1
|
Hinds NM, Wojtas ID, Pulley DM, McDonald SJ, Spencer CD, Sudarikov M, Hubbard NE, Kulick-Soper CM, de Guzman S, Hayden S, Debski JJ, Patel B, Fox DP, Manvich DF. Fos expression in the periaqueductal gray, but not the ventromedial hypothalamus, is correlated with psychosocial stress-induced cocaine-seeking behavior in rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.22.634146. [PMID: 39896664 PMCID: PMC11785129 DOI: 10.1101/2025.01.22.634146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Psychosocial stressors are known to promote cocaine craving and relapse in humans but are infrequently employed in preclinical relapse models. Consequently, the underlying neural circuitry by which these stressors drive cocaine seeking has not been thoroughly explored. Using Fos expression analyses, we sought to examine whether the ventromedial hypothalamus (VMH) or periaqueductal gray (PAG), two critical components of the brain's hypothalamic defense system, are activated during psychosocial stress-induced cocaine seeking. Adult male and female rats self-administered cocaine (0.5 mg/kg/inf IV, fixed-ratio 1 schedule, 2 h/session) over 20 sessions. On sessions 11, 14, 17, and 20, a tactile cue was present in the operant chamber that signaled impending social defeat stress (n=16, 8/sex), footshock stress (n=12, 6/sex), or a no-stress control condition (n=12, 6/sex) immediately after the session's conclusion. Responding was subsequently extinguished, and rats were tested for reinstatement of cocaine seeking during re-exposure to the tactile cue that signaled their impending stress/no-stress post-session event. All experimental groups displayed significant reinstatement of cocaine seeking, but Fos analyses indicated that neural activity within the rostrolateral PAG (rPAGl) was selectively correlated with cocaine-seeking magnitude in the socially-defeated rats. rPAGl activation was also associated with active-defense coping behaviors during social defeat encounters and with Fos expression in prelimbic prefrontal cortex and orexin-negative cells of the lateral hypothalamus/perifornical area in males, but not females. These findings suggest a potentially novel role for the rPAGl in psychosocial stress-induced cocaine seeking, perhaps in a sex-dependent manner.
Collapse
|
2
|
Solomon MG, Nennig SE, Cotton MR, Whiting KE, Fulenwider HD, Schank JR. Neurokinin-1 receptors in the nucleus accumbens shell influence sensitivity to social defeat stress and stress-induced alcohol consumption in male mice. ADDICTION NEUROSCIENCE 2024; 13:100174. [PMID: 39801674 PMCID: PMC11720327 DOI: 10.1016/j.addicn.2024.100174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Chronic social defeat stress (SDS) is a widely employed preclinical model of depression involving repeated exposure to physical defeats using a resident-intruder model in male mice. Exposure to SDS induces depressive-like phenotypes including anhedonia, social withdrawal, and increased drug and alcohol consumption. Previously, we found that expression of the neurokinin-1 receptor (NK1R) is increased in the nucleus accumbens (NAC) of mice that are sensitive to this stressor and increase their alcohol intake. The NK1R is the endogenous receptor for the neuropeptide substance P (SP) and plays a prominent role in stress, anxiety, and addiction. In the present study, we assessed changes in NK1R protein levels in the NAC shell and implemented viral vector strategies to demonstrate a functional role of the NK1R in sensitivity to SDS. Specifically, we found that NK1R protein levels were increased in the NAC shell following SDS exposure. Next, we found that NK1R overexpression in the NAC shell increased the sensitivity to SDS and stress-induced alcohol consumption. Together, these experiments provide evidence for a role of the NK1R in the NAC shell in the sensitivity to SDS and the subsequent escalation in alcohol intake.
Collapse
Affiliation(s)
- Matthew G Solomon
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA
| | - Sadie E Nennig
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA
| | - Mallory R Cotton
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA
| | - Kimberly E Whiting
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA
| | - Hannah D Fulenwider
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA
| | - Jesse R Schank
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA
| |
Collapse
|
3
|
Decker Ramirez EB, Arnold ME, McConnell KT, Solomon MG, Amico KN, Schank JR. The effects of lipopolysaccharide exposure on social interaction, cytokine expression, and alcohol consumption in male and female mice. Physiol Behav 2023; 265:114159. [PMID: 36931488 PMCID: PMC10121933 DOI: 10.1016/j.physbeh.2023.114159] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/10/2023] [Accepted: 03/14/2023] [Indexed: 03/17/2023]
Abstract
Much recent research has demonstrated a role of inflammatory pathways in depressive-like behavior and excess alcohol consumption. Lipopolysaccharide (LPS) is a cell wall component of gram-negative bacteria that can be used to trigger a strong inflammatory response in rodents in a preclinical research setting to study the mechanisms behind this relationship. In our study, we exposed male and female mice to LPS and assessed depressive-like behavior using the social interaction (SI) test, alcohol consumption in the two-bottle choice procedure, and expression of inflammatory mediators using quantitative PCR. We found that LPS administration decreased SI in female mice but had no significant impact on male mice when assessed 24 h after injection. LPS resulted in increased proinflammatory cytokine expression in both male and female mice; however, some aspects of the cytokine upregulation observed was greater in female mice as compared to males. A separate cohort of male and female mice underwent drinking for 12 days before receiving a saline or LPS injection, which we found to increase alcohol intake in both males and females. We have previously observed a role of the neurokinin-1 receptor (NK1R) in escalated alcohol intake, and in the inflammatory and behavioral response to LPS. The NK1R is the endogenous target of the neuropeptide SP, and this system has wide ranging roles in depression, anxiety, drug/alcohol seeking, pain, and inflammation. Thus, we administered a NK1R antagonist prior to alcohol access. This treatment reduced escalated alcohol consumption in female mice treated with LPS but did not affect drinking in males. Taken together, these results indicate that females are more sensitive to some physiological and behavioral effects of LPS administration, but that LPS escalates alcohol consumption in both sexes. Furthermore, NK1R antagonism can reduce alcohol consumption that is escalated by LPS treatment, in line with our previous findings.
Collapse
Affiliation(s)
- E B Decker Ramirez
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, 501 DW Brooks Drive, Athens, GA 30602 USA
| | - M E Arnold
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, 501 DW Brooks Drive, Athens, GA 30602 USA
| | - K T McConnell
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, 501 DW Brooks Drive, Athens, GA 30602 USA
| | - M G Solomon
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, 501 DW Brooks Drive, Athens, GA 30602 USA
| | - K N Amico
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, 501 DW Brooks Drive, Athens, GA 30602 USA
| | - J R Schank
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, 501 DW Brooks Drive, Athens, GA 30602 USA.
| |
Collapse
|
4
|
Curley DE, Vasaturo-Kolodner TR, Cannella N, Ciccocioppo R, Haass-Koffler CL. Yohimbine as a pharmacological probe for alcohol research: a systematic review of rodent and human studies. Neuropsychopharmacology 2022; 47:2111-2122. [PMID: 35760866 PMCID: PMC9556614 DOI: 10.1038/s41386-022-01363-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 05/12/2022] [Accepted: 06/02/2022] [Indexed: 11/08/2022]
Abstract
Alcohol use disorder (AUD) is a significant public health concern, contributing to a myriad of social, psychological, and physiological issues. Despite substantial efforts within the alcohol research field, promising preclinical findings have failed to translate to clinical use, highlighting the necessity to develop safe and effective pharmacological probes with the ability to be used in preclinical and clinical research. Yohimbine, an α2 adrenergic receptor antagonist, is a well-validated pharmacological tool that has been widely employed in alcohol studies to evaluate noradrenergic activation. This scoping systematic review examines published literature in rodent and human studies involving the use of yohimbine relevant to alcohol research. We conducted a systematic literature review of MEDLINE, Embase, Web of Science Core Collection, CINAHL, PsycInfo, and Cochrane Central Register of Controlled Trials to identify: (1) Experimental Characteristics and Methodology, (2) Sex Differences, (3) Neurochemical Systems and Brain Regions, and (4) Discussion of Applications for Medication Development. Sixty-seven (62 preclinical and 5 clinical) studies were identified meeting the stated criteria, comprising extensive evidence supporting the use of yohimbine as a safe, titratable pharmacological agent for translational alcohol research. Support for the use of yohimbine as a fully translational tool, however, is hindered by limited available findings from human laboratory studies, as well as a dearth of studies examining sex differences in yohimbine's mechanistic actions. Additional consideration should be given to further translational modeling, ideally allowing for parallel preclinical and clinical assessment of yohimbine, methodological assessment of neurochemical systems and brain regions.
Collapse
Affiliation(s)
- Dallece E Curley
- Center for Alcohol and Addiction Studies, Brown University, Providence, RI, USA
- Neuroscience Graduate Program, Department of Neuroscience, Brown University, Providence, RI, USA
| | - Talia R Vasaturo-Kolodner
- Center for Alcohol and Addiction Studies, Brown University, Providence, RI, USA
- Department of Neuroscience, Brown University, Providence, RI, USA
| | - Nazzareno Cannella
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Roberto Ciccocioppo
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Carolina L Haass-Koffler
- Center for Alcohol and Addiction Studies, Brown University, Providence, RI, USA.
