1
|
Reeves J, Tournier P, Becquart P, Carton R, Tang Y, Vigilante A, Fang D, Habib SJ. Rejuvenating aged osteoprogenitors for bone repair. eLife 2024; 13:RP104068. [PMID: 39692737 DOI: 10.7554/elife.104068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024] Open
Abstract
Aging is marked by a decline in tissue regeneration, posing significant challenges to an increasingly older population. Here, we investigate age-related impairments in calvarial bone healing and introduce a novel two-part rejuvenation strategy to restore youthful repair. We demonstrate that aging negatively impacts the calvarial bone structure and its osteogenic tissues, diminishing osteoprogenitor number and function and severely impairing bone formation. Notably, increasing osteogenic cell numbers locally fails to rescue repair in aged mice, identifying the presence of intrinsic cellular deficits. Our strategy combines Wnt-mediated osteoprogenitor expansion with intermittent fasting, which leads to a striking restoration of youthful levels of bone healing. We find that intermittent fasting improves osteoprogenitor function, benefits that can be recapitulated by modulating NAD+-dependent pathways or the gut microbiota, underscoring the multifaceted nature of this intervention. Mechanistically, we identify mitochondrial dysfunction as a key component in age-related decline in osteoprogenitor function and show that both cyclical nutrient deprivation and Nicotinamide mononucleotide rejuvenate mitochondrial health, enhancing osteogenesis. These findings offer a promising therapeutic avenue for restoring youthful bone repair in aged individuals, with potential implications for rejuvenating other tissues.
Collapse
Affiliation(s)
- Joshua Reeves
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
- Centre for Gene Therapy and Regenerative Medicine King's College London, London, United Kingdom
| | - Pierre Tournier
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Pierre Becquart
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Robert Carton
- Centre for Gene Therapy and Regenerative Medicine King's College London, London, United Kingdom
| | - Yin Tang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute Zhejiang University, Zhejiang, China
- Department of Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Alessandra Vigilante
- Centre for Gene Therapy and Regenerative Medicine King's College London, London, United Kingdom
| | - Dong Fang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute Zhejiang University, Zhejiang, China
- Department of Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Shukry J Habib
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
2
|
He R, Wei Y, Yan S, Chen J, Guan Y, Xiong X, Liang L, Guan C, Liu H, Ouyang Y, Wang J, Peng X, Ye J, Zhao J, Lai B, Wang Y, Peng J, Quan Q. Wnt 3a-Modified Scaffolds Improve Nerve Regeneration by Boosting Schwann Cell Function. ACS APPLIED MATERIALS & INTERFACES 2024; 16:63317-63332. [PMID: 39520323 PMCID: PMC11583969 DOI: 10.1021/acsami.4c15013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
A pivotal approach in engineering artificial peripheral nerve sheaths encompasses the augmentation of the regenerative microenvironment via the manipulation of Schwann cells (SCs). Our investigation employed single-cell sequencing analysis to elucidate the potential functions of Schwann cells and the Wnt pathway in facilitating peripheral nerve regeneration. In vitro studies showed that activating the Wnt signaling pathway promotes the transition to repair SCs, boosting their growth, movement, and immune functions. To better understand the peripheral nerve regeneration environment, we created a polymer scaffold using ammonization and electrospinning. The Wnt3a protein was incorporated into the polycaprolactone (PCL) electrospun fiber surface. In a rat sciatic nerve defect model, the Wnt3a-modified scaffold showed better nerve repair outcomes than traditional electrospun scaffolds. After a week, the test group showed better immune regulation and angiogenesis, with a significant increase in axon growth rate observed after 3 weeks. Three-month-long animal experiments revealed notable improvements in neuroelectrophysiology, reduced organ atrophy, and enhanced sciatic nerve recovery. In this nerve defect model, Wnt3a-modified neural scaffolds achieved repair effects.
