1
|
Jiang J, Czuchry D, Ru Y, Peng H, Shen J, Wang T, Zhao W, Chen W, Sui SF, Li Y, Li N. Activity-based metaproteomics driven discovery and enzymological characterization of potential α-galactosidases in the mouse gut microbiome. Commun Chem 2024; 7:184. [PMID: 39152233 PMCID: PMC11329505 DOI: 10.1038/s42004-024-01273-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 08/08/2024] [Indexed: 08/19/2024] Open
Abstract
The gut microbiota offers an extensive resource of enzymes, but many remain uncharacterized. To distinguish the activities of similar annotated proteins and mine the potentially applicable ones in the microbiome, we applied an effective Activity-Based Metaproteomics (ABMP) strategy using a specific activity-based probe (ABP) to screen the entire gut microbiome for directly discovering active enzymes and their potential applications, not for exploring host-microbiome interactions. By using an activity-based cyclophellitol aziridine probe specific to α-galactosidases (AGAL), we successfully identified and characterized several gut microbiota enzymes possessing AGAL activities. Cryo-electron microscopy analysis of a newly characterized enzyme (AGLA5) revealed the covalent binding conformations between the AGAL5 active site and the cyclophellitol aziridine ABP, which could provide insights into the enzyme's catalytic mechanism. The four newly characterized AGALs have diverse potential activities, including raffinose family oligosaccharides (RFOs) hydrolysis and enzymatic blood group transformation. Collectively, we present a ABMP platform that facilitates gut microbiota AGALs discovery, biochemical activity annotations and potential industrial or biopharmaceutical applications.
Collapse
Affiliation(s)
- Jianbing Jiang
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Diana Czuchry
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yanxia Ru
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Huipai Peng
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Junfeng Shen
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Teng Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular Imaging, Center for Artificial Intelligence Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Wenjuan Zhao
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Weihua Chen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular Imaging, Center for Artificial Intelligence Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Sen-Fang Sui
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Cryo-EM Center, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yaowang Li
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China.
| | - Nan Li
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- Shenzhen Key Laboratory of Genome Manipulation and Biosynthesis, Shenzhen, China.
| |
Collapse
|
2
|
Villalón Landeros E, Kho SC, Church TR, Brennan A, Türker F, Delannoy M, Caterina MJ, Margolis SS. The nociceptive activity of peripheral sensory neurons is modulated by the neuronal membrane proteasome. Cell Rep 2024; 43:114058. [PMID: 38614084 PMCID: PMC11157458 DOI: 10.1016/j.celrep.2024.114058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/05/2024] [Accepted: 03/20/2024] [Indexed: 04/15/2024] Open
Abstract
Proteasomes are critical for peripheral nervous system (PNS) function. Here, we investigate mammalian PNS proteasomes and reveal the presence of the neuronal membrane proteasome (NMP). We show that specific inhibition of the NMP on distal nerve fibers innervating the mouse hind paw leads to reduction in mechanical and pain sensitivity. Through investigating PNS NMPs, we demonstrate their presence on the somata and proximal and distal axons of a subset of dorsal root ganglion (DRG) neurons. Single-cell RNA sequencing experiments reveal that the NMP-expressing DRGs are primarily MrgprA3+ and Cysltr2+. NMP inhibition in DRG cultures leads to cell-autonomous and non-cell-autonomous changes in Ca2+ signaling induced by KCl depolarization, αβ-meATP, or the pruritogen histamine. Taken together, these data support a model whereby NMPs are expressed on a subset of somatosensory DRGs to modulate signaling between neurons of distinct sensory modalities and indicate the NMP as a potential target for controlling pain.
Collapse
Affiliation(s)
- Eric Villalón Landeros
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Samuel C Kho
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Taylor R Church
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Anna Brennan
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Fulya Türker
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Michael Delannoy
- Microscopy Facility, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Michael J Caterina
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurosurgery and Neurosurgery Pain Research Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Seth S Margolis
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
3
|
Kuo CL, Su Q, van den Nieuwendijk AMCH, Beenakker TJM, Offen WA, Willems LI, Boot RG, Sarris AJ, Marques ARA, Codée JDC, van der Marel GA, Florea BI, Davies GJ, Overkleeft HS, Aerts JMFG. The development of a broad-spectrum retaining β-exo-galactosidase activity-based probe. Org Biomol Chem 2023; 21:7813-7820. [PMID: 37724332 DOI: 10.1039/d3ob01261a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Acid β-galactosidase (GLB1) and galactocerebrosidase (GALC) are retaining exo-β-galactosidases involved in lysosomal glycoconjugate metabolism. Deficiency of GLB1 may result in the lysosomal storage disorders GM1 gangliosidosis, Morquio B syndrome, and galactosialidosis, and deficiency of GALC may result in Krabbe disease. Activity-based protein profiling (ABPP) is a powerful technique to assess the activity of retaining glycosidases in relation to health and disease. This work describes the use of fluorescent and biotin-carrying activity-based probes (ABPs) to assess the activity of both GLB1 and GALC in cell lysates, culture media, and tissue extracts. The reported ABPs, which complement the growing list of retaining glycosidase ABPs based on configurational isomers of cyclophellitol, should assist in fundamental and clinical research on various β-galactosidases, whose inherited deficiencies cause debilitating lysosomal storage disorders.
Collapse
Affiliation(s)
- Chi-Lin Kuo
- Department of Medical Biochemistry, Leiden Institute of Chemistry, Leiden University, P. O. Box 9502, 2300 RA Leiden, The Netherlands.
| | - Qin Su
- Department of Medical Biochemistry, Leiden Institute of Chemistry, Leiden University, P. O. Box 9502, 2300 RA Leiden, The Netherlands.
| | | | - Thomas J M Beenakker
- Department of Medical Biochemistry, Leiden Institute of Chemistry, Leiden University, P. O. Box 9502, 2300 RA Leiden, The Netherlands.
| | - Wendy A Offen
- Department of Chemistry, University of York, Heslington, York, YO10 5DD York, UK
| | - Lianne I Willems
- Department of Medical Biochemistry, Leiden Institute of Chemistry, Leiden University, P. O. Box 9502, 2300 RA Leiden, The Netherlands.
- Department of Chemistry, University of York, Heslington, York, YO10 5DD York, UK
| | - Rolf G Boot
- Department of Medical Biochemistry, Leiden Institute of Chemistry, Leiden University, P. O. Box 9502, 2300 RA Leiden, The Netherlands.
| | - Alexi J Sarris
- Bioorganic Synthesis group, Leiden Institute of Chemistry, Leiden University, P. O. Box 9502, 2300 RA Leiden, The Netherlands.
| | - André R A Marques
- Department of Medical Biochemistry, Leiden Institute of Chemistry, Leiden University, P. O. Box 9502, 2300 RA Leiden, The Netherlands.
| | - Jeroen D C Codée
- Bioorganic Synthesis group, Leiden Institute of Chemistry, Leiden University, P. O. Box 9502, 2300 RA Leiden, The Netherlands.
| | - Gijsbert A van der Marel
- Bioorganic Synthesis group, Leiden Institute of Chemistry, Leiden University, P. O. Box 9502, 2300 RA Leiden, The Netherlands.
| | - Bogdan I Florea
- Bioorganic Synthesis group, Leiden Institute of Chemistry, Leiden University, P. O. Box 9502, 2300 RA Leiden, The Netherlands.
| | - Gideon J Davies
- Department of Chemistry, University of York, Heslington, York, YO10 5DD York, UK
| | - Herman S Overkleeft
- Bioorganic Synthesis group, Leiden Institute of Chemistry, Leiden University, P. O. Box 9502, 2300 RA Leiden, The Netherlands.
| | - Johannes M F G Aerts
- Department of Medical Biochemistry, Leiden Institute of Chemistry, Leiden University, P. O. Box 9502, 2300 RA Leiden, The Netherlands.
| |
Collapse
|
4
|
Lee D, Zhu Y, Colson L, Wang X, Chen S, Tkacik E, Huang L, Ouyang Q, Goldberg AL, Lu Y. Molecular mechanism for activation of the 26S proteasome by ZFAND5. Mol Cell 2023; 83:2959-2975.e7. [PMID: 37595557 PMCID: PMC10523585 DOI: 10.1016/j.molcel.2023.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 05/07/2023] [Accepted: 07/24/2023] [Indexed: 08/20/2023]
Abstract
Various hormones, kinases, and stressors (fasting, heat shock) stimulate 26S proteasome activity. To understand how its capacity to degrade ubiquitylated proteins can increase, we studied mouse ZFAND5, which promotes protein degradation during muscle atrophy. Cryo-electron microscopy showed that ZFAND5 induces large conformational changes in the 19S regulatory particle. ZFAND5's AN1 Zn-finger domain interacts with the Rpt5 ATPase and its C terminus with Rpt1 ATPase and Rpn1, a ubiquitin-binding subunit. Upon proteasome binding, ZFAND5 widens the entrance of the substrate translocation channel, yet it associates only transiently with the proteasome. Dissociation of ZFAND5 then stimulates opening of the 20S proteasome gate. Using single-molecule microscopy, we showed that ZFAND5 binds ubiquitylated substrates, prolongs their association with proteasomes, and increases the likelihood that bound substrates undergo degradation, even though ZFAND5 dissociates before substrate deubiquitylation. These changes in proteasome conformation and reaction cycle can explain the accelerated degradation and suggest how other proteasome activators may stimulate proteolysis.
Collapse
Affiliation(s)
- Donghoon Lee
- Department of Cell Biology, Harvard Medical School, Boston, MA USA
| | - Yanan Zhu
- Department of Systems Biology, Harvard Medical School, Boston, MA USA; Center for Quantitative Biology, Peking University, Beijing, China; State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing, China
| | - Louis Colson
- Department of Systems Biology, Harvard Medical School, Boston, MA USA
| | - Xiaorong Wang
- School of Medicine, University of California Irvine, Irvine, Irvine, CA USA
| | - Siyi Chen
- Department of Systems Biology, Harvard Medical School, Boston, MA USA
| | - Emre Tkacik
- Department of Systems Biology, Harvard Medical School, Boston, MA USA
| | - Lan Huang
- School of Medicine, University of California Irvine, Irvine, Irvine, CA USA
| | - Qi Ouyang
- Center for Quantitative Biology, Peking University, Beijing, China; State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | | | - Ying Lu
- Department of Systems Biology, Harvard Medical School, Boston, MA USA.
| |
Collapse
|
5
|
Lee D, Zhu Y, Colson L, Wang X, Chen S, Tkacik E, Huang L, Ouyang Q, Goldberg AL, Lu Y. Molecular mechanisms for activation of the 26S proteasome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.09.540094. [PMID: 37214989 PMCID: PMC10197607 DOI: 10.1101/2023.05.09.540094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Various hormones, kinases, and stressors (fasting, heat shock) stimulate 26S proteasome activity. To understand how its capacity to degrade ubiquitylated protein can increase, we studied ZFAND5, which promotes protein degradation during muscle atrophy. Cryo-electron microscopy showed that ZFAND5 induces large conformational changes in the 19S regulatory particle. ZFAND5's AN1 Zn finger interacts with the Rpt5 ATPase and its C-terminus with Rpt1 ATPase and Rpn1, a ubiquitin-binding subunit. Surprisingly, these C-terminal interactions are sufficient to activate proteolysis. With ZFAND5 bound, entry into the proteasome's protein translocation channel is wider, and ZFAND5 dissociation causes opening of the 20S gate for substrate entry. Using single-molecular microscopy, we showed that ZFAND5 binds ubiquitylated substrates, prolongs their association with proteasomes, and increases the likelihood that bound substrates undergo degradation, even though ZFAND5 dissociates before substrate deubiquitylation. These changes in proteasome conformation and reaction cycle can explain the accelerated degradation and suggest how other proteasome activators may stimulate proteolysis.
