1
|
Chouhan D, Akhilesh, Tiwari V. Focal Adhesion Kinase Inhibition Ameliorates Burn Injury-Induced Chronic Pain in Rats. Mol Neurobiol 2025; 62:4466-4483. [PMID: 39460902 DOI: 10.1007/s12035-024-04548-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024]
Abstract
Burn injury-induced pain (BIP) is a significant global health concern, affecting diverse populations including children, military veterans, and accident victims. Current pharmacotherapeutics for the management of BIP are associated with severe side effects including drug addiction, respiratory depression, sedation, and constipation posing significant barrier to their clinical utility. In the present study, we have investigated the potential role of focal adhesion kinase (p-FAK) for the very first time in BIP and elucidated the associated underlying mechanisms. Defactinib (DFT), a potent p-FAK inhibitor, administered at doses of 5, 10, and 20 mg/kg via intraperitoneal injection, demonstrates significant efficacy in reducing both evoked and spontaneous pain without causing addiction or other central nervous system toxicities. Burn injury triggers p-FAK-mediated phosphorylation of Erk1/2 and NR2B signaling in the DRG, resulting in heightened hypersensitivity through microglial activation, neuropeptide release, and elevated proinflammatory cytokines. Defactinib (DFT) counteracts these effects by reducing NR2B upregulation, lowering substance P levels, inhibiting microglial activation, and restoring IL-10 levels while leaving CGRP levels unchanged. These findings provide valuable insights into the pivotal role of p-FAK in regulating BIP and highlight the potential for developing novel therapeutics for burn injury-induced pain with minimal side effects.
Collapse
Affiliation(s)
- Deepak Chouhan
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, Uttar Pradesh, India
| | - Akhilesh
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, Uttar Pradesh, India
| | - Vinod Tiwari
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, Uttar Pradesh, India.
| |
Collapse
|
2
|
Matrullo G, Filomeni G, Rizza S. Redox regulation of focal adhesions. Redox Biol 2025; 80:103514. [PMID: 39879736 PMCID: PMC11810850 DOI: 10.1016/j.redox.2025.103514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/07/2025] [Accepted: 01/23/2025] [Indexed: 01/31/2025] Open
Abstract
Focal adhesions (FAs), multi-protein complexes that link the extracellular matrix to the intracellular cytoskeleton, are key mediators of cell adhesion, migration, and proliferation. These dynamic structures act as mechanical sensors, transmitting stimuli from the extracellular to intracellular environment activating in this way signaling pathways and enabling cells to adapt to environmental changes. As such, FAs are critical for tissue organization and serve as hubs governing cell spatial arrangement within the organism. The assembly, reactivity, and functional regulation of FAs are tightly controlled by post-translational modifications, including redox modulation by reactive oxygen and nitrogen species. Increasing evidence suggests that redox signaling plays a pivotal role in both the physiological and pathological functions of FAs and their downstream processes. Redox regulation affects various components of the FA complex, including integrins, focal adhesion kinase 1 (FAK1), SRC, adapter proteins, and cytoskeletal elements. In this review, we provide an updated overview of the complex interplay between redox signaling and post-translational modifications in FAs. We explore how redox reactions influence the structure, dynamics, and function of FAs, shedding light on their broader implications in health and disease.
Collapse
Affiliation(s)
- Gianmarco Matrullo
- Department of Biology, University of Rome "Tor Vergata", 00100, Rome, Italy
| | - Giuseppe Filomeni
- Department of Biology, University of Rome "Tor Vergata", 00100, Rome, Italy; Redox Biology Group, Danish Cancer Institute, 2100, Copenhagen, Denmark
| | - Salvatore Rizza
- Redox Biology Group, Danish Cancer Institute, 2100, Copenhagen, Denmark.
| |
Collapse
|
3
|
Reyes L, Naser L, Weiner WS, Thifault D, Stahl E, McCreary L, Nott R, Quick C, Buchberger A, Alvarado C, Rivera A, Miller JA, Khatiwala R, Cherry BR, Nelson R, Martin-Garcia JM, Stephanopoulos N, Fromme R, Fromme P, Cance W, Marlowe T. Structure-based discovery of hydrocarbon-stapled paxillin peptides that block FAK scaffolding in cancer. Nat Commun 2025; 16:2060. [PMID: 40021642 PMCID: PMC11871066 DOI: 10.1038/s41467-025-57196-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 02/13/2025] [Indexed: 03/03/2025] Open
Abstract
The focal adhesion kinase (FAK) scaffold provides FAK-targeted cancer therapeutics with greater efficacy and specificity than traditional kinase inhibitors. The FAK scaffold function largely involves the interaction between FAK's focal adhesion targeting (FAT) domain and paxillin, ultimately regulating many hallmarks of cancer. We report the design of paxillin LD-motif mimetics that successfully inhibit the FAT-paxillin interaction. Chemical and biochemical screening identifies stapled peptide 1907, a high affinity binder of the FAT four-helix bundle with ~100-fold greater binding affinity than the native LD2-sequence. The X-ray co-crystal structure of the FAT-1907 complex is solved. Myristoylated 1907-analog, peptide 2012, delocalizes FAK from focal adhesions, induces cancer cell apoptosis, reduces in vitro viability and invasion, and decreases tumor burden in B16F10 melanoma female mice. Enzymatic FAK inhibition produces no comparable effects. Herein, we describe a biologically potent therapeutic strategy to target the FAK-paxillin complex, a previously deemed undruggable protein-protein interaction.
Collapse
Affiliation(s)
- Lauren Reyes
- University of Arizona College of Medicine - Phoenix, Phoenix, AZ, 85004, USA
| | - Lena Naser
- University of Arizona College of Medicine - Phoenix, Phoenix, AZ, 85004, USA
| | - Warren S Weiner
- University of Arizona College of Medicine - Phoenix, Phoenix, AZ, 85004, USA
| | - Darren Thifault
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85284, USA
- Center for Applied Structural Discovery, Arizona State University, Tempe, AZ, 85287, USA
| | - Erik Stahl
- University of Arizona College of Medicine - Phoenix, Phoenix, AZ, 85004, USA
| | - Liam McCreary
- University of Arizona College of Medicine - Phoenix, Phoenix, AZ, 85004, USA
| | - Rohini Nott
- University of Arizona College of Medicine - Phoenix, Phoenix, AZ, 85004, USA
| | | | - Alex Buchberger
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85284, USA
- Center for Molecular Design and Biomimetics, the Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Carlos Alvarado
- University of Arizona College of Medicine - Phoenix, Phoenix, AZ, 85004, USA
| | - Andrew Rivera
- University of Arizona College of Medicine - Phoenix, Phoenix, AZ, 85004, USA
- Molecular Discovery Core, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, 85004, USA
| | - Joseph A Miller
- University of Arizona College of Medicine - Phoenix, Phoenix, AZ, 85004, USA
| | - Ruchi Khatiwala
- University of Arizona College of Medicine - Phoenix, Phoenix, AZ, 85004, USA
| | - Brian R Cherry
- The Magnetic Resonance Research Center, Arizona State University, Tempe, AZ, 85287, USA
| | - Ronald Nelson
- University of Arizona College of Medicine - Phoenix, Phoenix, AZ, 85004, USA
- FAKnostics, LLC, Phoenix, AZ, 85004, USA
| | - Jose M Martin-Garcia
- Crystallography & Structural Biology, Institute of Physical Chemistry Blas Cabrera, Madrid, 28006, Spain
| | - Nicholas Stephanopoulos
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85284, USA
- Center for Molecular Design and Biomimetics, the Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Raimund Fromme
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85284, USA
- Center for Applied Structural Discovery, Arizona State University, Tempe, AZ, 85287, USA
| | - Petra Fromme
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85284, USA
- Center for Applied Structural Discovery, Arizona State University, Tempe, AZ, 85287, USA
| | - William Cance
- University of Arizona College of Medicine - Phoenix, Phoenix, AZ, 85004, USA
| | - Timothy Marlowe
- University of Arizona College of Medicine - Phoenix, Phoenix, AZ, 85004, USA.
