1
|
Qiao J, Tao S, Sun Y, Shi J, Chen Y, Tian S, Yao Z, Lu Q. The Effects of Variation in the GABA A Receptor Gene on Anxious Depression are Mediated by the Functional Connectivity Between the Amygdala and Middle Frontal Gyrus. Neuropsychiatr Dis Treat 2024; 20:1781-1796. [PMID: 39346029 PMCID: PMC11438461 DOI: 10.2147/ndt.s468290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024] Open
Abstract
Background γ-aminobutyric acid (GABA) and its main receptor, the GABAA receptor, are implicated in major depressive disorder (MDD). Anxious depression (AD) is deemed to be a primary subtype of MDD. The amygdala and the dorsolateral prefrontal cortex (DLPFC) are key brain regions involved in emotional regulation. These regions contain the most GABAA receptors. Although the GABAergic deficit hypothesis of MDD is generally accepted, few studies have demonstrated how GABAA receptor gene polymorphisms affect the functions of specific brain regions, in particular, the amygdala and the DLPFC. Methods The sample comprised 83 patients with AD, 70 patients with non-anxious depression (NAD), and 62 healthy controls (HC). All participants underwent genotyping for polymorphisms of GABAA receptor subunit genes, followed by a resting-state fMRI scan. The HAMD-17 was used to evaluate the severity of MDD. ANOVA was performed to obtain the difference in the imaging data, GABAA receptor multi-locus genetic profile scores (MGPS), and HAMD-17 scores among three groups, then the significant differences between AD and NAD groups were identified. Mediating effect analysis was used to explore the role of functional connectivity (FC) between the amygdala and DLPFC in the association between the GABAA receptor gene MGPS and AD clinical features. Results Compared with the NAD group, the AD group had a higher GABAA receptor MGPS. AD patients exhibited a negative correlation between the MGPS and FC of the right centromedial (CM) subregion, and the right middle frontal gyrus (MFG). A negative correlation was also observed between the MGPS and anxiety/somatic symptoms. More importantly, the right CM and right MFG connectivity mediated the association between the GABAA receptor MGPS and anxiety/somatic symptoms in patients with AD. Conclusion The decreased FC between the right MFG and right CM subregion mediates the association between GABAA receptor MGPS and AD.
Collapse
Affiliation(s)
- Juan Qiao
- Department of Psychology, Xuzhou East Hospital Affiliated to Xuzhou Medical University, Xuzhou, People’s Republic of China
- Department of Psychiatry, Brain Hospital Affiliated to Nanjing Medical University, Nanjing, People’s Republic of China
| | - Shiwan Tao
- Department of Psychiatry, Brain Hospital Affiliated to Nanjing Medical University, Nanjing, People’s Republic of China
| | - Yurong Sun
- School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, People’s Republic of China
- Key Laboratory of Child Development and Learning Science, Ministry of Education, Nanjing, People’s Republic of China
| | - Jiabo Shi
- Department of Psychiatry, Brain Hospital Affiliated to Nanjing Medical University, Nanjing, People’s Republic of China
- Nanjing Brain Hospital, School of Medicine, Nanjing University, Nanjing, People’s Republic of China
| | - Yu Chen
- Department of Psychiatry, Brain Hospital Affiliated to Nanjing Medical University, Nanjing, People’s Republic of China
- Nanjing Brain Hospital, School of Medicine, Nanjing University, Nanjing, People’s Republic of China
| | - Shui Tian
- School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, People’s Republic of China
- Key Laboratory of Child Development and Learning Science, Ministry of Education, Nanjing, People’s Republic of China
| | - Zhijian Yao
- Department of Psychiatry, Brain Hospital Affiliated to Nanjing Medical University, Nanjing, People’s Republic of China
- Nanjing Brain Hospital, School of Medicine, Nanjing University, Nanjing, People’s Republic of China
| | - Qing Lu
- School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, People’s Republic of China
- Key Laboratory of Child Development and Learning Science, Ministry of Education, Nanjing, People’s Republic of China
| |
Collapse
|
2
|
Bian X, Yang W, Lin J, Jiang B, Shao X. Hypothalamic-Pituitary-Adrenal Axis and Epilepsy. J Clin Neurol 2024; 20:131-139. [PMID: 38330420 PMCID: PMC10921057 DOI: 10.3988/jcn.2023.0308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/28/2023] [Accepted: 11/07/2023] [Indexed: 02/10/2024] Open
Abstract
Epilepsy is a recurrent, transient seizure disorder of the nervous system that affects the intellectual development, life and work, and psychological health of patients. People with epilepsy worldwide experience great suffering. Stressful stimuli such as infection, mental stress, and sleep deprivation are important triggers of epilepsy, and chronic stressful stimuli can lead to frequent seizures and comorbidities. The hypothalamic-pituitary-adrenal (HPA) axis is the most important system involved in the body's stress response, and dysfunction thereof is thought to be associated with core epilepsy symptoms and related psychopathology. This article explores the intrinsic relationships of corticotropin-releasing hormone, adrenocorticotropic hormone, and glucocorticoids with epilepsy in order to reveal the role of the HPA axis in the pathogenesis of epilepsy. We hope that this information will yield future possible directions and ideas for fully understanding the pathogenesis of epilepsy and developing antiepileptic drugs.
Collapse
Affiliation(s)
- Xueying Bian
- Department of Pediatrics, Shaoxing Peoples' Hospital, The First Affiliated Hospital of Shaoxing University, Shaoxing, China
| | - Wenxian Yang
- Department of Pediatrics, Yiwu Central Hospital, Yiwu, China
| | - Jiannan Lin
- Department of Pediatrics, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Biao Jiang
- Department of Pediatrics, Shaoxing Peoples' Hospital, The First Affiliated Hospital of Shaoxing University, Shaoxing, China
| | - Xiaoli Shao
- Department of Pediatrics, Shaoxing Peoples' Hospital, The First Affiliated Hospital of Shaoxing University, Shaoxing, China.
| |
Collapse
|
3
|
Hossein S, Cooper JA, DeVries BAM, Nuutinen MR, Hahn EC, Kragel PA, Treadway MT. Effects of acute stress and depression on functional connectivity between prefrontal cortex and the amygdala. Mol Psychiatry 2023; 28:4602-4612. [PMID: 37076616 DOI: 10.1038/s41380-023-02056-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 03/17/2023] [Accepted: 03/24/2023] [Indexed: 04/21/2023]
Abstract
Stress is known to be a significant risk factor for the development of Major Depressive Disorder (MDD), yet the neural mechanisms that underlie this risk are poorly understood. Prior work has heavily implicated the corticolimbic system in the pathophysiology of MDD. In particular, the prefrontal cortex (PFC) and amygdala play a central role in regulating the response to stress, with dorsal PFC and ventral PFC exhibiting reciprocal excitatory and inhibitory influences on amygdala subregions. However, it remains unclear how best to disentangle the impact of stress from the impact of current MDD symptoms on this system. Here, we examined stress-induced changes in resting state functional connectivity (rsFC) within an a priori corticolimbic network in MDD patients and healthy controls (total n = 80) before and after an acute stressor or a "no stress" control condition. Using graph theoretic analysis, we found that connectivity between basolateral amygdala and dorsal prefrontal nodes of the corticolimbic network had a negative association with individual differences in chronic perceived stress at baseline. Following the acute stressor, healthy individuals showed a reduction of the amygdala node strength, while MDD patients exhibited little change. Finally, dorsal PFC-particularly dorsomedial PFC- connectivity to the basolateral amygdala was associated with the strength of the basolateral amygdala responses to loss feedback during a reinforcement learning task. These findings highlight attenuated connectivity between basolateral amygdala and prefrontal cortex in patients with MDD. In healthy individuals, acute stress exposure was found to push the corticolimbic network to a "stress-phenotype" that may be chronically present in patients with current depression and high levels of perceived stress. In sum, these results help to identify circuit mechanisms underlying the effects of acute stress and their role in mood disorders.
Collapse
Affiliation(s)
- Shabnam Hossein
- Department of Psychology, Emory University, Atlanta, GA, USA
| | - Jessica A Cooper
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | | | | | - Emma C Hahn
- Department of Psychology, Emory University, Atlanta, GA, USA
| | - Philip A Kragel
- Department of Psychology, Emory University, Atlanta, GA, USA
| | - Michael T Treadway
- Department of Psychology, Emory University, Atlanta, GA, USA.
