1
|
Kalendar R, Shevtsov A, Otarbay Z, Ismailova A. In silico PCR analysis: a comprehensive bioinformatics tool for enhancing nucleic acid amplification assays. FRONTIERS IN BIOINFORMATICS 2024; 4:1464197. [PMID: 39435190 PMCID: PMC11491563 DOI: 10.3389/fbinf.2024.1464197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 09/17/2024] [Indexed: 10/23/2024] Open
Abstract
Nucleic acid amplification assays represent a pivotal category of methodologies for targeted sequence detection within contemporary biological research, boasting diverse utility in diagnostics, identification, and DNA sequencing. The foundational principles of these assays have been extrapolated to various simple and intricate nucleic acid amplification technologies. Concurrently, a burgeoning trend toward computational or virtual methodologies is exemplified by in silico PCR analysis. In silico PCR analysis is a valuable and productive adjunctive approach for ensuring primer or probe specificity across a broad spectrum of PCR applications encompassing gene discovery through homology analysis, molecular diagnostics, DNA profiling, and repeat sequence identification. The prediction of primer and probe sensitivity and specificity necessitates thorough database searches, accounting for an optimal balance of mismatch tolerance, sequence similarity, and thermal stability. This software facilitates in silico PCR analyses of both linear and circular DNA templates, including bisulfited treatment DNA, enabling multiple primer or probe searches within databases of varying scales alongside advanced search functionalities. This tool is suitable for processing batch files and is essential for automation when working with large amounts of data.
Collapse
Affiliation(s)
- Ruslan Kalendar
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Biocentre 3, Helsinki, Finland
- National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | | | | | - Aisulu Ismailova
- Department Information Systems, S. Seifullin Kazakh Agro Technical Research University, Astana, Kazakhstan
| |
Collapse
|
2
|
Zong W, Zhao R, Wang X, Zhou C, Wang J, Chen C, Niu N, Zheng Y, Chen L, Liu X, Hou X, Zhao F, Wang L, Wang L, Song C, Zhang L. Population genetic analysis based on the polymorphisms mediated by transposons in the genomes of pig. DNA Res 2024; 31:dsae008. [PMID: 38447059 PMCID: PMC11090087 DOI: 10.1093/dnares/dsae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 03/08/2024] Open
Abstract
Transposable elements (TEs) mobility is capable of generating a large number of structural variants (SVs), which can have considerable potential as molecular markers for genetic analysis and molecular breeding in livestock. Our results showed that the pig genome contains mainly TE-SVs generated by short interspersed nuclear elements (51,873/76.49%), followed by long interspersed nuclear elements (11,131/16.41%), and more than 84% of the common TE-SVs (Minor allele frequency, MAF > 0.10) were validated to be polymorphic. Subsequently, we utilized the identified TE-SVs to gain insights into the population structure, resulting in clear differentiation among the three pig groups and facilitating the identification of relationships within Chinese local pig breeds. In addition, we investigated the frequencies of TEs in the gene coding regions of different pig groups and annotated the respective TE types, related genes, and functional pathways. Through genome-wide comparisons of Large White pigs and Chinese local pigs utilizing the Beijing Black pigs, we identified TE-mediated SVs associated with quantitative trait loci and observed that they were mainly involved in carcass traits and meat quality traits. Lastly, we present the first documented evidence of TE transduction in the pig genome.
Collapse
Affiliation(s)
- Wencheng Zong
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Runze Zhao
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- College of Animal Science, Shanxi Agricultural University, Jinzhong, China
| | - Xiaoyan Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Chenyu Zhou
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Jinbu Wang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Cai Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Naiqi Niu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Yao Zheng
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Li Chen
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- Chongqing Academy of Animal Science, Chongqing, China
| | - Xin Liu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Xinhua Hou
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Fuping Zhao
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Ligang Wang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Lixian Wang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Chengyi Song
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Longchao Zhang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| |
Collapse
|
3
|
Maiwald S, Mann L, Garcia S, Heitkam T. Evolving Together: Cassandra Retrotransposons Gradually Mirror Promoter Mutations of the 5S rRNA Genes. Mol Biol Evol 2024; 41:msae010. [PMID: 38262464 PMCID: PMC10853983 DOI: 10.1093/molbev/msae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/26/2023] [Accepted: 12/11/2023] [Indexed: 01/25/2024] Open
Abstract
The 5S rRNA genes are among the most conserved nucleotide sequences across all species. Similar to the 5S preservation we observe the occurrence of 5S-related nonautonomous retrotransposons, so-called Cassandras. Cassandras harbor highly conserved 5S rDNA-related sequences within their long terminal repeats, advantageously providing them with the 5S internal promoter. However, the dynamics of Cassandra retrotransposon evolution in the context of 5S rRNA gene sequence information and structural arrangement are still unclear, especially: (1) do we observe repeated or gradual domestication of the highly conserved 5S promoter by Cassandras and (2) do changes in 5S organization such as in the linked 35S-5S rDNA arrangements impact Cassandra evolution? Here, we show evidence for gradual co-evolution of Cassandra sequences with their corresponding 5S rDNAs. To follow the impact of 5S rDNA variability on Cassandra TEs, we investigate the Asteraceae family where highly variable 5S rDNAs, including 5S promoter shifts and both linked and separated 35S-5S rDNA arrangements have been reported. Cassandras within the Asteraceae mirror 5S rDNA promoter mutations of their host genome, likely as an adaptation to the host's specific 5S transcription factors and hence compensating for evolutionary changes in the 5S rDNA sequence. Changes in the 5S rDNA sequence and in Cassandras seem uncorrelated with linked/separated rDNA arrangements. We place all these observations into the context of angiosperm 5S rDNA-Cassandra evolution, discuss Cassandra's origin hypotheses (single or multiple) and Cassandra's possible impact on rDNA and plant genome organization, giving new insights into the interplay of ribosomal genes and transposable elements.
Collapse
Affiliation(s)
- Sophie Maiwald
- Faculty of Biology, Technische Universität Dresden, 01069 Dresden, Germany
| | - Ludwig Mann
- Faculty of Biology, Technische Universität Dresden, 01069 Dresden, Germany
| | - Sònia Garcia
- Institut Botànic de Barcelona, IBB (CSIC-MCNB), 08038 Barcelona, Catalonia, Spain
| | - Tony Heitkam
- Faculty of Biology, Technische Universität Dresden, 01069 Dresden, Germany
- Institute of Biology, NAWI Graz, Karl-Franzens-Universität, 8010 Graz, Austria
| |
Collapse
|
4
|
Hassan AH, Mokhtar MM, El Allali A. Transposable elements: multifunctional players in the plant genome. FRONTIERS IN PLANT SCIENCE 2024; 14:1330127. [PMID: 38239225 PMCID: PMC10794571 DOI: 10.3389/fpls.2023.1330127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/06/2023] [Indexed: 01/22/2024]
Abstract
Transposable elements (TEs) are indispensable components of eukaryotic genomes that play diverse roles in gene regulation, recombination, and environmental adaptation. Their ability to mobilize within the genome leads to gene expression and DNA structure changes. TEs serve as valuable markers for genetic and evolutionary studies and facilitate genetic mapping and phylogenetic analysis. They also provide insight into how organisms adapt to a changing environment by promoting gene rearrangements that lead to new gene combinations. These repetitive sequences significantly impact genome structure, function and evolution. This review takes a comprehensive look at TEs and their applications in biotechnology, particularly in the context of plant biology, where they are now considered "genomic gold" due to their extensive functionalities. The article addresses various aspects of TEs in plant development, including their structure, epigenetic regulation, evolutionary patterns, and their use in gene editing and plant molecular markers. The goal is to systematically understand TEs and shed light on their diverse roles in plant biology.
Collapse
Affiliation(s)
- Asmaa H. Hassan
- Bioinformatics Laboratory, College of Computing, Mohammed VI Polytechnic University, Ben Guerir, Morocco
- Agricultural Genetic Engineering Research Institute, Agriculture Research Center, Giza, Egypt
| | - Morad M. Mokhtar
- Bioinformatics Laboratory, College of Computing, Mohammed VI Polytechnic University, Ben Guerir, Morocco
- Agricultural Genetic Engineering Research Institute, Agriculture Research Center, Giza, Egypt
| | - Achraf El Allali
- Bioinformatics Laboratory, College of Computing, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| |
Collapse
|
5
|
Terletskaya NV, Khapilina ON, Turzhanova AS, Erbay M, Magzumova S, Mamirova A. Genetic Polymorphism in the Amaranthaceae Species in the Context of Stress Tolerance. PLANTS (BASEL, SWITZERLAND) 2023; 12:3470. [PMID: 37836210 PMCID: PMC10575142 DOI: 10.3390/plants12193470] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/13/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023]
Abstract
The adaptive potential and biochemical properties of the Amaranthaceae species make them promising for introduction into agriculture and markets, particularly in arid conditions. Molecular genetic polymorphism analysis is the most powerful tool for studying plant resources; therefore, the current study aimed to investigate the polymorphisms of allelic variations in the ARF and SOD gene families, as well as the genetic diversity of six Amaranthaceae species, using retrotransposon-based fingerprinting with the multi-locus EPIC-PCR profiling approach. Additionally, the iPBS PCR amplification was employed for genome profiling, revealing variations in genetic diversity among the studied Amaranthaceae samples. The observed genetic diversity in Amaranthaceae species contributes to their enhanced tolerance to adverse environmental conditions. The knowledge about the genetic diversity of genes crucial in plant development and stress resistance can be useful for the genetic improvement of cultivated Amaranthaceae species.
Collapse
Affiliation(s)
- Nina V. Terletskaya
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi 71, Almaty 050040, Kazakhstan;
- Institute of Genetic and Physiology, Al-Farabi 93, Almaty 050040, Kazakhstan;
| | - Oxana N. Khapilina
- National Center for Biotechnology, Qorghalzhyn 13, Astana 010000, Kazakhstan; (A.S.T.); (S.M.)
| | - Ainur S. Turzhanova
- National Center for Biotechnology, Qorghalzhyn 13, Astana 010000, Kazakhstan; (A.S.T.); (S.M.)
| | - Malika Erbay
- Institute of Genetic and Physiology, Al-Farabi 93, Almaty 050040, Kazakhstan;
| | - Saule Magzumova
- National Center for Biotechnology, Qorghalzhyn 13, Astana 010000, Kazakhstan; (A.S.T.); (S.M.)
| | - Aigerim Mamirova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi 71, Almaty 050040, Kazakhstan;
- Institute of Genetic and Physiology, Al-Farabi 93, Almaty 050040, Kazakhstan;
| |
Collapse
|
6
|
Arvas YE, Marakli S, Kaya Y, Kalendar R. The power of retrotransposons in high-throughput genotyping and sequencing. FRONTIERS IN PLANT SCIENCE 2023; 14:1174339. [PMID: 37180380 PMCID: PMC10167742 DOI: 10.3389/fpls.2023.1174339] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 04/11/2023] [Indexed: 05/16/2023]
Abstract
The use of molecular markers has become an essential part of molecular genetics through their application in numerous fields, which includes identification of genes associated with targeted traits, operation of backcrossing programs, modern plant breeding, genetic characterization, and marker-assisted selection. Transposable elements are a core component of all eukaryotic genomes, making them suitable as molecular markers. Most of the large plant genomes consist primarily of transposable elements; variations in their abundance contribute to most of the variation in genome size. Retrotransposons are widely present throughout plant genomes, and replicative transposition enables them to insert into the genome without removing the original elements. Various applications of molecular markers have been developed that exploit the fact that these genetic elements are present everywhere and their ability to stably integrate into dispersed chromosomal localities that are polymorphic within a species. The ongoing development of molecular marker technologies is directly related to the deployment of high-throughput genotype sequencing platforms, and this research is of considerable significance. In this review, the practical application to molecular markers, which is a use of technology of interspersed repeats in the plant genome were examined using genomic sources from the past to the present. Prospects and possibilities are also presented.
