1
|
Lee S, Eun H, Lee K. Effector Binding Sequentially Alters KRAS Dimerization on the Membrane: New Insights Into RAS-Mediated RAF Activation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401530. [PMID: 39138901 PMCID: PMC11481233 DOI: 10.1002/advs.202401530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/17/2024] [Indexed: 08/15/2024]
Abstract
RAS proteins are peripheral membrane GTPases that activate multiple downstream effectors for cell proliferation and differentiation. The formation of a signaling RAS-RAF complex at the plasma membrane is implicated in a quarter of all human cancers; however, the underlying mechanism remains unclear. In this work, nanodisc platforms and paramagnetic relaxation enhancement (PRE) analyses to determine the structure of a hetero-tetrameric complex comprising KRAS and the RAS-binding domain (RBD) and cysteine-rich domain (CRD) of activated RAF1 are employed. The binding of the RBD or RBD-CRD differentially alters the dimerization modes of KRAS on both anionic and neutral membranes, validated by interface-specific mutagenesis. Notably, the RBD binding allosterically generated two distinct KRAS dimer interfaces in equilibrium, favored by KRAS free and in complex with the RBD-CRD, respectively. Additional interactions of the CRD with both KRAS protomers are mutually cooperative to stabilize a new dimer configuration of KRAS bound to the RBD-CRD. The RAF binding sequentially alters KRAS dimerization, providing new insights into RAF activation, including a configurational transition of the KRAS dimer to provide an interaction site for the CRD and release the autoinhibited RAF complex. These methods are applicable to many other signaling protein complexes on the membrane.
Collapse
Affiliation(s)
- Soo‐Yeon Lee
- Department of PharmacyCollege of Pharmacy and Institute of Pharmaceutical SciencesCHA UniversityPocheon‐siGyeonggi‐Do11160Republic of Korea
| | - Hyun‐Jong Eun
- Research Institute of Pharmaceutical SciencesCollege of PharmacySeoul National UniversitySeoul08826Republic of Korea
| | - Ki‐Young Lee
- School of PharmacySungkyunkwan UniversitySuwon16419Republic of Korea
| |
Collapse
|
2
|
Leitl KD, Sperl LE, Hagn F. Preferred inhibition of pro-apoptotic Bak by BclxL via a two-step mechanism. Cell Rep 2024; 43:114526. [PMID: 39046879 DOI: 10.1016/j.celrep.2024.114526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/14/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024] Open
Abstract
Bak is a pore-forming Bcl2 protein that induces apoptosis at the outer mitochondrial membrane, which can either proceed via Bak oligomerization or be inhibited by anti-apoptotic Bcl2 proteins, such as BclxL. BclxL is very efficient in inhibiting Bak pore formation, but the mechanistic basis of this preferred interaction has remained enigmatic. Here, we identify Bakα1 as a second binding site for BclxL and show that it specifically interacts with the Bcl2-homology (BH)3 binding groove of BclxL. The affinity between BclxL and Bakα1 is weaker than with Bak-BH3, suggesting that Bakα1, being exposed early in the pore-forming trajectory, transiently captures BclxL, which subsequently transitions to the proximal BH3 site. Bak variants where the initial transient interaction with BclxL is modulated show a markedly altered response to BclxL inhibition. This work contributes to a better mechanistic understanding of the fine-tuned interactions between different players of the Bcl2 protein family.
Collapse
Affiliation(s)
- Kira D Leitl
- Bavarian NMR Center (BNMRZ), Department of Bioscience, School of Natural Sciences, Technical University of Munich, 85747 Garching, Germany; Molecular Targets and Therapeutics Center (MTTC), Institute of Structural Biology, Helmholtz Munich, 85764 Neuherberg, Germany
| | - Laura E Sperl
- Bavarian NMR Center (BNMRZ), Department of Bioscience, School of Natural Sciences, Technical University of Munich, 85747 Garching, Germany
| | - Franz Hagn
- Bavarian NMR Center (BNMRZ), Department of Bioscience, School of Natural Sciences, Technical University of Munich, 85747 Garching, Germany; Molecular Targets and Therapeutics Center (MTTC), Institute of Structural Biology, Helmholtz Munich, 85764 Neuherberg, Germany.
| |
Collapse
|
3
|
Labrecque C, Fuglestad B. Ligandability at the Membrane Interface of GPx4 Revealed through a Reverse Micelle Fragment Screening Platform. JACS AU 2024; 4:2676-2686. [PMID: 39055139 PMCID: PMC11267533 DOI: 10.1021/jacsau.4c00427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 07/27/2024]
Abstract
While they account for a large portion of drug targets, membrane proteins present a unique challenge for drug discovery. Peripheral membrane proteins (PMPs), a class of water-soluble proteins that bind to membranes, are also difficult targets, particularly those that function only when bound to membranes. The protein-membrane interface in PMPs is often where functional interactions and catalysis occur, making it a logical target for inhibition. However, protein-membrane interfaces are underexplored spaces in inhibitor design, and there is a need for enhanced methods for small-molecule ligand discovery. In an effort to better initiate drug discovery efforts for PMPs, this study presents a screening methodology using membrane-mimicking reverse micelles (mmRM) and NMR-based fragment screening to assess ligandability at the protein-membrane interface. The proof-of-principle target, glutathione peroxidase 4 (GPx4), is a lipid hydroperoxidase that is essential for the oxidative protection of membranes and thereby the prevention of ferroptosis. GPx4 inhibition is promising for therapy-resistant cancer therapy, but current inhibitors are generally covalent ligands with limited clinical utility. Presented here is the discovery of noncovalent small-molecule ligands for membrane-bound GPx4 revealed through the mmRM fragment screening methodology. The fragments were tested against GPx4 under bulk aqueous conditions and displayed little to no binding to the protein without embedment into the membrane. The 9 hits had varying affinities and partitioning coefficients and revealed properties of fragments that bind within the protein-membrane interface. Additionally, a secondary screen confirmed the potential to progress the fragments by enhancing the affinity from >200 to ∼15 μM with the addition of certain hydrophobic groups. This study presents an advancement of screening capabilities for membrane-associated proteins, reveals ligandability within the GPx4 protein-membrane interface, and may serve as a starting point for developing noncovalent inhibitors of GPx4.
Collapse
Affiliation(s)
- Courtney
L. Labrecque
- Department
of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Brian Fuglestad
- Department
of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
- Institute
for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| |
Collapse
|
4
|
Nguyen K, Strauss T, Refaeli B, Hiller R, Vinogradova O, Khananshvili D. 19F-NMR Probing of Ion-Induced Conformational Changes in Detergent-Solubilized and Nanodisc-Reconstituted NCX_Mj. Int J Mol Sci 2024; 25:6909. [PMID: 39000018 PMCID: PMC11241019 DOI: 10.3390/ijms25136909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
Consecutive interactions of 3Na+ or 1Ca2+ with the Na+/Ca2+ exchanger (NCX) result in an alternative exposure (access) of the cytosolic and extracellular vestibules to opposite sides of the membrane, where ion-induced transitions between the outward-facing (OF) and inward-facing (IF) conformational states drive a transport cycle. Here, we investigate sub-state populations of apo and ion-bound species in the OF and IF states by analyzing detergent-solubilized and nanodisc-reconstituted preparations of NCX_Mj with 19F-NMR. The 19F probe was covalently attached to the cysteine residues at entry locations of the cytosolic and extracellular vestibules. Multiple sub-states of apo and ion-bound species were observed in nanodisc-reconstituted (but not in detergent-solubilized) NCX_Mj, meaning that the lipid-membrane environment preconditions multiple sub-state populations toward the OF/IF swapping. Most importantly, ion-induced sub-state redistributions occur within each major (OF or IF) state, where sub-state interconversions may precondition the OF/IF swapping. In contrast with large changes in population redistributions, the sum of sub-state populations within each inherent state (OF or IF) remains nearly unchanged upon ion addition. The present findings allow the further elucidation of structure-dynamic modules underlying ion-induced conformational changes that determine a functional asymmetry of ion access/translocation at opposite sides of the membrane and ion transport rates concurring physiological demands.
Collapse
Affiliation(s)
- Khiem Nguyen
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA
| | - Tali Strauss
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel
| | - Bosmat Refaeli
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel
| | - Reuben Hiller
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel
| | - Olga Vinogradova
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA
| | - Daniel Khananshvili
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
5
|
Krishnarjuna B, Sharma G, Hiiuk VM, Struppe J, Nagorny P, Ivanova MI, Ramamoorthy A. Nanodisc Reconstitution and Characterization of Amyloid-β Precursor Protein C99. Anal Chem 2024; 96:9362-9369. [PMID: 38826107 DOI: 10.1021/acs.analchem.3c05727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Amyloid precursor protein (APP) plays a pivotal role in the pathology of Alzheimer's disease (AD). Since the fragmentation of the membrane-bound APP that results in the production of amyloid-β peptides is the starting point for amyloid toxicity in AD, it is important to investigate the structure and dynamics of APP in a near-native lipid-bilayer environment. However, the reconstitution of APP into a stable and suitable membrane-mimicking lipid environment is a challenging task. In this study, the 99-residue C-terminal domain of APP is successfully reconstituted into polymer nanodiscs and characterized using size-exclusion chromatography, mass spectrometry, solution NMR, and magic-angle spinning solid-state NMR. In addition, the feasibility of using lipid-solubilizing polymers for isolating and characterizing APP in the native Escherichia. coli membrane environment is demonstrated.
Collapse
Affiliation(s)
- Bankala Krishnarjuna
- Biophysics Program, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Gaurav Sharma
- Biophysics Program, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Volodymyr M Hiiuk
- Biophysics Program, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jochem Struppe
- Bruker Biospin Corporation, 15 Fortune Drive, Billerica, Massachusetts 01821, United States
| | - Pavel Nagorny
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Magdalena I Ivanova
- Biophysics Program, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Neurology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Ayyalusamy Ramamoorthy
- Biophysics Program, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida 32310, United States
| |
Collapse
|
6
|
Daniilidis M, Sperl LE, Müller BS, Babl A, Hagn F. Efficient Segmental Isotope Labeling of Integral Membrane Proteins for High-Resolution NMR Studies. J Am Chem Soc 2024; 146:15403-15410. [PMID: 38787792 PMCID: PMC11157531 DOI: 10.1021/jacs.4c03294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/10/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024]
Abstract
High-resolution structural NMR analyses of membrane proteins are challenging due to their large size, resulting in broad resonances and strong signal overlap. Among the isotope labeling methods that can remedy this situation, segmental isotope labeling is a suitable strategy to simplify NMR spectra and retain high-resolution structural information. However, protein ligation within integral membrane proteins is complicated since the hydrophobic protein fragments are insoluble, and the removal of ligation side-products is elaborate. Here, we show that a stabilized split-intein system can be used for rapid and high-yield protein trans-splicing of integral membrane proteins under denaturing conditions. This setup enables segmental isotope labeling experiments within folded protein domains for NMR studies. We show that high-quality NMR spectra of markedly reduced complexity can be obtained in detergent micelles and lipid nanodiscs. Of note, the nanodisc insertion step specifically selects for the ligated and correctly folded membrane protein and simultaneously removes ligation byproducts. Using this tailored workflow, we show that high-resolution NMR structure determination is strongly facilitated with just two segmentally isotope-labeled membrane protein samples. The presented method will be broadly applicable to structural and dynamical investigations of (membrane-) proteins and their complexes by solution and solid-state NMR but also other structural methods where segmental labeling is beneficial.
Collapse
Affiliation(s)
- Melina Daniilidis
- Bavarian
NMR Center, Department of Bioscience, School of Natural Sciences, Technical University of Munich, Ernst-Otto-Fischer-Str. 2, 85748 Garching, Germany
| | - Laura E. Sperl
- Bavarian
NMR Center, Department of Bioscience, School of Natural Sciences, Technical University of Munich, Ernst-Otto-Fischer-Str. 2, 85748 Garching, Germany
| | - Benedikt S. Müller
- Bavarian
NMR Center, Department of Bioscience, School of Natural Sciences, Technical University of Munich, Ernst-Otto-Fischer-Str. 2, 85748 Garching, Germany
| | - Antonia Babl
- Bavarian
NMR Center, Department of Bioscience, School of Natural Sciences, Technical University of Munich, Ernst-Otto-Fischer-Str. 2, 85748 Garching, Germany
| | - Franz Hagn
- Bavarian
NMR Center, Department of Bioscience, School of Natural Sciences, Technical University of Munich, Ernst-Otto-Fischer-Str. 2, 85748 Garching, Germany
- Institute
of Structural Biology, Helmholtz Munich, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| |
Collapse
|
7
|
Song HW, Moon D, Won Y, Cha YK, Yoo J, Park TH, Oh JH. A pattern recognition artificial olfactory system based on human olfactory receptors and organic synaptic devices. SCIENCE ADVANCES 2024; 10:eadl2882. [PMID: 38781346 PMCID: PMC11114221 DOI: 10.1126/sciadv.adl2882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 04/18/2024] [Indexed: 05/25/2024]
Abstract
Neuromorphic sensors, designed to emulate natural sensory systems, hold the promise of revolutionizing data extraction by facilitating rapid and energy-efficient analysis of extensive datasets. However, a challenge lies in accurately distinguishing specific analytes within mixtures of chemically similar compounds using existing neuromorphic chemical sensors. In this study, we present an artificial olfactory system (AOS), developed through the integration of human olfactory receptors (hORs) and artificial synapses. This AOS is engineered by interfacing an hOR-functionalized extended gate with an organic synaptic device. The AOS generates distinct patterns for odorants and mixtures thereof, at the molecular chain length level, attributed to specific hOR-odorant binding affinities. This approach enables precise pattern recognition via training and inference simulations. These findings establish a foundation for the development of high-performance sensor platforms and artificial sensory systems, which are ideal for applications in wearable and implantable devices.