Collapse
|
6
|
Mons E, Kim RQ, Mulder MPC. Technologies for Direct Detection of Covalent Protein-Drug Adducts. Pharmaceuticals (Basel) 2023; 16:547. [PMID: 37111304 PMCID: PMC10146396 DOI: 10.3390/ph16040547] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/29/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
In the past two decades, drug candidates with a covalent binding mode have gained the interest of medicinal chemists, as several covalent anticancer drugs have successfully reached the clinic. As a covalent binding mode changes the relevant parameters to rank inhibitor potency and investigate structure-activity relationship (SAR), it is important to gather experimental evidence on the existence of a covalent protein-drug adduct. In this work, we review established methods and technologies for the direct detection of a covalent protein-drug adduct, illustrated with examples from (recent) drug development endeavors. These technologies include subjecting covalent drug candidates to mass spectrometric (MS) analysis, protein crystallography, or monitoring intrinsic spectroscopic properties of the ligand upon covalent adduct formation. Alternatively, chemical modification of the covalent ligand is required to detect covalent adducts by NMR analysis or activity-based protein profiling (ABPP). Some techniques are more informative than others and can also elucidate the modified amino acid residue or bond layout. We will discuss the compatibility of these techniques with reversible covalent binding modes and the possibilities to evaluate reversibility or obtain kinetic parameters. Finally, we expand upon current challenges and future applications. Overall, these analytical techniques present an integral part of covalent drug development in this exciting new era of drug discovery.
Collapse
Affiliation(s)
- Elma Mons
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (E.M.)
- Institute of Biology Leiden, Leiden University, 2333 BE Leiden, The Netherlands
| | - Robbert Q. Kim
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (E.M.)
| | - Monique P. C. Mulder
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (E.M.)
| |
Collapse
|
7
|
Ramos-Llorca A, Decraecker L, Cacheux VMY, Zeiburlina I, De bruyn M, Battut L, Moreno-Cinos C, Ceradini D, Espinosa E, Dietrich G, Berg M, De Meester I, Van Der Veken P, Boeckxstaens G, Lambeir AM, Denadai-Souza A, Augustyns K. Chemically diverse activity-based probes with unexpected inhibitory mechanisms targeting trypsin-like serine proteases. Front Chem 2023; 10:1089959. [PMID: 36688031 PMCID: PMC9849758 DOI: 10.3389/fchem.2022.1089959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/19/2022] [Indexed: 01/07/2023] Open
Abstract
Activity-based probes (ABP) are molecules that bind covalently to the active form of an enzyme family, making them an attractive tool for target and biomarker identification and drug discovery. The present study describes the synthesis and biochemical characterization of novel activity-based probes targeting trypsin-like serine proteases. We developed an extensive library of activity-based probes with "clickable" affinity tags and a diaryl phosphonate warhead. A wide diversity was achieved by including natural amino acid analogs as well as basic polar residues as side chains. A detailed enzymatic characterization was performed in a panel of trypsin-like serine proteases. Their inhibitory potencies and kinetic profile were examined, and their IC50 values, mechanism of inhibition, and kinetic constants were determined. The activity-based probes with a benzyl guanidine side chain showed the highest inhibitory effects in the panel. Surprisingly, some of the high-affinity probes presented a reversible inhibitory mechanism. On the other hand, probes with different side chains exhibited the expected irreversible mechanism. For the first time, we demonstrate that not only irreversible probes but also reversible probes can tightly label recombinant proteases and proteases released from human mast cells. Even under denaturing SDS-PAGE conditions, reversible slow-tight-binding probes can label proteases due to the formation of high-affinity complexes and slow dissociation rates. This unexpected finding will transform the view on the required irreversible nature of activity-based probes. The diversity of this library of activity-based probes combined with a detailed enzyme kinetic characterization will advance their applications in proteomic studies and drug discovery.
Collapse
Affiliation(s)
- Alba Ramos-Llorca
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Lisse Decraecker
- Laboratory for Intestinal Neuroimmune Interactions, Translational Research Center for Gastrointestinal Disorders, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Valérie M. Y. Cacheux
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Irena Zeiburlina
- Laboratory for Intestinal Neuroimmune Interactions, Translational Research Center for Gastrointestinal Disorders, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Michelle De bruyn
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Louise Battut
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | - Carlos Moreno-Cinos
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | | | - Eric Espinosa
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | - Gilles Dietrich
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | - Maya Berg
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Ingrid De Meester
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Pieter Van Der Veken
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Guy Boeckxstaens
- Laboratory for Intestinal Neuroimmune Interactions, Translational Research Center for Gastrointestinal Disorders, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Anne-Marie Lambeir
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Alexandre Denadai-Souza
- Laboratory for Intestinal Neuroimmune Interactions, Translational Research Center for Gastrointestinal Disorders, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Koen Augustyns
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
8
|
Rezaei M, Kalhor HR. Amyloid fibril reduction through covalently modified lysine in HEWL and insulin. Arch Biochem Biophys 2022; 727:109350. [PMID: 35830943 DOI: 10.1016/j.abb.2022.109350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 11/28/2022]
Abstract
Proteins possess a variety of nucleophiles, which can carry out different reactions in the functioning cells. Proteins endogenously and synthetically can be modified through their nucleophilic sites. The roles of these chemical modifications have not been completely revealed. These modifications can alter the protein folding process. Protein folding directly affects the function of proteins. If an error in protein folding occurs, it may cause protein malfunction leading to several neurodegenerative disorders such as Alzheimer's and Parkinson's. In this study, Hen Egg White Lysozyme (HEWL) and bovine insulin, as model proteins for studying the amyloid formation, were covalently attached with 5(6)-thiophenolfluorescein. The amyloid formation of the covalently labeled lysozyme and insulin were compared with the native proteins. Interestingly, the results indicated that the covalent attachment of fluorescein slowed down the amyloid formation of HEWL and insulin significantly. The amyloid formation was examined using Thioflavin T (ThT) fluorescence assay, circular dichroism, FTIR, and gel electrophoresis. Tandem mass spectrometry was employed to identify the sites of covalent modifications in HEWL. It turned out that two surface lysine residues (K97 and K 116) in HEWL were modified. Computational studies, including docking and molecular simulations, revealed that 5(6)-thiophenolfluorescein makes several non-covalent interactions with HEWL residues, including Lys 97, leading to the reduction of the β-sheet in the protein. Additionally, AFM analysis confirmed the amyloid fibril reduction of lysine-modified bovine insulin and HEWL. Altogether, our results expand mechanistic insights into preventing amyloid formation by providing an approach for reducing amyloid formation by modifying specific lysine residues in the proteins.
Collapse
Affiliation(s)
- Mohsen Rezaei
- Biochemistry and Chemical Biology Research Laboratory, Chemistry Department, Sharif University of Technology, P.O. Box 11155-3516, Tehran, Iran
| | - Hamid Reza Kalhor
- Biochemistry and Chemical Biology Research Laboratory, Chemistry Department, Sharif University of Technology, P.O. Box 11155-3516, Tehran, Iran.
| |
Collapse
|
9
|
26S proteasomes become stably activated upon heat shock when ubiquitination and protein degradation increase. Proc Natl Acad Sci U S A 2022; 119:e2122482119. [PMID: 35704754 PMCID: PMC9231471 DOI: 10.1073/pnas.2122482119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Heat shock (HS) promotes protein unfolding, and cells respond by stimulating HS gene expression, ubiquitination of cell proteins, and proteolysis by the proteasome. Exposing HeLa and other cells to 43 °C for 2 h caused a twofold increase in the 26S proteasomes' peptidase activity assayed at 37 °C. This increase in activity occurred without any change in proteasome amount and did not require new protein synthesis. After affinity-purification from HS cells, 26S proteasomes still hydrolyzed peptides, adenosine 5'-triphosphate, and ubiquitinated substrates more rapidly without any evident change in subunit composition, postsynthetic modification, or association with reported proteasome-activating proteins. After returning HS cells to 37 °C, ubiquitin conjugates and proteolysis fell rapidly, but proteasome activity remained high for at least 16 h. Exposure to arsenite, which also causes proteotoxic stress in the cytosol, but not tunicamycin, which causes endoplasmic reticulum stress, also increased ubiquitin conjugate levels and 26S proteasome activity. Although the molecular basis for the enhanced proteasomal activity remains elusive, we studied possible signaling mechanisms. Proteasome activation upon proteotoxic stress required the accumulation of ubiquitinated proteins since blocking ubiquitination by E1 inhibition during HS or arsenite exposure prevented the stimulation of 26S activity. Furthermore, increasing cellular content of ubiquitin conjugates at 37 °C by inhibiting deubiquitinating enzymes with RA190 or b-AP15 also caused proteasome activation. Thus, cells respond to proteotoxic stresses, apparently in response to the accumulation of ubiquitinated proteins, by activating 26S proteasomes, which should help promote the clearance of damaged cell proteins.
Collapse
|
10
|
McGregor NGS, Kuo CL, Beenakker TJM, Wong CS, Offen WA, Armstrong Z, Florea BI, Codée JDC, Overkleeft HS, Aerts JMFG, Davies GJ. Synthesis of broad-specificity activity-based probes for exo-β-mannosidases. Org Biomol Chem 2022; 20:877-886. [PMID: 35015006 PMCID: PMC8790593 DOI: 10.1039/d1ob02287c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Exo-β-mannosidases are a broad class of stereochemically retaining hydrolases that are essential for the breakdown of complex carbohydrate substrates found in all kingdoms of life. Yet the detection of exo-β-mannosidases in complex biological samples remains challenging, necessitating the development of new methodologies. Cyclophellitol and its analogues selectively label the catalytic nucleophiles of retaining glycoside hydrolases, making them valuable tool compounds. Furthermore, cyclophellitol can be readily redesigned to enable the incorporation of a detection tag, generating activity-based probes (ABPs) that can be used to detect and identify specific glycosidases in complex biological samples. Towards the development of ABPs for exo-β-mannosidases, we present a concise synthesis of β-manno-configured cyclophellitol, cyclophellitol aziridine, and N-alkyl cyclophellitol aziridines. We show that these probes covalently label exo-β-mannosidases from GH families 2, 5, and 164. Structural studies of the resulting complexes support a canonical mechanism-based mode of action in which the active site nucleophile attacks the pseudoanomeric centre to form a stable ester linkage, mimicking the glycosyl enzyme intermediate. Furthermore, we demonstrate activity-based protein profiling using an N-alkyl aziridine derivative by specifically labelling MANBA in mouse kidney tissue. Together, these results show that synthetic manno-configured cyclophellitol analogues hold promise for detecting exo-β-mannosidases in biological and biomedical research.
