1
|
Bessières B, Dupuis J, Groc L, Bontempi B, Nicole O. Synaptic rearrangement of NMDA receptors controls memory engram formation and malleability in the cortex. SCIENCE ADVANCES 2024; 10:eado1148. [PMID: 39213354 PMCID: PMC11364093 DOI: 10.1126/sciadv.ado1148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024]
Abstract
Initially hippocampal dependent, memory representations rely on a broadly distributed cortical network as they mature over time. How these cortical engrams acquire stability during systems-level memory consolidation without compromising their dynamic nature remains unclear. We identified a highly responsive "consolidation switch" in the synaptic composition of N-methyl-d-aspartate receptors (NMDARs), which dictates the progressive embedding and persistence of enduring memories in the rat cortex. Cortical GluN2B subunit-containing NMDARs were preferentially recruited upon encoding of associative olfactory memory to support neuronal allocation of memory engrams. As consolidation proceeds, a learning-induced redistribution of GluN2B subunit-containing NMDARs outward synapses increased synaptic GluN2A subunit contribution and enabled stabilization of remote memories. In contrast, synaptic reincorporation of GluN2B subunits occurred during subsequent forgetting. By manipulating the surface distribution of GluN2A and GluN2B subunit-containing NMDARs at cortical synapses, we uncovered that the rearrangement of GluN2B-containing NMDARs constitutes an essential tuning mechanism that determines the fate of cortical memory engrams and controls their malleability.
Collapse
Affiliation(s)
- Benjamin Bessières
- Institut des Maladies Neurodégénératives, CNRS UMR 5293, Université de Bordeaux, Bordeaux 33000, France
| | - Julien Dupuis
- Institut Interdisciplinaire de Neurosciences, CNRS UMR 5297, Université de Bordeaux, Bordeaux 33000, France
| | - Laurent Groc
- Institut Interdisciplinaire de Neurosciences, CNRS UMR 5297, Université de Bordeaux, Bordeaux 33000, France
| | - Bruno Bontempi
- Institut des Maladies Neurodégénératives, CNRS UMR 5293, Université de Bordeaux, Bordeaux 33000, France
- Institut de Neurosciences Cognitives et Intégratives d’Aquitaine, CNRS UMR 5287, Université de Bordeaux, Bordeaux 33000, France
| | - Olivier Nicole
- Institut des Maladies Neurodégénératives, CNRS UMR 5293, Université de Bordeaux, Bordeaux 33000, France
- Institut Interdisciplinaire de Neurosciences, CNRS UMR 5297, Université de Bordeaux, Bordeaux 33000, France
| |
Collapse
|
2
|
Chang CY, Dai W, Hu SSJ. Cannabidiol enhances socially transmitted food preference: a role of acetylcholine in the mouse basal forebrain. Psychopharmacology (Berl) 2024:10.1007/s00213-024-06670-1. [PMID: 39158618 DOI: 10.1007/s00213-024-06670-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 08/05/2024] [Indexed: 08/20/2024]
Abstract
RATIONALE AND OBJECTIVE Rodents acquire food information from their conspecifics and display a preference for the conspecifics' consumed food. This social learning of food information from others promotes the survival of a species, and it is introduced as the socially transmitted food preference (STFP) task. The cholinergic system in the basal forebrain plays a role in the acquisition of STFP. Cannabidiol (CBD), one of the most abundant phytocannabinoids, exerts its therapeutic potential for cognitive deficits through versatile mechanisms of action, including its interaction with the cholinergic system. We hypothesize a positive relationship between CBD and STFP because acetylcholine (ACh) is involved in STFP, and CBD increases the ACh levels in the basal forebrain. MATERIALS AND METHODS Male C57BL/6J mice were trained to acquire the STFP task. We examined whether CBD affects STFP memory by administering CBD (20 mg/kg, i.p.) before the STFP social training. The involvement of cholinergic system in CBD's effect on STFP was examined by knockdown of brain acetylcholinesterase (AChE), applying a nonselective muscarinic antagonist SCO (3 mg/kg, i.p.) before CBD treatment, and measuring the basal forebrain ACh levels in the CBD-treated mice. RESULTS We first showed that CBD enhanced STFP memory. Knockdown of brain AChE also enhanced STFP memory, which mimicked CBD's effect on STFP. SCO blocked CBD's memory-enhancing effect on STFP. Our most significant finding is that the basal forebrain ACh levels in the CBD-treated mice, but not their control counterparts, were positively correlated with mice's STFP memory performance. CONCLUSION This study indicates that CBD enhances STFP memory in mice. Specifically, those which respond to CBD by increasing the muscarinic-mediated ACh signaling perform better in their STFP memory.