- FAKnostics, LLC, Phoenix, AZ, 85004, USA.
- Molecular Discovery Core, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, 85004, USA.
- Pharmacology and Toxicology, University of Arizona College of Pharmacy - Phoenix, 650 E. Van Buren St, Phoenix, AZ, 85004, USA.
| |
Collapse
|
4
|
Wang H, Zhang G, Liu Y, He Y, Guo Q, Du Y, Yang C, Gao F. Glycocalyx hyaluronan removal-induced increasing of cell stiffness delays breast cancer cells progression. Cell Mol Life Sci 2025; 82:96. [PMID: 40011237 DOI: 10.1007/s00018-025-05577-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 12/19/2024] [Accepted: 01/03/2025] [Indexed: 02/28/2025]
Abstract
Triple-negative breast cancer (TNBC) cells are rich in glycocalyx (GCX) that is closely correlated with the reorganization of cytoskeletal filaments. Most studies have focused on cell membrane glycoproteins in this context, but rarely on the significance of glycosaminoglycans, particularly the hyaluronan (HA)-associated GCX. Here, we reported that removal of GCX HA could significantly increase breast cancer cells (BCCs) stiffness, leading to impaired cell growth and decreased stem-like properties. Furthermore, we found that the delay of TNBC cells progression could be restored after the cells were re-softened. Meanwhile, in vivo studies revealed that hyaluronidase (HAase)-pretreated BCCs displayed reduced tumor growth and migration. Intriguingly, we identified that ZC3H12A, a zinc-finger RNA binding protein encoded gene, was significantly upregulated after the GCX HA impairment. Of note, knockdown of ZC3H12A could soften the HAase-treated TNBC cells, implying a GCX HA-ZC3H12A regulation on cell stiffening. Taken together, our findings suggested that the breakdown of pericellular HA coat could influence TNBC cells mechanical properties which might be helpful to the future breast cancer research.
Collapse
Affiliation(s)
- Hui Wang
- Department of Molecular Biology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
- Department of Clinical Laboratory, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Guoliang Zhang
- Department of Molecular Biology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Yiwen Liu
- Department of Molecular Biology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Yiqing He
- Department of Molecular Biology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Qian Guo
- Department of Molecular Biology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Yan Du
- Department of Molecular Biology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Cuixia Yang
- Department of Molecular Biology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
- Department of Clinical Laboratory, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Feng Gao
- Department of Molecular Biology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China.
- Department of Clinical Laboratory, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China.
| |
Collapse
|
5
|
Geng J, Zheng K, Wang P, Su B, Wei Q, Liu X. Focal Adhesion Regulation as a Strategy against Kidney Fibrosis. ACS Chem Biol 2025; 20:464-478. [PMID: 39818722 DOI: 10.1021/acschembio.4c00776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Chronic kidney fibrosis poses a significant global health challenge with effective therapeutic strategies remaining elusive. While cell-extracellular matrix (ECM) interactions are known to drive fibrosis progression, the specific role of focal adhesions (FAs) in kidney fibrosis is not fully understood. In this study, we investigated the role of FAs in kidney tubular epithelial cell fibrosis by employing precise nanogold patterning to modulate integrin distribution. We demonstrate that increasing ligand spacing disrupts integrin clustering, thereby inhibiting FA formation and attenuating fibrosis. Importantly, enhanced FA activity is associated with kidney fibrosis in both human disease specimens and murine models. Mechanistically, FAs regulate fibrosis through mechanotransduction pathways, and our in vivo experiments show that suppressing mechanotransduction significantly mitigates kidney fibrosis in mice. These findings highlight the potential of targeting FAs as a therapeutic strategy, offering new insights into clinical intervention in kidney fibrosis.
Collapse
Affiliation(s)
- Jiwen Geng
- Department of Nephrology, Kidney Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China
- College of Polymer Science and Engineering, College of Biomedical Engineering, State Key Laboratory of Polymer Materials and Engineering Sichuan University, Chengdu 610065, China
| | - Kaikai Zheng
- College of Polymer Science and Engineering, College of Biomedical Engineering, State Key Laboratory of Polymer Materials and Engineering Sichuan University, Chengdu 610065, China
| | - Peng Wang
- College of Polymer Science and Engineering, College of Biomedical Engineering, State Key Laboratory of Polymer Materials and Engineering Sichuan University, Chengdu 610065, China
| | - Baihai Su
- Department of Nephrology, Kidney Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiang Wei
- College of Polymer Science and Engineering, College of Biomedical Engineering, State Key Laboratory of Polymer Materials and Engineering Sichuan University, Chengdu 610065, China
| | - Xiaojing Liu
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, and Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration, Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China
| |
Collapse
|
6
|
Katoh K. Integrin and Its Associated Proteins as a Mediator for Mechano-Signal Transduction. Biomolecules 2025; 15:166. [PMID: 40001469 PMCID: PMC11853369 DOI: 10.3390/biom15020166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/11/2025] [Accepted: 01/20/2025] [Indexed: 02/27/2025] Open
Abstract
Mechano-signal transduction is a process in which cells perceive extracellular mechanical signals, convert them into intracellular biochemical signals, and produce a response. Integrins are cell surface receptors that sense the extracellular mechanical cues and bind to the extracellular matrix (ECM). This binding induces integrin clustering and activation. Cytoplasmic tails of activated integrins interact and induce cytoskeleton tensions via several adaptor proteins. Integrins monitor extracellular stiffness via cytoskeleton tensions and modulate ECM stiffness via downstream signaling pathways regulating the expression of genes of ECM components. Integrin-mediated mechano-transduction is very crucial for the cell as it regulates the cell physiology both in normal and diseased conditions according to extracellular mechanical cues. It regulates cell proliferation, survival, and migration. Abnormal mechanical cues such as extreme and prolonged mechanical stress result in pathological conditions including fibrosis, cancers, skin, and autoimmune disorders. This paper aims to explore the role of integrins and their associated proteins in mechano-signal transduction. It highlights the integrins and their associated proteins as targets for therapy development. Furthermore, it also presents the challenges to the targeted drug development, which can be drug resistance and cytotoxicity. It is concluded in this paper that research on integrin-mediated mechano-signal transduction and its relationship with cell physiology and pathologies will be an important step towards the development of effective therapies.