Collapse
Affiliation(s)
- Yunus Emre Arvas
- Department of Biology, Faculty of Sciences, Karadeniz Technical University, Trabzon, Türkiye
| | - Sevgi Marakli
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Yildiz Technical University, Istanbul, Türkiye
| | - Yılmaz Kaya
- Agricultural Biotechnology Department, Faculty of Agriculture, Ondokuz Mayıs University, Samsun, Türkiye
- Department of Biology, Faculty of Science, Kyrgyz-Turkish Manas University, Bishkek, Kyrgyzstan
| | - Ruslan Kalendar
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| |
Collapse
|
7
|
Terletskaya NV, Turzhanova AS, Khapilina ON, Zhumagul MZ, Meduntseva ND, Kudrina NO, Korbozova NK, Kubentayev SA, Kalendar R. Genetic Diversity in Natural Populations of Rhodiola Species of Different Adaptation Strategies. Genes (Basel) 2023; 14:794. [PMID: 37107552 PMCID: PMC10137911 DOI: 10.3390/genes14040794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/24/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Representatives of the Crassulaceae family's genus Rhodiola are succulents, making them distinctive in a changing environment. One of the most significant tools for analyzing plant resources, including numerous genetic processes in wild populations, is the analysis of molecular genetic polymorphism. This work aimed to look at the polymorphisms of allelic variations of the superoxide dismutase (SOD) and auxin response factor (ARF) gene families, as well as the genetic diversity of five Rhodiola species, using the retrotransposons-based fingerprinting approach. The multi-locus exon-primed intron-crossing (EPIC-PCR) profiling approach was used to examine allelic variations in the SOD and ARF gene families. We implemented the inter-primer binding site (iPBS) PCR amplification technique for genome profiling, which demonstrated a significant level of polymorphism in the Rhodiola samples studied. Natural populations of Rhodiola species have a great capacity for adaptation to unfavorable environmental influences. The genetic variety of wild populations of Rhodiola species leads to their improved tolerance of opposing environmental circumstances and species evolutionary divergence based on the diversity of reproductive systems.
Collapse
Affiliation(s)
- Nina V. Terletskaya
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi Avenue 71, Almaty 050040, Kazakhstan;
- Institute of Genetic and Physiology, Al-Farabi Avenue 93, Almaty 050040, Kazakhstan; (N.D.M.); (N.O.K.); (N.K.K.)
| | - Ainur S. Turzhanova
- National Center for Biotechnology, Qorghalzhyn Hwy 13, Astana 010000, Kazakhstan; (A.S.T.); (O.N.K.)
| | - Oxana N. Khapilina
- National Center for Biotechnology, Qorghalzhyn Hwy 13, Astana 010000, Kazakhstan; (A.S.T.); (O.N.K.)
| | - Moldir Z. Zhumagul
- Astana International University, Kabanbai Batyr 8, Astana 010000, Kazakhstan;
- Astana Botanical Garden, Orunbur 16, Astana 010000, Kazakhstan;
| | - Nataliya D. Meduntseva
- Institute of Genetic and Physiology, Al-Farabi Avenue 93, Almaty 050040, Kazakhstan; (N.D.M.); (N.O.K.); (N.K.K.)
| | - Nataliya O. Kudrina
- Institute of Genetic and Physiology, Al-Farabi Avenue 93, Almaty 050040, Kazakhstan; (N.D.M.); (N.O.K.); (N.K.K.)
- National Center for Biotechnology, Qorghalzhyn Hwy 13, Astana 010000, Kazakhstan; (A.S.T.); (O.N.K.)
| | - Nazym K. Korbozova
- Institute of Genetic and Physiology, Al-Farabi Avenue 93, Almaty 050040, Kazakhstan; (N.D.M.); (N.O.K.); (N.K.K.)
- National Center for Biotechnology, Qorghalzhyn Hwy 13, Astana 010000, Kazakhstan; (A.S.T.); (O.N.K.)
| | | | - Ruslan Kalendar
- National Laboratory Astana, Nazarbayev University, 53 Kabanbay Batyr Ave., Astana 010000, Kazakhstan
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
8
|
Villano C, Corrado G, Basile B, Di Serio E, Mataffo A, Ferrara E, Aversano R. Morphological and Genetic Clonal Diversity within the 'Greco Bianco' Grapevine ( Vitis vinifera L.) Variety. PLANTS (BASEL, SWITZERLAND) 2023; 12:515. [PMID: 36771600 PMCID: PMC9921137 DOI: 10.3390/plants12030515] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Grapevine (Vitis vinifera L.) has been propagated vegetatively for hundreds of years. Therefore, plants tend to accumulate somatic mutations that can result in an intra-varietal diversity capable of generating distinct clones. Although it is common that winemakers request specific clones or selections for planting new vineyards, relatively limited information is available on the extent, degree, and morphological impact of the clonal diversity in traditional, highly valued grapevine varieties within production areas protected by geographical denomination of origin. Here, we present a morphological and genetic investigation of the intra-varietal diversity in 'Greco Bianco', the grapevine variety used to produce the DOCG and PDO "Greco di Tufo" wine. Seventeen clones from different farms (all within the allowed production area) were phenotypically characterized using ampelographic and ampelometric traits. The clones were also genotyped with Simple Sequence Repeats (SSR) and retrotransposon-based DNA markers (REMAP). The morphological analysis indicated a uniformity in the qualitatively scored traits, and a limited variability for the quantitative traits of the bunch and of the berry composition. The molecular markers also depicted variability among clones, which was more evident with the use of REMAPs. The comparison of the discriminatory information of the three analyses indicated that they provided different estimates of the level of diversity. The evaluation described herein of the clonal variability has implications for the management and protection of clonal selections in 'Greco Bianco' and prompts for further multidisciplinary investigations on its possible role in winemaking.
Collapse
Affiliation(s)
- Clizia Villano
- Department of Agricultural Science, University of Naples Federico II, 80055 Portici, Italy
| | - Giandomenico Corrado
- Department of Agricultural Science, University of Naples Federico II, 80055 Portici, Italy
| | - Boris Basile
- Department of Agricultural Science, University of Naples Federico II, 80055 Portici, Italy
| | - Ermanno Di Serio
- Department of Agricultural Science, University of Naples Federico II, 80055 Portici, Italy
| | - Alessandro Mataffo
- Department of Agricultural Science, University of Naples Federico II, 80055 Portici, Italy
| | - Elvira Ferrara
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
| | - Riccardo Aversano
- Department of Agricultural Science, University of Naples Federico II, 80055 Portici, Italy
| |
Collapse
|
9
|
Hassan AH, Mokhtar MM, El Allali A. TEMM: A Curated Data Resource for Transposon Element-Based Molecular Markers in Plants. Methods Mol Biol 2023; 2703:45-57. [PMID: 37646936 DOI: 10.1007/978-1-0716-3389-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Transposon elements (TEs) are mobile genetic elements that can insert themselves into new locations and modify the plant genome. In recent years, they have been used as molecular markers in plant breeding programs. TE-based molecular markers (TE-markers) are divided into two categories depending on the transcription mechanism of the TEs. The first category is retrotransposon-based molecular markers, which include RBIP, IRAP, REMAP, and iPBS. The second group is DNA-based-TE-markers, which include MITE, TE-junction, and CACTA TE-markers. These markers are a good tool for studying genetic diversity and can provide information on plants' phylogenetic and evolutionary history. They can help improve breeding programs to increase agronomic traits and develop new varieties. Overall, TE-markers play an important role in plant genetics and plant breeding and contribute to a better understanding of plant biology. Here, we present TEMM, a curated data resource for TE-markers in plants. Relevant research articles were screened to collect primer sequences and related information. Only articles containing primer sequences are added to the present data resource. TEMM contains 784 primers with their associated PCR reaction programs and their applications in various crops. These include 203 IPBS, 191 RBIP, 140 IRAP, 78 TE-junction, 76 IRAPS, 47 RBIP-IRAP, 16 IRAP-REMAP, 12 REMAP, 12 REMA-IRAP, 6 REMA, and 3 ISBP primers. The data resource is freely available at https://bioinformatics.um6p.ma/TEMM .
Collapse
Affiliation(s)
- Asmaa H Hassan
- African Genome Center, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Morad M Mokhtar
- African Genome Center, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Achraf El Allali
- African Genome Center, Mohammed VI Polytechnic University, Ben Guerir, Morocco.
| |
Collapse
|
10
|
Arvas YE, Kocaçalışkan İ, Ordu E, Erişen S. Comparative retrotransposon analysis of mutant and non-mutant rice varieties grown at different salt concentrations. BIOTECHNOL BIOTEC EQ 2022. [DOI: 10.1080/13102818.2022.2043777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Yunus Emre Arvas
- Department of Molecular Biology and Genetics, Graduate School of Natural and Applied Sciences, Yıldız Technical University, Istanbul, Turkey
| | - İsmail Kocaçalışkan
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Yıldız Technical University, Istanbul, Turkey
| | - Emel Ordu
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Yıldız Technical University, Istanbul, Turkey
| | - Semiha Erişen
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Yıldız Technical University, Istanbul, Turkey
| |
Collapse
|
11
|
Papolu PK, Ramakrishnan M, Mullasseri S, Kalendar R, Wei Q, Zou L, Ahmad Z, Vinod KK, Yang P, Zhou M. Retrotransposons: How the continuous evolutionary front shapes plant genomes for response to heat stress. FRONTIERS IN PLANT SCIENCE 2022; 13:1064847. [PMID: 36570931 PMCID: PMC9780303 DOI: 10.3389/fpls.2022.1064847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/21/2022] [Indexed: 05/28/2023]
Abstract
Long terminal repeat retrotransposons (LTR retrotransposons) are the most abundant group of mobile genetic elements in eukaryotic genomes and are essential in organizing genomic architecture and phenotypic variations. The diverse families of retrotransposons are related to retroviruses. As retrotransposable elements are dispersed and ubiquitous, their "copy-out and paste-in" life cycle of replicative transposition leads to new genome insertions without the excision of the original element. The overall structure of retrotransposons and the domains responsible for the various phases of their replication is highly conserved in all eukaryotes. The two major superfamilies of LTR retrotransposons, Ty1/Copia and Ty3/Gypsy, are distinguished and dispersed across the chromosomes of higher plants. Members of these superfamilies can increase in copy number and are often activated by various biotic and abiotic stresses due to retrotransposition bursts. LTR retrotransposons are important drivers of species diversity and exhibit great variety in structure, size, and mechanisms of transposition, making them important putative actors in genome evolution. Additionally, LTR retrotransposons influence the gene expression patterns of adjacent genes by modulating potential small interfering RNA (siRNA) and RNA-directed DNA methylation (RdDM) pathways. Furthermore, comparative and evolutionary analysis of the most important crop genome sequences and advanced technologies have elucidated the epigenetics and structural and functional modifications driven by LTR retrotransposon during speciation. However, mechanistic insights into LTR retrotransposons remain obscure in plant development due to a lack of advancement in high throughput technologies. In this review, we focus on the key role of LTR retrotransposons response in plants during heat stress, the role of centromeric LTR retrotransposons, and the role of LTR retrotransposon markers in genome expression and evolution.