Collapse
Affiliation(s)
- Chih-Yu Chang
- Cannabinoid Signaling Laboratory, Department of Psychology, National Cheng Kung University, 1 University Rd, Tainan, 70101, Taiwan
| | - Wen Dai
- Cannabinoid Signaling Laboratory, Department of Psychology, National Cheng Kung University, 1 University Rd, Tainan, 70101, Taiwan
| | - Sherry Shu-Jung Hu
- Cannabinoid Signaling Laboratory, Department of Psychology, National Cheng Kung University, 1 University Rd, Tainan, 70101, Taiwan.
| |
Collapse
|
3
|
Auguste A, Fourcaud-Trocmé N, Meunier D, Gros A, Garcia S, Messaoudi B, Thevenet M, Ravel N, Veyrac A. Distinct brain networks for remote episodic memory depending on content and emotional experience. Prog Neurobiol 2023; 223:102422. [PMID: 36796748 DOI: 10.1016/j.pneurobio.2023.102422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/19/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023]
Abstract
Memories of life episodes are the heart of individual stories. However, modelling episodic memory is a major challenge in both humans and animals when considering all its characteristics. As a consequence, the mechanisms that underlie the storage of old nontraumatic episodic memories remain enigmatic. Here, using a new task in rodents that models human episodic memory including odour/place/context components and applying advances behavioural and computational analyses, we show that rats form and recollect integrated remote episodic memories of two occasionally encountered complex episodes occurring in their daily life. Similar to humans, the information content and accuracy of memories vary across individuals and depend on the emotional relationship with odours experienced during the very first episode. We used cellular brain imaging and functional connectivity analyses, to find out the engrams of remote episodic memories for the first time. Activated brain networks completely reflect the nature and content of episodic memories, with a larger cortico-hippocampal network when the recollection is complete and with an emotional brain network related to odours that is critical in maintaining accurate and vivid memories. The engrams of remote episodic memories remain highly dynamic since synaptic plasticity processes occur during recall related to memory updates and reinforcement.
Collapse
Affiliation(s)
- Anne Auguste
- UMR 5292 CNRS, INSERM U1028, University Lyon1, Olfaction: From coding to Memory Team, Lyon Neuroscience Research Center, F-69366 Lyon, France
| | - Nicolas Fourcaud-Trocmé
- UMR 5292 CNRS, INSERM U1028, University Lyon1, Olfaction: From coding to Memory Team, Lyon Neuroscience Research Center, F-69366 Lyon, France
| | - David Meunier
- University Aix Marseille, Insitut des Neurosciences de la Timone, Marseille, France
| | - Alexandra Gros
- UMR 5292 CNRS, INSERM U1028, University Lyon1, Olfaction: From coding to Memory Team, Lyon Neuroscience Research Center, F-69366 Lyon, France
| | - Samuel Garcia
- UMR 5292 CNRS, INSERM U1028, University Lyon1, Olfaction: From coding to Memory Team, Lyon Neuroscience Research Center, F-69366 Lyon, France
| | - Belkacem Messaoudi
- UMR 5292 CNRS, INSERM U1028, University Lyon1, Olfaction: From coding to Memory Team, Lyon Neuroscience Research Center, F-69366 Lyon, France
| | - Marc Thevenet
- UMR 5292 CNRS, INSERM U1028, University Lyon1, Olfaction: From coding to Memory Team, Lyon Neuroscience Research Center, F-69366 Lyon, France
| | - Nadine Ravel
- UMR 5292 CNRS, INSERM U1028, University Lyon1, Olfaction: From coding to Memory Team, Lyon Neuroscience Research Center, F-69366 Lyon, France
| | - Alexandra Veyrac
- UMR 5292 CNRS, INSERM U1028, University Lyon1, Olfaction: From coding to Memory Team, Lyon Neuroscience Research Center, F-69366 Lyon, France.