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, Providence, RI, USA.
- Department of Behavioral and Social Sciences, School of Public Health, Brown University, Providence, RI, USA.
- Carney Institute for Brain Science, Brown University, Providence, RI, USA.
| |
Collapse
|
5
|
Amico KN, Arnold ME, Dourron MS, Solomon MG, Schank JR. The effect of concurrent access to alcohol and oxycodone on self-administration and reinstatement in rats. Psychopharmacology (Berl) 2022; 239:3277-3286. [PMID: 35972517 DOI: 10.1007/s00213-022-06210-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/01/2022] [Indexed: 11/26/2022]
Abstract
RATIONALE Although polysubstance use is highly prevalent, preclinical studies that assess voluntary consumption of multiple substances at the same time are rather uncommon. Overlooking drug taking patterns commonly observed in humans may limit the translational value of preclinical models. OBJECTIVES Here, we aimed to develop a model of polysubstance use that could be used to assess oral operant self-administration patterns under concurrent access to alcohol and the prescription opioid oxycodone. METHODS After a training period where animals associated specific cues and levers with each drug, rats self-administered alcohol and oxycodone solutions concurrently in daily sessions. Oxycodone was then removed to assess potential changes in alcohol consumption. The role of cues and stress on alcohol consumption and oxycodone seeking was also examined under reinstatement conditions. RESULTS We found that females consumed more alcohol and oxycodone than males when given access to both drugs, and this effect on alcohol intake persisted when oxycodone was removed. Additionally, re-exposure to oxycodone cues in combination with the administration of the pharmacological stressor yohimbine drove reinstatement of oxycodone seeking in females but did not have a strong effect in males, possibly due to low levels of oxycodone intake during active self-administration in male rats. Additionally, yohimbine drove increased alcohol consumption, in line with prior findings from our group and others. CONCLUSIONS Taken together, this study demonstrates that rats will concurrently self-administer both oxycodone and alcohol in operant chambers, and this procedure can serve as a platform for future investigations in polysubstance use and relapse-like behavior.
Collapse
Affiliation(s)
- Kristen N Amico
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, 501 DW Brooks Drive, Athens, GA, 30602, USA
| | - Miranda E Arnold
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, 501 DW Brooks Drive, Athens, GA, 30602, USA
| | - Morgan S Dourron
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, 501 DW Brooks Drive, Athens, GA, 30602, USA
| | - Matthew G Solomon
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, 501 DW Brooks Drive, Athens, GA, 30602, USA
| | - Jesse R Schank
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, 501 DW Brooks Drive, Athens, GA, 30602, USA.
| |
Collapse
|
6
|
Kokhan VS, Anokhin PK, Abaimov DA, Shamakina IY, Soldatov VO, Deykin AV. Neurokinin‐1 receptor antagonist rolapitant suppresses anxiety and alcohol intake produced by repeated withdrawal episodes. FEBS J 2022; 289:5021-5029. [DOI: 10.1111/febs.16400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/28/2022] [Accepted: 02/15/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Viktor S. Kokhan
- V.P. Serbsky Federal Medical Research Centre for Psychiatry and Narcology Moscow Russia
| | - Petr K. Anokhin
- V.P. Serbsky Federal Medical Research Centre for Psychiatry and Narcology Moscow Russia
| | | | - Inna Yu. Shamakina
- V.P. Serbsky Federal Medical Research Centre for Psychiatry and Narcology Moscow Russia
| | | | | |
Collapse
|
7
|
Martin EL, Doncheck EM, Reichel CM, McRae-Clark AL. Consideration of sex as a biological variable in the translation of pharmacotherapy for stress-associated drug seeking. Neurobiol Stress 2021; 15:100364. [PMID: 34345636 PMCID: PMC8319013 DOI: 10.1016/j.ynstr.2021.100364] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/23/2021] [Accepted: 07/08/2021] [Indexed: 12/01/2022] Open
Abstract
Stress is a frequent precipitant of relapse to drug use. Pharmacotherapies targeting a diverse array of neural systems have been assayed for efficacy in attenuating stress-induced drug-seeking in both rodents and in humans, but none have shown enough evidence of utility to warrant routine use in the clinic. We posit that a critical barrier in effective translation is inattention to sex as a biological variable at all phases of the research process. In this review, we detail the neurobiological systems implicated in stress-induced relapse to cocaine, opioids, methamphetamine, and cannabis, as well as the pharmacotherapies that have been used to target these systems in rodent models, the human laboratory, and in clinical trials. In each of these areas we additionally describe the potential influences of biological sex on outcomes, and how inattention to fundamental sex differences can lead to biases during drug development that contribute to the limited success of large clinical trials. Based on these observations, we determine that of the pharmacotherapies discussed only α2-adrenergic receptor agonists and oxytocin have a body of research with sufficient consideration of biological sex to warrant further clinical evaluation. Pharmacotherapies that target β-adrenergic receptors, other neuroactive peptides, the hypothalamic-pituitary-adrenal axis, neuroactive steroids, and the endogenous opioid and cannabinoid systems require further assessment in females at the preclinical and human laboratory levels before progression to clinical trials can be recommended.
Collapse
Affiliation(s)
- Erin L Martin
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Elizabeth M Doncheck
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Carmela M Reichel
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Aimee L McRae-Clark
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA.,Department of Psychiatry, Medical University of South Carolina, Charleston, SC, 29425, USA
| |
Collapse
|
8
|
Caccamise A, Van Newenhizen E, Mantsch JR. Neurochemical mechanisms and neurocircuitry underlying the contribution of stress to cocaine seeking. J Neurochem 2021; 157:1697-1713. [PMID: 33660857 PMCID: PMC8941950 DOI: 10.1111/jnc.15340] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/26/2021] [Accepted: 02/28/2021] [Indexed: 12/12/2022]
Abstract
In individuals with substance use disorders, stress is a critical determinant of relapse susceptibility. In some cases, stressors directly trigger cocaine use. In others, stressors interact with other stimuli to promote drug seeking, thereby setting the stage for relapse. Here, we review the mechanisms and neurocircuitry that mediate stress-triggered and stress-potentiated cocaine seeking. Stressors trigger cocaine seeking by activating noradrenergic projections originating in the lateral tegmentum that innervate the bed nucleus of the stria terminalis to produce beta adrenergic receptor-dependent regulation of neurons that release corticotropin releasing factor (CRF) into the ventral tegmental area (VTA). CRF promotes the activation of VTA dopamine neurons that innervate the prelimbic prefrontal cortex resulting in D1 receptor-dependent excitation of a pathway to the nucleus accumbens core that mediates cocaine seeking. The stage-setting effects of stress require glucocorticoids, which exert rapid non-canonical effects at several sites within the mesocorticolimbic system. In the nucleus accumbens, corticosterone attenuates dopamine clearance via the organic cation transporter 3 to promote dopamine signaling. In the prelimbic cortex, corticosterone mobilizes the endocannabinoid, 2-arachidonoylglycerol (2-AG), which produces CB1 receptor-dependent reductions in inhibitory transmission, thereby increasing excitability of neurons which comprise output pathways responsible for cocaine seeking. Factors that influence the role of stress in cocaine seeking, including prior history of drug use, biological sex, chronic stress/co-morbid stress-related disorders, adolescence, social variables, and genetics are discussed. Better understanding when and how stress contributes to drug seeking should guide the development of more effective interventions, particularly for those whose drug use is stress related.
Collapse
Affiliation(s)
- Aaron Caccamise
- Graduate Program in Neuroscience, Marquette University, Milwaukee, WI 53201
| | - Erik Van Newenhizen
- Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226
| | - John R. Mantsch
- Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226
| |
Collapse
|
9
|
Jensen BE, Townsley KG, Grigsby KB, Metten P, Chand M, Uzoekwe M, Tran A, Firsick E, LeBlanc K, Crabbe JC, Ozburn AR. Ethanol-Related Behaviors in Mouse Lines Selectively Bred for Drinking to Intoxication. Brain Sci 2021; 11:189. [PMID: 33557285 PMCID: PMC7915226 DOI: 10.3390/brainsci11020189] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 11/18/2022] Open
Abstract
Alcohol use disorder (AUD) is a devastating psychiatric disorder that has significant wide-reaching effects on individuals and society. Selectively bred mouse lines are an effective means of exploring the genetic and neuronal mechanisms underlying AUD and such studies are translationally important for identifying treatment options. Here, we report on behavioral characterization of two replicate lines of mice that drink to intoxication, the High Drinking in the Dark (HDID)-1 and -2 mice, which have been selectively bred (20+ generations) for the primary phenotype of reaching high blood alcohol levels (BALs) during the drinking in the dark (DID) task, a binge-like drinking assay. Along with their genetically heterogenous progenitor line, Hs/Npt, we tested these mice on: DID and drinking in the light (DIL); temporal drinking patterns; ethanol sensitivity, through loss of righting reflex (LORR); and operant self-administration, including fixed ratio (FR1), fixed ratio 3:1 (FR3), extinction/reinstatement, and progressive ratio (PR). All mice consumed more ethanol during the dark than the light and both HDID lines consumed more ethanol than Hs/Npt during DIL and DID. In the dark, we found that the HDID lines achieved high blood alcohol levels early into a drinking session, suggesting that they exhibit front loading like drinking behavior in the absence of the chronicity usually required for such behavior. Surprisingly, HDID-1 (female and male) and HDID-2 (male) mice were more sensitive to the intoxicating effects of ethanol during the dark (as determined by LORR), while Hs/Npt (female and male) and HDID-2 (female) mice appeared less sensitive. We observed lower HDID-1 ethanol intake compared to either HDID-2 or Hs/Npt during operant ethanol self-administration. There were no genotype differences for either progressive ratio responding, or cue-induced ethanol reinstatement, though the latter is complicated by a lack of extinguished responding behavior. Taken together, these findings suggest that genes affecting one AUD-related behavior do not necessarily affect other AUD-related behaviors. Moreover, these findings highlight that alcohol-related behaviors can also differ between lines selectively bred for the same phenotype, and even between sexes within those same line.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Angela R. Ozburn
- Department of Behavioral Neuroscience, Oregon Health & Science University, and VA Portland Health Care System, Portland, OR 97239, USA; (B.E.J.); (K.G.T.); (K.B.G.); (P.M.); (M.C.); (M.U.); (A.T.); (E.F.); (K.L.); (J.C.C.)