Collapse
Affiliation(s)
- Pradeep K. Papolu
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Muthusamy Ramakrishnan
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Sileesh Mullasseri
- Department of Zoology, St. Albert’s College (Autonomous), Kochi, Kerala, India
| | - Ruslan Kalendar
- Helsinki Institute of Life Science HiLIFE, Biocenter 3, University of Helsinki, Helsinki, Finland
- National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Qiang Wei
- Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Long−Hai Zou
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Zishan Ahmad
- Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu, China
| | | | - Ping Yang
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-Efficiency Utilization, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Mingbing Zhou
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-Efficiency Utilization, Zhejiang A&F University, Hangzhou, Zhejiang, China
| |
Collapse
|
12
|
Bajus M, Macko-Podgórni A, Grzebelus D, Baránek M. A review of strategies used to identify transposition events in plant genomes. FRONTIERS IN PLANT SCIENCE 2022; 13:1080993. [PMID: 36531345 PMCID: PMC9751208 DOI: 10.3389/fpls.2022.1080993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
Transposable elements (TEs) were initially considered redundant and dubbed 'junk DNA'. However, more recently they were recognized as an essential element of genome plasticity. In nature, they frequently become active upon exposition of the host to stress conditions. Even though most transposition events are neutral or even deleterious, occasionally they may happen to be beneficial, resulting in genetic novelty providing better fitness to the host. Hence, TE mobilization may promote adaptability and, in the long run, act as a significant evolutionary force. There are many examples of TE insertions resulting in increased tolerance to stresses or in novel features of crops which are appealing to the consumer. Possibly, TE-driven de novo variability could be utilized for crop improvement. However, in order to systematically study the mechanisms of TE/host interactions, it is necessary to have suitable tools to globally monitor any ongoing TE mobilization. With the development of novel potent technologies, new high-throughput strategies for studying TE dynamics are emerging. Here, we present currently available methods applied to monitor the activity of TEs in plants. We divide them on the basis of their operational principles, the position of target molecules in the process of transposition and their ability to capture real cases of actively transposing elements. Their possible theoretical and practical drawbacks are also discussed. Finally, conceivable strategies and combinations of methods resulting in an improved performance are proposed.
Collapse
Affiliation(s)
- Marko Bajus
- Mendeleum—Institute of Genetics, Faculty of Horticulture, Mendel University in Brno, Lednice, Czechia
| | - Alicja Macko-Podgórni
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Kraków, Poland
| | - Dariusz Grzebelus
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Kraków, Poland
| | - Miroslav Baránek
- Mendeleum—Institute of Genetics, Faculty of Horticulture, Mendel University in Brno, Lednice, Czechia
| |
Collapse
|
13
|
Minaei S, Mohammadi SA, Sabouri A, Dadras AR. High genetic diversity in Aegilops tauschii Coss. accessions from North Iran as revealed by IRAP and REMAP markers. J Genet Eng Biotechnol 2022; 20:86. [PMID: 35696009 PMCID: PMC9192835 DOI: 10.1186/s43141-022-00363-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 05/02/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND Aegilops tauschii Coss. as a donor of wheat D genome has an important role in wheat breeding programs. Genetic and phylogeographic diversity of 79 Ae. tauschii accessions collected from north and northwest of Iran were analyzed based on retroelement insertional polymorphisms using inter-retrotransposon amplified polymorphism (IRAP) and retrotransposon-microsatellite amplified polymorphism (REMAP) markers. RESULTS In total, 306 and 151 polymorphic bands were amplified in IRAP and REMAP analyses, respectively. As a result, a high level of polymorphism was observed among the studied accessions as revealed by an average of 25.5 bands per primer/primer combination and mean PIC value of 0.47 in IRAP and an average of 25.16 bands per primer combination and mean PIC value of 0.47 in REMAP. Genetic relationships of the accessions were analyzed using distance- and model-based cluster analyses. CONCLUSION The result showed that genetic distance did not seem to be related to geographic distribution, and the accessions could be divided into three groups, which was further supported by principal coordinate analysis. These results on genetic diversity and population structure of Ae. tauschii in Iran should provide important knowledge on genetic resources and their applications in wheat breeding programs.
Collapse
Affiliation(s)
- Sona Minaei
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Seyyed Abolghasem Mohammadi
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran. .,Center of Excellence in Cereal Molecular Breeding, University of Tabriz, Tabriz, Iran. .,Department of Life Sciences, Center for Cell Pathology, Khazar University, Baku, AZ1096, Azerbaijan.
| | - Atefeh Sabouri
- Department of Agronomy and Plant Breeding, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| | - Ahmad Reza Dadras
- Department of Crop and Horticultural Research, Zanjan Agricultural and Natural Resource Research and Education, AREEO, Zanjan, Iran
| |
Collapse
|
14
|
Simoni S, Clemente C, Usai G, Vangelisti A, Natali L, Tavarini S, Angelini LG, Cavallini A, Mascagni F, Giordani T. Characterisation of LTR-Retrotransposons of Stevia rebaudiana and Their Use for the Analysis of Genetic Variability. Int J Mol Sci 2022; 23:ijms23116220. [PMID: 35682899 PMCID: PMC9181549 DOI: 10.3390/ijms23116220] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 02/01/2023] Open
Abstract
Stevia rebaudiana is one of the most important crops belonging to the Asteraceae family. Stevia is cultivated all over the world as it represents a valid natural alternative to artificial sweeteners thanks to its leaves, which produce steviol glycosides that have high sweetening power and reduced caloric value. In this work, the stevia genome sequence was used to isolate and characterise full-length long-terminal repeat retrotransposons (LTR-REs), which account for more than half of the genome. The Gypsy retrotransposons were twice as abundant as the Copia ones. A disproportionate abundance of elements belonging to the Chromovirus/Tekay lineage was observed among the Gypsy elements. Only the SIRE and Angela lineages represented significant portions of the genome among the Copia elements. The dynamics with which LTR-REs colonised the stevia genome were also estimated; all isolated full-length elements turned out to be relatively young, with a proliferation peak around 1–2 million years ago. However, a different analysis conducted by comparing sequences encoding retrotranscriptase showed the occurrence of an older period in which there was a lot of LTR-RE proliferation. Finally, a group of isolated full-length elements belonging to the lineage Angela was used to analyse the genetic variability in 25 accessions of S. rebaudiana using the Inter-Retrotransposon Amplified Polymorphism (IRAP) protocol. The obtained fingerprints highlighted a high degree of genetic variability and were used to study the genomic structures of the different accessions. It was hypothesised that there are four ancestral subpopulations at the root of the analysed accessions, which all turned out to be admixed. Overall, these data may be useful for genome sequence annotations and for evaluating genetic variability in this species, which may be useful in stevia breeding.
Collapse
|
15
|
Aydın F, Özer G, Alkan M, Çakır İ. Genetic diversity and population structure of Saccharomyces cerevisiae isolated from Turkish sourdough by iPBS-retrotransposons markers. Arch Microbiol 2022; 204:693. [PMCID: PMC9640837 DOI: 10.1007/s00203-022-03313-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/30/2022] [Accepted: 10/29/2022] [Indexed: 11/10/2022]
Abstract
Molecular DNA markers are valuable tools for analyzing genetic variation among yeast from different populations to reveal the genetically different autochthonous strains. In this study, we employed inter-primer binding site (iPBS) retrotransposon polymorphism to assess the genetic variation and population structure of 96 Saccharomyces cerevisiae isolates from four different regions in Turkey. The nine selected iPBS primers amplified 102 reproducible and scorable bands, of which 95.10% were polymorphic with an average of 10.78 polymorphic fragments per primer. The average polymorphism information content and the resolving power were 0.26–3.58, respectively. Analysis of molecular variance (AMOVA) revealed significant (P < 0.001) genetic differences within populations (88%) and between populations (12%). The unweighted pair group mean with arithmetic (UPGMA) dendrogram grouped 96 S. cerevisiae strains into two main clusters, where the highest probability of the data elucidating the population structure was obtained at ΔK = 2. There was not an obvious genetic discrimination of the populations according to geographical regions on UPGMA, supported by principal coordinate analysis. However, the individuals of the closer provinces in each population were more likely to group together or closely. The results indicate that iPBS polymorphism is a useful tool to reveal the genetically diverse autochthonous S. cerevisiae strains that may be important for the production of sourdough or baked goods.
Collapse
Affiliation(s)
- Furkan Aydın
- Department of Food Engineering, Faculty of Engineering, Aksaray University, 68100 Aksaray, Turkey
| | - Göksel Özer
- Department of Plant Protection, Faculty of Agriculture, Bolu Abant Izzet Baysal University, 14030 Bolu, Turkey
| | - Mehtap Alkan
- Department of Plant Protection, Faculty of Agriculture, Bolu Abant Izzet Baysal University, 14030 Bolu, Turkey
| | - İbrahim Çakır
- Department of Food Engineering, Faculty of Engineering, Bolu Abant Izzet Baysal University, 14030 Bolu, Turkey
| |
Collapse
|
16
|
Kalendar R. A Guide to Using FASTPCR Software for PCR, In Silico PCR, and Oligonucleotide Analysis. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2021; 2392:223-243. [PMID: 34773626 DOI: 10.1007/978-1-0716-1799-1_16] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The FastPCR software is an integrated tool environment for PCR primer and probe design and for prediction of oligonucleotide properties. The software provides comprehensive tools for designing primers for most PCR and perspective applications, including standard, multiplex, long-distance, inverse, real-time with TaqMan probe, Xtreme Chain Reaction (XCR), group-specific, overlap extension PCR for multifragment assembling cloning, and isothermal amplification (Loop-mediated Isothermal Amplification). A program is available to design specific oligonucleotide sets for long sequence assembly by ligase chain reaction and to design multiplexed of overlapping and nonoverlapping DNA amplicons that tile across a region(s) of interest for targeted next-generation sequencing, competitive allele-specific PCR (KASP)-based genotyping assay for single-nucleotide polymorphisms and insertions and deletions at specific loci, among other features. The in silico PCR primer or probe search includes comprehensive analyses of individual primers and primer pairs. FastPCR includes various bioinformatics tools for analysis and searching of sequences, restriction I-II-III-type enzyme endonuclease analysis, and pattern searching. The program also supports the assembly of a set of contiguous sequences, consensus sequence generation, and sequence similarity and conservancy analysis. FastPCR performs efficient and complete detection of various repeat types with visual display. FastPCR allows for sequence file batch processing that is essential for automation. The software is available for download at https://primerdigital.com/fastpcr.html and online version at https://primerdigital.com/tools/pcr.html .
