1
|
Chen R, Peng S, Xia Q, Wu T, Zheng J, Qin H, Qian J. Intravital observation of high-scattering and dense-labeling hepatic tissues using multi-photon fluorescence microscopy. JOURNAL OF BIOPHOTONICS 2024; 17:e202300477. [PMID: 38616104 DOI: 10.1002/jbio.202300477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/04/2024] [Accepted: 03/01/2024] [Indexed: 04/16/2024]
Abstract
Achieving high-resolution and large-depth microscopic imaging in vivo under conditions characterized by high-scattering and dense-labeling, as commonly encountered in the liver, poses a formidable challenge. Here, through the optimization of multi-photon fluorescence excitation window, tailored to the unique optical properties of the liver, intravital microscopic imaging of hepatocytes and hepatic blood vessels with high spatial resolution was attained. It's worth noting that resolution degradation caused by tissue scattering of excitation light was mitigated by accounting for moderate tissue self-absorption. Leveraging high-quality multi-photon fluorescence microscopy, we discerned structural and functional alterations in hepatocytes during drug-induced acute liver failure. Furthermore, a reduction in indocyanine green metabolism rates associated with acute liver failure was observed using NIR-II fluorescence macroscopic imaging.
Collapse
Affiliation(s)
- Runze Chen
- State Key Laboratory of Extreme Photonics and Instrumentation, International Research Center for Advanced Photonics, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, Zhejiang University, Hangzhou, China
| | - Shiyi Peng
- State Key Laboratory of Extreme Photonics and Instrumentation, International Research Center for Advanced Photonics, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, Zhejiang University, Hangzhou, China
| | - Qiming Xia
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Tianxiang Wu
- State Key Laboratory of Extreme Photonics and Instrumentation, International Research Center for Advanced Photonics, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, Zhejiang University, Hangzhou, China
| | - Junyan Zheng
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haiyan Qin
- Key Laboratory of Excited-State Materials of Zhejiang Province, and Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Jun Qian
- State Key Laboratory of Extreme Photonics and Instrumentation, International Research Center for Advanced Photonics, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
2
|
Dridi N, Jin Z, Perng W, Mattoussi H. Probing Protein Corona Formation around Gold Nanoparticles: Effects of Surface Coating. ACS NANO 2024; 18:8649-8662. [PMID: 38471029 DOI: 10.1021/acsnano.3c08005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
There has been much interest in integrating various inorganic nanoparticles (nanoscale colloids) in biology and medicine. However, buildup of a protein corona around the nanoparticles in biological media, driven by nonspecific interactions, remains a major hurdle for the translation of nanomedicine into clinical applications. In this study, we investigate the interactions between gold nanoparticles and serum proteins using a series of dihydrolipoic acid (DHLA)-based ligands. We employed gel electrophoresis combined with UV-vis absorption and dynamic light scattering to correlate protein adsorption with the nature and size of the ligand used. For instance, we found that AuNPs capped with DHLA alone promote nonspecific protein adsorption. In comparison, capping AuNPs with polyethylene glycol- or zwitterion-appended DHLA essentially prevents corona formation, regardless of ligand charge and size. Our results highlight the crucial role of surface chemistry and core material in protein corona formation and offer valuable information for the design of colloidal nanomaterials for biological applications.
Collapse
Affiliation(s)
- Narjes Dridi
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Zhicheng Jin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Woody Perng
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Hedi Mattoussi
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| |
Collapse
|
3
|
Ranjbari F, Fathi F. Recent Advances in Chemistry, Mechanism, and Applications of Quantum Dots in Photodynamic and Photothermal Therapy. Anticancer Agents Med Chem 2024; 24:733-744. [PMID: 38409708 DOI: 10.2174/0118715206295598240215112910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/31/2024] [Accepted: 02/07/2024] [Indexed: 02/28/2024]
Abstract
Semiconductor quantum dots (QD) are a kind of nanoparticle with unique optical properties that have attracted a lot of attention in recent years. In this paper, the characteristics of these nanoparticles and their applications in nanophototherapy have been reviewed. Phototherapy, including photodynamic therapy (PDT) and photothermal therapy (PTT), has gained special importance because of its high accuracy and local treatment due to the activation of the drug at the tumor site. PDT is a new way of cancer treatment that is performed by activating light-sensitive compounds named photosensitizers (PS) by light. PSs cause the destruction of diseased tissue through the production of singlet oxygen. PTT is another non-invasive method that induces cell death through the conversion of near-infrared light (NIR) into heat in the tumor situation by the photothermal agent (PA). Through using energy transfer via the FRET (Förster resonance energy transfer) process, QDs provide light absorption wavelength for both methods and cover the optical weaknesses of phototherapy agents.
Collapse
Affiliation(s)
- Faride Ranjbari
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Farzaneh Fathi
- Biosensor Sciences and Technologies Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
4
|
Kim S, Bae Y, Park SH, Chen N, Eom S, Kang S, Park J. Compact and modular bioprobe: Integrating SpyCatcher/SpyTag recombinant proteins with zwitterionic polymer-coated quantum dots. J Colloid Interface Sci 2023; 652:184-194. [PMID: 37595436 DOI: 10.1016/j.jcis.2023.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 06/05/2023] [Accepted: 08/04/2023] [Indexed: 08/20/2023]
Abstract
The development of quantum dot (QD)-based modular bioprobe that has a compact size and enable a facile conjugation of various biofunctional groups is in high demand. To address this, we surface engineered QDs with zwitterion polymer ligands to have an inherent compact size and derivatized them sequentially with the recombinant proteins SpyCatcher/SpyTag (SC/ST) to use their protein ligation system. SC/ST spontaneously form one complex through the isopeptide bond between them. SC-conjugated QDs (QD-SC) were used as base building blocks. Then, ST-biomolecules were added for modular biofunctionalization. We synthesized compact sized (∼15 nm) QD-SC-ST-affibody (antibody-mimicking small protein for tumor detection) conjugates, which showed successful cell-receptor targeting. The target cell-receptor could be easily tuned by changing the type of ST-affibody. We also demonstrated that anti-human-chorionic-gonadotropin mouse IgG1 antibodies can be labeled on the QD surface by mixing QD-SC with the ST-MG1Nb (mouse-IgG1-specific protein). The immunoassay performance of the antibody-labeled QDs was evaluated using a pregnancy test kit, displaying equivalent detection sensitivity to a commercially available kit. This study proposed an innovative strategy for QD biofunctionalization in a modular manner, which can be expanded to a diverse range of colloidal particle derivatization.
Collapse
Affiliation(s)
- Sunghwan Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Yoonji Bae
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Sung Han Park
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Ning Chen
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Soomin Eom
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Sebyung Kang
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea.
| | - Jongnam Park
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea; Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea.
| |
Collapse
|
5
|
Jin Z, Yeung J, Zhou J, Retout M, Yim W, Fajtová P, Gosselin B, Jabin I, Bruylants G, Mattoussi H, O'Donoghue AJ, Jokerst JV. Empirical Optimization of Peptide Sequence and Nanoparticle Colloidal Stability: The Impact of Surface Ligands and Implications for Colorimetric Sensing. ACS APPLIED MATERIALS & INTERFACES 2023; 15:20483-20494. [PMID: 37058597 PMCID: PMC10614165 DOI: 10.1021/acsami.3c00862] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Surface ligands play a critical role in controlling and defining the properties of colloidal nanocrystals. These aspects have been exploited to design nanoparticle aggregation-based colorimetric sensors. Here, we coated 13-nm gold nanoparticles (AuNPs) with a large library of ligands (e.g., from labile monodentate monomers to multicoordinating macromolecules) and evaluated their aggregation propensity in the presence of three peptides containing charged, thiolate, or aromatic amino acids. Our results show that AuNPs coated with the polyphenols and sulfonated phosphine ligands were good choices for electrostatic-based aggregation. AuNPs capped with citrate and labile-binding polymers worked well for dithiol-bridging and π-π stacking-induced aggregation. In the example of electrostatic-based assays, we stress that good sensing performance requires aggregating peptides of low charge valence paired with charged NPs with weak stability and vice versa. We then present a modular peptide containing versatile aggregating residues to agglomerate a variety of ligated AuNPs for colorimetric detection of the coronavirus main protease. Enzymatic cleavage liberates the peptide segment, which in turn triggers NP agglomeration and thus rapid color changes in <10 min. The protease detection limit is 2.5 nM.
Collapse
Affiliation(s)
- Zhicheng Jin
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Justin Yeung
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Jiajing Zhou
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Maurice Retout
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Wonjun Yim
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, California 92093, United States
| | - Pavla Fajtová
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Bryan Gosselin
- Laboratoire de Chimie Organique, Université libre de Bruxelles (ULB), avenue F. D. Roosevel 50, CP160/06, B-1050 Brussels, Belgium
- Engineering of Molecular NanoSystems, Ecole Polytechnique de Bruxelles, Université libre de Bruxelles (ULB), avenue F. D. Roosevelt 50, CP165/64, B-1050 Brussels, Belgium
| | - Ivan Jabin
- Laboratoire de Chimie Organique, Université libre de Bruxelles (ULB), avenue F. D. Roosevel 50, CP160/06, B-1050 Brussels, Belgium
| | - Gilles Bruylants
- Engineering of Molecular NanoSystems, Ecole Polytechnique de Bruxelles, Université libre de Bruxelles (ULB), avenue F. D. Roosevelt 50, CP165/64, B-1050 Brussels, Belgium
| | - Hedi Mattoussi
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Anthony J O'Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Jesse V Jokerst
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, California 92093, United States
- Department of Radiology, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
6
|
Khan MS, Baskoy SA, Yang C, Hong J, Chae J, Ha H, Lee S, Tanaka M, Choi Y, Choi J. Lipid-based colloidal nanoparticles for applications in targeted vaccine delivery. NANOSCALE ADVANCES 2023; 5:1853-1869. [PMID: 36998671 PMCID: PMC10044484 DOI: 10.1039/d2na00795a] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/15/2023] [Indexed: 06/19/2023]
Abstract
Bioactive molecules and their effects have been influenced by their solubility and administration route. In many therapeutic reagents, the performance of therapeutics is dependent on physiological barriers in the human body and delivery efficacy. Therefore, an effective and stable therapeutic delivery promotes pharmaceutical advancement and suitable biological usage of drugs. In the biological and pharmacological industries, lipid nanoparticles (LNPs) have emerged as a potential carrier to deliver therapeutics. Since studies reported doxorubicin-loaded liposomes (Doxil®), LNPs have been applied to numerous clinical trials. Lipid-based nanoparticles, including liposomes, solid lipid nanoparticles (SLNs), and nanostructured lipid nanoparticles, have also been developed to deliver active ingredients in vaccines. In this review, we present the type of LNPs used to develop vaccines with attractive advantages. We then discuss messenger RNA (mRNA) delivery for the clinical application of mRNA therapeutic-loaded LNPs and recent research trend of LNP-based vaccine development.