| |
Collapse
|
10
|
Fulenwider HD, Nennig SE, Hafeez H, Price ME, Baruffaldi F, Pravetoni M, Cheng K, Rice KC, Manvich DF, Schank JR. Sex differences in oral oxycodone self-administration and stress-primed reinstatement in rats. Addict Biol 2020; 25:e12822. [PMID: 31830773 DOI: 10.1111/adb.12822] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 07/08/2019] [Accepted: 07/18/2019] [Indexed: 01/15/2023]
Abstract
The opioid epidemic has become a severe public health problem, with approximately 130 opioid-induced deaths occurring each day in the United States. Prescription opioids are responsible for approximately 40% of these deaths. Oxycodone is one of the most commonly abused prescription opioids, but despite its prevalent misuse, the number of preclinical studies investigating oxycodone-seeking behaviors is relatively limited. Furthermore, preclinical oxycodone studies that include female subjects are even more scarce, and it is critical that future work includes both sexes. Additionally, the oral route of administration is one of the most common routes for recreational users, especially in the early stages of drug experimentation. However, currently, only two studies have been published investigating operant oral oxycodone self-administration in rodents. Therefore, the primary goal of the present study was to establish an oral oxycodone operant self-administration model in adult male and female rats, as well as to examine a potential mechanism of stress-primed reinstatement. We found that females consumed significantly more oral oxycodone than males in operant self-administration sessions. We also found that active oxycodone self-administration was reduced by mu opioid receptor antagonism and by substitution of water for oxycodone solution. Lastly, we induced stress-primed reinstatement and found that this behavior was significantly attenuated by antagonism of the neurokinin-1 receptor, consistent with our prior work examining stress-induced reinstatement of alcohol- and cocaine-seeking.
Collapse
Affiliation(s)
- Hannah D. Fulenwider
- Department of Physiology and Pharmacology, College of Veterinary Medicine University of Georgia Athens Georgia USA
| | - Sadie E. Nennig
- Department of Physiology and Pharmacology, College of Veterinary Medicine University of Georgia Athens Georgia USA
| | - Hiba Hafeez
- Department of Physiology and Pharmacology, College of Veterinary Medicine University of Georgia Athens Georgia USA
| | - Michaela E. Price
- Department of Physiology and Pharmacology, College of Veterinary Medicine University of Georgia Athens Georgia USA
| | | | - Marco Pravetoni
- Hennepin Healthcare Research Institute Minneapolis Minnesota USA
- Department of Pharmacology University of Minnesota Medical School Minneapolis Minnesota USA
- Center for Immunology University of Minnesota Medical School Minneapolis Minnesota USA
| | - Kejun Cheng
- Drug Design and Synthesis Section NIH/NIDA/NIAAA Rockville Maryland USA
| | - Kenner C. Rice
- Drug Design and Synthesis Section NIH/NIDA/NIAAA Rockville Maryland USA
| | - Daniel F. Manvich
- Department of Cell Biology and Neuroscience Rowan University School of Osteopathic Medicine Stratford New Jersey USA
| | - Jesse R. Schank
- Department of Physiology and Pharmacology, College of Veterinary Medicine University of Georgia Athens Georgia USA
| |
Collapse
|
11
|
Schank JR. Neurokinin receptors in drug and alcohol addiction. Brain Res 2020; 1734:146729. [PMID: 32067964 DOI: 10.1016/j.brainres.2020.146729] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/03/2020] [Accepted: 02/13/2020] [Indexed: 10/25/2022]
Abstract
The neurokinins are a class of peptide signaling molecules that mediate a range of central and peripheral functions including pain processing, gastrointestinal function, stress responses, and anxiety. Recent data have linked these neuropeptides with drug-related behaviors. Specifically, substance P (SP) and neurokinin B (NKB), have been shown to influence responses to alcohol, cocaine, and/or opiate drugs. SP and NKB preferentially bind to the neurokinin-1 receptor (NK1R) and neurokinin-3 receptor (NK3R), respectively, but do have some affinity for all classes of neurokinin receptor at high concentrations. NK1R activity has been shown to influence reward and reinforcement for opiate drugs, stimulatory and neurochemical responses to cocaine, and escalated and stress-induced alcohol seeking. In reinstatement models of relapse-like behavior, NK1R antagonism attenuates stress-induced reinstatement for all classes of drugs tested to date. The NK3R also influences alcohol intake and behavioral/neurochemical responses to cocaine, but less research has been performed in regard to this particular receptor in preclinical models of addiction. Clinically, agents targeting these receptors have shown some promise, but have produced mixed results. Here, the preclinical findings for the NK1R and NK3R are reviewed, and discussion is provided to interpret clinical findings. Additionally, important factors to consider in regards to future clinical work are suggested.
Collapse
Affiliation(s)
- Jesse R Schank
- University of Georgia, Department of Physiology and Pharmacology, 501 DW Brooks Drive, Athens, GA 30602, USA.
| |
Collapse
|
12
|
Escalated Alcohol Self-Administration and Sensitivity to Yohimbine-Induced Reinstatement in Alcohol Preferring Rats: Potential Role of Neurokinin-1 Receptors in the Amygdala. Neuroscience 2019; 413:77-85. [PMID: 31242442 DOI: 10.1016/j.neuroscience.2019.06.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/08/2019] [Accepted: 06/15/2019] [Indexed: 12/16/2022]
Abstract
Genetic factors significantly contribute to the risk for developing alcoholism. To study these factors and other associated phenotypes, rodent lines have been developed using selective breeding for high alcohol preference. One of these models, the alcohol preferring (P) rat, has been used in hundreds of preclinical studies over the last few decades. However, very few studies have examined relapse-like behavior in this rat strain. In this study, we used operant self-administration and yohimbine-induced reinstatement models to examine relapse-like behavior in P rats. Our previous work has demonstrated that P rats show increased expression of the neurokinin-1 receptor (NK1R) in the central nucleus of the amygdala (CeA), and this functionally contributes to escalated alcohol consumption in this strain. We hypothesized that P rats would show increased sensitivity to yohimbine-induced reinstatement that is also mediated by NK1R in the CeA. Using Fos staining, site-specific infusion of NK1R antagonist, and viral vector overexpression, we examined the influence of NK1R on the sensitivity to yohimbine-induced reinstatement of alcohol seeking. We found that P rats displayed increased sensitivity to yohimbine-induced reinstatement as well as increased neuronal activation in the CeA after yohimbine injection compared to the control Wistar strain. Intra-CeA infusion of NK1R antagonist attenuates yohimbine-induced reinstatement in P rats. Conversely, upregulation of NK1R within the CeA of Wistar rats increases alcohol consumption and sensitivity to yohimbine-induced reinstatement. These findings suggest that NK1R upregulation in the CeA contributes to multiple alcohol-related phenotypes in the P rat, including alcohol consumption and sensitivity to relapse.