Collapse
Affiliation(s)
- Hyun Woo Song
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Dongseok Moon
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Yousang Won
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Yeon Kyung Cha
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
- Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Jin Yoo
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Tai Hyun Park
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Joon Hak Oh
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
8
|
Labrecque CL, Fuglestad B. Ligandability at the membrane interface of GPx4 revealed through a reverse micelle fragment screening platform. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.09.593437. [PMID: 38766018 PMCID: PMC11100811 DOI: 10.1101/2024.05.09.593437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
While they account for a large portion of drug targets, membrane proteins (MPs) present a unique challenge for drug discovery. Peripheral membrane proteins (PMPs), a class of proteins that bind reversibly to membranes, are also difficult targets, particularly those that function only while bound to membranes. The protein-membrane interface in PMPs is often where functional interactions and catalysis occur, making it a logical target for inhibition. However, interfaces are underexplored spaces in inhibitor design and there is a need for enhanced methods for small-molecule ligand discovery. In an effort to better initiate drug discovery efforts for PMPs, this study presents a screening methodology using membrane-mimicking reverse micelles (mmRM) and NMR-based fragment screening to assess ligandability in the protein-membrane interface. The proof-of-principle target, glutathione peroxidase 4 (GPx4), is a lipid hydroperoxidase which is essential for the oxidative protection of membranes and thereby the prevention of ferroptosis. GPx4 inhibition is promising for therapy-resistant cancer therapy, but current inhibitors are generally covalent ligands with limited clinical utility. Presented here is the discovery of non-covalent small-molecule ligands for membrane-bound GPx4 revealed through the mmRM fragment screening methodology. The fragments were tested against GPx4 in bulk aqueous conditions and displayed little to no binding to the protein without embedment into the membrane. The 9 hits had varying affinities and partitioning coefficients and revealed properties of fragments that bind within the protein-membrane interface. Additionally, a secondary screen confirmed the potential to progress the fragments by enhancing the affinity from > 200 μM to ~15 μM with the addition of certain hydrophobic groups. This study presents an advancement of screening capabilities for membrane associated proteins, reveals ligandability within the GPx4 protein-membrane interface, and may serve as a starting point for developing non-covalent inhibitors of GPx4.
Collapse
Affiliation(s)
- Courtney L. Labrecque
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 22384, United States
| | - Brian Fuglestad
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 22384, United States
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| |
Collapse
|
9
|
Krishnarjuna B, Sharma G, Hiiuk VM, Struppe J, Nagorny P, Ivanova MI, Ramamoorthy A. Nanodisc reconstitution and characterization of amyloid-β precursor protein C99. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.21.590446. [PMID: 38659865 PMCID: PMC11042261 DOI: 10.1101/2024.04.21.590446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Amyloid precursor protein (APP) plays a pivotal role in the pathology of Alzheimer's disease. Since the fragmentation of the membrane-bound APP that results in the production of amyloid-beta peptides is the starting point for amyloid toxicity in AD, it is important to investigate the structure and dynamics of APP in a near-native lipid-bilayer environment. However, the reconstitution of APP into a stable/suitable membrane-mimicking lipid environment is a challenging task. In this study, the 99-residue C-terminal domain of APP is successfully reconstituted into polymer nanodiscs and characterized using size-exclusion chromatography, mass spectrometry, solution NMR, and magic-angle spinning solid-state NMR. In addition, the feasibility of using lipid-solubilizing polymers for isolating and characterizing APP in native E. coli membrane environment is demonstrated.
Collapse
Affiliation(s)
- Bankala Krishnarjuna
- Biophysics Program, University of Michigan, Ann Arbor, MI 48109, United States
- Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Gaurav Sharma
- Biophysics Program, University of Michigan, Ann Arbor, MI 48109, United States
- Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Volodymyr M Hiiuk
- Biophysics Program, University of Michigan, Ann Arbor, MI 48109, United States
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jochem Struppe
- Bruker Biospin Corporation, 15 Fortune Drive, Billerica, Massachusetts 01821, United States
| | - Pavel Nagorny
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Magdalena I Ivanova
- Biophysics Program, University of Michigan, Ann Arbor, MI 48109, United States
- Department of Neurology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Ayyalusamy Ramamoorthy
- Biophysics Program, University of Michigan, Ann Arbor, MI 48109, United States
- Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI 48109, United States
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, United States
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, United States
| |
Collapse
|
10
|
Mendoza-Hoffmann F, Guo C, Song Y, Feng D, Yang L, Wüthrich K. 19F-NMR studies of the impact of different detergents and nanodiscs on the A 2A adenosine receptor. JOURNAL OF BIOMOLECULAR NMR 2024; 78:31-37. [PMID: 38072902 DOI: 10.1007/s10858-023-00430-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/07/2023] [Indexed: 04/02/2024]
Abstract
For the A2A adenosine receptor (A2AAR), a class A G-protein-coupled receptor (GPCR), reconstituted in n-dodecyl-β-D-maltoside (DDM)/cholesteryl hemisuccinate (CHS) mixed micelles, previous 19F-NMR studies revealed the presence of multiple simultaneously populated conformational states. Here, we study the influence of a different detergent, lauryl maltose neopentyl glycol (LMNG) in mixed micelles with CHS, and of lipid bilayer nanodiscs on these conformational equilibria. The populations of locally different substates are pronouncedly different in DDM/CHS and LMNG/CHS micelles, whereas the A2AAR conformational manifold in LMNG/CHS micelles is closely similar to that in the lipid bilayer nanodiscs. Considering that nanodiscs represent a closer match of the natural lipid bilayer membrane, these observations support that LMNG/CHS micelles are a good choice for reconstitution trials of class A GPCRs for NMR studies in solution.
Collapse
Affiliation(s)
- Francisco Mendoza-Hoffmann
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
- Faculty of Chemistry Sciences and Engineering, Autonomous University of Baja California (UABC), Tijuana, México
| | - Canyong Guo
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yanzhuo Song
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
- DGI Tech (Qingdao) Co., Ltd., Qingdao, China
| | - Dandan Feng
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Lingyun Yang
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
| | - Kurt Wüthrich
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China.
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA, USA.
- Institute of Molecular Biology and Biophysics, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
11
|
Aplin C, Cerione RA. Probing the mechanism by which the retinal G protein transducin activates its biological effector PDE6. J Biol Chem 2024; 300:105608. [PMID: 38159849 PMCID: PMC10838916 DOI: 10.1016/j.jbc.2023.105608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/23/2023] [Accepted: 12/14/2023] [Indexed: 01/03/2024] Open
Abstract
Phototransduction in retinal rods occurs when the G protein-coupled photoreceptor rhodopsin triggers the activation of phosphodiesterase 6 (PDE6) by GTP-bound alpha subunits of the G protein transducin (GαT). Recently, we presented a cryo-EM structure for a complex between two GTP-bound recombinant GαT subunits and native PDE6, that included a bivalent antibody bound to the C-terminal ends of GαT and the inhibitor vardenafil occupying the active sites on the PDEα and PDEβ subunits. We proposed GαT-activated PDE6 by inducing a striking reorientation of the PDEγ subunits away from the catalytic sites. However, questions remained including whether in the absence of the antibody GαT binds to PDE6 in a similar manner as observed when the antibody is present, does GαT activate PDE6 by enabling the substrate cGMP to access the catalytic sites, and how does the lipid membrane enhance PDE6 activation? Here, we demonstrate that 2:1 GαT-PDE6 complexes form with either recombinant or retinal GαT in the absence of the GαT antibody. We show that GαT binding is not necessary for cGMP nor competitive inhibitors to access the active sites; instead, occupancy of the substrate binding sites enables GαT to bind and reposition the PDE6γ subunits to promote catalytic activity. Moreover, we demonstrate by reconstituting GαT-stimulated PDE6 activity in lipid bilayer nanodiscs that the membrane-induced enhancement results from an increase in the apparent binding affinity of GαT for PDE6. These findings provide new insights into how the retinal G protein stimulates rapid catalytic turnover by PDE6 required for dim light vision.
Collapse
Affiliation(s)
- Cody Aplin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA
| | - Richard A Cerione
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA; Department of Molecular Medicine, Cornell University, Ithaca, New York, USA.
| |
Collapse
|
12
|
Cao B, Yang H, Yu Z. A Novel Strategy for the Characterization of Self-Assembled Structures Using the Static Solid-State Phosphorus Nuclear Magnetic Resonance Technique. J Phys Chem Lett 2024; 15:262-266. [PMID: 38165310 DOI: 10.1021/acs.jpclett.3c03281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Structural characterization of assemblies in solutions is essential for understanding the relationship between the structure and material properties. In this study, we introduce a novel approach to investigate amphiphilic self-assemblies in solutions using the phospholipid molecule 1-palmitoyl-2-hydroxy-sn-glycero-3-phosphocholine (Lyso PC) as a 31P NMR probe. The high natural abundance and gyromagnetic ratio of 31P make it one of the most sensitive nuclei in the low-frequency region, enabling efficient detection even in dilute solutions. Lyso PC can readily co-assemble with amphiphilic molecules and ions in aqueous solutions, forming various structures, such as hexagonal, lamellar, and micellar assemblies. The characteristic line shapes of these assemblies reflect the chemical environment around the probe and provide insights into the different phase states of the assemblies. This strategy offers a simple, cost-effective, and static method for obtaining structural information about various assemblies. Our work not only introduces a sensitive probe for characterizing assemblies in a solvent environment but also inspires new ideas for the development of similar spectroscopic probes.
Collapse
Affiliation(s)
- Bobo Cao
- MOE Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Haijun Yang
- MOE Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Zhiwu Yu
- MOE Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
13
|
Krishnarjuna B, Sharma G, Ravula T, Ramamoorthy A. Factors influencing the detergent-free membrane protein isolation using synthetic nanodisc-forming polymers. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184240. [PMID: 37866688 DOI: 10.1016/j.bbamem.2023.184240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/08/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023]
Abstract
The detergent-free isolation of membrane proteins using synthetic polymers is becoming the desired approach for functional and structural studies of membrane proteins. Since the expression levels for many membrane proteins are low and a high yield of functionalized reconstituted membrane proteins is essential for in vitro studies, it is crucial to optimize the experimental conditions for a given polymer to solubilize target membranes/proteins effectively. The factors that affect membrane solubilization and subsequently the isolation of a target membrane protein include polymer concentration, polymer charge, temperature, pH, and concentration of divalent metal ions. Therefore, it is important to have knowledge about the efficacy of different types of polymers in solubilizing cell membranes. In this study, we evaluate the efficacy of inulin-based non-ionic polymers in solubilizing E. coli membranes enriched with rat flavin mononucleotide binding-domain (FBD) of cytochrome-P450-reductase (CPR) and rabbit cytochrome-b5 (Cyt-b5) under various solubilization conditions. Our results show that a 1:1 (w/w) membrane:polymer ratio, low temperature, high pH and sub-millimolar concentration of metal ions favor the solubilization of E. coli membranes enriched with FBD or Cyt-b5. Conversely, the presence of excess divalent metal ions affected the final protein levels in the polymer-solubilized samples. We believe that the results from this study provide knowledge to assess and plan the use of non-ionic polymers in membrane protein studies.