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
4
|
Brain Reactions to Opening and Closing the Eyes: Salivary Cortisol and Functional Connectivity. Brain Topogr 2022; 35:375-397. [PMID: 35666364 PMCID: PMC9334428 DOI: 10.1007/s10548-022-00897-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/28/2022] [Indexed: 11/03/2022]
Abstract
This study empirically assessed the strength and duration of short-term effects induced by brain reactions to closing/opening the eyes on a few well-known resting-state networks. We also examined the association between these reactions and subjects’ cortisol levels. A total of 55 young adults underwent 8-min resting-state fMRI (rs-fMRI) scans under 4-min eyes-closed and 4-min eyes-open conditions. Saliva samples were collected from 25 of the 55 subjects before and after the fMRI sessions and assayed for cortisol levels. Our empirical results indicate that when the subjects were relaxed with their eyes closed, the effect of opening the eyes on conventional resting-state networks (e.g., default-mode, frontal-parietal, and saliency networks) lasted for roughly 60-s, during which we observed a short-term increase in activity in rs-fMRI time courses. Moreover, brain reactions to opening the eyes had a pronounced effect on time courses in the temporo-parietal lobes and limbic structures, both of which presented a prolonged decrease in activity. After controlling for demographic factors, we observed a significantly positive correlation between pre-scan cortisol levels and connectivity in the limbic structures under both conditions. Under the eyes-closed condition, the temporo-parietal lobes presented significant connectivity to limbic structures and a significantly positive correlation with pre-scan cortisol levels. Future research on rs-fMRI could consider the eyes-closed condition when probing resting-state connectivity and its neuroendocrine correlates, such as cortisol levels. It also appears that abrupt instructions to open the eyes while the subject is resting quietly with eyes closed could be used to probe brain reactivity to aversive stimuli in the ventral hippocampus and other limbic structures.
Collapse
|
5
|
Richter-Levin G, Sandi C. Title: "Labels Matter: Is it stress or is it Trauma?". Transl Psychiatry 2021; 11:385. [PMID: 34247187 PMCID: PMC8272714 DOI: 10.1038/s41398-021-01514-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 02/06/2023] Open
Abstract
In neuroscience, the term 'Stress' has a negative connotation because of its potential to trigger or exacerbate psychopathologies. Yet in the face of exposure to stress, the more common reaction to stress is resilience, indicating that resilience is the rule and stress-related pathology the exception. This is critical because neural mechanisms associated with stress-related psychopathology are expected to differ significantly from those associated with resilience.Research labels and terminology affect research directions, conclusions drawn from the results, and the way we think about a topic, while choice of labels is often influenced by biases and hidden assumptions. It is therefore important to adopt a terminology that differentiates between stress conditions, leading to different outcomes.Here, we propose to conceptually associate the term 'stress'/'stressful experience' with 'stress resilience', while restricting the use of the term 'trauma' only in reference to exposures that lead to pathology. We acknowledge that there are as yet no ideal ways for addressing the murkiness of the border between stressful and traumatic experiences. Yet ignoring these differences hampers our ability to elucidate the mechanisms of trauma-related pathologies on the one hand, and of stress resilience on the other. Accordingly, we discuss how to translate such conceptual terminology into research practice.
Collapse
Affiliation(s)
- Gal Richter-Levin
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel.
- Psychology Department, University of Haifa, Haifa, Israel.
- The Integrated Brain and Behavior Research Center (IBBR), University of Haifa, Haifa, Israel.
| | - Carmen Sandi
- Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
6
|
Flores-Kanter PE, Moretti L, Medrano LA. A narrative review of emotion regulation process in stress and recovery phases. Heliyon 2021; 7:e07218. [PMID: 34179528 PMCID: PMC8213899 DOI: 10.1016/j.heliyon.2021.e07218] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 03/13/2020] [Accepted: 06/02/2021] [Indexed: 12/02/2022] Open
Abstract
The difficulty in studying the relationship between stress and emotional regulation is due to the need to contemplate a dynamic perspective that analyzes the moderating role of stress. In fact, stress involves different phases or stages, and the neurocognitive processes involved in emotion regulation differ significantly between these phases. The period of anticipation of stressful events can be fundamental to understand the process of stress regulation; however, surprisingly few works have analyzed the differential activation of brain networks involved in cognitive regulation during the phases of stress and recovery. Taking this into consideration, within this study we propose to analyze in an integrated way the psychological and neurobiological processes during the phase of stress and recovery, with the aim of improving our understanding of the mechanisms that underlie successful and unsuccessful stress regulation. We consider that from the present review we contribute to achieve a better understanding of the mechanisms underlying successful and unsuccessful stress regulation would contribute to the improvement of prevention and treatment interventions for mental disorders.
Collapse
Affiliation(s)
- Pablo Ezequiel Flores-Kanter
- Universidad Siglo 21, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Luciana Moretti
- Universidad Siglo 21, Argentina.,Pontificia Universidad Católica Madre y Maestra, República Dominicana
| | - Leonardo Adrián Medrano
- Universidad Siglo 21, Argentina.,Pontificia Universidad Católica Madre y Maestra, República Dominicana
| |
Collapse
|
7
|
Murray RJ, Apazoglou K, Celen Z, Dayer A, Aubry JM, Ville DVD, Vuilleumier P, Piguet C. Maladaptive emotion regulation traits predict altered corticolimbic recovery from psychosocial stress. J Affect Disord 2021; 280:54-63. [PMID: 33202338 DOI: 10.1016/j.jad.2020.09.122] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/14/2020] [Accepted: 09/28/2020] [Indexed: 01/28/2023]
Abstract
BACKGROUND Adaptive recovery from stress promotes healthy cognitive affective functioning, whereas maladaptive recovery is linked to poor psychological outcomes. Neural regions, like the anterior cingulate and hippocampus, play critical roles in psychosocial stress responding and serve as hubs in the corticolimbic neural system. To date, however, it is unknown how cognitive emotion regulation traits (cER), adaptive and maladaptive, influence corticolimbic stress recovery. Here, we examined acute psychosocial stress neural recovery, accounting for cER. METHODS Functional neuroimaging data were collected while forty-seven healthy participants performed blocks of challenging, time-sensitive, mental calculations. Participants immediately received performance feedback (positive/negative/neutral) and their ranking, relative to fictitious peers. Participants rested for 90 seconds after each feedback, allowing for a neural stress recovery period. Collected before scanning, cER scores were correlated with neural activity during each recovery condition. RESULTS Negative feedback recovery yielded increased activity within the dorsomedial prefrontal cortex and amygdala, but this effect was ultimately explained by maladaptive cER (M-cER), like rumination. Isolating positive after-effects (i.e. positive > negative recovery) yielded a significant positive correlation between M-cER and the anterior cingulate, anterior insula, hippocampus, and striatum. CONCLUSIONS We provide first evidence of M-cER to predict altered neural recovery from positive stress within corticolimbic regions. Positive feedback may be potentially threatening to individuals with poor stress regulation. Identifying positive stress-induced activation patterns in corticolimbic neural networks linked to M-cER creates the possibility to identify these neural responses as risk factors for social-emotional dysregulation subsequent to rewarding social information, often witnessed in affective disorders, like depression.
Collapse
Affiliation(s)
- Ryan J Murray
- Psychiatry Department, Faculty of Medicine, University of Geneva, Campus Biotech, 1202 Geneva, Switzerland.