Collapse
Affiliation(s)
- Kazuo Katoh
- Laboratory of Human Anatomy and Cell Biology, Faculty of Health Sciences, Tsukuba University of Technology, Tsukuba 305-8521, Japan
| |
Collapse
|
7
|
Jain K, Kishan K, Minhaj RF, Kanchanawong P, Sheetz MP, Changede R. Immobile Integrin Signaling Transit and Relay Nodes Organize Mechanosignaling through Force-Dependent Phosphorylation in Focal Adhesions. ACS NANO 2025; 19:2070-2088. [PMID: 39760672 DOI: 10.1021/acsnano.4c03214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Transmembrane signaling receptors, such as integrins, organize as nanoclusters that provide several advantages, including increasing avidity, sensitivity (increasing the signal-to-noise ratio), and robustness (signaling threshold) of the signal in contrast to signaling by single receptors. Furthermore, compared to large micron-sized clusters, nanoclusters offer the advantage of rapid turnover for the disassembly of the signal. However, whether nanoclusters function as signaling hubs remains poorly understood. Here, we employ fluorescence nanoscopy combined with photoactivation and photobleaching at subdiffraction limited resolution of ∼100 nm length scale within a focal adhesion to examine the dynamics of diverse focal adhesion proteins. We show that (i) subregions of focal adhesions are enriched in an immobile population of integrin β3 organized as nanoclusters, which (ii) in turn serve to organize nanoclusters of associated key adhesome proteins-vinculin, focal adhesion kinase (FAK) and paxillin, demonstrating that signaling proceeds by formation of nanoclusters rather than through individual proteins. (iii) Distinct focal adhesion protein nanoclusters exhibit distinct protein dynamics, which is closely correlated to their function in signaling. (iv) Long-lived nanoclusters function as signaling hubs─wherein immobile integrin nanoclusters organize phosphorylated FAK to form stable nanoclusters in close proximity to them, which are disassembled in response to inactivation signal by removal of force and in turn activation of phosphatase PTPN12. (v) Signaling takes place in response to external signals such as force or geometric arrangement of the nanoclusters and when the signal is removed, these nanoclusters disassemble. We term these functional nanoclusters as integrin signaling transit and relay nodes (STARnodes). Taken together, these results demonstrate that integrin STARnodes seed signaling downstream of the integrin receptors by organizing hubs of signaling proteins (FAK, paxillin, vinculin) to relay the incoming signal intracellularly and bring about robust function.
Collapse
Affiliation(s)
- Kashish Jain
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| | - Kishan Kishan
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
- Neurobit Inc., New York, New York 10036, United States
| | - Rida F Minhaj
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Pakorn Kanchanawong
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Michael P Sheetz
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
- Molecular Mechanomedicine Program, Biochemistry and Molecular Biology Department, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Rishita Changede
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
- Teora Pte. Ltd, Singapore 139955, Singapore
| |
Collapse
|
8
|
Zhang Z, Isaji T, Oyama Y, Liu J, Xu Z, Sun Y, Fukuda T, Lu H, Gu J. O-GlcNAcylation of Focal Adhesion Kinase Regulates Cell Adhesion, Migration, and Proliferation via the FAK/AKT Pathway. Biomolecules 2024; 14:1577. [PMID: 39766284 PMCID: PMC11674061 DOI: 10.3390/biom14121577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/05/2024] [Accepted: 12/08/2024] [Indexed: 01/11/2025] Open
Abstract
Focal Adhesion Kinase (FAK) is a non-receptor tyrosine kinase pivotal in cellular signal transduction, regulating cell adhesion, migration, growth, and survival. However, the regulatory mechanisms of FAK during tumorigenesis and progression still need to be fully understood. Our previous study demonstrated that O-GlcNAcylation regulates integrin-mediated cell adhesion. To further elucidate the underlying molecular mechanism, we focused on FAK in this study and purified it from 293T cells. Using liquid chromatography-mass spectrometry (LC-MS/MS), we identified the O-GlcNAcylation of FAK at Ser708, Thr739, and Ser886. Compared with wild-type FAK expressed in FAK-knockout 293T cells, the FAK mutant, in which Ser708, Thr739, and Ser886 were replaced with Ala, exhibited lower phosphorylation levels of Tyr397 and AKT. Cell proliferation and migration, assessed through MTT and wound healing assays, were significantly suppressed in the FAK mutant cells compared to the wild-type FAK cells. Additionally, the interaction among FAK, paxillin, and talin was enhanced, and cell adhesion was increased in the mutant cells. These data indicate that specific O-GlcNAcylation of FAK plays a critical regulatory role in integrin-mediated cell adhesion and migration. This further supports the idea that O-GlcNAcylation is essential for tumorigenesis and progression and that targeting the O-GlcNAcylation of FAK could offer a promising therapeutic strategy for cancer treatment.
Collapse
Affiliation(s)
- Zhiwei Zhang
- Division of Regulatory Glycobiology, Graduate School of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai 980-0845, Miyagi, Japan; (Z.Z.); (Y.O.); (J.L.); (Z.X.); (Y.S.); (T.F.)
| | - Tomoya Isaji
- Division of Regulatory Glycobiology, Graduate School of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai 980-0845, Miyagi, Japan; (Z.Z.); (Y.O.); (J.L.); (Z.X.); (Y.S.); (T.F.)
- Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Miyagi, Japan
| | - Yoshiyuki Oyama
- Division of Regulatory Glycobiology, Graduate School of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai 980-0845, Miyagi, Japan; (Z.Z.); (Y.O.); (J.L.); (Z.X.); (Y.S.); (T.F.)
| | - Jianwei Liu
- Division of Regulatory Glycobiology, Graduate School of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai 980-0845, Miyagi, Japan; (Z.Z.); (Y.O.); (J.L.); (Z.X.); (Y.S.); (T.F.)
| | - Zhiwei Xu
- Division of Regulatory Glycobiology, Graduate School of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai 980-0845, Miyagi, Japan; (Z.Z.); (Y.O.); (J.L.); (Z.X.); (Y.S.); (T.F.)
| | - Yuhan Sun
- Division of Regulatory Glycobiology, Graduate School of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai 980-0845, Miyagi, Japan; (Z.Z.); (Y.O.); (J.L.); (Z.X.); (Y.S.); (T.F.)
| | - Tomohiko Fukuda
- Division of Regulatory Glycobiology, Graduate School of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai 980-0845, Miyagi, Japan; (Z.Z.); (Y.O.); (J.L.); (Z.X.); (Y.S.); (T.F.)
- Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Miyagi, Japan
| | - Haojie Lu
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China;
| | - Jianguo Gu
- Division of Regulatory Glycobiology, Graduate School of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai 980-0845, Miyagi, Japan; (Z.Z.); (Y.O.); (J.L.); (Z.X.); (Y.S.); (T.F.)
- Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Miyagi, Japan
| |
Collapse
|
9
|
Choromańska A, Szwedowicz U, Szewczyk A, Daczewska M, Saczko J, Kruszakin R, Pawlik KJ, Baczyńska D, Kulbacka J. Electroporation-derived melanoma extracellular particles activate fibroblasts. Biochim Biophys Acta Gen Subj 2024; 1868:130723. [PMID: 39426760 DOI: 10.1016/j.bbagen.2024.130723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 10/05/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Although the pulse electric field (PEF) has been used in electrochemotherapy (ECT) for many years, the kinetics and profile of extracellular particles (EPs) released as a result of reversible electroporation have yet to be studied. It also needs to be clarified whether and how the profile of released EPs depends on the parameters of the applied PEF. The presented studies investigated the effect of EPs released from human melanoma cells after various parameters of reversible electroporation on markers indicating EP-mediated transformation of normal fibroblasts into tumor-associated fibroblasts. The expression levels of the vascular cell adhesion molecule-1 (VCAM-1) and changes in the expression of phosphor-histone H3 (pHH3), a biomarker specific for cells in mitosis, cell viability, and the migration capacity of the studied fibroblast cells, were analyzed. EPs were isolated from two commercial malignant melanoma cell lines previously subjected to reversible electroporation. Human primary fibroblasts (HPFs) were selected for EPs exposure. It was observed that after incubation with melanoma-derived EPs, HPFs showed differences in cell viability, migration capacity, VCAM-1, pHH3, and N-cadherin expression, depending on PEF parameters and the grade of melanoma cells. This study highlights that small extracellular particles (sEPs) from cancer cells can promote metastasis by carrying specific signals that lead to the upregulation of molecules like FAK, MMP-9, and N-cadherin in recipient cells.
Collapse
Affiliation(s)
- Anna Choromańska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland.
| | - Urszula Szwedowicz
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Anna Szewczyk
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Małgorzata Daczewska
- Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wroclaw, 50-328 Wroclaw, Poland
| | - Jolanta Saczko
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Roksana Kruszakin
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| | - Krzysztof J Pawlik
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| | - Dagmara Baczyńska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; Department of Immunology, State Research Institute Centre for Innovative Medicine, Santariškių 5, 08410 Vilnius, Lithuania
| |
Collapse
|
10
|
Geng Y, Xia W, Zheng X, Chen L, Zhou Y, Feng J, Yuan Y, Zhang M, Lu J, Wei S, Hu W. Targeted delivery of FAK siRNA by engineered exosomes to reverse cetuximab resistance via activating paraptosis in colon cancer. Apoptosis 2024; 29:1959-1977. [PMID: 38960944 PMCID: PMC11550291 DOI: 10.1007/s10495-024-01986-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2024] [Indexed: 07/05/2024]
Abstract
BACKGROUND Cetuximab is extensively used in the treatment of metastatic colorectal cancer (mCRC). However, resistance poses a significant challenge to successful therapy. Recently, paraptosis, a non-classical programmed cell death, has garnered increased attention for its potential application value in antitumor treatments. We aimed to identify the essential pathways and signaling molecules involved in paraptosis inhibition and select them as therapeutic targets in cetuximab resistance. Additionally, engineered exosome technology is used as a drug delivery system with both targeted and effector properties. RESULTS By comparing the differential expression of paraptosis-related genes between drug-resistant colon cancer cells and sensitive cells, it was observed that the paraptosis level induced by cetuximab was significantly downregulated in drug-resistant cells. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis identified the focal adhesion kinase (FAK) signaling pathway as a key pathway involved in the suppression of paraptosis. The biological function of FAK in cetuximab-resistant cells was investigated through cell morphology observation, CCK-8 assay, colony formation assay, RT-qPCR, Western Blot, and loss-of-function experiments. The results showed that the FAK signaling pathway was significantly upregulated in cetuximab-resistant colon cancer cells, and siRNA interference targeting FAK could notably inhibit cell proliferation while upregulating the paraptosis level. Based on this, engineered colon cancer cells targeted and FAK siRNA loaded exosomes (CT-Exo-siFAK1) were constructed. In vitro experiments, CT-Exo-siFAK1 could effectively activate paraptosis and inhibit the proliferation of drug-resistant colon cancer cells. In vivo experiments also confirmed that CT-Exo-siFAK1 significantly suppressed tumor growth and metastasis while upregulating the paraptosis level. CONCLUSION This study suggests that FAK signaling pathway-mediated inhibition of paraptosis levels is crucial in the sensitivity of cetuximab targeted therapy in colon cancer, and the use of engineered exosomes to deliver FAK siRNA may be an effective strategy to reverse cetuximab resistance.
Collapse
Affiliation(s)
- Yiting Geng
- Department of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, China
| | - Wei Xia
- Department of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, China
| | - Xiao Zheng
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
- Tumor Biological Diagnosis and Treatment Center, the Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
- Institute of Cell Therapy, Soochow University, Changzhou, 213003, China
| | - Lujun Chen
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
- Tumor Biological Diagnosis and Treatment Center, the Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
- Institute of Cell Therapy, Soochow University, Changzhou, 213003, China
| | - You Zhou
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
- Tumor Biological Diagnosis and Treatment Center, the Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
- Institute of Cell Therapy, Soochow University, Changzhou, 213003, China
| | - Jun Feng
- Department of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, China
| | - Ye Yuan
- Department of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, China
| | - Mingyue Zhang
- Department of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, China
| | - Jianwen Lu
- Department of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, China
| | - Shanshan Wei
- Department of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, China
| | - Wenwei Hu
- Department of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, China.
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China.
| |
Collapse
|
11
|
Wu LW, Jang SJ, Shapiro C, Fazlollahi L, Wang TC, Ryeom SW, Moy RH. Diffuse Gastric Cancer: A Comprehensive Review of Molecular Features and Emerging Therapeutics. Target Oncol 2024; 19:845-865. [PMID: 39271577 PMCID: PMC11557641 DOI: 10.1007/s11523-024-01097-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2024] [Indexed: 09/15/2024]
Abstract
Diffuse-type gastric cancer (DGC) accounts for approximately one-third of gastric cancer diagnoses but is a more clinically aggressive disease with peritoneal metastases and inferior survival compared with intestinal-type gastric cancer (IGC). The understanding of the pathogenesis of DGC has been relatively limited until recently. Multiomic studies, particularly by The Cancer Genome Atlas, have better characterized gastric adenocarcinoma into molecular subtypes. DGC has unique molecular features, including alterations in CDH1, RHOA, and CLDN18-ARHGAP26 fusions. Preclinical models of DGC characterized by these molecular alterations have generated insight into mechanisms of pathogenesis and signaling pathway abnormalities. The currently approved therapies for treatment of gastric cancer generally provide less clinical benefit in patients with DGC. Based on recent phase II/III clinical trials, there is excitement surrounding Claudin 18.2-based and FGFR2b-directed therapies, which capitalize on unique biomarkers that are enriched in the DGC populations. There are numerous therapies targeting Claudin 18.2 and FGFR2b in various stages of preclinical and clinical development. Additionally, there have been preclinical advancements in exploiting unique therapeutic vulnerabilities in several models of DGC through targeting of the focal adhesion kinase (FAK) and Hippo pathways. These preclinical and clinical advancements represent a promising future for the treatment of DGC.