Collapse
Affiliation(s)
- Ruichao He
- School of Medicine, Nankai University, Tianjin 300071, P. R. China
- Department of Orthopedic Surgery, Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing,100048, P. R. China
| | - Yu Wei
- Department of Orthopedic Surgery, Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing,100048, P. R. China
| | - Shi Yan
- School of Medicine, Nankai University, Tianjin 300071, P. R. China
- Department of Orthopedic Surgery, Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing,100048, P. R. China
| | - Jiajie Chen
- School of Medicine, Nankai University, Tianjin 300071, P. R. China
- Department of Orthopedic Surgery, Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing,100048, P. R. China
| | - Yanjun Guan
- Department of Orthopedic Surgery, Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing,100048, P. R. China
| | - Xing Xiong
- Department of Orthopedic Surgery, Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing,100048, P. R. China
| | - Lijing Liang
- Department of Orthopedic Surgery, Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing,100048, P. R. China
| | - Congcong Guan
- School of Medicine, Nankai University, Tianjin 300071, P. R. China
- Department of Orthopedic Surgery, Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing,100048, P. R. China
| | - Haolin Liu
- Department of Orthopedic Surgery, Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing,100048, P. R. China
| | - Yiben Ouyang
- School of Medicine, Nankai University, Tianjin 300071, P. R. China
- Department of Orthopedic Surgery, Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing,100048, P. R. China
| | - Junli Wang
- Department of Orthopedic Surgery, Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing,100048, P. R. China
| | - Xiwei Peng
- Department of Orthopedic Surgery, Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing,100048, P. R. China
| | - Jianting Ye
- Department of Orthopedic Surgery, Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing,100048, P. R. China
| | - Jinjuan Zhao
- Department of Orthopedic Surgery, Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing,100048, P. R. China
| | - Biqin Lai
- Key Laboratory for Stem Cells and Tissue Engineering, Sun Yat-sen University, Ministry of Education, Guangzhou 510080, P. R. China
| | - Yu Wang
- School of Medicine, Nankai University, Tianjin 300071, P. R. China
- Department of Orthopedic Surgery, Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing,100048, P. R. China
- Co-innovation Center of Neuroregeneration, Nantong University Nantong, Jiangsu Province 226007, P. R. China
| | - Jiang Peng
- School of Medicine, Nankai University, Tianjin 300071, P. R. China
- Department of Orthopedic Surgery, Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing,100048, P. R. China
- Co-innovation Center of Neuroregeneration, Nantong University Nantong, Jiangsu Province 226007, P. R. China
| | - Qi Quan
- Department of Orthopedic Surgery, Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing,100048, P. R. China
| |
Collapse
|
3
|
Mouradian S, Cicciarello D, Lacoste N, Risson V, Berretta F, Le Grand F, Rose N, Simonet T, Schaeffer L, Scionti I. LSD1 controls a nuclear checkpoint in Wnt/β-Catenin signaling to regulate muscle stem cell self-renewal. Nucleic Acids Res 2024; 52:3667-3681. [PMID: 38321961 DOI: 10.1093/nar/gkae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/11/2024] [Accepted: 01/18/2024] [Indexed: 02/08/2024] Open
Abstract
The Wnt/β-Catenin pathway plays a key role in cell fate determination during development and in adult tissue regeneration by stem cells. These processes involve profound gene expression and epigenome remodeling and linking Wnt/β-Catenin signaling to chromatin modifications has been a challenge over the past decades. Functional studies of the lysine demethylase LSD1/KDM1A converge to indicate that this epigenetic regulator is a key regulator of cell fate, although the extracellular cues controlling LSD1 action remain largely unknown. Here we show that β-Catenin is a substrate of LSD1. Demethylation by LSD1 prevents β-Catenin degradation thereby maintaining its nuclear levels. Consistently, in absence of LSD1, β-Catenin transcriptional activity is reduced in both MuSCs and ESCs. Moreover, inactivation of LSD1 in mouse muscle stem cells and embryonic stem cells shows that LSD1 promotes mitotic spindle orientation via β-Catenin protein stabilization. Altogether, by inscribing LSD1 and β-Catenin in the same molecular cascade linking extracellular factors to gene expression, our results provide a mechanistic explanation to the similarity of action of canonical Wnt/β-Catenin signaling and LSD1 on stem cell fate.
