1
|
Sharma NK, Dwivedi P, Bhushan R, Maurya PK, Kumar A, Dakal TC. Engineering circular RNA for molecular and metabolic reprogramming. Funct Integr Genomics 2024; 24:117. [PMID: 38918231 DOI: 10.1007/s10142-024-01394-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/10/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024]
Abstract
The role of messenger RNA (mRNA) in biological systems is extremely versatile. However, it's extremely short half-life poses a fundamental restriction on its application. Moreover, the translation efficiency of mRNA is also limited. On the contrary, circular RNAs, also known as circRNAs, are a common and stable form of RNA found in eukaryotic cells. These molecules are synthesized via back-splicing. Both synthetic circRNAs and certain endogenous circRNAs have the potential to encode proteins, hence suggesting the potential of circRNA as a gene expression machinery. Herein, we aim to summarize all engineering aspects that allow exogenous circular RNA (circRNA) to prolong the time that proteins are expressed from full-length RNA signals. This review presents a systematic engineering approach that have been devised to efficiently assemble circRNAs and evaluate several aspects that have an impact on protein production derived from. We have also reviewed how optimization of the key components of circRNAs, including the topology of vector, 5' and 3' untranslated sections, entrance site of the internal ribosome, and engineered aptamers could be efficiently impacting the translation machinery for molecular and metabolic reprogramming. Collectively, molecular and metabolic reprogramming present a novel way of regulating distinctive cellular features, for instance growth traits to neoplastic cells, and offer new possibilities for therapeutic inventions.
Collapse
Affiliation(s)
- Narendra Kumar Sharma
- Department of Bioscience and Biotechnology, Banasthali Vidyapith (Deemed University), P.O. Banasthali Vidyapith Distt. Tonk, Rajasthan, 304 022, India.
| | - Pragya Dwivedi
- Department of Bioscience and Biotechnology, Banasthali Vidyapith (Deemed University), P.O. Banasthali Vidyapith Distt. Tonk, Rajasthan, 304 022, India
| | - Ravi Bhushan
- Department of Zoology, M.S. College, Motihari, Bihar, India
| | - Pawan Kumar Maurya
- Department of Biochemistry, Central University of Haryana, Mahendergarh, 123031, Haryana, India
| | - Abhishek Kumar
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, Karnataka, India
- Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Tikam Chand Dakal
- Genome and Computational Biology Lab, Department of Biotechnology, Mohanlal Sukhadia University, Udaipur, Rajasthan, 313001, India.
| |
Collapse
|
2
|
Flemmich L, Bereiter R, Micura R. Chemical Synthesis of Modified RNA. Angew Chem Int Ed Engl 2024; 63:e202403063. [PMID: 38529723 DOI: 10.1002/anie.202403063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/16/2024] [Accepted: 03/26/2024] [Indexed: 03/27/2024]
Abstract
Ribonucleic acids (RNAs) play a vital role in living organisms. Many of their cellular functions depend critically on chemical modification. Methods to modify RNA in a controlled manner-both in vitro and in vivo-are thus essential to evaluate and understand RNA biology at the molecular and mechanistic levels. The diversity of modifications, combined with the size and uniformity of RNA (made up of only 4 nucleotides) makes its site-specific modification a challenging task that needs to be addressed by complementary approaches. One such approach is solid-phase RNA synthesis. We discuss recent developments in this field, starting with new protection concepts in the ongoing effort to overcome current size limitations. We continue with selected modifications that have posed significant challenges for their incorporation into RNA. These include deazapurine bases required for atomic mutagenesis to elucidate mechanistic aspects of catalytic RNAs, and RNA containing xanthosine, N4-acetylcytidine, 5-hydroxymethylcytidine, 3-methylcytidine, 2'-OCF3, and 2'-N3 ribose modifications. We also discuss the all-chemical synthesis of 5'-capped mRNAs and the enzymatic ligation of chemically synthesized oligoribonucleotides to obtain long RNA with multiple distinct modifications, such as those needed for single-molecule FRET studies. Finally, we highlight promising developments in RNA-catalyzed RNA modification using cofactors that transfer bioorthogonal functionalities.
Collapse
Affiliation(s)
- Laurin Flemmich
- Institute of Organic Chemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - Raphael Bereiter
- Institute of Organic Chemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - Ronald Micura
- Institute of Organic Chemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| |
Collapse
|
3
|
Brunderová M, Havlíček V, Matyašovský J, Pohl R, Poštová Slavětínská L, Krömer M, Hocek M. Expedient production of site specifically nucleobase-labelled or hypermodified RNA with engineered thermophilic DNA polymerases. Nat Commun 2024; 15:3054. [PMID: 38594306 PMCID: PMC11004144 DOI: 10.1038/s41467-024-47444-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 03/26/2024] [Indexed: 04/11/2024] Open
Abstract
Innovative approaches to controlled nucleobase-modified RNA synthesis are urgently needed to support RNA biology exploration and to synthesize potential RNA therapeutics. Here we present a strategy for enzymatic construction of nucleobase-modified RNA based on primer-dependent engineered thermophilic DNA polymerases - SFM4-3 and TGK. We demonstrate introduction of one or several different base-modified nucleotides in one strand including hypermodified RNA containing all four modified nucleotides bearing four different substituents, as well as strategy for primer segment removal. We also show facile site-specific or segmented introduction of fluorophores or other functional groups at defined positions in variety of RNA molecules, including structured or long mRNA. Intriguing translation efficacy of single-site modified mRNAs underscores the necessity to study isolated modifications placed at designer positions to disentangle their biological effects and enable development of improved mRNA therapeutics. Our toolbox paves the way for more precise dissecting RNA structures and functions, as well as for construction of diverse types of base-functionalized RNA for therapeutic applications and diagnostics.
Collapse
Affiliation(s)
- Mária Brunderová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000, Prague, 6, Czech Republic
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, CZ-12843, Prague, 2, Czech Republic
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, UK
| | - Vojtěch Havlíček
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000, Prague, 6, Czech Republic
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, CZ-12843, Prague, 2, Czech Republic
| | - Ján Matyašovský
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000, Prague, 6, Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000, Prague, 6, Czech Republic
| | - Lenka Poštová Slavětínská
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000, Prague, 6, Czech Republic
| | - Matouš Krömer
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000, Prague, 6, Czech Republic.
- The Rosalind Franklin Institute, Harwell Campus, Didcot, Oxfordshire, UK.
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000, Prague, 6, Czech Republic.
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, CZ-12843, Prague, 2, Czech Republic.
| |
Collapse
|
4
|
Kompatscher M, Bartosik K, Erharter K, Plangger R, Juen F, Kreutz C, Micura R, Westhof E, Erlacher M. Contribution of tRNA sequence and modifications to the decoding preferences of E. coli and M. mycoides tRNAGlyUCC for synonymous glycine codons. Nucleic Acids Res 2024; 52:1374-1386. [PMID: 38050960 PMCID: PMC10853795 DOI: 10.1093/nar/gkad1136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 12/07/2023] Open
Abstract
tRNA superwobbling, used by certain bacteria and organelles, is an intriguing decoding concept in which a single tRNA isoacceptor is used to decode all synonymous codons of a four-fold degenerate codon box. While Escherichia coli relies on three tRNAGly isoacceptors to decode the four glycine codons (GGN), Mycoplasma mycoides requires only a single tRNAGly. Both organisms express tRNAGly with the anticodon UCC, which are remarkably similar in sequence but different in their decoding ability. By systematically introducing mutations and altering the number and type of tRNA modifications using chemically synthesized tRNAs, we elucidated the contribution of individual nucleotides and chemical groups to decoding by the E. coli and M. mycoides tRNAGly. The tRNA sequence was identified as the key factor for superwobbling, revealing the T-arm sequence as a novel pivotal element. In addition, the presence of tRNA modifications, although not essential for providing superwobbling, was shown to delicately fine-tune and balance the decoding of synonymous codons. This emphasizes that the tRNA sequence and its modifications together form an intricate system of high complexity that is indispensable for accurate and efficient decoding.
Collapse
Affiliation(s)
- Maria Kompatscher
- Institute of Genomics and RNomics, Biocenter, Medical University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Karolina Bartosik
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Kevin Erharter
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Raphael Plangger
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Fabian Sebastian Juen
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Christoph Kreutz
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Ronald Micura
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Eric Westhof
- Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire, Architecture et Réactivité de l’ARN, CNRS UPR 9002, 2, allée Konrad Roentgen, F-67084 Strasbourg, France
| | - Matthias D Erlacher
- Institute of Genomics and RNomics, Biocenter, Medical University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| |
Collapse
|
5
|
Niu D, Wu Y, Lian J. Circular RNA vaccine in disease prevention and treatment. Signal Transduct Target Ther 2023; 8:341. [PMID: 37691066 PMCID: PMC10493228 DOI: 10.1038/s41392-023-01561-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 06/02/2023] [Accepted: 07/09/2023] [Indexed: 09/12/2023] Open
Abstract
CircRNAs are a class of single-stranded RNAs with covalently linked head-to-tail topology. In the decades since its initial discovery, their biogenesis, regulation, and function have rapidly disclosed, permitting a better understanding and adoption of them as new tools for medical applications. With the development of biotechnology and molecular medicine, artificial circRNAs have been engineered as a novel class of vaccines for disease treatment and prevention. Unlike the linear mRNA vaccine which applications were limited by its instability, inefficiency, and innate immunogenicity, circRNA vaccine which incorporate internal ribosome entry sites (IRESs) and open reading frame (ORF) provides an improved approach to RNA-based vaccination with safety, stability, simplicity of manufacture, and scalability. However, circRNA vaccines are at an early stage, and their optimization, delivery and applications require further development and evaluation. In this review, we comprehensively describe circRNA vaccine, including their history and superiority. We also summarize and discuss the current methodological research for circRNA vaccine preparation, including their design, synthesis, and purification. Finally, we highlight the delivery options of circRNA vaccine and its potential applications in diseases treatment and prevention. Considering their unique high stability, low immunogenicity, protein/peptide-coding capacity and special closed-loop construction, circRNA vaccine, and circRNA-based therapeutic platforms may have superior application prospects in a broad range of diseases.