| | - Kalliopi Apazoglou
- Psychiatry Department, Faculty of Medicine, University of Geneva, Campus Biotech, 1202 Geneva, Switzerland; Neuroscience Department, Laboratory for Behavioral Neurology and Imaging of Cognition, Campus Biotech, 1202 Geneva, Switzerland
| | - Zeynep Celen
- Psychiatry Department, Faculty of Medicine, University of Geneva, Campus Biotech, 1202 Geneva, Switzerland
| | - Alexandre Dayer
- Psychiatry Department, Faculty of Medicine, University of Geneva, Campus Biotech, 1202 Geneva, Switzerland; Mood Disorder Unit, Psychiatric Specialties Service, Geneva University Hospital, 1201 Geneva, Switzerland
| | - Jean-Michel Aubry
- Psychiatry Department, Faculty of Medicine, University of Geneva, Campus Biotech, 1202 Geneva, Switzerland; Mood Disorder Unit, Psychiatric Specialties Service, Geneva University Hospital, 1201 Geneva, Switzerland
| | - Dimitri Van De Ville
- Medical Image Processing Laboratory, Center for Neuroprosthetics, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Campus Biotech, 1202 Geneva, Switzerland; Department of Radiology and Medical Informatics, University of Geneva, 1211 Geneva, Switzerland
| | - Patrik Vuilleumier
- Neuroscience Department, Laboratory for Behavioral Neurology and Imaging of Cognition, Campus Biotech, 1202 Geneva, Switzerland
| | - Camille Piguet
- Psychiatry Department, Faculty of Medicine, University of Geneva, Campus Biotech, 1202 Geneva, Switzerland; Mood Disorder Unit, Psychiatric Specialties Service, Geneva University Hospital, 1201 Geneva, Switzerland
| |
Collapse
|
8
|
Rab SL, Admon R. Parsing inter- and intra-individual variability in key nervous system mechanisms of stress responsivity and across functional domains. Neurosci Biobehav Rev 2020; 120:550-564. [PMID: 32941963 DOI: 10.1016/j.neubiorev.2020.09.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 08/21/2020] [Accepted: 09/03/2020] [Indexed: 12/16/2022]
Abstract
Exposure to stressful events is omnipresent in modern human life, yet people show considerable heterogeneity in the impact of stress exposure(s) on their functionality and overall health. Encounter with stressor(s) is counteracted by an intricate repertoire of nervous-system responses. This narrative review starts with a brief summary of the vast evidence that supports heart rate variability, cortisol secretion, and large-scale cortical network interactions as kay physiological, endocrinological, and neural mechanisms of stress responsivity, respectively. The second section highlights potential sources for inter-individual variability in these mechanisms, by focusing on biological, environmental, social, habitual, and psychological factors that may influence stress responsivity patterns and thus contribute to heterogeneity in the impact of stress exposure on functionality and health. The third section introduces intra-individually variability in stress responsivity across functional domains as a novel putative source for heterogeneity in the impact of stress exposure. Challenges and future directions are further discussed. Parsing inter- and intra-individual variability in nervous-system mechanisms of stress responsivity and across functional domains is critical towards potential clinical translation.
Collapse
Affiliation(s)
- Sharona L Rab
- Department of Psychology, University of Haifa, Haifa, Israel
| | - Roee Admon
- Department of Psychology, University of Haifa, Haifa, Israel; The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, Israel.
| |
Collapse
|
9
|
Abstract
Chronic stress exposure is associated with impaired cognitive function; however, the underlying mechanism is not yet clear. This study investigated the association between perceived chronic stress and anticipatory processing, measured by event-related potentials, and the moderating role of resilience on this relationship in healthy adults. Fifty-nine healthy volunteers (22.52 ± 1.75 years) underwent a continuous performance test, and anticipatory processing was indexed with the contingent negative variation (CNV) of event-related potentials, the Cohen Perceived Stress Scale, and the Connor-Davidson Resilience Scale. The results showed that greater reports of perceived chronic stress were associated with more negative early CNVs; however, there was no significant relationship between perceived chronic stress and behavioral performance on the continuous performance test. More importantly, the relationship between perceived chronic stress and early CNV was moderated by resilience as the association between the Cohen Perceived Stress Scale score and early CNV amplitude was significant for low and average levels of resilience. These results not only suggest that chronic stress may lead to decreased cognitive efficiency in cortical anticipatory activity, but also underscore the role of resilience as a key protective factor in decreased cognitive efficiency.
Collapse
Affiliation(s)
- Xia Shi
- Department of Psychology, Tianjin university of technology and education, Tianjin, China
| | - Jianhui Wu
- Center for Brain Disorder and Cognitive Science, Shenzhen University, Shenzhen, China
| |
Collapse
|
10
|
Sun X, Ming Q, Zhong X, Dong D, Li C, Xiong G, Cheng C, Cao W, He J, Wang X, Yi J, Yao S. The MAOA Gene Influences the Neural Response to Psychosocial Stress in the Human Brain. Front Behav Neurosci 2020; 14:65. [PMID: 32499684 PMCID: PMC7243356 DOI: 10.3389/fnbeh.2020.00065] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 04/08/2020] [Indexed: 12/18/2022] Open
Abstract
The stress response is regulated by many mechanisms. Monoamine oxidase A (MAOA) has been related to many mental illnesses. However, few studies have explored the relationship between MAOA and acute laboratory-induced psychosocial stress with functional magnetic resonance imaging (fMRI). In the current study, the Montreal Imaging Stress Task (MIST) and fMRI were used to investigate how MAOA influences the stress response. Increased cortisol concentrations were observed after the task; functional connectivity between the bilateral anterior hippocampus and other brain regions was reduced during stress. MAOA-H allele carriers showed greater deactivation of the right anterior hippocampus and greater cortisol response after stress than did MAOH-L allele carriers. Hippocampal deactivation may lead to disinhibition of the hypothalamic-pituitary-adrenal (HPA) axis and the initiation of stress hormone release under stress. Our results suggest that the MAOA gene regulates the stress response by influencing the right anterior hippocampus.
Collapse
Affiliation(s)
- Xiaoqiang Sun
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, China.,Medical Psychological Institute of Central South University, Changsha, China.,National Clinical Research Center for Mental Disorders, Changsha, China
| | - Qingsen Ming
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, China.,Department of Psychiatry, The First Affiliated Hospital of Sochoow University, Suzhou, China
| | - Xue Zhong
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, China.,Medical Psychological Institute of Central South University, Changsha, China.,National Clinical Research Center for Mental Disorders, Changsha, China
| | - Daifeng Dong
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, China.,Medical Psychological Institute of Central South University, Changsha, China.,National Clinical Research Center for Mental Disorders, Changsha, China
| | - Chuting Li
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, China.,Medical Psychological Institute of Central South University, Changsha, China.,National Clinical Research Center for Mental Disorders, Changsha, China
| | - Ge Xiong
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, China.,Medical Psychological Institute of Central South University, Changsha, China.,National Clinical Research Center for Mental Disorders, Changsha, China
| | - Chang Cheng
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, China.,Medical Psychological Institute of Central South University, Changsha, China.,National Clinical Research Center for Mental Disorders, Changsha, China
| | - Wanyi Cao
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, China.,Medical Psychological Institute of Central South University, Changsha, China.,National Clinical Research Center for Mental Disorders, Changsha, China
| | - Jiayue He
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, China.,Medical Psychological Institute of Central South University, Changsha, China.,National Clinical Research Center for Mental Disorders, Changsha, China
| | - Xiang Wang
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, China.,Medical Psychological Institute of Central South University, Changsha, China.,National Clinical Research Center for Mental Disorders, Changsha, China
| | - Jinyao Yi
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, China.,Medical Psychological Institute of Central South University, Changsha, China.,National Clinical Research Center for Mental Disorders, Changsha, China
| | - Shuqiao Yao
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, China.,Medical Psychological Institute of Central South University, Changsha, China.,National Clinical Research Center for Mental Disorders, Changsha, China
| |
Collapse
|
11
|
Berent D, Szymańska B, Kulczycka-Wojdala D, Macander M, Pawłowska Z, Wojnar M. The role of childhood adversities, FKBP5, BDNF, NRN1, and generalized self-efficacy in suicide attempts in alcohol-dependent patients. Pharmacol Rep 2020; 72:730-743. [PMID: 32157595 PMCID: PMC8217039 DOI: 10.1007/s43440-020-00080-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 10/18/2019] [Accepted: 12/30/2019] [Indexed: 11/25/2022]
Abstract
Background Alcohol-dependent (AD) patients report higher number of adverse childhood experiences (ACEs), develop poor social skills, and have a higher rate of suicide attempts than the general population. We hypothesize that the association between ACEs and lifetime suicide attempts in AD patients is mediated by generalized self-efficacy and selected functional single nucleotide polymorphisms (SNPs) in genes involved in the stress response and neuroplasticity, including: FKBP5 rs1360780, BDNF rs6265, and NRN1 rs1475157. Methods 176 AD patients and 127 healthy controls self-reported ACEs with the ACE Study questionnaire and three additional questions that inquired about ACE categories of acute stress; generalized self-efficacy—with the Generalized Self-Efficacy Scale. Genotyping for the three analysed SNPs was performed according to the manufacturer’s standard PCR protocol. Hypotheses were tested with bivariate analyses, multiple regression model, and mediation models. Results Higher levels of generalized self-efficacy were associated with a blunted effect of ACEs on the risk of suicide attempts. The prevalence of the three analyzed SNPs genotypes and alleles did not differ between AD patients with a positive vs. negative lifetime history of suicide attempt and was not associated with GSES scoring. Conclusions Generalized self-efficacy should be considered as a target for psychotherapeutic interventions aimed at reducing the risk of suicide attempts in AD patients who were exposed to childhood victimization. The negative results concerning the hypothesized role of the three analysed SNPs should be carefully interpreted due to the relatively small study sample, but represent a theoretical foundation for further research studies with larger study samples. Electronic supplementary material The online version of this article (10.1007/s43440-020-00080-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dominika Berent
- Masovian Regional Psychiatric Hospital Drewnica, Ząbki, Poland.
