
|
45
|
Lortet S, Lacombe E, Boulanger N, Rihet P, Nguyen C, Kerkerian-Le Goff L, Salin P. Striatal molecular signature of subchronic subthalamic nucleus high frequency stimulation in parkinsonian rat. PLoS One 2013; 8:e60447. [PMID: 23593219 PMCID: PMC3617149 DOI: 10.1371/journal.pone.0060447] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 02/26/2013] [Indexed: 11/19/2022] Open
Abstract
This study addresses the molecular mechanisms underlying the action of subthalamic nucleus high frequency stimulation (STN-HFS) in the treatment of Parkinson's disease and its interaction with levodopa (L-DOPA), focusing on the striatum. Striatal gene expression profile was assessed in rats with nigral dopamine neuron lesion, either treated or not, using agilent microarrays and qPCR verification. The treatments consisted in anti-akinetic STN-HFS (5 days), chronic L-DOPA treatment inducing dyskinesia (LIDs) or the combination of the two treatments that exacerbated LIDs. STN-HFS modulated 71 striatal genes. The main biological processes associated with the differentially expressed gene products include regulation of growth, of apoptosis and of synaptic transmission, and extracellular region is a major cellular component implicated. In particular, several of these genes have been shown to support survival or differentiation of striatal or of dopaminergic neurons. These results indicate that STN HFS may induce widespread anatomo-functional rearrangements in the striatum and create a molecular environment favorable for neuroprotection and neuroplasticity. STN-HFS and L-DOPA treatment share very few common gene regulation features indicating that the molecular substrates underlying their striatal action are mostly different; among the common effects is the down-regulation of Adrb1, which encodes the adrenergic beta-1-receptor, supporting a major role of this receptor in Parkinson's disease. In addition to genes already reported to be associated with LIDs (preprodynorphin, thyrotropin-releasing hormone, metabotropic glutamate receptor 4, cannabinoid receptor 1), the comparison between DOPA and DOPA/HFS identifies immunity-related genes as potential players in L-DOPA side effects.
Collapse
Affiliation(s)
- Sylviane Lortet
- Aix-Marseille Université, CNRS, IBDM UMR 7288, Marseille, France.
| | | | | | | | | | | | | |
Collapse
|
46
|
Fiorentini C, Savoia P, Savoldi D, Barbon A, Missale C. Persistent activation of the D1R/Shp-2/Erk1/2 pathway in l-DOPA-induced dyskinesia in the 6-hydroxy-dopamine rat model of Parkinson's disease. Neurobiol Dis 2013; 54:339-48. [PMID: 23328768 DOI: 10.1016/j.nbd.2013.01.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 12/17/2012] [Accepted: 01/04/2013] [Indexed: 11/18/2022] Open
Abstract
Prolonged l-3,4-dihydroxyphenylalanine (l-DOPA) administration, the gold standard therapy for Parkinson's disease (PD) is associated with serious motor complications, known as l-DOPA-induced dyskinesia (LID). One of the major molecular changes associated with LID is the increased activity of the extracellular signal-regulated kinases 1/2 (Erk1/2) signaling in the medium spiny neurons of the striatum induced by malfunctioning in the dopamine D1 receptor (D1R)-mediated transmission. We have previously established that in the striatum, activation of Shp-2, an intracellular tyrosine phosphatase associated with the D1R, is a requisite for the D1R to activate Erk1/2. In this study, we investigated the role of striatal D1R/Shp-2 complex in the molecular event underlying LID in the 6-OHDA-lesioned rat model of PD. We found that in hemiparkinsonian rats experiencing LID, the physiological interaction between D1R and Shp-2 in the striatum was preserved. In these animals, the chronic activation of D1R either by l-DOPA or by the selective D1R agonist SKF 38393 induced both dyskinesia and Shp-2/Erk1/2 activation. These effects were prevented by the selective D1R-antagonist SCH23390 suggesting the involvement of striatal D1R/Shp-2 complex, via Erk1/2 activation, in the molecular events underlying LID. Interestingly, we found that D1R-mediated Shp-2-Erk1/2 activation was persistently detected in the striatum of dyskinetic rats during l-DOPA washout, with a close correlation between LID severity and the extent of long term activation of both Shp-2 and Erk1/2. Taken together, our data show that in hemiparkinsonian rats developing dyskinesia, the aberrant phosphorylation of Shp-2 by D1R activation, represents an upstream molecular event leading to the persistent phosphorylation of Erk1/2 and therefore a novel therapeutic target to counteract LID development and maintenance during l-DOPA therapy.