| |
Collapse
|
4
|
de Vallière A, Lopes AC, Addorisio A, Gilliand N, Nenniger Tosato M, Wood D, Brechbühl J, Broillet MC. Food preference acquired by social transmission is altered by the absence of the olfactory marker protein in mice. Front Nutr 2022; 9:1026373. [PMID: 36438763 PMCID: PMC9682023 DOI: 10.3389/fnut.2022.1026373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/18/2022] [Indexed: 11/10/2022] Open
Abstract
Food preference is conserved from the most primitive organisms to social animals including humans. A continuous integration of olfactory cues present both in food and in the different environmental and physiological contexts favors the intake of a given source of food or its avoidance. Remarkably, in mice, food preference can also be acquired by olfactory communication in-between conspecifics, a behavior known as the social transmission of food preference (STFP). STFP occurs when a mouse sniffs the breath of a conspecific who has previously eaten a novel food emitting specific odorants and will then develop a preference for this never encountered food. The efficient discrimination of odorants is performed by olfactory sensory neurons (OSNs). It is essential and supports many of the decision-making processes. Here, we found that the olfactory marker protein (OMP), an enigmatic protein ubiquitously expressed in all mature olfactory neurons, is involved in the fine regulation of OSNs basal activity that directly impacts the odorant discrimination ability. Using a previously described Omp null mouse model, we noticed that although odorants and their hedonic-associated values were still perceived by these mice, compensatory behaviors such as a higher number of sniffing events were displayed both in the discrimination of complex odorant signatures and in social-related contexts. As a consequence, we found that the ability to differentiate the olfactory messages carried by individuals such as those implicated in the social transmission of food preference were significantly compromised in Omp null mice. Thus, our results not only give new insights into the role of OMP in the fine discrimination of odorants but also reinforce the fundamental implication of a functional olfactory system for food decision-making.
Collapse
|
5
|
Cnops V, Iyer VR, Parathy N, Wong P, Dawe GS. Test, Rinse, Repeat: A Review of Carryover Effects in Rodent Behavioral Assays. Neurosci Biobehav Rev 2022; 135:104560. [DOI: 10.1016/j.neubiorev.2022.104560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 01/26/2022] [Accepted: 02/01/2022] [Indexed: 01/21/2023]
|
6
|
Lunardi P, Mansk LMZ, Jaimes LF, Pereira GS. On the novel mechanisms for social memory and the emerging role of neurogenesis. Brain Res Bull 2021; 171:56-66. [PMID: 33753208 DOI: 10.1016/j.brainresbull.2021.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/24/2021] [Accepted: 03/08/2021] [Indexed: 01/25/2023]
Abstract
Social memory (SM) is a key element in social cognition and it encompasses the neural representation of conspecifics, an essential information to guide behavior in a social context. Here we evaluate classical and cutting-edge studies on neurobiology of SM, using as a guiding principle behavioral tasks performed in adult rodents. Our review highlights the relevance of the hippocampus, especially the CA2 region, as a neural substrate for SM and suggest that neural ensembles in the olfactory bulb may also encode SM traces. Compared to other hippocampus-dependent memories, much remains to be done to describe the neurobiological foundations of SM. Nonetheless, we argue that special attention should be paid to neurogenesis. Finally, we pinpoint the remaining open question on whether the hippocampal adult neurogenesis acts through pattern separation to permit the discrimination of highly similar stimuli during behavior.
Collapse
Affiliation(s)
- Paula Lunardi
- Núcleo de Neurociências, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lara M Z Mansk
- Núcleo de Neurociências, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Laura F Jaimes
- Núcleo de Neurociências, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Grace S Pereira
- Núcleo de Neurociências, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
7
|
Quet E, Cassel JC, Cosquer B, Galloux M, Pereira De Vasconcelos A, Stéphan A. Ventral midline thalamus is not necessary for systemic consolidation of a social memory in the rat. Brain Neurosci Adv 2020; 4:2398212820939738. [PMID: 32954006 PMCID: PMC7479859 DOI: 10.1177/2398212820939738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/02/2020] [Indexed: 11/18/2022] Open
Abstract
According to the standard theory of memory consolidation, recent memories
are stored in the hippocampus before their transfer to cortical
modules, a process called systemic consolidation. The ventral midline
thalamus (reuniens and rhomboid nuclei, ReRh) takes part in this
transfer as its lesion disrupts systemic consolidation of spatial and
contextual fear memories. Here, we wondered whether ReRh lesions would
also affect the systemic consolidation of another type of memory,
namely an olfaction-based social memory. To address this question we
focused on social transmission of food preference. Adult Long-Evans
rats were subjected to N-methyl-d-aspartate-induced,
fibre-sparing lesions of the ReRh nuclei or to a sham-operation, and
subsequently trained in a social transmission of food preference
paradigm. Retrieval was tested on the next day (recent memory,
nSham = 10, nReRh = 12) or after a 25-day
delay (remote memory, nSham = 10, nReRh = 10).