Collapse
Affiliation(s)
- Nicholas G S McGregor
- York Structural Biology Laboratory, Department of Chemistry, The University of York, York YO10 5DD, UK.
| | - Chi-Lin Kuo
- Department of Bio-Organic Chemistry, Leiden Institute of Chemistry, Leiden University, P. O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Thomas J M Beenakker
- Department of Bio-Organic Chemistry, Leiden Institute of Chemistry, Leiden University, P. O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Chun-Sing Wong
- Department of Bio-Organic Chemistry, Leiden Institute of Chemistry, Leiden University, P. O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Wendy A Offen
- York Structural Biology Laboratory, Department of Chemistry, The University of York, York YO10 5DD, UK.
| | - Zachary Armstrong
- York Structural Biology Laboratory, Department of Chemistry, The University of York, York YO10 5DD, UK.
| | - Bogdan I Florea
- Department of Bio-Organic Chemistry, Leiden Institute of Chemistry, Leiden University, P. O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Jeroen D C Codée
- Department of Bio-Organic Chemistry, Leiden Institute of Chemistry, Leiden University, P. O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Herman S Overkleeft
- Department of Bio-Organic Chemistry, Leiden Institute of Chemistry, Leiden University, P. O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Johannes M F G Aerts
- Department of Medical Biochemistry, Leiden Institute of Chemistry, Leiden University, P. O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Gideon J Davies
- York Structural Biology Laboratory, Department of Chemistry, The University of York, York YO10 5DD, UK.
| |
Collapse
|
11
|
Hu F, Wang L, Hu Y, Wang D, Wang W, Jiang J, Li N, Yin P. A novel framework integrating AI model and enzymological experiments promotes identification of SARS-CoV-2 3CL protease inhibitors and activity-based probe. Brief Bioinform 2021; 22:bbab301. [PMID: 34368837 PMCID: PMC8385923 DOI: 10.1093/bib/bbab301] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/11/2021] [Accepted: 07/15/2021] [Indexed: 01/03/2023] Open
Abstract
The identification of protein-ligand interaction plays a key role in biochemical research and drug discovery. Although deep learning has recently shown great promise in discovering new drugs, there remains a gap between deep learning-based and experimental approaches. Here, we propose a novel framework, named AIMEE, integrating AI model and enzymological experiments, to identify inhibitors against 3CL protease of SARS-CoV-2 (Severe acute respiratory syndrome coronavirus 2), which has taken a significant toll on people across the globe. From a bioactive chemical library, we have conducted two rounds of experiments and identified six novel inhibitors with a hit rate of 29.41%, and four of them showed an IC50 value <3 μM. Moreover, we explored the interpretability of the central model in AIMEE, mapping the deep learning extracted features to the domain knowledge of chemical properties. Based on this knowledge, a commercially available compound was selected and was proven to be an activity-based probe of 3CLpro. This work highlights the great potential of combining deep learning models and biochemical experiments for intelligent iteration and for expanding the boundaries of drug discovery. The code and data are available at https://github.com/SIAT-code/AIMEE.
Collapse
Affiliation(s)
- Fan Hu
- Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Lei Wang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yishen Hu
- Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Dongqi Wang
- Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Weijie Wang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jianbing Jiang
- School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen, 518055, China
| | - Nan Li
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Peng Yin
- Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| |
Collapse
|
12
|
Li X, Zhou J, Zhao W, Wen Q, Wang W, Peng H, Gao Y, Bouchonville KJ, Offer SM, Chan K, Wang Z, Li N, Gan H. Defining Proximity Proteomics of Histone Modifications by Antibody-mediated Protein A-APEX2 Labeling. GENOMICS PROTEOMICS & BIOINFORMATICS 2021; 20:87-100. [PMID: 34555496 PMCID: PMC9510856 DOI: 10.1016/j.gpb.2021.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 12/02/2022]
Abstract
Proximity labeling catalyzed by promiscuous enzymes, such as APEX2, has emerged as a powerful approach to characterize multiprotein complexes and protein–protein interactions. However, current methods depend on the expression of exogenous fusion proteins and cannot be applied to identify proteins surrounding post-translationally modified proteins. To address this limitation, we developed a new method to label proximal proteins of interest by antibody-mediated protein A-ascorbate peroxidase 2 (pA-APEX2) labeling (AMAPEX). In this method, a modified protein is bound in situ by a specific antibody, which then tethers a pA-APEX2 fusion protein. Activation of APEX2 labels the nearby proteins with biotin; the biotinylated proteins are then purified using streptavidin beads and identified by mass spectrometry. We demonstrated the utility of this approach by profiling the proximal proteins of histone modifications including H3K27me3, H3K9me3, H3K4me3, H4K5ac, and H4K12ac, as well as verifying the co-localization of these identified proteins with bait proteins by published ChIP-seq analysis and nucleosome immunoprecipitation. Overall, AMAPEX is an efficient method to identify proteins that are proximal to modified histones.
Collapse
Affiliation(s)
- Xinran Li
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jiaqi Zhou
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Wenjuan Zhao
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Qing Wen
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Weijie Wang
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Huipai Peng
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yuan Gao
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Kelly J Bouchonville
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Steven M Offer
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA; Mayo Clinic College of Medicine, Rochester, MN 55905, USA; Mayo Clinic Cancer Center, Rochester, MN 55905, USA
| | - Kuiming Chan
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong Special Administrative Region 999077, China; Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518172, China
| | - Zhiquan Wang
- Mayo Clinic College of Medicine, Rochester, MN 55905, USA; Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA.
| | - Nan Li
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Haiyun Gan
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| |
Collapse
|
13
|
Lovell S, Zhang L, Kryza T, Neodo A, Bock N, De Vita E, Williams ED, Engelsberger E, Xu C, Bakker AT, Maneiro M, Tanaka RJ, Bevan CL, Clements JA, Tate EW. A Suite of Activity-Based Probes To Dissect the KLK Activome in Drug-Resistant Prostate Cancer. J Am Chem Soc 2021; 143:8911-8924. [PMID: 34085829 PMCID: PMC9282638 DOI: 10.1021/jacs.1c03950] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
![]()
Kallikrein-related
peptidases (KLKs) are a family of secreted serine
proteases, which form a network (the KLK activome) with an important
role in proteolysis and signaling. In prostate cancer (PCa), increased
KLK activity promotes tumor growth and metastasis through multiple
biochemical pathways, and specific quantification and tracking of
changes in the KLK activome could contribute to validation of KLKs
as potential drug targets. Herein we report a technology platform
based on novel activity-based probes (ABPs) and inhibitors enabling
simultaneous orthogonal analysis of KLK2, KLK3, and KLK14 activity
in hormone-responsive PCa cell lines and tumor homogenates. Importantly,
we identifed a significant decoupling of KLK activity and abundance
and suggest that KLK proteolysis should be considered as an additional
parameter, along with the PSA blood test, for accurate PCa diagnosis
and monitoring. Using selective inhibitors and multiplexed fluorescent
activity-based protein profiling (ABPP), we dissect the KLK activome
in PCa cells and show that increased KLK14 activity leads to a migratory
phenotype. Furthermore, using biotinylated ABPs, we show that active
KLK molecules are secreted into the bone microenvironment by PCa cells
following stimulation by osteoblasts suggesting KLK-mediated signaling
mechanisms could contribute to PCa metastasis to bone. Together our
findings show that ABPP is a powerful approach to dissect dysregulation
of the KLK activome as a promising and previously underappreciated
therapeutic target in advanced PCa.
Collapse
Affiliation(s)
- Scott Lovell
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K
| | - Leran Zhang
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K
| | - Thomas Kryza
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia.,Australian Prostate Cancer Research Centre-Queensland (APCRC-Q), Institute of Health & Biomedical Innovation and School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Translational Research Institute, Woolloongabba, QLD 4102, Australia
| | - Anna Neodo
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K
| | - Nathalie Bock
- Australian Prostate Cancer Research Centre-Queensland (APCRC-Q), Institute of Health & Biomedical Innovation and School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Translational Research Institute, Woolloongabba, QLD 4102, Australia
| | - Elena De Vita
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K
| | - Elizabeth D Williams
- Australian Prostate Cancer Research Centre-Queensland (APCRC-Q), Institute of Health & Biomedical Innovation and School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Translational Research Institute, Woolloongabba, QLD 4102, Australia
| | - Elisabeth Engelsberger
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K
| | - Congyi Xu
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K
| | - Alexander T Bakker
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K
| | - Maria Maneiro
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K
| | - Reiko J Tanaka
- Department of Bioengineering, Imperial College London, London SW7 2AZ, U.K
| | - Charlotte L Bevan
- Department of Surgery and Cancer, Imperial Centre for Translational and Experimental Medicine, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, U.K
| | - Judith A Clements
- Australian Prostate Cancer Research Centre-Queensland (APCRC-Q), Institute of Health & Biomedical Innovation and School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Translational Research Institute, Woolloongabba, QLD 4102, Australia
| | - Edward W Tate
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K.,The Francis Crick Institute, London NW1 1AT, U.K
| |
Collapse
|
14
|
Burster T, Gärtner F, Knippschild U, Zhanapiya A. Activity-Based Probes to Utilize the Proteolytic Activity of Cathepsin G in Biological Samples. Front Chem 2021; 9:628295. [PMID: 33732686 PMCID: PMC7959752 DOI: 10.3389/fchem.2021.628295] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/07/2021] [Indexed: 12/30/2022] Open
Abstract
Neutrophils, migrating to the site of infection, are able to release serine proteases after being activated. These serine proteases comprise cathepsin G (CatG), neutrophil elastase protease 3 (PR3), and neutrophil serine protease 4 (NSP4). A disadvantage of the uncontrolled proteolytic activity of proteases is the outcome of various human diseases, including cardiovascular diseases, thrombosis, and autoimmune diseases. Activity-based probes (ABPs) are used to determine the proteolytic activity of proteases, containing a set of three essential elements: Warhead, recognition sequence, and the reporter tag for detection of the covalent enzyme activity–based probe complex. Here, we summarize the latest findings of ABP-mediated detection of proteases in both locations intracellularly and on the cell surface of cells, thereby focusing on CatG. Particularly, application of ABPs in regular flow cytometry, imaging flow cytometry, and mass cytometry by time-of-flight (CyTOF) approaches is advantageous when distinguishing between immune cell subsets. ABPs can be included in a vast panel of markers to detect proteolytic activity and determine whether proteases are properly regulated during medication. The use of ABPs as a detection tool opens the possibility to interfere with uncontrolled proteolytic activity of proteases by employing protease inhibitors.
Collapse
Affiliation(s)
- Timo Burster
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Fabian Gärtner
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital, Ulm, Germany
| | - Uwe Knippschild
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital, Ulm, Germany
| | - Anuar Zhanapiya
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
| |
Collapse
|
15
|
Verhelst SHL, Bonger KM, Willems LI. Bioorthogonal Reactions in Activity-Based Protein Profiling. Molecules 2020; 25:E5994. [PMID: 33352858 PMCID: PMC7765892 DOI: 10.3390/molecules25245994] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 12/27/2022] Open
Abstract
Activity-based protein profiling (ABPP) is a powerful technique to label and detect active enzyme species within cell lysates, cells, or whole animals. In the last two decades, a wide variety of applications and experimental read-out techniques have been pursued in order to increase our understanding of physiological and pathological processes, to identify novel drug targets, to evaluate selectivity of drugs, and to image probe targets in cells. Bioorthogonal chemistry has substantially contributed to the field of ABPP, as it allows the introduction of tags, which may be bulky or have unfavorable physicochemical properties, at a late stage in the experiment. In this review, we give an overview of the bioorthogonal reactions that have been implemented in ABPP, provide examples of applications of bioorthogonal chemistry in ABPP, and share some thoughts on future directions.
