1
|
Katayama S, Watanabe M, Kato Y, Nomura W, Yamamoto T. Engineering of Zinc Finger Nucleases Through Structural Modeling Improves Genome Editing Efficiency in Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310255. [PMID: 38600709 PMCID: PMC11187957 DOI: 10.1002/advs.202310255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/28/2024] [Indexed: 04/12/2024]
Abstract
Genome Editing is widely used in biomedical research and medicine. Zinc finger nucleases (ZFNs) are smaller in size than transcription activator-like effector (TALE) nucleases (TALENs) and CRISPR-Cas9. Therefore, ZFN-encoding DNAs can be easily packaged into a viral vector with limited cargo space, such as adeno-associated virus (AAV) vectors, for in vivo and clinical applications. ZFNs have great potential for translational research and clinical use. However, constructing functional ZFNs and improving their genome editing efficiency is extremely difficult. Here, the efficient construction of functional ZFNs and the improvement of their genome editing efficiency using AlphaFold, Coot, and Rosetta are described. Plasmids encoding ZFNs consisting of six fingers using publicly available zinc-finger resources are assembled. Two functional ZFNs from the ten ZFNs tested are successfully obtained. Furthermore, the engineering of ZFNs using AlphaFold, Coot, or Rosetta increases the efficiency of genome editing by 5%, demonstrating the effectiveness of engineering ZFNs based on structural modeling.
Collapse
Affiliation(s)
- Shota Katayama
- Genome Editing Innovation CenterHiroshima UniversityHigashi‐Hiroshima739‐0046Japan
| | - Masahiro Watanabe
- Research Institute for Sustainable ChemistryNational Institute of Advanced Industrial Science and Technology (AIST)Higashi‐Hiroshima739‐0046Japan
| | - Yoshio Kato
- Biomedical Research InstituteNational Institute of Advanced Industrial Science and Technology (AIST)Ibaraki305‐8566Japan
| | - Wataru Nomura
- Graduate School of Biomedical and Health SciencesHiroshima UniversityHiroshima734‐8553Japan
| | - Takashi Yamamoto
- Genome Editing Innovation CenterHiroshima UniversityHigashi‐Hiroshima739‐0046Japan
- Division of Integrated Sciences for LifeGraduate School of Integrated Sciences for LifeHiroshima UniversityHigashi‐Hiroshima739‐8526Japan
| |
Collapse
|
2
|
Kar B, Castillo SR, Sabharwal A, Clark KJ, Ekker SC. Mitochondrial Base Editing: Recent Advances towards Therapeutic Opportunities. Int J Mol Sci 2023; 24:5798. [PMID: 36982871 PMCID: PMC10056815 DOI: 10.3390/ijms24065798] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/30/2023] Open
Abstract
Mitochondria are critical organelles that form networks within our cells, generate energy dynamically, contribute to diverse cell and organ function, and produce a variety of critical signaling molecules, such as cortisol. This intracellular microbiome can differ between cells, tissues, and organs. Mitochondria can change with disease, age, and in response to the environment. Single nucleotide variants in the circular genomes of human mitochondrial DNA are associated with many different life-threatening diseases. Mitochondrial DNA base editing tools have established novel disease models and represent a new possibility toward personalized gene therapies for the treatment of mtDNA-based disorders.
Collapse
Affiliation(s)
- Bibekananda Kar
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Santiago R. Castillo
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Virology and Gene Therapy Track, Mayo Clinic, Rochester, MN 55905, USA
| | - Ankit Sabharwal
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Karl J. Clark
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Stephen C. Ekker
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
3
|
Genetic Kidney Diseases (GKDs) Modeling Using Genome Editing Technologies. Cells 2022; 11:cells11091571. [PMID: 35563876 PMCID: PMC9105797 DOI: 10.3390/cells11091571] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 02/05/2023] Open
Abstract
Genetic kidney diseases (GKDs) are a group of rare diseases, affecting approximately about 60 to 80 per 100,000 individuals, for which there is currently no treatment that can cure them (in many cases). GKDs usually leads to early-onset chronic kidney disease, which results in patients having to undergo dialysis or kidney transplant. Here, we briefly describe genetic causes and phenotypic effects of six GKDs representative of different ranges of prevalence and renal involvement (ciliopathy, glomerulopathy, and tubulopathy). One of the shared characteristics of GKDs is that most of them are monogenic. This characteristic makes it possible to use site-specific nuclease systems to edit the genes that cause GKDs and generate in vitro and in vivo models that reflect the genetic abnormalities of GKDs. We describe and compare these site-specific nuclease systems (zinc finger nucleases (ZFNs), transcription activator-like effect nucleases (TALENs) and regularly clustered short palindromic repeat-associated protein (CRISPR-Cas9)) and review how these systems have allowed the generation of cellular and animal GKDs models and how they have contributed to shed light on many still unknown fields in GKDs. We also indicate the main obstacles limiting the application of these systems in a more efficient way. The information provided here will be useful to gain an accurate understanding of the technological advances in the field of genome editing for GKDs, as well as to serve as a guide for the selection of both the genome editing tool and the gene delivery method most suitable for the successful development of GKDs models.
Collapse
|
4
|
Endosomal disentanglement of a transducible artificial transcription factor targeting endothelin receptor A. Mol Ther 2022; 30:855-867. [PMID: 34547467 PMCID: PMC8821953 DOI: 10.1016/j.ymthe.2021.09.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 08/17/2021] [Accepted: 09/14/2021] [Indexed: 02/04/2023] Open
Abstract
Cell-penetrating peptides (CPPs) hold great promise for intracellular delivery of therapeutic proteins. However, endosomal entrapment of transduced cargo is a major bottleneck hampering their successful application. While developing a transducible zinc finger protein-based artificial transcription factor targeting the expression of endothelin receptor A, we identified interaction between the CPP and the endosomal membrane or endosomal entanglement as a main culprit for endosomal entrapment. To achieve endosomal disentanglement, we utilized endosome-resident proteases to sever the artificial transcription factor from its CPP upon arrival inside the endosome. Using this approach, we greatly enhanced the correct subcellular localization of the disentangled artificial transcription factor, significantly increasing its biological activity and distribution in vivo. With rational engineering of proteolytic sensitivity, we propose a new design principle for transducible therapeutic proteins, helping CPPs attain their full potential as delivery vectors for therapeutic proteins.
Collapse
|
5
|
Lim K, Cho SI, Kim JS. Nuclear and mitochondrial DNA editing in human cells with zinc finger deaminases. Nat Commun 2022; 13:366. [PMID: 35042880 PMCID: PMC8766470 DOI: 10.1038/s41467-022-27962-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/21/2021] [Indexed: 12/22/2022] Open
Abstract
Base editing in nuclear DNA and mitochondrial DNA (mtDNA) is broadly useful for biomedical research, medicine, and biotechnology. Here, we present a base editing platform, termed zinc finger deaminases (ZFDs), composed of custom-designed zinc-finger DNA-binding proteins, the split interbacterial toxin deaminase DddAtox, and a uracil glycosylase inhibitor (UGI), which catalyze targeted C-to-T base conversions without inducing unwanted small insertions and deletions (indels) in human cells. We assemble plasmids encoding ZFDs using publicly available zinc finger resources to achieve base editing at frequencies of up to 60% in nuclear DNA and 30% in mtDNA. Because ZFDs, unlike CRISPR-derived base editors, do not cleave DNA to yield single- or double-strand breaks, no unwanted indels caused by error-prone non-homologous end joining are produced at target sites. Furthermore, recombinant ZFD proteins, expressed in and purified from E. coli, penetrate cultured human cells spontaneously to induce targeted base conversions, demonstrating the proof-of-principle of gene-free gene therapy. Base editing in nuclear DNA and mitochondrial DNA (mtDNA) is broadly useful for biomedical research, medicine, and biotechnology. Here the authors present zinc finger deaminases which catalyze targeted C-to-T base conversions without inducing unwanted indels in human cells.
Collapse
Affiliation(s)
- Kayeong Lim
- Center for Genome Engineering, Institute for Basic Science, Daejeon, 34126, Republic of Korea
| | - Sung-Ik Cho
- Center for Genome Engineering, Institute for Basic Science, Daejeon, 34126, Republic of Korea.,Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jin-Soo Kim
- Center for Genome Engineering, Institute for Basic Science, Daejeon, 34126, Republic of Korea.
| |
Collapse
|
6
|
Hariprabu KNG, Sathya M, Vimalraj S. CRISPR/Cas9 in cancer therapy: A review with a special focus on tumor angiogenesis. Int J Biol Macromol 2021; 192:913-930. [PMID: 34655593 DOI: 10.1016/j.ijbiomac.2021.10.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 12/15/2022]
Abstract
Tumor angiogenesis is a critical target for cancer treatment and its inhibition has become a common anticancer approach following chemotherapy. However, due to the simultaneous activation of different compensatory molecular mechanisms that enhance tumor angiogenesis, clinically authorized anti-angiogenic medicines are ineffective. Additionally, medications used to treat cancer have an effect on normal body cells; nonetheless, more research is needed to create new cancer therapeutic techniques. With advances in molecular biology, it is now possible to use gene-editing technology to alter the genome and study the functional changes resulting from genetic manipulation. With the development of CRISPR/Cas9 technology, it has become a very powerful tool for altering the genomes of many organisms. It was determined that CRISPR/Cas9, which first appeared in bacteria as a part of an adaptive immune system, could be used, in modified forms, to alter genomes and function. In conclusion, CRISPR/Cas9 could be a major step forward to cancer management by providing patients with an effective method for dealing with cancers by dissecting the carcinogenesis pathways, identifying new biologic targets, and perhaps arming cancer cells with drugs. Hence, this review will discuss the current applications of CRISPR/Cas9 technology in tumor angiogenesis research for the purpose of cancer treatment.