Collapse
Affiliation(s)
- Dun Niu
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), 400038, Chongqing, China
- Department of Clinical Biochemistry, Army Medical University (Third Military Medical University), 400038, Chongqing, China
| | - Yaran Wu
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), 400038, Chongqing, China
- Department of Clinical Biochemistry, Army Medical University (Third Military Medical University), 400038, Chongqing, China
| | - Jiqin Lian
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), 400038, Chongqing, China.
- Department of Clinical Biochemistry, Army Medical University (Third Military Medical University), 400038, Chongqing, China.
| |
Collapse
|
6
|
Kang DD, Li H, Dong Y. Advancements of in vitro transcribed mRNA (IVT mRNA) to enable translation into the clinics. Adv Drug Deliv Rev 2023; 199:114961. [PMID: 37321375 PMCID: PMC10264168 DOI: 10.1016/j.addr.2023.114961] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/02/2023] [Accepted: 06/08/2023] [Indexed: 06/17/2023]
Abstract
The accelerated progress and approval of two mRNA-based vaccines to address the SARS-CoV-2 virus were unprecedented. This record-setting feat was made possible through the solid foundation of research on in vitro transcribed mRNA (IVT mRNA) which could be utilized as a therapeutic modality. Through decades of thorough research to overcome barriers to implementation, mRNA-based vaccines or therapeutics offer many advantages to rapidly address a broad range of applications including infectious diseases, cancers, and gene editing. Here, we describe the advances that have supported the adoption of IVT mRNA in the clinics, including optimization of the IVT mRNA structural components, synthesis, and lastly concluding with different classes of IVT RNA. Continuing interest in driving IVT mRNA technology will enable a safer and more efficacious therapeutic modality to address emerging and existing diseases.
Collapse
Affiliation(s)
- Diana D Kang
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States; Genomics Institute, Precision Immunology Institute, Department of Oncological Sciences, Tisch Cancer Institute, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Haoyuan Li
- Genomics Institute, Precision Immunology Institute, Department of Oncological Sciences, Tisch Cancer Institute, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Yizhou Dong
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States; Department of Biomedical Engineering, The Center for Clinical and Translational Science, The Comprehensive Cancer Center; Dorothy M. Davis Heart & Lung Research Institute, Department of Radiation Oncology, The Ohio State University, Columbus, OH 43210, United States; Genomics Institute, Precision Immunology Institute, Department of Oncological Sciences, Tisch Cancer Institute, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States.
| |
Collapse
|
7
|
Huang K, Fang X. A review on recent advances in methods for site-directed spin labeling of long RNAs. Int J Biol Macromol 2023; 239:124244. [PMID: 37001783 DOI: 10.1016/j.ijbiomac.2023.124244] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/12/2023] [Accepted: 03/15/2023] [Indexed: 03/31/2023]
Abstract
RNAs are important biomolecules that play essential roles in various cellular processes and are crucially linked with many human diseases. The key to elucidate the mechanisms underlying their biological functions and develop RNA-based therapeutics is to investigate RNA structure and dynamics and their connections to function in detail using a variety of approaches. Magnetic resonance techniques including paramagnetic nuclear magnetic resonance (NMR) and electron magnetic resonance (EPR) spectroscopies have proved to be powerful tools to gain insights into such properties. The prerequisites for paramagnetic NMR and EPR studies on RNAs are to achieve site-specific spin labeling of the intrinsically diamagnetic RNAs, which however is not trivial, especially for long ones. In this review, we present some covalent labeling strategies that allow site-specific introduction of electron spins to long RNAs. Generally, these strategies include assembly of long RNAs via enzymatic ligation of short oligonucleotides, co- and post-transcriptional site-specific labeling empowered with the unnatural base pair system, and direct enzymatic functionalization of natural RNAs. We introduce a few case studies to discuss the advantages and limitations of each strategy, and to provide a vision for the future development.
Collapse
|
8
|
Sudakov A, Knezic B, Hengesbach M, Fürtig B, Stirnal E, Schwalbe H. Site-Specific Labeling of RNAs with Modified and 19 F-Labeled Nucleotides by Chemo-Enzymatic Synthesis. Chemistry 2023; 29:e202203368. [PMID: 36594705 DOI: 10.1002/chem.202203368] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/04/2023]
Abstract
More than 170 post-transcriptional modifications of RNAs have currently been identified. Detailed biophysical investigations of these modifications have been limited since large RNAs containing these post-transcriptional modifications are difficult to produce. Further, adequate readout of spectroscopic fingerprints are important, necessitating additional labeling procedures beyond the naturally occurring RNA modifications. Here, we report the chemo-enzymatic synthesis of RNA modifications and several structurally similar fluorine-modified analogs further optimizing a recently developed methodology.[1] This chemo-enzymatic method allows synthesis of also large RNAs. We were able to incorporate 16 modified nucleotides and 6 19 F-labeled nucleotides. To showcase the applicability of such modified large RNAs, we incorporated a 19 F-labeled cytidine into the aptamer domain of the 2'dG sensing riboswitch (2'dG-sw) from Mesoplasma florum, enabling characterizing RNA fold, ligand binding and kinetics. Thanks to the large chemical shift dispersion of 19 F, we can detect conformational heterogeneity in the apo state of the riboswitch.
Collapse
Affiliation(s)
- Alexey Sudakov
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University, Max-von-Laue-Str. 7+9, 60438, Frankfurt, Germany
| | - Bozana Knezic
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University, Max-von-Laue-Str. 7+9, 60438, Frankfurt, Germany
| | - Martin Hengesbach
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University, Max-von-Laue-Str. 7+9, 60438, Frankfurt, Germany
| | - Boris Fürtig
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University, Max-von-Laue-Str. 7+9, 60438, Frankfurt, Germany
| | - Elke Stirnal
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University, Max-von-Laue-Str. 7+9, 60438, Frankfurt, Germany
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University, Max-von-Laue-Str. 7+9, 60438, Frankfurt, Germany
| |
Collapse
|
9
|
Li X, Liu X, Wei J, Bu S, Li Z, Hao Z, Zhang W, Wan J. Ultrasensitive detection of microRNAs based on click chemistry-terminal deoxynucleotidyl transferase combined with CRISPR/Cas12a. Biochimie 2022; 208:38-45. [DOI: 10.1016/j.biochi.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 11/21/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
|
10
|
Kiliszek A, Pluta M, Bejger M, Rypniewski W. Structure and thermodynamics of a UGG motif interacting with Ba2+ and other metal ions: accommodating changes in the RNA structure and the presence of a G(syn)-G(syn) pair. RNA (NEW YORK, N.Y.) 2022; 29:rna.079414.122. [PMID: 36319090 PMCID: PMC9808570 DOI: 10.1261/rna.079414.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
The self-complementary triplet 5'UGG3'/5'UGG3' is a particular structural motif containing noncanonical G-G pair and two U·G wobble pairs. It constitutes a specific structural and electrostatic environment attracting metal ions, particularly Ba2+ ions. Crystallographic research has shown that two Ba2+ cations are located in the major groove of the helix and interact directly with the UGG triplet. A comparison with the unliganded structure has revealed global changes in the RNA structure in the presence of metal ions, whereas thermodynamic measurements have shown increased stability. Moreover, in the structure with Ba2+, an unusual noncanonical G(syn)-G(syn) pair is observed instead of the common G(anti)-G(syn). We further elucidate the metal binding properties of the UGG/UGG triplet by performing crystallographic and thermodynamic studies using DSC and UV melting with other metal ions. The results explain the preferences of the UGG sequence for Ba2+ cations and point to possible applications of this metal-binding propensity.
Collapse
|
11
|
Liu X, Zhang Y, Zhou S, Dain L, Mei L, Zhu G. Circular RNA: An emerging frontier in RNA therapeutic targets, RNA therapeutics, and mRNA vaccines. J Control Release 2022; 348:84-94. [PMID: 35649485 PMCID: PMC9644292 DOI: 10.1016/j.jconrel.2022.05.043] [Citation(s) in RCA: 109] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/17/2022] [Accepted: 05/25/2022] [Indexed: 12/13/2022]
Abstract
Circular RNAs (circRNA) is a class of natural (biogenic) or synthetic closed RNA without 5' or 3' ends. Meanwhile, their unique covalently-closed structures of circRNA prevent RNA degradation by exonucleases, thereby empowering them with high pharmaceutical stability and biostability relative to current standard-of-care linear mRNA. Natural circRNA can be non-coding RNAs as well as protein-coding RNA, the latter of which was recently discovered. The physiological functions of biogenic circRNAs, which largely remain elusive, include protein and gene sponges, cell activity modulators, and protein translation. The discovery that the circRNA levels can be correlated with some human diseases empowers circRNA with the potential as a novel type of disease biomarkers and a noncanonical class of therapeutic targets. Recently, synthetic circRNA have been engineered to explore their applications as a novel class of mRNA therapeutics and vaccines. In this review, we will discuss the current understanding of the biogenesis and physiological functions of natural circRNAs, the approaches to circRNA synthesis, and current research in the exploration of endogenous circRNAs as novel therapeutic targets and testing circRNAs as an emerging class of RNA therapeutics and vaccines.