Collapse
Affiliation(s)
- Steven H. L. Verhelst
- Laboratory of Chemical Biology, Department of Cellular and Molecular Medicine, KU Leuven, Herestr. 49, Box 802, 3000 Leuven, Belgium
- AG Chemical Proteomics, Leibniz Institute for Analytical Sciences ISAS, e.V., Otto-Hahn-Str. 6b, 44227 Dortmund, Germany
| | - Kimberly M. Bonger
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Lianne I. Willems
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, UK
| |
Collapse
|
16
|
Affiliation(s)
- Christin Bednarek
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
| | - Ilona Wehl
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
| | - Nicole Jung
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
- Institute of Biological and Chemical Systems—Functional Molecular Systems, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Ute Schepers
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
- Institute of Functional Interfaces, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Stefan Bräse
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
- Institute of Biological and Chemical Systems—Functional Molecular Systems, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
17
|
Proteins containing ubiquitin-like (Ubl) domains not only bind to 26S proteasomes but also induce their activation. Proc Natl Acad Sci U S A 2020; 117:4664-4674. [PMID: 32071216 DOI: 10.1073/pnas.1915534117] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
During protein degradation by the ubiquitin-proteasome pathway, latent 26S proteasomes in the cytosol must assume an active form. Proteasomes are activated when ubiquitylated substrates bind to them and interact with the proteasome-bound deubiquitylase Usp14/Ubp6. The resulting increase in the proteasome's degradative activity was recently shown to be mediated by Usp14's ubiquitin-like (Ubl) domain, which, by itself, can trigger proteasome activation. Many other proteins with diverse cellular functions also contain Ubl domains and can associate with 26S proteasomes. We therefore tested if various Ubl-containing proteins that have important roles in protein homeostasis or disease also activate 26S proteasomes. All seven Ubl-containing proteins tested-the shuttling factors Rad23A, Rad23B, and Ddi2; the deubiquitylase Usp7, the ubiquitin ligase Parkin, the cochaperone Bag6, and the protein phosphatase UBLCP1-stimulated peptide hydrolysis two- to fivefold. Rather than enhancing already active proteasomes, Rad23B and its Ubl domain activated previously latent 26S particles. Also, Ubl-containing proteins (if present with an unfolded protein) increased proteasomal adenosine 5'-triphosphate (ATP) hydrolysis, the step which commits substrates to degradation. Surprisingly, some of these proteins also could stimulate peptide hydrolysis even when their Ubl domains were deleted. However, their Ubl domains were required for the increased ATPase activity. Thus, upon binding to proteasomes, Ubl-containing proteins not only deliver substrates (e.g., the shuttling factors) or provide additional enzymatic activities (e.g., Parkin) to proteasomes, but also increase their capacity for proteolysis.
Collapse
|
18
|
Schipper-Krom S, Sanz AS, van Bodegraven EJ, Speijer D, Florea BI, Ovaa H, Reits EA. Visualizing Proteasome Activity and Intracellular Localization Using Fluorescent Proteins and Activity-Based Probes. Front Mol Biosci 2019; 6:56. [PMID: 31482094 PMCID: PMC6710370 DOI: 10.3389/fmolb.2019.00056] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 07/02/2019] [Indexed: 12/18/2022] Open
Abstract
The proteasome is a multi-catalytic molecular machine that plays a key role in the degradation of many cytoplasmic and nuclear proteins. The proteasome is essential and proteasome malfunction is associated with various disease pathologies. Proteasome activity depends on its catalytic subunits which are interchangeable and also on the interaction with the associated regulatory cap complexes. Here, we describe and compare various methods that allow the study of proteasome function in living cells. Methods include the use of fluorescently tagged proteasome subunits and the use of activity-based proteasome probes. These probes can be used in both biochemical assays and in microscopy-based experiments. Together with tagged proteasomes, they can be used to study proteasome localization, dynamics, and activity.
Collapse
Affiliation(s)
- Sabine Schipper-Krom
- Department of Medical Biology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Alicia Sanz Sanz
- Department of Medical Biology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Emma J. van Bodegraven
- Department of Medical Biology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Dave Speijer
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Bogdan I. Florea
- Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - Huib Ovaa
- Department of Cell and Chemical Biology, Leiden University Medical Center, Oncode Institute, Leiden, Netherlands
| | - Eric A. Reits
- Department of Medical Biology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
19
|
Borne AL, Huang T, McCloud RL, Pachaiyappan B, Bullock TNJ, Hsu KL. Deciphering T Cell Immunometabolism with Activity-Based Protein Profiling. Curr Top Microbiol Immunol 2019; 420:175-210. [PMID: 30128827 PMCID: PMC7134364 DOI: 10.1007/82_2018_124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
As a major sentinel of adaptive immunity, T cells seek and destroy diseased cells using antigen recognition to achieve molecular specificity. Strategies to block checkpoint inhibition of T cell activity and thus reawaken the patient's antitumor immune responses are rapidly becoming standard of care for treatment of diverse cancers. Adoptive transfer of patient T cells genetically engineered with tumor-targeting capabilities is redefining the field of personalized medicines. The diverse opportunities for exploiting T cell biology in the clinic have prompted new efforts to expand the scope of targets amenable to immuno-oncology. Given the complex spatiotemporal regulation of T cell function and fate, new technologies capable of global molecular profiling in vivo are needed to guide selection of appropriate T cell targets and subsets. In this chapter, we describe the use of activity-based protein profiling (ABPP) to illuminate different aspects of T cell metabolism and signaling as fertile starting points for investigation. We highlight the merits of ABPP methods to enable target, inhibitor, and biochemical pathway discovery of T cells in the burgeoning field of immuno-oncology.
Collapse
Affiliation(s)
- Adam L Borne
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Tao Huang
- Department of Chemistry, University of Virginia, McCormick Road, P.O. Box 400319, Charlottesville, VA, 22904, USA
| | - Rebecca L McCloud
- Department of Chemistry, University of Virginia, McCormick Road, P.O. Box 400319, Charlottesville, VA, 22904, USA
| | - Boobalan Pachaiyappan
- Department of Chemistry, University of Virginia, McCormick Road, P.O. Box 400319, Charlottesville, VA, 22904, USA
| | - Timothy N J Bullock
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Ku-Lung Hsu
- Department of Chemistry, University of Virginia, McCormick Road, P.O. Box 400319, Charlottesville, VA, 22904, USA.
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.
| |
Collapse
|
20
|
Yu S, Du Z, Dong C, Ren J. In situ study of RSK2 kinase activity in a single living cell by combining single molecule spectroscopy with activity-based probes. Analyst 2019; 144:3756-3764. [DOI: 10.1039/c9an00178f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
FCS with the ABP strategy is a very promising method for studying endogenous protein kinases in living cells.
Collapse
Affiliation(s)
- Shengrong Yu
- School of Chemistry & Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai
- P. R. China
| | - Zhixue Du
- School of Chemistry & Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai
- P. R. China
| | - Chaoqing Dong
- School of Chemistry & Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai
- P. R. China
| | - Jicun Ren
- School of Chemistry & Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai
- P. R. China
| |
Collapse
|
21
|
Abstract
Successful viral infection, as well as any resultant antiviral response, relies on numerous sequential interactions between host and viral factors. These interactions can take the form of affinity-based interactions between viral and host macromolecules or active, enzyme-based interactions, consisting both of direct enzyme activity performed by viral enzymes and indirect modulation of the activity of the host cell's enzymes via viral interference. This activity has the potential to transform the local microenvironment to the benefit or detriment of both the virus and the host, favouring either the continuation of the viral life cycle or the host's antiviral response. Comprehensive characterisation of enzymatic activity during viral infection is therefore necessary for the understanding of virally induced diseases. Activity-based protein profiling techniques have been established as effective and practicable tools with which to interrogate the regulation of enzymes' catalytic activity and the roles played by these enzymes in various cell processes. This paper will review the contributions of these techniques in characterising the roles of both host and viral enzymes during viral infection in humans.
Collapse
Affiliation(s)
- Benjamin F. Cravatt
- grid.214007.00000000122199231Department of Chemistry, The Scripps Research Institute, La Jolla, CA USA
| | - Ku-Lung Hsu
- grid.27755.320000 0000 9136 933XDepartment of Chemistry, University of Virginia, Charlottesville, VA USA
| | - Eranthie Weerapana
- grid.208226.c0000 0004 0444 7053Department of Chemistry, Boston College, Chestnut Hill, MA USA
| |
Collapse
|
22
|
Dubiella C, Cui H, Groll M. Tunable Probes with Direct Fluorescence Signals for the Constitutive and Immunoproteasome. Angew Chem Int Ed Engl 2018; 55:13330-13334. [PMID: 27709817 DOI: 10.1002/anie.201605753] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 07/20/2016] [Indexed: 01/24/2023]
Abstract
Electrophiles are commonly used for the inhibition of proteases. Notably, inhibitors of the proteasome, a central determinant of cellular survival and a target of several FDA-approved drugs, are mainly characterized by the reactivity of their electrophilic head groups. We aimed to tune the inhibitory strength of peptidic sulfonate esters by varying the leaving groups. Indeed, proteasome inhibition correlated well with the pKa of the leaving group. The use of fluorophores as leaving groups enabled us to design probes that release a stoichiometric fluorescence signal upon reaction, thereby directly linking proteasome inactivation to the readout. This principle could be applicable to other sulfonyl fluoride based inhibitors and allows the design of sensitive probes for enzymatic studies.
Collapse
Affiliation(s)
- Christian Dubiella
- Center for Integrated Protein Science Munich (CIPSM), Department of Chemistry, Technische Universität München, Lichtenbergstrasse 4, 85748, Garching, Germany.
| | - Haissi Cui
- Center for Integrated Protein Science Munich (CIPSM), Department of Chemistry, Technische Universität München, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Michael Groll
- Center for Integrated Protein Science Munich (CIPSM), Department of Chemistry, Technische Universität München, Lichtenbergstrasse 4, 85748, Garching, Germany.
| |
Collapse
|
23
|
Fernandez-Godino R, Pierce EA. C3a triggers formation of sub-retinal pigment epithelium deposits via the ubiquitin proteasome pathway. Sci Rep 2018; 8:9679. [PMID: 29946065 PMCID: PMC6018664 DOI: 10.1038/s41598-018-28143-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 06/15/2018] [Indexed: 01/25/2023] Open
Abstract
The mechanisms that connect complement system activation and basal deposit formation in early stages of age-related macular degeneration (AMD) are insufficiently understood, which complicates the design of efficient therapies to prevent disease progression. Using human fetal (hf) retinal pigment epithelial (RPE) cells, we have established an in vitro model to investigate the effect of complement C3a on RPE cells and its role in the formation of sub-RPE deposits. The results of these studies revealed that C3a produced after C3 activation is sufficient to induce the formation of sub-RPE deposits via complement-driven proteasome inhibition. C3a binds the C3a receptor (C3aR), stimulates deposition of collagens IV and VI underneath the RPE, and impairs the extracellular matrix (ECM) turnover by increased MMP-2 activity, all mediated by downregulation of the ubiquitin proteasome pathway (UPP). The formation of basal deposits can be prevented by the addition of a C3aR antagonist, which restores the UPP activity and ECM turnover. These findings indicate that the cell-based model can be used to test potential therapeutic agents in vitro. The data suggest that modulation of C3aR-mediated events could be a therapeutic approach for treatment of early AMD.