Collapse
Affiliation(s)
| | - Muthusamy Sathya
- Centre for Biotechnology, Anna University, Chennai, Tamil Nadu, India
| | - Selvaraj Vimalraj
- Centre for Biotechnology, Anna University, Chennai, Tamil Nadu, India.
| |
Collapse
|
7
|
Fal K, Tomkova D, Vachon G, Chabouté ME, Berr A, Carles CC. Chromatin Manipulation and Editing: Challenges, New Technologies and Their Use in Plants. Int J Mol Sci 2021; 22:E512. [PMID: 33419220 PMCID: PMC7825600 DOI: 10.3390/ijms22020512] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/29/2020] [Accepted: 12/30/2020] [Indexed: 12/25/2022] Open
Abstract
An ongoing challenge in functional epigenomics is to develop tools for precise manipulation of epigenetic marks. These tools would allow moving from correlation-based to causal-based findings, a necessary step to reach conclusions on mechanistic principles. In this review, we describe and discuss the advantages and limits of tools and technologies developed to impact epigenetic marks, and which could be employed to study their direct effect on nuclear and chromatin structure, on transcription, and their further genuine role in plant cell fate and development. On one hand, epigenome-wide approaches include drug inhibitors for chromatin modifiers or readers, nanobodies against histone marks or lines expressing modified histones or mutant chromatin effectors. On the other hand, locus-specific approaches consist in targeting precise regions on the chromatin, with engineered proteins able to modify epigenetic marks. Early systems use effectors in fusion with protein domains that recognize a specific DNA sequence (Zinc Finger or TALEs), while the more recent dCas9 approach operates through RNA-DNA interaction, thereby providing more flexibility and modularity for tool designs. Current developments of "second generation", chimeric dCas9 systems, aiming at better targeting efficiency and modifier capacity have recently been tested in plants and provided promising results. Finally, recent proof-of-concept studies forecast even finer tools, such as inducible/switchable systems, that will allow temporal analyses of the molecular events that follow a change in a specific chromatin mark.
Collapse
Affiliation(s)
- Kateryna Fal
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRAE, IRIG-LPCV, 38000 Grenoble, France; (K.F.); (G.V.)
| | - Denisa Tomkova
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg CEDEX, France; (D.T.); (M.-E.C.)
| | - Gilles Vachon
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRAE, IRIG-LPCV, 38000 Grenoble, France; (K.F.); (G.V.)
| | - Marie-Edith Chabouté
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg CEDEX, France; (D.T.); (M.-E.C.)
| | - Alexandre Berr
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg CEDEX, France; (D.T.); (M.-E.C.)
| | - Cristel C. Carles
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRAE, IRIG-LPCV, 38000 Grenoble, France; (K.F.); (G.V.)
| |
Collapse
|
8
|
Perdigão PR, Cunha-Santos C, Barbas CF, Santa-Marta M, Goncalves J. Protein Delivery of Cell-Penetrating Zinc-Finger Activators Stimulates Latent HIV-1-Infected Cells. Mol Ther Methods Clin Dev 2020; 18:145-158. [PMID: 32637446 PMCID: PMC7317221 DOI: 10.1016/j.omtm.2020.05.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 05/19/2020] [Indexed: 01/06/2023]
Abstract
Despite efforts to develop effective treatments for eradicating HIV-1, a cure has not yet been achieved. Whereas antiretroviral drugs target an actively replicating virus, latent, nonreplicative forms persist during treatment. Pharmacological strategies that reactivate latent HIV-1 and expose cellular reservoirs to antiretroviral therapy and the host immune system have, so far, been unsuccessful, often triggering severe side effects, mainly due to systemic immune activation. Here, we present an alternative approach for stimulating latent HIV-1 expression via direct protein delivery of cell-penetrating zinc-finger activators (ZFAs). Cys2-His2 zinc-fingers, fused to a transcription activation domain, were engineered to recognize the HIV-1 promoter and induce targeted viral transcription. Following conjugation with multiple positively charged nuclear localization signal (NLS) repeats, protein delivery of a single ZFA (3NLS-PBS1-VP64) efficiently internalized HIV-1 latently infected T-lymphocytes and specifically stimulated viral expression. We show that short-term treatment with this ZFA protein induces higher levels of viral reactivation in cell line models of HIV-1 latency than those observed with gene delivery. Our work establishes protein delivery of ZFA as a novel and safe approach toward eradication of HIV-1 reservoirs.
Collapse
Affiliation(s)
- Pedro R.L. Perdigão
- Molecular Microbiology and Biotechnology Department, Research Institute for Medicines (iMed ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
- Department of Chemistry, Department of Cell and Molecular Biology, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Catarina Cunha-Santos
- Molecular Microbiology and Biotechnology Department, Research Institute for Medicines (iMed ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - Carlos F. Barbas
- Department of Chemistry, Department of Cell and Molecular Biology, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Mariana Santa-Marta
- Molecular Microbiology and Biotechnology Department, Research Institute for Medicines (iMed ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - Joao Goncalves
- Molecular Microbiology and Biotechnology Department, Research Institute for Medicines (iMed ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
9
|
Ashmore-Harris C, Fruhwirth GO. The clinical potential of gene editing as a tool to engineer cell-based therapeutics. Clin Transl Med 2020; 9:15. [PMID: 32034584 PMCID: PMC7007464 DOI: 10.1186/s40169-020-0268-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 01/29/2020] [Indexed: 12/13/2022] Open
Abstract
The clinical application of ex vivo gene edited cell therapies first began a decade ago with zinc finger nuclease editing of autologous CD4+ T-cells. Editing aimed to disrupt expression of the human immunodeficiency virus co-receptor gene CCR5, with the goal of yielding cells resistant to viral entry, prior to re-infusion into the patient. Since then the field has substantially evolved with the arrival of the new editing technologies transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats (CRISPR), and the potential benefits of gene editing in the arenas of immuno-oncology and blood disorders were quickly recognised. As the breadth of cell therapies available clinically continues to rise there is growing interest in allogeneic and off-the-shelf approaches and multiplex editing strategies are increasingly employed. We review here the latest clinical trials utilising these editing technologies and consider the applications on the horizon.
Collapse
Affiliation(s)
- Candice Ashmore-Harris
- Imaging Therapy and Cancer Group, Dept of Imaging Chemistry & Biology, School of Biomedical Engineering & Imaging Sciences, St Thomas' Hospital, King's College London (KCL), London, SE1 7EH, UK
- Centre for Stem Cells & Regenerative Medicine, School of Basic and Medical Biosciences, Guy's Hospital, KCL, London, SE1 9RT, UK
| | - Gilbert O Fruhwirth
- Imaging Therapy and Cancer Group, Dept of Imaging Chemistry & Biology, School of Biomedical Engineering & Imaging Sciences, St Thomas' Hospital, King's College London (KCL), London, SE1 7EH, UK.