| | - Bożena Szymańska
- Central Scientific Laboratory, Medical University of Lodz, Lodz, Poland
| | | | - Marian Macander
- Aviation Patophysiology and Safety Flight Department, Military Institute of Aviation Medicine, Warsaw, Poland
| | - Zofia Pawłowska
- Central Scientific Laboratory, Medical University of Lodz, Lodz, Poland
| | - Marcin Wojnar
- Department of Psychiatry, Medical University of Warsaw, Warsaw, Poland
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
12
|
Tulver K, Bachmann M, Vaht M, Harro J, Bachmann T. Effects of HTR1A rs6295 polymorphism on emotional attentional blink. Acta Neurobiol Exp (Wars) 2020. [DOI: 10.21307/ane-2020-036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
13
|
LoPilato AM, Goines K, Addington J, Bearden CE, Cadenhead KS, Cannon TD, Cornblatt BA, Mathalon DH, McGlashan TH, Seidman L, Perkins DO, Tsuang MT, Woods SW, Walker EF. Impact of childhood adversity on corticolimbic volumes in youth at clinical high-risk for psychosis. Schizophr Res 2019; 213:48-55. [PMID: 30745068 DOI: 10.1016/j.schres.2019.01.048] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/25/2019] [Accepted: 01/28/2019] [Indexed: 12/21/2022]
Abstract
Childhood adversity is among the strongest risk factors for psychosis-spectrum disorders, though the nature and specificity of the biological mechanisms underlying this association remains unclear. Previous research reveals overlaps in the volumetric alterations observed in both adversity-exposed individuals and in psychosis-spectrum populations, highlighting the possibility that deviations in corticolimbic gray matter development may be one mechanism linking adversity and psychosis. Given that childhood adversity encompasses a wide range of adverse experiences, there is also a critical need to examine whether these different types of experiences have unique effects on corticolimbic regions. This study examined the association between childhood adversity and cortical, hippocampal, and amygdalar volume in a large sample of youth at clinical-high risk (CHR) for psychosis. We utilized a novel differentiated adversity approach that distinguishes exposures along dimensions of threat (e.g., abuse) and deprivation (e.g., poverty, neglect) to test for differential associations. Participants were drawn from the North American Prodromal Longitudinal Study (NAPLS) and completed an MRI scan and a retrospective assessment of childhood adversity at baseline. We found that deprivation exposure, but not threat, was uniquely associated with smaller cortical volume and smaller right hippocampal volume in CHR youth. These associations were masked in a generalized risk model that utilized a total adversity score. The findings suggest that deprivation exposures during childhood contribute to the subtle volumetric reductions observed in clinical high-risk samples and highlight the importance of disentangling different dimensions of adversity.
Collapse
Affiliation(s)
- Allison M LoPilato
- Department of Psychiatry and Behavioral Sciences, Emory School of Medicine, 12 Executive Park, Atlanta, GA 30329, United States.
| | - Katrina Goines
- Department of Psychology, Emory University, 36 Eagle Row, Atlanta, GA 30322, United States
| | - Jean Addington
- Department of Psychiatry, Hotchkiss Brain Institute, University of Calgary, 3280 Hospital Drive NW, Calgary, AB T2N4Z6, Canada
| | - Carrie E Bearden
- Semel Institute for Neuroscience and Human Behavior and Department of Psychology, UCLA, 760 Westwood Plaza, Los Angeles, CA 90095, United States
| | - Kristin S Cadenhead
- Department of Psychiatry, UCSD, 9500 Gilman Drive, La Jolla, CA 92093-0761, United States
| | - Tyrone D Cannon
- Department of Psychiatry, Yale University, 300 George St., New Haven, CT 06511, United States; Department of Psychology, Yale University, 2 Hillhouse Ave., New Haven, CT 06520-8205, United States
| | - Barbara A Cornblatt
- Department of Psychiatry, Zucker Hillside Hospital, 75-59 263rd St., Queens, NY 11004, United States
| | - Daniel H Mathalon
- Department of Psychiatry, UCSF, 401 Parnassus Avenue, San Francisco, CA 94143, United States
| | - Thomas H McGlashan
- Department of Psychiatry, Yale University, 300 George St., New Haven, CT 06511, United States
| | - Larry Seidman
- Harvard Medical School, Department of Psychiatry, 401 Park Drive, 2 East, Boston, MA 02215, United States
| | - Diana O Perkins
- Department of Psychiatry, University of North Carolina, Chapel Hill, 101 Manning Dr, Chapel Hill, NC 27514, United States
| | - Ming T Tsuang
- Department of Psychiatry, UCSD, 9500 Gilman Drive, La Jolla, CA 92093-0761, United States
| | - Scott W Woods
- Department of Psychiatry, Yale University, 300 George St., New Haven, CT 06511, United States
| | - Elaine F Walker
- Department of Psychiatry and Behavioral Sciences, Emory School of Medicine, 12 Executive Park, Atlanta, GA 30329, United States; Department of Psychology, Emory University, 36 Eagle Row, Atlanta, GA 30322, United States
| |
Collapse
|
14
|
Matsudaira I, Oba K, Takeuchi H, Sekiguchi A, Tomita H, Taki Y, Kawashima R. rs1360780 of the FKBP5 gene modulates the association between maternal acceptance and regional gray matter volume in the thalamus in children and adolescents. PLoS One 2019; 14:e0221768. [PMID: 31465499 PMCID: PMC6715198 DOI: 10.1371/journal.pone.0221768] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 08/14/2019] [Indexed: 12/20/2022] Open
Abstract
Investigating the effects of gene–environment interactions (G × E) with regard to brain structure may help to elucidate the putative mechanisms associated with psychiatric risk. rs1360780 (C/T) is a functional single-nucleotide polymorphism (SNP) in the gene encoding FK506–binding protein 5 (FKBP5), which is involved in the regulation of the hypothalamic–pituitary–adrenal (HPA) axis stress responses. The minor (T) allele of FKBP5 is considered a risk allele for stress-related disorders, due to the overproduction of FKBP5, which results in impaired communication of stress signals with the HPA axis. Previous studies have reported that interactions between childhood maltreatment and the rs1360780 genotype affect structures in subcortical areas of the brain. However, it is unclear how this SNP modulates the association between non-adverse environments and brain structure. In this study, we examined the interactive effect of the rs1360780 genotype and maternal acceptance on the regional gray matter volume (rGMV) in 202 Japanese children. Maternal acceptance was assessed using a Japanese psychological questionnaire for mothers. Whole-brain multiple regression analysis using voxel-based morphometry showed a significant positive association between maternal acceptance and rGMV in the left thalamus of T-allele carriers, while a significant negative association was found in C/C homozygotes. Post-hoc analysis revealed that at or below the 70th percentiles of maternal acceptance, the T-allele carriers had a reduced thalamic rGMV compared with that of C/C homozygotes. Thus, our investigation indicated that the effect of the maternal acceptance level on brain development was different, depending on the rs1360780 genotype. Importantly, we found that the differences in brain structure between the T-allele carriers and C/C homozygotes at low to moderate levels of maternal acceptance, which is not equivalent to maltreatment. The present study contributes to the G × E research by highlighting the necessity to investigate the role of non-adverse environmental factors.