Collapse
Affiliation(s)
- Sandrine Mouradian
- Pathophysiology and Genetics of Neuron and Muscle (PGNM), Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS UMR5261, INSERM U1315, Faculté de Médecine Rockefeller, France
| | - Delia Cicciarello
- Pathophysiology and Genetics of Neuron and Muscle (PGNM), Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS UMR5261, INSERM U1315, Faculté de Médecine Rockefeller, France
| | - Nicolas Lacoste
- Pathophysiology and Genetics of Neuron and Muscle (PGNM), Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS UMR5261, INSERM U1315, Faculté de Médecine Rockefeller, France
| | - Valérie Risson
- Pathophysiology and Genetics of Neuron and Muscle (PGNM), Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS UMR5261, INSERM U1315, Faculté de Médecine Rockefeller, France
| | - Francesca Berretta
- Pathophysiology and Genetics of Neuron and Muscle (PGNM), Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS UMR5261, INSERM U1315, Faculté de Médecine Rockefeller, France
| | - Fabien Le Grand
- Sorbonne Université, UPMC Université Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, 75013 Paris, France
| | - Nicolas Rose
- Sorbonne Université, UPMC Université Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, 75013 Paris, France
| | - Thomas Simonet
- Pathophysiology and Genetics of Neuron and Muscle (PGNM), Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS UMR5261, INSERM U1315, Faculté de Médecine Rockefeller, France
| | - Laurent Schaeffer
- Pathophysiology and Genetics of Neuron and Muscle (PGNM), Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS UMR5261, INSERM U1315, Faculté de Médecine Rockefeller, France
- Centre de Biotechnologie Cellulaire, Hospices Civils de Lyon, groupement Est, Bron, France
| | - Isabella Scionti
- Pathophysiology and Genetics of Neuron and Muscle (PGNM), Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS UMR5261, INSERM U1315, Faculté de Médecine Rockefeller, France
| |
Collapse
|
4
|
Wei Y, Yun X, Guan Y, Cao S, Li X, Wang Y, Meng H, Liu Y, Quan Q, Wei M. Wnt3a-Modified Nanofiber Scaffolds Facilitate Tendon Healing by Driving Macrophage Polarization during Repair. ACS APPLIED MATERIALS & INTERFACES 2023; 15:9010-9023. [PMID: 36758166 DOI: 10.1021/acsami.2c20386] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Inflammation is part of the natural healing response, but persistent inflammatory events tend to contribute to pathology changes of tendon or ligament. Phenotypic switching of macrophages within the inflammatory niche is crucial for tendon healing. One viable strategy to improve the functional and biomechanical properties of ruptured tendons is to modulate the transition from inflammatory to regenerative signals during tendon regeneration at the site of injury. Here, we developed a tendon repair scaffold made of biodegradable polycaprolactone by electrospinning, which was modified to deliver Wnt3a protein and served as an implant to improve tendon healing in a rat model of Achilles tendon defect. During the in vitro study, Wnt3a protein promoted the polarization of M2 macrophages. In the in vivo experiment, Wnt3a scaffold promoted the early recruitment and counting curve of macrophages and increased the proportion of M2 macrophages. Achilles function index and mechanical properties showed that the implantation effect of the Wnt3a group was better than that of the control group. We believe that this type of scaffold can be used to repair tendon defects. This work highlights the beneficial role of local delivery of biological factors in directing inflammatory responses toward regenerative strategies in tendon healing.
Collapse
Affiliation(s)
- Yu Wei
- Department of Orthopedic Surgery, the Fourth Medical Center of Chinese PLA General Hospital, Beijing 100142, China
| | - Xing Yun
- Department of Orthopedic Surgery, the Fourth Medical Center of Chinese PLA General Hospital, Beijing 100142, China
| | - Yanjun Guan
- Department of Orthopedic Surgery, the Fourth Medical Center of Chinese PLA General Hospital, Beijing 100142, China
- Department of Orthopedic Surgery, Key Laboratory of Musculoskeletal Trauma &War Injuries PLA, Beijing Key Lab of Regenerative Medicine in Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
| | - Shunze Cao
- Department of Engineering Mechanics, Tsinghua University, 100084 Beijing, China
| | - Xiangling Li
- Department of Orthopedic Surgery, the Fourth Medical Center of Chinese PLA General Hospital, Beijing 100142, China
- Department of Orthopedic Surgery, Key Laboratory of Musculoskeletal Trauma &War Injuries PLA, Beijing Key Lab of Regenerative Medicine in Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
| | - Yu Wang
- Department of Orthopedic Surgery, the Fourth Medical Center of Chinese PLA General Hospital, Beijing 100142, China
- Department of Orthopedic Surgery, Key Laboratory of Musculoskeletal Trauma &War Injuries PLA, Beijing Key Lab of Regenerative Medicine in Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
| | - Haoye Meng
- Department of Orthopedic Surgery, the Fourth Medical Center of Chinese PLA General Hospital, Beijing 100142, China
- Department of Orthopedic Surgery, Key Laboratory of Musculoskeletal Trauma &War Injuries PLA, Beijing Key Lab of Regenerative Medicine in Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
| | - Yujie Liu
- Department of Orthopedic Surgery, the Fourth Medical Center of Chinese PLA General Hospital, Beijing 100142, China
| | - Qi Quan
- Department of Orthopedic Surgery, the Fourth Medical Center of Chinese PLA General Hospital, Beijing 100142, China
- Department of Orthopedic Surgery, Key Laboratory of Musculoskeletal Trauma &War Injuries PLA, Beijing Key Lab of Regenerative Medicine in Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
| | - Min Wei
- Department of Orthopedic Surgery, the Fourth Medical Center of Chinese PLA General Hospital, Beijing 100142, China
| |
Collapse
|
5
|
Habib SJ, Acebrón SP. Wnt signalling in cell division: from mechanisms to tissue engineering. Trends Cell Biol 2022; 32:1035-1048. [PMID: 35717422 DOI: 10.1016/j.tcb.2022.05.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 01/21/2023]
Abstract
Wnt signalling is an essential player in tissue formation, notably in the regulation of stem cell function. Wnt signalling is best known for its roles in G1/S progression. However, a complex Wnt programme that also mediates mitotic progression and asymmetric cell division (ACD) is emerging. Recent developments in this area have provided mechanistic insights as well as tools to engineer or target Wnt signalling for translational and therapeutic purposes. Here, we discuss the bidirectional relationship between Wnt activity and mitosis. We emphasise how various Wnt-dependent mechanisms control spindle dynamics, chromosome segregation, and ACD. Finally, we illustrate how knowledge about these mechanisms has been successfully employed in tissue engineering for regenerative medicine applications.