Collapse
Affiliation(s)
- Muhammad Saad Khan
- Department of Physics, Toronto Metropolitan University 350 Victoria Street Toronto M5B2K3 Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), St. Michael's Hospital 209 Victoria Street Toronto M5B1W8 Canada
| | - Sila Appak Baskoy
- Institute for Biomedical Engineering, Science and Technology (iBEST), St. Michael's Hospital 209 Victoria Street Toronto M5B1W8 Canada
- Department of Chemistry and Biology, Toronto Metropolitan University, Faculty of Science 350 Victoria Street Toronto M5B2K3 ON Canada
| | - Celina Yang
- Department of Physics, Toronto Metropolitan University 350 Victoria Street Toronto M5B2K3 Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), St. Michael's Hospital 209 Victoria Street Toronto M5B1W8 Canada
| | - Joohye Hong
- School of Integrative Engineering, Chung-Ang University Seoul 06974 Republic of Korea
| | - Jayoung Chae
- School of Integrative Engineering, Chung-Ang University Seoul 06974 Republic of Korea
| | - Heejin Ha
- School of Integrative Engineering, Chung-Ang University Seoul 06974 Republic of Korea
| | - Sungjun Lee
- School of Integrative Engineering, Chung-Ang University Seoul 06974 Republic of Korea
- Feynman Institute of Technology, Nanomedicine Corporation Seoul 06974 Republic of Korea
| | - Masayoshi Tanaka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku Yokohama-shi 226-8503 Kanagawa Japan
| | - Yonghyun Choi
- School of Integrative Engineering, Chung-Ang University Seoul 06974 Republic of Korea
- Feynman Institute of Technology, Nanomedicine Corporation Seoul 06974 Republic of Korea
| | - Jonghoon Choi
- School of Integrative Engineering, Chung-Ang University Seoul 06974 Republic of Korea
- Feynman Institute of Technology, Nanomedicine Corporation Seoul 06974 Republic of Korea
| |
Collapse
|
7
|
Paz MM, Peinador Veiga A, Regueira Formal análisis T, Vázquez Vázquez C, Arturo López Quintela M. Facile Generation of Surface Diversity in Gold Nanoparticles. J Colloid Interface Sci 2023; 641:719-728. [PMID: 36972622 DOI: 10.1016/j.jcis.2023.03.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/16/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023]
Abstract
Surface chemistry is a key determinant of the physico-chemical and biological properties of gold nanoparticles (AuNPs). The introduction of chemical diversity in the surface of AuNPs is usually accomplished by place-exchange reactions using incoming ligands containing the desired terminal functional groups. As an alternative approach, we present here a simple, practical methodology to modify the surface of gold nanoparticles that allows the preparation of AuNPs stabilized with polyethyleneglycol (PEG) ligands with different surface chemistries using AuNPs stabilized with thiol-PEG-amino ligands as starting material. The surface modification reaction involves the acylation of the terminal amino groups in the ligand with an organic acid anhydride in an aqueous buffer. In addition to a full surface modification, this method also allows the synthesis of AuNPs with tailored mixed surfaces, containing two or more different functional groups, each of them at the desired extent. The ease of the experimental conditions for the reaction, purification, and for determining the level of surface modification makes this strategy an attractive alternative to current methods for the preparation of AuNPs with diverse surface chemistry.
Collapse
|
8
|
Dominique NL, Jensen IM, Kaur G, Kotseos CQ, Boggess WC, Jenkins DM, Camden JP. Giving Gold Wings: Ultrabright and Fragmentation Free Mass Spectrometry Reporters for Barcoding, Bioconjugation Monitoring, and Data Storage. Angew Chem Int Ed Engl 2023; 62:e202219182. [PMID: 36853583 DOI: 10.1002/anie.202219182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/01/2023]
Abstract
The widespread application of laser desorption/ionization mass spectrometry (LDI-MS) highlights the need for a bright and multiplexable labeling platform. While ligand-capped Au nanoparticles (AuNPs) have emerged as a promising LDI-MS contrast agent, the predominant thiol ligands suffer from low ion yields and extensive fragmentation. In this work, we develop a N-heterocyclic carbene (NHC) ligand platform that enhances AuNP LDI-MS performance. NHC scaffolds are tuned to generate barcoded AuNPs which, when benchmarked against thiol-AuNPs, are bright mass tags and form unfragmented ions in high yield. To illustrate the transformative potential of NHC ligands, the mass tags were employed in three orthogonal applications: monitoring a bioconjugation reaction, performing multiplexed imaging, and storing and reading encoded information. These results demonstrate that NHC-nanoparticle systems are an ideal platform for LDI-MS and greatly broaden the scope of nanoparticle contrast agents.
Collapse
Affiliation(s)
- Nathaniel L Dominique
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Isabel M Jensen
- Department of Chemistry, University of Tennessee, Knoxville, Knoxville, TN, 37996, USA
| | - Gurkiran Kaur
- Department of Chemistry, University of Tennessee, Knoxville, Knoxville, TN, 37996, USA
| | - Chandler Q Kotseos
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - William C Boggess
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - David M Jenkins
- Department of Chemistry, University of Tennessee, Knoxville, Knoxville, TN, 37996, USA
| | - Jon P Camden
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| |
Collapse
|
9
|
Jin Z, Dridi N, Palui G, Palomo V, Jokerst JV, Dawson PE, Sang QXA, Mattoussi H. Quantum Dot-Peptide Conjugates as Energy Transfer Probes for Sensing the Proteolytic Activity of Matrix Metalloproteinase-14. Anal Chem 2023; 95:2713-2722. [PMID: 36705737 DOI: 10.1021/acs.analchem.2c03400] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We detail the assembly and characterization of quantum dot (QD)-dye conjugates constructed using a peptide bridge specifically designed to recognize and interact with a breast cancer biomarker─matrix metalloproteinase-14 (MMP-14). The assembled QD conjugates are then used as optically addressable probes, relying on Förster resonance energy transfer (FRET) interactions as a transduction mechanism to detect the activity of MMP-14 in solution phase. The QDs were first coated with dithiolane poly(ethylene glycol) (PEG) bearing a carboxyl group that allows coupling via amide bond formation with different dye-labeled peptides. The analytical capability of the conjugates is enabled by correlating changes in the FRET efficiency with the conjugate valence and/or QD-to-dye separation distance, triggered and modulated by enzymatic proteolysis of surface-tethered peptides. The FRET probe exhibits great sensitivity to enzyme digestion with sub-nanomolar limit of detection. We further analyze the proteolysis data within the framework of the Michaelis-Menten model, which considers the fact that surface-attached peptides have a slower diffusion coefficient than free peptides. This results in reduced collision frequency and lower catalytic efficiency, kcat/KM. Our results suggest that our conjugate design is promising, effective, and potentially useful for in vivo analysis.
Collapse
Affiliation(s)
- Zhicheng Jin
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| | - Narjes Dridi
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| | - Goutam Palui
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| | - Valle Palomo
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Jesse V Jokerst
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Phillip E Dawson
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Qing-Xiang Amy Sang
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| | - Hedi Mattoussi
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| |
Collapse
|
10
|
Chandra A, Bhoge PR, K R R, Shanthamurthy CD, Kikkeri R. Fluorescent glyco-gold nanocluster induced EGFR mediated targeting of cancer cells. Chem Commun (Camb) 2023; 59:1213-1216. [PMID: 36629520 DOI: 10.1039/d2cc06227e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A lot of attention has been focused on the functionalization of carbohydrate ligands on specific sizes and shapes of gold nanoparticles (AuNPs), where ultrasmall fluorescent AuNPs have not been well explored for direct imaging. Herein, we have engineered fluorescent gold nanoclusters with sulfated oligo-iduronic acid ligands (I34), which strongly bind to the HB-EGF receptor over FGF2, and regulate EGF receptor-mediated cancer cell homing in both two- and three-dimensional (2D and 3D) cell culture systems. These results offer a new practical and direct imaging tool for carbohydrate research.
Collapse
Affiliation(s)
- Ankita Chandra
- Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 4110008, India.
| | - Preeti Ravindra Bhoge
- Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 4110008, India.
| | - Remya K R
- Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 4110008, India.
| | - Chethan D Shanthamurthy
- Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 4110008, India.
| | - Raghavendra Kikkeri
- Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 4110008, India.
| |
Collapse
|
11
|
Jin Z, Ling C, Li Y, Zhou J, Li K, Yim W, Yeung J, Chang YC, He T, Cheng Y, Fajtová P, Retout M, O'Donoghue AJ, Jokerst JV. Spacer Matters: All-Peptide-Based Ligand for Promoting Interfacial Proteolysis and Plasmonic Coupling. NANO LETTERS 2022; 22:8932-8940. [PMID: 36346642 DOI: 10.1021/acs.nanolett.2c03052] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Plasmonic coupling via nanoparticle assembly is a popular signal-generation method in bioanalytical sensors. Here, we customized an all-peptide-based ligand that carries an anchoring group, polyproline spacer, biomolecular recognition, and zwitterionic domains for functionalizing gold nanoparticles (AuNPs) as a colorimetric enzyme sensor. Our results underscore the importance of the polyproline module, which enables the SARS-CoV-2 main protease (Mpro) to recognize the peptidic ligand on nanosurfaces for subsequent plasmonic coupling via Coulombic interactions. AuNP aggregation is favored by the lowered surface potential due to enzymatic unveiling of the zwitterionic module. Therefore, this system provides a naked-eye measure for Mpro. No proteolysis occurs on AuNPs modified with a control ligand lacking a spacer domain. Overall, this all-peptide-based ligand does not require complex molecular conjugations and hence offers a simple and promising route for plasmonic sensing other proteases.
Collapse
Affiliation(s)
- Zhicheng Jin
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Chuxuan Ling
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Yi Li
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Jiajing Zhou
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Ke Li
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research, Singapore 138634
| | - Wonjun Yim
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, California 92093, United States
| | - Justin Yeung
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Yu-Ci Chang
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, California 92093, United States
| | - Tengyu He
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, California 92093, United States
| | - Yong Cheng
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Pavla Fajtová
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Maurice Retout
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Anthony J O'Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Jesse V Jokerst
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, California 92093, United States
- Department of Radiology, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
12
|
Xiao F, Li W, Xu H. Advances in magnetic nanoparticles for the separation of foodborne pathogens: Recognition, separation strategy, and application. Compr Rev Food Sci Food Saf 2022; 21:4478-4504. [PMID: 36037285 DOI: 10.1111/1541-4337.13023] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 01/28/2023]
Abstract
Foodborne pathogens contamination is one of the main sources of food safety problems. Although the existing detection methods have been developed for a long time, the complexity of food samples is still the main factor affecting the detection time and sensitivity, and the rapid separation and enrichment of pathogens is still an objective to be studied. Magnetic separation strategy based on magnetic nanoparticles (MNPs) is considered to be an effective tool for rapid separation and enrichment of foodborne pathogens in food. Therefore, this study comprehensively reviews the development of MNPs in the separation of foodborne pathogens over the past decade. First, various biorecognition reagents for identification of foodborne pathogens and their modifications on the surface of MNPs are introduced. Then, the factors affecting the separation of foodborne pathogens, including the size of MNPs, modification methods, separation strategies and separation forms are discussed. Finally, the application of MNPs in integrated detection methods is reviewed. Moreover, current challenges and prospects of MNPs for the analysis of foodborne pathogens are discussed. Further research should focus on the design of multifunctional MNPs, the processing of large-scale samples, the simultaneous analysis of multiple targets, and the development of all-in-one small analytical device with separation and detection.