| |
Collapse
|
10
|
Li S, Su W, Zhang C. Linear double‐stranded
DNA
s as innovative biological parts to implement genetic circuits in mammalian cells. FEBS J 2019; 286:2341-2354. [DOI: 10.1111/febs.14816] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 02/11/2019] [Accepted: 03/21/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Shuai Li
- Department of Breast Cancer Pathology and Research Laboratory Tianjin Medical University Cancer Institute and Hospital National Clinical Research Center for Cancer China
- Key Laboratory of Cancer Prevention and Therapy Tianjin China
- Tianjin's Clinical Research Center for Cancer China
| | - Weijun Su
- School of Medicine Nankai University Tianjin China
| | - Chunze Zhang
- Department of Colorectal Surgery Tianjin Union Medical Center China
| |
Collapse
|
11
|
Zhang Y, Long C, Bassel-Duby R, Olson EN. Myoediting: Toward Prevention of Muscular Dystrophy by Therapeutic Genome Editing. Physiol Rev 2018; 98:1205-1240. [PMID: 29717930 PMCID: PMC6335101 DOI: 10.1152/physrev.00046.2017] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/22/2017] [Accepted: 12/26/2017] [Indexed: 12/22/2022] Open
Abstract
Muscular dystrophies represent a large group of genetic disorders that significantly impair quality of life and often progress to premature death. There is no effective treatment for these debilitating diseases. Most therapies, developed to date, focus on alleviating the symptoms or targeting the secondary effects, while the underlying gene mutation is still present in the human genome. The discovery and application of programmable nucleases for site-specific DNA double-stranded breaks provides a powerful tool for precise genome engineering. In particular, the CRISPR/Cas system has revolutionized the genome editing field and is providing a new path for disease treatment by targeting the disease-causing genetic mutations. In this review, we provide a historical overview of genome-editing technologies, summarize the most recent advances, and discuss potential strategies and challenges for permanently correcting genetic mutations that cause muscular dystrophies.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Molecular Biology, Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center , Dallas, Texas
| | - Chengzu Long
- Department of Molecular Biology, Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center , Dallas, Texas
| | - Rhonda Bassel-Duby
- Department of Molecular Biology, Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center , Dallas, Texas
| | - Eric N Olson
- Department of Molecular Biology, Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center , Dallas, Texas
| |
Collapse
|
12
|
Wang D, Wang XW, Peng XC, Xiang Y, Song SB, Wang YY, Chen L, Xin VW, Lyu YN, Ji J, Ma ZW, Li CB, Xin HW. CRISPR/Cas9 genome editing technology significantly accelerated herpes simplex virus research. Cancer Gene Ther 2018; 25:93-105. [PMID: 29691470 DOI: 10.1038/s41417-018-0016-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 12/24/2017] [Accepted: 12/28/2017] [Indexed: 12/20/2022]
Abstract
Herpes simplex viruses (HSVs) are important pathogens and ideal for gene therapy due to its large genome size. Previous researches on HSVs were hampered because the technology to construct recombinant HSVs were based on DNA homology-dependent repair (HDR) and plaque assay, which are inefficient, laborious, and time-consuming. Fortunately, clustered regularly interspaced short palindromic repeat/CRISPR-associated protein 9 (CRISPR/Cas9) recently provided the possibility to precisely, efficiently, and rapidly edit genomes and indeed is successfully being used in HSVs. Importantly, CRISPR/Cas9 technology increased HSV HDR efficiency exponentially by a 10,000-1,000,000 times when making recombinant HSVs, and its combination with flow cytometric technology made HSV recombination practically automatic. These may have a significant impact on virus and gene therapy researches. This review will summarize the latest development and molecular mechanisms of CRISPR/Cas9 genome editing technology and its recent application in HSVs.
Collapse
Affiliation(s)
- Dong Wang
- The Second Clinical Medical School, Yangtze University, 434023, Jingzhou, Hubei Province, China.,Center for Oncology, Yangtze University Health Science Center, 434023, Jingzhou, Hubei Province, China
| | - Xian-Wang Wang
- The Second Clinical Medical School, Yangtze University, 434023, Jingzhou, Hubei Province, China.,Center for Oncology, Yangtze University Health Science Center, 434023, Jingzhou, Hubei Province, China
| | - Xiao-Chun Peng
- The Second Clinical Medical School, Yangtze University, 434023, Jingzhou, Hubei Province, China.,Center for Oncology, Yangtze University Health Science Center, 434023, Jingzhou, Hubei Province, China
| | - Ying Xiang
- The Second Clinical Medical School, Yangtze University, 434023, Jingzhou, Hubei Province, China.,Center for Oncology, Yangtze University Health Science Center, 434023, Jingzhou, Hubei Province, China
| | - Shi-Bao Song
- The Second Clinical Medical School, Yangtze University, 434023, Jingzhou, Hubei Province, China.,Center for Oncology, Yangtze University Health Science Center, 434023, Jingzhou, Hubei Province, China
| | - Ying-Ying Wang
- The Second Clinical Medical School, Yangtze University, 434023, Jingzhou, Hubei Province, China.,Center for Oncology, Yangtze University Health Science Center, 434023, Jingzhou, Hubei Province, China
| | - Lin Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Changsha Medical University, 410219, Changsha, Hunan Province, China
| | - Victoria W Xin
- Montgomery Blair High School, Silver Spring, MD, 20901-2451, USA
| | - Yan-Ning Lyu
- Institute for Infectious Diseases and Endemic Diseases Prevention and Control, Beijing Center for Diseases Prevention and Control, 100013, Beijing, China
| | - Jiafu Ji
- Department of Gastrointestinal Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, 100142, Beijing, China
| | - Zhao-Wu Ma
- The Second Clinical Medical School, Yangtze University, 434023, Jingzhou, Hubei Province, China. .,Center for Oncology, Yangtze University Health Science Center, 434023, Jingzhou, Hubei Province, China.
| | - Cheng-Bin Li
- Department of Laboratory Medicine, Jingzhou Central Hospital, the Second Clinical Medical School, Yangtze University, 434023, Jingzhou, Hubei Province, China.
| | - Hong-Wu Xin
- The Second Clinical Medical School, Yangtze University, 434023, Jingzhou, Hubei Province, China. .,Center for Oncology, Yangtze University Health Science Center, 434023, Jingzhou, Hubei Province, China.
| |
Collapse
|
13
|
Woodard LE, Galvan DL, Wilson MH. Site-Directed Genome Modification with Engineered Zinc Finger Proteins. Synth Biol (Oxf) 2018. [DOI: 10.1002/9783527688104.ch3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Lauren E. Woodard
- Department of Veterans Affairs; Nashville TN 37212 USA
- Vanderbilt University Medical Center; Department of Medicine, Department of Pharmacology; Nashville TN 37232 USA
| | - Daniel L. Galvan
- University of Texas at MD Anderson Cancer Center; Section of Nephrology; Houston TX 77030 USA
| | - Matthew H. Wilson
- Department of Veterans Affairs; Nashville TN 37212 USA
- Vanderbilt University Medical Center; Department of Medicine, Department of Pharmacology; Nashville TN 37232 USA
| |
Collapse
|
14
|
Huang N, Huang Z, Gao M, Luo Z, Zhou F, Liu L, Xiao Q, Wang X, Feng W. Induction of apoptosis in imatinib sensitive and resistant chronic myeloid leukemia cells by efficient disruption of bcr-abl oncogene with zinc finger nucleases. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:62. [PMID: 29554925 PMCID: PMC5859405 DOI: 10.1186/s13046-018-0732-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 03/12/2018] [Indexed: 12/26/2022]
Abstract
Background The bcr-abl fusion gene is the pathological origin of chronic myeloid leukemia (CML) and plays a critical role in the resistance of imatinib. Thus, bcr-abl disruption-based novel therapeutic strategy may warrant exploration. In our study, we were surprised to find that the characteristics of bcr-abl sequences met the design requirements of zinc finger nucleases (ZFNs). Methods We constructed the ZFNs targeting bcr-abl with high specificity through simple modular assembly approach. Western blotting was conducted to detect the expression of BCR-ABL and phosphorylation of its downstream STAT5, ERK and CRKL in CML cells. CCK8 assay, colony-forming assay and flow cytometry (FCM) were used to evaluate the effect of the ZFNs on the viablity and apoptosis of CML cells and CML CD34+ cells. Moreover, mice model was used to determine the ability of ZFNs in disrupting the leukemogenesis of bcr-abl in vivo. Results The ZFNs skillfully mediated 8-base NotI enzyme cutting site addition in bcr-abl gene of imatinib sensitive and resistant CML cells by homology-directed repair (HDR), which led to a stop codon and terminated the translation of BCR-ABL protein. As expected, the disruption of bcr-abl gene induced cell apoptosis and inhibited cell proliferation. Notably, we obtained similar result in CD34+ cells from CML patients. Moreover, the ZFNs significantly reduced the oncogenicity of CML cells in mice. Conclusion These results reveal that the bcr-abl gene disruption based on ZFNs may provide a treatment choice for imatinib resistant or intolerant CML patients. Electronic supplementary material The online version of this article (10.1186/s13046-018-0732-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ningshu Huang
- Department of Clinical Hematology, Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, Chongqing Medical University, No.1, Yixueyuan Road, Chongqing, 400016, People's Republic of China
| | - Zhenglan Huang
- Department of Clinical Hematology, Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, Chongqing Medical University, No.1, Yixueyuan Road, Chongqing, 400016, People's Republic of China
| | - Miao Gao
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Zhenhong Luo
- Department of Clinical Hematology, Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, Chongqing Medical University, No.1, Yixueyuan Road, Chongqing, 400016, People's Republic of China
| | - Fangzhu Zhou
- Department of Clinical Hematology, Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, Chongqing Medical University, No.1, Yixueyuan Road, Chongqing, 400016, People's Republic of China
| | - Lin Liu
- Department of Hematology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Qing Xiao
- Department of Hematology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Xin Wang
- Department of Hematology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Wenli Feng
- Department of Clinical Hematology, Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, Chongqing Medical University, No.1, Yixueyuan Road, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
15
|
Huang N, Huang Z, Gao M, Luo Z, Zhou F, Liu L, Xiao Q, Wang X, Feng W. Induction of apoptosis in imatinib sensitive and resistant chronic myeloid leukemia cells by efficient disruption of bcr-abl oncogene with zinc finger nucleases. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018. [PMID: 29554925 DOI: 10.1186/s13046-018-0732-4.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND The bcr-abl fusion gene is the pathological origin of chronic myeloid leukemia (CML) and plays a critical role in the resistance of imatinib. Thus, bcr-abl disruption-based novel therapeutic strategy may warrant exploration. In our study, we were surprised to find that the characteristics of bcr-abl sequences met the design requirements of zinc finger nucleases (ZFNs). METHODS We constructed the ZFNs targeting bcr-abl with high specificity through simple modular assembly approach. Western blotting was conducted to detect the expression of BCR-ABL and phosphorylation of its downstream STAT5, ERK and CRKL in CML cells. CCK8 assay, colony-forming assay and flow cytometry (FCM) were used to evaluate the effect of the ZFNs on the viablity and apoptosis of CML cells and CML CD34+ cells. Moreover, mice model was used to determine the ability of ZFNs in disrupting the leukemogenesis of bcr-abl in vivo. RESULTS The ZFNs skillfully mediated 8-base NotI enzyme cutting site addition in bcr-abl gene of imatinib sensitive and resistant CML cells by homology-directed repair (HDR), which led to a stop codon and terminated the translation of BCR-ABL protein. As expected, the disruption of bcr-abl gene induced cell apoptosis and inhibited cell proliferation. Notably, we obtained similar result in CD34+ cells from CML patients. Moreover, the ZFNs significantly reduced the oncogenicity of CML cells in mice. CONCLUSION These results reveal that the bcr-abl gene disruption based on ZFNs may provide a treatment choice for imatinib resistant or intolerant CML patients.