Collapse
Affiliation(s)
- Shukry J Habib
- Department of Biomedical Sciences, University of Lausanne, Rue du Bugnon 7a, CH-1005 Lausanne, Switzerland.
| | - Sergio P Acebrón
- Centre for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany.
| |
Collapse
|
6
|
Hu B, Rotherham M, Farrow N, Roach P, Dobson J, El Haj AJ. Immobilization of Wnt Fragment Peptides on Magnetic Nanoparticles or Synthetic Surfaces Regulate Wnt Signaling Kinetics. Int J Mol Sci 2022; 23:10164. [PMID: 36077561 PMCID: PMC9456016 DOI: 10.3390/ijms231710164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/18/2022] Open
Abstract
Wnt signaling plays an important role in embryogenesis and adult stem cell homeostasis. Its diminished activation is implicated in osteoporosis and degenerative neural diseases. However, systematic administration of Wnt-signaling agonists carries risk, as aberrantly activated Wnt/β-catenin signaling is linked to cancer. Therefore, technologies for local modulation and control of Wnt signaling targeted to specific sites of disease or degeneration have potential therapeutic value in the treatment of degenerative diseases. We reported a facile approach to locally activate the canonical Wnt signaling cascade using nanomagnetic actuation or ligand immobilized platforms. Using a human embryonic kidney (HEK293) Luc-TCF/LEF reporter cell line, we demonstrated that targeting the cell membrane Wnt receptor, Frizzled 2, with peptide-tagged magnetic nanoparticles (MNPs) triggered canonical Wnt signaling transduction when exposed to a high-gradient, time-varying magnetic field, and the induced TCF/LEF signal transduction was shown to be avidity-dependent. We also demonstrated that the peptide retained signaling activity after functionalization onto glass surfaces, providing a versatile platform for drug discovery or recreation of the cell niche. In conclusion, these results showed that peptide-mediated Wnt signaling kinetics depended not only on ligand concentration but also on the presentation method of the ligand, which may be further modulated by magnetic actuation. This has important implications when designing future therapeutic platforms involving Wnt mimetics.