Collapse
Affiliation(s)
- Izumi Matsudaira
- Department of Nuclear Medicine and Radiology, Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
- * E-mail:
| | - Kentaro Oba
- Department of Human Brain Science, Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Japan
| | - Hikaru Takeuchi
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Japan
| | - Atsushi Sekiguchi
- Department of Behavioral Medicine, National Institute of Mental Health, National Center for Neurology and Psychiatry, Tokyo, Japan
- Division of Medical Neuroimaging Analysis, Department of Community Medical Supports, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Hiroaki Tomita
- Department of Disaster Psychiatry, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan
- Department of Psychiatry, Tohoku University Hospital, Sendai, Japan
| | - Yasuyuki Taki
- Department of Nuclear Medicine and Radiology, Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Japan
- Division of Medical Neuroimaging Analysis, Department of Community Medical Supports, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- Smart-Aging Research Center, Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Japan
| | - Ryuta Kawashima
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Japan
- Smart-Aging Research Center, Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Japan
- Department of Advanced Brain Science, Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Japan
- Smart Aging International Research Center, Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Japan
| |
Collapse
|
15
|
Pozzi E, Bousman CA, Simmons JG, Vijayakumar N, Schwartz O, Seal M, Yap MB, Allen NB, Whittle SL. Interaction between hypothalamic-pituitary-adrenal axis genetic variation and maternal behavior in the prediction of amygdala connectivity in children. Neuroimage 2019; 197:493-501. [DOI: 10.1016/j.neuroimage.2019.05.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 04/10/2019] [Accepted: 05/06/2019] [Indexed: 11/27/2022] Open
|
16
|
Gong L, Xu R, Lan L, Liu D, Shen J, Zhang B. The CD33 genotype associated cognitive performance was bidirectionally modulated by intrinsic functional connectivity in the Alzheimer’s disease spectrum. Biomed Pharmacother 2019; 115:108903. [DOI: 10.1016/j.biopha.2019.108903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 04/10/2019] [Accepted: 04/22/2019] [Indexed: 12/26/2022] Open
|
17
|
Hartling C, Fan Y, Weigand A, Trilla I, Gärtner M, Bajbouj M, Dziobek I, Grimm S. Interaction of HPA axis genetics and early life stress shapes emotion recognition in healthy adults. Psychoneuroendocrinology 2019; 99:28-37. [PMID: 30172967 DOI: 10.1016/j.psyneuen.2018.08.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 08/15/2018] [Accepted: 08/22/2018] [Indexed: 12/23/2022]
Abstract
BACKGROUND Early life stress (ELS) affects facial emotion recognition (FER), as well as the underlying brain network. However, there is considerable inter-individual variability in these ELS-caused alterations. As the hypothalamic-pituitary-adrenal (HPA) axis is assumed to mediate neural and behavioural sequelae of ELS, the genetic disposition towards HPA axis reactivity might explain differential vulnerabilities. METHODS An additive genetic profile score (GPS) of HPA axis reactivity was built from 6 SNPs in 3 HPA axis-related genes (FKBP5, CRHR1, NR3C1). We studied two independent samples. As a proof of concept, GPS was tested as a predictor of cortisol increase to a psychosocial challenge (MIST) in a healthy community sample of n = 40. For the main study, a sample of n = 170 completed a video-based FER task and retrospectively reported ELS experiences in the Childhood Trauma Questionnaire (CTQ). RESULTS GPS positively predicted cortisol increase in the stress challenge over and above covariates. CTQ and genetic profile scores interacted to predict facial emotion recognition, such that ELS had a detrimental effect on emotion processing only in individuals with higher GPS. Post-hoc moderation analyses revealed that, while a less stress-responsive genetic profile was protective against ELS effects, individuals carrying a moderate to high GPS were affected by ELS in their ability to infer emotion from facial expressions. DISCUSSION These results suggest that a biologically informed genetic profile score can capture the genetic disposition to HPA axis reactivity and moderates the influence of early environmental factors on facial emotion recognition. Further research should investigate the neural mechanisms underlying this moderation. The GPS used here might prove a powerful tool for studying inter-individual differences in vulnerability to early life stress.
Collapse
Affiliation(s)
- Corinna Hartling
- Klinik und Hochschulambulanz für Psychiatrie und Psychotherapie, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany.
| | - Yan Fan
- Klinik und Hochschulambulanz für Psychiatrie und Psychotherapie, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Anne Weigand
- Klinik und Hochschulambulanz für Psychiatrie und Psychotherapie, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany; School of Mind and Brain, Humboldt-Universität zu Berlin, Luisenstraße 56, 10117 Berlin, Germany
| | - Irene Trilla
- School of Mind and Brain, Humboldt-Universität zu Berlin, Luisenstraße 56, 10117 Berlin, Germany
| | - Matti Gärtner
- Klinik und Hochschulambulanz für Psychiatrie und Psychotherapie, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Malek Bajbouj
- Klinik und Hochschulambulanz für Psychiatrie und Psychotherapie, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Isabel Dziobek
- School of Mind and Brain, Humboldt-Universität zu Berlin, Luisenstraße 56, 10117 Berlin, Germany
| | - Simone Grimm
- Klinik und Hochschulambulanz für Psychiatrie und Psychotherapie, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany; Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, 8032 Zurich, Switzerland; MSB Medical School Berlin, Calandrellistr. 1-9, 12247 Berlin, Germany
| |
Collapse
|
18
|
van Leeuwen JMC, Vink M, Fernández G, Hermans EJ, Joëls M, Kahn RS, Vinkers CH. At-risk individuals display altered brain activity following stress. Neuropsychopharmacology 2018; 43:1954-1960. [PMID: 29483659 PMCID: PMC6046038 DOI: 10.1038/s41386-018-0026-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 01/30/2018] [Accepted: 02/05/2018] [Indexed: 12/17/2022]
Abstract
Stress is a major risk factor for almost all psychiatric disorders, however, the underlying neurobiological mechanisms remain largely elusive. In healthy individuals, a successful stress response involves an adequate neuronal adaptation to a changing environment. This adaptive response may be dysfunctional in vulnerable individuals, potentially contributing to the development of psychopathology. In the current study, we investigated brain responses to emotional stimuli following stress in healthy controls and at-risk individuals. An fMRI study was conducted in healthy male controls (N = 39) and unaffected healthy male siblings of schizophrenia patients (N = 39) who are at increased risk for the development of a broad range of psychiatric disorders. Brain responses to pictures from the International Affective Picture System (IAPS) were measured 33 min after exposure to stress induced by the validated trier social stress test (TSST) or a control condition. Stress-induced levels of cortisol, alpha-amylase, and subjective stress were comparable in both groups. Yet, stress differentially affected brain responses of schizophrenia siblings versus controls. Specifically, control subjects, but not schizophrenia siblings, showed reduced brain activity in key nodes of the default mode network (PCC/precuneus and mPFC) and salience network (anterior insula) as well as the STG, MTG, MCC, vlPFC, precentral gyrus, and cerebellar vermis in response to all pictures following stress. These results indicate that even in the absence of a psychiatric disorder, at-risk individuals display abnormal functional activation following stress, which in turn may increase their vulnerability and risk for adverse outcomes.
Collapse
Affiliation(s)
- J M C van Leeuwen
- Department of Psychiatry, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - M Vink
- Experimental Psychology, Utrecht University, Utrecht, The Netherlands
| | - G Fernández
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Nijmegen, The Netherlands
| | - E J Hermans
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Nijmegen, The Netherlands
| | - M Joëls
- Department of Translational Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
- University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - R S Kahn
- Department of Psychiatry, University Medical Center Utrecht, Utrecht, The Netherlands
| | - C H Vinkers
- Department of Psychiatry, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
19
|
|
20
|
Mufford MS, Stein DJ, Dalvie S, Groenewold NA, Thompson PM, Jahanshad N. Neuroimaging genomics in psychiatry-a translational approach. Genome Med 2017; 9:102. [PMID: 29179742 PMCID: PMC5704437 DOI: 10.1186/s13073-017-0496-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Neuroimaging genomics is a relatively new field focused on integrating genomic and imaging data in order to investigate the mechanisms underlying brain phenotypes and neuropsychiatric disorders. While early work in neuroimaging genomics focused on mapping the associations of candidate gene variants with neuroimaging measures in small cohorts, the lack of reproducible results inspired better-powered and unbiased large-scale approaches. Notably, genome-wide association studies (GWAS) of brain imaging in thousands of individuals around the world have led to a range of promising findings. Extensions of such approaches are now addressing epigenetics, gene–gene epistasis, and gene–environment interactions, not only in brain structure, but also in brain function. Complementary developments in systems biology might facilitate the translation of findings from basic neuroscience and neuroimaging genomics to clinical practice. Here, we review recent approaches in neuroimaging genomics—we highlight the latest discoveries, discuss advantages and limitations of current approaches, and consider directions by which the field can move forward to shed light on brain disorders.