Collapse
Affiliation(s)
- Ningshu Huang
- Department of Clinical Hematology, Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, Chongqing Medical University, No.1, Yixueyuan Road, Chongqing, 400016, People's Republic of China
| | - Zhenglan Huang
- Department of Clinical Hematology, Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, Chongqing Medical University, No.1, Yixueyuan Road, Chongqing, 400016, People's Republic of China
| | - Miao Gao
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Zhenhong Luo
- Department of Clinical Hematology, Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, Chongqing Medical University, No.1, Yixueyuan Road, Chongqing, 400016, People's Republic of China
| | - Fangzhu Zhou
- Department of Clinical Hematology, Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, Chongqing Medical University, No.1, Yixueyuan Road, Chongqing, 400016, People's Republic of China
| | - Lin Liu
- Department of Hematology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Qing Xiao
- Department of Hematology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Xin Wang
- Department of Hematology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Wenli Feng
- Department of Clinical Hematology, Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, Chongqing Medical University, No.1, Yixueyuan Road, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
16
|
Waryah CB, Moses C, Arooj M, Blancafort P. Zinc Fingers, TALEs, and CRISPR Systems: A Comparison of Tools for Epigenome Editing. Methods Mol Biol 2018. [PMID: 29524128 DOI: 10.1007/978-1-4939-7774-1_2] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The completion of genome, epigenome, and transcriptome mapping in multiple cell types has created a demand for precision biomolecular tools that allow researchers to functionally manipulate DNA, reconfigure chromatin structure, and ultimately reshape gene expression patterns. Epigenetic editing tools provide the ability to interrogate the relationship between epigenetic modifications and gene expression. Importantly, this information can be exploited to reprogram cell fate for both basic research and therapeutic applications. Three different molecular platforms for epigenetic editing have been developed: zinc finger proteins (ZFs), transcription activator-like effectors (TALEs), and the system of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR-associated (Cas) proteins. These platforms serve as custom DNA-binding domains (DBDs), which are fused to epigenetic modifying domains to manipulate epigenetic marks at specific sites in the genome. The addition and/or removal of epigenetic modifications reconfigures local chromatin structure, with the potential to provoke long-lasting changes in gene transcription. Here we summarize the molecular structure and mechanism of action of ZF, TALE, and CRISPR platforms and describe their applications for the locus-specific manipulation of the epigenome. The advantages and disadvantages of each platform will be discussed with regard to genomic specificity, potency in regulating gene expression, and reprogramming cell phenotypes, as well as ease of design, construction, and delivery. Finally, we outline potential applications for these tools in molecular biology and biomedicine and identify possible barriers to their future clinical implementation.
Collapse
Affiliation(s)
- Charlene Babra Waryah
- Cancer Epigenetics Group, The Harry Perkins Institute of Medical Research, Nedlands, Perth, WA, Australia
| | - Colette Moses
- Cancer Epigenetics Group, The Harry Perkins Institute of Medical Research, Nedlands, Perth, WA, Australia
- School of Human Sciences, The University of Western Australia, Perth, WA, Australia
| | - Mahira Arooj
- Cancer Epigenetics Group, The Harry Perkins Institute of Medical Research, Nedlands, Perth, WA, Australia
- School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| | - Pilar Blancafort
- Cancer Epigenetics Group, The Harry Perkins Institute of Medical Research, Nedlands, Perth, WA, Australia.
- School of Human Sciences, The University of Western Australia, Perth, WA, Australia.
| |
Collapse
|
17
|
Techniques and strategies employing engineered transcription factors. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2017. [DOI: 10.1016/j.cobme.2017.10.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
18
|
Czapiński J, Kiełbus M, Kałafut J, Kos M, Stepulak A, Rivero-Müller A. How to Train a Cell-Cutting-Edge Molecular Tools. Front Chem 2017; 5:12. [PMID: 28344971 PMCID: PMC5344921 DOI: 10.3389/fchem.2017.00012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 02/20/2017] [Indexed: 12/28/2022] Open
Abstract
In biological systems, the formation of molecular complexes is the currency for all cellular processes. Traditionally, functional experimentation was targeted to single molecular players in order to understand its effects in a cell or animal phenotype. In the last few years, we have been experiencing rapid progress in the development of ground-breaking molecular biology tools that affect the metabolic, structural, morphological, and (epi)genetic instructions of cells by chemical, optical (optogenetic) and mechanical inputs. Such precise dissection of cellular processes is not only essential for a better understanding of biological systems, but will also allow us to better diagnose and fix common dysfunctions. Here, we present several of these emerging and innovative techniques by providing the reader with elegant examples on how these tools have been implemented in cells, and, in some cases, organisms, to unravel molecular processes in minute detail. We also discuss their advantages and disadvantages with particular focus on their translation to multicellular organisms for in vivo spatiotemporal regulation. We envision that further developments of these tools will not only help solve the processes of life, but will give rise to novel clinical and industrial applications.
Collapse
Affiliation(s)
- Jakub Czapiński
- Department of Biochemistry and Molecular Biology, Medical University of LublinLublin, Poland
- Postgraduate School of Molecular Medicine, Medical University of WarsawWarsaw, Poland
| | - Michał Kiełbus
- Department of Biochemistry and Molecular Biology, Medical University of LublinLublin, Poland
| | - Joanna Kałafut
- Department of Biochemistry and Molecular Biology, Medical University of LublinLublin, Poland
| | - Michał Kos
- Department of Biochemistry and Molecular Biology, Medical University of LublinLublin, Poland
| | - Andrzej Stepulak
- Department of Biochemistry and Molecular Biology, Medical University of LublinLublin, Poland
| | - Adolfo Rivero-Müller
- Department of Biochemistry and Molecular Biology, Medical University of LublinLublin, Poland
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi UniversityTurku, Finland
- Department of Biosciences, Åbo Akademi UniversityTurku, Finland
| |
Collapse
|
19
|
Lv YH, Li XQ, Yue CW, Wang M. Application of genome editing technologies in gastrointestinal cancers. Shijie Huaren Xiaohua Zazhi 2016; 24:4772-4780. [DOI: 10.11569/wcjd.v24.i36.4772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Genome editing is a site-directed modification technology for gene targeting and a powerful tool to edit the target DNA by site-specific DNA knockout or knockin. Genome editing has achieved a considerable success from lower microbes to human in the past years and may play a very important role in tumor staging, precision medicine as well as prognosis evaluation in gastrointestinal cancers. This review discusses the mechanisms of different genome-editing strategies and describes each of the common nuclease-based platforms, including transcription activator-like effector nucleases, zinc finger nucleases and the CRISPR/Cas9 system. We also summarize the progress made in applying genome editing to the research of gastrointestinal cancers.
Collapse
|
20
|
Reprogramming cell fate with a genome-scale library of artificial transcription factors. Proc Natl Acad Sci U S A 2016; 113:E8257-E8266. [PMID: 27930301 DOI: 10.1073/pnas.1611142114] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Artificial transcription factors (ATFs) are precision-tailored molecules designed to bind DNA and regulate transcription in a preprogrammed manner. Libraries of ATFs enable the high-throughput screening of gene networks that trigger cell fate decisions or phenotypic changes. We developed a genome-scale library of ATFs that display an engineered interaction domain (ID) to enable cooperative assembly and synergistic gene expression at targeted sites. We used this ATF library to screen for key regulators of the pluripotency network and discovered three combinations of ATFs capable of inducing pluripotency without exogenous expression of Oct4 (POU domain, class 5, TF 1). Cognate site identification, global transcriptional profiling, and identification of ATF binding sites reveal that the ATFs do not directly target Oct4; instead, they target distinct nodes that converge to stimulate the endogenous pluripotency network. This forward genetic approach enables cell type conversions without a priori knowledge of potential key regulators and reveals unanticipated gene network dynamics that drive cell fate choices.