Collapse
Affiliation(s)
- Ruslan Kalendar
- PrimerDigital Ltd, Biocentre 3, Helsinki, Finland. .,National Laboratory Astana, Nazarbayev University, Nur-Sultan, Kazakhstan.
| |
Collapse
|
17
|
Kalendar R, Sabot F, Rodriguez F, Karlov GI, Natali L, Alix K. Editorial: Mobile Elements and Plant Genome Evolution, Comparative Analyzes and Computational Tools. FRONTIERS IN PLANT SCIENCE 2021; 12:735134. [PMID: 34630484 PMCID: PMC8500305 DOI: 10.3389/fpls.2021.735134] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/30/2021] [Indexed: 05/28/2023]
Affiliation(s)
- Ruslan Kalendar
- HiLIFE Institute of Biotechnology, University of Helsinki, Helsinki, Finland
- National Laboratory Astana, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Francois Sabot
- DIADE, University of Montpellier, CIRAD, IRD, Montpellier, France
| | - Fernando Rodriguez
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory (MBL), Woods Hole, MA, United States
| | - Gennady I. Karlov
- Laboratory of Applied Genomics and Crop Breeding, All-Russia Research Institute of Agricultural Biotechnology, Moscow, Russia
| | - Lucia Natali
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Karine Alix
- GQE – Le Moulon, Université Paris-Saclay, INRAE, CNRS, AgroParisTech, Gif-sur-Yvette, France
| |
Collapse
|
18
|
Ma T, Wei X, Zhang Y, Li J, Wu F, Yan Q, Yan Z, Zhang Z, Kanzana G, Zhao Y, Yang Y, Zhang J. Development of molecular markers based on LTR retrotransposon in the Cleistogenes songorica genome. J Appl Genet 2021; 63:61-72. [PMID: 34554437 DOI: 10.1007/s13353-021-00658-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 08/09/2021] [Accepted: 08/23/2021] [Indexed: 11/26/2022]
Abstract
Long terminal repeat retrotransposons (LTR-RTs) contribute a large fraction of many sequenced plant genomes and play important roles in genomic diversity and phenotypic variations. LTR-RTs are abundantly distributed in plant genomes, facilitating the development of markers based on LTR-RTs for a variety of genotyping purposes. Whole-genome analysis of LTR-RTs was performed in Cleistogenes songorica. A total of 299,079 LTR-RTs were identified and classified as Gypsy type, Copia type, or other type. LTR-RTs were widely distributed in the genome, enriched in the heterochromatic region of the chromosome, and negatively correlated with gene distribution. However, approximately one-fifth of genes were still interrupted by LTR-RTs, and these genes are annotated. Furthermore, four types of primer pairs (PPs) were designed, namely, retrotransposon-based insertion polymorphisms, inter-retrotransposon amplified polymorphisms, insertion site-based polymorphisms, and retrotransposon-microsatellite amplified polymorphisms. A total of 350 PPs were screened in 23 accessions of the genus Cleistogenes, of which 80 PPs showed polymorphism, and 72 PPs showed transferability among Gramineae and non-Gramineae species. In addition, a comparative analysis of homologous LTR-RTs was performed with other related grasses. Taken together, the study will serve as a valuable resource for genotyping applications for C. songorica and related grasses.
Collapse
Affiliation(s)
- Tiantian Ma
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Xingyi Wei
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Yufei Zhang
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Jie Li
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Fan Wu
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Qi Yan
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Zhuanzhuan Yan
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Zhengshe Zhang
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Gisele Kanzana
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Yufeng Zhao
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Yingbo Yang
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Jiyu Zhang
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China.
| |
Collapse
|
19
|
Analysis of Genetic Variations and Genomic Instabilities in Magnaporthe oryzae. Methods Mol Biol 2021. [PMID: 34236689 DOI: 10.1007/978-1-0716-1613-0_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Retrotransposons are major components of the Magnaporthe oryzae genome; their high copy number and property of stable insertion in genome make them ideal tools to develop molecular markers. Retrotransposon-based marker techniques mainly rely on the amplification of DNA sequences present between the retrotransposon termini and some component of flanking genomic DNA. In this chapter, two marker systems known as inter-retrotransposon amplified polymorphism (IRAP) and retrotransposon-microsatellite amplified polymorphism (REMAP) are described for genetic diversity studies in M. oryzae. In the IRAP method, DNA profiles are generated using outward-facing primers from two nearby retrotransposons, while REMAP produces DNA profiles from genomic segments present in retrotransposons and microsatellite repeats. These marker techniques are simple, cost-effective, and easy to develop for polymorphism studies among M. oryzae isolates, races, or populations. In addition, the chapter also describes the utility of these retrotransposon-based DNA markers to study stress-induced genomic instabilities in M. oryzae.
Collapse
|
20
|
Chen C, D'Alessandro E, Murani E, Zheng Y, Giosa D, Yang N, Wang X, Gao B, Li K, Wimmers K, Song C. SINE jumping contributes to large-scale polymorphisms in the pig genomes. Mob DNA 2021; 12:17. [PMID: 34183049 PMCID: PMC8240389 DOI: 10.1186/s13100-021-00246-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/09/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Molecular markers based on retrotransposon insertion polymorphisms (RIPs) have been developed and are widely used in plants and animals. Short interspersed nuclear elements (SINEs) exert wide impacts on gene activity and even on phenotypes. However, SINE RIP profiles in livestock remain largely unknown, and not be revealed in pigs. RESULTS Our data revealed that SINEA1 displayed the most polymorphic insertions (22.5 % intragenic and 26.5 % intergenic), followed by SINEA2 (10.5 % intragenic and 9 % intergenic) and SINEA3 (12.5 % intragenic and 5.0 % intergenic). We developed a genome-wide SINE RIP mining protocol and obtained a large number of SINE RIPs (36,284), with over 80 % accuracy and an even distribution in chromosomes (14.5/Mb), and 74.34 % of SINE RIPs generated by SINEA1 element. Over 65 % of pig SINE RIPs overlap with genes, most of them (> 95 %) are in introns. Overall, about one forth (23.09 %) of the total genes contain SINE RIPs. Significant biases of SINE RIPs in the transcripts of protein coding genes were observed. Nearly half of the RIPs are common in these pig breeds. Sixteen SINE RIPs were applied for population genetic analysis in 23 pig breeds, the phylogeny tree and cluster analysis were generally consistent with the geographical distributions of native pig breeds in China. CONCLUSIONS Our analysis revealed that SINEA1-3 elements, particularly SINEA1, are high polymorphic across different pig breeds, and generate large-scale structural variations in the pig genomes. And over 35,000 SINE RIP markers were obtained. These data indicate that young SINE elements play important roles in creating new genetic variations and shaping the evolution of pig genome, and also provide strong evidences to support the great potential of SINE RIPs as genetic markers, which can be used for population genetic analysis and quantitative trait locus (QTL) mapping in pig.
Collapse
Affiliation(s)
- Cai Chen
- College of Animal Science & Technology, Yangzhou University, 225009, Yangzhou, Jiangsu, China
| | - Enrico D'Alessandro
- Department of Veterinary Science, University of Messina, 98168, Messina, Italy
| | - Eduard Murani
- Leibniz Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany
| | - Yao Zheng
- College of Animal Science & Technology, Yangzhou University, 225009, Yangzhou, Jiangsu, China
| | - Domenico Giosa
- Department of Clinical and Experimental Medicine, University Hospital of Messina, 98125, Messina, Italy
| | - Naisu Yang
- College of Animal Science & Technology, Yangzhou University, 225009, Yangzhou, Jiangsu, China
| | - Xiaoyan Wang
- College of Animal Science & Technology, Yangzhou University, 225009, Yangzhou, Jiangsu, China
| | - Bo Gao
- College of Animal Science & Technology, Yangzhou University, 225009, Yangzhou, Jiangsu, China
| | - Kui Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, 100193, Beijing, China
| | - Klaus Wimmers
- Leibniz Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany
| | - Chengyi Song
- College of Animal Science & Technology, Yangzhou University, 225009, Yangzhou, Jiangsu, China.
| |
Collapse
|
21
|
Orłowska R, Pachota KA, Dynkowska WM, Niedziela A, Bednarek PT. Androgenic-Induced Transposable Elements Dependent Sequence Variation in Barley. Int J Mol Sci 2021; 22:ijms22136783. [PMID: 34202586 PMCID: PMC8268840 DOI: 10.3390/ijms22136783] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/14/2021] [Accepted: 06/22/2021] [Indexed: 01/10/2023] Open
Abstract
A plant genome usually encompasses different families of transposable elements (TEs) that may constitute up to 85% of nuclear DNA. Under stressful conditions, some of them may activate, leading to sequence variation. In vitro plant regeneration may induce either phenotypic or genetic and epigenetic changes. While DNA methylation alternations might be related, i.e., to the Yang cycle problems, DNA pattern changes, especially DNA demethylation, may activate TEs that could result in point mutations in DNA sequence changes. Thus, TEs have the highest input into sequence variation (SV). A set of barley regenerants were derived via in vitro anther culture. High Performance Liquid Chromatography (RP-HPLC), used to study the global DNA methylation of donor plants and their regenerants, showed that the level of DNA methylation increased in regenerants by 1.45% compared to the donors. The Methyl-Sensitive Transposon Display (MSTD) based on methylation-sensitive Amplified Fragment Length Polymorphism (metAFLP) approach demonstrated that, depending on the selected elements belonging to the TEs family analyzed, varying levels of sequence variation were evaluated. DNA sequence contexts may have a different impact on SV generated by distinct mobile elements belonged to various TE families. Based on the presented study, some of the selected mobile elements contribute differently to TE-related SV. The surrounding context of the TEs DNA sequence is possibly important here, and the study explained some part of SV related to those contexts.
Collapse
|
22
|
Kalendar R, Shustov AV, Schulman AH. Palindromic Sequence-Targeted (PST) PCR, Version 2: An Advanced Method for High-Throughput Targeted Gene Characterization and Transposon Display. FRONTIERS IN PLANT SCIENCE 2021; 12:691940. [PMID: 34239528 PMCID: PMC8258406 DOI: 10.3389/fpls.2021.691940] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/20/2021] [Indexed: 05/28/2023]
Abstract
Genome walking (GW), a strategy for capturing previously unsequenced DNA fragments that are in proximity to a known sequence tag, is currently predominantly based on PCR. Recently developed PCR-based methods allow for combining of sequence-specific primers with designed capturing primers capable of annealing to unknown DNA targets, thereby offering the rapidity and effectiveness of PCR. This study presents a methodological improvement to the previously described GW technique known as palindromic sequence-targeted PCR (PST-PCR). Like PST-PCR, this new method (called PST-PCR v.2) relies on targeting of capturing primers to palindromic sequences arbitrarily present in natural DNA templates. PST-PCR v.2 consists of two rounds of PCR. The first round uses a combination of one sequence-specific primer with one capturing (PST) primer. The second round uses a combination of a single (preferred) or two universal primers; one anneals to a 5' tail attached to the sequence-specific primer and the other anneals to a different 5' tail attached to the PST primer. The key advantage of PST-PCR v.2 is the convenience of using a single universal primer with invariable sequences in GW processes involving various templates. The entire procedure takes approximately 2-3 h to produce the amplified PCR fragment, which contains a portion of a template flanked by the sequence-specific and capturing primers. PST-PCR v.2 is highly suitable for simultaneous work with multiple samples. For this reason, PST-PCR v.2 can be applied beyond the classical task of GW for studies in population genetics, in which PST-PCR v.2 is a preferred alternative to amplified fragment length polymorphism (AFLP) or next-generation sequencing. Furthermore, the conditions for PST-PCR v.2 are easier to optimize, as only one sequence-specific primer is used. This reduces non-specific random amplified polymorphic DNA (RAPD)-like amplification and formation of non-templated amplification. Importantly, akin to the previous version, PST-PCR v.2 is not sensitive to template DNA sequence complexity or quality. This study illustrates the utility of PST-PCR v.2 for transposon display (TD), which is a method to characterize inter- or intra-specific variability related to transposon integration sites. The Ac transposon sequence in the maize (Zea mays) genome was used as a sequence tag during the TD procedure to characterize the Ac integration sites.