Collapse
Affiliation(s)
- Bankala Krishnarjuna
- Biophysics Program, Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, Michigan Neuroscience Institute, The University of Michigan, Ann Arbor, MI 48109, USA
| | - Gaurav Sharma
- Biophysics Program, Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, Michigan Neuroscience Institute, The University of Michigan, Ann Arbor, MI 48109, USA
| | - Thirupathi Ravula
- Biophysics Program, Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, Michigan Neuroscience Institute, The University of Michigan, Ann Arbor, MI 48109, USA
| | - Ayyalusamy Ramamoorthy
- National High Magnetic Field Laboratory, Department of Chemical and Biomedical Engineering, Florida State University, Tallahassee, FL 32310, USA.
| |
Collapse
|
14
|
Zhao R, Qasim A, Sophanpanichkul P, Dai H, Nayak M, Sher I, Chill J, Goldstein SAN. Selective block of human Kv1.1 channels and an epilepsy-associated gain-of-function mutation by AETX-K peptide. FASEB J 2024; 38:e23381. [PMID: 38102952 PMCID: PMC10754259 DOI: 10.1096/fj.202302061r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/11/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
Dysfunction of the human voltage-gated K+ channel Kv1.1 has been associated with epilepsy, multiple sclerosis, episodic ataxia, myokymia, and cardiorespiratory dysregulation. We report here that AETX-K, a sea anemone type I (SAK1) peptide toxin we isolated from a phage display library, blocks Kv1.1 with high affinity (Ki ~ 1.6 pM) and notable specificity, inhibiting other Kv channels we tested a million-fold less well. Nuclear magnetic resonance (NMR) was employed both to determine the three-dimensional structure of AETX-K, showing it to employ a classic SAK1 scaffold while exhibiting a unique electrostatic potential surface, and to visualize AETX-K bound to the Kv1.1 pore domain embedded in lipoprotein nanodiscs. Study of Kv1.1 in Xenopus oocytes with AETX-K and point variants using electrophysiology demonstrated the blocking mechanism to employ a toxin-channel configuration we have described before whereby AETX-K Lys23 , two positions away on the toxin interaction surface from the classical blocking residue, enters the pore deeply enough to interact with K+ ions traversing the pathway from the opposite side of the membrane. The mutant channel Kv1.1-L296 F is associated with pharmaco-resistant multifocal epilepsy in infants because it significantly increases K+ currents by facilitating opening and slowing closure of the channels. Consistent with the therapeutic potential of AETX-K for Kv1.1 gain-of-function-associated diseases, AETX-K at 4 pM decreased Kv1.1-L296 F currents to wild-type levels; further, populations of heteromeric channels formed by co-expression Kv1.1 and Kv1.2, as found in many neurons, showed a Ki of ~10 nM even though homomeric Kv1.2 channels were insensitive to the toxin (Ki > 2000 nM).
Collapse
Affiliation(s)
- Ruiming Zhao
- Departments of Pediatrics, Physiology & Biophysics, and Pharmaceutical Sciences, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, Irvine, CA 92697, USA
| | - Arwa Qasim
- Department of Chemistry, Bar Ilan University, Ramat Gan, 52900, Israel
| | - Punyanuch Sophanpanichkul
- Departments of Pediatrics, Physiology & Biophysics, and Pharmaceutical Sciences, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, Irvine, CA 92697, USA
| | - Hui Dai
- Departments of Pediatrics, Physiology & Biophysics, and Pharmaceutical Sciences, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, Irvine, CA 92697, USA
| | - Maha Nayak
- Departments of Pediatrics, Physiology & Biophysics, and Pharmaceutical Sciences, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, Irvine, CA 92697, USA
| | - Inbal Sher
- Department of Chemistry, Bar Ilan University, Ramat Gan, 52900, Israel
| | - Jordan Chill
- Department of Chemistry, Bar Ilan University, Ramat Gan, 52900, Israel
| | - Steve A. N. Goldstein
- Departments of Pediatrics, Physiology & Biophysics, and Pharmaceutical Sciences, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
15
|
Stępień P, Świątek S, Robles MYY, Markiewicz-Mizera J, Balakrishnan D, Inaba-Inoue S, De Vries AH, Beis K, Marrink SJ, Heddle JG. CRAFTing Delivery of Membrane Proteins into Protocells using Nanodiscs. ACS APPLIED MATERIALS & INTERFACES 2023; 15. [PMID: 38015973 PMCID: PMC10726305 DOI: 10.1021/acsami.3c11894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/07/2023] [Accepted: 11/07/2023] [Indexed: 11/30/2023]
Abstract
For the successful generative engineering of functional artificial cells, a convenient and controllable means of delivering membrane proteins into membrane lipid bilayers is necessary. Here we report a delivery system that achieves this by employing membrane protein-carrying nanodiscs and the calcium-dependent fusion of phosphatidylserine lipid membranes. We show that lipid nanodiscs can fuse a transported lipid bilayer with the lipid bilayers of small unilamellar vesicles (SUVs) or giant unilamellar vesicles (GUVs) while avoiding recipient vesicles aggregation. This is triggered by a simple, transient increase in calcium concentration, which results in efficient and rapid fusion in a one-pot reaction. Furthermore, nanodiscs can be loaded with membrane proteins that can be delivered into target SUV or GUV membranes in a detergent-independent fashion while retaining their functionality. Nanodiscs have a proven ability to carry a wide range of membrane proteins, control their oligomeric state, and are highly adaptable. Given this, our approach may be the basis for the development of useful tools that will allow bespoke delivery of membrane proteins to protocells, equipping them with the cell-like ability to exchange material across outer/subcellular membranes.
Collapse
Affiliation(s)
- Piotr Stępień
- Malopolska
Centre of Biotechnology, Jagiellonian University, Krakow 30-387, Poland
| | - Sylwia Świątek
- Malopolska
Centre of Biotechnology, Jagiellonian University, Krakow 30-387, Poland
| | | | | | - Dhanasekaran Balakrishnan
- Malopolska
Centre of Biotechnology, Jagiellonian University, Krakow 30-387, Poland
- Postgraduate
School of Molecular Medicine, Żwirki i Wigury 61, Warsaw 02-091, Poland
| | - Satomi Inaba-Inoue
- Department
of Life Sciences, Imperial College London, Exhibition Road, South Kensington, London SW7 2AZ, U.K.
- Rutherford
Appleton Laboratory, Research Complex at
Harwell, Didcot, Oxfordshire OX11 0FA, U.K.
| | - Alex H. De Vries
- Groningen
Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen 9747 AG, The Netherlands
| | - Konstantinos Beis
- Department
of Life Sciences, Imperial College London, Exhibition Road, South Kensington, London SW7 2AZ, U.K.
- Rutherford
Appleton Laboratory, Research Complex at
Harwell, Didcot, Oxfordshire OX11 0FA, U.K.
| | - Siewert J. Marrink
- Groningen
Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen 9747 AG, The Netherlands
| | - Jonathan G. Heddle
- Malopolska
Centre of Biotechnology, Jagiellonian University, Krakow 30-387, Poland
| |
Collapse
|
16
|
Sweeney DT, Zárate-Pérez F, Stokowa-Sołtys K, Hackett JC. Induced Fit Describes Ligand Binding to Membrane-Associated Cytochrome P450 3A4. Mol Pharmacol 2023; 104:154-163. [PMID: 37536953 PMCID: PMC10506697 DOI: 10.1124/molpharm.123.000698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/06/2023] [Accepted: 07/20/2023] [Indexed: 08/05/2023] Open
Abstract
Cytochrome P450 3A4 (CYP3A4) is the dominant P450 involved in human xenobiotic metabolism. Competition for CYP3A4 therefore underlies several adverse drug-drug interactions. Despite its clinical significance, the mechanisms CYP3A4 uses to bind diverse ligands remain poorly understood. Highly monodisperse CYP3A4 embedded in anionic lipoprotein nanodiscs containing an equal mixture of 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine and 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) were used to determine which of the limiting kinetic schemes that include protein conformational change, conformational selection (CS) or induced fit (IF), best described the binding of four known irreversible inhibitors. Azamulin, retapamulin, pleuromutilin, and mibrefadil binding to CYP3A4 nanodiscs conformed to a single-site binding model. Exponential fits of stopped-flow UV-visible absorption spectroscopy data supported multiple-step binding mechanisms. Trends in the rates of relaxation to equilibrium with increasing ligand concentrations were ambiguous as to whether IF or CS was involved; however, global fitting and consideration of the rate constants favored an IF mechanism. In the case of mibrefadil, a transient complex was observed in the stopped-flow UV-visible experiment, definitively assigning the presence of IF in ligand binding. While these studies only consider a small region of CYP3A4's vast ligand space, they provide kinetic evidence that CYP3A4 can use an IF mechanism. SIGNIFICANCE STATEMENT: CYP3A4 is capable of oxidizing numerous xenobiotics, including many drugs. Such promiscuity could not be achieved without conformational changes to accommodate diverse substrates. It is unknown whether conformational heterogeneity is present before (conformational selection) or after (induced fit) ligand binding. Stopped-flow measurements of suicide inhibitors binding to nanodisc-embedded CYP3A4 combined with sophisticated numerical analyses support that induced fit better describes ligand binding to this important enzyme.
Collapse
Affiliation(s)
- David Tyler Sweeney
- Department of Chemistry and Biochemistry and Biomolecular Sciences Institute, Florida International University, Miami, Florida (J.C.H., K.S.S., F.Z.P.); Department of Physiology and Biophysics and The Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia (D.T.S.); and Department of Biological and Medicinal Chemistry, Faculty of Chemistry, University of Wroclaw, Wroclaw, Poland (K.S.S.)
| | - Francisco Zárate-Pérez
- Department of Chemistry and Biochemistry and Biomolecular Sciences Institute, Florida International University, Miami, Florida (J.C.H., K.S.S., F.Z.P.); Department of Physiology and Biophysics and The Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia (D.T.S.); and Department of Biological and Medicinal Chemistry, Faculty of Chemistry, University of Wroclaw, Wroclaw, Poland (K.S.S.)
| | - Kamila Stokowa-Sołtys
- Department of Chemistry and Biochemistry and Biomolecular Sciences Institute, Florida International University, Miami, Florida (J.C.H., K.S.S., F.Z.P.); Department of Physiology and Biophysics and The Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia (D.T.S.); and Department of Biological and Medicinal Chemistry, Faculty of Chemistry, University of Wroclaw, Wroclaw, Poland (K.S.S.)
| | - John C Hackett
- Department of Chemistry and Biochemistry and Biomolecular Sciences Institute, Florida International University, Miami, Florida (J.C.H., K.S.S., F.Z.P.); Department of Physiology and Biophysics and The Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia (D.T.S.); and Department of Biological and Medicinal Chemistry, Faculty of Chemistry, University of Wroclaw, Wroclaw, Poland (K.S.S.)
| |
Collapse
|
17
|
Necelis M, McDermott C, Belcher Dufrisne M, Baryiames C, Columbus L. Solution NMR investigations of integral membrane proteins: Challenges and innovations. Curr Opin Struct Biol 2023; 82:102654. [PMID: 37542910 PMCID: PMC10529709 DOI: 10.1016/j.sbi.2023.102654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/08/2023] [Accepted: 06/20/2023] [Indexed: 08/07/2023]
Abstract
Compared to soluble protein counterparts, the understanding of membrane protein stability, solvent interactions, and function are not as well understood. Recent advancements in labeling, expression, and stabilization of membrane proteins have enabled solution nuclear magnetic resonance spectroscopy to investigate membrane protein conformational states, ligand binding, lipid interactions, stability, and folding. This review highlights these advancements and new understandings and provides examples of recent applications.
Collapse
Affiliation(s)
- Matthew Necelis
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA
| | - Connor McDermott
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA
| | | | | | - Linda Columbus
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
18
|
Huang X, Zhang X, An N, Zhang M, Ma M, Yang Y, Jing L, Wang Y, Chen Z, Zhang P. Cryo-EM structure and molecular mechanism of abscisic acid transporter ABCG25. NATURE PLANTS 2023; 9:1709-1719. [PMID: 37666961 DOI: 10.1038/s41477-023-01509-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 08/02/2023] [Indexed: 09/06/2023]
Abstract
Abscisic acid (ABA) is one of the plant hormones that regulate various physiological processes, including stomatal closure, seed germination and development. ABA is synthesized mainly in vascular tissues and transported to distal sites to exert its physiological functions. Many ABA transporters have been identified, however, the molecular mechanism of ABA transport remains elusive. Here we report the cryogenic electron microscopy structure of the Arabidopsis thaliana adenosine triphosphate-binding cassette G subfamily ABA exporter ABCG25 (AtABCG25) in inward-facing apo conformation, ABA-bound pre-translocation conformation and outward-facing occluded conformation. Structural and biochemical analyses reveal that the ABA bound with ABCG25 adopts a similar configuration as that in ABA receptors and that the ABA-specific binding is dictated by residues from transmembrane helices TM1, TM2 and TM5a of each protomer at the transmembrane domain interface. Comparison of different conformational structures reveals conformational changes, especially those of transmembrane helices and residues constituting the substrate translocation pathway during the cross-membrane transport process. Based on the structural data, a 'gate-flipper' translocation model of ABCG25-mediated ABA cross-membrane transport is proposed. Our structural data on AtABCG25 provide new clues to the physiological study of ABA and shed light on its potential applications in plants and agriculture.