Collapse
Affiliation(s)
- Fangbin Xiao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, P. R. China
| | - Weiqiang Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, P. R. China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, P. R. China
| |
Collapse
|
13
|
Cao G, Qiu Y, Long K, Xiong Y, MeimeiShi, JunYang, Li Y, Nie F, Huo D, Hou C. Carbon nanodots combined with loop-mediated isothermal amplification (LAMP) for detection of African swine fever virus (ASFV). Mikrochim Acta 2022; 189:342. [PMID: 35997837 PMCID: PMC9396581 DOI: 10.1007/s00604-022-05390-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/19/2022] [Indexed: 12/03/2022]
Abstract
The spread of African swine fever virus (ASFV) caused huge economic costs, so early detection is particularly important. Here, we established a fluorescence biosensor based on carbon nanodots (CNDs) and loop-mediated isothermal amplification (LAMP) to ultra-sensitively detect ASFV. LAMP with high efficiency produced a large amount of pyro phosphoric acid and caused pH change in a short time. CNDs with strong light stability had a large fluorescence response at the emission wavelength of 585.5 nm to small pH change by the excitation wavelength of 550 nm. The biosensor realized “turn-off–on” mode for ASFV detection with the detection limit as low as 15.21 copies μL−1. In addition, the biosensor had high accuracy in the actual sample assay. Therefore, the biosensor achieved rapid, sensitive, low-cost, and simple detection for ASFV. Moreover, the biosensor broadened the detection pathway of LAMP as a tool with great development prospect.
Collapse
Affiliation(s)
- Gaihua Cao
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, 400044, People's Republic of China
| | - Yue Qiu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, 400044, People's Republic of China
| | - Keyi Long
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, 400044, People's Republic of China
| | - Yifan Xiong
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, 400044, People's Republic of China
| | - MeimeiShi
- State Key Laboratory of Cattle Diseases Detection (Chongqing), Chongqing Customs, Chongqing Customs Technology Center, Chongqing, 400020, People's Republic of China
| | - JunYang
- State Key Laboratory of Cattle Diseases Detection (Chongqing), Chongqing Customs, Chongqing Customs Technology Center, Chongqing, 400020, People's Republic of China
| | - Yingguo Li
- State Key Laboratory of Cattle Diseases Detection (Chongqing), Chongqing Customs, Chongqing Customs Technology Center, Chongqing, 400020, People's Republic of China
| | - Fuping Nie
- State Key Laboratory of Cattle Diseases Detection (Chongqing), Chongqing Customs, Chongqing Customs Technology Center, Chongqing, 400020, People's Republic of China.
| | - Danqun Huo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, 400044, People's Republic of China. .,Chongqing Key Laboratory of Bio-Perception & Intelligent Information Processing, School of Microelectronics and Communication Engineering, Chongqing University, Chongqing, 400044, People's Republic of China.
| | - Changjun Hou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, 400044, People's Republic of China.
| |
Collapse
|
14
|
Du L, Helsper S, Nosratabad NA, Wang W, Fadool DA, Amiens C, Grant S, Mattoussi H. A Multifunctional Contrast Agent for 19F-Based Magnetic Resonance Imaging. Bioconjug Chem 2022; 33:881-891. [PMID: 35446553 DOI: 10.1021/acs.bioconjchem.2c00116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Magnetic resonance imaging, MRI, relying on 19F nuclei has attracted much attention, because the isotopes exhibit a high gyromagnetic ratio (comparable to that of protons) and have 100% natural abundance. Furthermore, due to the very low traces of intrinsic fluorine in biological tissues, fluorine labeling allows easy visualization in vivo using 19F-based MRI. However, one of the drawbacks of the available fluorine tracers is their very limited solubility in water. Here, we detail the design and preparation of a set of water-compatible fluorine-rich polymers as contrast agents that can enhance the effectiveness of 19F-based MRI. The agents are synthesized using the nucleophilic addition reaction between poly(isobutylene-alt-maleic anhydride) copolymer and a mixture of amine-appended fluorine groups and polyethylene glycol (PEG) blocks. This allows control over the polymer architecture and stoichiometry, resulting in good affinity to water solutions. We further investigate the effects of introducing additional segmental mobility to the fluorine moieties in the polymer, by inserting a PEG linker between the moieties and the polymer backbone. We find that controlling the polymer stoichiometry and introducing additional segmental mobility enhance the NMR signals and narrow the peak profile. In particular, we assess the impact of the PEG linker on T2* and T1 relaxation times, using a series of gradient-recalled echo images with varying echo times, TE, or recovery time, TR, respectively. We find that for equivalent concentrations, the PEG linker greatly increases T2*, while maintaining high T1 values, as compared to polymers without this linker. Phantom images collected from these compounds show bright signals over a background with high intensities.
Collapse
Affiliation(s)
- Liang Du
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| | - Shannon Helsper
- The National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32306, United States.,FAMU-FSU Chemical and Biomedical Engineering, Florida State University, Tallahassee, Florida 32306, United States
| | - Neda Arabzadeh Nosratabad
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| | - Wentao Wang
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| | - Debra Ann Fadool
- Department of Biological Science, Florida State University, Tallahassee, Florida 32306, United States
| | - Catherine Amiens
- LCC-CNRS, Université de Toulouse, UPS, 205 route de Narbonne, BP 44099, F-31077-Toulouse, Cedex 4, France
| | - Samuel Grant
- The National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32306, United States.,FAMU-FSU Chemical and Biomedical Engineering, Florida State University, Tallahassee, Florida 32306, United States
| | - Hedi Mattoussi
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| |
Collapse
|
15
|
Thakur M, Breger JC, Susumu K, Oh E, Spangler JR, Medintz IL, Walper SA, Ellis GA. Self-assembled nanoparticle-enzyme aggregates enhance functional protein production in pure transcription-translation systems. PLoS One 2022; 17:e0265274. [PMID: 35298538 PMCID: PMC8929567 DOI: 10.1371/journal.pone.0265274] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/27/2022] [Indexed: 11/19/2022] Open
Abstract
Cell-free protein synthesis systems (CFPS) utilize cellular transcription and translation (TX-TL) machinery to synthesize proteins in vitro. These systems are useful for multiple applications including production of difficult proteins, as high-throughput tools for genetic circuit screening, and as systems for biosensor development. Though rapidly evolving, CFPS suffer from some disadvantages such as limited reaction rates due to longer diffusion times, significant cost per assay when using commercially sourced materials, and reduced reagent stability over prolonged periods. To address some of these challenges, we conducted a series of proof-of-concept experiments to demonstrate enhancement of CFPS productivity via nanoparticle assembly driven nanoaggregation of its constituent proteins. We combined a commercially available CFPS that utilizes purified polyhistidine-tagged (His-tag) TX-TL machinery with CdSe/CdS/ZnS core/shell/shell quantum dots (QDs) known to readily coordinate His-tagged proteins in an oriented fashion. We show that nanoparticle scaffolding of the CFPS cross-links the QDs into nanoaggregate structures while enhancing the production of functional recombinant super-folder green fluorescent protein and phosphotriesterase, an organophosphate hydrolase; the latter by up to 12-fold. This enhancement, which occurs by an undetermined mechanism, has the potential to improve CFPS in general and specifically CFPS-based biosensors (faster response time) while also enabling rapid detoxification/bioremediation through point-of-concern synthesis of similar catalytic enzymes. We further show that such nanoaggregates improve production in diluted CFPS reactions, which can help to save money and extend the amount of these costly reagents. The results are discussed in the context of what may contribute mechanistically to the enhancement and how this can be applied to other CFPS application scenarios.
Collapse
Affiliation(s)
- Meghna Thakur
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, District of Columbia, United States of America
- College of Science, George Mason University, Fairfax, Virginia, United States of America
| | - Joyce C. Breger
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, District of Columbia, United States of America
| | - Kimihiro Susumu
- Optical Sciences Division, Code 5600, U.S. Naval Research Laboratory, Washington, District of Columbia, United States of America
- Jacobs Corporation, Dallas, Texas, United States of America
| | - Eunkeu Oh
- Optical Sciences Division, Code 5600, U.S. Naval Research Laboratory, Washington, District of Columbia, United States of America
| | - Joseph R. Spangler
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, District of Columbia, United States of America
| | - Igor L. Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, District of Columbia, United States of America
| | - Scott A. Walper
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, District of Columbia, United States of America
| | - Gregory A. Ellis
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, District of Columbia, United States of America
- * E-mail:
| |
Collapse
|
16
|
Hafez AA, Salimi A, Jamali Z, Shabani M, Sheikhghaderi H. Overview of the application of inorganic nanomaterials in breast cancer diagnosis. INORG NANO-MET CHEM 2022. [DOI: 10.1080/24701556.2021.2025085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Asghar Ashrafi Hafez
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ahmad Salimi
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Zhaleh Jamali
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mohammad Shabani
- Student Research Committee, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Hiva Sheikhghaderi
- Student Research Committee, School of Paramedical, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Bukan Shahid Gholipour Hospital, Urmia University of Medical Sciences, Bukan, Iran
| |
Collapse
|
17
|
Wilms D, Adler Y, Schröer F, Bunnemann L, Schmidt S. Elastic modulus distribution in poly( N-isopopylacrylamide) and oligo(ethylene glycol methacrylate)-based microgels studied by AFM. SOFT MATTER 2021; 17:5711-5717. [PMID: 34013309 DOI: 10.1039/d1sm00291k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The spatial elastic modulus distribution of microgel networks in presence and absence of bifunctional crosslinkers is studied by AFM. Thermoresponsive poly(N-isopopylacrylamide) (PNIPAM) and poly(2-(2-methoxyethoxy)ethyl methacrylate-co-oligo(ethylene glycol)methacrylate) (P(MEO2MA-co-OEGMA)) microgels are synthesized via precipitation polymerization above their lower critical solution temperature (LCST). High-resolution elastic modulus profiles are acquired using AFM force-indentation mapping of surface-deposited microgels at 25 °C. For both microgel systems, the use of a bifunctional crosslinker leads to a strong elastic modulus gradient with stiff microgel cores and soft networks toward the edge. In absence of a dedicated crosslinker (self-crosslinking), PNIPAM microgels show a homogeneous elastic modulus distribution, whereas self-crosslinked P(MEO2MA-co-OEGMA) microgels still show decreasing elastic moduli from the centre to the edge of the microgels. However, POEGMA microgels without comonomer showed no elastic modulus gradient suggesting that different incorporation rates of MEO2MA and OEGMA result in a radial variation of the polymer segment density. In addition, when varying the molecular weight of OEGMA the overall elastic modulus was affected, possibly due to molecular weight-dependent phase behavior and different reactivity. This shows that quite different microgel architectures can be obtained by the simple "one-pot" precipitation reaction of microgels which may open to new avenues toward advanced applications.