Collapse
Affiliation(s)
- Ruslan Kalendar
- National Laboratory Astana, Nazarbayev University, Nur-Sultan, Kazakhstan
- Viikki Plant Science Centre, HiLIFE Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | | | - Alan H. Schulman
- Viikki Plant Science Centre, HiLIFE Institute of Biotechnology, University of Helsinki, Helsinki, Finland
- Natural Resources Institute Finland (Luke), Helsinki, Finland
| |
Collapse
|
23
|
Karlik E, Gurbuz O, Yildiz Y, Gozukirmizi N. Endogenous retrovirus HERV-K6 and HERV-K11 polymorphisms’ analyses in head and neck squamous cell carcinoma patients. Meta Gene 2021. [DOI: 10.1016/j.mgene.2021.100876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
24
|
Genetic Diversity and Population Structures in Chinese Miniature Pigs Revealed by SINE Retrotransposon Insertion Polymorphisms, a New Type of Genetic Markers. Animals (Basel) 2021; 11:ani11041136. [PMID: 33921134 PMCID: PMC8071531 DOI: 10.3390/ani11041136] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/08/2021] [Accepted: 04/14/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Our previous studies suggested that the short interspersed nuclear element (SINE) retrotransposon insertion polymorphisms (RIPs), as a new type of molecular marker developed very recently, are ideal molecular markers and have the potential to be used for population genetic analysis and molecular breeding in pigs and possibly it can be extended to other livestock animals as well. However, no report is available for the application of SINE RIPs in population genetic analysis in livestock, including pigs. Here, we evaluated 30 SINE RIPs in several indigenous Chinese miniature pig breeds, including three subpopulations of Bama pigs (BM-cov, BM-clo, and BM-inb). BM-cov is a subpopulation conserved in the national conservation farm, and BM-clo is a closed population maintained over 30 years with only 2 boars and 14 sows imported from its original area, while BM-inb herd is an 18 generation continuous inbreeding line based on the BM-clo population. To our knowledge, it is the first time to report the genetic diversity, breed differentiation, and population structures for these populations by using SINE RIPs, and which suggests the feasibility of SINE RIPs in pig genetic analysis. Abstract RIPs have been developed as effective genetic markers and popularly applied for genetic analysis in plants, but few reports are available for domestic animals. Here, we established 30 new molecular markers based on the SINE RIPs, and applied them for population genetic analysis in seven Chinese miniature pigs. The data revealed that the closed herd (BM-clo), inbreeding herd (BM-inb) of Bama miniature pigs were distinctly different from the BM-cov herds in the conservation farm, and other miniature pigs (Wuzhishan, Congjiang Xiang, Tibetan, and Mingguang small ear). These later five miniature pig breeds can further be classified into two clades based on a phylogenetic tree: one included BM-cov and Wuzhishan, the other included Congjiang Xiang, Tibetan, and Mingguang small ear, which was well-supported by structure analysis. The polymorphic information contents estimated by using SINE RIPs are lower than the predictions based on microsatellites. Overall, the genetic distances and breed-relationships between these populations revealed by 30 SINE RIPs generally agree with their evolutions and geographic distributions. We demonstrated the potential of SINE RIPs as new genetic markers for genetic monitoring and population structure analysis in pigs, which can even be extended to other livestock animals.
Collapse
|
25
|
Khapilina O, Raiser O, Danilova A, Shevtsov V, Turzhanova A, Kalendar R. DNA profiling and assessment of genetic diversity of relict species Allium altaicum Pall. on the territory of Altai. PeerJ 2021; 9:e10674. [PMID: 33510974 PMCID: PMC7798630 DOI: 10.7717/peerj.10674] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 12/09/2020] [Indexed: 12/18/2022] Open
Abstract
Analysis of the genetic diversity of natural populations of threatened and endangered species of plants is a main aspect of conservation strategy. The endangered species Allium altaicum is a relict plant of the Ice Age and natural populations are located in extreme climatic conditions of Kazakstan's Altai Mountains. Mobile genetic elements and other interspersed repeats are basic components of a eukaryote genome, which can activate under stress conditions and indirectly promote the survival of an organism against environmental stresses. Detections of chromosomal changes related to recombination processes of mobile genetic elements are performed by various PCR methods. These methods are based on interspersed repeat sequences and are an effective tool for research of biological diversity of plants and their variability. In our research, we used conservative sequences of tRNA primer binding sites (PBS) when initializing the retrotransposon replication as PCR primers to research the genetic diversity of 12 natural populations of A. altaicum found in various ecogeographic conditions of the Kazakhstani Altai. High efficiency of the PBS amplification method used was observed already at the intrapopulation level. Unique amplicons representative of a certain population were found at the intrapopulation level. Analysis of molecular dispersion revealed that the biodiversity of populations of mountainous and lowland A. altaicum is due to intrapopulation differences for climatic zones of habitation. This is likely conditional upon predominance of vegetative reproduction over seed reproduction in some populations. In the case of vegetative reproduction, somatic recombination related to the activity of mobile genetic elements are preserved in subsequent generations. This leads to an increase of intrapopulation genetic diversity. Thus, high genetic diversity was observed in populations such as A. altaicum located in the territory of the Kalbinskii Altai, whereas the minimum diversity was observed in the populations of the Leninororsk ecogeographic group. Distinctions between these populations were also identified depending on the areas of their distribution. Low-land and mid-mountain living environments are characterized by a great variety of shapes and plasticity. This work allowed us to obtain new genetic data on the structure of A. altaicum populations on the territory of the Kazakhstan Altai for the subsequent development of preservation and reproduction strategies for this relict species.
Collapse
Affiliation(s)
| | - Olesya Raiser
- National Center for Biotechnology, Nur-Sultan, Kazakhstan
| | | | | | | | - Ruslan Kalendar
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland.,National Laboratory Astana, Nazarbayev University, Nur-Sultan, Aqmola, Kazakhstan
| |
Collapse
|
26
|
Comparative Study of Pine Reference Genomes Reveals Transposable Element Interconnected Gene Networks. Genes (Basel) 2020; 11:genes11101216. [PMID: 33081418 PMCID: PMC7602945 DOI: 10.3390/genes11101216] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/11/2020] [Accepted: 10/13/2020] [Indexed: 12/13/2022] Open
Abstract
Sequencing the giga-genomes of several pine species has enabled comparative genomic analyses of these outcrossing tree species. Previous studies have revealed the wide distribution and extraordinary diversity of transposable elements (TEs) that occupy the large intergenic spaces in conifer genomes. In this study, we analyzed the distribution of TEs in gene regions of the assembled genomes of Pinus taeda and Pinus lambertiana using high-performance computing resources. The quality of draft genomes and the genome annotation have significant consequences for the investigation of TEs and these aspects are discussed. Several TE families frequently inserted into genes or their flanks were identified in both species’ genomes. Potentially important sequence motifs were identified in TEs that could bind additional regulatory factors, promoting gene network formation with faster or enhanced transcription initiation. Node genes that contain many TEs were observed in multiple potential transposable element-associated networks. This study demonstrated the increased accumulation of TEs in the introns of stress-responsive genes of pines and suggests the possibility of rewiring them into responsive networks and sub-networks interconnected with node genes containing multiple TEs. Many such regulatory influences could lead to the adaptive environmental response clines that are characteristic of naturally spread pine populations.
Collapse
|
27
|
Assessment of genetic diversity of cultivated and wild Iranian grape germplasm using retrotransposon-microsatellite amplified polymorphism (REMAP) markers and pomological traits. Mol Biol Rep 2020; 47:7593-7606. [PMID: 32949305 DOI: 10.1007/s11033-020-05827-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/07/2020] [Indexed: 10/23/2022]
Abstract
Understanding the genetic diversity and relationships between genotypes is an effective step in designing effective breeding programs. Insertional polymorphisms of retrotransposons were studied in 75 cultivated and wild grape genotypes using retrotransposon-microsatellite amplified polymorphism (REMAP) technique. In the morphological part of work, seven pomological traits with a high breeding interest were also analyzed in the cultivated genotypes. A total of 328 markers were produced by 42 primer pairs, out of which 313 markers (95.43%) were polymorphic. Number of markers ranged from 4 in loci Tvv1Fa-873, Vine1-811, Gret1Ra-855 and Tvv1Fa-890 to 12 in locus Vine1Ra-841 with an average value of 7.45. Similarity values based on Dice's coefficient among all 75 grapevine genotypes varied from 0.41 to 0.77. Classification of genotypes using unweighted pair-group method using complete-linkage clustering led to six distinct groups. Some wild and cultivated varieties placed in the same groups. It seems there are close relationship between wild and cultivated genotypes and maybe wild genotypes are ancestor of native grapevines. Grouping of grapevine genotypes based on molecular marker data was not in agreement with clustering by agro-morphological data indicating that the most of multiplied sequences are confined to the non-coding regions of transposon elements. Results showed a substantial level of genetic diversity at molecular and pomological level and the potential of this diversity for future grape breeding programs.
Collapse
|
28
|
|
29
|
Yepuri V, Jalali S, Kancharla N, Reddy VB, Arockiasamy S. Development of genome wide transposable elements based repeat junction markers in Jatropha (Jatropha curcas L.). Mol Biol Rep 2020; 47:5091-5099. [PMID: 32562173 DOI: 10.1007/s11033-020-05579-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 06/10/2020] [Indexed: 11/29/2022]
Abstract
Jatropha curcas is a potential biodiesel crop and a highly adaptable species to various agro-climatic conditions. In this study, we have utilized transposable elements' (TE) repeat junctions (RJs) which are an important constituent of the genome, used to form a genome-wide molecular marker platform owing to its use in genomic studies of plants. We screened our previously generated Jatropha hybrid genome assembly of size 265 Mbp using RJPrimers pipeline software and identified a total of 1274 TE junctions. For the predicted RJs, we designed 2868 polymerase chain reaction (PCR) based RJ markers (RJMs) flanking the junction regions. In addition to marker design, the identified RJs were utilized to detect 225,517 TEs across the genome. The different types of transposable repeat elements mainly were scattered into Retro, LTR, Copia and Gypsy categories. The efficacy of the designed markers was tested by utilizing a subset of RJMs selected randomly. We have validated 96 randomly selected RJ primers in a group of 32 J. curcas genotypes and more than 90% of the markers effectively intensified as amplicons. Of these, 10 primers were shown to be polymorphic in estimating genetic diversity among the 32 Jatropha lines. UPGMA cluster analysis revealed the formation of two clusters such as A and B exhibiting 85.5% and 87% similarity coefficient respectively. The various RJMs identified in this study could be utilized as a significant asset in Jatropha functional genomics including genome determination, mapping and marker-assisted selection.