Collapse
|
13
|
Greenwald MK. Anti-stress neuropharmacological mechanisms and targets for addiction treatment: A translational framework. Neurobiol Stress 2018; 9:84-104. [PMID: 30238023 PMCID: PMC6138948 DOI: 10.1016/j.ynstr.2018.08.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 07/30/2018] [Accepted: 08/10/2018] [Indexed: 12/18/2022] Open
Abstract
Stress-related substance use is a major challenge for treating substance use disorders. This selective review focuses on emerging pharmacotherapies with potential for reducing stress-potentiated seeking and consumption of nicotine, alcohol, marijuana, cocaine, and opioids (i.e., key phenotypes for the most commonly abused substances). I evaluate neuropharmacological mechanisms in experimental models of drug-maintenance and relapse, which translate more readily to individuals presenting for treatment (who have initiated and progressed). An affective/motivational systems model (three dimensions: valence, arousal, control) is mapped onto a systems biology of addiction approach for addressing this problem. Based on quality of evidence to date, promising first-tier neurochemical receptor targets include: noradrenergic (α1 and β antagonist, α2 agonist), kappa-opioid antagonist, nociceptin antagonist, orexin-1 antagonist, and endocannabinoid modulation (e.g., cannabidiol, FAAH inhibition); second-tier candidates may include corticotropin releasing factor-1 antagonists, serotonergic agents (e.g., 5-HT reuptake inhibitors, 5-HT3 antagonists), glutamatergic agents (e.g., mGluR2/3 agonist/positive allosteric modulator, mGluR5 antagonist/negative allosteric modulator), GABA-promoters (e.g., pregabalin, tiagabine), vasopressin 1b antagonist, NK-1 antagonist, and PPAR-γ agonist (e.g., pioglitazone). To address affective/motivational mechanisms of stress-related substance use, it may be advisable to combine agents with actions at complementary targets for greater efficacy but systematic studies are lacking except for interactions with the noradrenergic system. I note clinically-relevant factors that could mediate/moderate the efficacy of anti-stress therapeutics and identify research gaps that should be pursued. Finally, progress in developing anti-stress medications will depend on use of reliable CNS biomarkers to validate exposure-response relationships.
Collapse
Affiliation(s)
- Mark K. Greenwald
- Department of Psychiatry and Behavioral Neurosciences, School of Medicine, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, 48201, USA
| |
Collapse
|
14
|
Ch’Ng SS, Lawrence AJ. Investigational drugs for alcohol use disorders: a review of preclinical data. Expert Opin Investig Drugs 2018; 27:459-474. [DOI: 10.1080/13543784.2018.1472763] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Sarah S Ch’Ng
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Andrew J Lawrence
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| |
Collapse
|
15
|
The neurokinin-1 receptor mediates escalated alcohol intake induced by multiple drinking models. Neuropharmacology 2018; 137:194-201. [PMID: 29758386 DOI: 10.1016/j.neuropharm.2018.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 04/30/2018] [Accepted: 05/02/2018] [Indexed: 12/16/2022]
Abstract
We have previously demonstrated that the neurokinin-1 receptor (NK1R) is upregulated in the central nucleus of the amygdala of alcohol preferring (P) rats and that this receptor mediates escalated alcohol consumption in this strain. However, it is unclear if non-genetic models of escalated consumption are also mediated by NK1R signaling, and if so, what brain regions govern this effect. In the experiments presented here, we use two methods of inducing escalated alcohol intake in outbred Wistar rats: yohimbine pretreatment and intermittent alcohol access (Monday, Wednesday, and Friday availability; 20% alcohol). We found that escalated alcohol consumption induced by both yohimbine injection and intermittent access is attenuated by systemic administration of the NK1R antagonist L822429. Also, when compared to continuous alcohol access or access to water alone, NK1R expression was increased in the nucleus accumbens (NAC) and dorsal striatum, but not the amygdala. Escalated consumption induced by intermittent access was attenuated when the NK1R antagonist L822429 was infused directly into the dorsal striatum, but not when infused into the NAC. Taken together, these results suggest that NK1R upregulation contributes to escalated alcohol consumption that is induced by genetic selection, yohimbine injection, and intermittent access. However there is a dissociation between the regions involved in these behaviors with amygdalar upregulation contributing to genetic predisposition to escalated consumption and striatal upregulation driving escalation that is induced by environmental exposures.
Collapse
|
16
|
Nelson BS, Sequeira MK, Schank JR. Bidirectional relationship between alcohol intake and sensitivity to social defeat: association with Tacr1 and Avp expression. Addict Biol 2018; 23:142-153. [PMID: 28150369 DOI: 10.1111/adb.12494] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 01/01/2017] [Accepted: 01/04/2017] [Indexed: 01/17/2023]
Abstract
While epidemiological studies show that alcohol abuse is often co-morbid with affective disorders, the causal direction of this association is unclear. We examined this relationship using mouse models including social defeat stress (SDS), social interaction (SI) and voluntary alcohol consumption. C57BL6/J mice exposed to SDS segregate into two subpopulations, those that express depressive-like phenotypes ('susceptible') and those that do not ('resilient'). First, we stratified SDS-exposed mice and measured their voluntary alcohol consumption. Next, we determined whether SI behavior in alcohol-naïve mice could predict alcohol intake. Finally, we assessed the effect of binge-like alcohol exposure on sensitivity to SDS. We quantified Tacr1 (neurokinin-1 receptor gene) and Avp (vasopressin peptide gene) mRNA in brain regions involved in depression, addiction and social behavior. We found that susceptible mice consumed more alcohol compared with resilient mice, suggesting that depression-like phenotypes associate with increased alcohol intake. Interestingly, we observed a negative correlation between SI and alcohol intake in stress- and alcohol-naïve mice, suggesting that individual differences in SI associate with alcohol preference. Finally, alcohol pre-treatment increased sensitivity to SDS, indicating that alcohol exposure alters sensitivity to social stress. Quantification of mRNA revealed that increased expression of Tacr1 and Avp generally associated with decreased SI and increased alcohol intake. C57BL6/J mice are an inbred strain; thus, it is likely that individual differences in behavior and gene expression are driven by epigenetic factors. Collectively, these results support a bidirectional relationship between alcohol exposure and susceptibility to stress that is associated with variations in neuropeptide expression.
Collapse
Affiliation(s)
- Britta S. Nelson
- Department of Physiology and Pharmacology, College of Veterinary Medicine; University of Georgia; GA USA
| | - Michelle K. Sequeira
- Department of Physiology and Pharmacology, College of Veterinary Medicine; University of Georgia; GA USA
| | - Jesse R. Schank
- Department of Physiology and Pharmacology, College of Veterinary Medicine; University of Georgia; GA USA
| |
Collapse
|
17
|
Nennig SE, Schank JR. The Role of NFkB in Drug Addiction: Beyond Inflammation. Alcohol Alcohol 2017; 52:172-179. [PMID: 28043969 DOI: 10.1093/alcalc/agw098] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Indexed: 12/19/2022] Open
Abstract
Aims Nuclear factor kappa light chain enhancer of activated B cells (NFkB) is a ubiquitous transcription factor well known for its role in the innate immune response. As such, NFkB is a transcriptional activator of inflammatory mediators such as cytokines. It has recently been demonstrated that alcohol and other drugs of abuse can induce NFkB activity and cytokine expression in the brain. A number of reviews have been published highlighting this effect of alcohol, and have linked increased NFkB function to neuroimmune-stimulated toxicity. However, in this review we focus on the potentially non-immune functions of NFkB as possible links between NFkB and addiction. Methods An extensive review of the literature via Pubmed searches was used to assess the current state of the field. Results NFkB can induce the expression of a diverse set of gene targets besides inflammatory mediators, some of which are involved in addictive processes, such as opioid receptors and neuropeptides. NFkB mediates complex behaviors including learning and memory, stress responses, anhedonia and drug reward, processes that may lie outside the role of NFkB in the classic neuroimmune response. Conclusions Future studies should focus on these non-immune functions of NFkB signaling and their association with addiction-related processes.
Collapse
Affiliation(s)
- S E Nennig
- Department of Physiology and Pharmacology, University of Georgia, 501 D.W. Brooks Drive, Athens, GA 30602, USA
| | - J R Schank
- Department of Physiology and Pharmacology, University of Georgia, 501 D.W. Brooks Drive, Athens, GA 30602, USA
| |
Collapse
|
18
|
Rinker JA, Mulholland PJ. Promising pharmacogenetic targets for treating alcohol use disorder: evidence from preclinical models. Pharmacogenomics 2017; 18:555-570. [PMID: 28346058 DOI: 10.2217/pgs-2016-0193] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Inherited genetic variants contribute to risk factors for developing an alcohol use disorder, and polymorphisms may inform precision medicine strategies for treating alcohol addiction. Targeting genetic mutations linked to alcohol phenotypes has provided promising initial evidence for reducing relapse rates in alcoholics. Although successful in some studies, there are conflicting findings and the reports of adverse effects may ultimately limit their clinical utility, suggesting that novel pharmacogenetic targets are necessary to advance precision medicine approaches. Here, we describe promising novel genetic variants derived from preclinical models of alcohol consumption and dependence that may uncover disease mechanisms that drive uncontrolled drinking and identify novel pharmacogenetic targets that facilitate therapeutic intervention for the treatment of alcohol use disorder.