Collapse
Affiliation(s)
- Xiang Liu
- Department of Pharmaceutics and Center for Pharmaceutical Engineering and Sciences, School of Pharmacy, Institute for Structural Biology and Drug Discovery, The Developmental Therapeutics Program, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Yu Zhang
- Department of Pharmaceutics and Center for Pharmaceutical Engineering and Sciences, School of Pharmacy, Institute for Structural Biology and Drug Discovery, The Developmental Therapeutics Program, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Shurong Zhou
- Department of Pharmaceutics and Center for Pharmaceutical Engineering and Sciences, School of Pharmacy, Institute for Structural Biology and Drug Discovery, The Developmental Therapeutics Program, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Lauren Dain
- Department of Pharmaceutics and Center for Pharmaceutical Engineering and Sciences, School of Pharmacy, Institute for Structural Biology and Drug Discovery, The Developmental Therapeutics Program, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Lei Mei
- Department of Pharmaceutics and Center for Pharmaceutical Engineering and Sciences, School of Pharmacy, Institute for Structural Biology and Drug Discovery, The Developmental Therapeutics Program, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Guizhi Zhu
- Department of Pharmaceutics and Center for Pharmaceutical Engineering and Sciences, School of Pharmacy, Institute for Structural Biology and Drug Discovery, The Developmental Therapeutics Program, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA.
| |
Collapse
|
12
|
Le MN, Le CT, Nguyen TA. Intramolecular ligation method (iLIME) for pre-miRNA quantification and sequencing. RNA (NEW YORK, N.Y.) 2022; 28:1028-1038. [PMID: 35487691 PMCID: PMC9202589 DOI: 10.1261/rna.079101.122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/12/2022] [Indexed: 06/04/2023]
Abstract
Hairpin-containing pre-miRNAs, produced from pri-miRNAs, are precursors of miRNAs (microRNAs) that play essential roles in gene expression and various human diseases. Current qPCR-based methods used to quantify pre-miRNAs are not effective to discriminate between pre-miRNAs and their parental pri-miRNAs. Here, we developed the intramolecular ligation method (iLIME) to quantify and sequence pre-miRNAs specifically. This method utilizes T4 RNA ligase 1 to convert pre-miRNAs into circularized RNAs, allowing us to design PCR primers to quantify pre-miRNAs, but not their parental pri-miRNAs. In addition, the iLIME also enables us to sequence the ends of pre-miRNAs using next-generation sequencing. Therefore, this method offers a simple and effective way to quantify and sequence pre-miRNAs, so it will be highly beneficial for investigating pre-miRNAs when addressing research questions and medical applications.
Collapse
Affiliation(s)
- Minh Ngoc Le
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Cong Truc Le
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Tuan Anh Nguyen
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
13
|
Abstract
Fast and efficient site-specific labeling of long RNAs is one of the main bottlenecks limiting distance measurements by means of Förster resonance energy transfer (FRET) or electron paramagnetic resonance (EPR) spectroscopy. Here, we present an optimized protocol for dual end-labeling with different fluorophores at the same time meeting the restrictions of highly labile and degradation-sensitive RNAs. We describe in detail the dual-labeling of a catalytically active wild-type group II intron as a typical representative of long functional RNAs. The modular procedure chemically activates the 5'-phosphate and the 3'-ribose for bioconjugation with a pair of fluorophores, as shown herein, or with spin labels. The mild reaction conditions preserve the structural and functional integrity of the biomacromolecule and results in covalent, dual-labeled RNA in its pre-catalytic state in yields suitable for both ensemble and single-molecule FRET experiments.
Collapse
Affiliation(s)
- Esra Ahunbay
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| | - Fabio D Steffen
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| | | | - Roland K O Sigel
- Department of Chemistry, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
14
|
Vicino MF, Wuebben C, Kerzhner M, Famulok M, Schiemann O. Spin Labeling of Long RNAs Via Click Reaction and Enzymatic Ligation. Methods Mol Biol 2022; 2439:205-221. [PMID: 35226324 DOI: 10.1007/978-1-0716-2047-2_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Electron paramagnetic resonance (EPR) is a spectroscopic method for investigating structures, conformational changes, and dynamics of biomacromolecules, for example, oligonucleotides. In order to be applicable, the oligonucleotide has to be labeled site-specifically with paramagnetic tags, the so-called spin labels. Here, we provide a protocol for spin labeling of long oligonucleotides with nitroxides. In the first step, a short and commercially available RNA strand is labeled with a nitroxide via a copper-(I)-catalyzed azide-alkyne cycloaddition (CuAAC), also referred to as "click" reaction. In the second step, the labeled RNA strand is fused to another RNA sequence by means of enzymatic ligation to obtain the labeled full-length construct. The protocol is robust and has been shown experimentally to deliver high yields for RNA sequences up to 81 nucleotides, but longer strands are in principle also feasible. Moreover, it sets the path to label, for example, long riboswitches, ribozymes, and DNAzymes for coarse-grained structure determination and enables to investigate mechanistical features of these systems.
Collapse
Affiliation(s)
- Maria Francesca Vicino
- Institute of Physical and Theoretical Chemistry, Rheinische Friedrich Wilhelms University, Bonn, Germany
| | - Christine Wuebben
- Institute of Physical and Theoretical Chemistry, Rheinische Friedrich Wilhelms University, Bonn, Germany
| | - Mark Kerzhner
- Life & Medical Sciences Institute (LIMES), Chemische Biologie, c/o Kekulé-Institut für organische Chemie, Bonn, Germany
| | - Michael Famulok
- Life & Medical Sciences Institute (LIMES), Chemische Biologie, c/o Kekulé-Institut für organische Chemie, Bonn, Germany
| | - Olav Schiemann
- Institute of Physical and Theoretical Chemistry, Rheinische Friedrich Wilhelms University, Bonn, Germany.
| |
Collapse
|
15
|
Obi P, Chen YG. The design and synthesis of circular RNAs. Methods 2021; 196:85-103. [PMID: 33662562 PMCID: PMC8670866 DOI: 10.1016/j.ymeth.2021.02.020] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 12/13/2022] Open
Abstract
Circular RNAs (circRNAs) are a novel class of RNAs distinguished by their single-stranded, covalently-closed topology. Although initially perceived as rare byproducts of aberrant splicing, circRNAs are now recognized as ubiquitously expressed and functionally significant. These discoveries have led to a growing need for ways to model circRNAs in living cells to advance our understanding of their biogenesis, regulation, and function, and to adopt them as new technologies for application within research and medicine. In this review, we provide an updated summary of approaches used to produce circRNAs in vitro and in vivo, the latter of which has grown considerably in recent years. Given increased interest in the unique functions carried out by individual circRNAs, we further dedicate a section on how to customize synthesized circRNAs for specific biological roles. We focus on the most common applications, including designing circRNAs for protein delivery, to target miRNAs and proteins, to act as fluorescent reporters, and to modulate cellular immunity.
Collapse
Affiliation(s)
- Prisca Obi
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Y Grace Chen
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
16
|
Abstract
Transcription of DNA into RNA is crucial to life, and understanding RNA polymerase (RNAP) function has received considerable attention. In contrast, how the nascent RNA folds into structures that impact transcription itself and regulate gene expression remains poorly understood. Here, we combine single-molecule Förster resonance energy transfer and site-specific fluorescent labelling of transcripts within native complexes to enable real-time cotranscriptional folding studies of a metabolite-sensing riboswitch from Escherichia coli. By monitoring the folding of riboswitches stalled at RNAP pausing sites and during active elongation, we reveal a crucial role for RNAP, which directs RNA folding to allow thiamin pyrophosphate sensing within a precise, transcriptional hotspot. Our approach offers a unique opportunity to unveil cotranscriptional processes in eukaryotic and bacterial systems. Cotranscriptional RNA folding is crucial for the timely control of biological processes, but because of its transient nature, its study has remained challenging. While single-molecule Förster resonance energy transfer (smFRET) is unique to investigate transient RNA structures, its application to cotranscriptional studies has been limited to nonnative systems lacking RNA polymerase (RNAP)–dependent features, which are crucial for gene regulation. Here, we present an approach that enables site-specific labeling and smFRET studies of kilobase-length transcripts within native bacterial complexes. By monitoring Escherichia coli nascent riboswitches, we reveal an inverse relationship between elongation speed and metabolite-sensing efficiency and show that pause sites upstream of the translation start codon delimit a sequence hotspot for metabolite sensing during transcription. Furthermore, we demonstrate a crucial role of the bacterial RNAP actively delaying the formation, within the hotspot sequence, of competing structures precluding metabolite binding. Our approach allows the investigation of cotranscriptional regulatory mechanisms in bacterial and eukaryotic elongation complexes.
Collapse
|
17
|
Depmeier H, Hoffmann E, Bornewasser L, Kath‐Schorr S. Strategies for Covalent Labeling of Long RNAs. Chembiochem 2021; 22:2826-2847. [PMID: 34043861 PMCID: PMC8518768 DOI: 10.1002/cbic.202100161] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/26/2021] [Indexed: 12/17/2022]
Abstract
The introduction of chemical modifications into long RNA molecules at specific positions for visualization, biophysical investigations, diagnostic and therapeutic applications still remains challenging. In this review, we present recent approaches for covalent internal labeling of long RNAs. Topics included are the assembly of large modified RNAs via enzymatic ligation of short synthetic oligonucleotides and synthetic biology approaches preparing site-specifically modified RNAs via in vitro transcription using an expanded genetic alphabet. Moreover, recent approaches to employ deoxyribozymes (DNAzymes) and ribozymes for RNA labeling and RNA methyltransferase based labeling strategies are presented. We discuss the potentials and limits of the individual methods, their applicability for RNAs with several hundred to thousands of nucleotides in length and indicate future directions in the field.