Collapse
Affiliation(s)
- Rosario Fernandez-Godino
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, 02114, USA.
| | - Eric A Pierce
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, 02114, USA
| |
Collapse
|
24
|
Wright MH. Chemical Proteomics of Host-Microbe Interactions. Proteomics 2018; 18:e1700333. [DOI: 10.1002/pmic.201700333] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 04/16/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Megan H. Wright
- Astbury Centre for Structural Molecular Biology; School of Chemistry; University of Leeds; Leeds LS2 9JT United Kingdom
| |
Collapse
|
25
|
Mapping in vivo target interaction profiles of covalent inhibitors using chemical proteomics with label-free quantification. Nat Protoc 2018; 13:752-767. [DOI: 10.1038/nprot.2017.159] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
26
|
Raz V, Riaz M, Tatum Z, Kielbasa SM, 't Hoen PAC. The distinct transcriptomes of slow and fast adult muscles are delineated by noncoding RNAs. FASEB J 2018; 32:1579-1590. [PMID: 29141996 DOI: 10.1096/fj.201700861r] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Adult muscles have a vast adaptation capacity, enabling function switches in response to altered conditions. During intensive physical activity, disease, or aging, adult skeletal muscles change and adjust their functions. The competence to adjust varies among muscles. Muscle-specific molecular mechanisms in healthy and normal conditions could designate changes in physiologic and pathologic conditions. We generated deep mRNA-sequencing data in adult fast and slow mouse muscles, and applying paired analysis, we identified that the muscle-specific signatures are composed of half of the muscle transcriptome. The fast muscles showed a more compact gene network that is concordant with homogenous myofiber typing, compared with the pattern in the slow muscle. The muscle-specific mRNA landscape did not correlate with alternative spicing, alternative polyadenylation, or the expression of muscle transcription factor gene networks. However, we found significant correlation between the differentially expressed noncoding RNAs, microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) and their target genes. More than 25% of the genes expressed in a muscle-specific fashion were found to be targets of muscle-specific miRNAs and lncRNAs. We suggest that muscle-specific miRNAs and lncRNAs contribute to the establishment of muscle-specific transcriptomes in adult muscles.-Raz, V., Riaz, M., Tatum, Z., Kielbasa, S. M., 't Hoen, P. A. C. The distinct transcriptomes of slow and fast adult muscles are delineated by noncoding RNAs.
Collapse
Affiliation(s)
- Vered Raz
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Muhammad Riaz
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Zuotian Tatum
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Szymon M Kielbasa
- Department of Medical Statistics and Bioinformatics, Bioinformatics Center of Expertise, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter A C 't Hoen
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
27
|
Abstract
The activity of proteases is tightly regulated, and dysregulation is linked to a variety of human diseases. For this reason, ABPP is a well-suited method to study protease biology and the design of protease probes has pushed the boundaries of ABPP. The development of highly selective protease probes is still a challenging task. After an introduction, the first section of this chapter discusses several strategies to enable detection of a single active protease species. These range from the usage of non-natural amino acids, combination of probes with antibodies, and engineering of the target proteases. A next section describes the different types of detection tags that facilitate the read-out possibilities including various types of imaging methods and mass spectrometry-based target identification. The power of protease ABPP is illustrated by examples for a selected number of proteases. It is expected that some protease probes that have been evaluated in animal models of human disease will find translation into clinical application in the near future.
Collapse
|
28
|
Liu HW, Chen L, Xu C, Li Z, Zhang H, Zhang XB, Tan W. Recent progresses in small-molecule enzymatic fluorescent probes for cancer imaging. Chem Soc Rev 2018; 47:7140-7180. [DOI: 10.1039/c7cs00862g] [Citation(s) in RCA: 515] [Impact Index Per Article: 85.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An overview of recent advances in small-molecule enzymatic fluorescent probes for cancer imaging, including design strategies and cancer imaging applications.
Collapse
Affiliation(s)
- Hong-Wen Liu
- Molecular Science and Biomedicine Laboratory (MBL)
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Collaborative Innovation Center for Chemistry and Molecular Medicine
- Hunan University
| | - Lanlan Chen
- Molecular Science and Biomedicine Laboratory (MBL)
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Collaborative Innovation Center for Chemistry and Molecular Medicine
- Hunan University
| | - Chengyan Xu
- Molecular Science and Biomedicine Laboratory (MBL)
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Collaborative Innovation Center for Chemistry and Molecular Medicine
- Hunan University
| | - Zhe Li
- Molecular Science and Biomedicine Laboratory (MBL)
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Collaborative Innovation Center for Chemistry and Molecular Medicine
- Hunan University
| | - Haiyang Zhang
- Molecular Science and Biomedicine Laboratory (MBL)
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Collaborative Innovation Center for Chemistry and Molecular Medicine
- Hunan University
| | - Xiao-Bing Zhang
- Molecular Science and Biomedicine Laboratory (MBL)
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Collaborative Innovation Center for Chemistry and Molecular Medicine
- Hunan University
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL)
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Collaborative Innovation Center for Chemistry and Molecular Medicine
- Hunan University
| |
Collapse
|
29
|
Banno A, Garcia DA, van Baarsel ED, Metz PJ, Fisch K, Widjaja CE, Kim SH, Lopez J, Chang AN, Geurink PP, Florea BI, Overkleeft HS, Ovaa H, Bui JD, Yang J, Chang JT. Downregulation of 26S proteasome catalytic activity promotes epithelial-mesenchymal transition. Oncotarget 2017; 7:21527-41. [PMID: 26930717 PMCID: PMC5008303 DOI: 10.18632/oncotarget.7596] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 01/24/2016] [Indexed: 01/12/2023] Open
Abstract
The epithelial-mesenchymal transition (EMT) endows carcinoma cells with phenotypic plasticity that can facilitate the formation of cancer stem cells (CSCs) and contribute to the metastatic cascade. While there is substantial support for the role of EMT in driving cancer cell dissemination, less is known about the intracellular molecular mechanisms that govern formation of CSCs via EMT. Here we show that β2 and β5 proteasome subunit activity is downregulated during EMT in immortalized human mammary epithelial cells. Moreover, selective proteasome inhibition enabled mammary epithelial cells to acquire certain morphologic and functional characteristics reminiscent of cancer stem cells, including CD44 expression, self-renewal, and tumor formation. Transcriptomic analyses suggested that proteasome-inhibited cells share gene expression signatures with cells that have undergone EMT, in part, through modulation of the TGF-β signaling pathway. These findings suggest that selective downregulation of proteasome activity in mammary epithelial cells can initiate the EMT program and acquisition of a cancer stem cell-like phenotype. As proteasome inhibitors become increasingly used in cancer treatment, our findings highlight a potential risk of these therapeutic strategies and suggest a possible mechanism by which carcinoma cells may escape from proteasome inhibitor-based therapy.
Collapse
Affiliation(s)
- Asoka Banno
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Daniel A Garcia
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Eric D van Baarsel
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Patrick J Metz
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Kathleen Fisch
- Center for Computational Biology and Bioinformatics, Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | | | - Stephanie H Kim
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Justine Lopez
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Aaron N Chang
- Center for Computational Biology and Bioinformatics, Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Paul P Geurink
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Bogdan I Florea
- Division of Chemical Biology, Leiden Institute of Chemistry, Leiden University, Gorlaeus Laboratories, Leiden, The Netherlands
| | - Hermen S Overkleeft
- Division of Chemical Biology, Leiden Institute of Chemistry, Leiden University, Gorlaeus Laboratories, Leiden, The Netherlands
| | - Huib Ovaa
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jack D Bui
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Jing Yang
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA.,Department of Pediatrics, University of California San Diego, La Jolla, CA, USA.,Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - John T Chang
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
30
|
Raz V, Raz Y, Paniagua-Soriano G, Roorda JC, Olie C, Riaz M, Florea BI. Proteasomal activity-based probes mark protein homeostasis in muscles. J Cachexia Sarcopenia Muscle 2017; 8:798-807. [PMID: 28675601 PMCID: PMC5659047 DOI: 10.1002/jcsm.12211] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 04/06/2017] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Protein homeostasis, primarily regulated by the ubiquitin-proteasome system is crucial for proper function of cells. In tissues of post-mitotic cells, the impaired ubiquitin-proteasome system is found in a wide range of neuromuscular disorders. Activity-based probes (ABPs) measure proteasomal proteolytic subunits and can be used to report protein homeostasis. Despite the crucial role of the proteasome in neuromuscular pathologies, ABPs were not employed in muscle cells and tissues, and measurement of proteasomal activity was carried out in vitro using low-throughput procedures. METHODS We screened six ABPs for specific application in muscle cell culture using high throughput call-based imaging procedures. We then determined an in situ proteasomal activity in myofibers of muscle cryosections. RESULTS We demonstrate that LWA300, a pan-reactive proteasomal probe, is most suitable to report proteasomal activity in muscle cells using cell-based bio-imaging. We found that proteasomal activity is two-fold and three-fold enhanced in fused muscle cell culture compared with non-fused cells. Moreover, we found that proteasomal activity can discriminate between muscles. Across muscles, a relative higher proteasomal activity was found in hybrid myofibers whereas fast-twitch myofibers displayed lower activity. CONCLUSIONS Our study demonstrates that proteasomal activity differ between muscles and between myofiber types. We suggest that ABPs can be used to report disease progression and treatment efficacy.
Collapse
Affiliation(s)
- Vered Raz
- Department of Human Genetics, LUMC, Leiden, The Netherlands
| | - Yotam Raz
- Department of Human Genetics, LUMC, Leiden, The Netherlands
| | | | | | - Cyriel Olie
- Department of Human Genetics, LUMC, Leiden, The Netherlands
| | - Muhammad Riaz
- Department of Human Genetics, LUMC, Leiden, The Netherlands
| | - Bogdan I Florea
- Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden, The Netherlands
| |
Collapse
|
31
|
Kramer L, Renko M, Završnik J, Turk D, Seeger MA, Vasiljeva O, Grütter MG, Turk V, Turk B. Non-invasive in vivo imaging of tumour-associated cathepsin B by a highly selective inhibitory DARPin. Am J Cancer Res 2017; 7:2806-2821. [PMID: 28824717 PMCID: PMC5562217 DOI: 10.7150/thno.19081] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 04/15/2017] [Indexed: 01/17/2023] Open
Abstract
Cysteine cathepsins often contribute to cancer progression due to their overexpression in the tumour microenvironment and therefore present attractive targets for non-invasive diagnostic imaging. However, the development of highly selective and versatile small molecule probes for cathepsins has been challenging. Here, we targeted tumour-associated cathepsin B using designed ankyrin repeat proteins (DARPins). The selective DARPin 8h6 inhibited cathepsin B with picomolar affinity (Ki = 35 pM) by binding to a site with low structural conservation in cathepsins, as revealed by the X-ray structure of the complex. DARPin 8h6 blocked cathepsin B activity in tumours ex vivo and was successfully applied in in vivo optical imaging in two mouse breast cancer models, in which cathepsin B was bound to the cell membrane or secreted to the extracellular milieu by tumour and stromal cells. Our approach validates cathepsin B as a promising diagnostic and theranostic target in cancer and other inflammation-associated diseases.