Collapse
Affiliation(s)
- Lawrence W Wu
- Division of Hematology/Oncology, Department of Medicine, Columbia University Irving Medical Center, 161 Fort Washington Avenue, Room 956, New York, NY, 10032, USA
| | - Sung Joo Jang
- Division of Surgical Sciences, Department of Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Cameron Shapiro
- Division of Surgical Sciences, Department of Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Ladan Fazlollahi
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Timothy C Wang
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Sandra W Ryeom
- Division of Surgical Sciences, Department of Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Ryan H Moy
- Division of Hematology/Oncology, Department of Medicine, Columbia University Irving Medical Center, 161 Fort Washington Avenue, Room 956, New York, NY, 10032, USA.
| |
Collapse
|
12
|
Ahmadi Jazi S, Tajik F, Rezagholizadeh F, Taha SR, Shariat Zadeh M, Bouzari B, Madjd Z. Higher Expression of Talin-1 is Associated With Less Aggressive Tumor Behavior in Pancreatic Cancer. Appl Immunohistochem Mol Morphol 2024; 32:425-435. [PMID: 39258796 DOI: 10.1097/pai.0000000000001220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 07/16/2024] [Indexed: 09/12/2024]
Abstract
Talin-1 is one of the major scaffold proteins in focal adhesions playing a vital role in cell migration, metastasis, and cancer progression. Although studies regarding the importance of Talin-1 in cancer have rapidly developed, its prognostic and diagnostic value still remain unsatisfying in pancreatic cancer (PC). Therefore, the present study aims to investigate the expression, clinical significance, as well as the prognostic and diagnostic value of Talin-1 in different types of PC. Bioinformatic analysis was applied to determine the clinical importance and biological role of Talin-1 expression in PC tumors and the normal adjacent samples. The expression patterns, clinical significance, prognosis, and diagnosis value of Talin-1 were evaluated in tissue microarrays (TMAs) of 190 PC samples including 170 pancreatic ductal adenocarcinoma (PDAC), and 20 pancreatic neuroendocrine tumors (PNET), along with 24 adjacent normal tissues using immunohistochemistry (IHC). The results indicated that the expression of Talin-1 was upregulated in tumor cells compared with adjacent normal tissues. A statistically significant association was observed between the higher cytoplasmic expression of Talin-1 and lower histologic grade ( P <0.001) in PDAC samples. Further, our findings indicated an inverse significant correlation between cytoplasmic expression of Talin-1 and recurrence ( P =0.014) in PNET samples. No significant association was observed between the cytoplasmic expression of Talin-1 and survival outcomes as well as diagnostic accuracy. In conclusion, our observations demonstrated that a higher cytoplasmic level of Talin-1 protein was significantly associated with less aggressive tumor behaviors in PC samples. Nevertheless, further investigations are required to explore the prognostic plus diagnostic value, and mechanism of action of Talin-1 in pancreatic cancer.
Collapse
Affiliation(s)
- Samira Ahmadi Jazi
- Department of Pathology, School of Medicine, Iran University of Medical Sciences
| | - Fatemeh Tajik
- Oncopathology Research Center, Iran University of Medical Sciences
- Department of Surgery, University of California, Irvine Medical Center, Orange, CA
| | - Fereshteh Rezagholizadeh
- Oncopathology Research Center, Iran University of Medical Sciences
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Reza Taha
- Oncopathology Research Center, Iran University of Medical Sciences
| | | | - Behnaz Bouzari
- Department of Pathology, School of Medicine, Iran University of Medical Sciences
| | - Zahra Madjd
- Department of Pathology, School of Medicine, Iran University of Medical Sciences
- Oncopathology Research Center, Iran University of Medical Sciences
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Shreevatsa B, Hegde S, Narayan P, Dharmashekar C, Jain A, Wani TA, Prabhuswamimath SC, Kollur SP, Shivamallu C. Targeting FAK, VEGF, and MTA1 proteins with Terminalia elliptica: a computational approach for anticancer activity. Front Oncol 2024; 14:1427632. [PMID: 39355129 PMCID: PMC11442428 DOI: 10.3389/fonc.2024.1427632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/20/2024] [Indexed: 10/03/2024] Open
Abstract
Cancer remains a significant global health challenge, prompting exploration into alternative treatments such as those derived from natural compounds found in traditional medicine. Recent research has underscored the role of proteins like Focal Adhesion Kinase (FAK), Vascular Endothelial Growth Factor (VEGF), and Metastasis-Associated Protein 1 (MTA1) in driving cancer cell proliferation and survival. Here, we investigated the potential of a single molecule to modulate these key proteins involved in metastasis, offering a promising avenue for cancer therapy. Terminalia elliptica, commonly known as Asna, possesses a diverse range of medicinal properties, including antimicrobial, anti-inflammatory, anticancer, antidiabetic, antiaging, hepatoprotective, antioxidant, and neuroprotective activities. Our study aimed to explore the anticancer potential of Terminalia elliptica by identifying bioactive compounds capable of targeting FAK, VEGF, and MTA1 to impede cancer metastasis. Through in silico analysis, we conducted network analysis using Cytoscape to assess the significance of these bioactive compounds in the inhibition of signaling pathways driving metastasis. The utilization of these bioactives as potential candidates for targeted therapy of VEGF, FAK, and MTA1 regulated pathways was preliminarily assessed by Molecular Docking and MD Simulation. Our findings revealed that phytobioactives namely, Chebulinic Acid of Terminalia elliptica, exhibited notable binding affinity and interaction with FAK, and Chebulagic Acid with VEGF, and MTA1. This discovery holds promise as a novel therapeutic approach for combating cancer, offering potential benefits in cancer treatment and management.