Collapse
Affiliation(s)
- Vijay Yepuri
- Agronomy Division, Reliance Technology Group, Reliance Industries Limited, Navi Mumbai, Maharashtra, 400701, India
| | - Saakshi Jalali
- Agronomy Division, Reliance Technology Group, Reliance Industries Limited, Navi Mumbai, Maharashtra, 400701, India
| | - Nagesh Kancharla
- Agronomy Division, Reliance Technology Group, Reliance Industries Limited, Navi Mumbai, Maharashtra, 400701, India
| | - V B Reddy
- AgriGenome Labs Private Limited, Hyderabad, 500078, India
| | - S Arockiasamy
- Agronomy Division, Reliance Technology Group, Reliance Industries Limited, Navi Mumbai, Maharashtra, 400701, India.
| |
Collapse
|
30
|
Lancíková V, Žiarovská J. Inter-retrotransposon amplified polymorphism markers revealed long terminal repeat retrotransposon insertion polymorphism in flax cultivated on the experimental fields around Chernobyl. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2020; 55:957-963. [PMID: 32378983 DOI: 10.1080/10934529.2020.1760016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/14/2020] [Accepted: 04/16/2020] [Indexed: 06/11/2023]
Abstract
Ionizing radiation in environment comes from various natural and anthropogenic sources. The effect of radioactivity released after the CNPP (Chernobyl Nuclear Power Plant) on plant systems remains of great interest. Even now, more than three decades after the nuclear accident, the long-lived radionuclides represent a strong stress factor. Herein, the emphasis has been placed on analysis of genetic variability represented by activation of LTR (Long Terminal Repeat)-retrotransposons. Polymorphism in LTR-retrotransposon insertions has been investigated throughout the genome of two flax varieties, Kyivskyi and Bethune. For this purpose, two retrotransposon-based marker techniques, IRAP (Inter-Retrotransposon Amplified Polymorphism) and iPBS (inter-Primer Binding Site), have been employed. The hypothesis that chronic radioactive stress may induce mechanism of retransposition has been supported by the activation of FL9, FL11 and FL12 LTR-retrotransposons in flax seeds harvested from radioactive environment. Out of two retrotransposon-based approaches, IRAP appears to be more suitable for identification of LTR-retrotransposon polymorphism. Even though the LTR-retrotransposon polymorphism was identified, the results suggest the high level of plant adaptation in the radioactive Chernobyl area. However, it is not really surprising that plants developed an effective strategy to survive in radio-contaminated environment over the past 30 years.
Collapse
Affiliation(s)
- Veronika Lancíková
- Plant Science and Biodiversity Center, Institute of Plant Genetics and Biotechnology, Slovak Academy of Sciences, Nitra, Slovakia
| | - Jana Žiarovská
- Department of Genetics and Plant Breeding, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, Nitra, Slovakia
| |
Collapse
|
31
|
Turzhanova A, Khapilina ON, Tumenbayeva A, Shevtsov V, Raiser O, Kalendar R. Genetic diversity of Alternaria species associated with black point in wheat grains. PeerJ 2020; 8:e9097. [PMID: 32411537 PMCID: PMC7207207 DOI: 10.7717/peerj.9097] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 04/09/2020] [Indexed: 12/12/2022] Open
Abstract
The genus Alternaria is a widely distributed major plant pathogen that can act as a saprophyte in plant debris. Fungi of this genus frequently infect cereal crops and cause such diseases as black point and wheat leaf blight, which decrease the yield and quality of cereal products. A total of 25 Alternaria sp. isolates were collected from germ grains of various wheat cultivars from different geographic regions in Kazakhstan. We investigated the genetic relationships of the main Alternaria species related to black point disease of wheat in Kazakhstan, using the inter-primer binding site (iPBS) DNA profiling technique. We used 25 retrotransposon-based iPBS primers to identify the differences among and within Alternaria species populations, and analyzed the variation using clustering (UPGMA) and statistical approaches (AMOVA). Isolates of Alternaria species clustered into two main genetic groups, with species of A.alternata and A.tennuissima forming one cluster, and isolates of A. infectoria forming another. The genetic diversity found using retrotransposon profiles was strongly correlated with geographic data. Overall, the iPBS fingerprinting technique is highly informative and useful for the evaluation of genetic diversity and relationships of Alternaria species.
Collapse
Affiliation(s)
| | | | | | | | - Olesya Raiser
- National Center for Biotechnology, Nur-Sultan, Kazakhstan
| | - Ruslan Kalendar
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Uusimaa, Finland
| |
Collapse
|
32
|
Wang W, Chen C, Wang X, Zhang L, Shen D, Wang S, Gao B, Mao J, Song C. Development of Molecular Markers Based on the L1 Retrotransposon Insertion Polymorphisms in Pigs (Sus scrofa) and Their Association with Economic Traits. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795420020131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
33
|
High-throughput retrotransposon-based genetic diversity of maize germplasm assessment and analysis. Mol Biol Rep 2020; 47:1589-1603. [PMID: 31919750 DOI: 10.1007/s11033-020-05246-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 01/03/2020] [Indexed: 01/08/2023]
Abstract
Maize is one of the world's most important crops and a model for grass genome research. Long terminal repeat (LTR) retrotransposons comprise most of the maize genome; their ability to produce new copies makes them efficient high-throughput genetic markers. Inter-retrotransposon-amplified polymorphisms (IRAPs) were used to study the genetic diversity of maize germplasm. Five LTR retrotransposons (Huck, Tekay, Opie, Ji, and Grande) were chosen, based on their large number of copies in the maize genome, whereas polymerase chain reaction primers were designed based on consensus LTR sequences. The LTR primers showed high quality and reproducible DNA fingerprints, with a total of 677 bands including 392 polymorphic bands showing 58% polymorphism between maize hybrid lines. These markers were used to identify genetic similarities among all lines of maize. Analysis of genetic similarity was carried out based on polymorphic amplicon profiles and genetic similarity phylogeny analysis. This diversity was expected to display ecogeographical patterns of variation and local adaptation. The clustering method showed that the varieties were grouped into three clusters differing in ecogeographical origin. Each of these clusters comprised divergent hybrids with convergent characters. The clusters reflected the differences among maize hybrids and were in accordance with their pedigree. The IRAP technique is an efficient high-throughput genetic marker-generating method.
Collapse
|
34
|
Development and Deployment of High-Throughput Retrotransposon-Based Markers Reveal Genetic Diversity and Population Structure of Asian Bamboo. FORESTS 2019. [DOI: 10.3390/f11010031] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bamboo, a non-timber grass species, known for exceptionally fast growth is a commercially viable crop. Long terminal repeat (LTR) retrotransposons, the main class I mobile genetic elements in plant genomes, are highly abundant (46%) in bamboo, contributing to genome diversity. They play significant roles in the regulation of gene expression, chromosome size and structure as well as in genome integrity. Due to their random insertion behavior, interspaces of retrotransposons can vary significantly among bamboo genotypes. Capitalizing this feature, inter-retrotransposon amplified polymorphism (IRAP) is a high-throughput marker system to study the genetic diversity of plant species. To date, there are no transposon based markers reported from the bamboo genome and particularly using IRAP markers on genetic diversity. Phyllostachys genus of Asian bamboo is the largest of the Bambusoideae subfamily, with great economic importance. We report structure-based analysis of bamboo genome for the LTR-retrotransposon superfamilies, Ty3-gypsy and Ty1-copia, which revealed a total of 98,850 retrotransposons with intact LTR sequences at both the ends. Grouped into 64,281 clusters/scaffold using CD-HIT-EST software, only 13 clusters of retroelements were found with more than 30 LTR sequences and with at least one copy having all intact protein domains such as gag and polyprotein. A total of 16 IRAP primers were synthesized, based on the high copy numbers of conserved LTR sequences. A study using these IRAP markers on genetic diversity and population structure of 58 Asian bamboo accessions belonging to the genus Phyllostachys revealed 3340 amplicons with an average of 98% polymorphism. The bamboo accessions were collected from nine different provinces of China, as well as from Italy and America. A three phased approach using hierarchical clustering, principal components and a model based population structure divided the bamboo accessions into four sub-populations, PhSP1, PhSP2, PhSP3 and PhSP4. All the three analyses produced significant sub-population wise consensus. Further, all the sub-populations revealed admixture of alleles. The analysis of molecular variance (AMOVA) among the sub-populations revealed high intra-population genetic variation (75%) than inter-population. The results suggest that Phyllostachys bamboos are not well evolutionarily diversified, although geographic speciation could have occurred at a limited level. This study highlights the usability of IRAP markers in determining the inter-species variability of Asian bamboos.
Collapse
|
35
|
Vishwakarma G, Sanyal RP, Saini A, Sahu PK, Singh Patel RR, Sharma D, Tiwari R, Das BK. GLADS: A gel-less approach for detection of STMS markers in wheat and rice. PLoS One 2019; 14:e0224572. [PMID: 31689318 PMCID: PMC6830750 DOI: 10.1371/journal.pone.0224572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 10/16/2019] [Indexed: 11/18/2022] Open
Abstract
Sequence tagged microsatellite site (STMS) are useful PCR based DNA markers. Wide genome coverage, high polymorphic index and co-dominant nature make STMS a preferred choice for marker assisted selection (MAS), genetic diversity analysis, linkage mapping, seed genetic purity analysis etc. Routine STMS analysis involving low-throughput, laborious and time-consuming polyacrylamide/agarose gels often limit their full utility in crop breeding experiments that involve large populations. Therefore, convenient, gel-less marker detection methods are highly desirable for STMS markers. The present study demonstrated the utility of SYBR Green dye based melt-profiling as a simple and convenient gel-less approach for detection of STMS markers (referred to as GLADS) in bread wheat and rice. The method involves use of SYBR Green dye during PCR amplification (or post-PCR) of STMS markers followed by generation of a melt-profile using controlled temperature ramp rate. The STMS amplicons yielded characteristic melt-profiles with differences in melting temperature (Tm) and profile shape. These characteristic features enabled melt-profile based detection and differentiation of STMS markers/alleles in a gel-less manner. The melt-profile approach allowed assessment of the specificity of the PCR assay unlike the end-point signal detection assays. The method also allowed multiplexing of two STMS markers with non-overlapping melt-profiles. In principle, the approach can be effectively used in any crop for STMS marker analysis. This SYBR Green melt-profiling based GLADS approach offers a convenient, low-cost (20-51%) and time-saving alternative for STMS marker detection that can reduce dependence on gel-based detection, and exposure to toxic chemicals.