Collapse
Affiliation(s)
- Mary S Mufford
- UCT/MRC Human Genetics Research Unit, Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa, 7925
| | - Dan J Stein
- MRC Unit on Risk and Resilience, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa, 7925.,Department of Psychiatry and Mental Health, Groote Schuur Hospital, Cape Town, South Africa, 7925
| | - Shareefa Dalvie
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa, 7925
| | - Nynke A Groenewold
- Department of Psychiatry and Mental Health, Groote Schuur Hospital, Cape Town, South Africa, 7925
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA, 90292, USA
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA, 90292, USA.
| |
Collapse
|
21
|
Gong L, He C, Yin Y, Wang H, Ye Q, Bai F, Yuan Y, Zhang H, Lv L, Zhang H, Zhang Z, Xie C. Mediating Role of the Reward Network in the Relationship between the Dopamine Multilocus Genetic Profile and Depression. Front Mol Neurosci 2017; 10:292. [PMID: 28959185 PMCID: PMC5603675 DOI: 10.3389/fnmol.2017.00292] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 08/31/2017] [Indexed: 12/24/2022] Open
Abstract
Multiple genetic loci in the dopamine (DA) pathway have been associated with depression symptoms in patients with major depressive disorder (MDD). However, the neural mechanisms underlying the polygenic effects of the DA pathway on depression remain unclear. We used an imaging genetic approach to investigate the polygenic effects of the DA pathway on the reward network in MDD. Fifty-three patients and 37 cognitively normal (CN) subjects were recruited and underwent resting-state functional magnetic resonance imaging (R-fMRI) scans. Multivariate linear regression analysis was employed to measure the effects of disease and multilocus genetic profile scores (MGPS) on the reward network, which was constructed using the nucleus accumbens (NAc) functional connectivity (NAFC) network. DA-MGPS was widely associated within the NAFC network, mainly in the inferior frontal cortex, insula, hypothalamus, superior temporal gyrus, and occipital cortex. The pattern of DA-MGPS effects on the fronto-striatal pathway differed in MDD patients compared with CN subjects. More importantly, NAc-putamen connectivity mediates the association between DA MGPS and anxious depression traits in MDD patients. Our findings suggest that the DA multilocus genetic profile makes a considerable contribution to the reward network and anxious depression in MDD patients. These results expand our understanding of the pathophysiology of polygenic effects underlying brain network abnormalities in MDD.
Collapse
Affiliation(s)
- Liang Gong
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast UniversityNanjing, China
| | - Cancan He
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast UniversityNanjing, China
| | - Yingying Yin
- Department of Psychology, Affiliated ZhongDa Hospital, School of Medicine, Southeast UniversityNanjing, China
| | - Hui Wang
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast UniversityNanjing, China
| | - Qing Ye
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast UniversityNanjing, China
| | - Feng Bai
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast UniversityNanjing, China.,Neuropsychaitric institute, Affiliated ZhongDa Hospital, Southeast UniversityNanjing, China
| | - Yonggui Yuan
- Department of Psychology, Affiliated ZhongDa Hospital, School of Medicine, Southeast UniversityNanjing, China.,Neuropsychaitric institute, Affiliated ZhongDa Hospital, Southeast UniversityNanjing, China
| | - Haisan Zhang
- Department of Psychiatry, Henan Mental Hospital, the Second Hospital of Xinxiang Medical UniversityXinxiang, China
| | - Luxian Lv
- Department of Psychiatry, Henan Mental Hospital, the Second Hospital of Xinxiang Medical UniversityXinxiang, China
| | - Hongxing Zhang
- Department of Psychiatry, Henan Mental Hospital, the Second Hospital of Xinxiang Medical UniversityXinxiang, China
| | - Zhijun Zhang
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast UniversityNanjing, China.,Neuropsychaitric institute, Affiliated ZhongDa Hospital, Southeast UniversityNanjing, China
| | - Chunming Xie
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast UniversityNanjing, China.,Neuropsychaitric institute, Affiliated ZhongDa Hospital, Southeast UniversityNanjing, China
| |
Collapse
|
22
|
Bogdan R, Salmeron BJ, Carey CE, Agrawal A, Calhoun VD, Garavan H, Hariri AR, Heinz A, Hill MN, Holmes A, Kalin NH, Goldman D. Imaging Genetics and Genomics in Psychiatry: A Critical Review of Progress and Potential. Biol Psychiatry 2017; 82:165-175. [PMID: 28283186 PMCID: PMC5505787 DOI: 10.1016/j.biopsych.2016.12.030] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 12/21/2016] [Accepted: 12/28/2016] [Indexed: 12/17/2022]
Abstract
Imaging genetics and genomics research has begun to provide insight into the molecular and genetic architecture of neural phenotypes and the neural mechanisms through which genetic risk for psychopathology may emerge. As it approaches its third decade, imaging genetics is confronted by many challenges, including the proliferation of studies using small sample sizes and diverse designs, limited replication, problems with harmonization of neural phenotypes for meta-analysis, unclear mechanisms, and evidence that effect sizes may be more modest than originally posited, with increasing evidence of polygenicity. These concerns have encouraged the field to grow in many new directions, including the development of consortia and large-scale data collection projects and the use of novel methods (e.g., polygenic approaches, machine learning) that enhance the quality of imaging genetic studies but also introduce new challenges. We critically review progress in imaging genetics and offer suggestions and highlight potential pitfalls of novel approaches. Ultimately, the strength of imaging genetics and genomics lies in their translational and integrative potential with other research approaches (e.g., nonhuman animal models, psychiatric genetics, pharmacologic challenge) to elucidate brain-based pathways that give rise to the vast individual differences in behavior as well as risk for psychopathology.
Collapse
Affiliation(s)
- Ryan Bogdan
- BRAIN Lab, Department of Psychological and Brain Sciences, St. Louis, Missouri.
| | - Betty Jo Salmeron
- Neuroimaging Research Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, Maryland
| | - Caitlin E Carey
- BRAIN Lab, Department of Psychological and Brain Sciences, St. Louis, Missouri
| | - Arpana Agrawal
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri
| | - Vince D Calhoun
- Mind Research Network and Lovelace Biomedical and Environmental Research Institute, University of New Mexico, Albuquerque, New Mexico; Departments of Psychiatry and Neuroscience, University of New Mexico, Albuquerque, New Mexico; Electronic and Computer Engineering, University of New Mexico, Albuquerque, New Mexico
| | - Hugh Garavan
- Department of Psychiatry, University of Vermont, Burlington, Vermont
| | - Ahmad R Hariri
- Laboratory of NeuroGenetics, Department of Psychology & Neuroscience, Duke University, Durham, North Carolina
| | - Andreas Heinz
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Matthew N Hill
- Hotchkiss Brain Institute, Departments of Cell Biology and Anatomy and Psychiatry, University of Calgary, Calgary, Alberta, Canada
| | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland
| | - Ned H Kalin
- Department of Psychiatry, University of Wisconsin, Madison, Wisconsin; Neuroscience Training Program (NHK, RK, PHR, DPMT, MEE), University of Wisconsin, Madison, Wisconsin; Wisconsin National Primate Research Center (NHK, MEE), Madison, Wisconsin
| | - David Goldman
- Laboratory of Neurogenetics, Intramural Research Program, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland
| |
Collapse
|
23
|
Di Iorio CR, Carey CE, Michalski LJ, Corral-Frias NS, Conley ED, Hariri AR, Bogdan R. Hypothalamic-pituitary-adrenal axis genetic variation and early stress moderates amygdala function. Psychoneuroendocrinology 2017; 80:170-178. [PMID: 28364727 PMCID: PMC5685810 DOI: 10.1016/j.psyneuen.2017.03.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 03/09/2017] [Accepted: 03/09/2017] [Indexed: 01/17/2023]
Abstract
Early life stress may precipitate psychopathology, at least in part, by influencing amygdala function. Converging evidence across species suggests that links between childhood stress and amygdala function may be dependent upon hypothalamic-pituitary-adrenal (HPA) axis function. Using data from college-attending non-Hispanic European-Americans (n=308) who completed the Duke Neurogenetics Study, we examined whether early life stress (ELS) and HPA axis genetic variation interact to predict threat-related amygdala function as well as psychopathology symptoms. A biologically-informed multilocus profile score (BIMPS) captured HPA axis genetic variation (FKBP5 rs1360780, CRHR1 rs110402; NR3C2 rs5522/rs4635799) previously associated with its function (higher BIMPS are reflective of higher HPA axis activity). BOLD fMRI data were acquired while participants completed an emotional face matching task. ELS and depression and anxiety symptoms were measured using the childhood trauma questionnaire and the mood and anxiety symptom questionnaire, respectively. The interaction between HPA axis BIMPS and ELS was associated with right amygdala reactivity to threat-related stimuli, after accounting for multiple testing (empirical-p=0.016). Among individuals with higher BIMPS (i.e., the upper 21.4%), ELS was positively coupled with threat-related amygdala reactivity, which was absent among those with average or low BIMPS. Further, higher BIMPS were associated with greater self-reported anxious arousal, though there was no evidence that amygdala function mediated this relationship. Polygenic variation linked to HPA axis function may moderate the effects of early life stress on threat-related amygdala function and confer risk for anxiety symptomatology. However, what, if any, neural mechanisms may mediate the relationship between HPA axis BIMPS and anxiety symptomatology remains unclear.