Collapse
Affiliation(s)
- Jennifer A Rinker
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA.,Department of Psychiatry & Behavioral Sciences, Charleston Alcohol Research Center, Addiction Sciences Division, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Patrick J Mulholland
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA.,Department of Psychiatry & Behavioral Sciences, Charleston Alcohol Research Center, Addiction Sciences Division, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
19
|
Mannangatti P, Sundaramurthy S, Ramamoorthy S, Jayanthi LD. Differential effects of aprepitant, a clinically used neurokinin-1 receptor antagonist on the expression of conditioned psychostimulant versus opioid reward. Psychopharmacology (Berl) 2017; 234:695-705. [PMID: 28013351 PMCID: PMC5266628 DOI: 10.1007/s00213-016-4504-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 12/08/2016] [Indexed: 01/29/2023]
Abstract
RATIONALE Neurokinin-1 receptor (NK1R) signaling modulates behaviors associated with psychostimulants and opioids. Psychostimulants, such as amphetamine (AMPH) and cocaine, bind to monoamine transporters and alter their functions. Both dopamine and norepinephrine transporters are regulated by NK1R activation suggesting a role for NK1R mediated catecholamine transporter regulation in psychostimulant-mediated behaviors. OBJECTIVES The effect of in vivo administration of aprepitant (10 mg/kg) on the expression of AMPH (0.5 and 2 mg/kg) and cocaine (5 and 20 mg/kg)-induced conditioned place preference (CPP) as well as locomotor activation was examined in C57BL/6J mice. The effect of aprepitant on morphine (1 and 5 mg/kg)-induced CPP was also examined to identify the specific actions of aprepitant on psychostimulant versus opioid-induced behaviors. RESULTS Aprepitant administration significantly attenuated the CPP expression and locomotor activation produced by AMPH and cocaine. In contrast, aprepitant significantly enhanced the expression of CPP produced by morphine while significantly suppressing the locomotor activity of the mice conditioned with morphine. Aprepitant by itself did not induce significant CPP or conditioned place aversion or locomotor activation or suppression. CONCLUSIONS Attenuation of AMPH or cocaine-induced CPP and locomotor activation by aprepitant suggests a role for NK1R signaling in psychostimulant-mediated behaviors. Stimulation of morphine-induced CPP expression and suppression of locomotor activity of morphine-conditioned mice suggest differential effects of NK1R antagonism on conditioned psychostimulant versus opioid reward. Collectively, these findings indicate that clinically used NK1R antagonist, aprepitant may serve as a potential therapeutic agent in the treatment of psychostimulant abuse.
Collapse
Affiliation(s)
| | | | | | - Lankupalle D Jayanthi
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, 23298, USA.
| |
Collapse
|
20
|
Augier E, Dulman RS, Singley E, Heilig M. A Method for Evaluating the Reinforcing Properties of Ethanol in Rats without Water Deprivation, Saccharin Fading or Extended Access Training. J Vis Exp 2017. [PMID: 28190044 DOI: 10.3791/53305] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Operant oral self-administration methods are commonly used to study the reinforcing properties of ethanol in animals. However, the standard methods require saccharin/sucrose fading, water deprivation and/or extended training to initiate operant responding in rats. This paper describes a novel and efficient method to quickly initiate operant responding for ethanol that is convenient for experimenters and does not require water deprivation or saccharin/sucrose fading, thus eliminating the potential confound of using sweeteners in ethanol operant self-administration studies. With this method, Wistar rats typically acquire and maintain self-administration of a 20% ethanol solution in less than two weeks of training. Furthermore, blood ethanol concentrations and rewards are positively correlated for a 30 min self-administration session. Moreover, naltrexone, an FDA-approved medication for alcohol dependence that has been shown to suppress ethanol self-administration in rodents, dose-dependently decreases alcohol intake and motivation to consume alcohol for rats self-administering 20% ethanol, thus validating the use of this new method to study the reinforcing properties of alcohol in rats.
Collapse
Affiliation(s)
- Eric Augier
- Center for Social and Affective Neuroscience, IKE, Linköping University;
| | - Russell S Dulman
- Laboratory of Clinical and Translational Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health
| | - Erick Singley
- Laboratory of Clinical and Translational Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health
| | - Markus Heilig
- Center for Social and Affective Neuroscience, IKE, Linköping University
| |
Collapse
|
21
|
α3β4 nicotinic receptors in the medial habenula and substance P transmission in the interpeduncular nucleus modulate nicotine sensitization. Behav Brain Res 2017; 316:94-103. [DOI: 10.1016/j.bbr.2016.08.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 08/10/2016] [Accepted: 08/12/2016] [Indexed: 01/14/2023]
|
22
|
Barson JR, Poon K, Ho HT, Alam MI, Sanzalone L, Leibowitz SF. Substance P in the anterior thalamic paraventricular nucleus: promotion of ethanol drinking in response to orexin from the hypothalamus. Addict Biol 2017. [PMID: 26223289 DOI: 10.1111/adb.12288] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The paraventricular nucleus of the thalamus (PVT) appears to participate in drug addiction. Recent evidence in rats shows that ethanol drinking is increased by orexin/hypocretin (OX) afferents from the hypothalamus, acting specifically in the anterior (aPVT) rather than posterior (pPVT) PVT subregion. The present study sought to identify neuropeptides transcribed within the PVT, which themselves might contribute to ethanol drinking and possibly mediate the actions of OX. We discovered that substance P (SP) in the aPVT can stimulate intermittent-access ethanol drinking, similar to OX, and that SP receptor [neurokinin 1 receptor/tachykinin receptor 1 (NK1R)] antagonists in this subregion reduce ethanol drinking. As with OX, this effect is site specific, with SP in the pPVT or dorsal third ventricle having no effect on ethanol drinking, and it is behaviorally specific, with SP in the aPVT reducing the drinking of sucrose and stimulating it in the pPVT. A close relationship between SP and OX was demonstrated by a stimulatory effect of local OX injection on SP mRNA and peptide levels, specifically in the aPVT but not pPVT, and a stimulatory effect of OX on SP expression in isolated thalamic neurons, reflecting postsynaptic actions. A functional relationship between OX and SP in the aPVT is suggested by our additional finding that ethanol drinking induced by OX is blocked by a local NK1R antagonist administered at a sub-threshold dose. These results, suggesting that SP in the aPVT mediates the stimulatory effect of OX on ethanol drinking, identify a new role for SP in the control of this behavior.
Collapse
Affiliation(s)
- Jessica R. Barson
- Laboratory of Behavioral Neurobiology; The Rockefeller University; New York NY USA
- Department of Neurobiology and Anatomy; Drexel University College of Medicine; Philadelphia PA USA
| | - Kinning Poon
- Laboratory of Behavioral Neurobiology; The Rockefeller University; New York NY USA
| | - Hui Tin Ho
- Laboratory of Behavioral Neurobiology; The Rockefeller University; New York NY USA
| | - Mohammad I. Alam
- Laboratory of Behavioral Neurobiology; The Rockefeller University; New York NY USA
| | - Lilia Sanzalone
- Laboratory of Behavioral Neurobiology; The Rockefeller University; New York NY USA
| | - Sarah F. Leibowitz
- Laboratory of Behavioral Neurobiology; The Rockefeller University; New York NY USA
| |
Collapse
|
23
|
Blum K, Febo M, Badgaiyan RD, Demetrovics Z, Simpatico T, Fahlke C, Li M, Dushaj K, Gold MS. Common Neurogenetic Diagnosis and Meso-Limbic Manipulation of Hypodopaminergic Function in Reward Deficiency Syndrome (RDS): Changing the Recovery Landscape. Curr Neuropharmacol 2017; 15:184-194. [PMID: 27174576 PMCID: PMC5327445 DOI: 10.2174/1570159x13666160512150918] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 04/11/2016] [Accepted: 04/21/2016] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND In 1990, Blum and associates provided the first confirmed genetic link between the DRD2 polymorphisms and alcoholism. This finding was based on an earlier conceptual framework, which served as a blueprint for their seminal genetic association discovery they termed "Brain Reward Cascade." These findings were followed by a new way of understanding all addictive behaviors (substance and non-substance) termed "Reward Deficiency Syndrome" (RDS). RDS incorporates a complex multifaceted array of inheritable behaviors that are polygenic. OBJECTIVE In this review article, we attempt to clarify these terms and provide a working model to accurately diagnose and treat these unwanted behaviors. METHOD We are hereby proposing the development of a translational model we term "Reward Deficiency Solution System™" that incorporates neurogenetic testing and meso-limbic manipulation of a "hypodopaminergic" trait/state, which provides dopamine agonistic therapy (DAT) as well as reduced "dopamine resistance," while embracing "dopamine homeostasis." RESULT The result is better recovery and relapse prevention, despite DNA antecedents, which could impact the recovery process and relapse. Understanding the commonality of mental illness will transform erroneous labeling based on symptomatology, into a genetic and anatomical etiology. WC: 184.