Collapse
Affiliation(s)
- Xiaowei Huang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xue Zhang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Ning An
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Minhua Zhang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Miaolian Ma
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Yang Yang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lianyan Jing
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Yongfei Wang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Zhenguo Chen
- The Fifth People's Hospital of Shanghai, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| | - Peng Zhang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
19
|
Odenkirk MT, Zhang G, Marty MT. Do Nanodisc Assembly Conditions Affect Natural Lipid Uptake? JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:2006-2015. [PMID: 37524089 PMCID: PMC10528108 DOI: 10.1021/jasms.3c00170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Lipids play critical roles in modulating membrane protein structure, interactions, and activity. Nanodiscs provide a tunable membrane mimetic that can model these endogenous protein-lipid interactions in a nanoscale lipid bilayer. However, most studies of membrane proteins with nanodiscs use simple synthetic lipids that lack the headgroup and fatty acyl diversity of natural extracts. Prior research has successfully used natural lipid extracts in nanodiscs that more accurately mimic natural environments, but it is not clear how nanodisc assembly may bias the incorporated lipid profiles. Here, we applied lipidomics to investigate how nanodisc assembly conditions affect the profile of natural lipids in nanodiscs. Specifically, we tested the effects of assembly temperature, nanodisc size, and lipidome extract complexity. Globally, our analysis demonstrates that the lipids profiles are largely unaffected by nanodisc assembly conditions. However, a few notable changes emerged within individual lipids and lipid classes, such as a differential incorporation of cardiolipin and phosphatidylglycerol lipids from the E. coli polar lipid extract at different temperatures. Conversely, some classes of brain lipids were affected by nanodisc size at higher temperatures. Collectively, these data enable the application of nanodiscs to study protein-lipid interactions in complex lipid environments.
Collapse
Affiliation(s)
- Melanie T. Odenkirk
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ
- Bio5 Institute, University of Arizona, Tucson, AZ
| | - Guozhi Zhang
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ
| | - Michael T. Marty
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ
- Bio5 Institute, University of Arizona, Tucson, AZ
| |
Collapse
|
20
|
Kim SO, Kim SG, Ahn H, Yoo J, Jang J, Park TH. Ni-rGO Sensor Combined with Human Olfactory Receptor-Embedded Nanodiscs for Detecting Gas-Phase DMMP as a Simulant of Nerve Agents. ACS Sens 2023; 8:3095-3103. [PMID: 37555584 DOI: 10.1021/acssensors.3c00744] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Nerve agents are organophosphorus toxic chemicals that can inhibit acetylcholinesterase, leading to paralysis of the nervous system and death. Early detection of nerve agents is important for safety issues. Dimethyl methylphosphonate (DMMP) is widely used as a simulant of nerve agents, and many studies have been conducted using DMMP as a substitute for detecting nerve agents. Despite many studies on sensors for detecting DMMP, they have limitations in sensitivity and selectivity. To overcome these limitations, a nickel-decorated reduced graphene oxide (Ni-rGO) sensor with human olfactory receptor hOR2T7 nanodiscs was utilized to create a bioelectronic nose platform for DMMP gas detection. hOR2T7 was produced and reconstituted into nanodiscs for enhancing the sensor's stability, especially for detection in a gas phase. It could detect DMMP gas selectively and repeatedly at a concentration of 1 ppb. This sensitive and selective bioelectronic nose can be applied as a practical tool for the detection of gaseous chemical warfare agents in military and safety fields.
Collapse
Affiliation(s)
- So-Ong Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Sung Gun Kim
- Samsung Electronics, San #16 Banwol-Dong, Hwasung, Gyeonggi-do 18448, Republic of Korea
| | - Hyenjin Ahn
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Jin Yoo
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Jyongsik Jang
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Tai Hyun Park
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
21
|
Levin R, Löhr F, Karakoc B, Lichtenecker R, Dötsch V, Bernhard F. E. coli "Stablelabel" S30 lysate for optimized cell-free NMR sample preparation. JOURNAL OF BIOMOLECULAR NMR 2023; 77:131-147. [PMID: 37311907 PMCID: PMC10406690 DOI: 10.1007/s10858-023-00417-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/10/2023] [Indexed: 06/15/2023]
Abstract
Cell-free (CF) synthesis with highly productive E. coli lysates is a convenient method to produce labeled proteins for NMR studies. Despite reduced metabolic activity in CF lysates, a certain scrambling of supplied isotope labels is still notable. Most problematic are conversions of 15N labels of the amino acids L-Asp, L-Asn, L-Gln, L-Glu and L-Ala, resulting in ambiguous NMR signals as well as in label dilution. Specific inhibitor cocktails suppress most undesired conversion reactions, while limited availability and potential side effects on CF system productivity need to be considered. As alternative route to address NMR label conversion in CF systems, we describe the generation of optimized E. coli lysates with reduced amino acid scrambling activity. Our strategy is based on the proteome blueprint of standardized CF S30 lysates of the E. coli strain A19. Identified lysate enzymes with suspected amino acid scrambling activity were eliminated by engineering corresponding single and cumulative chromosomal mutations in A19. CF lysates prepared from the mutants were analyzed for their CF protein synthesis efficiency and for residual scrambling activity. The A19 derivative "Stablelabel" containing the cumulative mutations asnA, ansA/B, glnA, aspC and ilvE yielded the most useful CF S30 lysates. We demonstrate the optimized NMR spectral complexity of selectively labeled proteins CF synthesized in "Stablelabel" lysates. By taking advantage of ilvE deletion in "Stablelabel", we further exemplify a new strategy for methyl group specific labeling of membrane proteins with the proton pump proteorhodopsin.
Collapse
Affiliation(s)
- Roman Levin
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, 60438 Frankfurt, Germany
| | - Frank Löhr
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, 60438 Frankfurt, Germany
| | - Betül Karakoc
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, 60438 Frankfurt, Germany
| | - Roman Lichtenecker
- Institute of Organic Chemistry, University of Vienna, 1090 Vienna, Austria
- MAG-LAB, 1030 Vienna, Austria
| | - Volker Dötsch
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, 60438 Frankfurt, Germany
| | - Frank Bernhard
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, 60438 Frankfurt, Germany
| |
Collapse
|
22
|
Pettersen JM, Yang Y, Robinson AS. Advances in nanodisc platforms for membrane protein purification. Trends Biotechnol 2023; 41:1041-1054. [PMID: 36935323 DOI: 10.1016/j.tibtech.2023.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/07/2023] [Accepted: 02/20/2023] [Indexed: 03/19/2023]
Abstract
Membrane scaffold protein nanodiscs (MSPNDs) are an invaluable tool for improving purified membrane protein (MP) stability and activity compared to traditional micellar methods, thus enabling an increase in high-resolution MP structures, particularly in concert with cryogenic electron microscopy (cryo-EM) approaches. In this review we highlight recent advances and breakthroughs in MSPND methodology and applications. We also introduce and discuss saposin-lipoprotein nanoparticles (salipros) and copolymer nanodiscs which have recently emerged as authentic MSPND alternatives. We compare the advantages and disadvantages of MSPNDs, salipros, and copolymer nanodisc technologies to highlight potential opportunities for using each platform for MP purification and characterization.
Collapse
Affiliation(s)
- John M Pettersen
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Yaxin Yang
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Anne S Robinson
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
23
|
Guo C, Yang L, Liu Z, Liu D, Wüthrich K. Two-Dimensional NMR Spectroscopy of the G Protein-Coupled Receptor A 2AAR in Lipid Nanodiscs. Molecules 2023; 28:5419. [PMID: 37513291 PMCID: PMC10383251 DOI: 10.3390/molecules28145419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/07/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
Eight hundred and twenty-six human G protein-coupled receptors (GPCRs) mediate the actions of two-thirds of the human hormones and neurotransmitters and over one-third of clinically used drugs. Studying the structure and dynamics of human GPCRs in lipid bilayer environments resembling the native cell membrane milieu is of great interest as a basis for understanding structure-function relationships and thus benefits continued drug development. Here, we incorporate the human A2A adenosine receptor (A2AAR) into lipid nanodiscs, which represent a detergent-free environment for structural studies using nuclear magnetic resonance (NMR) in solution. The [15N,1H]-TROSY correlation spectra confirmed that the complex of [u-15N, ~70% 2H]-A2AAR with an inverse agonist adopts its global fold in lipid nanodiscs in solution at physiological temperature. The global assessment led to two observations of practical interest. First, A2AAR in nanodiscs can be stored for at least one month at 4 °C in an aqueous solvent. Second, LMNG/CHS micelles are a very close mimic of the environment of A2AAR in nanodiscs. The NMR signal of five individually assigned tryptophan indole 15N-1H moieties located in different regions of the receptor structure further enabled a detailed assessment of the impact of nanodiscs and LMNG/CHS micelles on the local structure and dynamics of A2AAR. As expected, the largest effects were observed near the lipid-water interface along the intra- and extracellular surfaces, indicating possible roles of tryptophan side chains in stabilizing GPCRs in lipid bilayer membranes.
Collapse
Affiliation(s)
- Canyong Guo
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Lingyun Yang
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Zhijun Liu
- National Facility for Protein Science in Shanghai, ZhangJiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Dongsheng Liu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Kurt Wüthrich
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA 92037, USA
- Institute of Molecular Biology and Biophysics, ETH Zürich, Otto-Stern-Weg 5, 8093 Zürich, Switzerland
| |
Collapse
|
24
|
Ray AP, Thakur N, Pour NG, Eddy MT. Dual mechanisms of cholesterol-GPCR interactions that depend on membrane phospholipid composition. Structure 2023; 31:836-847.e6. [PMID: 37236187 PMCID: PMC10330489 DOI: 10.1016/j.str.2023.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/25/2023] [Accepted: 05/01/2023] [Indexed: 05/28/2023]
Abstract
Cholesterol is a critical component of mammalian cell membranes and an allosteric modulator of G protein-coupled receptors (GPCRs), but divergent views exist on the mechanisms by which cholesterol influences receptor functions. Leveraging the benefits of lipid nanodiscs, i.e., quantitative control of lipid composition, we observe distinct impacts of cholesterol in the presence and absence of anionic phospholipids on the function-related conformational dynamics of the human A2A adenosine receptor (A2AAR). Direct receptor-cholesterol interactions drive activation of agonist-bound A2AAR in membranes containing zwitterionic phospholipids. Intriguingly, the presence of anionic lipids attenuates cholesterol's impact through direct interactions with the receptor, highlighting a more complex role for cholesterol that depends on membrane phospholipid composition. Targeted amino acid replacements at two frequently predicted cholesterol interaction sites showed distinct impacts of cholesterol at different receptor locations, demonstrating the ability to delineate different roles of cholesterol in modulating receptor signaling and maintaining receptor structural integrity.
Collapse
Affiliation(s)
- Arka Prabha Ray
- Department of Chemistry, University of Florida, 126 Sisler Hall, Gainesville, FL 32611, USA
| | - Naveen Thakur
- Department of Chemistry, University of Florida, 126 Sisler Hall, Gainesville, FL 32611, USA
| | - Niloofar Gopal Pour
- Department of Chemistry, University of Florida, 126 Sisler Hall, Gainesville, FL 32611, USA
| | - Matthew T Eddy
- Department of Chemistry, University of Florida, 126 Sisler Hall, Gainesville, FL 32611, USA.
| |
Collapse
|
25
|
Kyaw A, Roepke K, Arthur T, Howard KP. Conformation of influenza AM2 membrane protein in nanodiscs and liposomes. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184152. [PMID: 36948480 PMCID: PMC10175228 DOI: 10.1016/j.bbamem.2023.184152] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/15/2023] [Accepted: 03/14/2023] [Indexed: 03/24/2023]
Abstract
The influenza A M2 protein (AM2) is a multifunctional membrane-associated homotetramer that orchestrates several essential events in the viral infection cycle including viral assembly and budding. An atomic-level conformational understanding of this key player in the influenza life cycle could inform new antiviral strategies. For conformational studies of complex systems like the AM2 membrane protein, a multipronged approach using different biophysical methods and different model membranes is a powerful way to incorporate complementary data and achieve a fuller, more robust understanding of the system. However, one must be aware of how the sample composition required for a particular method impacts the data collected and how conclusions are drawn. In that spirit, we systematically compared the properties of AM2 in two different model membranes: nanodiscs and liposomes. Electron paramagnetic spectroscopy of spin-labeled AM2 showed that the conformation and dynamics were strikingly similar in both AM2-nanodiscs and AM2-liposomes consistent with similar conformations in both model membranes. Analysis of spin labeled lipids embedded in both model membranes revealed that the bilayer in AM2-liposomes was more fluid and permeable to oxygen than AM2-nanodiscs with the same lipid composition. Once the difference in the partitioning of the paramagnetic oxygen relaxation agent was taken into account, the membrane topology of AM2 appeared to be the same in both liposomes and nanodiscs. Finally, functionally relevant AM2 conformational shifts previously seen in liposomes due to the addition of cholesterol were also observed in nanodiscs.