Collapse
Affiliation(s)
- Dimitri Wilms
- Institute for Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| | - Yanik Adler
- Institute for Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| | - Fabian Schröer
- Institute for Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| | - Lennart Bunnemann
- Institute for Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| | - Stephan Schmidt
- Institute for Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
18
|
Mei L, Shi Y, Cao F, Liu X, Li XM, Xu Z, Miao Z. PEGylated Phthalocyanine-Functionalized Graphene Oxide with Ultrahigh-Efficient Photothermal Performance for Triple-Mode Antibacterial Therapy. ACS Biomater Sci Eng 2021; 7:2638-2648. [PMID: 33938721 DOI: 10.1021/acsbiomaterials.1c00178] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This study proposes a novel multifunctional synergistic antibacterial phototherapy technique for the rapid healing of bacteria-infected wounds. By binding PEGylated phthalocyanines to the surface of graphene oxide via noncovalent functionalization, the photothermal conversion efficiency of the obtained nanocomposites can be significantly increased, which shows that the sample temperature can achieve nearly 100 °C after only 10 min of 450 nm light illumination at a concentration ≥25 μg/mL. Moreover, the nanocomposites can rapidly generate singlet oxygen under 680 nm light irradiation and physically cut bacterial cell membranes. The triple effects are expected to obtain a synergistic antibacterial efficiency and reduce the emergence of bacterial resistance. After dual-light irradiation for 10 min, the generation of hyperthermia and singlet oxygen can cause the death of Gram-positive and Gram-negative bacteria. The results of an in vivo experiment revealed that the as-prepared nanocomposites combined with dual-light-triggered antibacterial therapy can effectively restrain the inflammatory reaction and accelerate the healing of bacteria-infected wounds. These were confirmed by the examination of pathological tissue sections and inflammatory factors in rats with bacteria-infected wounds. This nanotherapeutic platform is a potential photoactivated antimicrobial strategy for the prevention and treatment of bacterial infection.
Collapse
Affiliation(s)
- Lin Mei
- School of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China
| | - Yanmei Shi
- Academy of Traditional Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou 450046, P. R. China
| | - Fengyi Cao
- School of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China
| | - Xuan Liu
- School of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China
| | - Xiu-Min Li
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York 10595, United States
| | - Zhenlong Xu
- School of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China
| | - Zhiqiang Miao
- School of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China
| |
Collapse
|
19
|
Yan J, Marina PF, Blencowe A. A Facile Strategy for the High Yielding, Quantitative Conversion of Polyglycol End-Groups to Amines. Polymers (Basel) 2021; 13:1403. [PMID: 33926044 PMCID: PMC8123656 DOI: 10.3390/polym13091403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 11/22/2022] Open
Abstract
Amino end-group functionalised polyglycols are important intermediates in the synthesis of sophisticated polymeric architectures and biomaterials. Herein, we report a facile strategy for the end-group conversion of hydroxyl-terminated polyglycols to amino-terminated polyglycols in high isolated yields and with excellent end-group fidelity. Following traditional conversion of polyglycol hydroxyl end-groups to azides via the corresponding mesylate, reduction with zinc in the presence of ammonium chloride afforded a range of amino end-group functionalised poly(ethylene glycol) and poly(propylene glycol) homopolymers and copolymers with isolated yields of 82-99% and end-group conversions of >99% as determined by NMR spectroscopy and MALDI ToF MS. Furthermore, this process is applicable to a sequential reagent addition approach without intermediate polymer isolation steps with only a slight reduction in yield and end-group conversion (95%). Importantly, a simple work-up procedure provides access to high purity polyglycols without contamination from other reagents.
Collapse
Affiliation(s)
- Jie Yan
- Applied Chemistry and Translational Biomaterials (ACTB) Group, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5001, Australia
| | - Paula Facal Marina
- Applied Chemistry and Translational Biomaterials (ACTB) Group, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5001, Australia
| | - Anton Blencowe
- Applied Chemistry and Translational Biomaterials (ACTB) Group, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5001, Australia
| |
Collapse
|
20
|
Development of Gold Nanoparticle Micropatterns for the Electrical Detection of Proteins. NANOMATERIALS 2021; 11:nano11020528. [PMID: 33669510 PMCID: PMC7922899 DOI: 10.3390/nano11020528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/10/2021] [Accepted: 02/14/2021] [Indexed: 11/16/2022]
Abstract
Protein analysis can be used to efficiently detect the early stages of various diseases. However, conventional protein detection platforms require expensive or complex equipment, which has been a major obstacle to their widespread application. In addition, uncertain signals from non-specific adhesion interfere with the precise interpretation of the results. To overcome these problems, the development of a technique that can detect the proteins in a simple method is needed. In this study, a platform composed of gold nanoparticles (GNPs) was fabricated through a simple imprinting method for protein detection. The corrugated surface naturally formed by the nanoparticle assemblies simultaneously increases the efficiency of adhesion and binding with analytes and reduces undesired interactions. After forming the GNP micropatterns, post-functionalization with both cationic and neutral ligands was performed on the surface to manipulate their electrostatic interaction with proteins. Upon protein binding, the change in the electrical values of the micropatterns was recorded by using a resistance meter. The resistance of the positively charged micropatterns was found to increase due to the electrostatic interaction with proteins, while no significant change in resistance was observed for the neutral micropatterns after immersion in a protein solution. Additionally, the selective adsorption of fluorescent proteins onto the micropatterns was captured using confocal microscopy. These simply imprinted GNP micropatterns are sensitive platforms that can detect various analytes by measuring the electrical resistance with portable equipment.
Collapse
|
21
|
Quantum dots as targeted doxorubicin drug delivery nanosystems in human lung cancer cells. Cancer Nanotechnol 2021. [DOI: 10.1186/s12645-021-00077-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Abstract
Background
Lung cancer is one of the most frequently diagnosed cancers all over the world and is also one of the leading causes of cancer-related mortality. The main treatment option for small cell lung cancer, conventional chemotherapy, is characterized by a lack of specificity, resulting in severe adverse effects. Therefore, this study aimed at developing a new targeted drug delivery (TDD) system based on Ag–In–Zn–S quantum dots (QDs). For this purpose, the QD nanocrystals were modified with 11-mercaptoundecanoic acid (MUA), L-cysteine, and lipoic acid decorated with folic acid (FA) and used as a novel TDD system for targeting doxorubicin (DOX) to folate receptors (FARs) on adenocarcinomic human alveolar basal epithelial cells (A549). NIH/3T3 cells were used as FAR-negative controls. Comprehensive physicochemical, cytotoxicity, and genotoxicity studies were performed to characterize the developed novel TDDs.
Results
Fourier transformation infrared spectroscopy, dynamic light scattering, and fluorescence quenching confirmed the successful attachment of FA to the QD nanocrystals and of DOX to the QD–FA nanocarriers. UV–Vis analysis helped in determining the amount of FA and DOX covalently anchored to the surface of the QD nanocrystals. Biological screening revealed that the QD–FA–DOX nanoconjugates had higher cytotoxicity in comparison to the other forms of synthesized QD samples, suggesting the cytotoxic effect of DOX liberated from the QD constructs. Contrary to the QD–MUA–FA–DOX nanoconjugates which occurred to be the most cytotoxic against A549 cells among others, no such effect was observed for NIH/3T3 cells, confirming FARs as molecular targets. In vitro scratch assay also revealed significant inhibition of A549 cell migration after treatment with QD–MUA–FA–DOX. The performed studies evidenced that at IC50 all the nanoconjugates induced significantly more DNA breaks than that observed in nontreated cells. Overall, the QD–MUA–FA–DOX nanoconjugates showed the greatest cytotoxicity and genotoxicity, while significantly inhibiting the migratory potential of A549 cells.
Conclusion
QD–MUA–FA–DOX nanoconjugates can thus be considered as a potential drug delivery system for the effective treatment of adenocarcinomic human alveolar basal epithelial cells.
Collapse
|
22
|
Influence of Surface Ligands on Charge-Carrier Trapping and Relaxation in Water-Soluble CdSe@CdS Nanorods. Catalysts 2020. [DOI: 10.3390/catal10101143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
In this study, the impact of the type of ligand at the surface of colloidal CdSe@CdS dot-in-rod nanostructures on the basic exciton relaxation and charge localization processes is closely examined. These systems have been introduced into the field of artificial photosynthesis as potent photosensitizers in assemblies for light driven hydrogen generation. Following photoinduced exciton generation, electrons can be transferred to catalytic reaction centers while holes localize into the CdSe seed, which can prevent charge recombination and lead to the formation of long-lived charge separation in assemblies containing catalytic reaction centers. These processes are in competition with trapping processes of charges at surface defect sites. The density and type of surface defects strongly depend on the type of ligand used. Here we report on a systematic steady-state and time-resolved spectroscopic investigation of the impact of the type of anchoring group (phosphine oxide, thiols, dithiols, amines) and the bulkiness of the ligand (alkyl chains vs. poly(ethylene glycol) (PEG)) to unravel trapping pathways and localization efficiencies. We show that the introduction of the widely used thiol ligands leads to an increase of hole traps at the surface compared to trioctylphosphine oxide (TOPO) capped rods, which prevent hole localization in the CdSe core. On the other hand, steric restrictions, e.g., in dithiolates or with bulky side chains (PEG), decrease the surface coverage, and increase the density of electron trap states, impacting the recombination dynamics at the ns timescale. The amines in poly(ethylene imine) (PEI) on the other hand can saturate and remove surface traps to a wide extent. Implications for catalysis are discussed.
Collapse
|
23
|
Han R, Zhao M, Wang Z, Liu H, Zhu S, Huang L, Wang Y, Wang L, Hong Y, Sha Y, Jiang Y. Super-efficient in Vivo Two-Photon Photodynamic Therapy with a Gold Nanocluster as a Type I Photosensitizer. ACS NANO 2020; 14:9532-9544. [PMID: 31670942 DOI: 10.1021/acsnano.9b05169] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Photodynamic therapy (PDT) is a clinically approved, minimally invasive therapeutic technique that can induce the regression of targeted lesions via generating excess cytotoxic reactive oxygen species. However, due to the limited penetration depth of visible excitation light and the intrinsic hypoxia microenvironment of solid tumors, the efficacy of PDT in the treatment of cancer, especially deep-seated or large tumors, is unsatisfactory. Herein, we developed an efficient in vivo PDT system based on a nanomaterial, dihydrolipoic acid coated gold nanocluster (AuNC@DHLA), that combined the advantages of large penetration depth in tissue, extremely high two-photon (TP) absorption cross section (σ2 ∼ 106 GM), efficient ROS generation, a type I photochemical mechanism, and negligible in vivo toxicity. With AuNC@DHLA as the photosensitizer, highly efficient in vivo TP-PDT has been achieved.