Collapse
Affiliation(s)
- Kenneth Blum
- Department of Psychiatry, University of Florida College of Medicine and McKnight Brain Institute, Gainesville, FL, USA
- Department of Nutrigenomics, RDSolutions, Inc., Salt Lake City, UT, USA
- Department of Psychology, Eotvos Lorand University, Budapest, Hungary
- PATH Foundation NY, New York, NY, USA
- Division of Neuroscience Research and Addiction Therapy, The Shores Treatment and Recovery, Port Saint Lucie, FL, USA
| | - Marcelo Febo
- Department of Psychiatry, University of Florida College of Medicine and McKnight Brain Institute, Gainesville, FL, USA
| | - Rajendra D. Badgaiyan
- Division of Neuroimaging, Department of Psychiatry, University of Minnesota College of Medicine, Minneapolis, MN, USA;
| | - Zsolt Demetrovics
- Department of Psychology, Eotvos Lorand University, Budapest, Hungary
| | - Thomas Simpatico
- Department of Psychiatry, University of Vermont, Burlington, VT, USA
| | - Claudia Fahlke
- Department of Psychology, University of Gothenburg, Göteborg, Sweden;
| | - Oscar-Berman M
- Departments of Psychiatry and Anatomy & Neurobiology, Boston University School of Medicine and Boston VA Healthcare System, Boston, MA, USA
| | - Mona Li
- PATH Foundation NY, New York, NY, USA
| | | | | |
Collapse
|
24
|
Schank JR, Heilig M. Substance P and the Neurokinin-1 Receptor: The New CRF. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2017; 136:151-175. [DOI: 10.1016/bs.irn.2017.06.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
25
|
McClintick JN, McBride WJ, Bell RL, Ding ZM, Liu Y, Xuei X, Edenberg HJ. Gene Expression Changes in Glutamate and GABA-A Receptors, Neuropeptides, Ion Channels, and Cholesterol Synthesis in the Periaqueductal Gray Following Binge-Like Alcohol Drinking by Adolescent Alcohol-Preferring (P) Rats. Alcohol Clin Exp Res 2016; 40:955-68. [PMID: 27061086 DOI: 10.1111/acer.13056] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 02/28/2016] [Indexed: 12/31/2022]
Abstract
BACKGROUND Binge drinking of alcohol during adolescence is a serious public health concern with long-term consequences, including increased pain, fear, and anxiety. The periaqueductal gray (PAG) is involved in processing pain, fear, and anxiety. The effects of adolescent binge drinking on gene expression in this region have yet to be studied. METHODS Male adolescent alcohol-preferring (P) rats were exposed to repeated binge drinking (three 1-hour sessions/d during the dark/cycle, 5 days/wk for 3 weeks starting at 28 days of age; ethanol intakes of 2.5 to 3 g/kg/session). We used RNA sequencing to assess the effects of ethanol intake on gene expression. RESULTS Ethanol significantly altered the expression of 1,670 of the 12,123 detected genes: 877 (53%) decreased. In the glutamate system, 23 genes were found to be altered, including reduction in 7 of 10 genes for metabotropic and NMDA receptors. Subunit changes in the NMDA receptor may make it less sensitive to ethanol. Changes in GABAA genes would most likely increase the ability of the PAG to produce tonic inhibition. Five serotonin receptor genes, 6 acetylcholine receptor genes, and 4 glycine receptor genes showed decreased expression in the alcohol-drinking rats. Opioid genes (e.g., Oprk1, Oprm1) and genes for neuropeptides linked to anxiety and panic behaviors (e.g., Npy1r) had mostly decreased expression. Genes for 27 potassium, 10 sodium, and 5 calcium ion channels were found to be differentially expressed. Nine genes in the cholesterol synthesis pathway had decreased expression, including Hmgcr, encoding the rate-limiting enzyme. Genes involved in the production of myelin also had decreased expression. CONCLUSIONS The results demonstrate that binge alcohol drinking during adolescence produces developmental changes in the expression of key genes within the PAG; many of these changes point to increased susceptibility to pain, fear, and anxiety, which could contribute to excessive drinking to relieve these negative effects.
Collapse
Affiliation(s)
- Jeanette N McClintick
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana.,Center for Medical Genomics, Indiana University School of Medicine, Indianapolis, Indiana
| | - William J McBride
- Institute of Psychiatric Research, Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana
| | - Richard L Bell
- Institute of Psychiatric Research, Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana
| | - Zheng-Ming Ding
- Institute of Psychiatric Research, Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana
| | - Yunlong Liu
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Xiaoling Xuei
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana.,Center for Medical Genomics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Howard J Edenberg
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana.,Center for Medical Genomics, Indiana University School of Medicine, Indianapolis, Indiana.,Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
26
|
Dogra S, Sona C, Kumar A, Yadav PN. Epigenetic regulation of G protein coupled receptor signaling and its implications in psychiatric disorders. Int J Biochem Cell Biol 2016; 77:226-39. [PMID: 27046448 DOI: 10.1016/j.biocel.2016.03.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 03/21/2016] [Accepted: 03/22/2016] [Indexed: 12/21/2022]
Abstract
G protein-coupled receptors (GPCRs) act as a relay center through which extracellular signals, in the form of neurotransmitters or therapeutics, are converted into an intracellular response, which ultimately shapes the overall response at the tissue and behavioral level. Remarkably in similar ways, epigenetic mechanisms also modulate the expression pattern of a large number of genes in response to the dynamic environment inside and outside of the body, and consequently overall response. Emerging evidences from the pharmacogenomics and preclinical studies clearly suggest that these two distinct mechanisms criss-cross each other in several neurological disorders. At one hand such cross-talks between two distinct mechanisms make disease etiology more challenging to understand, while on the other hand if dealt appropriately, such situations might provide an opportunity to find novel druggable target and strategy for the treatment of complex diseases. In this review article, we have summarized and highlighted the main findings that tie epigenetic mechanisms to GPCR mediated signaling in the pathophysiology of central nervous system (CNS) disorders, including depression, addiction and pain.
Collapse
Affiliation(s)
- Shalini Dogra
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, UP 226031, India
| | - Chandan Sona
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, UP 226031, India
| | - Ajeet Kumar
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, UP 226031, India
| | - Prem N Yadav
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, UP 226031, India.
| |
Collapse
|
27
|
Mantsch JR, Baker DA, Funk D, Lê AD, Shaham Y. Stress-Induced Reinstatement of Drug Seeking: 20 Years of Progress. Neuropsychopharmacology 2016; 41:335-56. [PMID: 25976297 PMCID: PMC4677117 DOI: 10.1038/npp.2015.142] [Citation(s) in RCA: 332] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 05/01/2015] [Accepted: 05/08/2015] [Indexed: 12/24/2022]
Abstract
In human addicts, drug relapse and craving are often provoked by stress. Since 1995, this clinical scenario has been studied using a rat model of stress-induced reinstatement of drug seeking. Here, we first discuss the generality of stress-induced reinstatement to different drugs of abuse, different stressors, and different behavioral procedures. We also discuss neuropharmacological mechanisms, and brain areas and circuits controlling stress-induced reinstatement of drug seeking. We conclude by discussing results from translational human laboratory studies and clinical trials that were inspired by results from rat studies on stress-induced reinstatement. Our main conclusions are (1) The phenomenon of stress-induced reinstatement, first shown with an intermittent footshock stressor in rats trained to self-administer heroin, generalizes to other abused drugs, including cocaine, methamphetamine, nicotine, and alcohol, and is also observed in the conditioned place preference model in rats and mice. This phenomenon, however, is stressor specific and not all stressors induce reinstatement of drug seeking. (2) Neuropharmacological studies indicate the involvement of corticotropin-releasing factor (CRF), noradrenaline, dopamine, glutamate, kappa/dynorphin, and several other peptide and neurotransmitter systems in stress-induced reinstatement. Neuropharmacology and circuitry studies indicate the involvement of CRF and noradrenaline transmission in bed nucleus of stria terminalis and central amygdala, and dopamine, CRF, kappa/dynorphin, and glutamate transmission in other components of the mesocorticolimbic dopamine system (ventral tegmental area, medial prefrontal cortex, orbitofrontal cortex, and nucleus accumbens). (3) Translational human laboratory studies and a recent clinical trial study show the efficacy of alpha-2 adrenoceptor agonists in decreasing stress-induced drug craving and stress-induced initial heroin lapse.
Collapse
Affiliation(s)
- John R Mantsch
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin, USA
| | - David A Baker
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin, USA
| | - Douglas Funk
- Center for Addiction and Mental Health, Campbell Family Mental Health Research Institute, University of Toronto, Toronto, ON, Canada
| | - Anh D Lê
- Center for Addiction and Mental Health, Campbell Family Mental Health Research Institute, University of Toronto, Toronto, ON, Canada
| | - Yavin Shaham
- Intramural Research Program, NIDA-NIH, Baltimore, MD, USA
| |
Collapse
|
28
|
Ayanwuyi LO, Stopponi S, Ubaldi M, Cippitelli A, Nasuti C, Damadzic R, Heilig M, Schank J, Cheng K, Rice KC, Ciccocioppo R. Neurokinin 1 receptor blockade in the medial amygdala attenuates alcohol drinking in rats with innate anxiety but not in Wistar rats. Br J Pharmacol 2015; 172:5136-46. [PMID: 26275374 DOI: 10.1111/bph.13280] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 07/27/2015] [Accepted: 08/02/2015] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND AND PURPOSE Substance P and its preferred neurokinin receptor NK1 have been implicated in stress and anxiety and have been proposed as possible therapeutic targets for the treatment of anxiety/depression. Attention is also being focused on the role this neuropeptide system may play in drug addiction, because stress-related mechanisms promote drug abuse. EXPERIMENTAL APPROACH The effects of the rat-specific NK1 receptor antagonist, L822429, on alcohol intake and seeking behaviour was investigated in genetically selected Marchigian Sardinian alcohol preferring rats. These rats demonstrate an anxious phenotype and are highly sensitive to stress and stress-induced drinking. KEY RESULTS Systemic administration of L822429 significantly reduced operant alcohol self-administration in Marchigian Sardinian alcohol preferring rats, but did not reduce alcohol self-administration in stock Wistar rats. NK1 receptor antagonism also attenuated yohimbine-induced reinstatement of alcohol seeking at all doses tested but had no effect on cue-induced reinstatement of alcohol seeking. L822429 reduced operant alcohol self-administration when injected into the lateral cerebroventricles or the medial amygdala. L822429 injected into the medial amygdala also significantly reduced anxiety-like behaviour in the elevated plus maze test. No effects on alcohol intake were observed following injection of L822429 into the dorsal or the ventral hippocampus. Conclusions and Implications Our results suggest that NK1 receptor antagonists may be useful for the treatment of alcohol addiction associated with stress or comorbid anxiety disorders. The medial amygdala appears to be an important brain site of action of NK1 receptor antagonism.