Collapse
|
32
|
Besse A, Stolze SC, Rasche L, Weinhold N, Morgan GJ, Kraus M, Bader J, Overkleeft HS, Besse L, Driessen C. Carfilzomib resistance due to ABCB1/MDR1 overexpression is overcome by nelfinavir and lopinavir in multiple myeloma. Leukemia 2017; 32:391-401. [PMID: 28676669 PMCID: PMC5808083 DOI: 10.1038/leu.2017.212] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 06/21/2017] [Accepted: 06/26/2017] [Indexed: 12/18/2022]
Abstract
Proteasome inhibitor (PI) carfilzomib (CFZ) has activity superior to bortezomib (BTZ) and is increasingly incorporated in multiple myeloma (MM) frontline therapy and relapsed settings. Most MM patients ultimately experience PI-refractory disease, an unmet medical need with poorly understood biology and dismal outcome. Pharmacologic targeting of ABCB1 improved patient outcomes, including MM, but suffered from adverse drug effects and insufficient plasma concentrations. Proteomics analysis identified ABCB1 overexpression as the most significant change in CFZ-resistant MM cells. We addressed the functional role of ABCB1 overexpression in MM and observed significantly upregulated ABCB1 in peripheral blood malignant plasma cells (PCs) vs untreated patients' bone marrow PC. ABCB1 overexpression reduces the proteasome-inhibiting activity of CFZ due to drug efflux, in contrast to BTZ. Likewise, the cytotoxicity of established anti-MM drugs was significantly reduced in ABCB1-expressing MM cells. In search for potential drugs targeting ABCB1 in clinical trials, we identified the HIV protease inhibitors nelfinavir (NFV) and lopinavir (LPV) as potent functional modulators of ABCB1-mediated drug export, most likely via modulation of mitochondria permeability transition pore. NFV and LPV restored CFZ activity at therapeutically relevant drug levels and thus represent ready-to-use drugs to be tested in clinical trials to target ABCB1 and to re-sensitize PC to established myeloma drugs, in particular CFZ.
Collapse
Affiliation(s)
- A Besse
- Experimental Oncology and Hematology, Department of Oncology and Hematology, Kantonsspital St Gallen, St Gallen, Switzerland
| | - S C Stolze
- Gorlaeus Laboratories, Leiden Institute of Chemistry and Netherlands Proteomics Centre, Leiden, The Netherlands
| | - L Rasche
- Myeloma Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - N Weinhold
- Myeloma Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - G J Morgan
- Myeloma Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - M Kraus
- Experimental Oncology and Hematology, Department of Oncology and Hematology, Kantonsspital St Gallen, St Gallen, Switzerland
| | - J Bader
- Experimental Oncology and Hematology, Department of Oncology and Hematology, Kantonsspital St Gallen, St Gallen, Switzerland
| | - H S Overkleeft
- Gorlaeus Laboratories, Leiden Institute of Chemistry and Netherlands Proteomics Centre, Leiden, The Netherlands
| | - L Besse
- Experimental Oncology and Hematology, Department of Oncology and Hematology, Kantonsspital St Gallen, St Gallen, Switzerland
| | - C Driessen
- Experimental Oncology and Hematology, Department of Oncology and Hematology, Kantonsspital St Gallen, St Gallen, Switzerland
| |
Collapse
|
33
|
Aromatic Polyketide GTRI-02 is a Previously Unidentified Product of theactGene Cluster inStreptomyces coelicolor A3(2). Chembiochem 2017; 18:1428-1434. [DOI: 10.1002/cbic.201700107] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Indexed: 11/07/2022]
|
34
|
Wu L, Jiang J, Jin Y, Kallemeijn WW, Kuo CL, Artola M, Dai W, van Elk C, van Eijk M, van der Marel GA, Codée JDC, Florea BI, Aerts JMFG, Overkleeft HS, Davies GJ. Activity-based probes for functional interrogation of retaining β-glucuronidases. Nat Chem Biol 2017; 13:867-873. [PMID: 28581485 DOI: 10.1038/nchembio.2395] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 03/10/2017] [Indexed: 02/06/2023]
Abstract
Humans express at least two distinct β-glucuronidase enzymes that are involved in disease: exo-acting β-glucuronidase (GUSB), whose deficiency gives rise to mucopolysaccharidosis type VII, and endo-acting heparanase (HPSE), whose overexpression is implicated in inflammation and cancers. The medical importance of these enzymes necessitates reliable methods to assay their activities in tissues. Herein, we present a set of β-glucuronidase-specific activity-based probes (ABPs) that allow rapid and quantitative visualization of GUSB and HPSE in biological samples, providing a powerful tool for dissecting their activities in normal and disease states. Unexpectedly, we find that the supposedly inactive HPSE proenzyme proHPSE is also labeled by our ABPs, leading to surprising insights regarding structural relationships between proHPSE, mature HPSE, and their bacterial homologs. Our results demonstrate the application of β-glucuronidase ABPs in tracking pathologically relevant enzymes and provide a case study of how ABP-driven approaches can lead to discovery of unanticipated structural and biochemical functionality.
Collapse
Affiliation(s)
- Liang Wu
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York, UK
| | - Jianbing Jiang
- Department of Bioorganic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Yi Jin
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York, UK
| | - Wouter W Kallemeijn
- Department of Medical Biochemistry, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Chi-Lin Kuo
- Department of Medical Biochemistry, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Marta Artola
- Department of Bioorganic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Wei Dai
- Department of Bioorganic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Cas van Elk
- Department of Bioorganic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Marco van Eijk
- Department of Medical Biochemistry, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Gijsbert A van der Marel
- Department of Bioorganic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Jeroen D C Codée
- Department of Bioorganic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Bogdan I Florea
- Department of Bioorganic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Johannes M F G Aerts
- Department of Medical Biochemistry, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Herman S Overkleeft
- Department of Bioorganic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Gideon J Davies
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York, UK
| |
Collapse
|
35
|
Misas-Villamil JC, van der Burgh AM, Grosse-Holz F, Bach-Pages M, Kovács J, Kaschani F, Schilasky S, Emon AEK, Ruben M, Kaiser M, Overkleeft HS, van der Hoorn RAL. Subunit-selective proteasome activity profiling uncovers uncoupled proteasome subunit activities during bacterial infections. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:418-430. [PMID: 28117509 DOI: 10.1111/tpj.13494] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 01/09/2017] [Indexed: 06/06/2023]
Abstract
The proteasome is a nuclear-cytoplasmic proteolytic complex involved in nearly all regulatory pathways in plant cells. The three different catalytic activities of the proteasome can have different functions, but tools to monitor and control these subunits selectively are not yet available in plant science. Here, we introduce subunit-selective inhibitors and dual-color fluorescent activity-based probes for studying two of the three active catalytic subunits of the plant proteasome. We validate these tools in two model plants and use this to study the proteasome during plant-microbe interactions. Our data reveal that Nicotiana benthamiana incorporates two different paralogs of each catalytic subunit into active proteasomes. Interestingly, both β1 and β5 activities are significantly increased upon infection with pathogenic Pseudomonas syringae pv. tomato DC3000 lacking hopQ1-1 [PtoDC3000(ΔhQ)] whilst the activity profile of the β1 subunit changes. Infection with wild-type PtoDC3000 causes proteasome activities that range from strongly induced β1 and β5 activities to strongly suppressed β5 activities, revealing that β1 and β5 activities can be uncoupled during bacterial infection. These selective probes and inhibitors are now available to the plant science community, and can be widely and easily applied to study the activity and role of the different catalytic subunits of the proteasome in different plant species.
Collapse
Affiliation(s)
- Johana C Misas-Villamil
- The Plant Chemetics Laboratory, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829, Cologne, Germany
- Botanical Institute and Cluster of Excellence on Plant Sciences, University of Cologne, 50674, Cologne, Germany
| | - Aranka M van der Burgh
- The Plant Chemetics Laboratory, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829, Cologne, Germany
| | - Friederike Grosse-Holz
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, South Parks Lane, Oxford, OX1 3RB, UK
| | - Marcel Bach-Pages
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, South Parks Lane, Oxford, OX1 3RB, UK
| | - Judit Kovács
- The Plant Chemetics Laboratory, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829, Cologne, Germany
- Department of Plant Biology, University of Szeged, Szeged, Hungary
| | - Farnusch Kaschani
- Chemical Biology, Universität Duisburg-Essen, Zentrum für Medizinische Biotechnologie, Fakultät für Biologie, Universitätsstr. 2, 45117, Essen, Germany
| | - Sören Schilasky
- The Plant Chemetics Laboratory, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829, Cologne, Germany
| | - Asif E K Emon
- The Plant Chemetics Laboratory, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829, Cologne, Germany
| | - Mark Ruben
- Gorlaeus Laboratories, Institute of Chemistry and Netherlands Proteomics Centre, 2333 CC, Leiden, The Netherlands
| | - Markus Kaiser
- Chemical Biology, Universität Duisburg-Essen, Zentrum für Medizinische Biotechnologie, Fakultät für Biologie, Universitätsstr. 2, 45117, Essen, Germany
| | - Hermen S Overkleeft
- Gorlaeus Laboratories, Institute of Chemistry and Netherlands Proteomics Centre, 2333 CC, Leiden, The Netherlands
| | - Renier A L van der Hoorn
- The Plant Chemetics Laboratory, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829, Cologne, Germany
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, South Parks Lane, Oxford, OX1 3RB, UK
| |
Collapse
|
36
|
A mammalian nervous-system-specific plasma membrane proteasome complex that modulates neuronal function. Nat Struct Mol Biol 2017; 24:419-430. [PMID: 28287632 PMCID: PMC5383508 DOI: 10.1038/nsmb.3389] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 02/15/2017] [Indexed: 01/01/2023]
Abstract
In the nervous system, rapidly occurring processes such as neuronal transmission and calcium signaling are affected by short-term inhibition of proteasome function. It remains unclear how proteasomes can acutely regulate such processes, as this is inconsistent with their canonical role in proteostasis. Here, we made the discovery of a mammalian nervous system-specific membrane proteasome complex that directly and rapidly modulates neuronal function by degrading intracellular proteins into extracellular peptides that can stimulate neuronal signaling. This proteasome complex is tightly associated with neuronal plasma membranes, exposed to the extracellular space, and catalytically active. Selective inhibition of this membrane proteasome complex by a cell-impermeable proteasome inhibitor blocked extracellular peptide production and attenuated neuronal activity-induced calcium signaling. Moreover, membrane proteasome-derived peptides are sufficient to induce neuronal calcium signaling. Our discoveries challenge the prevailing notion that proteasomes primarily function to maintain proteostasis, and highlight a form of neuronal communication through a membrane proteasome complex.
Collapse
|
37
|
Wu C, Du C, Ichinose K, Choi YH, van Wezel GP. Discovery of C-Glycosylpyranonaphthoquinones in Streptomyces sp. MBT76 by a Combined NMR-Based Metabolomics and Bioinformatics Workflow. JOURNAL OF NATURAL PRODUCTS 2017; 80:269-277. [PMID: 28128554 PMCID: PMC5373568 DOI: 10.1021/acs.jnatprod.6b00478] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Indexed: 06/06/2023]
Abstract
Mining of microbial genomes has revealed that actinomycetes harbor far more biosynthetic potential for bioactive natural products than anticipated. Activation of (cryptic) biosynthetic gene clusters and identification of the corresponding metabolites has become a focal point for drug discovery. Here, we applied NMR-based metabolomics combined with bioinformatics to identify novel C-glycosylpyranonaphthoquinones in Streptomyces sp. MBT76 and to elucidate the biosynthetic pathway. Following activation of the cryptic qin gene cluster for a type II polyketide synthase (PKS) by constitutive expression of its pathway-specific activator, bioinformatics coupled to NMR profiling facilitated the chromatographic isolation and structural elucidation of qinimycins A-C (1-3). The intriguing structural features of the qinimycins, including 8-C-glycosylation, 5,14-epoxidation, and 13-hydroxylation, distinguished these molecules from the model pyranonaphthoquinones actinorhodin, medermycin, and granaticin. Another novelty lies in the unusual fusion of a deoxyaminosugar to the pyranonaphthoquinone backbone during biosynthesis of the antibiotics BE-54238 A and B (4, 5). Qinimycins showed weak antimicrobial activity against Gram-positive bacteria. Our work shows the utility of combining bioinformatics, targeted activation of cryptic gene clusters, and NMR-based metabolic profiling as an effective pipeline for the discovery of microbial natural products with distinctive skeletons.