Collapse
Affiliation(s)
- Rongcheng Han
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Miao Zhao
- Single-Molecule and Nanobiology Laboratory, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Zhiwei Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Helin Liu
- Single-Molecule and Nanobiology Laboratory, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Shengcang Zhu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lu Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lijun Wang
- Single-Molecule and Nanobiology Laboratory, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Yuankai Hong
- Single-Molecule and Nanobiology Laboratory, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Yinlin Sha
- Single-Molecule and Nanobiology Laboratory, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Yuqiang Jiang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
24
|
Wang S, Du L, Jin Z, Xin Y, Mattoussi H. Enhanced Stabilization and Easy Phase Transfer of CsPbBr3 Perovskite Quantum Dots Promoted by High-Affinity Polyzwitterionic Ligands. J Am Chem Soc 2020; 142:12669-12680. [DOI: 10.1021/jacs.0c03682] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Sisi Wang
- Florida State University, Department of Chemistry and Biochemistry, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| | - Liang Du
- Florida State University, Department of Chemistry and Biochemistry, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| | - Zhicheng Jin
- Florida State University, Department of Chemistry and Biochemistry, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| | - Yan Xin
- Florida State University, National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, United States
| | - Hedi Mattoussi
- Florida State University, Department of Chemistry and Biochemistry, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| |
Collapse
|
25
|
Wang W, Kong Y, Jiang J, Tian X, Li S, Akshath US, Tiede C, Hondow N, Yu A, Guo Y, Zhou D. Photon induced quantum yield regeneration of cap-exchanged CdSe/CdS quantum rods for ratiometric biosensing and cellular imaging. NANOSCALE 2020; 12:8647-8655. [PMID: 32147673 DOI: 10.1039/c9nr08060k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Full water-dispersion of commercial hydrophobic CdSe/CdS core/shell quantum rods (QRs) was achieved by cap-exchange using a dihydrolipoic acid zwitterion ligand at a low ligand:QR molar ratio (LQMR) of 1000. However, this process almost completely quenched the QR fluorescence, greatly limiting its potential in downstream fluorescence based applications. Fortunately, we found that the QR fluorescence could be recovered by exposure to near ultra-violet to blue light radiation (e.g. 300-450 nm). These "reborn" QRs were found to be compact, bright, and stable, and were resistant to non-specific adsorption, which make them powerful fluorescent probes in broad biomedical applications. We demonstrated their potential in two model applications: first, the QRs were conjugated with His8-tagged small antibody mimetic proteins (also known as Affimers) for the sensitive detection of target proteins via a Förster resonance energy transfer (FRET) readout strategy and second, the QR surface was functionalized with biotins for targeted imaging of cancer cells.
Collapse
Affiliation(s)
- Weili Wang
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Wang W, van Niekerk EA, Zhang Y, Du L, Ji X, Wang S, Baker JD, Groeniger K, Raymo FM, Mattoussi H. Compact, “Clickable” Quantum Dots Photoligated with Multifunctional Zwitterionic Polymers for Immunofluorescence and In Vivo Imaging. Bioconjug Chem 2020; 31:1497-1509. [DOI: 10.1021/acs.bioconjchem.0c00169] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Wentao Wang
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| | - Erna A. van Niekerk
- Department of Neurosciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Yang Zhang
- Laboratory for Molecular Photonics, Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Liang Du
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| | - Xin Ji
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| | - Sisi Wang
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| | - James D. Baker
- Laboratory for Molecular Photonics, Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Kimberly Groeniger
- Department of Neurosciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Françisco M. Raymo
- Laboratory for Molecular Photonics, Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Hedi Mattoussi
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| |
Collapse
|
27
|
Zhang C, Chen Z, Li W, Liu X, Tang S, Jiang L, Li M, Peng H, Lian M. Influences of different sugar ligands on targeted delivery of liposomes. J Drug Target 2020; 28:789-801. [PMID: 32242754 DOI: 10.1080/1061186x.2020.1744156] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Ligands are an important part of targeted drug delivery systems. Optimised lignads not only improve the target efficiency, but also enhance therapeutical effect of drugs. In our research, five sugar molecules (Mannose, Galactose, Glucose, Malt disaccharide, and Maltotriose) conjugated PEG600-DSPE were synthesised, of which polysaccharides were first discovered by us as sugar ligands to modify liposomes, which interacts with over expressive GLUT on cancer cells. DiO was encapsulated as fluorescent probe to evaluate their cellular uptake abilities of targeting C6 glioma cells, and the distribution in different visceral organs of rats. The results demonstrated that Malt disaccharide and Glucose-PEG600-DSPE had the strong efficiency of cellular uptake by C6 glioma cells. The distribution and accumulation of liposomes showed that different sugars modified liposomes could target different visceral organs in rats. It has provided a novel idea for ligand selectivity and optimisation of nanocarriers for tumour targeted therapy.
Collapse
Affiliation(s)
- Changmei Zhang
- Department of Pharmaceutics, Daqing Campus of Harbin Medical University, Harbin, China
| | - Zhong Chen
- Department of Pharmaceutics, Daqing Campus of Harbin Medical University, Harbin, China
| | - Wenhua Li
- Department of Pharmaceutics, Daqing Campus of Harbin Medical University, Harbin, China
| | - Xiaoying Liu
- Department of Pharmaceutics, Daqing Campus of Harbin Medical University, Harbin, China
| | - Shukun Tang
- Department of Pharmaceutics, Daqing Campus of Harbin Medical University, Harbin, China
| | - Lei Jiang
- Department of Pharmaceutics, Daqing Campus of Harbin Medical University, Harbin, China
| | - Minghui Li
- Department of Pharmaceutics, Daqing Campus of Harbin Medical University, Harbin, China
| | - Haisheng Peng
- Department of Pharmaceutics, Daqing Campus of Harbin Medical University, Harbin, China
| | - Mingming Lian
- Department of Pharmaceutics, Daqing Campus of Harbin Medical University, Harbin, China
| |
Collapse
|
28
|
Abstract
Brightly luminescent semiconductor quantum dots (QDs) are ideal materials for cellular imaging and analysis because of their advantageous optical properties and surface area that supports multivalent conjugation of biomolecules. An important design consideration for effective use of these materials is a hydrophilic, biocompatible surface chemistry that provides colloidal stability and minimizes nonspecific interactions with biological molecules and systems. Dextran coatings are able to satisfy these criteria. Despite frequent use of dextran coatings with other nanomaterials (e.g., iron oxide nanoparticles), there has been little development and application of dextran coatings for QDs. In this chapter, we describe methods for the synthesis and characterization of a dextran ligand for QDs, including preparation of an immunoconjugate via tetrameric antibody complexes (TAC). The utility of these immunoconjugates is demonstrated through immunofluorescent labeling and imaging of overexpressed human epidermal growth factor receptor 2 (HER2) on the surface of SK-BR3 breast cancer cells.
Collapse
|
29
|
Hottechamps J, Noblet T, Brans A, Humbert C, Dreesen L. How Quantum Dots Aggregation Enhances Förster Resonant Energy Transfer. Chemphyschem 2020; 21:853-862. [DOI: 10.1002/cphc.202000067] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Indexed: 11/08/2022]
Affiliation(s)
- Julie Hottechamps
- GRASP-BiophotonicsCESAMUniversity of LiegeInstitute of Physics Allée du 6 août 17 4000 Liège Belgium
| | - Thomas Noblet
- GRASP-BiophotonicsCESAMUniversity of LiegeInstitute of Physics Allée du 6 août 17 4000 Liège Belgium
| | - Alain Brans
- Center for Protein Engineering (CIP)InBioSUniversity of Liege, Quartier Agora Allée du six Août 13, B6a 4000 Liège Belgium
| | - Christophe Humbert
- Université Paris-SaclayCNRSInstitut de Chimie Physique UMR 8000 91405 Orsay France
| | - Laurent Dreesen
- GRASP-BiophotonicsCESAMUniversity of LiegeInstitute of Physics Allée du 6 août 17 4000 Liège Belgium
| |
Collapse
|
30
|
Narita S, Kobayashi N, Mori K, Sakurai K. Clickable gold nanoparticles for streamlining capture, enrichment and release of alkyne-labelled proteins. Bioorg Med Chem Lett 2019; 29:126768. [PMID: 31690474 DOI: 10.1016/j.bmcl.2019.126768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/11/2019] [Accepted: 10/16/2019] [Indexed: 01/08/2023]
Abstract
Alkyne-labelled proteins are generated as key intermediates in the chemical probe-based approaches to proteomics analysis. Their efficient and selective detection and isolation is an important problem. We designed and synthesized azide-functionalized gold nanoparticles as new clickable capture reagents to streamline click chemistry-mediated capture, enrichment and release of the alkyne-labelled proteins in one-pot to expedite the post-labelling analysis. Because hydrophobic surface functionalities are known to render gold nanoparticles poorly water-dispersible, hydrophilic PEG linkers with two different lengths were explored to confer colloidal stability to the clickable capture reagents. We demonstrated the ability of the capture reagents to conjugate the alkyne containing proteins at a nanomolar concentration via click chemistry, which can be immediately followed by their enrichment and elution. Furthermore, a bifunctional clickable capture reagent bearing sulforhodamine and azide groups was shown to conveniently attach a fluorophore to the alkyne-labelled protein upon click capture, which facilitated their rapid detection in the gel analysis.
Collapse
Affiliation(s)
- Sho Narita
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Life Science, 2-24-16, Naka-cho, Koganei-shi, Tokyo 184-8588, Japan
| | - Naohiro Kobayashi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Life Science, 2-24-16, Naka-cho, Koganei-shi, Tokyo 184-8588, Japan
| | - Kanna Mori
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Life Science, 2-24-16, Naka-cho, Koganei-shi, Tokyo 184-8588, Japan
| | - Kaori Sakurai
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Life Science, 2-24-16, Naka-cho, Koganei-shi, Tokyo 184-8588, Japan.
| |
Collapse
|
31
|
Jin Z, Kapur A, Wang W, Diaz Hernandez J, Thakur M, Mattoussi H. The dual–function of lipoic acid groups as surface anchors and sulfhydryl reactive sites on polymer–stabilized QDs and Au nanocolloids. J Chem Phys 2019; 151:164703. [DOI: 10.1063/1.5126432] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Zhicheng Jin
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, USA
| | - Anshika Kapur
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, USA
| | - Wentao Wang
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, USA
| | - Juan Diaz Hernandez
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, USA
| | - Mannat Thakur
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, USA
| | - Hedi Mattoussi
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, USA
| |
Collapse
|
32
|
Mishra D, Wang S, Jin Z, Xin Y, Lochner E, Mattoussi H. Highly fluorescent hybrid Au/Ag nanoclusters stabilized with poly(ethylene glycol)- and zwitterion-modified thiolate ligands. Phys Chem Chem Phys 2019; 21:21317-21328. [PMID: 31531429 DOI: 10.1039/c9cp03723c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We report a simple strategy to grow highly fluorescing, near-infrared-emitting nanoclusters (NCs) made of bimetallic Au/Ag cores, surface capped with a mixture of triphenylphosphine and various monothiol ligands. The ligands include short chain aliphatic monothiols, which yields hydrophobic NCs, and poly(ethylene glycol)- or zwitterion-appended monothiols, which yield NCs that are readily dispersible in buffer media. The reaction uses well-defined triphenylphosphine-protected Au11 clusters (as precursors) that are reacted with Ag(i)-thiolate complexes. The prepared materials are small (diameter <2 nm, as characterized by TEM) with emission peak at 730-760 nm and long lifetime (∼8-12 μs). The quantum yield measured for these materials in both hydrophobic and hydrophilic dispersions is ∼40%. High-magnification dark field STEM and X-ray photoelectron spectroscopy measurements show the presence of both metal atoms in the core, with measured binding energies that agree with reported values for nanocluster materials. The NIR emission combined with high quantum yield, small size, colloidal stability in buffer media and ease of surface functionalization afforded by the coating, make these materials suitable for investigating fundamental questions and potentially useful for biological sensing and imaging applications.