Collapse
Affiliation(s)
- Hannah Depmeier
- University of CologneDepartment of ChemistryGreinstr. 450939CologneGermany
| | - Eva Hoffmann
- University of CologneDepartment of ChemistryGreinstr. 450939CologneGermany
| | - Lisa Bornewasser
- University of CologneDepartment of ChemistryGreinstr. 450939CologneGermany
| | | |
Collapse
|
18
|
Zhao M, Börner R, Sigel RKO, Freisinger E. Site-Specific Dual-Color Labeling of Long RNAs. Methods Mol Biol 2021; 2106:253-270. [PMID: 31889263 DOI: 10.1007/978-1-0716-0231-7_16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Labeling of large RNAs with reporting entities, e.g., fluorophores, has significant impact on RNA studies in vitro and in vivo. Here, we describe a minimally invasive RNA labeling method featuring nucleotide and position selectivity, which solves the long-standing challenge of how to achieve accurate site-specific labeling of large RNAs with a least possible influence on folding and/or function. We use a custom-designed reactive DNA strand to hybridize to the RNA and transfer the alkyne group onto the targeted adenine or cytosine. Simultaneously, the 3'-terminus of RNA is converted to a dialdehyde moiety under the experimental condition applied. The incorporated functionalities at the internal and the 3'-terminal sites can then be conjugated with reporting entities via bioorthogonal chemistry. This method is particularly valuable for, but not limited to, single-molecule fluorescence applications. We demonstrate the method on an RNA construct of 275 nucleotides, the btuB riboswitch of Escherichia coli.
Collapse
Affiliation(s)
- Meng Zhao
- Department of Chemistry, University of Zurich, Zurich, Switzerland
- Department of Physics, University of Alberta, Edmonton, AB, Canada
| | - Richard Börner
- Department of Chemistry, University of Zurich, Zurich, Switzerland
- Laserinstitut Hochschule Mittweida, University of Applied Sciences Mittweida, Mittweida, Germany
| | - Roland K O Sigel
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| | - Eva Freisinger
- Department of Chemistry, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
19
|
Nakamoto K, Abe H. Chemical Synthesis of Circular RNAs with Phosphoramidate Linkages for Rolling-Circle Translation. Curr Protoc 2021; 1:e43. [PMID: 33657267 DOI: 10.1002/cpz1.43] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Recently, many types of circular RNAs have been reported in human cells. One interesting aspect of circular RNAs is their translation into proteins. We previously discovered that circular RNA without a stop codon can be translated into long repeating peptides via rolling-circle translation in both prokaryotic and eukaryotic systems. Because the rate-limiting step of translation-ribosome binding-occurs only once in rolling-circle translation, the translation efficacy is very efficient compared to translation of linear mRNAs. However, preparation of circular RNAs involves costly and time-consuming enzymatic methods, and there was no practical non-enzymatic method. We recently reported a chemical synthesis strategy using short RNA fragments and one or two phosphoramidate linkages. In this article, we describe the chemical synthesis and purification methods for preparation of circular RNAs for rolling-circle translation. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Synthesis of 3'-amino-modified guanosine controlled-pore glass Basic Protocol 2: Solid-phase synthesis of linear RNA fragments Basic Protocol 3: Chemical synthesis of circular RNAs.
Collapse
Affiliation(s)
| | - Hiroshi Abe
- Graduate School of Science, Nagoya University, Aichi, Japan
| |
Collapse
|
20
|
Bartosik K, Debiec K, Czarnecka A, Sochacka E, Leszczynska G. Synthesis of Nucleobase-Modified RNA Oligonucleotides by Post-Synthetic Approach. Molecules 2020; 25:E3344. [PMID: 32717917 PMCID: PMC7436257 DOI: 10.3390/molecules25153344] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 07/15/2020] [Accepted: 07/20/2020] [Indexed: 12/12/2022] Open
Abstract
The chemical synthesis of modified oligoribonucleotides represents a powerful approach to study the structure, stability, and biological activity of RNAs. Selected RNA modifications have been proven to enhance the drug-like properties of RNA oligomers providing the oligonucleotide-based therapeutic agents in the antisense and siRNA technologies. The important sites of RNA modification/functionalization are the nucleobase residues. Standard phosphoramidite RNA chemistry allows the site-specific incorporation of a large number of functional groups to the nucleobase structure if the building blocks are synthetically obtainable and stable under the conditions of oligonucleotide chemistry and work-up. Otherwise, the chemically modified RNAs are produced by post-synthetic oligoribonucleotide functionalization. This review highlights the post-synthetic RNA modification approach as a convenient and valuable method to introduce a wide variety of nucleobase modifications, including recently discovered native hypermodified functional groups, fluorescent dyes, photoreactive groups, disulfide crosslinks, and nitroxide spin labels.
Collapse
Affiliation(s)
| | | | | | | | - Grazyna Leszczynska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; (K.B.); (K.D.); (A.C.); (E.S.)
| |
Collapse
|
21
|
Müller D, Trucks S, Schwalbe H, Hengesbach M. Genetic Code Expansion Facilitates Position-Selective Modification of Nucleic Acids and Proteins. Chempluschem 2020; 85:1233-1243. [PMID: 32515171 DOI: 10.1002/cplu.202000150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/11/2020] [Indexed: 12/12/2022]
Abstract
Transcription and translation obey to the genetic code of four nucleobases and 21 amino acids evolved over billions of years. Both these processes have been engineered to facilitate the use of non-natural building blocks in both nucleic acids and proteins, enabling researchers with a decent toolbox for structural and functional analyses. Here, we review the most common approaches for how labeling of both nucleic acids as well as proteins in a site-selective fashion with either modifiable building blocks or spectroscopic probes can be facilitated by genetic code expansion. We emphasize methodological approaches and how these can be adapted for specific modifications, both during as well as after biomolecule synthesis. These modifications can facilitate, for example, a number of different spectroscopic analysis techniques and can under specific circumstances even be used in combination.
Collapse
Affiliation(s)
- Diana Müller
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue-Strasse 7, 60438, Frankfurt am Main, Germany
| | - Sven Trucks
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue-Strasse 7, 60438, Frankfurt am Main, Germany
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue-Strasse 7, 60438, Frankfurt am Main, Germany
| | - Martin Hengesbach
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue-Strasse 7, 60438, Frankfurt am Main, Germany
| |
Collapse
|
22
|
Abstract
Eukaryotic mRNAs possess 5' caps that are determinants for their function. A structural characteristic of 5' caps is methylation, with this feature already present in early eukaryotes such as Trypanosoma. While the common cap-0 (m7 GpppN) shows a rather simple methylation pattern, the Trypanosoma cap-4 displays seven distinguished additional methylations within the first four nucleotides. The study of essential biological functions mediated by these unique structural features of the cap-4 and thereby of the metabolism of an important class of human pathogenic parasites is hindered by the lack of reliable preparation methods. Herein we describe the synthesis of custom-made nucleoside phosphoramidite building blocks for m62 Am and m3 Um, their incorporation into short RNAs, the efficient construction of the 5'-to-5' triphosphate bridge to guanosine by using a solid-phase approach, the selective enzymatic methylation at position N7 of the inverted guanosine, and enzymatic ligation to generate trypanosomatid mRNAs of up to 40 nucleotides in length. This study introduces a reliable synthetic strategy to the much-needed cap-4 RNA probes for integrated structural biology studies, using a combination of chemical and enzymatic steps.
Collapse
Affiliation(s)
- Josef Leiter
- University of InnsbruckInstitute of Organic Chemistry and Center for Molecular BiosciencesInnrain 80-826020InnsbruckAustria
| | - Dennis Reichert
- University of MünsterDepartment of ChemistryInstitute of BiochemistryWilhelm-Klemm-Strasse 248149MünsterGermany
| | - Andrea Rentmeister
- University of MünsterDepartment of ChemistryInstitute of BiochemistryWilhelm-Klemm-Strasse 248149MünsterGermany
| | - Ronald Micura
- University of InnsbruckInstitute of Organic Chemistry and Center for Molecular BiosciencesInnrain 80-826020InnsbruckAustria
| |
Collapse
|
23
|
Nakamoto K, Abe N, Tsuji G, Kimura Y, Tomoike F, Shimizu Y, Abe H. Chemically synthesized circular RNAs with phosphoramidate linkages enable rolling circle translation. Chem Commun (Camb) 2020; 56:6217-6220. [DOI: 10.1039/d0cc02140g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Circular RNA without a stop codon enables rolling circle translation. we carried out one-pot chemical synthesis of circular RNA from RNA fragments. The synthesized circular RNAs acted as translation templates, despite the presence of unnatural phosphoramidate linkages.