Collapse
|
21
|
Liu J, Shui SL. Delivery methods for site-specific nucleases: Achieving the full potential of therapeutic gene editing. J Control Release 2016; 244:83-97. [DOI: 10.1016/j.jconrel.2016.11.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 10/30/2016] [Accepted: 11/07/2016] [Indexed: 12/20/2022]
|
22
|
Chugunova AA, Dontsova OA, Sergiev PV. Methods of genome engineering: a new era of molecular biology. BIOCHEMISTRY (MOSCOW) 2016; 81:662-77. [DOI: 10.1134/s0006297916070038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
23
|
Yee JK. Off-target effects of engineered nucleases. FEBS J 2016; 283:3239-48. [PMID: 27208701 DOI: 10.1111/febs.13760] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 05/09/2016] [Accepted: 05/18/2016] [Indexed: 12/26/2022]
Abstract
Recent advances in gene editing with engineered nucleases have transformed our ability to manipulate the genome from diverse organisms for applications ranging from biomedical research to disease treatment. A major complication with these engineered nucleases is the binding of the nuclease to unintended genomic sites that share sequence homology with the on-target site. Cleavage of these off-target sites followed by DNA repair using normal cellular DNA repair mechanisms can cause gene mutation or gross chromosome rearrangement. Identification of nuclease-generated off-target sites is a daunting task due to the size and complexity of the mammalian genome. Five unbiased, genome-wide strategies have been developed to detect the off-target cleavage. Some of these strategies reach the sensitivity near the detection limit of directed deep sequencing and have sufficient precision and resolution to objectively assessing the off-target effect of any engineered nuclease. Significant progress has also been made recently to boost the nuclease targeting specificity by protein engineering to modify the structure of the nuclease and alter the interaction with its genomic target. In several studied cases, the off-target effect generated by the modified nuclease is completely eliminated. These modified nucleases significantly improve the overall fidelity of gene editing. These developments will enable gene editing tools to be applied more broadly and safely in basic research and disease treatment.
Collapse
Affiliation(s)
- Jiing-Kuan Yee
- Department of Diabetes and Metabolic Diseases Research, City of Hope National Medical Center, Duarte, CA, USA
| |
Collapse
|
24
|
Zhu Τ, Liang C, Li D, Tian M, Liu S, Gao G, Guan JS. Histone methyltransferase Ash1L mediates activity-dependent repression of neurexin-1α. Sci Rep 2016; 6:26597. [PMID: 27229316 PMCID: PMC4882582 DOI: 10.1038/srep26597] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 05/05/2016] [Indexed: 11/09/2022] Open
Abstract
Activity-dependent transcription is critical for the regulation of long-term synaptic plasticity and plastic rewiring in the brain. Here, we report that the transcription of neurexin1α (nrxn1α), a presynaptic adhesion molecule for synaptic formation, is regulated by transient neuronal activation. We showed that 10 minutes of firing at 50 Hz in neurons repressed the expression of nrxn1α for 24 hours in a primary cortical neuron culture through a transcriptional repression mechanism. By performing a screening assay using a synthetic zinc finger protein (ZFP) to pull down the proteins enriched near the nrxn1α promoter region in vivo, we identified that Ash1L, a histone methyltransferase, is enriched in the nrxn1α promoter. Neuronal activity triggered binding of Ash1L to the promoter and enriched the histone marker H3K36me2 at the nrxn1α promoter region. Knockout of Ash1L in mice completely abolished the activity-dependent repression of nrxn1α. Taken together, our results reveal that a novel process of activity-dependent transcriptional repression exists in neurons and that Ash1L mediates the long-term repression of nrxn1α, thus implicating an important role for epigenetic modification in brain functioning.
Collapse
Affiliation(s)
- Τao Zhu
- MOE Key Laboratory of Protein Sciences, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Center for Brain-Inspired Computing Research, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Chen Liang
- MOE Key Laboratory of Protein Sciences, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Center for Brain-Inspired Computing Research, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Dongdong Li
- MOE Key Laboratory of Protein Sciences, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Center for Brain-Inspired Computing Research, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Miaomiao Tian
- MOE Key Laboratory of Protein Sciences, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Center for Brain-Inspired Computing Research, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Sanxiong Liu
- MOE Key Laboratory of Protein Sciences, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Center for Brain-Inspired Computing Research, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Guanjun Gao
- MOE Key Laboratory of Protein Sciences, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Center for Brain-Inspired Computing Research, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Ji-Song Guan
- MOE Key Laboratory of Protein Sciences, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Center for Brain-Inspired Computing Research, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| |
Collapse
|
25
|
Maeder ML, Gersbach CA. Genome-editing Technologies for Gene and Cell Therapy. Mol Ther 2016; 24:430-46. [PMID: 26755333 PMCID: PMC4786923 DOI: 10.1038/mt.2016.10] [Citation(s) in RCA: 424] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 01/07/2016] [Indexed: 12/11/2022] Open
Abstract
Gene therapy has historically been defined as the addition of new genes to human cells. However, the recent advent of genome-editing technologies has enabled a new paradigm in which the sequence of the human genome can be precisely manipulated to achieve a therapeutic effect. This includes the correction of mutations that cause disease, the addition of therapeutic genes to specific sites in the genome, and the removal of deleterious genes or genome sequences. This review presents the mechanisms of different genome-editing strategies and describes each of the common nuclease-based platforms, including zinc finger nucleases, transcription activator-like effector nucleases (TALENs), meganucleases, and the CRISPR/Cas9 system. We then summarize the progress made in applying genome editing to various areas of gene and cell therapy, including antiviral strategies, immunotherapies, and the treatment of monogenic hereditary disorders. The current challenges and future prospects for genome editing as a transformative technology for gene and cell therapy are also discussed.
Collapse
Affiliation(s)
| | - Charles A Gersbach
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
- Center for Genomic and Computational Biology, Duke University, Durham, North Carolina, USA
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
26
|
Weninger A, Killinger M, Vogl T. Key Methods for Synthetic Biology: Genome Engineering and DNA Assembly. Synth Biol (Oxf) 2016. [DOI: 10.1007/978-3-319-22708-5_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
27
|
Blackburn MC, Petrova E, Correia BE, Maerkl SJ. Integrating gene synthesis and microfluidic protein analysis for rapid protein engineering. Nucleic Acids Res 2015; 44:e68. [PMID: 26704969 PMCID: PMC4838357 DOI: 10.1093/nar/gkv1497] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 12/09/2015] [Indexed: 11/15/2022] Open
Abstract
The capability to rapidly design proteins with novel functions will have a significant impact on medicine, biotechnology and synthetic biology. Synthetic genes are becoming a commodity, but integrated approaches have yet to be developed that take full advantage of gene synthesis. We developed a solid-phase gene synthesis method based on asymmetric primer extension (APE) and coupled this process directly to high-throughput, on-chip protein expression, purification and characterization (via mechanically induced trapping of molecular interactions, MITOMI). By completely circumventing molecular cloning and cell-based steps, APE-MITOMI reduces the time between protein design and quantitative characterization to 3–4 days. With APE-MITOMI we synthesized and characterized over 400 zinc-finger (ZF) transcription factors (TF), showing that although ZF TFs can be readily engineered to recognize a particular DNA sequence, engineering the precise binding energy landscape remains challenging. We also found that it is possible to engineer ZF–DNA affinity precisely and independently of sequence specificity and that in silico modeling can explain some of the observed affinity differences. APE-MITOMI is a generic approach that should facilitate fundamental studies in protein biophysics, and protein design/engineering.
Collapse
Affiliation(s)
- Matthew C Blackburn
- Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Ekaterina Petrova
- Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Bruno E Correia
- Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Sebastian J Maerkl
- Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
28
|
Liu J, Gaj T, Yang Y, Wang N, Shui S, Kim S, Kanchiswamy CN, Kim JS, Barbas CF. Efficient delivery of nuclease proteins for genome editing in human stem cells and primary cells. Nat Protoc 2015; 10:1842-59. [DOI: 10.1038/nprot.2015.117] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
29
|
Wyatt C, Bartoszek EM, Yaksi E. Methods for studying the zebrafish brain: past, present and future. Eur J Neurosci 2015; 42:1746-63. [PMID: 25900095 DOI: 10.1111/ejn.12932] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 04/16/2015] [Accepted: 04/20/2015] [Indexed: 01/16/2023]
Abstract
The zebrafish (Danio rerio) is one of the most promising new model organisms. The increasing popularity of this amazing small vertebrate is evident from the exponentially growing numbers of research articles, funded projects and new discoveries associated with the use of zebrafish for studying development, brain function, human diseases and screening for new drugs. Thanks to the development of novel technologies, the range of zebrafish research is constantly expanding with new tools synergistically enhancing traditional techniques. In this review we will highlight the past and present techniques which have made, and continue to make, zebrafish an attractive model organism for various fields of biology, with a specific focus on neuroscience.