Collapse
Affiliation(s)
- Bin Hu
- School of Pharmacy and Bioengineering, Guy Hilton Research Center, Keele University, Thornburrow Drive, Hartshill, Stoke-on-Trent, Staffordshire ST4 7QB, UK
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Michael Rotherham
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Heritage Building, Mindelsohn Way, Birmingham B15 2TH, UK
| | - Neil Farrow
- School of Pharmacy and Bioengineering, Guy Hilton Research Center, Keele University, Thornburrow Drive, Hartshill, Stoke-on-Trent, Staffordshire ST4 7QB, UK
| | - Paul Roach
- School of Pharmacy and Bioengineering, Guy Hilton Research Center, Keele University, Thornburrow Drive, Hartshill, Stoke-on-Trent, Staffordshire ST4 7QB, UK
- Department of Chemistry, Loughborough University, Leicestershire, Loughborough LE11 3TU, UK
| | - Jon Dobson
- J Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Alicia J. El Haj
- School of Pharmacy and Bioengineering, Guy Hilton Research Center, Keele University, Thornburrow Drive, Hartshill, Stoke-on-Trent, Staffordshire ST4 7QB, UK
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Heritage Building, Mindelsohn Way, Birmingham B15 2TH, UK
| |
Collapse
|
7
|
Sun Z, Tang Y, Zhang Y, Fang Y, Jia J, Zeng W, Fang D. Joint single-cell multiomic analysis in Wnt3a induced asymmetric stem cell division. Nat Commun 2021; 12:5941. [PMID: 34642323 PMCID: PMC8511096 DOI: 10.1038/s41467-021-26203-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 09/22/2021] [Indexed: 12/13/2022] Open
Abstract
Wnt signaling usually functions through a spatial gradient. Localized Wnt3a signaling can induce the asymmetric division of mouse embryonic stem cells, where proximal daughter cells maintain self-renewal and distal daughter cells acquire hallmarks of differentiation. Here, we develop an approach, same cell epigenome and transcriptome sequencing, to jointly profile the epigenome and transcriptome in the same single cell. Utilizing this method, we profiled H3K27me3 and H3K4me3 levels along with gene expression in mouse embryonic stem cells with localized Wnt3a signaling, revealing the cell type-specific maps of the epigenome and transcriptome in divided daughter cells. H3K27me3, but not H3K4me3, is correlated with gene expression changes during asymmetric cell division. Furthermore, cell clusters identified by H3K27me3 recapitulate the corresponding clusters defined by gene expression. Our study provides a convenient method to jointly profile the epigenome and transcriptome in the same cell and reveals mechanistic insights into the gene regulatory programs that maintain and reset stem cell fate during differentiation. A localized Wnt3a signal has been shown to induce asymmetric division of mouse embryonic stem cells. Here the authors develop SET-seq, an approach to jointly profile epigenome and transcriptome in the same single cell and use it to provide mechanistic insights into the gene regulatory programs for maintaining and resetting stem cell fate during differentiation.
Collapse
Affiliation(s)
- Zhongxing Sun
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yin Tang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yanjun Zhang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yuan Fang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Junqi Jia
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Weiwu Zeng
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Dong Fang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, China. .,Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
8
|
Peng WC, Kraaier LJ, Kluiver TA. Hepatocyte organoids and cell transplantation: What the future holds. Exp Mol Med 2021; 53:1512-1528. [PMID: 34663941 PMCID: PMC8568948 DOI: 10.1038/s12276-021-00579-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/11/2021] [Accepted: 01/14/2021] [Indexed: 12/29/2022] Open
Abstract
Historically, primary hepatocytes have been difficult to expand or maintain in vitro. In this review, we will focus on recent advances in establishing hepatocyte organoids and their potential applications in regenerative medicine. First, we provide a background on the renewal of hepatocytes in the homeostatic as well as the injured liver. Next, we describe strategies for establishing primary hepatocyte organoids derived from either adult or fetal liver based on insights from signaling pathways regulating hepatocyte renewal in vivo. The characteristics of these organoids will be described herein. Notably, hepatocyte organoids can adopt either a proliferative or a metabolic state, depending on the culture conditions. Furthermore, the metabolic gene expression profile can be modulated based on the principles that govern liver zonation. Finally, we discuss the suitability of cell replacement therapy to treat different types of liver diseases and the current state of cell transplantation of in vitro-expanded hepatocytes in mouse models. In addition, we provide insights into how the regenerative microenvironment in the injured host liver may facilitate donor hepatocyte repopulation. In summary, transplantation of in vitro-expanded hepatocytes holds great potential for large-scale clinical application to treat liver diseases.
Collapse
Affiliation(s)
- Weng Chuan Peng
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands.
| | - Lianne J Kraaier
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands
| | - Thomas A Kluiver
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands
| |
Collapse
|
9
|
Junyent S, Reeves J, Habib SJ. Assessing the Wnt-reactivity of cytonemes of mouse embryonic stem cells using a bioengineering approach. STAR Protoc 2021; 2:100813. [PMID: 34568840 PMCID: PMC8449058 DOI: 10.1016/j.xpro.2021.100813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
These protocols investigate the interaction of cytonemes with localized Wnt. Cell-niche signaling between naive or primed mouse embryonic stem cells (ESCs) and either Wnt-secreting trophoblast stem cells (TSCs) or Wnt signals tethered to microbeads can be scrutinized in vitro. This approach analyzes cytoneme reactivity during Wnt-interaction initiation, Ca2+ transients at Wnt-contacting cytonemes, and subsequent pairing between ESCs and Wnt-sources. This pairing interaction is crucial to synthetic embryogenesis; hence this protocol is effective for in vitro studies of developmental biology. For complete details on the use and execution of this protocol, please refer to Junyent et al. (2020, 2021a, 2021b).