Collapse
Affiliation(s)
- Dinesh Mishra
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL 32306, USA.
| | - Sisi Wang
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL 32306, USA.
| | - Zhicheng Jin
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL 32306, USA.
| | - Yan Xin
- National High Magnetic Field Laboratory, Florida State University, 1800 E. Paul Dirac Drive, Tallahassee, Florida 32310, USA
| | - Eric Lochner
- CMMP, Department of Physics, Florida State University, 77 Chieftan Way, Tallahassee, FL 32306, USA
| | - Hedi Mattoussi
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL 32306, USA.
| |
Collapse
|
33
|
Perng W, Palui G, Wang W, Mattoussi H. Elucidating the Role of Surface Coating in the Promotion or Prevention of Protein Corona around Quantum Dots. Bioconjug Chem 2019; 30:2469-2480. [PMID: 31448900 DOI: 10.1021/acs.bioconjchem.9b00549] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nonspecific interactions in biological media can lead to the formation of a protein corona around nanocolloids, which tends to alter their behavior and limit their effectiveness when used as probes for imaging or sensing applications. Yet, understanding the corona buildup has been challenging. We hereby investigate these interactions using luminescent quantum dots (QDs) as a model nanocolloid system, where we carefully vary the nature of the hydrophilic block in the surface coating, while maintaining the same dihydrolipoic acid (DHLA) bidentate coordinating motif. We first use agarose gel electrophoresis to track changes in the mobility shift upon exposure of the QDs to protein-rich media. We find that QDs capped with DHLA (which presents a hydrophobic alkyl chain terminated with a carboxyl group) promote corona formation, in a concentration-dependent manner. However, when a polyethylene glycol block or a zwitterion group is appended onto DHLA, it yields a coating that prevents corona buildup. Our results clearly confirm that nonspecific interactions with protein-rich media are strongly dependent on the nature of the hydrophilic motif used. Additional gel experiments using SDS-PAGE have allowed further characterization of the corona protein, and showed that mainly a soft corona forms around the DHLA-capped QDs. These findings will be highly informative when designing nanocolloids that can find potential use in biological applications.
Collapse
Affiliation(s)
- Woody Perng
- Department of Chemistry and Biochemistry , Florida State University , Tallahassee , Florida 32306 , United States
| | - Goutam Palui
- Department of Chemistry and Biochemistry , Florida State University , Tallahassee , Florida 32306 , United States
| | - Wentao Wang
- Department of Chemistry and Biochemistry , Florida State University , Tallahassee , Florida 32306 , United States
| | - Hedi Mattoussi
- Department of Chemistry and Biochemistry , Florida State University , Tallahassee , Florida 32306 , United States
| |
Collapse
|
34
|
Hao J, Liu H, Miao J, Lu R, Zhou Z, Zhao B, Xie B, Cheng J, Wang K, Delville MH. A facile route to synthesize CdSe/ZnS thick-shell quantum dots with precisely controlled green emission properties: towards QDs based LED applications. Sci Rep 2019; 9:12048. [PMID: 31427624 PMCID: PMC6700096 DOI: 10.1038/s41598-019-48469-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 08/02/2019] [Indexed: 11/16/2022] Open
Abstract
In recent, the quantum yield (QY) and stability of green quantum dots (QDs) have been significantly improved. However, most of the progresses were achieved by using alloyed QDs, and the control of green emission QDs still remains challenging. Herein, we report a novel method for synthesizing thick-shell structure quantum dots (TSQDs) with saturated green-emitting where tri-n-octylphosphine (TOP) was used as both ligand and solvent to extract the redundant ions from the QDs surface and remove the lattice imperfections before any surface inorganic layer-by-layer coating. The as-prepared TSQDs demonstrate enhanced luminescent properties including high QY reaching up to 75%, full width at half maximum (FWHM) remaining close to 26 nm and tunable precise emission properties (532 nm), which can be utilized to perform 91% of the International Telecommunication Union (ITU) Recommendation BT. 2020 (Rec. 2020) for high definition and color gamut displays.
Collapse
Affiliation(s)
- Junjie Hao
- CNRS, University Bordeaux, ICMCB, UMR 5026, F-33608, Pessac, France
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Haochen Liu
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jun Miao
- Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, China
| | - Rui Lu
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Ziming Zhou
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Bingxin Zhao
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Bin Xie
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jiaji Cheng
- School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China.
| | - Kai Wang
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| | | |
Collapse
|
35
|
Wagner AM, Knipe JM, Orive G, Peppas NA. Quantum dots in biomedical applications. Acta Biomater 2019; 94:44-63. [PMID: 31082570 PMCID: PMC6642839 DOI: 10.1016/j.actbio.2019.05.022] [Citation(s) in RCA: 185] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/10/2019] [Accepted: 05/08/2019] [Indexed: 01/14/2023]
Abstract
Semiconducting nanoparticles, more commonly known as quantum dots, possess unique size and shape dependent optoelectronic properties. In recent years, these unique properties have attracted much attention in the biomedical field to enable real-time tissue imaging (bioimaging), diagnostics, single molecule probes, and drug delivery, among many other areas. The optical properties of quantum dots can be tuned by size and composition, and their high brightness, resistance to photobleaching, multiplexing capacity, and high surface-to-volume ratio make them excellent candidates for intracellular tracking, diagnostics, in vivo imaging, and therapeutic delivery. We discuss recent advances and challenges in the molecular design of quantum dots are discussed, along with applications of quantum dots as drug delivery vehicles, theranostic agents, single molecule probes, and real-time in vivo deep tissue imaging agents. We present a detailed discussion of the biodistribution and toxicity of quantum dots, and highlight recent advances to improve long-term stability in biological buffers, increase quantum yield following bioconjugation, and improve clearance from the body. Last, we present an outlook on future challenges and strategies to further advance translation to clinical application. STATEMENT OF SIGNIFICANCE: Semiconducting nanoparticles, commonly known as quantum dots, possess unique size and shape dependent electrical and optical properties. In recent years, they have attracted much attention in biomedical imaging to enable diagnostics, single molecule probes, and real-time imaging of tumors. This review discusses recent advances and challenges in the design of quantum dots, and highlights how these strategies can further advance translation to clinical applications.
Collapse
Affiliation(s)
- Angela M Wagner
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA; Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX, USA
| | - Jennifer M Knipe
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA; Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX, USA
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain
| | - Nicholas A Peppas
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA; Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX, USA; Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA; Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX, USA; Department of Surgery and Perioperative Care, Dell Medical School, The University of Texas at Austin, Austin, TX, USA; Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
36
|
Algar WR, Jeen T, Massey M, Peveler WJ, Asselin J. Small Surface, Big Effects, and Big Challenges: Toward Understanding Enzymatic Activity at the Inorganic Nanoparticle-Substrate Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:7067-7091. [PMID: 30415548 DOI: 10.1021/acs.langmuir.8b02733] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Enzymes are important biomarkers for molecular diagnostics and targets for the action of drugs. In turn, inorganic nanoparticles (NPs) are of interest as materials for biological assays, biosensors, cellular and in vivo imaging probes, and vectors for drug delivery and theranostics. So how does an enzyme interact with a NP, and what are the outcomes of multivalent conjugation of its substrate to a NP? This invited feature article addresses the current state of the art in answering this question. Using gold nanoparticles (Au NPs) and semiconductor quantum dots (QDs) as illustrative materials, we discuss aspects of enzyme structure-function and the properties of NP interfaces and surface chemistry that determine enzyme-NP interactions. These aspects render the substrate-on-NP configurations far more complex and heterogeneous than the conventional turnover of discrete substrate molecules in bulk solution. Special attention is also given to the limitations of a standard kinetic analysis of the enzymatic turnover of these configurations, the need for a well-defined model of turnover, and whether a "hopping" model can account for behaviors such as the apparent acceleration of enzyme activity. A detailed and predictive understanding of how enzymes turn over multivalent NP-substrate conjugates will require a convergence of many concepts and tools from biochemistry, materials, and interface science. In turn, this understanding will help to enable rational, optimized, and value-added designs of NP bioconjugates for biomedical and clinical applications.
Collapse
Affiliation(s)
- W Russ Algar
- Department of Chemistry , University of British Columbia , 2036 Main Mall , Vancouver , British Columbia V6T 1Z1 , Canada
| | - Tiffany Jeen
- Department of Chemistry , University of British Columbia , 2036 Main Mall , Vancouver , British Columbia V6T 1Z1 , Canada
| | - Melissa Massey
- Department of Chemistry , University of British Columbia , 2036 Main Mall , Vancouver , British Columbia V6T 1Z1 , Canada
| | - William J Peveler
- Department of Chemistry , University of British Columbia , 2036 Main Mall , Vancouver , British Columbia V6T 1Z1 , Canada
- Division of Biomedical Engineering, School of Engineering , University of Glasgow , Glasgow G12 8LT , United Kingdom
| | - Jérémie Asselin
- Department of Chemistry , University of British Columbia , 2036 Main Mall , Vancouver , British Columbia V6T 1Z1 , Canada
| |
Collapse
|
37
|
Chemical Synthesis and Characterization of Poly(poly(ethylene glycol) methacrylate)-Grafted CdTe Nanocrystals via RAFT Polymerization for Covalent Immobilization of Adenosine. Polymers (Basel) 2019; 11:polym11010077. [PMID: 30960061 PMCID: PMC6401988 DOI: 10.3390/polym11010077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/25/2018] [Accepted: 12/31/2018] [Indexed: 12/16/2022] Open
Abstract
This paper describes the functionalization of poly(poly(ethylene glycol) methacrylate) (PPEGMA)-grafted CdTe (PPEGMA-g-CdTe) quantum dots (QDs) via surface-initiated reversible addition–fragmentation chain transfer (SI-RAFT) polymerization for immobilization of adenosine. Initially, the hydroxyl-coated CdTe QDs, synthesized using 2-mercaptoethanol (ME) as a capping agent, were coupled with a RAFT agent, S-benzyl S′-trimethoxysilylpropyltrithiocarbonate (BTPT), through a condensation reaction. Then, 2,2′-azobisisobutyronitrile (AIBN) was used to successfully initiate in situ RAFT polymerization to generate PPEGMA-g-CdTe nanocomposites. Adenosine-above-PPEGMA-grafted CdTe (Ado-i-PPEGMA-g-CdTe) hybrids were formed by the polymer shell, which had successfully undergone bioconjugation and postfunctionalization by adenosine (as a nucleoside). Fourier transform infrared (FT-IR) spectrophotometry, energy-dispersive X-ray (EDX) spectroscopy, thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy results indicated that a robust covalent bond was created between the organic PPEGMA part, cadmium telluride (CdTe) QDs, and the adenosine conjugate. The optical properties of the PPEGMA-g-CdTe and Ado-i-PPEGMA-g-CdTe hybrids were investigated by photoluminescence (PL) spectroscopy, and the results suggest that they have a great potential for application as optimal materials in biomedicine.