Collapse
Affiliation(s)
- Changsheng Wu
- Molecular
Biotechnology, Institute of Biology, Leiden
University, Sylviusweg
72, 2333 BE Leiden, The Netherlands
- Natural
Products Laboratory, Institute of Biology, Leiden University, Sylviusweg
72 2333 BE Leiden, The Netherlands
| | - Chao Du
- Molecular
Biotechnology, Institute of Biology, Leiden
University, Sylviusweg
72, 2333 BE Leiden, The Netherlands
| | - Koji Ichinose
- Research
Institute of Pharmaceutical Sciences, Musashino
University, Shinmachi, Nishitokyo-shi, Tokyo 202-8585, Japan
| | - Young Hae Choi
- Natural
Products Laboratory, Institute of Biology, Leiden University, Sylviusweg
72 2333 BE Leiden, The Netherlands
| | - Gilles P. van Wezel
- Molecular
Biotechnology, Institute of Biology, Leiden
University, Sylviusweg
72, 2333 BE Leiden, The Netherlands
| |
Collapse
|
38
|
Hewings DS, Flygare JA, Wertz IE, Bogyo M. Activity-based probes for the multicatalytic proteasome. FEBS J 2017; 284:1540-1554. [PMID: 28107776 DOI: 10.1111/febs.14016] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 12/22/2016] [Accepted: 01/16/2017] [Indexed: 12/17/2022]
Abstract
Proteasomes are multisubunit protease complexes responsible for degrading most intracellular proteins. In addition to removing damaged proteins, they regulate many important cellular processes through the controlled degradation of transcription factors, cell cycle regulators, and enzymes. Eukaryotic proteasomes have three catalytic subunits, β1, β2, and β5, that each has different substrate specificities. Additionally, although we know that diverse cell types express proteasome variants with distinct activity and specificity profiles, the functions of these different pools of proteasomes are not fully understood. Covalent inhibitors of the protease activity of the proteasome have been developed as drugs for hematological malignancies and are currently under investigation for other diseases. Therefore, there is a need for tools that allow direct monitoring of proteasome activity in live cells and tissues. Activity-based probes have proven valuable for biochemical and cell biological studies of the role of individual proteasome subunits, and for evaluating the efficacy and selectivity of proteasome inhibitors. These probes react covalently with the protease active sites, and contain a reporter tag to identify the probe-labeled proteasome subunits. This review will describe the development of broad-spectrum and subunit-specific proteasome activity-based probes, and discuss how these probes have contributed to our understanding of proteasome biology, and to the development of proteasome inhibitors.
Collapse
Affiliation(s)
- David S Hewings
- Discovery Chemistry, Genentech, South San Francisco, CA, USA.,Early Discovery Biochemistry, Genentech, South San Francisco, CA, USA.,Discovery Oncology, Genentech, South San Francisco, CA, USA.,Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - John A Flygare
- Discovery Chemistry, Genentech, South San Francisco, CA, USA
| | - Ingrid E Wertz
- Early Discovery Biochemistry, Genentech, South San Francisco, CA, USA.,Discovery Oncology, Genentech, South San Francisco, CA, USA
| | - Matthew Bogyo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
39
|
Kovács J, Poór P, Kaschani F, Chandrasekar B, Hong TN, Misas-Villamil JC, Xin BT, Kaiser M, Overkleeft HS, Tari I, van der Hoorn RAL. Proteasome Activity Profiling Uncovers Alteration of Catalytic β2 and β5 Subunits of the Stress-Induced Proteasome during Salinity Stress in Tomato Roots. FRONTIERS IN PLANT SCIENCE 2017; 8:107. [PMID: 28217134 PMCID: PMC5289967 DOI: 10.3389/fpls.2017.00107] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 01/18/2017] [Indexed: 05/20/2023]
Abstract
The stress proteasome in the animal kingdom facilitates faster conversion of oxidized proteins during stress conditions by incorporating different catalytic β subunits. Plants deal with similar kind of stresses and also carry multiple paralogous genes encoding for each of the three catalytic β subunits. Here, we investigated the existence of stress proteasomes upon abiotic stress (salt stress) in tomato roots. In contrast to Arabidopsis thaliana, tomato has a simplified proteasome gene set with single genes encoding each β subunit except for two genes encoding β2. Using proteasome activity profiling on tomato roots during salt stress, we discovered a transient modification of the catalytic subunits of the proteasome coinciding with a loss of cell viability. This stress-induced active proteasome disappears at later time points and coincides with the need to degrade oxidized proteins during salt stress. Subunit-selective proteasome probes and MS analysis of fluorescent 2D gels demonstrated that the detected stress-induced proteasome is not caused by an altered composition of subunits in active proteasomes, but involves an increased molecular weight of both labeled β2 and β5 subunits, and an additional acidic pI shift for labeled β5, whilst labeled β1 remains mostly unchanged. Treatment with phosphatase or glycosidases did not affect the migration pattern. This stress-induced proteasome may play an important role in PCD during abiotic stress.
Collapse
Affiliation(s)
- Judit Kovács
- Department of Plant Biology, University of SzegedSzeged, Hungary
| | - Péter Poór
- Department of Plant Biology, University of SzegedSzeged, Hungary
| | - Farnusch Kaschani
- Chemical Biology, Fakultät für Biologie, Zentrum für Medizinische Biotechnologie, Universität Duisburg-EssenEssen, Germany
| | - Balakumaran Chandrasekar
- Plant Chemetics Laboratory, Department of Plant Sciences, University of OxfordOxford, UK
- Plant Chemetics Laboratory, Max Planck Institute for Plant Breeding ResearchCologne, Germany
| | - Tram N. Hong
- Plant Chemetics Laboratory, Department of Plant Sciences, University of OxfordOxford, UK
- Plant Chemetics Laboratory, Max Planck Institute for Plant Breeding ResearchCologne, Germany
| | - Johana C. Misas-Villamil
- Plant Chemetics Laboratory, Max Planck Institute for Plant Breeding ResearchCologne, Germany
- Botanical Institute and Cluster of Excellence on Plant Sciences, University of CologneCologne, Germany
| | - Bo T. Xin
- Leiden Institute of Chemistry, Leiden UniversityLeiden, Netherlands
| | - Markus Kaiser
- Chemical Biology, Fakultät für Biologie, Zentrum für Medizinische Biotechnologie, Universität Duisburg-EssenEssen, Germany
| | | | - Irma Tari
- Department of Plant Biology, University of SzegedSzeged, Hungary
| | - Renier A. L. van der Hoorn
- Plant Chemetics Laboratory, Department of Plant Sciences, University of OxfordOxford, UK
- Plant Chemetics Laboratory, Max Planck Institute for Plant Breeding ResearchCologne, Germany
| |
Collapse
|
40
|
Soriano GP, Overkleeft HS, Florea BI. Two-Step Activity-Based Protein Profiling with the Proteasome System as Model of Study. Methods Mol Biol 2017; 1491:205-215. [PMID: 27778291 DOI: 10.1007/978-1-4939-6439-0_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Activity-based protein profiling (ABPP) is a method to highlight enzymatic activities in a biological sample, which uses chemical probes that react covalently with the catalytic nucleophile of the enzyme. To circumvent disadvantages associated with the presence of reporter tags on chemical probes, the probe is equipped with a ligation handle to which the reporter can be reacted at the desired time and place in the ABPP workflow. This chapter demonstrates the power of a triple bioorthogonal ligation strategy which addresses the three activities of the proteasome: the β5-subunit selective norbornene-tagged probe is reacted with fluorescent tetrazine, the β1-selective azide-functionalized probe was addressed with a biotinylated phosphine, followed by an alkyne-substituted pan-reactive probe to label the remaining β2 activity to which an azide-coupled fluorophore was ligated. The result of the triple ligation was similar to each reaction performed separately demonstrating the value of the triple ligation strategy for a single experiment.
Collapse
Affiliation(s)
- Guillem Paniagua Soriano
- Bio-organic Synthesis Group, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Herman S Overkleeft
- Bio-organic Synthesis Group, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Bogdan I Florea
- Bio-organic Synthesis Group, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands.
| |
Collapse
|
41
|
Structural and functional characterization of the alanine racemase from Streptomyces coelicolor A3(2). Biochem Biophys Res Commun 2017; 483:122-128. [DOI: 10.1016/j.bbrc.2016.12.183] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 12/28/2016] [Indexed: 02/02/2023]
|
42
|
Strmiskova M, Desrochers GF, Shaw TA, Powdrill MH, Lafreniere MA, Pezacki JP. Chemical Methods for Probing Virus-Host Proteomic Interactions. ACS Infect Dis 2016; 2:773-786. [PMID: 27933785 DOI: 10.1021/acsinfecdis.6b00084] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Interactions between host and pathogen proteins constitute an important aspect of both infectivity and the host immune response. Different viruses have evolved complex mechanisms to hijack host-cell machinery and metabolic pathways to redirect resources and energy flow toward viral propagation. These interactions are often critical to the virus, and thus understanding these interactions at a molecular level gives rise to opportunities to develop novel antiviral strategies for therapeutic intervention. This review summarizes current advances in chemoproteomic methods for studying these molecular altercations between different viruses and their hosts.
Collapse
Affiliation(s)
- Miroslava Strmiskova
- Department of Chemistry and Biomolecular Sciences, Centre
for Chemical and Synthetic Biology, University of Ottawa, 10 Marie-Curie Private, Ottawa, Ontario, Canada K1N 6N5
| | - Geneviève F. Desrochers
- Department of Chemistry and Biomolecular Sciences, Centre
for Chemical and Synthetic Biology, University of Ottawa, 10 Marie-Curie Private, Ottawa, Ontario, Canada K1N 6N5
| | - Tyler A. Shaw
- Department of Chemistry and Biomolecular Sciences, Centre
for Chemical and Synthetic Biology, University of Ottawa, 10 Marie-Curie Private, Ottawa, Ontario, Canada K1N 6N5
| | - Megan H. Powdrill
- Department of Chemistry and Biomolecular Sciences, Centre
for Chemical and Synthetic Biology, University of Ottawa, 10 Marie-Curie Private, Ottawa, Ontario, Canada K1N 6N5
| | - Matthew A. Lafreniere
- Department of Chemistry and Biomolecular Sciences, Centre
for Chemical and Synthetic Biology, University of Ottawa, 10 Marie-Curie Private, Ottawa, Ontario, Canada K1N 6N5
| | - John Paul Pezacki
- Department of Chemistry and Biomolecular Sciences, Centre
for Chemical and Synthetic Biology, University of Ottawa, 10 Marie-Curie Private, Ottawa, Ontario, Canada K1N 6N5
| |
Collapse
|
43
|
A Protocol for Protein Profiling Using Chemoselective Cleavable Linker Probes in Semi-permeabilized Cells. Methods Mol Biol 2016. [PMID: 27778289 DOI: 10.1007/978-1-4939-6439-0_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Activity-based protein profiling using activity-based probes (ABPs) resulted in the identification of various enzymes that are involved in the onset and progress of diseases. Detection of such proteins, often expressed at low abundance, is greatly enhanced by incorporating chemically cleavable linkers in the ABP of choice. Initial affinity purification, followed by tailored chemical cleavage of the linker, allows for specific release of the captured enzymes and their interaction partners. When the ABPs are delivered directly to semi-permeabilized cells, in contrast to a crude cell lysate, the sensitivity and efficacy of cell impermeable probes can be enhanced even further.