Collapse
Affiliation(s)
- Aye Kyaw
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, PA 19081, United States of America
| | - Kyra Roepke
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, PA 19081, United States of America
| | - Tyrique Arthur
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, PA 19081, United States of America
| | - Kathleen P Howard
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, PA 19081, United States of America.
| |
Collapse
|
26
|
Mohamadi M, Goricanec D, Wagner G, Hagn F. NMR sample optimization and backbone assignment of a stabilized neurotensin receptor. J Struct Biol 2023; 215:107970. [PMID: 37142193 PMCID: PMC10242673 DOI: 10.1016/j.jsb.2023.107970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/25/2023] [Accepted: 04/29/2023] [Indexed: 05/06/2023]
Abstract
G protein-coupled receptors (GPCRs) are involved in a multitude of cellular signaling cascades and consequently are a prominent target for pharmaceutical drugs. In the past decades, a growing number of high-resolution structures of GPCRs has been solved, providing unprecedented insights into their mode of action. However, knowledge on the dynamical nature of GPCRs is equally important for a better functional understanding, which can be obtained by NMR spectroscopy. Here, we employed a combination of size exclusion chromatography, thermal stability measurements and 2D-NMR experiments for the NMR sample optimization of the stabilized neurotensin receptor type 1 (NTR1) variant HTGH4 bound to the agonist neurotensin. We identified the short-chain lipid di-heptanoyl-glycero-phosphocholine (DH7PC) as a promising membrane mimetic for high resolution NMR experiments and obtained a partial NMR backbone resonance assignment. However, internal membrane-incorporated parts of the protein were not visible due to lacking amide proton back-exchange. Nevertheless, NMR and hydrogen deuterium exchange (HDX) mass spectrometry experiments could be used to probe structural changes at the orthosteric ligand binding site in the agonist and antagonist bound states. To enhance amide proton exchange we partially unfolded HTGH4 and observed additional NMR signals in the transmembrane region. However, this procedure led to a higher sample heterogeneity, suggesting that other strategies need to be applied to obtain high-quality NMR spectra of the entire protein. In summary, the herein reported NMR characterization is an essential step toward a more complete resonance assignment of NTR1 and for probing its structural and dynamical features in different functional states.
Collapse
Affiliation(s)
- Mariam Mohamadi
- Bavarian NMR Center (BNMRZ) and Structural Membrane Biochemistry, Dept. of Bioscience, TUM School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
| | - David Goricanec
- Bavarian NMR Center (BNMRZ) and Structural Membrane Biochemistry, Dept. of Bioscience, TUM School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
| | - Gerhard Wagner
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Franz Hagn
- Bavarian NMR Center (BNMRZ) and Structural Membrane Biochemistry, Dept. of Bioscience, TUM School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany; Institute of Structural Biology, Molecular Targets and Therapeutics Center, Helmholtz Munich 85764 Neuherberg, Germany.
| |
Collapse
|
27
|
Ledwitch KV, Künze G, McKinney JR, Okwei E, Larochelle K, Pankewitz L, Ganguly S, Darling HL, Coin I, Meiler J. Sparse pseudocontact shift NMR data obtained from a non-canonical amino acid-linked lanthanide tag improves integral membrane protein structure prediction. JOURNAL OF BIOMOLECULAR NMR 2023; 77:69-82. [PMID: 37016190 PMCID: PMC10443207 DOI: 10.1007/s10858-023-00412-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
A single experimental method alone often fails to provide the resolution, accuracy, and coverage needed to model integral membrane proteins (IMPs). Integrating computation with experimental data is a powerful approach to supplement missing structural information with atomic detail. We combine RosettaNMR with experimentally-derived paramagnetic NMR restraints to guide membrane protein structure prediction. We demonstrate this approach using the disulfide bond formation protein B (DsbB), an α-helical IMP. Here, we attached a cyclen-based paramagnetic lanthanide tag to an engineered non-canonical amino acid (ncAA) using a copper-catalyzed azide-alkyne cycloaddition (CuAAC) click chemistry reaction. Using this tagging strategy, we collected 203 backbone HN pseudocontact shifts (PCSs) for three different labeling sites and used these as input to guide de novo membrane protein structure prediction protocols in Rosetta. We find that this sparse PCS dataset combined with 44 long-range NOEs as restraints in our calculations improves structure prediction of DsbB by enhancements in model accuracy, sampling, and scoring. The inclusion of this PCS dataset improved the Cα-RMSD transmembrane segment values of the best-scoring and best-RMSD models from 9.57 Å and 3.06 Å (no NMR data) to 5.73 Å and 2.18 Å, respectively.
Collapse
Affiliation(s)
- Kaitlyn V Ledwitch
- Center for Structural Biology, Vanderbilt University, Nashville, TN, 37240, USA.
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37235, USA.
- Department of Chemistry, Center for Structural Biology, MRBIII 5154E, Vanderbilt University, Nashville, TN, 37212, USA.
| | - Georg Künze
- Institute of Drug Discovery, Faculty of Medicine, University of Leipzig, 04103, Leipzig, Germany
| | - Jacob R McKinney
- Center for Structural Biology, Vanderbilt University, Nashville, TN, 37240, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37235, USA
| | - Elleansar Okwei
- Center for Structural Biology, Vanderbilt University, Nashville, TN, 37240, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37235, USA
| | - Katherine Larochelle
- Center for Structural Biology, Vanderbilt University, Nashville, TN, 37240, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37235, USA
| | - Lisa Pankewitz
- Center for Structural Biology, Vanderbilt University, Nashville, TN, 37240, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37235, USA
| | - Soumya Ganguly
- Center for Structural Biology, Vanderbilt University, Nashville, TN, 37240, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37235, USA
| | - Heather L Darling
- Center for Structural Biology, Vanderbilt University, Nashville, TN, 37240, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37235, USA
| | - Irene Coin
- Institute of Biochemistry, Faculty of Life Science, University of Leipzig, 04103, Leipzig, Germany
| | - Jens Meiler
- Center for Structural Biology, Vanderbilt University, Nashville, TN, 37240, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37235, USA
- Institute of Drug Discovery, Faculty of Medicine, University of Leipzig, 04103, Leipzig, Germany
| |
Collapse
|
28
|
Yang HC, Li W, Sun J, Gross ML. Advances in Mass Spectrometry on Membrane Proteins. MEMBRANES 2023; 13:457. [PMID: 37233518 PMCID: PMC10220746 DOI: 10.3390/membranes13050457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/15/2023] [Accepted: 04/21/2023] [Indexed: 05/27/2023]
Abstract
Understanding the higher-order structure of membrane proteins (MPs), which are vital for numerous biological processes, is crucial for comprehending their function. Although several biophysical approaches have been used to study the structure of MPs, limitations exist owing to the proteins' dynamic nature and heterogeneity. Mass spectrometry (MS) is emerging as a powerful tool for investigating membrane protein structure and dynamics. Studying MPs using MS, however, must meet several challenges including the lack of stability and solubility of MPs, the complexity of the protein-membrane system, and the difficulty of digestion and detection. To meet these challenges, recent advances in MS have engendered opportunities in resolving the dynamics and structures of MP. This article reviews achievements over the past few years that enable the study of MPs by MS. We first introduce recent advances in hydrogen deuterium exchange and native mass spectrometry for MPs and then focus on those footprinting methods that report on protein structure.
Collapse
Affiliation(s)
- Hsin-Chieh Yang
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Weikai Li
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - Jie Sun
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Michael L. Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| |
Collapse
|
29
|
Krishnarjuna B, Marte J, Ravula T, Ramamoorthy A. Enhancing the stability and homogeneity of non-ionic polymer nanodiscs by tuning electrostatic interactions. J Colloid Interface Sci 2023; 634:887-896. [PMID: 36566634 PMCID: PMC10838601 DOI: 10.1016/j.jcis.2022.12.112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
The nanodisc technology is increasingly used for structural studies on membrane proteins and drug delivery. The development of synthetic polymer nanodiscs and the recent discovery of non-ionic inulin-based polymers have significantly broadened the scope of nanodiscs. While the lipid exchange and size flexibility properties of the self-assembled polymer-based nanodiscs are valuable for various applications, the non-ionic polymer nanodiscs are remarkably unique in that they enable the reconstitution of any protein, protein-protein complexes, or drugs irrespective of their charge. However, the non-ionic nature of the belt could influence the stability and size homogeneity of inulin-based polymer nanodiscs. In this study, we investigate the size stability and homogeneity of nanodiscs formed by non-ionic lipid-solubilizing polymers using different biophysical methods. Polymer nanodiscs containing zwitterionic DMPC and different ratios of DMPC:DMPG lipids were made using anionic SMA-EA or non-ionic pentyl-inulin polymers. Non-ionic polymer nanodiscs made using zwitterionic DMPC lipids produced a very broad elution profile on SEC due to their instability in the column, thus affecting sample monodispersity which was confirmed by DLS experiments that showed multiple peaks. However, the inclusion of anionic DMPG lipids improved the stability as observed from SEC and DLS profiles, which was further confirmed by TEM images. Whereas, anionic SMA-EA-based DMPC-nanodiscs showed excellent stability and size homogeneity when solubilizing zwitterionic lipids. The stability of DMPC:DMPG non-ionic polymer nanodiscs is attributed to the inter-nanodisc repulsion by the anionic-DMPG that prevents the uncontrolled collision and fusion of nanodiscs. Thus, the reported results demonstrate the use of electrostatic interactions to tune the solubility, stability, and size homogeneity of non-ionic polymer nanodiscs which are important features for enabling functional and atomic-resolution structural studies of membrane proteins, other lipid-binding molecules, and water-soluble biomolecules including cytosolic proteins, nucleic acids and metabolites.
Collapse
Affiliation(s)
- Bankala Krishnarjuna
- Biophysics Program, Department of Chemistry, Macromolecular Science and Engineering, Biomedical Engineering, Michigan Neuroscience Institute, The University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Joseph Marte
- Biophysics Program, Department of Chemistry, Macromolecular Science and Engineering, Biomedical Engineering, Michigan Neuroscience Institute, The University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Thirupathi Ravula
- Biophysics Program, Department of Chemistry, Macromolecular Science and Engineering, Biomedical Engineering, Michigan Neuroscience Institute, The University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Ayyalusamy Ramamoorthy
- Biophysics Program, Department of Chemistry, Macromolecular Science and Engineering, Biomedical Engineering, Michigan Neuroscience Institute, The University of Michigan, Ann Arbor, MI 48109-1055, USA.
| |
Collapse
|
30
|
Sun L, Wang D, Noh I, Fang RH, Gao W, Zhang L. Synthesis of Erythrocyte Nanodiscs for Bacterial Toxin Neutralization. Angew Chem Int Ed Engl 2023; 62:e202301566. [PMID: 36853913 DOI: 10.1002/anie.202301566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 03/01/2023]
Abstract
Nanodiscs are a compelling nanomedicine platform due to their ultrasmall size and distinct disc shape. Current nanodisc formulations are made primarily with synthetic lipid bilayers and proteins. Here, we report a cellular nanodisc made with human red blood cell (RBC) membrane (denoted "RBC-ND") and show its effective neutralization against bacterial toxins. In vitro, RBC-ND neutralizes the hemolytic activity and cytotoxicity caused by purified α-toxin or complex whole secreted proteins (wSP) from methicillin-resistant Staphylococcus aureus bacteria. In vivo, RBC-ND confers significant survival benefits for mice intoxicated with α-toxin or wSP in both therapeutic and prevention regimens. Moreover, RBC-ND shows good biocompatibility and biosafety in vivo. Overall, RBC-ND distinguishes itself by inheriting the biological functions of the source cell membrane for bioactivity. The design strategy of RBC-ND can be generalized to other types of cell membranes for broad applications.
Collapse
Affiliation(s)
- Lei Sun
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA-92093, USA
| | - Dan Wang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA-92093, USA
| | - Ilkoo Noh
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA-92093, USA
| | - Ronnie H Fang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA-92093, USA
| | - Weiwei Gao
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA-92093, USA
| | - Liangfang Zhang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA-92093, USA
| |
Collapse
|
31
|
A bivalent remipede toxin promotes calcium release via ryanodine receptor activation. Nat Commun 2023; 14:1036. [PMID: 36823422 PMCID: PMC9950431 DOI: 10.1038/s41467-023-36579-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 02/07/2023] [Indexed: 02/25/2023] Open
Abstract
Multivalent ligands of ion channels have proven to be both very rare and highly valuable in yielding unique insights into channel structure and pharmacology. Here, we describe a bivalent peptide from the venom of Xibalbanus tulumensis, a troglobitic arthropod from the enigmatic class Remipedia, that causes persistent calcium release by activation of ion channels involved in muscle contraction. The high-resolution solution structure of φ-Xibalbin3-Xt3a reveals a tandem repeat arrangement of inhibitor-cysteine knot (ICK) domains previously only found in spider venoms. The individual repeats of Xt3a share sequence similarity with a family of scorpion toxins that target ryanodine receptors (RyR). Single-channel electrophysiology and quantification of released Ca2+ stores within skinned muscle fibers confirm Xt3a as a bivalent RyR modulator. Our results reveal convergent evolution of RyR targeting toxins in remipede and scorpion venoms, while the tandem-ICK repeat architecture is an evolutionary innovation that is convergent with toxins from spider venoms.