Collapse
Affiliation(s)
- Sergi Junyent
- Centre for Stem Cells and Regenerative Medicine, King’s College London, London SE1 9RT, UK
| | - Joshua Reeves
- Centre for Stem Cells and Regenerative Medicine, King’s College London, London SE1 9RT, UK
| | - Shukry J. Habib
- Centre for Stem Cells and Regenerative Medicine, King’s College London, London SE1 9RT, UK
| |
Collapse
|
10
|
Junyent S, Reeves JC, Szczerkowski JLA, Garcin CL, Trieu TJ, Wilson M, Lundie-Brown J, Habib SJ. Wnt- and glutamate-receptors orchestrate stem cell dynamics and asymmetric cell division. eLife 2021; 10:59791. [PMID: 34028355 PMCID: PMC8177892 DOI: 10.7554/elife.59791] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 05/21/2021] [Indexed: 12/16/2022] Open
Abstract
The Wnt-pathway is part of a signalling network that regulates many aspects of cell biology. Recently, we discovered crosstalk between AMPA/Kainate-type ionotropic glutamate receptors (iGluRs) and the Wnt-pathway during the initial Wnt3a-interaction at the cytonemes of mouse embryonic stem cells (ESCs). Here, we demonstrate that this crosstalk persists throughout the Wnt3a-response in ESCs. Both AMPA and Kainate receptors regulate early Wnt3a-recruitment, dynamics on the cell membrane, and orientation of the spindle towards a Wnt3a-source at mitosis. AMPA receptors specifically are required for segregating cell fate components during Wnt3a-mediated asymmetric cell division (ACD). Using Wnt-pathway component knockout lines, we determine that Wnt co-receptor Lrp6 has particular functionality over Lrp5 in cytoneme formation, and in facilitating ACD. Both Lrp5 and 6, alongside pathway effector β-catenin act in concert to mediate the positioning of the dynamic interaction with, and spindle orientation to, a localised Wnt3a-source. Wnt-iGluR crosstalk may prove pervasive throughout embryonic and adult stem cell signalling.
Collapse
Affiliation(s)
- Sergi Junyent
- Centre for Stem Cells and Regenerative Medicine, King's College LondonLondonUnited Kingdom
| | - Joshua C Reeves
- Centre for Stem Cells and Regenerative Medicine, King's College LondonLondonUnited Kingdom
| | - James LA Szczerkowski
- Centre for Stem Cells and Regenerative Medicine, King's College LondonLondonUnited Kingdom
| | - Clare L Garcin
- Centre for Stem Cells and Regenerative Medicine, King's College LondonLondonUnited Kingdom
| | - Tung-Jui Trieu
- Centre for Stem Cells and Regenerative Medicine, King's College LondonLondonUnited Kingdom
| | - Matthew Wilson
- Centre for Stem Cells and Regenerative Medicine, King's College LondonLondonUnited Kingdom
| | - Jethro Lundie-Brown
- Centre for Stem Cells and Regenerative Medicine, King's College LondonLondonUnited Kingdom
| | - Shukry J Habib
- Centre for Stem Cells and Regenerative Medicine, King's College LondonLondonUnited Kingdom
| |
Collapse
|
11
|
Spiteri C, Caprettini V, Chiappini C. Biomaterials-based approaches to model embryogenesis. Biomater Sci 2021; 8:6992-7013. [PMID: 33136109 DOI: 10.1039/d0bm01485k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Understanding, reproducing, and regulating the cellular and molecular processes underlying human embryogenesis is critical to improve our ability to recapitulate tissues with proper architecture and function, and to address the dysregulation of embryonic programs that underlies birth defects and cancer. The rapid emergence of stem cell technologies is enabling enormous progress in understanding embryogenesis using simple, powerful, and accessible in vitro models. Biomaterials are playing a central role in providing the spatiotemporal organisation of biophysical and biochemical signalling necessary to mimic, regulate and dissect the evolving embryonic niche in vitro. This contribution is rapidly improving our understanding of the mechanisms underlying embryonic patterning, in turn enabling the development of more effective clinical interventions for regenerative medicine and oncology. Here we highlight how key biomaterial approaches contribute to organise signalling in human embryogenesis models, and we summarise the biological insights gained from these contributions. Importantly, we highlight how nanotechnology approaches have remained largely untapped in this space, and we identify their key potential contributions.