Collapse
|
38
|
Kapri S, Bhattacharyya S. Molybdenum sulfide-reduced graphene oxide p-n heterojunction nanosheets with anchored oxygen generating manganese dioxide nanoparticles for enhanced photodynamic therapy. Chem Sci 2018; 9:8982-8989. [PMID: 30647890 PMCID: PMC6301203 DOI: 10.1039/c8sc02508h] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 09/29/2018] [Indexed: 12/19/2022] Open
Abstract
In an unprecedented approach, p-n heterojunction nanosheets comprising ∼5 nm thick p-type MoS2 nanoplates integrated onto n-type nitrogen doped reduced graphene oxide (n-rGO) have been employed for photodynamic therapy (PDT). When near infrared (NIR) light with 980 nm wavelength was irradiated on this nanocomposite, effective electron-hole separation was obtained across the heterojunction. The nanosheets were modified with lipoic acid functionalized poly(ethylene glycol) to provide better biocompatibility and colloidal stability in physiological solution. The surface decorated 3-5 nm MnO2 nanoparticles (NPs) triggered the disproportionation of intracellular H2O2 which improved generation of reactive oxygen species (ROS) for enhanced PDT cancer therapy, studied in vitro. The role of N-doping in rGO and the effect of immobilization of MnO2 NPs were systematically investigated by control experiments. Our smartly designed p-MoS2/n-rGO-MnO2-PEG nanosheets outperform conventional PDT agents by overcoming limitations such as low absorption band, unfavourable bioavailability and limitations in tissue oxygenation.
Collapse
Affiliation(s)
- Sutanu Kapri
- Department of Chemical Sciences , Centre for Advanced Functional Materials , Indian Institute of Science Education and Research (IISER) Kolkata , Mohanpur - 741246 , India .
| | - Sayan Bhattacharyya
- Department of Chemical Sciences , Centre for Advanced Functional Materials , Indian Institute of Science Education and Research (IISER) Kolkata , Mohanpur - 741246 , India .
| |
Collapse
|
39
|
Liang X, Yuan Y, Han T, Cheng Y, Xiong C, Dong L. Encapsulation and solubilization of ultrastable quantum dots with multidentate bilayer ligands and rheological behaviour. NANOSCALE 2018; 10:20796-20803. [PMID: 30402650 DOI: 10.1039/c8nr04410d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Quantum dots with unique optical and chemical properties show great potential applications in biology and chemical and medical science. Nevertheless, their practical applications in various fields are greatly limited due to the presence of hydrophobic organic surfaces. In this paper, we report a simple and effective method based on ligand exchange and proton donor-receptor reaction to prepare ultrastable and amphiphilic quantum dots having bilayer ligands with ultidentate structure, which provide active sites for subsequent functional conjugation. Our results show that these quantum dots exhibit monodispersity, excellent stability and solvent-free fluidity. In addition, they maintain their optical properties in a chemical environment due to the large amount of amphiphilic amine salts as ligands, which also endow quantum dots with lower cytotoxicity and higher antibacterial activity. The synthesis strategy in this study provides a new insight into the design and fabrication of promising multifunctional materials for biology, medicine, and energy and display technologies.
Collapse
Affiliation(s)
- Xiao Liang
- Center for Smart Materials and Devices, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
| | | | | | | | | | | |
Collapse
|
40
|
Kapur A, Medina SH, Wang W, Palui G, Schneider JP, Mattoussi H. Intracellular Delivery of Gold Nanocolloids Promoted by a Chemically Conjugated Anticancer Peptide. ACS OMEGA 2018; 3:12754-12762. [PMID: 30411018 PMCID: PMC6210078 DOI: 10.1021/acsomega.8b02276] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 09/14/2018] [Indexed: 05/08/2023]
Abstract
We report on the ability of a chemically synthesized anticancer peptide, SVS-1, to promote the rapid uptake of gold nanorods (AuNRs) and gold nanoparticles (AuNPs) by live HeLa cells. For this, AuNPs and AuNRs, surface ligated with a multicoordinating polymer that presents several amine groups per ligand, are simultaneously reacted with SVS-1 and Texas-Red dye; the latter allows fluorescence visualization of the nanocrystals. Using epifluorescence microscopy, we find that incubation of the SVS-1-conjugated AuNPs and AuNRs with a model cancer cell line yields extended staining throughout the cell cytoplasm, even at low conjugate concentrations (∼0.1 nM). Furthermore, uptake is specific to the SVS-1-conjugated nanocrystals. Additional endocytosis inhibition experiments, where cells have been incubated with the conjugates at 4 °C or in the presence of endocytic inhibitors, show that significant levels of conjugate uptake persist. These results combined indicate an uptake mechanism that does not necessarily rely on endocytosis, a promising finding with implications for the use of nanomaterials in the field of biology and nanomedicine.
Collapse
Affiliation(s)
- Anshika Kapur
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Scott H Medina
- Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
| | - Wentao Wang
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Goutam Palui
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Joel P Schneider
- Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
| | - Hedi Mattoussi
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| |
Collapse
|
41
|
Wang J, Zhu Z, Qiu L, Wang J, Wang X, Xiao Q, Xia J, Liu L, Liu X, Feng W, Wang J, Miao P, Gao L. A CE-FL based method for real-time detection of in-capillary self-assembly of the nanoconjugates of polycysteine ligand and quantum dots. NANOTECHNOLOGY 2018; 29:274001. [PMID: 29658885 DOI: 10.1088/1361-6528/aabe5d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Small molecules with free thiol groups always show high binding affinity to quantum dots (QDs). However, it is still highly challenging to detect the binding capacity between thiol-containing molecules and QDs inside a capillary. To conquer this limitation, a capillary electrophoresis with fluorescence detection (CE-FL) based assay was proposed and established to investigate the binding capacity between QDs and a poly-thiolated peptide (ATTO 590-DDSSGGCCPGCC, ATTO-C4). Interestingly, the results showed that interval time had a great influence on QDs and ATTO-C4 self-assembly, which can be attributed to longer interval time benefitting the binding of QDs to ATTO-C4. The stability assays on ATTO-C4-QD assembly indicated that high concentration of imidazole or GSH had a high capability of competing with the bound ATTO-C4, evidenced by dramatically dropping of S 625/S 565 ratio from 0.78 to 0.30 or 0.29. Therefore, all these results above suggested that this novel CE-FL based detection assay could be successfully applied to the binding studies between QDs and thiol-containing biomolecules.
Collapse
Affiliation(s)
- Jianhao Wang
- School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou 213164, Jiangsu, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Moroz P, Jin Z, Sugiyama Y, Lara D, Razgoniaeva N, Yang M, Kholmicheva N, Khon D, Mattoussi H, Zamkov M. Competition of Charge and Energy Transfer Processes in Donor-Acceptor Fluorescence Pairs: Calibrating the Spectroscopic Ruler. ACS NANO 2018; 12:5657-5665. [PMID: 29883087 DOI: 10.1021/acsnano.8b01451] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Sensing strategies utilizing Förster resonance energy transfer (FRET) are widely used for probing biological phenomena. FRET sensitivity to the donor-acceptor distance makes it ideal for measuring the concentration of a known analyte or determining the spatial separation between fluorescent labels in a macromolecular assembly. The difficulty lies in extracting the FRET efficiency from the acceptor-induced quenching of the donor emission, which may contain a significant non-FRET contribution. Here, we demonstrate a general spectroscopic approach for differentiating between charge transfer and energy transfer (ET) processes in donor-acceptor assemblies and apply the developed method for unravelling the FRET/non-FRET contributions in cyanine dye-semiconductor quantum dot (QD) constructs. The present method relies on correlating the amplitude of the acceptor emission to specific changes in the donor excitation profile in order to extract ET-only transfer efficiencies. Quenching of the donor emission is then utilized to determine the non-ET component, tentatively attributed to the charge transfer. We observe that the latter accounts for 50-99% of donor emission quenching in QD-Cy5 and QD-Cy7 systems, stressing the importance of determining the non-FRET efficiency in a spectroscopic ruler and other FRET-based sensing applications.
Collapse
Affiliation(s)
| | - Zhicheng Jin
- Department of Chemistry and Biochemistry , Florida State University , Tallahassee , Florida 32303 , United States
| | - Yuya Sugiyama
- Department of Chemistry and Biochemistry , Florida State University , Tallahassee , Florida 32303 , United States
| | - D'Andree Lara
- Department of Chemistry and Biochemistry , St. Mary's University , San Antonio , Texas 78228 , United States
| | | | | | | | - Dmitriy Khon
- Department of Chemistry and Biochemistry , St. Mary's University , San Antonio , Texas 78228 , United States
| | - Hedi Mattoussi
- Department of Chemistry and Biochemistry , Florida State University , Tallahassee , Florida 32303 , United States
| | | |
Collapse
|
43
|
Mishra D, Wang S, Michel S, Palui G, Zhan N, Perng W, Jin Z, Mattoussi H. Photochemical transformation of lipoic acid-based ligands: probing the effects of solvent, ligand structure, oxygen and pH. Phys Chem Chem Phys 2018; 20:3895-3902. [PMID: 29367960 DOI: 10.1039/c7cp06350d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We have combined optical absorption with the Ellman's test to identify the parameters that affect the transformation of the 5-membered dithiolanes to thiols in lipoic acid (LA) and its derivatives during UV-irradiation. We found that the nature and polarity of the solvent, the structure of the ligands, acidity of the medium and oxygen can drastically affect the amount of photogenerated thiols. These findings are highly relevant to the understanding of the photochemical transformation of this biologically relevant compound, and would benefit the increasing use of LA-based ligands for the surface functionalization of various nanomaterials.
Collapse
Affiliation(s)
- Dinesh Mishra
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Probing Multivalent Protein–Carbohydrate Interactions by Quantum Dot-Förster Resonance Energy Transfer. Methods Enzymol 2018; 598:71-100. [DOI: 10.1016/bs.mie.2017.06.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
45
|
Zamberlan F, Turyanska L, Patanè A, Liu Z, Williams HEL, Fay MW, Clarke PA, Imamura Y, Jin T, Bradshaw TD, Thomas NR, Grabowska AM. Stable DHLA–PEG capped PbS quantum dots: from synthesis to near-infrared biomedical imaging. J Mater Chem B 2018; 6:550-555. [DOI: 10.1039/c7tb02912h] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Stability, biocompatibility and near-infrared photoluminescence of PbS nanocrystals capped with PEG-based ligands open up realistic prospects for non-invasive bioimaging applications.
Collapse
|
46
|
Chen C, Tang Y, Vlahovic B, Yan F. Electrospun Polymer Nanofibers Decorated with Noble Metal Nanoparticles for Chemical Sensing. NANOSCALE RESEARCH LETTERS 2017; 12:451. [PMID: 28704979 PMCID: PMC5505893 DOI: 10.1186/s11671-017-2216-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Accepted: 06/28/2017] [Indexed: 05/28/2023]
Abstract
The integration of different noble metal nanostructures, which exhibit desirable plasmonic and/or electrocatalytic properties, with electrospun polymer nanofibers, which display unique mechanical and thermodynamic properties, yields novel hybrid nanoscale systems of synergistic properties and functions. This review summarizes recent advances on how to incorporate noble metal nanoparticles into electrospun polymer nanofibers and illustrates how such integration paves the way towards chemical sensing applications with improved sensitivity, stability, flexibility, compatibility, and selectivity. It is expected that further development of this field will eventually make a wide impact on many areas of research.