All rats, whether sham-operated or subjected to ReRh lesions, learned
and remembered the task normally, whatever the delay. Compared to our
former results on spatial and contextual fear memories (Ali et al.,
2017; Klein et al., 2019; Loureiro et al., 2012; Quet et al., 2020),
the present findings indicate that the ReRh nuclei might not be part
of a generic, systemic consolidation mechanism processing all kinds of
memories in order to make them persistent. The difference between
social transmission of food preference and spatial or contextual fear
memories could be explained by the fact that social transmission of
food preference is not hippocampus-dependent and that the persistence
of social transmission of food preference memory relies on different
circuits.
Collapse
Affiliation(s)
- Etienne Quet
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR 7364, Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg, Strasbourg, France
| | - Jean-Christophe Cassel
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR 7364, Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg, Strasbourg, France
| | - Brigitte Cosquer
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR 7364, Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg, Strasbourg, France
| | - Marine Galloux
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR 7364, Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg, Strasbourg, France
| | - Anne Pereira De Vasconcelos
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR 7364, Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg, Strasbourg, France
| | - Aline Stéphan
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR 7364, Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg, Strasbourg, France
| |
Collapse
|
8
|
Wang CY, Liu Z, Ng YH, Südhof TC. A Synaptic Circuit Required for Acquisition but Not Recall of Social Transmission of Food Preference. Neuron 2020; 107:144-157.e4. [PMID: 32369733 PMCID: PMC7351611 DOI: 10.1016/j.neuron.2020.04.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 01/24/2020] [Accepted: 03/31/2020] [Indexed: 12/20/2022]
Abstract
During social transmission of food preference (STFP), the combination of an olfactory sensory input with a social cue induces long-term memory of a food odor. How a social cue produces long-term learning of an olfactory input, however, remains unknown. Here we show that the neurons of the anterior olfactory nucleus (AON), which form abundant synaptic projections onto granule cells in the olfactory bulb (OB), express the synaptogenic molecule C1ql3. Deletion of C1ql3 in the dorsolateral AON impaired synaptic AON→OB connections and abolished acquisition, but not recall, of STFP memory without significantly affecting basal olfaction. Moreover, deletion in granule cells of the OB of Bai3, a postsynaptic GPCR that binds C1ql3, similarly suppressed synaptic transmission at AON→OB projections and abolished acquisition, but not recall, of STFP memory. Thus, synaptic AON→OB connections are selectively required for STFP memory acquisition and are formed by an essential interaction of presynaptic C1ql3 with postsynaptic Bai3.
Collapse
Affiliation(s)
- Cosmos Yuqi Wang
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Zhihui Liu
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yi Han Ng
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Thomas C Südhof
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
9
|
Loureiro M, Achargui R, Flakowski J, Van Zessen R, Stefanelli T, Pascoli V, Lüscher C. Social transmission of food safety depends on synaptic plasticity in the prefrontal cortex. Science 2019; 364:991-995. [PMID: 31171697 DOI: 10.1126/science.aaw5842] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 05/16/2019] [Indexed: 12/31/2022]
Abstract
When an animal is facing unfamiliar food, its odor, together with semiochemicals emanating from a conspecific, can constitute a safety message and authorize intake. The piriform cortex (PiC) codes olfactory information, and the inactivation of neurons in the nucleus accumbens (NAc) can acutely trigger consumption. However, the neural circuit and cellular substrate of transition of olfactory perception into value-based actions remain elusive. We detected enhanced activity after social transmission between two mice in neurons of the medial prefrontal cortex (mPFC) that target the NAc and receive projections from the PiC. Exposure to a conspecific potentiated the excitatory postsynaptic currents in NAc projectors, whereas blocking transmission from PiC to mPFC prevented social transmission. Thus, synaptic plasticity in the mPFC is a cellular substrate of social transmission of food safety.