Collapse
Affiliation(s)
- Cameron Wyatt
- Neuro-Electronics Research Flanders, Imec Campus, Kapeldreef, Leuven, Belgium.,VIB, Leuven, Belgium
| | - Ewelina M Bartoszek
- Neuro-Electronics Research Flanders, Imec Campus, Kapeldreef, Leuven, Belgium.,VIB, Leuven, Belgium.,Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim, Norway
| | - Emre Yaksi
- Neuro-Electronics Research Flanders, Imec Campus, Kapeldreef, Leuven, Belgium.,VIB, Leuven, Belgium.,KU Leuven, Leuven, Belgium.,Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
30
|
Kmiec EB. Is the age of genetic surgery finally upon us? Surg Oncol 2015; 24:95-9. [PMID: 25936245 DOI: 10.1016/j.suronc.2015.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 04/04/2015] [Indexed: 12/12/2022]
Abstract
This review discusses gene editing and its potential in oncology. Gene editing has not evolved faster towards clinical application because of its difficulty in implementation. There have been many limitations of the tools thought to be useful in therapeutic gene editing. However, recently the combinatorial use of multiple biological tools appears to have broken the barrier impending clinical development. This review gives a short primer on gene editing followed by some of the foundational work in gene editing and subsequently a discussion of programmable nucleases leading to a description of Zinc Finger Nuclease, TALENs and CRISPRs. Gene editing tools are now being used routinely to re-engineer the human genome. Theoretically, any gene or chromosomal sequence for which a targeting site can be identified could be rendered nonfunctional by the chromosomal breakage activity of Zinc Finger Nucleases, TALENs or a CRISPR/Cas9 system. Since the initial work started on the mechanism and regulation of gene editing, investigators have been searching for a way to develop these technologies as a treatment for cancer. The issue is finding a practical application of gene editing in oncology. However, progressive ideas are working their way through the research arena which may have an impact on cancer treatment.
Collapse
Affiliation(s)
- Eric B Kmiec
- Gene Editing Institute, Center for Translational Cancer Research, Helen F. Graham Cancer Center and Research Institute, 4701 Ogletown-Stanton Road, Suite 4300, Newark, DE, 19713, USA.
| |
Collapse
|
31
|
Correction of dystrophin expression in cells from Duchenne muscular dystrophy patients through genomic excision of exon 51 by zinc finger nucleases. Mol Ther 2014; 23:523-32. [PMID: 25492562 PMCID: PMC4351462 DOI: 10.1038/mt.2014.234] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 11/28/2014] [Indexed: 01/22/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is caused by genetic mutations that result in the absence of dystrophin protein expression. Oligonucleotide-induced exon skipping can restore the dystrophin reading frame and protein production. However, this requires continuous drug administration and may not generate complete skipping of the targeted exon. In this study, we apply genome editing with zinc finger nucleases (ZFNs) to permanently remove essential splicing sequences in exon 51 of the dystrophin gene and thereby exclude exon 51 from the resulting dystrophin transcript. This approach can restore the dystrophin reading frame in ~13% of DMD patient mutations. Transfection of two ZFNs targeted to sites flanking the exon 51 splice acceptor into DMD patient myoblasts led to deletion of this genomic sequence. A clonal population was isolated with this deletion and following differentiation we confirmed loss of exon 51 from the dystrophin mRNA transcript and restoration of dystrophin protein expression. Furthermore, transplantation of corrected cells into immunodeficient mice resulted in human dystrophin expression localized to the sarcolemmal membrane. Finally, we quantified ZFN toxicity in human cells and mutagenesis at predicted off-target sites. This study demonstrates a powerful method to restore the dystrophin reading frame and protein expression by permanently deleting exons.
Collapse
|
32
|
Abstract
The coupling of light-inducible protein-protein interactions with gene regulation systems has enabled the control of gene expression with light. In particular, heterodimer protein pairs from plants can be used to engineer a gene regulation system in mammalian cells that is reversible, repeatable, tunable, controllable in a spatiotemporal manner, and targetable to any DNA sequence. This system, Light-Inducible Transcription using Engineered Zinc finger proteins (LITEZ), is based on the blue light-induced interaction of GIGANTEA and the LOV domain of FKF1 that drives the localization of a transcriptional activator to the DNA-binding site of a highly customizable engineered zinc finger protein. This chapter provides methods for modifying LITEZ to target new DNA sequences, engineering a programmable LED array to illuminate cell cultures, and using the modified LITEZ system to achieve spatiotemporal control of transgene expression in mammalian cells.
Collapse
Affiliation(s)
- Lauren R Polstein
- Department of Biomedical Engineering, Duke University, Room 136 Hudson Hall, 90281, Durham, NC, 27708-0281, USA
| | | |
Collapse
|
33
|
Kim HS, Bernitz JM, Lee DF, Lemischka IR. Genomic editing tools to model human diseases with isogenic pluripotent stem cells. Stem Cells Dev 2014; 23:2673-86. [PMID: 25075441 PMCID: PMC4216528 DOI: 10.1089/scd.2014.0167] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 07/30/2014] [Indexed: 12/21/2022] Open
Abstract
Patient-specific induced pluripotent stem cells (iPSCs) are considered a versatile resource in the field of biomedicine. As iPSCs are generated on an individual basis, iPSCs may be the optimal cellular material to use for disease modeling, drug discovery, and the development of patient-specific cellular therapies. Recently, to gain an in-depth understanding of human pathologies, patient-specific iPSCs have been used to model human diseases with some iPSC-derived cells recapitulating pathological phenotypes in vitro. However, complex multigenic diseases generally have not resulted in concise conclusions regarding the underlying mechanisms of disease, in large part due to genetic variations between disease-state and control iPSCs. To circumvent this, the use of genomic editing tools to generate perfect isogenic controls is gaining momentum. To date, DNA binding domain-based zinc finger nucleases and transcription activator-like effector nucleases have been utilized to create genetically defined conditions in patient-specific iPSCs, with some examples leading to the successful identification of novel mechanisms of disease. As the feasibility and utility of genomic editing tools in iPSCs improve, along with the introduction of the clustered regularly interspaced short palindromic repeat system, understanding the features and limitations of genomic editing tools and their applications to iPSC technology is critical to expending the field of human disease modeling.
Collapse
Affiliation(s)
- Huen Suk Kim
- Department of Developmental and Regenerative Biology, The Black Family Stem Cell Institute , Icahn School of Medicine at Mount Sinai, New York, New York
| | | | | | | |
Collapse
|
34
|
Chen L, Tang L, Xiang H, Jin L, Li Q, Dong Y, Wang W, Zhang G. Advances in genome editing technology and its promising application in evolutionary and ecological studies. Gigascience 2014; 3:24. [PMID: 25414792 PMCID: PMC4238018 DOI: 10.1186/2047-217x-3-24] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 10/04/2014] [Indexed: 12/26/2022] Open
Abstract
Genetic modification has long provided an approach for “reverse genetics”, analyzing gene function and linking DNA sequence to phenotype. However, traditional genome editing technologies have not kept pace with the soaring progress of the genome sequencing era, as a result of their inefficiency, time-consuming and labor-intensive methods. Recently, invented genome modification technologies, such as ZFN (Zinc Finger Nuclease), TALEN (Transcription Activator-Like Effector Nuclease), and CRISPR/Cas9 nuclease (Clustered Regularly Interspaced Short Palindromic Repeats/Cas9 nuclease) can initiate genome editing easily, precisely and with no limitations by organism. These new tools have also offered intriguing possibilities for conducting functional large-scale experiments. In this review, we begin with a brief introduction of ZFN, TALEN, and CRISPR/Cas9 technologies, then generate an extensive prediction of effective TALEN and CRISPR/Cas9 target sites in the genomes of a broad range of taxonomic species. Based on the evidence, we highlight the potential and practicalities of TALEN and CRISPR/Cas9 editing in non-model organisms, and also compare the technologies and test interesting issues such as the functions of candidate domesticated, as well as candidate genes in life-environment interactions. When accompanied with a high-throughput sequencing platform, we forecast their potential revolutionary impacts on evolutionary and ecological research, which may offer an exciting prospect for connecting the gap between DNA sequence and phenotype in the near future.
Collapse
Affiliation(s)
- Lei Chen
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences and University of Chinese Academy of Sciences, No. 32 Jiaochang Donglu, Kunming, Yunnan 650223, China
| | - Linyi Tang
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Hui Xiang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences and University of Chinese Academy of Sciences, No. 32 Jiaochang Donglu, Kunming, Yunnan 650223, China
| | - Lijun Jin
- China National Genebank-Shenzhen, BGI-Shenzhen, Shenzhen 518083, China
| | - Qiye Li
- China National Genebank-Shenzhen, BGI-Shenzhen, Shenzhen 518083, China
| | - Yang Dong
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650223, China
| | - Wen Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences and University of Chinese Academy of Sciences, No. 32 Jiaochang Donglu, Kunming, Yunnan 650223, China ; Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650223, China
| | - Guojie Zhang
- China National Genebank-Shenzhen, BGI-Shenzhen, Shenzhen 518083, China
| |
Collapse
|
35
|
Gersbach CA, Gaj T, Barbas CF. Synthetic zinc finger proteins: the advent of targeted gene regulation and genome modification technologies. Acc Chem Res 2014; 47:2309-18. [PMID: 24877793 PMCID: PMC4139171 DOI: 10.1021/ar500039w] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
![]()
The understanding
of gene regulation and the structure and function
of the human genome increased dramatically at the end of the 20th
century. Yet the technologies for manipulating the genome have been
slower to develop. For instance, the field of gene therapy has been
focused on correcting genetic diseases and augmenting tissue repair
for more than 40 years. However, with the exception of a few very
low efficiency approaches, conventional genetic engineering methods
have only been able to add auxiliary genes to cells. This has been
a substantial obstacle to the clinical success of gene therapies and
has also led to severe unintended consequences in several cases. Therefore,
technologies that facilitate the precise modification of cellular
genomes have diverse and significant implications in many facets of
research and are essential for translating the products of the Genomic
Revolution into tangible benefits for medicine and biotechnology.