Collapse
|
32
|
Chen L, Yu C, Xu W, Xiong Y, Cheng P, Lin Z, Zhang Z, Knoedler L, Panayi AC, Knoedler S, Wang J, Mi B, Liu G. Dual-Targeted Nanodiscs Revealing the Cross-Talk between Osteogenic Differentiation of Mesenchymal Stem Cells and Macrophages. ACS NANO 2023; 17:3153-3167. [PMID: 36715347 PMCID: PMC9933878 DOI: 10.1021/acsnano.2c12440] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Ongoing research has highlighted the significance of the cross-play of macrophages and mesenchymal stem cells (MSCs). Lysine-specific demethylase 6B (KDM6B) has been shown to control osteogenic differentiation of MSCs by depleting trimethylated histone 3 lysine 27 (H3K27me3). However, to date, the role of KDM6B in bone marrow-derived macrophages (BMDMs) remains controversial. Here, a chromatin immunoprecipitation assay (ChIP) proved that KDM6B derived from osteogenic-induced BMSCs could bind to the promoter region of BMDMs' brain and muscle aryl hydrocarbon receptor nuclear translocator-like protein-1 (BMAL1) gene in a coculture system and activate BMAL1. Transcriptome sequencing and experiments in vitro showed that the overexpression of BMAL1 in BMDM could inhibit the TLR2/NF-κB signaling pathway, reduce pyroptosis, and decrease the M1/M2 ratio, thereby promoting osteogenic differentiation of BMSCs. Furthermore, bone and macrophage dual-targeted GSK-J4 (KDM6B inhibitor)-loaded nanodiscs were synthesized via binding SDSSD-apoA-1 peptide analogs (APA) peptide, which indirectly proved the critical role of KDM6B in osteogenesis in vivo. Overall, we demonstrated that KDM6B serves as a positive circulation trigger during osteogenic differentiation by decreasing the ratio of M1/M2 both in vitro and in vivo. Collectively, these results provide insight into basic research in the field of osteoporosis and bone repair.
Collapse
Affiliation(s)
- Lang Chen
- Department
of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei
Province Key Laboratory of Oral and Maxillofacial Development and
Regeneration, Wuhan 430022, China
| | - Chenyan Yu
- Department
of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei
Province Key Laboratory of Oral and Maxillofacial Development and
Regeneration, Wuhan 430022, China
| | - Wanting Xu
- Department
of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School
of Pharmaceutical Sciences, Shenzhen Campus
of Sun Yat-sen University, Shenzhen 518100, China
| | - Yuan Xiong
- Department
of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei
Province Key Laboratory of Oral and Maxillofacial Development and
Regeneration, Wuhan 430022, China
| | - Peng Cheng
- Department
of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei
Province Key Laboratory of Oral and Maxillofacial Development and
Regeneration, Wuhan 430022, China
| | - Ze Lin
- Department
of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei
Province Key Laboratory of Oral and Maxillofacial Development and
Regeneration, Wuhan 430022, China
| | - Zhenhe Zhang
- Department
of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei
Province Key Laboratory of Oral and Maxillofacial Development and
Regeneration, Wuhan 430022, China
| | - Leonard Knoedler
- Department
of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Regensburg 93053, Germany
- Leibniz
Institute of Immunotherapy, University of
Regensburg, Regensburg 93053, Germany
| | - Adriana C. Panayi
- Department
of Plastic Surgery, Brigham and Women’s
Hospital, Harvard Medical School, Boston, Massachusetts 02152, United States
- Department
of Hand, Plastic and Reconstructive Surgery, Microsurgery, Burn Center,
BG Trauma Center Ludwigshafen, University
of Heidelberg, Ludwig-Guttmann-Strasse
13, Ludwigshafen/Rhine 67071, Germany
| | - Samuel Knoedler
- Department
of Plastic Surgery, Brigham and Women’s
Hospital, Harvard Medical School, Boston, Massachusetts 02152, United States
- Institute
of Regenerative Biology and Medicine, Helmholtz
Zentrum München, Max-Lebsche-Platz 31, Munich 81377, Germany
| | - Junqing Wang
- Department
of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School
of Pharmaceutical Sciences, Shenzhen Campus
of Sun Yat-sen University, Shenzhen 518100, China
| | - Bobin Mi
- Department
of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei
Province Key Laboratory of Oral and Maxillofacial Development and
Regeneration, Wuhan 430022, China
| | - Guohui Liu
- Department
of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei
Province Key Laboratory of Oral and Maxillofacial Development and
Regeneration, Wuhan 430022, China
| |
Collapse
|
33
|
Huang Y, Karsai A, Sambre PD, Su WC, Faller R, Parikh AN, Liu GY. Production of Lipid Constructs by Design via Three-Dimensional Nanoprinting. MICROMACHINES 2023; 14:372. [PMID: 36838072 PMCID: PMC9963025 DOI: 10.3390/mi14020372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Atomic force microscopy (AFM) in conjunction with microfluidic delivery was utilized to produce three-dimensional (3D) lipid structures following a custom design. While AFM is well-known for its spatial precision in imaging and 2D nanolithography, the development of AFM-based nanotechnology into 3D nanoprinting requires overcoming the technical challenges of controlling material delivery and interlayer registry. This work demonstrates the concept of 3D nanoprinting of amphiphilic molecules such as 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC). Various formulations of POPC solutions were tested to achieve point, line, and layer-by-layer material delivery. The produced structures include nanometer-thick disks, long linear spherical caps, stacking grids, and organizational chiral architectures. The POPC molecules formed stacking bilayers in these constructions, as revealed by high-resolution structural characterizations. The 3D printing reached nanometer spatial precision over a range of 0.5 mm. The outcomes reveal the promising potential of our designed technology and methodology in the production of 3D structures from nanometer to continuum, opening opportunities in biomaterial sciences and engineering, such as in the production of 3D nanodevices, chiral nanosensors, and scaffolds for tissue engineering and regeneration.
Collapse
Affiliation(s)
- Yuqi Huang
- Department of Chemistry, University of California, Davis, CA 95616, USA
| | - Arpad Karsai
- Department of Chemistry, University of California, Davis, CA 95616, USA
| | - Pallavi D. Sambre
- Department of Materials Science and Engineering, University of California, Davis, CA 95616, USA
| | - Wan-Chih Su
- Department of Biomedical Engineering, University of California, Davis, CA 95616, USA
| | - Roland Faller
- Department of Chemical Engineering, University of California, Davis, CA 95616, USA
| | - Atul N. Parikh
- Department of Biomedical Engineering, University of California, Davis, CA 95616, USA
| | - Gang-yu Liu
- Department of Chemistry, University of California, Davis, CA 95616, USA
| |
Collapse
|
34
|
Schachter I, Harries D. Capturing Lipid Nanodisc Shape and Properties Using a Continuum Elastic Theory. J Chem Theory Comput 2023; 19:1360-1369. [PMID: 36724052 PMCID: PMC9979604 DOI: 10.1021/acs.jctc.2c01054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Lipid nanodiscs are nanometric bilayer patches enveloped by confining structures, commonly composed of membrane scaffolding proteins (MSPs). To resolve the interplay between MSP geometry, lipid confinement, and membrane material properties on the nanodisc shape, we apply a continuum elastic theory accounting for lipid bending, tilting, and area deformations. The equilibrium nanodisc shape is then determined by minimizing the elastic free energy functional. Analytic expressions derived under simplifying assumptions demonstrate that the nanodisc shape is sensitive to its size, lipid density, and the lipid tilt and thickness imposed at the contact with the MSP. Under matching physical parameters, these expressions quantitatively reproduce the shape of nanodiscs seen in molecular dynamics simulations, but only if lipid tilt is explicitly considered. We further demonstrate how the bending rigidity can be extracted from the membrane shape profile by fitting the numerically minimized full elastic functional to the membrane shape found in simulations. This fitting procedure faithfully informs on the bending rigidity of nanodiscs larger than ca. 5 nm in radius. The fitted profiles accurately reproduce the increase in bending modulus found using real-space fluctuation analysis of simulated nanodiscs and, for large nanodiscs, also accurately resolve its spatial variations. Our study shows how deformations in lipid patches confined in nanodiscs can be well described by a continuum elastic theory and how this fit can be used to determine local material properties from shape analysis of nanodiscs in simulations. This methodology could potentially allow direct determination of lipid properties from experiments, for example cryo-electron microscopy images of lipid nanodiscs, thereby allowing to guide the development of future nanodisc formulations with desired properties.
Collapse
Affiliation(s)
- Itay Schachter
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 542/2, CZ-16000Prague 6, Czech Republic,Institute
of Chemistry, the Fritz Haber Research Center, and the Harvey M. Kruger
Center for Nanoscience & Nanotechnology, The Hebrew University, Jerusalem9190401, Israel
| | - Daniel Harries
- Institute
of Chemistry, the Fritz Haber Research Center, and the Harvey M. Kruger
Center for Nanoscience & Nanotechnology, The Hebrew University, Jerusalem9190401, Israel,E-mail:
| |
Collapse
|
35
|
Xu D, Chen X, Li Y, Chen Z, Xu W, Wang X, Lv Y, Wang Z, Wu M, Liu G, Wang J. Reconfigurable Peptide Analogs of Apolipoprotein A-I Reveal Tunable Features of Nanodisc Assembly. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:1262-1276. [PMID: 36626237 DOI: 10.1021/acs.langmuir.2c03082] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Nanodisc (ND)-forming membrane scaffold proteins or peptides developed from apolipoprotein A-I (apoA-I) have led to considerable promise in structural biology and therapeutic applications. However, the rationale and regularity characteristics in peptide sequence design remain inconclusive. Here, we proposed a consensus-based normalization approach through the reversed engineering of apoA-IΔ1-45 to design reconfigurable apoA-I peptide analogs (APAs) for tunable ND assembly. We present extensive morphological validations and computational simulation analyses on divergent APA-NDs that are generated by our method. Fifteen divergent APAs were generated accordingly to study the assembly machinery of NDs. We show that APA designs exhibit multifactorial influence in terms of varying APA tandem repeats, sequence composition, and lipid-to-APA ratio to form tunable diameters of NDs. There is a strong positive correlation between DMPC-to-APA ratios and ND diameters. Longer APA with more tandem repeats tends to yield higher particle size homogeneity. Our results also suggest proline is a dispensable residue for the APA-ND formation. Interestingly, proline-rich substitution not only provides an inward-bending effect in forming smaller NDs but also induces the cumulative chain flexibility that enables larger ND formation at higher lipid ratios. Additionally, proline-tryptophan residues in APAs play a dominant role in forming larger NDs. Molecular simulation shows that enriched basic and acidic residues in APAs evoke abundant hydrogen-bond and salt bridge networks to reinforce the structural stability of APA-NDs. Together, our findings provide a rational basis for understanding APA design. The proposed model could be extended to other apolipoproteins for desired ND engineering.
Collapse
Affiliation(s)
- Daiyun Xu
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen518107, China
| | - Xu Chen
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen518107, China
| | - Yongxiao Li
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen518107, China
| | - Zhidong Chen
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen518107, China
| | - Wanting Xu
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen518107, China
| | - Xinpei Wang
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen518107, China
| | - Yonghui Lv
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen518107, China
| | - Zhe Wang
- Department of Pathology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen518033, China
| | - Meiying Wu
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen518107, China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen361102, China
| | - Junqing Wang
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen518107, China
| |
Collapse
|
36
|
Cho S, Park TH. Advances in the Production of Olfactory Receptors for Industrial Use. Adv Biol (Weinh) 2023; 7:e2200251. [PMID: 36593488 DOI: 10.1002/adbi.202200251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/11/2022] [Indexed: 01/04/2023]
Abstract
In biological olfactory systems, olfactory receptors (ORs) can recognize and discriminate between thousands of volatile organic compounds with very high sensitivity and specificity. The superior properties of ORs have led to the development of OR-based biosensors that have shown promising potential in many applications over the past two decades. In particular, newly designed technologies in gene synthesis, protein expression, solubilization, purification, and membrane mimetics for membrane proteins have greatly opened up the previously inaccessible industrial potential of ORs. In this review, gene design, expression and solubilization strategies, and purification and reconstitution methods available for modern industrial applications are examined, with a focus on ORs. The limitations of current OR production technology are also estimated, and future directions for further progress are suggested.
Collapse
Affiliation(s)
- Seongyeon Cho
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Tai Hyun Park
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| |
Collapse
|
37
|
Butler TJ, Smith SM. Strategies for the Purification of Membrane Proteins. Methods Mol Biol 2023; 2699:477-491. [PMID: 37647009 DOI: 10.1007/978-1-0716-3362-5_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Membrane proteins account for approximately 30% of the coding regions of all sequenced genomes, and they play crucial roles in many fundamental cell processes. However, there are relatively few membrane proteins with known three-dimensional structures. This is likely due to technical challenges associated with membrane protein extraction, solubilization, and purification. Membrane proteins are classified based on the level of interaction with membrane lipid bilayers, with peripheral membrane proteins associating non-covalently with the membrane, and integral membrane proteins associating more strongly by means of hydrophobic interactions. Generally speaking, peripheral membrane proteins can be purified by milder techniques than integral membrane proteins, with the latter's extraction requiring phospholipid bilayer disruption using detergents or organic solvents. In this chapter, important considerations for membrane protein purification are addressed, with a focus on the initial stages of membrane protein solubilization, where problems are most frequently encountered. Protocols are outlined for the extraction of peripheral membrane proteins, solubilization of integral membrane proteins, and sample clean-up and concentration.