Collapse
Affiliation(s)
| | - Naoko Abe
- Graduate School of Science
- Nagoya University
- Nagoya
- Japan
| | - Genichiro Tsuji
- Graduate School of Science
- Nagoya University
- Nagoya
- Japan
- National Institute of Health Sciences
| | | | - Fumiaki Tomoike
- Graduate School of Science
- Nagoya University
- Nagoya
- Japan
- Faculty of Science
| | | | - Hiroshi Abe
- Graduate School of Science
- Nagoya University
- Nagoya
- Japan
- JST CREST, Science and Technology Agency
| |
Collapse
|
24
|
Dégut C, Schwarz V, Ponchon L, Barraud P, Micura R, Tisné C. Design of cross-linked RNA/protein complexes for structural studies. Biochimie 2019; 164:95-98. [DOI: 10.1016/j.biochi.2019.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 03/28/2019] [Indexed: 10/27/2022]
|
25
|
Gasser C, Gebetsberger J, Gebetsberger M, Micura R. SHAPE probing pictures Mg2+-dependent folding of small self-cleaving ribozymes. Nucleic Acids Res 2019; 46:6983-6995. [PMID: 29924364 PMCID: PMC6101554 DOI: 10.1093/nar/gky555] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 06/07/2018] [Indexed: 12/28/2022] Open
Abstract
Self-cleaving ribozymes are biologically relevant RNA molecules which catalyze site-specific cleavage of the phosphodiester backbone. Gathering knowledge of their three-dimensional structures is critical toward an in-depth understanding of their function and chemical mechanism. Equally important is collecting information on the folding process and the inherent dynamics of a ribozyme fold. Over the past years, Selective-2′-Hydroxyl Acylation analyzed by Primer Extension (SHAPE) turned out to be a significant tool to probe secondary and tertiary interactions of diverse RNA species at the single nucleotide level under varying environmental conditions. Small self-cleaving ribozymes, however, have not been investigated by this method so far. Here, we describe SHAPE probing of pre-catalytic folds of the recently discovered ribozyme classes twister, twister-sister (TS), pistol and hatchet. The study has implications on Mg2+-dependent folding and reveals potentially dynamic residues of these ribozymes that are otherwise difficult to identify. For twister, TS and pistol ribozymes the new findings are discussed in the light of their crystal structures, and in case of twister also with respect to a smFRET folding analysis. For the hatchet ribozyme where an atomic resolution structure is not yet available, the SHAPE data challenge the proposed secondary structure model and point at selected residues and putative long-distance interactions that appear crucial for structure formation and cleavage activity.
Collapse
Affiliation(s)
- Catherina Gasser
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck CMBI, Leopold-Franzens University, Innrain 80-82, Innsbruck 6020, Austria
| | - Jennifer Gebetsberger
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck CMBI, Leopold-Franzens University, Innrain 80-82, Innsbruck 6020, Austria
| | - Manuel Gebetsberger
- Division for Biomedical Physics, Medical University of Innsbruck, Müllerstraße 44, Innsbruck 6020, Austria
| | - Ronald Micura
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck CMBI, Leopold-Franzens University, Innrain 80-82, Innsbruck 6020, Austria
| |
Collapse
|
26
|
Zhao M, Steffen FD, Börner R, Schaffer MF, Sigel RKO, Freisinger E. Site-specific dual-color labeling of long RNAs for single-molecule spectroscopy. Nucleic Acids Res 2019; 46:e13. [PMID: 29136199 PMCID: PMC5814972 DOI: 10.1093/nar/gkx1100] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 10/21/2017] [Indexed: 02/07/2023] Open
Abstract
Labeling of long RNA molecules in a site-specific yet generally applicable manner is integral to many spectroscopic applications. Here we present a novel covalent labeling approach that is site-specific and scalable to long intricately folded RNAs. In this approach, a custom-designed DNA strand that hybridizes to the RNA guides a reactive group to target a preselected adenine residue. The functionalized nucleotide along with the concomitantly oxidized 3'-terminus can subsequently be conjugated to two different fluorophores via bio-orthogonal chemistry. We validate this modular labeling platform using a regulatory RNA of 275 nucleotides, the btuB riboswitch of Escherichia coli, demonstrate its general applicability by modifying a base within a duplex, and show its site-selectivity in targeting a pair of adjacent adenines. Native folding and function of the RNA is confirmed on the single-molecule level by using FRET as a sensor to visualize and characterize the conformational equilibrium of the riboswitch upon binding of its cofactor adenosylcobalamin. The presented labeling strategy overcomes size and site constraints that have hampered routine production of labeled RNA that are beyond 200 nt in length.
Collapse
Affiliation(s)
- Meng Zhao
- Department of Chemistry, University of Zurich, Zurich 8057, Switzerland
| | - Fabio D Steffen
- Department of Chemistry, University of Zurich, Zurich 8057, Switzerland
| | - Richard Börner
- Department of Chemistry, University of Zurich, Zurich 8057, Switzerland
| | | | - Roland K O Sigel
- Department of Chemistry, University of Zurich, Zurich 8057, Switzerland
| | - Eva Freisinger
- Department of Chemistry, University of Zurich, Zurich 8057, Switzerland
| |
Collapse
|
27
|
Kerzhner M, Matsuoka H, Wuebben C, Famulok M, Schiemann O. High-Yield Spin Labeling of Long RNAs for Electron Paramagnetic Resonance Spectroscopy. Biochemistry 2018; 57:2923-2931. [PMID: 29715006 DOI: 10.1021/acs.biochem.8b00040] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Site-directed spin labeling is a powerful tool for investigating the conformation and dynamics of biomacromolecules such as RNA. Here we introduce a spin labeling strategy based on click chemistry in solution that, in combination with enzymatic ligation, allows highly efficient labeling of complex and long RNAs with short reaction times and suppressed RNA degradation. With this approach, a 34-nucleotide aptamer domain of the preQ1 riboswitch and an 81-nucleotide TPP riboswitch aptamer could be labeled with two labels in several positions. We then show that conformations of the preQ1 aptamer and its dynamics can be monitored in the absence and presence of Mg2+ and a preQ1 ligand by continuous wave electron paramagnetic resonance spectroscopy at room temperature and pulsed electron-electron double resonance spectroscopy (PELDOR or DEER) in the frozen state.
Collapse
Affiliation(s)
- Mark Kerzhner
- Life & Medical Sciences Institute Chemical Biology & Medicinal Chemistry Unit c/o Kekulé-Institut für Organische Chemie und Biochemie University of Bonn , Gerhard-Domagk-Strasse 1 , 53121 Bonn , Germany
| | - Hideto Matsuoka
- Institute of Physical and Theoretical Chemistry , University of Bonn , Wegelerstrasse 12 , 53115 Bonn , Germany
| | - Christine Wuebben
- Institute of Physical and Theoretical Chemistry , University of Bonn , Wegelerstrasse 12 , 53115 Bonn , Germany
| | - Michael Famulok
- Life & Medical Sciences Institute Chemical Biology & Medicinal Chemistry Unit c/o Kekulé-Institut für Organische Chemie und Biochemie University of Bonn , Gerhard-Domagk-Strasse 1 , 53121 Bonn , Germany.,Max Planck Fellowship Chemical Biology Group , Stiftung caesar , Ludwig-Erhard-Allee 2 , 53175 Bonn , Germany
| | - Olav Schiemann
- Institute of Physical and Theoretical Chemistry , University of Bonn , Wegelerstrasse 12 , 53115 Bonn , Germany
| |
Collapse
|
28
|
Liu Y, Holmstrom E, Yu P, Tan K, Zuo X, Nesbitt DJ, Sousa R, Stagno JR, Wang YX. Incorporation of isotopic, fluorescent, and heavy-atom-modified nucleotides into RNAs by position-selective labeling of RNA. Nat Protoc 2018; 13:987-1005. [PMID: 29651055 DOI: 10.1038/nprot.2018.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Site-specific incorporation of labeled nucleotides is an extremely useful synthetic tool for many structural studies (e.g., NMR, electron paramagnetic resonance (EPR), fluorescence resonance energy transfer (FRET), and X-ray crystallography) of RNA. However, specific-position-labeled RNAs >60 nt are not commercially available on a milligram scale. Position-selective labeling of RNA (PLOR) has been applied to prepare large RNAs labeled at desired positions, and all the required reagents are commercially available. Here, we present a step-by-step protocol for the solid-liquid hybrid phase method PLOR to synthesize 71-nt RNA samples with three different modification applications, containing (i) a 13C15N-labeled segment; (ii) discrete residues modified with Cy3, Cy5, or biotin; or (iii) two iodo-U residues. The flexible procedure enables a wide range of downstream biophysical analyses using precisely localized functionalized nucleotides. All three RNAs were obtained in <2 d, excluding time for preparing reagents and optimizing experimental conditions. With optimization, the protocol can be applied to other RNAs with various labeling schemes, such as ligation of segmentally labeled fragments.
Collapse
Affiliation(s)
- Yu Liu
- State Key Laboratory of Microbial Metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.,Protein-Nucleic Acid Interaction Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, USA
| | - Erik Holmstrom
- JILA, National Institute of Standards and Technology and Department of Chemistry and Biochemistry, University of Colorado Boulder, Boulder, Colorado, USA
| | - Ping Yu
- Protein-Nucleic Acid Interaction Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, USA
| | - Kemin Tan
- Structural Biology Center, Department of Biosciences, Argonne National Laboratory, Argonne, Illinois, USA
| | - Xiaobing Zuo
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois, USA
| | - David J Nesbitt
- JILA, National Institute of Standards and Technology and Department of Chemistry and Biochemistry, University of Colorado Boulder, Boulder, Colorado, USA
| | - Rui Sousa
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Jason R Stagno
- Protein-Nucleic Acid Interaction Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, USA
| | - Yun-Xing Wang
- Protein-Nucleic Acid Interaction Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, USA
| |
Collapse
|
29
|
Hopkins PA, McCoy LS, Tor Y. Enzymatic incorporation and utilization of an emissive 6-azauridine. Org Biomol Chem 2018; 15:684-690. [PMID: 27981333 DOI: 10.1039/c6ob02080a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
To display favorable fluorescent properties, the non-emissive native nucleosides need to be modified. Here we present a motif that relies on conjugating 5-membered aromatic heterocycles (e.g., thiophene) to a 6-azapyrimidine (1,2,4-triazine) core. Synthetic accessibility and desirable photophysical properties make these nucleosides attractive candidates for enzymatic incorporation and biochemical assays. While 6-azauridine triphosphate is known to be poorly tolerated by polymerases in RNA synthesis, we illustrate that conjugating a thiophene ring at position 5 overcomes such limitations, facilitating its T7 RNA polymerase-mediated in vitro transcription incorporation into RNA constructs. We further show that the modified transcripts can be ligated to longer oligonucleotides to form singly modified RNAs, as illustrated for an A-site hairpin model RNA construct, which was employed to visualize aminoglycoside antibiotics binding.