To address this need, in the 1990s, we embarked on a mission to develop
technologies for engineering protein–DNA interactions with
the aim of creating custom tools capable of targeting any DNA sequence.
Our goal has been to allow researchers to reach into genomes to specifically
regulate, knock out, or replace any gene. To realize these goals,
we initially focused on understanding and manipulating zinc finger
proteins. In particular, we sought to create a simple and straightforward
method that enables unspecialized laboratories to engineer custom
DNA-modifying proteins using only defined modular components, a web-based
utility, and standard recombinant DNA technology. Two significant
challenges we faced were (i) the development of zinc finger domains
that target sequences not recognized by naturally occurring zinc finger
proteins and (ii) determining how individual zinc finger domains could
be tethered together as polydactyl proteins to recognize unique locations
within complex genomes. We and others have since used this modular
assembly method to engineer artificial proteins and enzymes that activate,
repress, or create defined changes to user-specified genes in human
cells, plants, and other organisms. We have also engineered novel
methods for externally controlling protein activity and delivery,
as well as developed new strategies for the directed evolution of
protein and enzyme function. This Account summarizes our work in these
areas and highlights independent studies that have successfully used
the modular assembly approach to create proteins with novel function.
We also discuss emerging alternative methods for genomic targeting,
including transcription activator-like effectors (TALEs) and CRISPR/Cas
systems, and how they complement the synthetic zinc finger protein
technology.
Collapse
Affiliation(s)
- Charles A. Gersbach
- Department
of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Thomas Gaj
- The
Skaggs Institute for Chemical Biology and the Departments of Chemistry
and Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Carlos F. Barbas
- The
Skaggs Institute for Chemical Biology and the Departments of Chemistry
and Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
36
|
Gaj T, Liu J, Anderson KE, Sirk SJ, Barbas CF. Protein delivery using Cys2-His2 zinc-finger domains. ACS Chem Biol 2014; 9:1662-7. [PMID: 24936957 DOI: 10.1021/cb500282g] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The development of new methods for delivering proteins into cells is a central challenge for advancing both basic research and therapeutic applications. We previously reported that zinc-finger nuclease proteins are intrinsically cell-permeable due to the cell-penetrating activity of the Cys2-His2 zinc-finger domain. Here, we demonstrate that genetically fused zinc-finger motifs can transport proteins and enzymes into a wide range of primary and transformed mammalian cell types. We show that zinc-finger domains mediate protein uptake at efficiencies that exceed conventional protein transduction systems and do so without compromising enzyme activity. In addition, we demonstrate that zinc-finger proteins enter cells primarily through macropinocytosis and facilitate high levels of cytosolic delivery. These findings establish zinc-finger proteins as not only useful tools for targeted genome engineering but also effective reagents for protein delivery.
Collapse
Affiliation(s)
- Thomas Gaj
- The Skaggs
Institute for
Chemical Biology and the Departments of Chemistry and Cell and Molecular
Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Jia Liu
- The Skaggs
Institute for
Chemical Biology and the Departments of Chemistry and Cell and Molecular
Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Kimberly E. Anderson
- The Skaggs
Institute for
Chemical Biology and the Departments of Chemistry and Cell and Molecular
Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Shannon J. Sirk
- The Skaggs
Institute for
Chemical Biology and the Departments of Chemistry and Cell and Molecular
Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Carlos F. Barbas
- The Skaggs
Institute for
Chemical Biology and the Departments of Chemistry and Cell and Molecular
Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
37
|
Hsu PD, Lander ES, Zhang F. Development and applications of CRISPR-Cas9 for genome engineering. Cell 2014; 157:1262-1278. [PMID: 24906146 DOI: 10.1016/j.cell.2014.05.010] [Citation(s) in RCA: 3768] [Impact Index Per Article: 376.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Indexed: 12/16/2022]
Abstract
Recent advances in genome engineering technologies based on the CRISPR-associated RNA-guided endonuclease Cas9 are enabling the systematic interrogation of mammalian genome function. Analogous to the search function in modern word processors, Cas9 can be guided to specific locations within complex genomes by a short RNA search string. Using this system, DNA sequences within the endogenous genome and their functional outputs are now easily edited or modulated in virtually any organism of choice. Cas9-mediated genetic perturbation is simple and scalable, empowering researchers to elucidate the functional organization of the genome at the systems level and establish causal linkages between genetic variations and biological phenotypes. In this Review, we describe the development and applications of Cas9 for a variety of research or translational applications while highlighting challenges as well as future directions. Derived from a remarkable microbial defense system, Cas9 is driving innovative applications from basic biology to biotechnology and medicine.
Collapse
Affiliation(s)
- Patrick D Hsu
- Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA 02141, USA; McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Eric S Lander
- Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA 02141, USA
| | - Feng Zhang
- Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA 02141, USA; McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
38
|
Park SY, Kim YG. Rapid Assembly and Cloning of Zinc Finger Proteins with Multiple Finger Modules. B KOREAN CHEM SOC 2014. [DOI: 10.5012/bkcs.2014.35.7.2197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
39
|
Bailus BJ, Segal DJ. The prospect of molecular therapy for Angelman syndrome and other monogenic neurologic disorders. BMC Neurosci 2014; 15:76. [PMID: 24946931 PMCID: PMC4069279 DOI: 10.1186/1471-2202-15-76] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 06/06/2014] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Angelman syndrome is a monogenic neurologic disorder that affects 1 in 15,000 children, and is characterized by ataxia, intellectual disability, speech impairment, sleep disorders, and seizures. The disorder is caused by loss of central nervous system expression of UBE3A, a gene encoding a ubiquitin ligase. Current treatments focus on the management of symptoms, as there have not been therapies to treat the underlying molecular cause of the disease. However, this outlook is evolving with advances in molecular therapies, including artificial transcription factors a class of engineered DNA-binding proteins that have the potential to target a specific site in the genome. RESULTS Here we review the recent progress and prospect of targeted gene expression therapies. Three main issues that must be addressed to advance toward human clinical trials are specificity, toxicity, and delivery. CONCLUSIONS Artificial transcription factors have the potential to address these concerns on a level that meets and in some cases exceeds current small molecule therapies. We examine the possibilities of such approaches in the context of Angelman syndrome, as a template for other single-gene, neurologic disorders.
Collapse
Affiliation(s)
- Barbara J Bailus
- Genome Center, MIND Institute, and Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA
| | - David J Segal
- Genome Center, MIND Institute, and Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA
| |
Collapse
|
40
|
Abstract
Recent advances in genome engineering technologies based on the CRISPR-associated RNA-guided endonuclease Cas9 are enabling the systematic interrogation of mammalian genome function. Analogous to the search function in modern word processors, Cas9 can be guided to specific locations within complex genomes by a short RNA search string. Using this system, DNA sequences within the endogenous genome and their functional outputs are now easily edited or modulated in virtually any organism of choice. Cas9-mediated genetic perturbation is simple and scalable, empowering researchers to elucidate the functional organization of the genome at the systems level and establish causal linkages between genetic variations and biological phenotypes. In this Review, we describe the development and applications of Cas9 for a variety of research or translational applications while highlighting challenges as well as future directions. Derived from a remarkable microbial defense system, Cas9 is driving innovative applications from basic biology to biotechnology and medicine.
Collapse
|
41
|
Li Y, Ehrhardt K, Zhang MQ, Bleris L. Assembly and validation of versatile transcription activator-like effector libraries. Sci Rep 2014; 4:4857. [PMID: 24798576 PMCID: PMC4010924 DOI: 10.1038/srep04857] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 04/08/2014] [Indexed: 12/11/2022] Open
Abstract
The ability to perturb individual genes in genome-wide experiments has been instrumental in unraveling cellular and disease properties. Here we introduce, describe the assembly, and demonstrate the use of comprehensive and versatile transcription activator-like effector (TALE) libraries. As a proof of principle, we built an 11-mer library that covers all possible combinations of the nucleotides that determine the TALE-DNA binding specificity. We demonstrate the versatility of the methodology by constructing a constraint library, customized to bind to a known p53 motif. To verify the functionality in assays, we applied the 11-mer library in yeast-one-hybrid screens to discover TALEs that activate human SCN9A and miR-34b respectively. Additionally, we performed a genome-wide screen using the complete 11-mer library to confirm known genes that confer cycloheximide resistance in yeast. Considering the highly modular nature of TALEs and the versatility and ease of constructing these libraries we envision broad implications for high-throughput genomic assays.