Collapse
Affiliation(s)
- Gautam Vishwakarma
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, Maharashtra, India
- Homi Bhabha National Institute, Anushaktinagar, Trombay, Mumbai, Maharashtra, India
| | - Ravi Prakash Sanyal
- Homi Bhabha National Institute, Anushaktinagar, Trombay, Mumbai, Maharashtra, India
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, Maharashtra, India
| | - Ajay Saini
- Homi Bhabha National Institute, Anushaktinagar, Trombay, Mumbai, Maharashtra, India
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, Maharashtra, India
| | - Parmeshwar Kumar Sahu
- Department of Genetics and Plant Breeding, Indira Gandhi Krishi Vishwavidyalaya, Raipur, Chhattisgarh, India
| | - Ravi Raj Singh Patel
- Department of Genetics and Plant Breeding, Indira Gandhi Krishi Vishwavidyalaya, Raipur, Chhattisgarh, India
| | - Deepak Sharma
- Department of Genetics and Plant Breeding, Indira Gandhi Krishi Vishwavidyalaya, Raipur, Chhattisgarh, India
| | - Ratan Tiwari
- ICAR - Indian Institute of Wheat and Barley Research, Karnal, Haryana, India
| | - Bikram Kishore Das
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, Maharashtra, India
- Homi Bhabha National Institute, Anushaktinagar, Trombay, Mumbai, Maharashtra, India
| |
Collapse
|
36
|
Morgun BV, Dubrovna OV. IRAP Analysis of Transgenic Wheat Plants with a Double-Stranded RNA Suppressor of the Proline Dehydrogenase Gene. CYTOL GENET+ 2019. [DOI: 10.3103/s0095452719050116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
37
|
Lee SI, Nguyen TX, Kim JH, Kim NS. Cytological variations and long terminal repeat (LTR) retrotransposon diversities among diploids and B-chromosome aneuploids in Lilium amabile Palibin. Genes Genomics 2019; 41:941-950. [PMID: 31054075 DOI: 10.1007/s13258-019-00825-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 04/22/2019] [Indexed: 11/24/2022]
Abstract
BACKGROUND B chromosomes are supernumerary chromosomes found in numerous plant species, including in the genus Lilium. Lilium amabile, an endemic Korean Lilium species, carries B chromosomes which are highly variable in terms of numbers and shape among the accessions collected throughout the Korea. Class 1 retrotransposons are highly abundant in the genome of Lilium species, but their biological functions are still obscure. Lilium species were known to hold high diversities derived from retrotransposons. OBJECTIVE In this study, genetic diversities among the L. amabile accessions were analyzed to better understand relationships between genetic variations and cytological diversities. METHODS Chromosomes were prepared from 95 L. amabile accessions for cytological identification. Genetic variations were analyzed by inter-retrotransposon amplified polymorphism (IRAP), and genetic differentiation was evaluated via Tajima's D neutrality and FST analyses. Population structure and phylogenetic analyses were also carried out. RESULTS The L. amabile accessions were classified into 11 cytotypes by the chromosome constitutions. Genetic diversity measured by IRAP analysis revealed high genetic diversity among the accessions. In the joint analysis of cytological variation with genetical variation, IRAP diversity was not related to the cytological diversities of diploid and aneuploids among L. amabile accessions, and genetic differentiation was not obvious. Moreover, the geographical distribution of L. amabile was not related to either IRAP diversity or cytological diversity. CONCLUSION The B chromosome-carrying aneuploids occurred randomly among diploids throughout Korea, and IRAP diversification predated L. amabile dispersion in Korea without genetic differentiation.
Collapse
Affiliation(s)
- Sung-Il Lee
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Korea
| | - Truong Xuan Nguyen
- Institute of Agro-Biology, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Jong-Hwa Kim
- Department of Horticulture, Kangwon National University, Chuncheon, 200-701, Korea.
| | - Nam-Soo Kim
- Department of Molecular Biosciences, Kangwon National University, Chuncheon, 24341, Korea. .,Institute of Bioscience and Biomedical Sciences, Kangwon National University, Chuncheon, 24341, Korea.
| |
Collapse
|
38
|
Molecular characterization of a diverse Iranian table grapevine germplasm using REMAP markers: population structure, linkage disequilibrium and association mapping of berry yield and quality traits. Biologia (Bratisl) 2018. [DOI: 10.2478/s11756-018-0158-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
39
|
|
40
|
Bakuma AO, Popovych YA, Motsnyi II, Chebotar GO, Chebotar SV. Effects of the Ppd-D1a Allele on Growth Rates and Agronomical Traits in Wheat Detected by the Application of Analogous Lines. CYTOL GENET+ 2018. [DOI: 10.3103/s009545271805002x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
41
|
Ramekar RV, Sa KJ, Park KC, Roy N, Kim NS, Lee JK. Construction of genetic linkage map and identification of QTLs related to agronomic traits in maize using DNA transposon-based markers. BREEDING SCIENCE 2018; 68:465-473. [PMID: 30369821 PMCID: PMC6198908 DOI: 10.1270/jsbbs.18017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 06/14/2018] [Indexed: 06/08/2023]
Abstract
Transposable elements (TEs), are a rich source for molecular marker development as they constitute a significant fraction of the eukaryotic genome and impact the overall genome structure. Here, we utilize Mutator-based transposon display (Mu-TD), and CACTA-derived sequence-characterized amplified regions (SCAR) anchored by simple sequence repeats and single nucleotide polymorphisms to locate quantitative trait loci (QTLs) linked to agriculturally important traits on a genetic map. Specifically, we studied recombinant inbred line populations derived from a cross between dent corn and waxy corn. The resulting linkage map included 259 Mu-anchored fragments, 34 SCARs, and 614 SSR markers distributed throughout the ten maize chromosomes. Linkage analysis revealed three SNP loci associated with kernel starch synthesis genes (sh2, su1, wx1) linked to either Mu-TD loci or SSR markers, which may be useful for maize breeding programs. In addition, we used QTL analysis to determine the chromosomal location of traits related to grain yield and kernel quality. We identified 24 QTLs associated with nine traits located on nine out of ten maize chromosomes. Among these, 13 QTLs involved Mu loci and two involved SCARs. This study demonstrates the potential use of DNA transposon-based markers to construct linkage maps and identify QTLs linked to agronomic traits.
Collapse
Affiliation(s)
- Rahul Vasudeo Ramekar
- Department of Applied Plant Sciences, College of Agriculture and Life Sciences, Kangwon National University,
Chuncheon, 24341,
Korea
| | - Kyu Jin Sa
- Department of Applied Plant Sciences, College of Agriculture and Life Sciences, Kangwon National University,
Chuncheon, 24341,
Korea
| | - Kyong-Cheul Park
- Department of Agriculture and Life Industry, Kangwon National University,
Chuncheon, 24341,
Korea
| | - Neha Roy
- Department of Molecular Bioscience, Institute of Bioscience and Biotechnology, Kangwon National University,
Chuncheon, 24341,
Korea
| | - Nam-Soo Kim
- Department of Molecular Bioscience, Institute of Bioscience and Biotechnology, Kangwon National University,
Chuncheon, 24341,
Korea
| | - Ju Kyong Lee
- Department of Applied Plant Sciences, College of Agriculture and Life Sciences, Kangwon National University,
Chuncheon, 24341,
Korea
| |
Collapse
|
42
|
Bhattacharyya P, van Staden J. Molecular insights into genetic diversity and population dynamics of five medicinal Eulophia species: a threatened orchid taxa of Africa. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2018; 24:631-641. [PMID: 30042618 PMCID: PMC6041235 DOI: 10.1007/s12298-018-0523-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 11/16/2017] [Accepted: 03/05/2018] [Indexed: 05/22/2023]
Abstract
Genetic diversity existing amongst five Eulophia orchid species were assessed using start codon targeted polymorphism (SCoT) and inter-retrotransposon amplified polymorphism (IRAP) markers. A total of 12 SCoT and 5 IRAP markers revealed an average of 63% genetic variability [SCoT = 63.87; IRAP = 64.95%] amongst the five Eulophia species investigated. The genetic similarities were assessed using both UPGMA and Bayesian approaches which indicated identical clustering patterns at a genetic similarity level of 50%. Analysis of molecular variance (AMOVA) revealed the presence of a significant degree of genetic variability, mostly compartmentalized within the species level. Amongst the five assessed Eulophia species, E. parviflora was the most genetically diverse representative whereas E. welwitschii was found to be least diverse based on a comparative assessment of various population genetic parameters like Nei's gene diversity (h) and Shannon's information index (I) with an overall gene flow value greater than 1. In order to evaluate the comparative marker efficiency, SCoT and IRAP marker data were subjected to various benchmark analyses like marker index, resolving power, polymorphic index content, multiplex ratio and effective multiplex ratio which revealed the robustness of both the marker techniques in assessment of genetic diversity. The present report provides the first molecular insights into the aspects of inter and intra specific genetic variability in medicinally as well as horticulturally important Eulophia species along with addressing their conservation concerns. In a nutshell, the present approach is simple, rapid and cost effective and can be extended for analysis of genetic diversity of other related plant species.
Collapse
Affiliation(s)
- Paromik Bhattacharyya
- Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, Private Bag X01, Scottsville, 3209 South Africa
| | - Johannes van Staden
- Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, Private Bag X01, Scottsville, 3209 South Africa
| |
Collapse
|
43
|
Retrotransposons in Betula nana, and interspecific relationships in the Betuloideae, based on inter-retrotransposon amplified polymorphism (IRAP) markers. Genes Genomics 2018; 40:511-519. [PMID: 29892962 DOI: 10.1007/s13258-018-0655-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 01/09/2018] [Indexed: 01/13/2023]
Abstract
The Betulaceae family comprises two subfamilies, Betuloideae and Corylaceae. The subfamily Betuloideae contains two genera, Alnus Mill. and Betula L. Twenty putative long terminal repeat (LTR) retrotransposons were mined from 171 scaffolds containing 5,208,995 bp of dwarf birch (Betula nana) genome sequences. Five retrotransposons were finally selected after filtering the retrotransposon canonical features and nucleotide similarities between left and right LTR sequences. Of the five retroelements, three elements were found to be Ty1/Copia retrotransposons; identity of the other two elements could not be ascertained due to sequence undetermined 'N' bases in the sequence database. Inter-retrotranposon amplified polymorphism (IRAP) analysis, based on the LTR sequences of the mined LTR-retrotransposons, produced 179 discernible IRAP bands among the Alnus and Betula genera. Sequence analysis revealed no size homoplasy among the homologous IRAP bands. Phylogenetic and principle coordinate analysis, based on the band sharing among the taxa, showed the species in two different genera were clearly separated. The subgenera in each genus of Alnus and Betula were also distinguishable from the IRAP profiles. In the genus Betula, the species in subgenus Betula showed mixed clustering between species. This is incongruent with the phylogeographical distribution of the species.