Collapse
Affiliation(s)
- Thomas J Butler
- Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Sinéad Marian Smith
- Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
38
|
The Advanced Properties of Circularized MSP Nanodiscs Facilitate High-resolution NMR Studies of Membrane Proteins. J Mol Biol 2022; 434:167861. [PMID: 36273602 DOI: 10.1016/j.jmb.2022.167861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/12/2022] [Accepted: 10/16/2022] [Indexed: 11/06/2022]
Abstract
Membrane mimetics are essential for structural and functional studies of membrane proteins. A promising lipid-based system are phospholipid nanodiscs, where two copies of a so-called membrane scaffold protein (MSP) wrap around a patch of lipid bilayer. Consequently, the size of a nanodisc is determined by the length of the MSP. Furthermore, covalent MSP circularization was reported to improve nanodisc stability. However, a more detailed comparative analysis of the biophysical properties of circularized and linear MSP nanodiscs for their use in high-resolution NMR has not been conducted so far. Here, we analyze the membrane fluidity and temperature-dependent size variability of circularized and linear nanodiscs using a large set of analytical methods. We show that MSP circularization does not alter the membrane fluidity in nanodiscs. Further, we show that the phase transition temperature increases for circularized versions, while the cooperativity decreases. We demonstrate that circularized nanodiscs keep a constant size over a large temperature range, in contrast to their linear MSP counterparts. Due to this size stability, circularized nanodiscs are beneficial for high-resolution NMR studies of membrane proteins at elevated temperatures. Despite their slightly larger size as compared to linear nanodiscs, 3D NMR experiments of the voltage-dependent anion channel 1 (VDAC1) in circularized nanodiscs have a markedly improved spectral quality in comparison to VDAC1 incorporated into linear nanodiscs of a similar size. This study provides evidence that circularized MSP nanodiscs are a promising tool to facilitate high-resolution NMR studies of larger and challenging membrane proteins in a native lipid environment.
Collapse
|
39
|
Krishnarjuna B, Ravula T, Faison EM, Tonelli M, Zhang Q, Ramamoorthy A. Polymer-Nanodiscs as a Novel Alignment Medium for High-Resolution NMR-Based Structural Studies of Nucleic Acids. Biomolecules 2022; 12:1628. [PMID: 36358983 PMCID: PMC9687133 DOI: 10.3390/biom12111628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Residual dipolar couplings (RDCs) are increasingly used for high-throughput NMR-based structural studies and to provide long-range angular constraints to validate and refine structures of various molecules determined by X-ray crystallography and NMR spectroscopy. RDCs of a given molecule can be measured in an anisotropic environment that aligns in an external magnetic field. Here, we demonstrate the first application of polymer-based nanodiscs for the measurement of RDCs from nucleic acids. Polymer-based nanodiscs prepared using negatively charged SMA-EA polymer and zwitterionic DMPC lipids were characterized by size-exclusion chromatography, 1H NMR, dynamic light-scattering, and 2H NMR. The magnetically aligned polymer-nanodiscs were used as an alignment medium to measure RDCs from a 13C/15N-labeled fluoride riboswitch aptamer using 2D ARTSY-HSQC NMR experiments. The results showed that the alignment of nanodiscs is stable for nucleic acids and nanodisc-induced RDCs fit well with the previously determined solution structure of the riboswitch. These results demonstrate that SMA-EA-based lipid-nanodiscs can be used as a stable alignment medium for high-resolution structural and dynamical studies of nucleic acids, and they can also be applicable to study various other biomolecules and small molecules in general.
Collapse
Affiliation(s)
- Bankala Krishnarjuna
- Biophysics Program, Department of Chemistry, Biomedical Engineering, and Macromolecular Science and Engineering, Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Thirupathi Ravula
- Biophysics Program, Department of Chemistry, Biomedical Engineering, and Macromolecular Science and Engineering, Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA
- National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Edgar M. Faison
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Marco Tonelli
- National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Qi Zhang
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ayyalusamy Ramamoorthy
- Biophysics Program, Department of Chemistry, Biomedical Engineering, and Macromolecular Science and Engineering, Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
40
|
Levin R, Köck Z, Martin J, Zangl R, Gewering T, Schüler L, Moeller A, Dötsch V, Morgner N, Bernhard F. Cotranslational assembly of membrane protein/nanoparticles in cell-free systems. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:184017. [PMID: 35921875 DOI: 10.1016/j.bbamem.2022.184017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/18/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Nanoparticles composed of amphiphilic scaffold proteins and small lipid bilayers are valuable tools for reconstitution and subsequent functional and structural characterization of membrane proteins. In combination with cell-free protein production systems, nanoparticles can be used to cotranslationally and translocon independently insert membrane proteins into tailored lipid environments. This strategy enables rapid generation of protein/nanoparticle complexes by avoiding detergent contact of nascent membrane proteins. Frequently in use are nanoparticles assembled with engineered derivatives of either the membrane scaffold protein (MSP) or the Saposin A (SapA) scaffold. Furthermore, several strategies for the formation of membrane protein/nanoparticle complexes in cell-free reactions exist. However, it is unknown how these strategies affect functional folding, oligomeric assembly and membrane insertion efficiency of cell-free synthesized membrane proteins. We systematically studied membrane protein insertion efficiency and sample quality of cell-free synthesized proteorhodopsin (PR) which was cotranslationally inserted in MSP and SapA based nanoparticles. Three possible PR/nanoparticle formation strategies were analyzed: (i) PR integration into supplied preassembled nanoparticles, (ii) coassembly of nanoparticles from supplied scaffold proteins and lipids upon PR expression, and (iii) coexpression of scaffold proteins together with PR in presence of supplied lipids. Yield, homogeneity as well as the formation of higher PR oligomeric complexes from samples generated by the three strategies were analyzed. Conditions found optimal for PR were applied for the synthesis of a G-protein coupled receptor. The study gives a comprehensive guideline for the rapid synthesis of membrane protein/nanoparticle samples by different processes and identifies key parameters to modulate sample yield and quality.
Collapse
Affiliation(s)
- Roman Levin
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, 60438 Frankfurt, Germany
| | - Zoe Köck
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, 60438 Frankfurt, Germany
| | - Janosch Martin
- Institute of Physical and Theoretical Chemistry, Goethe University, 60438 Frankfurt, Germany
| | - René Zangl
- Institute of Physical and Theoretical Chemistry, Goethe University, 60438 Frankfurt, Germany
| | | | - Leah Schüler
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, 60438 Frankfurt, Germany
| | - Arne Moeller
- University of Osnabrück, 49076 Osnabrück, Germany
| | - Volker Dötsch
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, 60438 Frankfurt, Germany
| | - Nina Morgner
- Institute of Physical and Theoretical Chemistry, Goethe University, 60438 Frankfurt, Germany
| | - Frank Bernhard
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, 60438 Frankfurt, Germany.
| |
Collapse
|
41
|
You X, Thakur N, Ray AP, Eddy MT, Baiz CR. A comparative study of interfacial environments in lipid nanodiscs and vesicles. BIOPHYSICAL REPORTS 2022; 2. [PMID: 36176716 PMCID: PMC9518727 DOI: 10.1016/j.bpr.2022.100066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Membrane protein conformations and dynamics are driven by the protein-lipid interactions occurring within the local environment of the membrane. These environments remain challenging to accurately capture in structural and biophysical experiments using bilayers. Consequently, there is an increasing need for realistic cell-membrane mimetics for in vitro studies. Lipid nanodiscs provide certain advantages over vesicles for membrane protein studies. Nanodiscs are increasingly used for structural and spectroscopic characterization of membrane proteins. Despite the common use of nanodiscs, the interfacial environments of lipids confined to a ~10-nm diameter area have remained relatively underexplored. Here, we use ultrafast two-dimensional infrared spectroscopy and temperature-dependent infrared absorption measurements of the ester carbonyls to compare the interfacial hydrogen bond structure and dynamics in lipid nanodiscs of varying lipid compositions and sizes with ~100-nm vesicles. We examine the effects of lipid composition and nanodisc size. We found that nanodiscs and vesicles share largely similar lipid-water H-bond environments and interfacial dynamics. Differences in measured enthalpies of H-bonding suggest that H-bond dynamics in nanodiscs are modulated by the interaction between the annular lipids and the scaffold protein.
Collapse
|
42
|
Krishnarjuna B, Im SC, Ravula T, Marte J, Auchus RJ, Ramamoorthy A. Non-Ionic Inulin-Based Polymer Nanodiscs Enable Functional Reconstitution of a Redox Complex Composed of Oppositely Charged CYP450 and CPR in a Lipid Bilayer Membrane. Anal Chem 2022; 94:11908-11915. [PMID: 35977417 PMCID: PMC10851674 DOI: 10.1021/acs.analchem.2c02489] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Although polymer-based lipid nanodiscs are increasingly used in the structural studies of membrane proteins, the charge of the belt-forming polymer is a major limitation for functional reconstitution of membrane proteins possessing an opposite net charge to that of the polymer. This limitation also rules out the reconstitution of a protein-protein complex composed of oppositely charged membrane proteins. In this study, we report the first successful functional reconstitution of a membrane-bound redox complex constituting a cationic cytochrome P450 (CYP450) and an anionic cytochrome P450 reductase (CPR) in non-ionic inulin-based lipid nanodiscs. The gel-to-liquid-crystalline phase-transition temperature (Tm) of DMPC:DMPG (7:3 w/w) lipids in polymer nanodiscs was determined by differential scanning calorimetry (DSC) and 31P NMR experiments. The CYP450-CPR redox complex reconstitution in polymer nanodiscs was characterized by size-exclusion chromatography (SEC), and the electron transfer kinetics was carried out using the stopped-flow technique under anaerobic conditions. The Tm of DMPC:DMPG (7:3 w/w) in polymer nanodiscs measured from 31P NMR agrees with that obtained from DSC and was found to be higher than that for liposomes due to the decreased cooperativity of lipids present in the nanodiscs. The stopped-flow measurements revealed the CYP450-CPR redox complex reconstituted in nanodiscs to be functional, and the electron transfer kinetics was found to be temperature-dependent. Based on the successful demonstration of the use of non-ionic inulin-based polymer nanodiscs reported in this study, we expect them to be useful in studying the function and structures of a variety of membrane proteins/complexes irrespective of the charge of the molecular components. Since the polymer nanodiscs were shown to align in an externally applied magnetic field, they can also be used to measure residual dipolar couplings (RDCs) and residual quadrupolar couplings (RQCs) for various molecules ranging from small molecules to soluble proteins and nucleic acids.
Collapse
Affiliation(s)
- Bankala Krishnarjuna
- Biophysics Program, Department of Chemistry, Macromolecular Science and Engineering, Biomedical Engineering, Michigan Neuroscience Institute, The University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Sang-Choul Im
- Department of Pharmacology and Internal Medicine, Division of Metabolism, Endocrinology, & Diabetes, University of Michigan, Ann Arbor, MI 48109
| | - Thirupathi Ravula
- Biophysics Program, Department of Chemistry, Macromolecular Science and Engineering, Biomedical Engineering, Michigan Neuroscience Institute, The University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Joseph Marte
- Biophysics Program, Department of Chemistry, Macromolecular Science and Engineering, Biomedical Engineering, Michigan Neuroscience Institute, The University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Richard J. Auchus
- Department of Pharmacology and Internal Medicine, Division of Metabolism, Endocrinology, & Diabetes, University of Michigan, Ann Arbor, MI 48109
| | - Ayyalusamy Ramamoorthy
- Biophysics Program, Department of Chemistry, Macromolecular Science and Engineering, Biomedical Engineering, Michigan Neuroscience Institute, The University of Michigan, Ann Arbor, MI 48109-1055, USA
| |
Collapse
|
43
|
Krishnarjuna B, Ramamoorthy A. Detergent-Free Isolation of Membrane Proteins and Strategies to Study Them in a Near-Native Membrane Environment. Biomolecules 2022; 12:1076. [PMID: 36008970 PMCID: PMC9406181 DOI: 10.3390/biom12081076] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 07/31/2022] [Accepted: 08/02/2022] [Indexed: 02/06/2023] Open
Abstract
Atomic-resolution structural studies of membrane-associated proteins and peptides in a membrane environment are important to fully understand their biological function and the roles played by them in the pathology of many diseases. However, the complexity of the cell membrane has severely limited the application of commonly used biophysical and biochemical techniques. Recent advancements in NMR spectroscopy and cryoEM approaches and the development of novel membrane mimetics have overcome some of the major challenges in this area. For example, the development of a variety of lipid-nanodiscs has enabled stable reconstitution and structural and functional studies of membrane proteins. In particular, the ability of synthetic amphipathic polymers to isolate membrane proteins directly from the cell membrane, along with the associated membrane components such as lipids, without the use of a detergent, has opened new avenues to study the structure and function of membrane proteins using a variety of biophysical and biological approaches. This review article is focused on covering the various polymers and approaches developed and their applications for the functional reconstitution and structural investigation of membrane proteins. The unique advantages and limitations of the use of synthetic polymers are also discussed.