Collapse
Affiliation(s)
- Christina R Di Iorio
- BRAIN Lab, Department of Psychology, Washington University in St. Louis, St. Louis, MO, USA.
| | - Caitlin E Carey
- BRAIN Lab, Department of Psychology, Washington University in St. Louis, St. Louis, MO, USA
| | - Lindsay J Michalski
- BRAIN Lab, Department of Psychology, Washington University in St. Louis, St. Louis, MO, USA
| | - Nadia S Corral-Frias
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
| | | | - Ahmad R Hariri
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Ryan Bogdan
- BRAIN Lab, Department of Psychology, Washington University in St. Louis, St. Louis, MO, USA; Neurosciences Program, Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO, USA; Molecular Genetics and Genomics Program, Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO, USA; Human and Statistical Genetics Program, Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
24
|
Reward-related ventral striatum activity links polygenic risk for attention-deficit/hyperactivity disorder to problematic alcohol use in young adulthood. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2017; 2:180-187. [PMID: 28825048 DOI: 10.1016/j.bpsc.2016.10.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Problematic alcohol use in adolescence and adulthood is a common and often debilitating correlate of childhood attention-deficit/hyperactivity disorder (ADHD). Converging evidence suggests that ADHD and problematic alcohol use share a common additive genetic basis, which may be mechanistically related to reward-related brain function. In the current study, we examined whether polygenic risk for childhood ADHD is linked to problematic alcohol use in young adulthood through alterations in reward-related activity of the ventral striatum, a neural hub supporting appetitive behaviors and reinforcement learning. METHODS Genomic, neuroimaging, and self-report data were available for 404 non-Hispanic European-American participants who completed the ongoing Duke Neurogenetics Study. Polygenic risk scores for childhood ADHD were calculated based on a genome-wide association study meta-analysis conducted by the Psychiatric Genomics Consortium and tested for association with reward-related ventral striatum activity, measured using a number-guessing functional magnetic resonance imaging paradigm, and self-reported problematic alcohol use. A mediational model tested whether ventral striatum activity indirectly links polygenic risk for ADHD to problematic alcohol use. RESULTS Despite having no main effect on problematic alcohol use, polygenic risk for childhood ADHD was indirectly associated with problematic alcohol use through increased reward-related ventral striatum activity. CONCLUSIONS Individual differences in reward-related brain function may, at least in part, mechanistically link polygenic risk for childhood ADHD to problematic alcohol use.
Collapse
|
25
|
Shackman AJ, Tromp DPM, Stockbridge MD, Kaplan CM, Tillman RM, Fox AS. Dispositional negativity: An integrative psychological and neurobiological perspective. Psychol Bull 2016; 142:1275-1314. [PMID: 27732016 PMCID: PMC5118170 DOI: 10.1037/bul0000073] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Dispositional negativity-the propensity to experience and express more frequent, intense, or enduring negative affect-is a fundamental dimension of childhood temperament and adult personality. Elevated levels of dispositional negativity can have profound consequences for health, wealth, and happiness, drawing the attention of clinicians, researchers, and policymakers. Here, we highlight recent advances in our understanding of the psychological and neurobiological processes linking stable individual differences in dispositional negativity to momentary emotional states. Self-report data suggest that 3 key pathways-increased stressor reactivity, tonic increases in negative affect, and increased stressor exposure-explain most of the heightened negative affect that characterizes individuals with a more negative disposition. Of these 3 pathways, tonically elevated, indiscriminate negative affect appears to be most central to daily life and most relevant to the development of psychopathology. New behavioral and biological data provide insights into the neural systems underlying these 3 pathways and motivate the hypothesis that seemingly "tonic" increases in negative affect may actually reflect increased reactivity to stressors that are remote, uncertain, or diffuse. Research focused on humans, monkeys, and rodents suggests that this indiscriminate negative affect reflects trait-like variation in the activity and connectivity of several key brain regions, including the central extended amygdala and parts of the prefrontal cortex. Collectively, these observations provide an integrative psychobiological framework for understanding the dynamic cascade of processes that bind emotional traits to emotional states and, ultimately, to emotional disorders and other kinds of adverse outcomes. (PsycINFO Database Record
Collapse
Affiliation(s)
- Alexander J. Shackman
- Department of Psychology, University of Maryland, College Park, MD 20742 USA
- Department of Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD 20742 USA
- Maryland Neuroimaging Center, University of Maryland, College Park, MD 20742 USA
| | - Do P. M. Tromp
- Department of Psychology, University of California, Davis, CA 95616 USA
| | - Melissa D. Stockbridge
- Department of Hearing and Speech Sciences, University of Maryland, College Park, MD 20742 USA
| | - Claire M. Kaplan
- Department of Psychology, University of Maryland, College Park, MD 20742 USA
| | - Rachael M. Tillman
- Department of Psychology, University of Maryland, College Park, MD 20742 USA
| | - Andrew S. Fox
- Department of Psychology, University of California, Davis, CA 95616 USA
- California National Primate Research Center, University of California, Davis, CA 95616 USA
| |
Collapse
|
26
|
Carey CE, Agrawal A, Bucholz KK, Hartz SM, Lynskey MT, Nelson EC, Bierut LJ, Bogdan R. Associations between Polygenic Risk for Psychiatric Disorders and Substance Involvement. Front Genet 2016; 7:149. [PMID: 27574527 PMCID: PMC4983546 DOI: 10.3389/fgene.2016.00149] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 08/03/2016] [Indexed: 12/13/2022] Open
Abstract
Despite evidence of substantial comorbidity between psychiatric disorders and substance involvement, the extent to which common genetic factors contribute to their co-occurrence remains understudied. In the current study, we tested for associations between polygenic risk for psychiatric disorders and substance involvement (i.e., ranging from ever-use to severe dependence) among 2573 non-Hispanic European–American participants from the Study of Addiction: Genetics and Environment. Polygenic risk scores (PRS) for cross-disorder psychopathology (CROSS) were generated based on the Psychiatric Genomics Consortium’s Cross-Disorder meta-analysis and then tested for associations with a factor representing general liability to alcohol, cannabis, cocaine, nicotine, and opioid involvement (GENSUB). Follow-up analyses evaluated specific associations between each of the five psychiatric disorders which comprised CROSS—attention deficit hyperactivity disorder (ADHD), autism spectrum disorder (AUT), bipolar disorder (BIP), major depressive disorder (MDD), and schizophrenia (SCZ)—and involvement with each component substance included in GENSUB. CROSS PRS explained 1.10% of variance in GENSUB in our sample (p < 0.001). After correction for multiple testing in our follow-up analyses of polygenic risk for each individual disorder predicting involvement with each component substance, associations remained between: (A) MDD PRS and non-problem cannabis use, (B) MDD PRS and severe cocaine dependence, (C) SCZ PRS and non-problem cannabis use and severe cannabis dependence, and (D) SCZ PRS and severe cocaine dependence. These results suggest that shared covariance from common genetic variation contributes to psychiatric and substance involvement comorbidity.