Collapse
Affiliation(s)
- Bhargav Shreevatsa
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Shrivatsa Hegde
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Prakruthi Narayan
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Chandan Dharmashekar
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Anisha Jain
- Department of Microbiology, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Tanveer A Wani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Samudyata C Prabhuswamimath
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Shiva Prasad Kollur
- School of Physical Sciences, Amrita Vishwa Vidyapeetham, Mysuru, Karnataka, India
| | - Chandan Shivamallu
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| |
Collapse
|
14
|
Chu LW, Chen JY, Chen YW, Hsieh S, Kung ML. Phytoconstituent-derived zingerone nanoparticles disrupt the cell adhesion mechanism and suppress cell motility in melanoma B16F10 cells. J Biotechnol 2024; 392:48-58. [PMID: 38906221 DOI: 10.1016/j.jbiotec.2024.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 05/18/2024] [Accepted: 06/17/2024] [Indexed: 06/23/2024]
Abstract
Combining phytochemicals and nanotechnology to improve the unfavorable innate properties of phytochemicals and develop them into potent nanomedicines to enhance antitumor efficacy has become a novel strategy for cancer chemoprevention. Melanoma is the most aggressive, metastatic, and deadly disease of the primary cutaneous neoplasms. In this study, we fabricated phytoconstituent-derived zingerone nanoparticles (NPs) and validated their effects on cell adhesion and motility in melanoma B16F10 cells. Our data indicated that zingerone NPs significantly induced cytotoxicity and anti-colony formation and inhibited cell migration and invasion. Moreover, zingerone NPs dramatically interfered with the cytoskeletal reorganization and markedly delayed the period of cell adhesion. Our results also revealed that zingerone NPs-mediated downregulation of MMPs (matrix metalloproteinases) activity is associated with inhibiting cell adhesion and motility. We further evaluated the effects of zingerone NPs on Src/FAK /Paxillin signaling, our data showed that zingerone NPs significantly inhibited the protein activities of Src, FAK, and Paxillin, indicating that they play important roles in zingerone NP-mediated anti-motility and anti-invasion in melanoma cells. Accordingly, the phytoconstituent-zingerone NPs can strengthen the inhibition of tumor growth, invasion, and metastasis in malignant melanoma. Altogether, these multi-pharmacological benefits of zingerone NPs will effectively achieve the purpose of melanoma prevention and invasion inhibition.
Collapse
Affiliation(s)
- Li-Wen Chu
- Department of Nursing, and Department of Cosmetic Application and Management, Yuh-Ing Junior College of Health Care and Management, Kaohsiung, Taiwan
| | - Jun-Yih Chen
- Division of Neurosurgery, Fooyin University Hospital, Pingtung, Taiwan; Department of Nursing, Fooyin University, Kaohsiung, Taiwan
| | - Yun-Wen Chen
- Departments of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shuchen Hsieh
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Mei-Lang Kung
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.
| |
Collapse
|
15
|
Yan C, He L, Ma Y, Cheng J, Shen L, Singla RK, Zhang Y. Establishing and Validating an Innovative Focal Adhesion-Linked Gene Signature for Enhanced Prognostic Assessment in Endometrial Cancer. Reprod Sci 2024; 31:2468-2480. [PMID: 38653857 DOI: 10.1007/s43032-024-01564-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/12/2024] [Indexed: 04/25/2024]
Abstract
Studies have highlighted the significant role of focal adhesion signaling in cancer. Nevertheless, its specific involvement in the pathogenesis of endometrial cancer and its clinical significance remains uncertain. We analyzed TCGA-UCEC and GSE119041 datasets with corresponding clinical data to investigate focal adhesion-related gene expression and their clinical significance. A signature, "FA-riskScore," was developed using LASSO regression in the TCGA cohort and validated in the GSE dataset. The FA-riskScore was compared with four existing models in terms of their prediction performance. We employed univariate and multivariate Cox regression analyses towards FA-riskScore to assess its independent prognostic value. A prognostic evaluation nomogram based on our model and clinical indexes was established subsequently. Biological and immune differences between high- and low-risk groups were explored through functional enrichment, PPI network analysis, mutation mining, TME evaluation, and single-cell analysis. Sensitivity tests on commonly targeted drugs were performed on both groups, and Connectivity MAP identified potentially effective molecules for high-risk patients. qRT-PCR validated the expressions of FA-riskScore genes. FA-riskScore, based on FN1, RELN, PARVG, and PTEN, indicated a poorer prognosis for high-risk patients. Compared with published models, FA-riskScore achieved better and more stable performance. High-risk groups exhibited a more challenging TME and suppressive immune status. qRT-PCR showed differential expression in FN1, RELN, and PTEN. Connectivity MAP analysis suggested that BU-239, potassium-canrenoate, and tubocurarine are effective for high-risk patients. This study introduces a novel prognostic model for endometrial cancer and offers insights into focal adhesion's role in cancer pathogenesis.
Collapse
Affiliation(s)
- Cuiyin Yan
- Department of Obstetrics and Gynecology, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, China
| | - Leilei He
- Department of Obstetrics and Gynecology, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, China
| | - Yuhui Ma
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, SAR, China
| | - Jing Cheng
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, SAR, China
| | - Li Shen
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.
- Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Helsinki, Finland.
| | - Rajeev K Singla
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India.
| | - Yueming Zhang
- Department of Obstetrics and Gynecology, The Fourth Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
16
|
Kim C, Oh S, Im H, Gim J. Unveiling Bladder Cancer Prognostic Insights by Integrating Patient-Matched Sample and CpG Methylation Analysis. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1175. [PMID: 39064604 PMCID: PMC11279046 DOI: 10.3390/medicina60071175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/07/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024]
Abstract
Bladder cancer prognosis remains a pressing clinical challenge, necessitating the identification of novel biomarkers for precise survival prediction and improved quality of life outcomes. This study proposes a comprehensive strategy to uncover key prognostic biomarkers in bladder cancer using DNA methylation analysis and extreme survival pattern observations in matched pairs of cancer and adjacent normal cells. Unlike traditional approaches that overlook cancer heterogeneity by analyzing entire samples, our methodology leverages patient-matched samples to account for this variability. Specifically, DNA methylation profiles from adjacent normal bladder tissue and bladder cancer tissue collected from the same individuals were analyzed to pinpoint critical methylation changes specific to cancer cells while mitigating confounding effects from individual genetic differences. Utilizing differential threshold settings for methylation levels within cancer-associated pathways enabled the identification of biomarkers that significantly impact patient survival. Our analysis identified distinct survival patterns associated with specific CpG sites, underscoring these sites' pivotal roles in bladder cancer outcomes. By hypothesizing and testing the influence of methylation levels on survival, we pinpointed CpG biomarkers that profoundly affect the prognosis. Notably, CpG markers, such as cg16269144 (PRKCZ), cg16624272 (PTK2), cg11304234, and cg26534425 (IL18), exhibited critical methylation thresholds that correlate with patient mortality. This study emphasizes the importance of tailored approaches to enhancing prognostic accuracy and refining therapeutic strategies for bladder cancer patients. The identified biomarkers pave the way for personalized prognostication and targeted interventions, promising advancements in bladder cancer management and patient care.
Collapse
Affiliation(s)
- Chanbyeol Kim
- Department of Biomedical Science, Chosun University, Gwangju 61452, Republic of Korea; (C.K.); (S.O.); (H.I.)