Collapse
Affiliation(s)
- Chantelle Spiteri
- Centre for Craniofacial and Regenerative Biology, King's College London, London, UK.
| | | | | |
Collapse
|
12
|
Junyent S, Reeves J, Gentleman E, Habib SJ. Pluripotency state regulates cytoneme selectivity and self-organization of embryonic stem cells. J Cell Biol 2021; 220:e202005095. [PMID: 33606876 PMCID: PMC7903188 DOI: 10.1083/jcb.202005095] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 12/09/2020] [Accepted: 01/22/2021] [Indexed: 12/21/2022] Open
Abstract
To coordinate cell fate with changes in spatial organization, stem cells (SCs) require specific and adaptable systems of signal exchange and cell-to-cell communication. Pluripotent embryonic stem cells (ESCs) use cytonemes to pair with trophoblast stem cells (TSCs) and form synthetic embryonic structures in a Wnt-dependent manner. How these interactions vary with pluripotency states remains elusive. Here we show that ESC transition to an early primed ESC (pESC) state reduces their pairing with TSCs and impairs synthetic embryogenesis. pESCs can activate the Wnt/β-catenin pathway in response to soluble Wnt ligands, but their cytonemes form unspecific and unstable interactions with localized Wnt sources. This is due to an impaired crosstalk between Wnt and glutamate receptor activity and reduced generation of Ca2+ transients on the cytonemes upon Wnt source contact. Induced iGluR activation can partially restore cytoneme function in pESCs, while transient overexpression of E-cadherin improves pESC-TSC pairing. Our results illustrate how changes in pluripotency state alter the mechanisms SCs use to self-organize.
Collapse
Affiliation(s)
- Sergi Junyent
- Centre for Stem Cells and Regenerative Medicine, King’s College London, London, UK
| | - Joshua Reeves
- Centre for Stem Cells and Regenerative Medicine, King’s College London, London, UK
| | - Eileen Gentleman
- Centre for Craniofacial and Regenerative Biology, King’s College London, London, UK
| | - Shukry J. Habib
- Centre for Stem Cells and Regenerative Medicine, King’s College London, London, UK
| |
Collapse
|
13
|
Okuchi Y, Reeves J, Ng SS, Doro DH, Junyent S, Liu KJ, El Haj AJ, Habib SJ. Wnt-modified materials mediate asymmetric stem cell division to direct human osteogenic tissue formation for bone repair. NATURE MATERIALS 2021; 20:108-118. [PMID: 32958876 DOI: 10.1038/s41563-020-0786-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 07/27/2020] [Indexed: 06/11/2023]
Abstract
The maintenance of human skeletal stem cells (hSSCs) and their progeny in bone defects is a major challenge. Here, we report on a transplantable bandage containing a three-dimensional Wnt-induced osteogenic tissue model (WIOTM). This bandage facilitates the long-term viability of hSSCs (8 weeks) and their progeny, and enables bone repair in an in vivo mouse model of critical-sized calvarial defects. The newly forming bone is structurally comparable to mature cortical bone and consists of human and murine cells. Furthermore, we show that the mechanism of WIOTM formation is governed by Wnt-mediated asymmetric cell division of hSSCs. Covalently immobilizing Wnts onto synthetic materials can polarize single dividing hSSCs, orient the spindle and simultaneously generate a Wnt-proximal hSSC and a differentiation-prone Wnt-distal cell. Our results provide insight into the regulation of human osteogenesis and represent a promising approach to deliver human osteogenic constructs that can survive in vivo and contribute to bone repair.
Collapse
Affiliation(s)
- Yoshihisa Okuchi
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, UK
| | - Joshua Reeves
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, UK
| | - Soon Seng Ng
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, UK
| | - Daniel H Doro
- Centre for Craniofacial and Regenerative Biology, King's College London, London, UK
| | - Sergi Junyent
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, UK
| | - Karen J Liu
- Centre for Craniofacial and Regenerative Biology, King's College London, London, UK
| | - Alicia J El Haj
- Healthcare Technology Institute, Institute of Translational Medicine, University of Birmingham, Birmingham, UK
| | - Shukry J Habib
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, UK.