Collapse
Affiliation(s)
- Caitlin E Carey
- Department of Psychological and Brain Sciences, Washington University in St. Louis St. Louis, MO, USA
| | - Arpana Agrawal
- Department of Psychiatry, Washington University School of Medicine St. Louis, MO, USA
| | - Kathleen K Bucholz
- Department of Psychiatry, Washington University School of Medicine St. Louis, MO, USA
| | - Sarah M Hartz
- Department of Psychiatry, Washington University School of Medicine St. Louis, MO, USA
| | | | - Elliot C Nelson
- Department of Psychiatry, Washington University School of Medicine St. Louis, MO, USA
| | - Laura J Bierut
- Department of Psychiatry, Washington University School of Medicine St. Louis, MO, USA
| | - Ryan Bogdan
- Department of Psychological and Brain Sciences, Washington University in St. Louis St. Louis, MO, USA
| |
Collapse
|
27
|
Bogdan R, Winstone JMA, Agrawal A. Genetic and Environmental Factors Associated with Cannabis Involvement. CURRENT ADDICTION REPORTS 2016; 3:199-213. [PMID: 27642547 PMCID: PMC5019486 DOI: 10.1007/s40429-016-0103-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Approximately 50-70% of the variation in cannabis use and use disorders can be attributed to heritable factors. For cannabis use, the remaining variance can be parsed in to familial and person-specific environmental factors while for use disorders, only the latter contribute. While numerous candidate gene studies have identified the role of common variation influencing liability to cannabis involvement, replication has been elusive. To date, no genomewide association study has been sufficiently powered to identify significant loci. Despite this, studies adopting polygenic techniques and integrating genetic variation with neural phenotypes and measures of environmental risk, such as childhood adversity, are providing promising new leads. It is likely that the small effect sizes associated with variants related to cannabis involvement will only be robustly identified in substantially larger samples. Results of such large-scale efforts will provide valuable single variant targets for translational research in neurogenetic, pharmacogenetic and non-human animal models as well as polygenic risk indices that can be used to explore a host of other genetic hypotheses related to cannabis use and misuse.
Collapse
Affiliation(s)
- Ryan Bogdan
- BRAIN lab, Department of Psychological and Brain Sciences, Washington University in St. Louis
| | - Jonathan MA Winstone
- BRAIN lab, Department of Psychological and Brain Sciences, Washington University in St. Louis
| | - Arpana Agrawal
- Department of Psychiatry, Washington University in St Louis, St Louis, Missouri
| |
Collapse
|
28
|
Early-Life Adversity Interacts with FKBP5 Genotypes: Altered Working Memory and Cardiac Stress Reactivity in the Oklahoma Family Health Patterns Project. Neuropsychopharmacology 2016; 41:1724-32. [PMID: 26632991 PMCID: PMC4869048 DOI: 10.1038/npp.2015.347] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 10/23/2015] [Accepted: 11/16/2015] [Indexed: 12/30/2022]
Abstract
Exposure to stress during critical periods of development can have adverse effects on adult health behaviors, and genetic vulnerabilities may enhance these stress effects. We carried out an exploratory examination of psychological, physiological, and behavioral characteristics of 252 healthy young adults for the impact of early-life adversity (ELA) in relation to the G-to-A single nucleotide polymorphism (SNP), rs9296158, of the FKBP5 gene. FKBP5 is a molecular cochaperone that contributes to the functional status of the glucocorticoid receptor (GR) and to the quality of corticosteroid signaling. FKBP5 expression is upregulated by cortisol exposure during stressful episodes, with greater upregulation seen in A-allele carriers. As such, FKBP5 expression and GR function may be environmentally sensitive in A-allele carriers and therefore suitable for the study of gene-by-environment (G × E) interactions. Compared with FKBP5, GG homozygotes (N=118), A-allele carriers (N = 132) without psychiatric morbidity had progressively worse performance on the Stroop color-word task with increasing levels of ELA exposure (Genotype × ELA, F=5.14, P=0.007), indicating a G × E interaction on working memory in early adulthood. In addition, heart rate response to mental stress was diminished overall in AA/AG-allele carriers (F=5.15, P=0.024). Diminished working memory and attenuated autonomic responses to stress are both associated with risk for alcoholism and other substance use disorders. The present data suggest that FKBP5 in the GR pathway may be a point of vulnerability to ELA, as seen in this group of non-traumatized young adults. FKBP5 is accordingly a potential target for more extensive studies of the impact of ELA on health and health behaviors in adulthood.
Collapse
|
29
|
Intensified vmPFC surveillance over PTSS under perturbed microRNA-608/AChE interaction. Transl Psychiatry 2016; 6:e801. [PMID: 27138800 PMCID: PMC5070052 DOI: 10.1038/tp.2016.70] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 03/14/2016] [Accepted: 03/20/2016] [Indexed: 12/12/2022] Open
Abstract
Trauma causes variable risk of posttraumatic stress symptoms (PTSS) owing to yet-unknown genome-neuronal interactions. Here, we report co-intensified amygdala and ventromedial prefrontal cortex (vmPFC) emotional responses that may overcome PTSS in individuals with the single-nucleotide polymorphism (SNP) rs17228616 in the acetylcholinesterase (AChE) gene. We have recently shown that in individuals with the minor rs17228616 allele, this SNP interrupts AChE suppression by microRNA (miRNA)-608, leading to cortical elevation of brain AChE and reduced cortisol and the miRNA-608 target GABAergic modulator CDC42, all stress-associated. To examine whether this SNP has effects on PTSS and threat-related brain circuits, we exposed 76 healthy Israel Defense Forces soldiers who experienced chronic military stress to a functional magnetic resonance imaging task of emotional and neutral visual stimuli. Minor allele individuals predictably reacted to emotional stimuli by hyperactivated amygdala, a hallmark of PTSS and a predisposing factor of posttraumatic stress disorder (PTSD). Despite this, minor allele individuals showed no difference in PTSS levels. Mediation analyses indicated that the potentiated amygdala reactivity in minor allele soldiers promoted enhanced vmPFC recruitment that was associated with their limited PTSS. Furthermore, we found interrelated expression levels of several miRNA-608 targets including CD44, CDC42 and interleukin 6 in human amygdala samples (N=7). Our findings suggest that miRNA-608/AChE interaction is involved in the threat circuitry and PTSS and support a model where greater vmPFC regulatory activity compensates for amygdala hyperactivation in minor allele individuals to neutralize their PTSS susceptibility.
Collapse
|
30
|
Lebois LAM, Wolff JD, Ressler KJ. Neuroimaging genetic approaches to Posttraumatic Stress Disorder. Exp Neurol 2016; 284:141-152. [PMID: 27109180 DOI: 10.1016/j.expneurol.2016.04.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 04/10/2016] [Accepted: 04/20/2016] [Indexed: 12/16/2022]
Abstract
Neuroimaging genetic studies that associate genetic and epigenetic variation with neural activity or structure provide an opportunity to link genes to psychiatric disorders, often before psychopathology is discernable in behavior. Here we review neuroimaging genetics studies with participants who have Posttraumatic Stress Disorder (PTSD). Results show that genes related to the physiological stress response (e.g., glucocorticoid receptor and activity, neuroendocrine release), learning and memory (e.g., plasticity), mood, and pain perception are tied to neural intermediate phenotypes associated with PTSD. These genes are associated with and sometimes predict neural structure and function in areas involved in attention, executive function, memory, decision-making, emotion regulation, salience of potential threats, and pain perception. Evidence suggests these risk polymorphisms and neural intermediate phenotypes are vulnerabilities toward developing PTSD in the aftermath of trauma, or vulnerabilities toward particular symptoms once PTSD has developed. Work distinguishing between the re-experiencing and dissociative sub-types of PTSD, and examining other PTSD symptom clusters in addition to the re-experiencing and hyperarousal symptoms, will further clarify neurobiological mechanisms and inconsistent findings. Furthermore, an exciting possibility is that genetic associations with PTSD may eventually be understood through differential intermediate phenotypes of neural circuit structure and function, possibly underlying the different symptom clusters seen within PTSD.
Collapse
Affiliation(s)
- Lauren A M Lebois
- Department of Depression and Anxiety, McLean Hospital, Belmont, MA, United States; Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| | - Jonathan D Wolff
- Department of Depression and Anxiety, McLean Hospital, Belmont, MA, United States; Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| | - Kerry J Ressler
- Department of Depression and Anxiety, McLean Hospital, Belmont, MA, United States; Department of Psychiatry, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
31
|
|
32
|
Abstract
The exposure to a life-threatening disease such as cancer may constitute a traumatic experience that in some cases may lead to the development of posttraumatic stress disorder (PTSD). In recent years, several studies investigated this syndrome in patients with cancer, but few focused on the underlying neurobiology. The aim of this work was to review the current literature of neurobiology of PTSD in oncological diseases, focusing on a comparison with the results of neurobiological studies on PTSD in non-oncological patients and on treatments resulted effective for such disorder. Brain structures having a role in the appearance of PTSD in psycho-oncology, and in particular, in intrusive symptoms, seem to be the same involved in non-oncologic PTSD. These findings may have important implications also at clinical level, suggesting that psychotherapies found to be effective to treat PTSD in different populations may be offered also to patients with cancer-induced posttraumatic symptoms. Further studies are needed to deepen our knowledge about cancer-related PTSD neurobiology and its treatment, aiming at transferring the results into clinical practice.
Collapse
|