Collapse
Affiliation(s)
- Lydia O Ayanwuyi
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, 62032, Italy
| | - Serena Stopponi
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, 62032, Italy
| | - Massimo Ubaldi
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, 62032, Italy
| | - Andrea Cippitelli
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, 62032, Italy
| | - Cinzia Nasuti
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, 62032, Italy
| | - Ruslan Damadzic
- Laboratory of Clinical and Translational Studies, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH), Bethesda, MD, 20892-1108, USA
| | - Markus Heilig
- Laboratory of Clinical and Translational Studies, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH), Bethesda, MD, 20892-1108, USA
| | - Jesse Schank
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
| | - Kejun Cheng
- Drug Design and Synthesis Section, Chemical Biology Research Branch, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Kenner C Rice
- Drug Design and Synthesis Section, Chemical Biology Research Branch, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Roberto Ciccocioppo
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, 62032, Italy
| |
Collapse
|
29
|
Paterson LM, Flechais RSA, Murphy A, Reed LJ, Abbott S, Boyapati V, Elliott R, Erritzoe D, Ersche KD, Faluyi Y, Faravelli L, Fernandez-Egea E, Kalk NJ, Kuchibatla SS, McGonigle J, Metastasio A, Mick I, Nestor L, Orban C, Passetti F, Rabiner EA, Smith DG, Suckling J, Tait R, Taylor EM, Waldman AD, Robbins TW, Deakin JFW, Nutt DJ, Lingford-Hughes AR. The Imperial College Cambridge Manchester (ICCAM) platform study: An experimental medicine platform for evaluating new drugs for relapse prevention in addiction. Part A: Study description. J Psychopharmacol 2015; 29:943-60. [PMID: 26246443 DOI: 10.1177/0269881115596155] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Drug and alcohol dependence are global problems with substantial societal costs. There are few treatments for relapse prevention and therefore a pressing need for further study of brain mechanisms underpinning relapse circuitry. The Imperial College Cambridge Manchester (ICCAM) platform study is an experimental medicine approach to this problem: using functional magnetic resonance imaging (fMRI) techniques and selective pharmacological tools, it aims to explore the neuropharmacology of putative relapse pathways in cocaine, alcohol, opiate dependent, and healthy individuals to inform future drug development. Addiction studies typically involve small samples because of recruitment difficulties and attrition. We established the platform in three centres to assess the feasibility of a multisite approach to address these issues. Pharmacological modulation of reward, impulsivity and emotional reactivity were investigated in a monetary incentive delay task, an inhibitory control task, and an evocative images task, using selective antagonists for µ-opioid, dopamine D3 receptor (DRD3) and neurokinin 1 (NK1) receptors (naltrexone, GSK598809, vofopitant/aprepitant), in a placebo-controlled, randomised, crossover design. In two years, 609 scans were performed, with 155 individuals scanned at baseline. Attrition was low and the majority of individuals were sufficiently motivated to complete all five sessions (n=87). We describe herein the study design, main aims, recruitment numbers, sample characteristics, and explain the test hypotheses and anticipated study outputs.
Collapse
Affiliation(s)
- Louise M Paterson
- Centre for Neuropsychopharmacology, Imperial College London, London, UK
| | - Remy S A Flechais
- Centre for Neuropsychopharmacology, Imperial College London, London, UK
| | - Anna Murphy
- Neuroscience and Psychiatry Unit, University of Manchester, Manchester, UK
| | - Laurence J Reed
- Centre for Neuropsychopharmacology, Imperial College London, London, UK
| | - Sanja Abbott
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | | | - Rebecca Elliott
- Neuroscience and Psychiatry Unit, University of Manchester, Manchester, UK
| | - David Erritzoe
- Centre for Neuropsychopharmacology, Imperial College London, London, UK
| | - Karen D Ersche
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Yetunde Faluyi
- Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK
| | - Luca Faravelli
- Centre for Neuropsychopharmacology, Imperial College London, London, UK
| | - Emilio Fernandez-Egea
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK
| | - Nicola J Kalk
- Centre for Neuropsychopharmacology, Imperial College London, London, UK
| | | | - John McGonigle
- Centre for Neuropsychopharmacology, Imperial College London, London, UK
| | - Antonio Metastasio
- Neuroscience and Psychiatry Unit, University of Manchester, Manchester, UK 5 Boroughs Partnership NHS Foundation Trust, Warrington, UK
| | - Inge Mick
- Centre for Neuropsychopharmacology, Imperial College London, London, UK
| | - Liam Nestor
- Centre for Neuropsychopharmacology, Imperial College London, London, UK Clinical Research Unit, GlaxoSmithKline, Cambridge, UK
| | - Csaba Orban
- Centre for Neuropsychopharmacology, Imperial College London, London, UK
| | - Filippo Passetti
- Centre for Neuropsychopharmacology, Imperial College London, London, UK Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK Department of Psychiatry, University of Cambridge, Cambridge, UK
| | | | - Dana G Smith
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK Department of Psychology, University of Cambridge, Cambridge, UK
| | - John Suckling
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK
| | - Roger Tait
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - Eleanor M Taylor
- Neuroscience and Psychiatry Unit, University of Manchester, Manchester, UK
| | - Adam D Waldman
- Centre for Neuroinflammation and Neurodegeneration, Imperial College London, London, UK
| | - Trevor W Robbins
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK Department of Psychology, University of Cambridge, Cambridge, UK
| | - J F William Deakin
- Neuroscience and Psychiatry Unit, University of Manchester, Manchester, UK
| | - David J Nutt
- Centre for Neuropsychopharmacology, Imperial College London, London, UK
| | | | | |
Collapse
|
30
|
Neurokinin-1 receptor antagonism attenuates neuronal activity triggered by stress-induced reinstatement of alcohol seeking. Neuropharmacology 2015; 99:106-14. [PMID: 26188146 DOI: 10.1016/j.neuropharm.2015.07.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 07/07/2015] [Accepted: 07/09/2015] [Indexed: 11/21/2022]
Abstract
Substance P (SP) and its cognate neurokinin-1 receptor (NK1R) are involved in alcohol-related behaviors. We have previously reported that NK1R antagonism attenuates stress-induced reinstatement of alcohol seeking and suppresses escalated alcohol self-administration, but does not affect primary reinforcement or cue-induced reinstatement. Here, we administered an NK1R antagonist or vehicle prior to footshock-induced reinstatement of alcohol seeking, and mapped the resulting neuronal activation using Fos immunohistochemistry. As expected, vehicle treated animals exposed to footshock showed induction of Fos immunoreactivity in several regions of the brain stress circuitry, including the amygdala (AMG), nucleus accumbens (NAC), dorsal raphe nucleus (DR), prefrontal cortex (PFC), and bed nucleus of the stria terminalis (BNST). NK1R antagonism selectively suppressed the stress-induced increase in Fos in the DR and NAC shell. In the DR, Fos-induction by stress largely overlapped with tryptophan hydroxylase (TrpH), indicating activation of serotonergic neurons. Of NAC shell neurons activated during stress-induced reinstatement of alcohol seeking, about 30% co-expressed dynorphin (DYN), while 70% co-expressed enkephalin (ENK). Few (<1%) activated NAC shell neurons coexpressed choline acetyltransferase (ChAT), which labels the cholinergic interneurons of this region. Infusion of the NK1R antagonist L822429 into the NAC shell blocked stress-induced reinstatement of alcohol seeking. In contrast, L822429 infusion into the DR had no effect, suggesting that the influence of NK1R signaling on neuronal activity in the DR is indirect. Taken together, our results outline a potential pathway through which endogenous NK1R activation mediates stress-induced alcohol seeking.