Collapse
Affiliation(s)
- Michaël Loureiro
- Department of Basic Neurosciences, Medical Faculty, University of Geneva, CH-1211 Geneva, Switzerland
| | - Ridouane Achargui
- Department of Basic Neurosciences, Medical Faculty, University of Geneva, CH-1211 Geneva, Switzerland
| | - Jérôme Flakowski
- Department of Basic Neurosciences, Medical Faculty, University of Geneva, CH-1211 Geneva, Switzerland
| | - Ruud Van Zessen
- Department of Basic Neurosciences, Medical Faculty, University of Geneva, CH-1211 Geneva, Switzerland
| | - Thomas Stefanelli
- Department of Basic Neurosciences, Medical Faculty, University of Geneva, CH-1211 Geneva, Switzerland
| | - Vincent Pascoli
- Department of Basic Neurosciences, Medical Faculty, University of Geneva, CH-1211 Geneva, Switzerland
| | - Christian Lüscher
- Department of Basic Neurosciences, Medical Faculty, University of Geneva, CH-1211 Geneva, Switzerland. .,Clinic of Neurology, Department of Clinical Neurosciences, Geneva University Hospital, CH-1211 Geneva, Switzerland
| |
Collapse
|
10
|
Prenatal valproate in rodents as a tool to understand the neural underpinnings of social dysfunctions in autism spectrum disorder. Neuropharmacology 2019; 159:107477. [DOI: 10.1016/j.neuropharm.2018.12.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/11/2018] [Accepted: 12/20/2018] [Indexed: 12/22/2022]
|
11
|
Pisu MG, Boero G, Garau A, Casula C, Cisci S, Biggio F, Concas A, Follesa P, Maciocco E, Porcu P, Serra M. Are preconceptional stressful experiences crucial elements for the aetiology of autism spectrum disorder? Insights from an animal model. Neuropharmacology 2019; 157:107686. [PMID: 31247268 DOI: 10.1016/j.neuropharm.2019.107686] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 06/19/2019] [Accepted: 06/24/2019] [Indexed: 12/26/2022]
Abstract
Autism spectrum disorders (ASD) are a group of neurodevelopmental disorders characterized by changes in social interactions, impaired language and communication, fear responses and presence of repetitive behaviours. Although the genetic bases of ASD are well documented, the recent increase in clinical cases of idiopathic ASD indicates that several environmental risk factors could play a role in ASD aetiology. Among these, maternal exposure to psychosocial stressors during pregnancy has been hypothesized to affect the risk for ASD in offspring. Here, we tested the hypothesis that preconceptional stressful experiences might also represent crucial elements in the aetiology of ASD. We previously showed that social isolation stress during adolescence results in a marked decrease in the brain and plasma concentrations of progesterone and in the quality of maternal care that these female rats later provide to their young. Here we report that male offspring of socially isolated parents showed decreased agonistic behaviour and social transmission of flavour preference, impairment in reversal learning, increased seizure susceptibility, reduced plasma oxytocin levels, and increased plasma and brain levels of BDNF, all features resembling an ASD-like phenotype. These alterations came with no change in spatial learning, aggression, anxiety and testosterone plasma levels, and were sex-dependent. Altogether, the results suggest that preconceptional stressful experiences should be considered as crucial elements for the aetiology of ASD, and indicate that male offspring of socially isolated parents may be a useful animal model to further study the neurobiological bases of ASD, avoiding the adaptations that may occur in other genetic or pharmacologic experimental models of these disorders.