- AI Convergence College, Chosun University, Gwangju 61452, Republic of Korea
| | - Sangwon Oh
- Department of Biomedical Science, Chosun University, Gwangju 61452, Republic of Korea; (C.K.); (S.O.); (H.I.)
- AI Convergence College, Chosun University, Gwangju 61452, Republic of Korea
| | - Hamin Im
- Department of Biomedical Science, Chosun University, Gwangju 61452, Republic of Korea; (C.K.); (S.O.); (H.I.)
- AI Convergence College, Chosun University, Gwangju 61452, Republic of Korea
| | - Jungsoo Gim
- Department of Biomedical Science, Chosun University, Gwangju 61452, Republic of Korea; (C.K.); (S.O.); (H.I.)
- AI Convergence College, Chosun University, Gwangju 61452, Republic of Korea
- BK FOUR Department of Integrative Biological Science, Chosun University, Gwangju 61452, Republic of Korea
- Well-Ageing Medicare Institute, Chosun University, Gwangju 61452, Republic of Korea
- Asian Dementia Research Initiative, Chosun University, Gwangju 61452, Republic of Korea
| |
Collapse
|
17
|
Schlaepfer DD, Ojalill M, Stupack DG. Focal adhesion kinase signaling - tumor vulnerabilities and clinical opportunities. J Cell Sci 2024; 137:jcs261723. [PMID: 39034922 PMCID: PMC11298715 DOI: 10.1242/jcs.261723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024] Open
Abstract
Focal adhesion kinase (FAK; encoded by PTK2) was discovered over 30 years ago as a cytoplasmic protein tyrosine kinase that is localized to cell adhesion sites, where it is activated by integrin receptor binding to extracellular matrix proteins. FAK is ubiquitously expressed and functions as a signaling scaffold for a variety of proteins at adhesions and in the cell cytoplasm, and with transcription factors in the nucleus. FAK expression and intrinsic activity are essential for mouse development, with molecular connections to cell motility, cell survival and gene expression. Notably, elevated FAK tyrosine phosphorylation is common in tumors, including pancreatic and ovarian cancers, where it is associated with decreased survival. Small molecule and orally available FAK inhibitors show on-target inhibition in tumor and stromal cells with effects on chemotherapy resistance, stromal fibrosis and tumor microenvironment immune function. Herein, we discuss recent insights regarding mechanisms of FAK activation and signaling, its roles as a cytoplasmic and nuclear scaffold, and the tumor-intrinsic and -extrinsic effects of FAK inhibitors. We also discuss results from ongoing and advanced clinical trials targeting FAK in low- and high-grade serous ovarian cancers, where FAK acts as a master regulator of drug resistance. Although FAK is not known to be mutationally activated, preventing FAK activity has revealed multiple tumor vulnerabilities that support expanding clinical combinatorial targeting possibilities.
Collapse
Affiliation(s)
- David D. Schlaepfer
- University of California, San Diego, Department of Obstetrics, Gynecology, and Reproductive Sciences, Moores Cancer Center, Division of Gynecologic Oncology, 3855 Health Sciences Dr., La Jolla, CA 92098, USA
| | - Marjaana Ojalill
- University of California, San Diego, Department of Obstetrics, Gynecology, and Reproductive Sciences, Moores Cancer Center, Division of Gynecologic Oncology, 3855 Health Sciences Dr., La Jolla, CA 92098, USA
| | - Dwayne G. Stupack
- University of California, San Diego, Department of Obstetrics, Gynecology, and Reproductive Sciences, Moores Cancer Center, Division of Gynecologic Oncology, 3855 Health Sciences Dr., La Jolla, CA 92098, USA
| |
Collapse
|
18
|
Kumar V, Singh P, Parate S, Singh R, Ro HS, Song KS, Lee KW, Park YM. Computational insights into allosteric inhibition of focal adhesion kinase: A combined pharmacophore modeling and molecular dynamics approach. J Mol Graph Model 2024; 130:108789. [PMID: 38718434 DOI: 10.1016/j.jmgm.2024.108789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 05/31/2024]
Abstract
Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase that modulates integrin and growth factor signaling pathways and is implicated in cancer cell migration, proliferation, and survival. Over the past decade various, FAK kinase, FERM, and FAT domain inhibitors have been reported and a few kinase domain inhibitors are under clinical consideration. However, few of them were identified as multikinase inhibitors. In kinase drug design selectivity is always a point of concern, to improve selectivity allosteric inhibitor development is the best choice. The current research utilized a pharmacophore modeling (PM) approach to identify novel allosteric inhibitors of FAK. The all-available allosteric inhibitor bound 3D structures with PDB ids 4EBV, 4EBW, and 4I4F were utilized for the pharmacophore modeling. The validated PM models were utilized to map a database of 770,550 compounds prepared from ZINC, EXIMED, SPECS, ASINEX, and InterBioScreen, aiming to identify potential allosteric inhibitors. The obtained compounds from screening step were forwarded to molecular docking (MD) for the prediction of binding orientation inside the allosteric site and the results were evaluated with the known FAK allosteric inhibitor (REF). Finally, 14 FAK-inhibitor complexes were selected from the docking study and were studied under molecular dynamics simulations (MDS) for 500 ns. The complexes were ranked according to binding free energy (BFE) and those demonstrated higher affinity for allosteric site of FAK than REF inhibitors were selected. The selected complexes were further analyzed for intermolecular interactions and finally, three potential allosteric inhibitor candidates for the inhibition of FAK protein were identified. We believe that identified scaffolds may help in drug development against FAK as an anticancer agent.
Collapse
Affiliation(s)
- Vikas Kumar
- Department of Bio & Medical Big Data (BK4 Program), Division of Life Science, Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju, 52828, Republic of Korea; Computational Biophysics Lab, Basque Center for Materials, Applications, and Nanostructures (BCMaterials), Buil. Martina Casiano, Pl. 3 Parque Científico UPV/EHU Barrio Sarriena, Leioa, 48940, Spain.
| | - Pooja Singh
- Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju, 52828, Republic of Korea
| | - Shraddha Parate
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30, Göteborg, Sweden
| | - Rajender Singh
- Division of Crop Improvement and Seed Technology ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India
| | - Hyeon-Su Ro
- Department of Bio & Medical Big Data (BK4 Program), Division of Life Science, Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju, 52828, Republic of Korea
| | - Kyoung Seob Song
- Department of Medical Science, Kosin University College of Medicine, 194 Wachi-ro, Yeongdo-gu, Busan, 49104, Republic of Korea
| | - Keun Woo Lee
- Department of Bio & Medical Big Data (BK4 Program), Division of Life Science, Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju, 52828, Republic of Korea; Angel i-Drug Design (AiDD), 33-3 Jinyangho-ro 44, Jinju, 52650, Republic of Korea.
| | - Yeong-Min Park
- Department of Integrative Biological Sciences and Industry, Sejong University 209, Neugdong-ro, Gwangjin-gu, Seoul, 05006, Republic of Korea.