| |
Collapse
|
14
|
Protocol for Establishing Mouse Embryonic Stem Cells to Study Histone Inheritance Pattern at Single-Cell Resolution. STAR Protoc 2020; 1:100178. [PMID: 33377072 PMCID: PMC7757403 DOI: 10.1016/j.xpro.2020.100178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Asymmetric histone inheritance can regulate cell-fate determination in Drosophila male germline stem cells. However, it remains elusive how this mechanism may be used in mammalian system. Recently, we show mouse embryonic stem cells (mESCs) with Wnt3a beads display non-overlapping H3/H4 patterns. Here, we present a detailed protocol for tracking histone inheritance in asymmetrically dividing mESCs at single-cell resolution. This protocol will establish a new system to study histone inheritance in cultured mammalian cells and could be applied to other parallel systems. For complete details on the use and execution of this protocol, please refer to Tran et al. (2012), Habib et al. (2013), Lowndes et al. (2017), and Ma et al. (2020). Induction of asymmetric division of mESCs with Wnt3a-coated beads in cell culture Study of histone inheritance in asymmetrically dividing mESCs at single-cell level Optimized three-dimensional measurement for colocalization between old and new histones Compatibility with other Wnt3a-responsive cultured cells or in tissues in vivo
Collapse
|
15
|
Junyent S, Garcin CL, Szczerkowski JLA, Trieu TJ, Reeves J, Habib SJ. Specialized cytonemes induce self-organization of stem cells. Proc Natl Acad Sci U S A 2020; 117:7236-7244. [PMID: 32184326 PMCID: PMC7132109 DOI: 10.1073/pnas.1920837117] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Spatial cellular organization is fundamental for embryogenesis. Remarkably, coculturing embryonic stem cells (ESCs) and trophoblast stem cells (TSCs) recapitulates this process, forming embryo-like structures. However, mechanisms driving ESC-TSC interaction remain elusive. We describe specialized ESC-generated cytonemes that react to TSC-secreted Wnts. Cytoneme formation and length are controlled by actin, intracellular calcium stores, and components of the Wnt pathway. ESC cytonemes select self-renewal-promoting Wnts via crosstalk between Wnt receptors, activation of ionotropic glutamate receptors (iGluRs), and localized calcium transients. This crosstalk orchestrates Wnt signaling, ESC polarization, ESC-TSC pairing, and consequently synthetic embryogenesis. Our results uncover ESC-TSC contact-mediated signaling, reminiscent of the glutamatergic neuronal synapse, inducing spatial self-organization and embryonic cell specification.
Collapse
Affiliation(s)
- Sergi Junyent
- Centre for Stem Cells and Regenerative Medicine, King's College London, SE1 9RT London, United Kingdom
| | - Clare L Garcin
- Centre for Stem Cells and Regenerative Medicine, King's College London, SE1 9RT London, United Kingdom
| | - James L A Szczerkowski
- Centre for Stem Cells and Regenerative Medicine, King's College London, SE1 9RT London, United Kingdom
| | - Tung-Jui Trieu
- Centre for Stem Cells and Regenerative Medicine, King's College London, SE1 9RT London, United Kingdom
| | - Joshua Reeves
- Centre for Stem Cells and Regenerative Medicine, King's College London, SE1 9RT London, United Kingdom
| | - Shukry J Habib
- Centre for Stem Cells and Regenerative Medicine, King's College London, SE1 9RT London, United Kingdom
| |
Collapse
|
16
|
Mills KM, Szczerkowski JLA, Habib SJ. Wnt ligand presentation and reception: from the stem cell niche to tissue engineering. Open Biol 2017; 7:rsob.170140. [PMID: 28814649 PMCID: PMC5577451 DOI: 10.1098/rsob.170140] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 07/21/2017] [Indexed: 02/06/2023] Open
Abstract
Stem cells reside in niches where spatially restricted signals maintain a delicate balance between stem cell self-renewal and differentiation. Wnt family proteins are particularly suited for this role as they are modified by lipids, which constrain and spatially regulate their signalling range. In recent years, Wnt/β-catenin signalling has been shown to be essential for the self-renewal of a variety of mammalian stem cells. In this review, we discuss Wnt-responsive stem cells in their niche, and mechanisms by which Wnt ligands are presented to responsive cells. We also highlight recent progress in molecular visualization that has allowed for the monitoring of Wnt signalling within the stem cell compartment and new approaches to recapitulate this niche signalling in vitro Indeed, new technologies that present Wnt in a localized manner and mimic the three-dimensional microenvironment of stem cells will advance our understanding of Wnt signalling in the stem cell niche. These advances will expand current horizons to exploit Wnt ligands in the rapidly evolving fields of tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Kate M Mills
- Centre for Stem Cells and Regenerative Medicine, King's College London, London SE1 9RT, UK
| | - James L A Szczerkowski
- Centre for Stem Cells and Regenerative Medicine, King's College London, London SE1 9RT, UK
| | - Shukry J Habib
- Centre for Stem Cells and Regenerative Medicine, King's College London, London SE1 9RT, UK
| |
Collapse
|