Collapse
Affiliation(s)
- Bankala Krishnarjuna
- Department of Chemistry and Biophysics, Biomedical Engineering, Macromolecular Science and Engineering, Michigan Neuroscience Institute, The University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Ayyalusamy Ramamoorthy
- Department of Chemistry and Biophysics, Biomedical Engineering, Macromolecular Science and Engineering, Michigan Neuroscience Institute, The University of Michigan, Ann Arbor, MI 48109-1055, USA
| |
Collapse
|
44
|
Tanaka M. Applications of Synthetic Polymer Discoidal Lipid Nanoparticles to Biomedical Research. Chem Pharm Bull (Tokyo) 2022; 70:507-513. [DOI: 10.1248/cpb.c22-00125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Masafumi Tanaka
- Laboratory of Functional Molecular Chemistry, Kobe Pharmaceutical University
| |
Collapse
|
45
|
Patrick J, Alija MG, Liebau J, Pettersson P, Metola A, Mäler L. Dilute Bicelles for Glycosyltransferase Studies, Novel Bicelles with Phosphatidylinositol. J Phys Chem B 2022; 126:5655-5666. [PMID: 35880265 PMCID: PMC9358657 DOI: 10.1021/acs.jpcb.2c02327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Solution-state NMR can be used to study protein-lipid interactions, in particular, the effect that proteins have on lipids. One drawback is that only small assemblies can be studied, and therefore, fast-tumbling bicelles are commonly used. Bicelles contain a lipid bilayer that is solubilized by detergents. A complication is that they are only stable at high concentrations, exceeding the CMC of the detergent. This issue has previously been addressed by introducing a detergent (Cyclosfos-6) with a substantially lower CMC. Here, we developed a set of bicelles using this detergent for studies of membrane-associated mycobacterial proteins, for example, PimA, a key enzyme for bacterial growth. To mimic the lipid composition of mycobacterial membranes, PI, PG, and PC lipids were used. Diffusion NMR was used to characterize the bicelles, and spin relaxation was used to measure the dynamic properties of the lipids. The results suggest that bicelles are formed, although they are smaller than "conventional" bicelles. Moreover, we studied the effect of MTSL-labeled PimA on bicelles containing PI and PC. The paramagnetic label was shown to have a shallow location in the bicelle, affecting the glycerol backbone of the lipids. We foresee that these bicelles will be useful for detailed studies of protein-lipid interactions.
Collapse
Affiliation(s)
- Joan Patrick
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Mikel García Alija
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Jobst Liebau
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Pontus Pettersson
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Ane Metola
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Lena Mäler
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
46
|
Sae-Lee W, McCafferty CL, Verbeke EJ, Havugimana PC, Papoulas O, McWhite CD, Houser JR, Vanuytsel K, Murphy GJ, Drew K, Emili A, Taylor DW, Marcotte EM. The protein organization of a red blood cell. Cell Rep 2022; 40:111103. [PMID: 35858567 PMCID: PMC9764456 DOI: 10.1016/j.celrep.2022.111103] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/18/2022] [Accepted: 06/24/2022] [Indexed: 11/28/2022] Open
Abstract
Red blood cells (RBCs) (erythrocytes) are the simplest primary human cells, lacking nuclei and major organelles and instead employing about a thousand proteins to dynamically control cellular function and morphology in response to physiological cues. In this study, we define a canonical RBC proteome and interactome using quantitative mass spectrometry and machine learning. Our data reveal an RBC interactome dominated by protein homeostasis, redox biology, cytoskeletal dynamics, and carbon metabolism. We validate protein complexes through electron microscopy and chemical crosslinking and, with these data, build 3D structural models of the ankyrin/Band 3/Band 4.2 complex that bridges the spectrin cytoskeleton to the RBC membrane. The model suggests spring-like compression of ankyrin may contribute to the characteristic RBC cell shape and flexibility. Taken together, our study provides an in-depth view of the global protein organization of human RBCs and serves as a comprehensive resource for future research.
Collapse
Affiliation(s)
- Wisath Sae-Lee
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas, Austin, TX 78712, USA
| | - Caitlyn L McCafferty
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas, Austin, TX 78712, USA
| | - Eric J Verbeke
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas, Austin, TX 78712, USA
| | - Pierre C Havugimana
- Center for Network Systems Biology, Boston University, Boston, MA 02118, USA
| | - Ophelia Papoulas
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas, Austin, TX 78712, USA
| | - Claire D McWhite
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas, Austin, TX 78712, USA
| | - John R Houser
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas, Austin, TX 78712, USA
| | - Kim Vanuytsel
- Center for Regenerative Medicine, Boston University School of Medicine, 670 Albany Street, Boston, MA 02118, USA
| | - George J Murphy
- Center for Regenerative Medicine, Boston University School of Medicine, 670 Albany Street, Boston, MA 02118, USA
| | - Kevin Drew
- Department of Biological Sciences, University of Illinois at Chicago, 900 S. Ashland Avenue, Chicago, IL 60607, USA
| | - Andrew Emili
- Center for Network Systems Biology, Boston University, Boston, MA 02118, USA
| | - David W Taylor
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas, Austin, TX 78712, USA
| | - Edward M Marcotte
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas, Austin, TX 78712, USA.
| |
Collapse
|
47
|
Wireless portable bioelectronic nose device for multiplex monitoring toward food freshness/spoilage. Biosens Bioelectron 2022; 215:114551. [PMID: 35839622 DOI: 10.1016/j.bios.2022.114551] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/22/2022] [Accepted: 07/05/2022] [Indexed: 01/07/2023]
Abstract
Monitoring food freshness/spoilage is important to ensure food quality and safety. Current methods of food quality monitoring are mostly time-consuming and labor intensive processes that require massive analytical equipment. In this study, we developed a portable bioelectronic nose (BE-nose) integrated with trace amine-associated receptor (TAAR) nanodiscs (NDs), allowing food quality monitoring via the detection of food spoilage indicators, including the biogenic amines cadaverine (CV) and putrescine (PT). The olfactory receptors TAAR13c and TAAR13d, which have specific affinities for CV and PT, were produced and successfully reconstituted in ND structures. TAAR13 NDs BE-nose-based side-gated field-effect transistor (SG-FET) system was constructed by utilizing a graphene micropattern (GM) into which two types of olfactory NDs (TAAR13c ND and TAAR13d ND) were introduced, and this system showed ultrahigh sensitivity for a limit of detection (LOD) of 1 fM for CV and PT. Moreover, the binding affinities between the TAAR13 NDs and the indicators were confirmed by a tryptophan fluorescence quenching assay and biosimulations, in which the specific binding site was confirmed. Gas-phase indicators were detected by the TAAR13 NDs BE-nose platform, and the LODs for CV and PT were confirmed to be 26.48 and 7.29 ppb, respectively. In addition, TAAR13 NDs BE-nose was fabricated with commercial gas sensors as a portable platform for the measurement of NH3 and H2S, multiplexed monitoring was achieved with similar performance, and the change ratio of the indicators was observed in a real sample. The integration of commercial gas sensors on a BE-nose enhanced the accuracy and reliability for the quality monitoring of real food samples. These results indicate that the portable TAAR13 NDs BE-nose can be used to monitor CV and PT over a wide range of concentrations, therefore, the electronic nose platform can be utilized for monitoring the freshness/spoilage step in various foods.
Collapse
|
48
|
Notti RQ, Walz T. Native-like environments afford novel mechanistic insights into membrane proteins. Trends Biochem Sci 2022; 47:561-569. [PMID: 35331611 PMCID: PMC9847468 DOI: 10.1016/j.tibs.2022.02.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/14/2022] [Accepted: 02/21/2022] [Indexed: 01/21/2023]
Abstract
Advances in cryogenic electron microscopy (cryo-EM) enabled routine near-atomic structure determination of membrane proteins, while nanodisc technology has provided a way to provide membrane proteins with a native or native-like lipid environment. After giving a brief history of membrane mimetics, we present example structures of membrane proteins in nanodiscs that revealed information not provided by structures obtained in detergent. We describe how the lipid environment surrounding the membrane protein can be custom designed during nanodisc assembly and how it can be modified after assembly to test functional hypotheses. Because nanodiscs most closely replicate the physiologic environment of membrane proteins and often afford novel mechanistic insights, we propose that nanodiscs ought to become the standard for structural studies on membrane proteins.
Collapse
Affiliation(s)
- Ryan Q. Notti
- Laboratory of Molecular Electron Microscopy, The Rockefeller University, 1230 York Avenue, New York, NY 10065,Department of Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065
| | - Thomas Walz
- Laboratory of Molecular Electron Microscopy, The Rockefeller University, 1230 York Avenue, New York, NY 10065,Correspondence: (Walz, T.)
| |
Collapse
|
49
|
Childers KC, Peters SC, Lollar P, Spencer HT, Doering CB, Spiegel PC. SAXS analysis of the intrinsic tenase complex bound to a lipid nanodisc highlights intermolecular contacts between factors VIIIa/IXa. Blood Adv 2022; 6:3240-3254. [PMID: 35255502 PMCID: PMC9198903 DOI: 10.1182/bloodadvances.2021005874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 02/27/2022] [Indexed: 11/20/2022] Open
Abstract
The intrinsic tenase (Xase) complex, formed by factors (f) VIIIa and fIXa, forms on activated platelet surfaces and catalyzes the activation of factor X to Xa, stimulating thrombin production in the blood coagulation cascade. The structural organization of the membrane-bound Xase complex remains largely unknown, hindering our understanding of the structural underpinnings that guide Xase complex assembly. Here, we aimed to characterize the Xase complex bound to a lipid nanodisc with biolayer interferometry (BLI), Michaelis-Menten kinetics, and small-angle X-ray scattering (SAXS). Using immobilized lipid nanodiscs, we measured binding rates and nanomolar affinities for fVIIIa, fIXa, and the Xase complex. Enzyme kinetic measurements demonstrated the assembly of an active enzyme complex in the presence of lipid nanodiscs. An ab initio molecular envelope of the nanodisc-bound Xase complex allowed us to computationally model fVIIIa and fIXa docked onto a flexible lipid membrane and identify protein-protein interactions. Our results highlight multiple points of contact between fVIIIa and fIXa, including a novel interaction with fIXa at the fVIIIa A1-A3 domain interface. Lastly, we identified hemophilia A/B-related mutations with varying severities at the fVIIIa/fIXa interface that may regulate Xase complex assembly. Together, our results support the use of SAXS as an emergent tool to investigate the membrane-bound Xase complex and illustrate how mutations at the fVIIIa/fIXa dimer interface may disrupt or stabilize the activated enzyme complex.
Collapse
Affiliation(s)
- Kenneth C Childers
- Department of Chemistry, Western Washington University, Bellingham, WA; and
| | - Shaun C Peters
- Department of Chemistry, Western Washington University, Bellingham, WA; and
| | - Pete Lollar
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University, Atlanta, GA
| | - Harold Trent Spencer
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University, Atlanta, GA
| | - Christopher B Doering
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University, Atlanta, GA
| | - Paul C Spiegel
- Department of Chemistry, Western Washington University, Bellingham, WA; and
| |
Collapse
|
50
|
Anada C, Ikeda K, Nakao H, Nakano M. Improvement of Thermal Stability of Amphipathic Peptide-Phospholipid Nanodiscs via Lateral Association of α-Helices by Disulfide Cross-Linking. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:6977-6983. [PMID: 35613431 DOI: 10.1021/acs.langmuir.2c00533] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Amphipathic α-helical peptides have been reported to form discoidal particles or nanodiscs with phospholipids, in which a lipid bilayer patch is encircled by peptides. Peptide-based nanodiscs have broad applicability because of their ease of preparation, size flexibility, and structural plasticity. We previously revealed that the nanodiscs formed by apolipoprotein-A-I-derived peptide 18A showed temperature-dependent structural destabilization above the gel-to-liquid-crystalline phase transition temperature of the lipid bilayer. It has been suggested that this destabilization is due to the migration of peptides bound to the edge of the discs to the bilayer surface. In this study, we designed a peptide that could stabilize nanodisc structures against the phase transition of lipid bilayers by disulfide cross-linking of peptides. An 18A-dimer cross-linked by a proline residue, 37pA (Ac-18A-P-18A-CONH2), also showed thermal destabilization of nanodiscs like 18A. However, cross-linking the sides of the two α-helices of the cysteine-substituted analogue 37pA-C2 with disulfide bonds led to the formation of nanodiscs that were more stable to temperature changes. This stabilizing effect was mainly due to the formation of a cyclic 37pA-C2 monomer by intramolecular disulfide cross-linking. These results suggest that the lateral association of two α-helices, which is the basis of the double-belt structure, is an important factor for the implementation of stable nanodiscs. The results of this study will help in development of more stable nanoparticles with membrane proteins in the future.
Collapse
Affiliation(s)
- Chiharu Anada
- Department of Biointerface Chemistry, Faculty of Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan
| | - Keisuke Ikeda
- Department of Biointerface Chemistry, Faculty of Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan
| | - Hiroyuki Nakao
- Department of Biointerface Chemistry, Faculty of Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan
| | - Minoru Nakano
- Department of Biointerface Chemistry, Faculty of Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan
| |
Collapse
|