Collapse
Affiliation(s)
| | - Giorgia Boero
- Department of Psychiatry and Pharmacology, Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Anna Garau
- Department of Life and Environment Sciences and Center of Excellence for Neurobiology of Dependence, University of Cagliari, Cagliari, Italy
| | - Claudia Casula
- Department of Life and Environment Sciences and Center of Excellence for Neurobiology of Dependence, University of Cagliari, Cagliari, Italy
| | - Sonia Cisci
- Department of Life and Environment Sciences and Center of Excellence for Neurobiology of Dependence, University of Cagliari, Cagliari, Italy
| | - Francesca Biggio
- Department of Life and Environment Sciences and Center of Excellence for Neurobiology of Dependence, University of Cagliari, Cagliari, Italy; Center of Excellence for Neurobiology of Dependence, University of Cagliari, Cagliari, Italy
| | - Alessandra Concas
- Department of Life and Environment Sciences and Center of Excellence for Neurobiology of Dependence, University of Cagliari, Cagliari, Italy; Center of Excellence for Neurobiology of Dependence, University of Cagliari, Cagliari, Italy
| | - Paolo Follesa
- Department of Life and Environment Sciences and Center of Excellence for Neurobiology of Dependence, University of Cagliari, Cagliari, Italy; Center of Excellence for Neurobiology of Dependence, University of Cagliari, Cagliari, Italy
| | - Elisabetta Maciocco
- Neuroscience Institute, National Research Council of Italy (CNR), Cagliari, Italy
| | - Patrizia Porcu
- Neuroscience Institute, National Research Council of Italy (CNR), Cagliari, Italy
| | - Mariangela Serra
- Department of Life and Environment Sciences and Center of Excellence for Neurobiology of Dependence, University of Cagliari, Cagliari, Italy; Center of Excellence for Neurobiology of Dependence, University of Cagliari, Cagliari, Italy
| |
Collapse
|
12
|
Martineau FS, Fournier L, Buhler E, Watrin F, Sargolini F, Manent JB, Poucet B, Represa A. Spared cognitive and behavioral functions prior to epilepsy onset in a rat model of subcortical band heterotopia. Brain Res 2019; 1711:146-155. [PMID: 30689978 DOI: 10.1016/j.brainres.2019.01.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/23/2019] [Accepted: 01/24/2019] [Indexed: 11/17/2022]
Abstract
Subcortical band heterotopia (SBH), also known as doublecortex syndrome, is a malformation of cortical development resulting from mutations in the doublecortin gene (DCX). It is characterized by a lack of migration of cortical neurons that accumulate in the white matter forming a heterotopic band. Patients with SBH may present mild to moderate intellectual disability as well as epilepsy. The SBH condition can be modeled in rats by in utero knockdown (KD) of Dcx. The affected cells form an SBH reminiscent of that observed in human patients and the animals develop a chronic epileptic condition in adulthood. Here, we investigated if the presence of a SBH is sufficient to induce cognitive impairment in juvenile Dcx-KD rats, before the onset of epilepsy. Using a wide range of behavioral tests, we found that the presence of SBH did not appear to affect motor control or somatosensory processing. In addition, cognitive abilities such as learning, short-term and long-term memory, were normal in pre-epileptic Dcx-KD rats. We suggest that the SBH presence is not sufficient to impair these behavioral functions.
Collapse
Affiliation(s)
| | - Lauriane Fournier
- INMED, Aix-Marseille University, INSERM U1249, Marseille 13273 CEDEX 09, France
| | - Emmanuelle Buhler
- INMED, Aix-Marseille University, INSERM U1249, Marseille 13273 CEDEX 09, France
| | - Françoise Watrin
- INMED, Aix-Marseille University, INSERM U1249, Marseille 13273 CEDEX 09, France
| | - Francesca Sargolini
- LNC - Fédération de recherche 3C, Aix-Marseille University, CNRS UMR7291, Marseille 13331 CEDEX 03, France
| | - Jean-Bernard Manent
- INMED, Aix-Marseille University, INSERM U1249, Marseille 13273 CEDEX 09, France
| | - Bruno Poucet
- LNC - Fédération de recherche 3C, Aix-Marseille University, CNRS UMR7291, Marseille 13331 CEDEX 03, France
| | - Alfonso Represa
- INMED, Aix-Marseille University, INSERM U1249, Marseille 13273 CEDEX 09, France.