Collapse
Affiliation(s)
- Yi Li
- 1] Bioengineering Department, The University of Texas at Dallas, 800 West Campbell Road, Richardson TX 75080 USA [2] Center for Systems Biology, The University of Texas at Dallas, 800 West Campbell Road, Richardson TX 75080 USA
| | - Kristina Ehrhardt
- 1] Bioengineering Department, The University of Texas at Dallas, 800 West Campbell Road, Richardson TX 75080 USA [2] Center for Systems Biology, The University of Texas at Dallas, 800 West Campbell Road, Richardson TX 75080 USA
| | - Michael Q Zhang
- 1] Center for Systems Biology, The University of Texas at Dallas, 800 West Campbell Road, Richardson TX 75080 USA [2] Molecular and Cell Biology Department, The University of Texas at Dallas, 800 West Campbell Road, Richardson TX 75080 USA
| | - Leonidas Bleris
- 1] Bioengineering Department, The University of Texas at Dallas, 800 West Campbell Road, Richardson TX 75080 USA [2] Center for Systems Biology, The University of Texas at Dallas, 800 West Campbell Road, Richardson TX 75080 USA [3] Electrical Engineering Department, The University of Texas at Dallas, 800 West Campbell Road, Richardson TX 75080 USA
| |
Collapse
|
42
|
Gaj T, Sirk SJ, Tingle RD, Mercer AC, Wallen MC, Barbas CF. Enhancing the specificity of recombinase-mediated genome engineering through dimer interface redesign. J Am Chem Soc 2014; 136:5047-56. [PMID: 24611715 PMCID: PMC3985937 DOI: 10.1021/ja4130059] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
![]()
Despite
recent advances in genome engineering made possible by
the emergence of site-specific endonucleases, there remains a need
for tools capable of specifically delivering genetic payloads into
the human genome. Hybrid recombinases based on activated catalytic
domains derived from the resolvase/invertase family of serine recombinases
fused to Cys2-His2 zinc-finger or TAL effector
DNA-binding domains are a class of reagents capable of achieving this.
The utility of these enzymes, however, has been constrained by their
low overall targeting specificity, largely due to the formation of
side-product homodimers capable of inducing off-target modifications.
Here, we combine rational design and directed evolution to re-engineer
the serine recombinase dimerization interface and generate a recombinase
architecture that reduces formation of these undesirable homodimers
by >500-fold. We show that these enhanced recombinases demonstrate
substantially improved targeting specificity in mammalian cells and
achieve rates of site-specific integration similar to those previously
reported for site-specific nucleases. Additionally, we show that enhanced
recombinases exhibit low toxicity and promote the delivery of the
human coagulation factor IX and α-galactosidase genes into endogenous
genomic loci with high specificity. These results provide a general
means for improving hybrid recombinase specificity by protein engineering
and illustrate the potential of these enzymes for basic research and
therapeutic applications.
Collapse
Affiliation(s)
- Thomas Gaj
- The Skaggs Institute for Chemical Biology and the Departments of Chemistry and Cell and Molecular Biology, The Scripps Research Institute , La Jolla, California 92037, United States
| | | | | | | | | | | |
Collapse
|
43
|
Zhang F, Wen Y, Guo X. CRISPR/Cas9 for genome editing: progress, implications and challenges. Hum Mol Genet 2014; 23:R40-6. [PMID: 24651067 DOI: 10.1093/hmg/ddu125] [Citation(s) in RCA: 352] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) protein 9 system provides a robust and multiplexable genome editing tool, enabling researchers to precisely manipulate specific genomic elements, and facilitating the elucidation of target gene function in biology and diseases. CRISPR/Cas9 comprises of a nonspecific Cas9 nuclease and a set of programmable sequence-specific CRISPR RNA (crRNA), which can guide Cas9 to cleave DNA and generate double-strand breaks at target sites. Subsequent cellular DNA repair process leads to desired insertions, deletions or substitutions at target sites. The specificity of CRISPR/Cas9-mediated DNA cleavage requires target sequences matching crRNA and a protospacer adjacent motif locating at downstream of target sequences. Here, we review the molecular mechanism, applications and challenges of CRISPR/Cas9-mediated genome editing and clinical therapeutic potential of CRISPR/Cas9 in future.
Collapse
Affiliation(s)
- Feng Zhang
- Key Laboratory of Environment and Gene Related Diseases of Ministry Education, Faculty of Public Health, College of Medicine, Xi'an Jiaotong University, Xi'an, PR China
| | - Yan Wen
- Key Laboratory of Environment and Gene Related Diseases of Ministry Education, Faculty of Public Health, College of Medicine, Xi'an Jiaotong University, Xi'an, PR China
| | - Xiong Guo
- Key Laboratory of Environment and Gene Related Diseases of Ministry Education, Faculty of Public Health, College of Medicine, Xi'an Jiaotong University, Xi'an, PR China
| |
Collapse
|
44
|
Abstract
Current technology enables the production of highly specific genome modifications with excellent efficiency and specificity. Key to this capability are targetable DNA cleavage reagents and cellular DNA repair pathways. The break made by these reagents can produce localized sequence changes through inaccurate nonhomologous end joining (NHEJ), often leading to gene inactivation. Alternatively, user-provided DNA can be used as a template for repair by homologous recombination (HR), leading to the introduction of desired sequence changes. This review describes three classes of targetable cleavage reagents: zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and CRISPR/Cas RNA-guided nucleases (RGNs). As a group, these reagents have been successfully used to modify genomic sequences in a wide variety of cells and organisms, including humans. This review discusses the properties, advantages, and limitations of each system, as well as the specific considerations required for their use in different biological systems.
Collapse
Affiliation(s)
- Dana Carroll
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah 84112;
| |
Collapse
|
45
|
CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol 2014; 32:347-55. [PMID: 24584096 DOI: 10.1038/nbt.2842] [Citation(s) in RCA: 2156] [Impact Index Per Article: 215.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 01/31/2014] [Indexed: 12/12/2022]
Abstract
Targeted genome editing using engineered nucleases has rapidly gone from being a niche technology to a mainstream method used by many biological researchers. This widespread adoption has been largely fueled by the emergence of the clustered, regularly interspaced, short palindromic repeat (CRISPR) technology, an important new approach for generating RNA-guided nucleases, such as Cas9, with customizable specificities. Genome editing mediated by these nucleases has been used to rapidly, easily and efficiently modify endogenous genes in a wide variety of biomedically important cell types and in organisms that have traditionally been challenging to manipulate genetically. Furthermore, a modified version of the CRISPR-Cas9 system has been developed to recruit heterologous domains that can regulate endogenous gene expression or label specific genomic loci in living cells. Although the genome-wide specificities of CRISPR-Cas9 systems remain to be fully defined, the power of these systems to perform targeted, highly efficient alterations of genome sequence and gene expression will undoubtedly transform biological research and spur the development of novel molecular therapeutics for human disease.
Collapse
|
46
|
Wefers B, Ortiz O, Wurst W, Kühn R. Generation of targeted mouse mutants by embryo microinjection of TALENs. Methods 2014; 69:94-101. [PMID: 24418396 DOI: 10.1016/j.ymeth.2014.01.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 01/01/2014] [Accepted: 01/02/2014] [Indexed: 12/26/2022] Open
Abstract
Gene engineering for generating targeted mouse mutants is a key technology for biomedical research. Using TALENs as nucleases to induce targeted double-strand breaks, the mouse genome can be directly modified in zygotes in a single step, without the need for embryonic stem cells. Thereby, knockout and knockin alleles can be generated fast and efficiently by embryo microinjection of TALEN mRNAs and targeting vectors. In this article we present an introduction into the TALEN technology and provide protocols for the application of TALENs in mouse zygotes.
Collapse
Affiliation(s)
- Benedikt Wefers
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Munich, Germany.
| | - Oskar Ortiz
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Munich, Germany.
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Munich, Germany; Technische Universität München, 85350 Freising-Weihenstephan, Germany; Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE), 80336 Munich, Germany; Max Planck Institute of Psychiatry, 80804 Munich, Germany.
| | - Ralf Kühn
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Munich, Germany; Technische Universität München, 85350 Freising-Weihenstephan, Germany.
| |
Collapse
|
47
|
Chavez-Munoz C, Hartwell R, Jalili RB, Ghahary A. Immunoprotective role of IDO in engraftment of allogeneic skin substitutes. ACTA ACUST UNITED AC 2014. [DOI: 10.1586/edm.10.53] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
48
|
|
49
|
Abstract
Zinc-finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs) comprise a powerful class of tools that are redefining the boundaries of biological research. These chimeric nucleases are composed of programmable, sequence-specific DNA-binding modules linked to a nonspecific DNA cleavage domain. ZFNs and TALENs enable a broad range of genetic modifications by inducing DNA double-strand breaks that stimulate error-prone nonhomologous end joining or homology-directed repair at specific genomic locations. Here, we review achievements made possible by site-specific nuclease technologies and discuss applications of these reagents for genetic analysis and manipulation. In addition, we highlight the therapeutic potential of ZFNs and TALENs and discuss future prospects for the field, including the emergence of clustered regulatory interspaced short palindromic repeat (CRISPR)/Cas-based RNA-guided DNA endonucleases.
Collapse
Affiliation(s)
- Thomas Gaj
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| | | | | |
Collapse
|
50
|
78495111110.1016/j.tibtech.2013.04.004" />
|