Collapse
|
44
|
Assessments of genetic diversity in Iranian flax populations using retrotransposon microsatellite amplification polymorphisms (REMAP) markers. THE NUCLEUS 2018. [DOI: 10.1007/s13237-017-0218-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
45
|
Kalendar R, Tselykh TV, Khassenov B, Ramanculov EM. Introduction on Using the FastPCR Software and the Related Java Web Tools for PCR and Oligonucleotide Assembly and Analysis. Methods Mol Biol 2018; 1620:33-64. [PMID: 28540698 DOI: 10.1007/978-1-4939-7060-5_2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This chapter introduces the FastPCR software as an integrated tool environment for PCR primer and probe design, which predicts properties of oligonucleotides based on experimental studies of the PCR efficiency. The software provides comprehensive facilities for designing primers for most PCR applications and their combinations. These include the standard PCR as well as the multiplex, long-distance, inverse, real-time, group-specific, unique, overlap extension PCR for multi-fragments assembling cloning and loop-mediated isothermal amplification (LAMP). It also contains a built-in program to design oligonucleotide sets both for long sequence assembly by ligase chain reaction and for design of amplicons that tile across a region(s) of interest. The software calculates the melting temperature for the standard and degenerate oligonucleotides including locked nucleic acid (LNA) and other modifications. It also provides analyses for a set of primers with the prediction of oligonucleotide properties, dimer and G/C-quadruplex detection, linguistic complexity as well as a primer dilution and resuspension calculator. The program consists of various bioinformatical tools for analysis of sequences with the GC or AT skew, CG% and GA% content, and the purine-pyrimidine skew. It also analyzes the linguistic sequence complexity and performs generation of random DNA sequence as well as restriction endonucleases analysis. The program allows to find or create restriction enzyme recognition sites for coding sequences and supports the clustering of sequences. It performs efficient and complete detection of various repeat types with visual display. The FastPCR software allows the sequence file batch processing that is essential for automation. The program is available for download at http://primerdigital.com/fastpcr.html , and its online version is located at http://primerdigital.com/tools/pcr.html .
Collapse
Affiliation(s)
- Ruslan Kalendar
- National Center for Biotechnology, 010000, Astana, Kazakhstan. .,PrimerDigital Ltd, 00710, Helsinki, Finland.
| | - Timofey V Tselykh
- Biochemistry and Developmental Biology, Medicum, University of Helsinki, PL63, 00014, Helsinki, Finland.,Minerva Medical Research Institute, Biomedicum 2U, Tukholmankatu 8, 00290, Helsinki, Finland
| | - Bekbolat Khassenov
- National Center for Biotechnology,, 13/5 Kurgalzhynskoye Hwy, Astana, Kazakhstan
| | - Erlan M Ramanculov
- National Center for Biotechnology,, 13/5 Kurgalzhynskoye Hwy, Astana, Kazakhstan
| |
Collapse
|
46
|
Kalendar R, Amenov A, Daniyarov A. Use of retrotransposon-derived genetic markers to analyse genomic variability in plants. FUNCTIONAL PLANT BIOLOGY : FPB 2018; 46:15-29. [PMID: 30939255 DOI: 10.1071/fp18098] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 08/23/2018] [Indexed: 06/09/2023]
Abstract
Transposable elements (TEs) are common mobile genetic elements comprising several classes and making up the majority of eukaryotic genomes. The movement and accumulation of TEs has been a major force shaping the genes and genomes of most organisms. Most eukaryotic genomes are dominated by retrotransposons and minimal DNA transposon accumulation. The 'copy and paste' lifecycle of replicative transposition produces new genome insertions without excising the original element. Horizontal TE transfer among lineages is rare. TEs represent a reservoir of potential genomic instability and RNA-level toxicity. Many TEs appear static and nonfunctional, but some are capable of replicating and mobilising to new positions, and somatic transposition events have been observed. The overall structure of retrotransposons and the domains responsible for the phases of their replication are highly conserved in all eukaryotes. TEs are important drivers of species diversity and exhibit great variety in their structure, size and transposition mechanisms, making them important putative actors in evolution. Because TEs are abundant in plant genomes, various applications have been developed to exploit polymorphisms in TE insertion patterns, including conventional or anchored PCR, and quantitative or digital PCR with primers for the 5' or 3' junction. Alternatively, the retrotransposon junction can be mapped using high-throughput next-generation sequencing and bioinformatics. With these applications, TE insertions can be rapidly, easily and accurately identified, or new TE insertions can be found. This review provides an overview of the TE-based applications developed for plant species and assesses the contributions of TEs to the analysis of plants' genetic diversity.
Collapse
Affiliation(s)
- Ruslan Kalendar
- Department of Agricultural Sciences, PO Box 27 (Latokartanonkaari 5), FI-00014 University of Helsinki, Helsinki, Finland
| | - Asset Amenov
- RSE 'National Center for Biotechnology', 13/5 Kurgalzhynskoye Road, Astana, 010000, Kazakhstan
| | - Asset Daniyarov
- RSE 'National Center for Biotechnology', 13/5 Kurgalzhynskoye Road, Astana, 010000, Kazakhstan
| |
Collapse
|
47
|
Nadeem MA, Nawaz MA, Shahid MQ, Doğan Y, Comertpay G, Yıldız M, Hatipoğlu R, Ahmad F, Alsaleh A, Labhane N, Özkan H, Chung G, Baloch FS. DNA molecular markers in plant breeding: current status and recent advancements in genomic selection and genome editing. BIOTECHNOL BIOTEC EQ 2017. [DOI: 10.1080/13102818.2017.1400401] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Muhammad Azhar Nadeem
- Department of Field Crops, Faculty of Agricultural and Natural Sciences, Abant İzzet Baysal University, Bolu, Turkey
| | - Muhammad Amjad Nawaz
- Department of Biotechnology, School of Engineering, Chonnam National University, Yeosu, Korea
| | - Muhammad Qasim Shahid
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, P. R. China
| | - Yıldız Doğan
- Department of Field Crops, Eastern Mediterranean Agricultural Research Institute, Agricultural Ministry, Adana, Turkey
| | - Gonul Comertpay
- Department of Field Crops, Eastern Mediterranean Agricultural Research Institute, Agricultural Ministry, Adana, Turkey
| | - Mehtap Yıldız
- Department of Agricultural Biotechnology, Faculty of Agriculture, Yuzuncu Yıl University, Van, Turkey
| | - Rüştü Hatipoğlu
- Department of Field Crops, Faculty of Agriculture, University of Çukurova, Adana, Turkey
| | - Fiaz Ahmad
- Botany Division, Institute of Pure and Applied Biology, Bahauddin Zakariya University, Punjab, Pakistan
| | - Ahmad Alsaleh
- Molecular Genetics Laboratory, Science and Technology Application and Research Center, Bozok University, Yozgat, Turkey
| | - Nitin Labhane
- Department of Botany, Bhavan's College, University of Mumbai, Mumbai, India
| | - Hakan Özkan
- Department of Field Crops, Faculty of Agriculture, University of Çukurova, Adana, Turkey
| | - Gyuhwa Chung
- Department of Biotechnology, School of Engineering, Chonnam National University, Yeosu, Korea
| | - Faheem Shehzad Baloch
- Department of Field Crops, Faculty of Agricultural and Natural Sciences, Abant İzzet Baysal University, Bolu, Turkey
| |
Collapse
|
48
|
Mascagni F, Cavallini A, Giordani T, Natali L. Different histories of two highly variable LTR retrotransposons in sunflower species. Gene 2017; 634:5-14. [PMID: 28867564 DOI: 10.1016/j.gene.2017.08.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 07/15/2017] [Accepted: 08/23/2017] [Indexed: 11/20/2022]
Abstract
In the Helianthus genus, very large intra- and interspecific variability related to two specific retrotransposons of Helianthus annuus (Helicopia and SURE) exists. When comparing these two sequences to sunflower sequence databases recently produced by our lab, the Helicopia family was shown to belong to the Maximus/SIRE lineage of the Sirevirus genus of the Copia superfamily, whereas the SURE element (whose superfamily was not even previously identified) was classified as a Gypsy element of the Ogre/Tat lineage of the Metavirus genus. Bioinformatic analysis of the two retrotransposon families revealed their genomic abundance and relative proliferation timing. The genomic abundance of these families differed significantly among 12 Helianthus species. The ratio between the abundance of long terminal repeats and their reverse transcriptases suggested that the SURE family has relatively more solo long terminal repeats than does Helicopia. Pairwise comparisons of Illumina reads encoding the reverse transcriptase domain indicated that SURE amplification may have occurred more recently than that of Helicopia. Finally, the analysis of population structure based on the SURE and Helicopia polymorphisms of 32 Helianthus species evidenced two subpopulations, which roughly corresponded to species of the Helianthus and Divaricati/Ciliares sections. However, a number of species showed an admixed structure, confirming the importance of interspecific hybridisation in the evolution of this genus. In general, these two retrotransposon families differentially contributed to interspecific variability, emphasising the need to refer to specific families when studying genome evolution.
Collapse
Affiliation(s)
- Flavia Mascagni
- Dept. of Agriculture, Food, and Environment, University of Pisa, Via delBorghetto 80, I-56124 Pisa, Italy
| | - Andrea Cavallini
- Dept. of Agriculture, Food, and Environment, University of Pisa, Via delBorghetto 80, I-56124 Pisa, Italy
| | - Tommaso Giordani
- Dept. of Agriculture, Food, and Environment, University of Pisa, Via delBorghetto 80, I-56124 Pisa, Italy
| | - Lucia Natali
- Dept. of Agriculture, Food, and Environment, University of Pisa, Via delBorghetto 80, I-56124 Pisa, Italy.
| |
Collapse
|
49
|
Singh S, Nandha PS, Singh J. Transposon-based genetic diversity assessment in wild and cultivated barley. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.cj.2017.01.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
50
|
Pakhrou O, Medraoui L, Yatrib C, Alami M, Filali-maltouf A, Belkadi B. Assessment of genetic diversity and population structure of an endemic Moroccan tree ( Argania spinosa L.) based in IRAP and ISSR markers and implications for conservation. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2017; 23:651-661. [PMID: 28878503 PMCID: PMC5567707 DOI: 10.1007/s12298-017-0446-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 04/20/2017] [Accepted: 05/12/2017] [Indexed: 05/14/2023]
Abstract
Argan Tree is well known for its precious oil extracted from its seeds particularly used for the nutritional and cosmetic benefits. Because of the high international demand, the argan tree suffers from overexploitation and its cultivation is rare. Thus, the assessment of the genetic variation of this endemic tree is critically important for designing conservation strategies. In the present study and for the first time, genetic diversity of the global natural distribution of argan tree (Argania spinosa L.) in Morocco was assessed. Four IRAP (inter-retrotransposon amplified polymorphism) primer combinations and seven ISSR (inter-simple sequence repeat) primers amplified 164 and 248 scorable polymorphic bands respectively. Polymorphic information content (PIC = 0.27), resolving power (Rp = 15) and marker index (MI = 10.81) generated by IRAP primer combinations were almost identical to those generated by ISSR primers (PIC = 0.27, Rp = 9.16 and MI = 12). AMOVA analysis showed that 49% of the genetic variation was partitioned within populations which is supported by Nei's genetic differentiation (Gst = 0.5391) and the overall estimate of gene flow (Nm) being 0.4274. The STRUCTURE analysis, PCoA (principal coordinate analysis) and UPGMA (unweighted pair-group method with arithmetic mean) based on the combined data matrices of IRAP and ISSR divided the 240 argan genotypes into two groups. The strong differentiation observed might be due to the geographical distribution of argan tree. Our results provide crucial insight for genetic conservation programs of this genetic resource.
Collapse
Affiliation(s)
- Ouafae Pakhrou
- Laboratory of Microbiology and Molecular Biology, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Leila Medraoui
- Laboratory of Microbiology and Molecular Biology, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Chaimaa Yatrib
- Laboratory of Microbiology and Molecular Biology, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Mohammed Alami
- Laboratory of Microbiology and Molecular Biology, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Abdelkarim Filali-maltouf
- Laboratory of Microbiology and Molecular Biology, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Bouchra Belkadi
- Laboratory of Microbiology and Molecular Biology, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| |
Collapse
|