Collapse
|
44
|
Dubiella C, Cui H, Groll M. Regulierbare Sonden mit direktem Fluoreszenzsignal für das konstitutive und das Immunoproteasom. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201605753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Christian Dubiella
- Center for Integrated Protein Science Munich (CIPSM); Fakultät für Chemie; Technische Universität München; Lichtenbergstraße 4 85748 Garching Deutschland
| | - Haissi Cui
- Center for Integrated Protein Science Munich (CIPSM); Fakultät für Chemie; Technische Universität München; Lichtenbergstraße 4 85748 Garching Deutschland
| | - Michael Groll
- Center for Integrated Protein Science Munich (CIPSM); Fakultät für Chemie; Technische Universität München; Lichtenbergstraße 4 85748 Garching Deutschland
| |
Collapse
|
45
|
Chen S, Kammerl IE, Vosyka O, Baumann T, Yu Y, Wu Y, Irmler M, Overkleeft HS, Beckers J, Eickelberg O, Meiners S, Stoeger T. Immunoproteasome dysfunction augments alternative polarization of alveolar macrophages. Cell Death Differ 2016; 23:1026-37. [PMID: 26990663 PMCID: PMC4987736 DOI: 10.1038/cdd.2016.3] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 12/22/2015] [Accepted: 01/11/2016] [Indexed: 02/04/2023] Open
Abstract
The proteasome is a central regulatory hub for intracellular signaling by degrading numerous signaling mediators. Immunoproteasomes are specialized types of proteasomes involved in shaping adaptive immune responses, but their role in innate immune signaling is still elusive. Here, we analyzed immunoproteasome function for polarization of alveolar macrophages, highly specialized tissue macrophages of the alveolar lung surface. Classical activation (M1 polarization) of primary alveolar macrophages by LPS/IFNγ transcriptionally induced all three immunoproteasome subunits, low molecular mass protein 2 (LMP2), LMP7 and multicatalytic endopeptidase complex-like 1, which was accompanied by increased immunoproteasome activity in M1 cells. Deficiency of LMP7 had no effect on the LPS/IFNγ-triggered M1 profile indicating that immunoproteasome function is dispensable for classical alveolar macrophage activation. In contrast, IL-4 triggered alternative (M2) activation of primary alveolar macrophages was accompanied by a transcriptionally independent amplified expression of LMP2 and LMP7 and an increase in immunoproteasome activity. Alveolar macrophages from LMP7 knockout mice disclosed a distorted M2 profile upon IL-4 stimulation as characterized by increased M2 marker gene expression and CCL17 cytokine release. Comparative transcriptome analysis revealed enrichment of IL-4-responsive genes and of genes involved in cellular response to defense, wounding and inflammation in LMP7-deficient alveolar macrophages indicating a distinct M2 inflammation resolving phenotype. Moreover, augmented M2 polarization was accompanied by amplified AKT/STAT6 activation and increased RNA and protein expression of the M2 master transcription factor interferon regulatory factor 4 in LMP7(-/-) alveolar macrophages. IL-13 stimulation of LMP7-deficient macrophages induced a similar M2-skewed profile indicative for augmented signaling via the IL-4 receptor α (IL4Rα). IL4Rα expression was generally elevated only on protein but not RNA level in LMP7(-/-) alveolar macrophages. Importantly, specific catalytic inhibition with an LMP7-specific proteasome inhibitor confirmed augmented IL-4-mediated M2 polarization of alveolar macrophages. Our results thus suggest a novel role of immunoproteasome function for regulating alternative activation of macrophages by limiting IL4Rα expression and signaling.
Collapse
Affiliation(s)
- S Chen
- Comprehensive Pneumology Center (CPC), Institute of Lung Biology and Disease, Helmholtz Zentrum München, Neuherberg, Germany
- Department of Pathophysiology, West China School of Preclinical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan Province, China
| | - I E Kammerl
- Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians University and Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - O Vosyka
- Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians University and Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - T Baumann
- Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians University and Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Y Yu
- Comprehensive Pneumology Center (CPC), Institute of Lung Biology and Disease, Helmholtz Zentrum München, Neuherberg, Germany
| | - Y Wu
- Max von Pettenkofer-Institute, Ludwig-Maximilians University, Munich, Germany
| | - M Irmler
- Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - H S Overkleeft
- Department of Bio-Organic Synthesis, Leiden University, Leiden, The Netherlands
| | - J Beckers
- Institute of Experimental Genetics, Helmholtz Zentrum München GmbH, Neuherberg, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
- Technische Universität München, Chair of Experimental Genetics, Freising, Germany
| | - O Eickelberg
- Comprehensive Pneumology Center (CPC), Institute of Lung Biology and Disease, Helmholtz Zentrum München, Neuherberg, Germany
- Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians University and Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - S Meiners
- Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians University and Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - T Stoeger
- Comprehensive Pneumology Center (CPC), Institute of Lung Biology and Disease, Helmholtz Zentrum München, Neuherberg, Germany
| |
Collapse
|
46
|
Stolze SC, Liu N, Wijdeven RH, Tuin AW, van den Nieuwendijk AMCH, Florea BI, van der Stelt M, van der Marel GA, Neefjes JJ, Overkleeft HS. Photo-crosslinking of clinically relevant kinases using H89-derived photo-affinity probes. MOLECULAR BIOSYSTEMS 2016; 12:1809-17. [PMID: 27138522 DOI: 10.1039/c6mb00257a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The profiling of kinases using established proteomics techniques is hampered by their non-covalent mode-of-action. One way to overcome this caveat is the use of probes featuring photo-labelling groups that can be activated by UV irradiation to generate a reactive species that will establish a covalent bond to the enzyme. In this study we have used the well-known kinase inhibitor H89 as a lead for the development of probes for the affinity-based profiling of clinically relevant kinases. A labelling protocol was established for recombinant kinases and more complex protein mixtures using gel-based techniques. We also show that the probes act in a competitive manner with other kinase inhibitors.
Collapse
Affiliation(s)
- Sara C Stolze
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden, The Netherlands.
| | - Nora Liu
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden, The Netherlands.
| | - Ruud H Wijdeven
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Adriaan W Tuin
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden, The Netherlands.
| | | | - Bogdan I Florea
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden, The Netherlands.
| | - Mario van der Stelt
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden, The Netherlands.
| | - Gijsbert A van der Marel
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden, The Netherlands.
| | - Jacques J Neefjes
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Herman S Overkleeft
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden, The Netherlands.
| |
Collapse
|
47
|
PABPN1-Dependent mRNA Processing Induces Muscle Wasting. PLoS Genet 2016; 12:e1006031. [PMID: 27152426 PMCID: PMC4859507 DOI: 10.1371/journal.pgen.1006031] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 04/08/2016] [Indexed: 11/19/2022] Open
Abstract
Poly(A) Binding Protein Nuclear 1 (PABPN1) is a multifunctional regulator of mRNA processing, and its expression levels specifically decline in aging muscles. An expansion mutation in PABPN1 is the genetic cause of oculopharyngeal muscle dystrophy (OPMD), a late onset and rare myopathy. Moreover, reduced PABPN1 expression correlates with symptom manifestation in OPMD. PABPN1 regulates alternative polyadenylation site (PAS) utilization. However, the impact of PAS utilization on cell and tissue function is poorly understood. We hypothesized that altered PABPN1 expression levels is an underlying cause of muscle wasting. To test this, we stably down-regulated PABPN1 in mouse tibialis anterior (TA) muscles by localized injection of adeno-associated viruses expressing shRNA to PABPN1 (shPab). We found that a mild reduction in PABPN1 levels causes muscle pathology including myofiber atrophy, thickening of extracellular matrix and myofiber-type transition. Moreover, reduced PABPN1 levels caused a consistent decline in distal PAS utilization in the 3’-UTR of a subset of OPMD-dysregulated genes. This alternative PAS utilization led to up-regulation of Atrogin-1, a key muscle atrophy regulator, but down regulation of proteasomal genes. Additionally reduced PABPN1 levels caused a reduction in proteasomal activity, and transition in MyHC isotope expression pattern in myofibers. We suggest that PABPN1-mediated alternative PAS utilization plays a central role in aging-associated muscle wasting. PABPN1 is a multifunctional regulator of mRNA processing and its levels are reduced in skeletal muscles from midlife onwards. Reduced PABPN1 levels in a mouse model causes muscle atrophy and muscle fiber switches. We show that PABPN1-regulated muscle atrophy is regulated, in part, by up regulation of Atrogin1 and reduced expression of proteasome genes via an alternative polyadenylation site utilization. This study reveals a functional role for alternative polyadenylation site utilization in muscle atrophy and suggests a role for RNA processing in muscle aging.
Collapse
|
48
|
Proteasome inhibitor-adapted myeloma cells are largely independent from proteasome activity and show complex proteomic changes, in particular in redox and energy metabolism. Leukemia 2016; 30:2198-2207. [PMID: 27118406 PMCID: PMC5097071 DOI: 10.1038/leu.2016.102] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 03/21/2016] [Accepted: 04/15/2016] [Indexed: 12/14/2022]
Abstract
Adaptive resistance of myeloma to proteasome inhibition represents a clinical challenge, whose biology is poorly understood. Proteasome mutations were implicated as underlying mechanism, while an alternative hypothesis based on low activation status of the unfolded protein response was recently suggested (IRE1/XBP1-low model). We generated bortezomib- and carfilzomib-adapted, highly resistant multiple myeloma cell clones (AMO-BTZ, AMO-CFZ), which we analyzed in a combined quantitative and functional proteomic approach. We demonstrate that proteasome inhibitor-adapted myeloma cells tolerate subtotal proteasome inhibition, irrespective of a proteasome mutation, and uniformly show an 'IRE1/XBP1-low' signature. Adaptation of myeloma cells to proteasome inhibitors involved quantitative changes in >600 protein species with similar patterns in AMO-BTZ and AMO-CFZ cells: proteins involved in metabolic regulation, redox homeostasis, and protein folding and destruction were upregulated, while apoptosis and transcription/translation were downregulated. The quantitatively most upregulated protein in AMO-CFZ cells was the multidrug resistance protein (MDR1) protein ABCB1, and carfilzomib resistance could be overcome by MDR1 inhibition. We propose a model where proteasome inhibitor-adapted myeloma cells tolerate subtotal proteasome inhibition owing to metabolic adaptations that favor the generation of reducing equivalents, such as NADPH, which is supported by oxidative glycolysis. Proteasome inhibitor resistance may thus be targeted by manipulating the energy and redox metabolism.
Collapse
|
49
|
Inhibition of chymotryptic-like standard proteasome activity exacerbates doxorubicin-induced cytotoxicity in primary cardiomyocytes. Toxicology 2016; 353-354:34-47. [DOI: 10.1016/j.tox.2016.04.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 04/19/2016] [Accepted: 04/29/2016] [Indexed: 01/16/2023]
|
50
|
Baumann T, Vosyka O, Florea B, Overkleeft H, Meiners S, Kammerl I. Activity-based Pull-down of Proteolytic Standard and Immunoproteasome Subunits. Bio Protoc 2016. [DOI: 10.21769/bioprotoc.2073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|