Collapse
Affiliation(s)
- Chiara Fiorentini
- Division of Pharmacology, Department of Biomedical Sciences and Biotechnology and National Institute of Neuroscience, Italy.
| | | | | | | | | |
Collapse
|
47
|
Huot P, Johnston TH, Koprich JB, Fox SH, Brotchie JM. The Pharmacology of l-DOPA-Induced Dyskinesia in Parkinson’s Disease. Pharmacol Rev 2013; 65:171-222. [DOI: 10.1124/pr.111.005678] [Citation(s) in RCA: 233] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
48
|
Krainik A, Maillet A, Fleury V, Sahin M, Troprès I, Lamalle L, Thobois S, Fraix V, Villien M, Warnking J, Pollak P, Pinto S, Krack P. Levodopa does not change cerebral vasoreactivity in Parkinson's disease. Mov Disord 2012; 28:469-75. [DOI: 10.1002/mds.25267] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 09/27/2012] [Accepted: 09/30/2012] [Indexed: 11/09/2022] Open
Affiliation(s)
| | | | | | - Mehmet Sahin
- Department of Neuroradiology and MRI; University Hospital of Grenoble; Grenoble; France
| | | | | | - Stephane Thobois
- Hospices Civils de Lyon; Hôpital Neurologique; Université Lyon I; Faculté de Médecine Lyon Sud; CNRS; UMR 5229; Lyon; France
| | | | | | | | - Pierre Pollak
- Department of Neurology; University Hospitals of Geneva; Geneva; Switzerland
| | - Serge Pinto
- Laboratoire Parole et Langage; UMR 7309 CNRS/Aix-Marseille University; Aix-en-Provence; France
| | | |
Collapse
|
49
|
Smith GA, Breger LS, Lane EL, Dunnett SB. Pharmacological modulation of amphetamine-induced dyskinesia in transplanted hemi-parkinsonian rats. Neuropharmacology 2012; 63:818-28. [DOI: 10.1016/j.neuropharm.2012.06.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 05/29/2012] [Accepted: 06/06/2012] [Indexed: 01/09/2023]
|
50
|
Kinases and kinase signaling pathways: potential therapeutic targets in Parkinson's disease. Prog Neurobiol 2012; 98:207-21. [PMID: 22709943 DOI: 10.1016/j.pneurobio.2012.06.003] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2012] [Revised: 05/20/2012] [Accepted: 06/08/2012] [Indexed: 12/24/2022]
Abstract
Complex molecular mechanisms underlying the pathogenesis of Parkinson's disease (PD) are gradually being elucidated. Accumulating genetic evidence implicates dysfunction of kinase activities and phosphorylation pathways in the pathogenesis of PD. Causative and risk gene products associated with PD include protein kinases (such as PINK1, LRRK2 and GAK) and proteins related phosphorylation signaling pathways (such as SNCA, DJ-1). PINK1, LRRK2 and several PD gene products have been associated with mitogen-activated protein (MAP) and protein kinase B (AKT) kinase signaling pathways. C-Jun N-terminal kinase (JNK), extracellular signal-regulated kinases (ERK) and p38, signaling pathways downstream of MAP, are particularly important in PD. JNK and p38 play an integral role in neuronal death. Targeting JNK or p38 signaling may offer an effective therapy for PD. Inhibitors of the ERK signaling pathway, which plays an important role in the development of l-DOPA-induced dyskinesia (LID), have been shown to attenuate this condition in animal models. In this review, we summarize experimental evidence gathered over the last decade on the role of PINK1, LRRK2 and GAK and their related phosphorylation signaling pathways (JNK, ERK, p38 and PI3K/AKT) in PD. It is speculated that improvement or modulation of these signaling pathways will reveal potential therapeutic targets for attenuation of the cardinal symptoms and motor complications in patients with PD in the future.
Collapse
|