Collapse
Affiliation(s)
- Patrycja A Hopkins
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA.
| | - Lisa S McCoy
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA.
| | - Yitzhak Tor
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA.
| |
Collapse
|
30
|
Hoernes TP, Erlacher MD. Methylated mRNA Nucleotides as Regulators for Ribosomal Translation. Methods Mol Biol 2018; 1562:283-294. [PMID: 28349468 DOI: 10.1007/978-1-4939-6807-7_19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Methylated RNA nucleotides were recently discovered to be highly abundant in RNAs. The effects of these methylations were mainly attributed to altered mRNA stabilities, protein-binding affinities, or RNA structures. The direct impact of RNA modifications on the performance of the ribosome has not been investigated so far. In this chapter, we describe an approach that allows introducing RNA modifications site-specifically into coding sequences of mRNAs and determining their effect on the translation machinery in a well-defined bacterial in vitro system.
Collapse
Affiliation(s)
- Thomas P Hoernes
- Division of Genomics and RNomics, Biocenter Innsbruck, Medical University of Innsbruck, Innrain 80/82, Innsbruck, 6020, Austria
| | - Matthias D Erlacher
- Division of Genomics and RNomics, Biocenter Innsbruck, Medical University of Innsbruck, Innrain 80/82, Innsbruck, 6020, Austria.
| |
Collapse
|
31
|
Uhm H, Hohng S. Ligand Recognition Mechanism of Thiamine Pyrophosphate Riboswitch Aptamer. B KOREAN CHEM SOC 2017. [DOI: 10.1002/bkcs.11328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Heesoo Uhm
- Department of Physics and Astronomy; Seoul National University; Seoul 151-747 Korea
- National Center of Creative Research Initiatives; Seoul National University; Seoul 151-747 Korea
| | - Sungchul Hohng
- Department of Physics and Astronomy; Seoul National University; Seoul 151-747 Korea
- National Center of Creative Research Initiatives; Seoul National University; Seoul 151-747 Korea
- Department of Biophysics and Chemical Biology; Seoul National University; Seoul 151-747 Korea
| |
Collapse
|
32
|
Vušurović N, Altman RB, Terry DS, Micura R, Blanchard SC. Pseudoknot Formation Seeds the Twister Ribozyme Cleavage Reaction Coordinate. J Am Chem Soc 2017; 139:8186-8193. [PMID: 28598157 PMCID: PMC5697751 DOI: 10.1021/jacs.7b01549] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The twister RNA is a recently discovered nucleolytic ribozyme that is present in both bacteria and eukarya. While its biological role remains unclear, crystal structure analyses and biochemical approaches have revealed critical features of its catalytic mechanism. Here, we set out to explore dynamic aspects of twister RNA folding along the cleavage reaction coordinate. To do so, we have employed both bulk and single-molecule fluorescence resonance energy transfer (FRET) methods to investigate a set of twister RNAs with labels strategically positioned at communicating segments. The data reveal that folding of the central pseudoknot (T1), the most crucial structural determinant to promote cleavage, exhibits reversible opening and closing dynamics at physiological Mg2+ concentration. Uncoupled folding, in which T1 formation precedes structuring for closing of stem P1, was confirmed using pre-steady-state three-color smFRET experiments initiated by Mg2+ injection. This finding suggests that the folding path of twister RNA requires proper orientation of the substrate prior to T1 closure such that the U5-A6 cleavage site becomes embraced to achieve its cleavage competent conformation. We also find that the cleaved 3'-fragment retains its compacted pseudoknot fold, despite the absence of the phylogenetically conserved stem P1, rationalizing the poor turnover efficiency of the twister ribozyme.
Collapse
Affiliation(s)
- Nikola Vušurović
- Institute of Organic Chemistry and Center for Molecular Biosciences, University of Innsbruck, 6020 Innsbruck, Austria
| | - Roger B. Altman
- Weill Cornell Medicine, New York, New York 10065, United States
| | - Daniel S. Terry
- Weill Cornell Medicine, New York, New York 10065, United States
| | - Ronald Micura
- Institute of Organic Chemistry and Center for Molecular Biosciences, University of Innsbruck, 6020 Innsbruck, Austria
| | | |
Collapse
|
33
|
Pradère U, Halloy F, Hall J. Chemical synthesis of long RNAs with terminal 5'-phosphate groups. Chemistry 2017; 23:5210-5213. [PMID: 28295757 PMCID: PMC5413853 DOI: 10.1002/chem.201700514] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Indexed: 01/20/2023]
Abstract
Long structured RNAs are useful biochemical and biological tools. They are usually prepared enzymatically, but this precludes their site-specific modification with functional groups for chemical biology studies. One solution is to perform solid-phase synthesis of multiple RNAs loaded with 5'-terminal phosphate groups, so that RNAs can be concatenated using template ligation reactions. However, there are currently no readily available reagents suitable for the incorporation of the phosphate group into long RNAs by solid-phase synthesis. Here we describe an easy-to-prepare phosphoramidite reagent suitable for the chemical introduction of 5'-terminal phosphate groups into long RNAs. The phosphate is protected by a dinitrobenzhydryl group that serves as an essential lipophilic group for the separation of oligonucleotide by-products. The phosphate is unmasked quantitatively by brief UV irradiation. We demonstrate the value of this reagent in the preparation of a library of long structured RNAs that are site-specifically modified with functional groups.
Collapse
Affiliation(s)
- Ugo Pradère
- Institute of Pharmaceutical SciencesDepartment of Chemistry and Applied BiosciencesETH Zürich8093ZürichSwitzerland
| | - François Halloy
- Institute of Pharmaceutical SciencesDepartment of Chemistry and Applied BiosciencesETH Zürich8093ZürichSwitzerland
| | - Jonathan Hall
- Institute of Pharmaceutical SciencesDepartment of Chemistry and Applied BiosciencesETH Zürich8093ZürichSwitzerland
| |
Collapse
|
34
|
Li Y, Fin A, McCoy L, Tor Y. Polymerase-Mediated Site-Specific Incorporation of a Synthetic Fluorescent Isomorphic G Surrogate into RNA. Angew Chem Int Ed Engl 2017; 56:1303-1307. [PMID: 28000329 PMCID: PMC5241218 DOI: 10.1002/anie.201609327] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 11/10/2016] [Indexed: 12/22/2022]
Abstract
An enzyme-mediated approach for the assembly of singly modified RNA constructs in which specific G residues are replaced with th G, an emissive isomorphic G surrogate, is reported. Transcription in the presence of th G and native nucleoside triphosphates enforces initiation with the unnatural analogue, yielding 5'-end modified transcripts that can be mono-phosphorylated and ligated to provide longer site-specifically modified RNA constructs. The scope of this unprecedented enzymatic approach to non-canonical purine-containing RNAs is explored via the assembly of several altered hammerhead (HH) ribozymes and a singly modified HH substrate. By strategically modifying key positions, a mechanistic insight into the ribozyme-mediated cleavage is gained. Additionally, the emissive features of the modified nucleoside and its responsiveness to environmental changes can be used to monitor cleavage in real time by steady state fluorescence spectroscopy.
Collapse
Affiliation(s)
- Yao Li
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0358, USA
| | - Andrea Fin
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0358, USA
| | - Lisa McCoy
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0358, USA
| | - Yitzhak Tor
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0358, USA
| |
Collapse
|
35
|
Qi Y, Qiu L, Fan W, Liu C, Li Z. An enzyme-free flow cytometric bead assay for the sensitive detection of microRNAs based on click nucleic acid ligation-mediated signal amplification. Analyst 2017; 142:2967-2973. [DOI: 10.1039/c7an00989e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
An enzyme-free flow cytometric assay is developed for the sensitive detection of microRNAs based on click nucleic acid ligation-mediated signal amplification.
Collapse
Affiliation(s)
- Yan Qi
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
| | - Liying Qiu
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
| | - Wenjiao Fan
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
| | - Chenghui Liu
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
| | - Zhengping Li
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
| |
Collapse
|
36
|
Li Y, Fin A, McCoy L, Tor Y. Polymerase‐Mediated Site‐Specific Incorporation of a Synthetic Fluorescent Isomorphic G Surrogate into RNA. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201609327] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yao Li
- Department of Chemistry and Biochemistry University of California, San Diego 9500 Gilman Drive La Jolla CA 92093-0358 USA
| | - Andrea Fin
- Department of Chemistry and Biochemistry University of California, San Diego 9500 Gilman Drive La Jolla CA 92093-0358 USA
| | - Lisa McCoy
- Department of Chemistry and Biochemistry University of California, San Diego 9500 Gilman Drive La Jolla CA 92093-0358 USA
| | - Yitzhak Tor
- Department of Chemistry and Biochemistry University of California, San Diego 9500 Gilman Drive La Jolla CA 92093-0358 USA
| |
Collapse
|
37
|
Egloff D, Oleinich IA, Zhao M, König SLB, Sigel RKO, Freisinger E. Sequence-Specific Post-Synthetic Oligonucleotide Labeling for Single-Molecule Fluorescence Applications. ACS Chem Biol 2016; 11:2558-67. [PMID: 27409145 DOI: 10.1021/acschembio.6b00343] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The sequence-specific fluorescence labeling of nucleic acids is a prerequisite for various methods including single-molecule Förster resonance energy transfer (smFRET) for the detailed study of nucleic acid folding and function. Such nucleic acid derivatives are commonly obtained by solid-phase methods; however, yields decrease rapidly with increasing length and restrict the practicability of this approach for long strands. Here, we report a new labeling strategy for the postsynthetic incorporation of a bioorthogonal group into single stranded regions of both DNA and RNA of unrestricted length. A 12-alkyne-etheno-adenine modification is sequence-selectively formed using DNA-templated synthesis, followed by conjugation of the fluorophore Cy3 via a copper-catalyzed azide-alkyne cycloaddition (CuAAC). Evaluation of the labeled strands in smFRET measurements shows that the strategy developed here has the potential to be used for the study of long functional nucleic acids by (single-molecule) fluorescence or other methods. To prove the universal use of the method, its application was successfully extended to the labeling of a short RNA single strand. As a proof-of-concept, also the labeling of a large RNA molecule in form of a 633 nucleotide long construct derived from the Saccharomyces cerevisiae group II intron Sc.ai5γ was performed, and covalent attachment of the Cy3 fluorophore was shown with gel electrophoresis.