| |
Collapse
|
13
|
Rubio L, Téllez L, Regalado M, Torrero C, Salas M. Effects of perinatal undernutrition on social transmission of food preference in adult male Wistar rats. Int J Dev Neurosci 2018; 71:105-110. [PMID: 30149118 DOI: 10.1016/j.ijdevneu.2018.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/09/2018] [Accepted: 08/21/2018] [Indexed: 12/31/2022] Open
Abstract
Nutrition plays a fundamental role in learning and memory, and early experimental undernutrition interferes with brain memory processes. Social transmission of food preference (STFP) is a natural olfactory paired-associate learning test that has not been used to assess the effects of early undernutrition on memory consolidation. Male Wistar rats were randomly divided into two groups: control and early undernourished. The underfed rats received different percentages of a balanced diet during gestation. After birth, pups were underfed by alternating every 12 h between two lactating dams, one with ligated nipples. Weaning occurred on PD 25 followed by an ad lib diet until PD 90. Demonstrator rats were given powdered food mixed with cinnamon, followed by a 30-min interaction with an underfed observer. Thereafter, the observer had two choices of food: cinnamon or cocoa. During the food preference test, control and underfed OBS rats preferred the food containing cinnamon. Through social interaction, the UG OBS rats showed latency for head contacts and oral-nasal investigation was higher in the underfed rats; only head contacts and oral-nasal investigation frequency was lower; with the duration lower, but oral-nasal investigation duration was higher (p < 0.05). In the preference phase, the OBS underfed rat latencies for both stimuli were prolonged, the frequency lower only for cocoa, and the duration lower for cinnamon but higher for cocoa (p < 0.05). Findings suggested that early undernutrition interfered with the attentive social transmission to take a decision during the preference phase, but not with the short-term memory consolidation of social food preference.
Collapse
Affiliation(s)
- Lorena Rubio
- Department of Developmental Neurobiology and Neurophysiology, Institute of Neurobiology, Universidad Nacional Autónoma de México, Mexico
| | - Laura Téllez
- Department of Developmental Neurobiology and Neurophysiology, Institute of Neurobiology, Universidad Nacional Autónoma de México, Mexico
| | - Mirelta Regalado
- Department of Developmental Neurobiology and Neurophysiology, Institute of Neurobiology, Universidad Nacional Autónoma de México, Mexico
| | - Carmen Torrero
- Department of Developmental Neurobiology and Neurophysiology, Institute of Neurobiology, Universidad Nacional Autónoma de México, Mexico
| | - Manuel Salas
- Department of Developmental Neurobiology and Neurophysiology, Institute of Neurobiology, Universidad Nacional Autónoma de México, Mexico.
| |
Collapse
|
14
|
Environmental Enrichment Induces Changes in Long-Term Memory for Social Transmission of Food Preference in Aged Mice through a Mechanism Associated with Epigenetic Processes. Neural Plast 2018; 2018:3725087. [PMID: 30123245 PMCID: PMC6079387 DOI: 10.1155/2018/3725087] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 05/17/2018] [Accepted: 05/31/2018] [Indexed: 02/06/2023] Open
Abstract
Decline in declarative learning and memory performance is a typical feature of normal aging processes. Exposure of aged animals to an enriched environment (EE) counteracts this decline, an effect correlated with reduction of age-related changes in hippocampal dendritic branching, spine density, neurogenesis, gliogenesis, and neural plasticity, including its epigenetic underpinnings. Declarative memories depend on the medial temporal lobe system, including the hippocampus, for their formation, but, over days to weeks, they become increasingly dependent on other brain regions such as the neocortex and in particular the prefrontal cortex (PFC), a process known as system consolidation. Recently, it has been shown that early tagging of cortical networks is a crucial neurobiological process for remote memory formation and that this tagging involves epigenetic mechanisms in the recipient orbitofrontal (OFC) areas. Whether EE can enhance system consolidation in aged animals has not been tested; in particular, whether the early tagging mechanisms in OFC areas are deficient in aged animals and whether EE can ameliorate them is not known. This study aimed at testing whether EE could affect system consolidation in aged mice using the social transmission of food preference paradigm, which involves an ethologically based form of associative olfactory memory. We found that only EE mice successfully performed the remote memory recall task, showed neuronal activation in OFC, assessed with c-fos immunohistochemistry and early tagging of OFC, assessed with histone H3 acetylation, suggesting a defective system consolidation and early OFC tagging in aged mice which are ameliorated by EE.
Collapse
|
15
|
Hirsch MM, Deckmann I, Fontes-Dutra M, Bauer-Negrini G, Della-Flora Nunes G, Nunes W, Rabelo B, Riesgo R, Margis R, Bambini-Junior V, Gottfried C. Behavioral alterations in autism model induced by valproic acid and translational analysis of circulating microRNA. Food Chem Toxicol 2018; 115:336-343. [DOI: 10.1016/j.fct.2018.02.061] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/24/2018] [Accepted: 02/27/2018] [Indexed: 12/31/2022]
|