Collapse
|
31
|
Jupp B, Dalley JW. Convergent pharmacological mechanisms in impulsivity and addiction: insights from rodent models. Br J Pharmacol 2014; 171:4729-66. [PMID: 24866553 PMCID: PMC4209940 DOI: 10.1111/bph.12787] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 05/02/2014] [Accepted: 05/12/2014] [Indexed: 01/15/2023] Open
Abstract
Research over the last two decades has widely demonstrated that impulsivity, in its various forms, is antecedent to the development of drug addiction and an important behavioural trait underlying the inability of addicts to refrain from continued drug use. Impulsivity describes a variety of rapidly and prematurely expressed behaviours that span several domains from impaired response inhibition to an intolerance of delayed rewards, and is a core symptom of attention deficit hyperactivity disorder (ADHD) and other brain disorders. Various theories have been advanced to explain how impulsivity interacts with addiction both causally and as a consequence of chronic drug abuse; these acknowledge the strong overlaps in neural circuitry and mechanisms between impulsivity and addiction and the seemingly paradoxical treatment of ADHD with stimulant drugs with high abuse potential. Recent years have witnessed unprecedented progress in the elucidation of pharmacological mechanisms underpinning impulsivity. Collectively, this work has significantly improved the prospect for new therapies in ADHD as well as our understanding of the neural mechanisms underlying the shift from recreational drug use to addiction. In this review, we consider the extent to which pharmacological interventions that target impulsive behaviour are also effective in animal models of addiction. We highlight several promising examples of convergence based on empirical findings in rodent-based studies.
Collapse
Affiliation(s)
- B Jupp
- Behavioural and Clinical Neuroscience Institute and Department of Psychology, University of CambridgeCambridge, UK
- Florey Institute of Neuroscience and Mental Health, University of MelbourneParkville, Australia
| | - J W Dalley
- Behavioural and Clinical Neuroscience Institute and Department of Psychology, University of CambridgeCambridge, UK
- Department of Psychiatry, University of CambridgeCambridge, UK
| |
Collapse
|
32
|
Perry CJ, Zbukvic I, Kim JH, Lawrence AJ. Role of cues and contexts on drug-seeking behaviour. Br J Pharmacol 2014; 171:4636-72. [PMID: 24749941 PMCID: PMC4209936 DOI: 10.1111/bph.12735] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 04/04/2014] [Accepted: 04/10/2014] [Indexed: 01/15/2023] Open
Abstract
Environmental stimuli are powerful mediators of craving and relapse in substance-abuse disorders. This review examined how animal models have been used to investigate the cognitive mechanisms through which cues are able to affect drug-seeking behaviour. We address how animal models can describe the way drug-associated cues come to facilitate the development and persistence of drug taking, as well as how these cues are critical to the tendency to relapse that characterizes substance-abuse disorders. Drug-associated cues acquire properties of conditioned reinforcement, incentive motivation and discriminative control, which allow them to influence drug-seeking behaviour. Using these models, researchers have been able to investigate the pharmacology subserving the behavioural impact of environmental stimuli, some of which we highlight. Subsequently, we examine whether the impact of drug-associated stimuli can be attenuated via a process of extinction, and how this question is addressed in the laboratory. We discuss how preclinical research has been translated into behavioural therapies targeting substance abuse, as well as highlight potential developments to therapies that might produce more enduring changes in behaviour.
Collapse
Affiliation(s)
- Christina J Perry
- Behavioural Neuroscience Division, The Florey Institute of Neuroscience and Mental HealthParkville, Vic., Australia
- Florey Department of Neuroscience and Mental Health, University of MelbourneParkville, Vic., Australia
| | - Isabel Zbukvic
- Behavioural Neuroscience Division, The Florey Institute of Neuroscience and Mental HealthParkville, Vic., Australia
- Florey Department of Neuroscience and Mental Health, University of MelbourneParkville, Vic., Australia
| | - Jee Hyun Kim
- Behavioural Neuroscience Division, The Florey Institute of Neuroscience and Mental HealthParkville, Vic., Australia
- Florey Department of Neuroscience and Mental Health, University of MelbourneParkville, Vic., Australia
| | - Andrew J Lawrence
- Behavioural Neuroscience Division, The Florey Institute of Neuroscience and Mental HealthParkville, Vic., Australia
- Florey Department of Neuroscience and Mental Health, University of MelbourneParkville, Vic., Australia
| |
Collapse
|
33
|
Vadnie CA, Park JH, Abdel Gawad N, Ho AMC, Hinton DJ, Choi DS. Gut-brain peptides in corticostriatal-limbic circuitry and alcohol use disorders. Front Neurosci 2014; 8:288. [PMID: 25278825 PMCID: PMC4166902 DOI: 10.3389/fnins.2014.00288] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 08/26/2014] [Indexed: 12/22/2022] Open
Abstract
Peptides synthesized in endocrine cells in the gastrointestinal tract and neurons are traditionally considered regulators of metabolism, energy intake, and appetite. However, recent work has demonstrated that many of these peptides act on corticostriatal-limbic circuitry and, in turn, regulate addictive behaviors. Given that alcohol is a source of energy and an addictive substance, it is not surprising that increasing evidence supports a role for gut-brain peptides specifically in alcohol use disorders (AUD). In this review, we discuss the effects of several gut-brain peptides on alcohol-related behaviors and the potential mechanisms by which these gut-brain peptides may interfere with alcohol-induced changes in corticostriatal-limbic circuitry. This review provides a summary of current knowledge on gut-brain peptides focusing on five peptides: neurotensin, glucagon-like peptide 1, ghrelin, substance P, and neuropeptide Y. Our review will be helpful to develop novel therapeutic targets for AUD.
Collapse
Affiliation(s)
- Chelsea A Vadnie
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine Rochester, MN, USA ; Neurobiology of Disease Program, Mayo Clinic College of Medicine Rochester, MN, USA
| | - Jun Hyun Park
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine Rochester, MN, USA ; Department of Psychiatry, Sanggye Paik Hospital, College of Medicine, InJe University Seoul, South Korea
| | - Noha Abdel Gawad
- Department of Psychiatry and Psychology, Mayo Clinic College of Medicine Rochester, MN, USA
| | - Ada Man Choi Ho
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine Rochester, MN, USA ; Department of Psychiatry and Psychology, Mayo Clinic College of Medicine Rochester, MN, USA
| | - David J Hinton
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine Rochester, MN, USA ; Neurobiology of Disease Program, Mayo Clinic College of Medicine Rochester, MN, USA
| | - Doo-Sup Choi
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine Rochester, MN, USA ; Neurobiology of Disease Program, Mayo Clinic College of Medicine Rochester, MN, USA ; Department of Psychiatry and Psychology, Mayo Clinic College of Medicine Rochester, MN, USA
| |
Collapse
|
34
|
Hillemacher T, Leggio L, Heberlein A. Investigational therapies for the pharmacological treatment of alcoholism. Expert Opin Investig Drugs 2014; 24:17-30. [PMID: 25164385 DOI: 10.1517/13543784.2014.954037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Introduction: Alcohol dependence is one of the most important psychiatric disorders leading to enormous harm in individuals and indeed within society. Yet, although alcohol dependence is a disease of significant importance, the availability of efficacious pharmacological treatment is still limited. Areas covered: The current review focuses on neurobiological pathways that are the rationale for recent preclinical and clinical studies testing novel compounds that could be used as treatments for alcohol dependence. These neurobiological mechanisms include the: glutamatergic, dopaminergic and GABA mediated pathways as well as neuroendocrine systems. There is also an interest in the approaches for influencing chromatin structure. Expert opinion: There are several compounds in Phase I and Phase II clinical studies that have produced potentially useful results for the treating alcoholism. Further evaluation is still necessary, and the implementation of Phase III studies will help to elucidate the usefulness of these compounds. It is important that personalized approaches (e.g., pharmacogenomics) are investigated in these later studies, as the efficacy of different compounds may vary substantially between subgroups of patients.
Collapse
Affiliation(s)
- Thomas Hillemacher
- Hannover Medical School, Center for Addiction Research (CARe), Department of Psychiatry, Social Psychiatry and Psychotherapy , Carl-Neuberg-Str. 1, 30625 Hannover , Germany +49 511 532 2427 ; +49 511 532 2415 ;
| | | | | |
Collapse
|
35
|
Abstract
Stress can trigger drug-seeking behavior, increase self-administration rates, and enhance drug reward. A number of stress-related neuropeptides have been shown to mediate these behavioral processes. The most studied peptide in this category is corticotropin-releasing hormone (CRH), which has been shown to mediate stress-induced reinstatement of drug seeking, escalated self-administration, and drug withdrawal, but it does not seem to be involved in baseline drug self-administration or cue-induced reinstatement. This pattern of effects holds for many classes of drugs, including alcohol, opiates, and psychostimulants. The neurokinin-1 receptor (NK1R) is the preferred receptor for the endogenous stress-related neuropeptide substance P (SP). The SP/NK1R system is a major mediator of stress and anxiety, and over the last several years, it has been demonstrated that the SP/NK1R system can have effects similar to those of CRH on drug taking and drug seeking. Specifically, NK1R inhibition attenuates escalated self-administration of alcohol as well as stress-induced reinstatement of alcohol and cocaine seeking; however, in contrast to other stress systems, the NK1R also appears to have a role in primary reward and reinforcement for opiates. This review outlines the role of NK1R in drug-seeking behaviors and highlights recent results from clinical studies that suggest that the NK1R may be a promising drug target going forward.
Collapse
Affiliation(s)
- Jesse R Schank
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| |
Collapse
|