Collapse
Affiliation(s)
- David Egloff
- Department of Chemistry, University of Zurich, Winterthurerstrasse
190, 8057 Zurich, Switzerland
| | - Igor A. Oleinich
- Department of Chemistry, University of Zurich, Winterthurerstrasse
190, 8057 Zurich, Switzerland
| | - Meng Zhao
- Department of Chemistry, University of Zurich, Winterthurerstrasse
190, 8057 Zurich, Switzerland
| | - Sebastian L. B. König
- Department of Chemistry, University of Zurich, Winterthurerstrasse
190, 8057 Zurich, Switzerland
| | - Roland K. O. Sigel
- Department of Chemistry, University of Zurich, Winterthurerstrasse
190, 8057 Zurich, Switzerland
| | - Eva Freisinger
- Department of Chemistry, University of Zurich, Winterthurerstrasse
190, 8057 Zurich, Switzerland
| |
Collapse
|
38
|
Abstract
RNA with site-specific modification is a useful tool for RNA biology studies. However, generating kilobase (kb) -long RNA with internal modification at a site distant from RNA termini remains challenging. Here we report an enhanced splint ligation technique, proximal disruptor aided ligation (ProDAL), which allows adequate efficiency toward this purpose. The key to our approach is using multiple DNA oligonucleotides, 'proximal disruptors', to target the RNA substrate sequence next to the ligation site. The binding of disruptors helps to free the ligation site from intramolecular RNA basepairing, and consequently promotes more efficient formation of the pre-ligation complex and a higher overall ligation yield. We used naturally occurring 1.0 kb renilla and 1.9 kb firefly luciferase mRNA sequences to test the efficacy of our approach. ProDAL yielded 9-14% efficiency for the ligation between two RNA substrates, both of which were between 414 and 1313 nucleotides (nt) long. ProDAL also allowed similarly high efficiency for generating kb-long RNA with site-specific internal modification by a simple three-part ligation between two long RNA substrates and a modification-carrying RNA oligonucleotide. In comparison, classical splint ligation yielded a significantly lower efficiency of 0-2% in all cases. We expect that ProDAL will benefit studies involving kb-long RNAs, including translation, long non-coding RNAs, RNA splicing and modification, and large ribonucleoprotein complexes.
Collapse
Affiliation(s)
- Alexander Zhovmer
- a Molecular Biology Program , Memorial Sloan Kettering Cancer Center , New York , USA
| | - Xiaohui Qu
- a Molecular Biology Program , Memorial Sloan Kettering Cancer Center , New York , USA
| |
Collapse
|
39
|
Chemo-enzymatic labeling for rapid assignment of RNA molecules. Methods 2016; 103:11-7. [PMID: 27090003 DOI: 10.1016/j.ymeth.2016.03.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 03/17/2016] [Accepted: 03/22/2016] [Indexed: 11/22/2022] Open
Abstract
Even though Nuclear Magnetic Resonance (NMR) spectroscopy is one of the few techniques capable of determining atomic resolution structures of RNA, it is constrained by two major problems of chemical shift overlap of resonances and rapid signal loss due to line broadening. Emerging tools to tackle these problems include synthesis of atom specifically labeled or chemically modified nucleotides. Herein we review the synthesis of these nucleotides, the design and production of appropriate RNA samples, and the application and analysis of the NMR experiments that take advantage of these labels.
Collapse
|
40
|
Liu Y, Sousa R, Wang YX. Specific labeling: An effective tool to explore the RNA world. Bioessays 2015; 38:192-200. [DOI: 10.1002/bies.201500119] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yu Liu
- Protein-Nucleic Acid Interaction Section; Structural Biophysics Laboratory; Center for Cancer Research; National Cancer Institute; National Institutes of Health; Frederick MD USA
| | - Rui Sousa
- Department of Biochemistry; University of Texas Health Science Center; San Antonio TX USA
| | - Yun-Xing Wang
- Protein-Nucleic Acid Interaction Section; Structural Biophysics Laboratory; Center for Cancer Research; National Cancer Institute; National Institutes of Health; Frederick MD USA
| |
Collapse
|
41
|
Hoernes TP, Clementi N, Faserl K, Glasner H, Breuker K, Lindner H, Hüttenhofer A, Erlacher MD. Nucleotide modifications within bacterial messenger RNAs regulate their translation and are able to rewire the genetic code. Nucleic Acids Res 2015; 44:852-62. [PMID: 26578598 PMCID: PMC4737146 DOI: 10.1093/nar/gkv1182] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 10/22/2015] [Indexed: 01/05/2023] Open
Abstract
Nucleotide modifications within RNA transcripts are found in every organism in all three domains of life. 6-methyladeonsine (m6A), 5-methylcytosine (m5C) and pseudouridine (Ψ) are highly abundant nucleotide modifications in coding sequences of eukaryal mRNAs, while m5C and m6A modifications have also been discovered in archaeal and bacterial mRNAs. Employing in vitro translation assays, we systematically investigated the influence of nucleotide modifications on translation. We introduced m5C, m6A, Ψ or 2′-O-methylated nucleotides at each of the three positions within a codon of the bacterial ErmCL mRNA and analyzed their influence on translation. Depending on the respective nucleotide modification, as well as its position within a codon, protein synthesis remained either unaffected or was prematurely terminated at the modification site, resulting in reduced amounts of the full-length peptide. In the latter case, toeprint analysis of ribosomal complexes was consistent with stalling of translation at the modified codon. When multiple nucleotide modifications were introduced within one codon, an additive inhibitory effect on translation was observed. We also identified the m5C modification to alter the amino acid identity of the corresponding codon, when positioned at the second codon position. Our results suggest a novel mode of gene regulation by nucleotide modifications in bacterial mRNAs.
Collapse
Affiliation(s)
- Thomas Philipp Hoernes
- Division of Genomics and RNomics, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Nina Clementi
- Division of Genomics and RNomics, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Klaus Faserl
- Division of Clinical Biochemistry, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Heidelinde Glasner
- Institute of Organic Chemistry and Center for Molecular Biosciences (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
| | - Kathrin Breuker
- Institute of Organic Chemistry and Center for Molecular Biosciences (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
| | - Herbert Lindner
- Division of Clinical Biochemistry, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Alexander Hüttenhofer
- Division of Genomics and RNomics, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Matthias David Erlacher
- Division of Genomics and RNomics, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
42
|
Role of a ribosomal RNA phosphate oxygen during the EF-G-triggered GTP hydrolysis. Proc Natl Acad Sci U S A 2015; 112:E2561-8. [PMID: 25941362 DOI: 10.1073/pnas.1505231112] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Elongation factor-catalyzed GTP hydrolysis is a key reaction during the ribosomal elongation cycle. Recent crystal structures of G proteins, such as elongation factor G (EF-G) bound to the ribosome, as well as many biochemical studies, provide evidence that the direct interaction of translational GTPases (trGTPases) with the sarcin-ricin loop (SRL) of ribosomal RNA (rRNA) is pivotal for hydrolysis. However, the precise mechanism remains elusive and is intensively debated. Based on the close proximity of the phosphate oxygen of A2662 of the SRL to the supposedly catalytic histidine of EF-G (His87), we probed this interaction by an atomic mutagenesis approach. We individually replaced either of the two nonbridging phosphate oxygens at A2662 with a methyl group by the introduction of a methylphosphonate instead of the natural phosphate in fully functional, reconstituted bacterial ribosomes. Our major finding was that only one of the two resulting diastereomers, the SP methylphosphonate, was compatible with efficient GTPase activation on EF-G. The same trend was observed for a second trGTPase, namely EF4 (LepA). In addition, we provide evidence that the negative charge of the A2662 phosphate group must be retained for uncompromised activity in GTP hydrolysis. In summary, our data strongly corroborate that the nonbridging proSP phosphate oxygen at the A2662 of the SRL is critically involved in the activation of GTP hydrolysis. A mechanistic scenario is supported in which positioning of the catalytically active, protonated His87 through electrostatic interactions with the A2662 phosphate group and H-bond networks are key features of ribosome-triggered activation of trGTPases.