Collapse
Affiliation(s)
- Chen Chen
- Department of Chemistry and Biochemistry, North Carolina Central University, Durham, North Carolina, 27707, USA
| | - Yongan Tang
- Department of Mathematics and Physics, North Carolina Central University, Durham, North Carolina, 27707, USA
| | - Branislav Vlahovic
- Department of Mathematics and Physics, North Carolina Central University, Durham, North Carolina, 27707, USA
| | - Fei Yan
- Department of Chemistry and Biochemistry, North Carolina Central University, Durham, North Carolina, 27707, USA.
| |
Collapse
|
47
|
Petryayeva E, Jeen T, Algar WR. Optimization and Changes in the Mode of Proteolytic Turnover of Quantum Dot-Peptide Substrate Conjugates through Moderation of Interfacial Adsorption. ACS APPLIED MATERIALS & INTERFACES 2017; 9:30359-30372. [PMID: 28846381 DOI: 10.1021/acsami.7b07519] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Enzymes have many important roles in biology and industry, and proteases are one of the most important classes of enzymes. Semiconductor quantum dots (QDs) are attractive materials for developing protease activity probes because of their advantageous physical and optical properties; however, interactions between a protease and a QD conjugated with its substrate can affect the turnover of that substrate. Here, we study the turnover of multivalent QD-peptide substrate conjugates as a function of multiple parameters: (i) the ligand coating on the QD, including dihydrolipoic acid (DHLA), glutathione (GSH), DHLA-poly(ethylene glycol) (DHLA-PEG), and DHLA-zwitterionic sulfobetaine (DHLA-SB); (ii) the identity of the protease, including trypsin, thrombin, and plasmin; and (iii) the number of substrate and nonsubstrate biomacromolecules conjugated per QD. We show that limiting protease adsorption on QDs is critical for optimizing the turnover of conjugated peptide substrates. Protease adsorption is inhibitory, and very strong adsorption leads to an apparent "scooting" mode of activity with limited turnover. In contrast, with weaker adsorption, enhancements in the turnover rate likely result from a "hopping" mode of activity. The putative hopping mode is thought to feature processive turnover of all substrates in multivalent conjugates with a rate-limiting step of diffusion between individual conjugates, and the magnitude of such enhancements increases with decreases in adsorption. Although it was possible to passivate DHLA- and GSH-coated QDs with high densities of conjugated biomacromolecules, the most effective strategy for reducing adsorption was the substitution of these ligands. Whereas passivation incrementally increased turnover, DHLA-PEG and DHLA-SB ligands converted the mode of turnover with plasmin from scooting to hopping and the DHLA-SB enhanced the turnover rates with thrombin and trypsin by approximately an order of magnitude relative to GSH ligands. The new insights from the broad scope of this study provide an important framework for designing optimized QD conjugates as probes and sensors for enzyme activity.
Collapse
Affiliation(s)
- Eleonora Petryayeva
- Department of Chemistry, University of British Columbia , 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Tiffany Jeen
- Department of Chemistry, University of British Columbia , 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - W Russ Algar
- Department of Chemistry, University of British Columbia , 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
48
|
Xia C, Meeldijk JD, Gerritsen HC, de Mello Donega C. Highly Luminescent Water-Dispersible NIR-Emitting Wurtzite CuInS 2/ZnS Core/Shell Colloidal Quantum Dots. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2017; 29:4940-4951. [PMID: 28638177 PMCID: PMC5473174 DOI: 10.1021/acs.chemmater.7b01258] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/16/2017] [Indexed: 05/19/2023]
Abstract
Copper indium sulfide (CIS) quantum dots (QDs) are attractive as labels for biomedical imaging, since they have large absorption coefficients across a broad spectral range, size- and composition-tunable photoluminescence from the visible to the near-infrared, and low toxicity. However, the application of NIR-emitting CIS QDs is still hindered by large size and shape dispersions and low photoluminescence quantum yields (PLQYs). In this work, we develop an efficient pathway to synthesize highly luminescent NIR-emitting wurtzite CIS/ZnS QDs, starting from template Cu2-x S nanocrystals (NCs), which are converted by topotactic partial Cu+ for In3+ exchange into CIS NCs. These NCs are subsequently used as cores for the overgrowth of ZnS shells (≤1 nm thick). The CIS/ZnS core/shell QDs exhibit PL tunability from the first to the second NIR window (750-1100 nm), with PLQYs ranging from 75% (at 820 nm) to 25% (at 1050 nm), and can be readily transferred to water upon exchange of the native ligands for mercaptoundecanoic acid. The resulting water-dispersible CIS/ZnS QDs possess good colloidal stability over at least 6 months and PLQYs ranging from 39% (at 820 nm) to 6% (at 1050 nm). These PLQYs are superior to those of commonly available water-soluble NIR-fluorophores (dyes and QDs), making the hydrophilic CIS/ZnS QDs developed in this work promising candidates for further application as NIR emitters in bioimaging. The hydrophobic CIS/ZnS QDs obtained immediately after the ZnS shelling are also attractive as fluorophores in luminescent solar concentrators.
Collapse
Affiliation(s)
- Chenghui Xia
- Condensed
Matter and Interfaces, Debye Institute for Nanomaterials Science, Utrecht University, P.O.
Box 80000, 3508 TA Utrecht, The Netherlands
- Molecular
Biophysics, Debye Institute for Nanomaterials Science, Utrecht University, 3508 TA Utrecht, Netherlands
| | - Johannes D. Meeldijk
- Electron
Microscopy Utrecht, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CH Utrecht, Netherlands
| | - Hans C. Gerritsen
- Molecular
Biophysics, Debye Institute for Nanomaterials Science, Utrecht University, 3508 TA Utrecht, Netherlands
| | - Celso de Mello Donega
- Condensed
Matter and Interfaces, Debye Institute for Nanomaterials Science, Utrecht University, P.O.
Box 80000, 3508 TA Utrecht, The Netherlands
- E-mail:
| |
Collapse
|
49
|
Wang W, Guo Y, Tiede C, Chen S, Kopytynski M, Kong Y, Kulak A, Tomlinson D, Chen R, McPherson M, Zhou D. Ultraefficient Cap-Exchange Protocol To Compact Biofunctional Quantum Dots for Sensitive Ratiometric Biosensing and Cell Imaging. ACS APPLIED MATERIALS & INTERFACES 2017; 9:15232-15244. [PMID: 28421739 PMCID: PMC5432960 DOI: 10.1021/acsami.6b13807] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 04/19/2017] [Indexed: 05/25/2023]
Abstract
An ultraefficient cap-exchange protocol (UCEP) that can convert hydrophobic quantum dots (QDs) into stable, biocompatible, and aggregation-free water-dispersed ones at a ligand:QD molar ratio (LQMR) as low as 500, some 20-200-fold less than most literature methods, has been developed. The UCEP works conveniently with air-stable lipoic acid (LA)-based ligands by exploiting tris(2-carboxylethyl phosphine)-based rapid in situ reduction. The resulting QDs are compact (hydrodynamic radius, Rh, < 4.5 nm) and bright (retaining > 90% of original fluorescence), resist nonspecific adsorption of proteins, and display good stability in biological buffers even with high salt content (e.g., 2 M NaCl). These advantageous properties make them well suited for cellular imaging and ratiometric biosensing applications. The QDs prepared by UCEP using dihydrolipoic acid (DHLA)-zwitterion ligand can be readily conjugated with octa-histidine (His8)-tagged antibody mimetic proteins (known as Affimers). These QDs allow rapid, ratiometric detection of the Affimer target protein down to 10 pM via a QD-sensitized Förster resonance energy transfer (FRET) readout signal. Moreover, compact biotinylated QDs can be readily prepared by UCEP in a facile, one-step process. The resulting QDs have been further employed for ratiometric detection of protein, exemplified by neutravidin, down to 5 pM, as well as for fluorescence imaging of target cancer cells.
Collapse
Affiliation(s)
- Weili Wang
- School
of Chemistry and Astbury Structure for Molecular Biology and School of Molecular
and Cellular Biology and Astbury Structure for Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Yuan Guo
- School
of Chemistry and Astbury Structure for Molecular Biology and School of Molecular
and Cellular Biology and Astbury Structure for Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Christian Tiede
- School
of Chemistry and Astbury Structure for Molecular Biology and School of Molecular
and Cellular Biology and Astbury Structure for Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Siyuan Chen
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United
Kingdom
| | - Michal Kopytynski
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United
Kingdom
| | - Yifei Kong
- School
of Chemistry and Astbury Structure for Molecular Biology and School of Molecular
and Cellular Biology and Astbury Structure for Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Alexander Kulak
- School
of Chemistry and Astbury Structure for Molecular Biology and School of Molecular
and Cellular Biology and Astbury Structure for Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Darren Tomlinson
- School
of Chemistry and Astbury Structure for Molecular Biology and School of Molecular
and Cellular Biology and Astbury Structure for Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Rongjun Chen
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United
Kingdom
| | - Michael McPherson
- School
of Chemistry and Astbury Structure for Molecular Biology and School of Molecular
and Cellular Biology and Astbury Structure for Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Dejian Zhou
- School
of Chemistry and Astbury Structure for Molecular Biology and School of Molecular
and Cellular Biology and Astbury Structure for Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
50
|
Shi M, de Mesy Bentley KL, Palui G, Mattoussi H, Elder A, Yang H. The roles of surface chemistry, dissolution rate, and delivered dose in the cytotoxicity of copper nanoparticles. NANOSCALE 2017; 9:4739-4750. [PMID: 28327771 PMCID: PMC5482280 DOI: 10.1039/c6nr09102d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The understanding of nanoparticle (NP) cytotoxicity is challenging because of incomplete information about physicochemical changes particles undergo once they come into contact with biological fluids. It is therefore essential to characterize changes in NP properties to better understand their biological fate and effects in mammalian cells. In this paper, we present a study on the effect of particle surface oxidation and dissolution rates of Cu NPs. Particle dissolution, cell-associated Cu doses, and oxidative stress responses in A549 luciferase reporter cells were examined for Cu NPs modified with mercaptocarboxylic acids with different carbon chain lengths and a thiotic acid appended-PEG ligand (TA). We found that these Cu NPs released ionic species together with small particles upon oxidation and that surface chemistry influenced the morphology and dissolution rate. The dissolution rate was also shown to impact both the cellular Cu dosimetry and associated oxidative stress responses. The convergent results from dissolution and dosimetry measurements demonstrate that both intracellular and extracellular (i.e., NP uptake-independent) release of ionic species from Cu NPs greatly affect the cytotoxicity.
Collapse
Affiliation(s)
- Miao Shi
- Department of Chemical Engineering, University of Rochester, Gavett Hall 206, Rochester, NY 14627, USA and Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 S. Matthews Avenue, 114 Roger Adams Laboratory, MC-712, Urbana, IL 61801, USA.
| | - Karen L de Mesy Bentley
- Department of Pathology and Laboratory Medicine, University of Rochester, 601 Elmwood Ave, Rochester, NY 14642, USA
| | - Goutam Palui
- Department of Chemistry and Biochemistry, Florida State University, 4006 Chemical Sciences Building, Tallahassee, Florida 32306, USA
| | - Hedi Mattoussi
- Department of Chemistry and Biochemistry, Florida State University, 4006 Chemical Sciences Building, Tallahassee, Florida 32306, USA
| | - Alison Elder
- Department of Environmental Medicine, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| | - Hong Yang
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 S. Matthews Avenue, 114 Roger Adams Laboratory, MC-712, Urbana, IL 61801, USA.
| |
Collapse
|