Collapse
|
43
|
Petkovic S, Müller S. RNA circularization strategies in vivo and in vitro. Nucleic Acids Res 2015; 43:2454-65. [PMID: 25662225 PMCID: PMC4344496 DOI: 10.1093/nar/gkv045] [Citation(s) in RCA: 233] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 01/07/2015] [Accepted: 01/12/2015] [Indexed: 12/30/2022] Open
Abstract
In the plenitude of naturally occurring RNAs, circular RNAs (circRNAs) and their biological role were underestimated for years. However, circRNAs are ubiquitous in all domains of life, including eukaryotes, archaea, bacteria and viruses, where they can fulfill diverse biological functions. Some of those functions, as for example playing a role in the life cycle of viral and viroid genomes or in the maturation of tRNA genes, have been elucidated; other putative functions still remain elusive. Due to the resistance to exonucleases, circRNAs are promising tools for in vivo application as aptamers, trans-cleaving ribozymes or siRNAs. How are circRNAs generated in vivo and what approaches do exist to produce ring-shaped RNAs in vitro? In this review we illustrate the occurrence and mechanisms of RNA circularization in vivo, survey methods for the generation of circRNA in vitro and provide appropriate protocols.
Collapse
Affiliation(s)
- Sonja Petkovic
- Institut für Biochemie, Ernst Moritz Arndt Universität Greifswald, Felix-Hausdorff-Str. 4, 17487 Greifswald, Germany
| | - Sabine Müller
- Institut für Biochemie, Ernst Moritz Arndt Universität Greifswald, Felix-Hausdorff-Str. 4, 17487 Greifswald, Germany
| |
Collapse
|
44
|
McCoy LS, Shin D, Tor Y. Isomorphic emissive GTP surrogate facilitates initiation and elongation of in vitro transcription reactions. J Am Chem Soc 2014; 136:15176-84. [PMID: 25255464 PMCID: PMC4227834 DOI: 10.1021/ja5039227] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The fastidious behavior of T7 RNA
polymerase limits the incorporation
of synthetic nucleosides into RNA transcripts, particularly at or
near the promoter. The practically exclusive use of GTP for transcription
initiation further compounds this challenge, and reactions with GTP
analogs, where the heterocyclic nucleus has been altered, have not,
to our knowledge, been demonstrated. The enzymatic incorporation of thGTP, a newly synthesized isomorphic fluorescent nucleotide
with a thieno[3,4-d]pyrimidine core, is explored.
The modified nucleotide can initiate and maintain transcription reactions,
leading to the formation of fully modified and highly emissive RNA
transcripts with thG replacing all guanosine residues.
Short and long modified transcripts are synthesized in comparable
yields to their natural counterparts. To assess proper folding and
function, transcripts were used to assemble a hammerhead ribozyme
with all permutations of natural and modified enzyme and substrate
strands. The thG modified substrate was effectively cleaved
by the natural RNA enzyme, demonstrating the isomorphic features of
the nucleoside and its ability to replace G residues while retaining
proper folding. In contrast, the thG modified enzyme showed
little cleavage ability, suggesting the modifications likely disrupted
the catalytic center, illustrating the significance of the Hoogsteen
face in mediating appropriate contacts. Importantly, the ribozyme
cleavage reaction of the emissive fluorescent transcripts could be
followed in real time by fluorescence spectroscopy. Beyond their utility
as fluorescent probes in biophysical and discovery assays, the results
reported point to the potential utility of such isomorphic nucleosides
in probing specific mechanistic questions in RNA catalysis and RNA
structural analysis.
Collapse
Affiliation(s)
- Lisa S McCoy
- Department of Chemistry and Biochemistry, University of California , San Diego, La Jolla, California 92093-0358, United States
| | | | | |
Collapse
|
45
|
Büttner L, Javadi-Zarnaghi F, Höbartner C. Site-specific labeling of RNA at internal ribose hydroxyl groups: terbium-assisted deoxyribozymes at work. J Am Chem Soc 2014; 136:8131-7. [PMID: 24825547 DOI: 10.1021/ja503864v] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A general and efficient single-step method was established for site-specific post-transcriptional labeling of RNA. Using Tb(3+) as accelerating cofactor for deoxyribozymes, various labeled guanosines were site-specifically attached to 2'-OH groups of internal adenosines in in vitro transcribed RNA. The DNA-catalyzed 2',5'-phosphodiester bond formation proceeded efficiently with fluorescent, spin-labeled, biotinylated, or cross-linker-modified guanosine triphosphates. The sequence context of the labeling site was systematically analyzed by mutating the nucleotides flanking the targeted adenosine. Labeling of adenosines in a purine-rich environment showed the fastest reactions and highest yields. Overall, practically useful yields >70% were obtained for 13 out of 16 possible nucleotide (nt) combinations. Using this approach, we demonstrate preparative labeling under mild conditions for up to ~160-nt-long RNAs, including spliceosomal U6 small nuclear RNA and a cyclic-di-AMP binding riboswitch RNA.
Collapse
Affiliation(s)
- Lea Büttner
- Research Group Nucleic Acid Chemistry, Max Planck Institute for Biophysical Chemistry , Am Fassberg 11, 37077 Göttingen, Germany
| | | | | |
Collapse
|
46
|
Duss O, Yulikov M, Jeschke G, Allain FHT. EPR-aided approach for solution structure determination of large RNAs or protein-RNA complexes. Nat Commun 2014; 5:3669. [PMID: 24828280 DOI: 10.1038/ncomms4669] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Accepted: 03/14/2014] [Indexed: 12/18/2022] Open
Abstract
High-resolution structural information on RNA and its functionally important complexes with proteins is dramatically underrepresented compared with proteins but is urgently needed for understanding cellular processes at the molecular and atomic level. Here we present an EPR-based protocol to help solving large RNA and protein-RNA complex structures in solution by providing long-range distance constraints between rigid fragments. Using enzymatic ligation of smaller RNA fragments, large doubly spin-labelled RNAs can be obtained permitting the acquisition of long distance distributions (>80 Å) within a large protein-RNA complex. Using a simple and fast calculation in torsion angle space of the spin-label distributions with the program CYANA, we can derive simple distance constraints between the spin labels and use them together with short-range distance restraints derived from NMR to determine the structure of a 70 kDa protein-RNA complex composed of three subcomplexes.
Collapse
Affiliation(s)
- Olivier Duss
- Institute for Molecular Biology and Biophysics, ETH Zürich, Zürich 8093, Switzerland
| | - Maxim Yulikov
- Institute for Physical Chemistry, ETH Zürich, Zürich 8093, Switzerland
| | - Gunnar Jeschke
- Institute for Physical Chemistry, ETH Zürich, Zürich 8093, Switzerland
| | - Frédéric H-T Allain
- Institute for Molecular Biology and Biophysics, ETH Zürich, Zürich 8093, Switzerland
| |
Collapse
|
47
|
Deoxyribozyme-Mediated Ligation for Incorporating EPR Spin Labels and Reporter Groups into RNA. Methods Enzymol 2014; 549:85-104. [DOI: 10.1016/b978-0-12-801122-5.00004-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
48
|
Abstract
Riboswitches are structured noncoding RNA elements that control the expression of their embedding messenger RNAs by sensing the intracellular concentration of diverse metabolites. As the name suggests, riboswitches are dynamic in nature so that studying their inherent conformational dynamics and ligand-mediated folding is important for understanding their mechanism of action. Single-molecule fluorescence energy transfer (smFRET) microscopy is a powerful and versatile technique for studying the folding pathways and intra- and intermolecular dynamics of biological macromolecules, especially RNA. The ability of smFRET to monitor intramolecular distances and their temporal evolution make it a particularly insightful tool for probing the structure and dynamics of riboswitches. Here, we detail the general steps for using prism-based total internal reflection fluorescence microscopy for smFRET studies of the structure, dynamics, and ligand-binding mechanisms of riboswitches.
Collapse
|
49
|
Micura R, Kreutz C, Breuker K. A personal perspective on chemistry-driven RNA research. Biopolymers 2013; 99:1114-23. [PMID: 23754524 PMCID: PMC4477180 DOI: 10.1002/bip.22299] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 05/27/2013] [Indexed: 12/14/2022]
Abstract
In this mini review, we discuss how our understanding of ribonucleic acid (RNA) properties becomes significantly deepened when a broad range of modern chemical and biophysical methods is applied. We span our perspective from RNA solid-phase synthesis and site-specific labeling to single-molecule fluorescence-resonance-energy-transfer imaging and NMR spectroscopy approaches to explore the dynamics of RNA over a broad timescale. We then move on to Fourier-transform-ion-cyclotron-resonance mass spectrometry (FT-ICR-MS) as a powerful technique for RNA sequencing and modification analysis. The novel methodological developments are discussed for selected biological systems that include the thiamine-pyrophosphate riboswitch, HIV and ribosomal A-site RNA, and transfer RNA.
Collapse
Affiliation(s)
- Ronald Micura
- Institute of Organic Chemistry, Center for Molecular Biosciences (CMBI), Center for Chemistry and Biomedicine (CCB), University of Innsbruck, Innrain 80-82, Innsbruck, 6020, Austria
| | | | | |
Collapse
|
50
|
Ohkubo A, Kondo Y, Suzuki M, Kobayashi H, Kanamori T, Masaki Y, Seio K, Nagai K, Sekine M. Chemical synthesis of U1 snRNA derivatives. Org Lett 2013; 15:4386-9. [PMID: 23952175 PMCID: PMC3901379 DOI: 10.1021/ol401917r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
U1 snRNA is an interesting biological tool for splicing correction and regulation of gene expression. However, U1 snRNA has never been chemically synthesized. In this study, the first chemical synthesis of U1snRNA and its analogues was carried out. Moreover, it was found that the binding affinity of the modified U1 snRNA with an ethylene glycol linkage to snurportin 1 (nuclear import adaptor) was as high as that of the unmodified RNA.
Collapse
Affiliation(s)
- Akihiro Ohkubo
- Department of Life Science, Tokyo Institute of Technology, 4259 Nagatsuta, Midoriku, Yokohama 226-8501, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|