| |
Collapse
|
19
|
Peng Z, Yi Y, Nie Y, Wang T, Tang J, Hong S, Liu Y, Huang W, Sun S, Tan H, Wu M. Softening the tumor matrix through cholesterol depletion breaks the physical barrier for enhanced antitumor therapy. J Control Release 2024; 371:29-42. [PMID: 38763389 DOI: 10.1016/j.jconrel.2024.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
The tumor develops defense tactics, including conversing the mechanical characteristics of tumor cells and their surrounding environment. A recent study reported that cholesterol depletion stiffens tumor cells, which could enhance adaptive T-cell immunotherapy. However, it remains unclear whether reducing the cholesterol in tumor cells contributes to re-educating the stiff tumor matrix, which serves as a physical barrier against drug penetration. Herein, we found that depleting cholesterol from tumor cells can demolish the intratumor physical barrier by disrupting the mechanical signal transduction between tumor cells and the extracellular matrix through the destruction of lipid rafts. This disruption allows nanoparticles (H/S@hNP) to penetrate deeply, resulting in improved photodynamic treatment. Our research also indicates that cholesterol depletion can inhibit the epithelial-mesenchymal transition and repolarize tumor-associated macrophages from M2 to M1, demonstrating the essential role of cholesterol in tumor progression. Overall, this study reveals that a cholesterol-depleted, softened tumor matrix reduces the difficulty of drug penetration, leading to enhanced antitumor therapeutics.
Collapse
Affiliation(s)
- Zhangwen Peng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Yunfei Yi
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Yichu Nie
- Department of Translational Medicine Research Institute, First People's Hospital of Foshan, Foshan 528000, China
| | - Tianqi Wang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Jia Tang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Sheng Hong
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Yuanqi Liu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Wenxin Huang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Shengjie Sun
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Hui Tan
- Center for Child Care and Mental Health (CCCMH), Shenzhen Children's Hospital, Shenzhen 518038, China.
| | - Meiying Wu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China.
| |
Collapse
|
20
|
Perez SJLP, Chen CL, Chang TT, Li WS. Biological evaluation of sulfonate and sulfate analogues of lithocholic acid: A bioisosterism-guided approach towards the discovery of potential sialyltransferase inhibitors for antimetastatic study. Bioorg Med Chem Lett 2024; 105:129760. [PMID: 38641151 DOI: 10.1016/j.bmcl.2024.129760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 02/12/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
The naturally occurring bile acid lithocholic acid (LCA) has been a crucial core structure for many non-sugar-containing sialyltranferase (ST) inhibitors documented in literature. With the aim of elucidating the impact of the terminal carboxyl acid substituent of LCA on its ST inhibition, in this present study, we report the (bio)isosteric replacement-based design and synthesis of sulfonate and sulfate analogues of LCA. Among these compounds, the sulfate analogue SPP-002 was found to selectively inhibit N-glycan sialylation by at least an order of magnitude, indicating a substantial improvement in both potency and selectivity when compared to the unmodified parent bile acid. Molecular docking analysis supported the stronger binding of the synthetic analogue in the enzyme active site. Treatment with SPP-002 also hampered the migration, adhesion, and invasion of MDA-MB-231 cells in vitro by suppressing the expression of signaling proteins involved in the cancer metastasis-associated integrin/FAK/paxillin pathway. In totality, these findings offer not only a novel structural scaffold but also valuable insights for the future development of more potent and selective ST inhibitors with potential therapeutic effects against tumor cancer metastasis.
Collapse
Affiliation(s)
- Ser John Lynon P Perez
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan; Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan; Sustainable Chemical Science and Technology, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan; Biomedical Translation Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Chia-Ling Chen
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Tzu-Ting Chang
- Biomedical Translation Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Wen-Shan Li
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan; Sustainable Chemical Science and Technology, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan; Biomedical Translation Research Center, Academia Sinica, Taipei 115, Taiwan; Department of Medicinal and Applied Chemistry, College of Life Science, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University; Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University, Kaohsiung 804, Taiwan; Department of Chemistry, College of Science, Tamkang University, New Taipei City 251, Taiwan.
| |
Collapse
|
21
|
Kunugitani K, Ogiso S, Fujimoto M, Yoh T, Shirai H, Okumura S, Hirao H, Ishii T, Yoshida A, Hatano E. Malignant perineurioma derived from the retroperitoneum with an aggressive clinical course: a case report. Surg Case Rep 2024; 10:121. [PMID: 38739347 DOI: 10.1186/s40792-024-01915-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 04/29/2024] [Indexed: 05/14/2024] Open
Abstract
BACKGROUND Malignant perineurioma is a rare malignant counterpart of perineurioma derived from perineural cells. Resection is the primary option for the treatment of malignant perineuriomas; however, patients often develop recurrence after resection, and effective treatment for advanced or recurrent lesions needs to be established. This report describes a 51-year-old female with a rare malignant perineurioma in the retroperitoneum, which contributing valuable insights to the literature. CASE PRESENTATION The patient presented with abdominal distension and the imaging work-up revealed a huge hemorrhagic tumor in the retroperitoneum and obstruction of inferior vena cava by the tumor. The patient underwent surgery retrieving the tumor combined with left hemiliver and retrohepatic vena cava, which confirmed the diagnosis of a malignant perineurioma based on histopathological and immunohistochemical examination. Cancer gene panel testing identified mutations in NF2. Radiotherapy was administered for peritoneal dissemination 2 months after surgery, and the patient died from disease progression 6 months after surgery. CONCLUSIONS This rare case highlights the challenges in managing retroperitoneal malignant perineuriomas. The aggressive characteristics and limited treatment options for advanced malignant perineuriomas underscore the need for understanding the pathogenesis and developing effective systemic therapies. The identification of an NF2 mutation provides significant insights into potential therapeutic target.
Collapse
Affiliation(s)
- Ken Kunugitani
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Shogo-in Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Satoshi Ogiso
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Shogo-in Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan.
| | - Masakazu Fujimoto
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| | - Tomoaki Yoh
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Shogo-in Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Hisaya Shirai
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Shogo-in Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Shinya Okumura
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Shogo-in Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Hirofumi Hirao
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Shogo-in Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Takamichi Ishii
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Shogo-in Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
- Department of Surgery for Abdominal Oncology and Organ Regeneration, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akihiko Yoshida
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan
| | - Etsuro Hatano
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Shogo-in Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| |
Collapse
|
22
|
Pasdaran A, Grice ID, Hamedi A. A review of natural products and small-molecule therapeutics acting on central nervous system malignancies: Approaches for drug development, targeting pathways, clinical trials, and challenges. Drug Dev Res 2024; 85:e22180. [PMID: 38680103 DOI: 10.1002/ddr.22180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/09/2023] [Accepted: 03/19/2024] [Indexed: 05/01/2024]
Abstract
In 2021, the World Health Organization released the fifth edition of the central nervous system (CNS) tumor classification. This classification uses histopathology and molecular pathogenesis to group tumors into more biologically and molecularly defined entities. The prognosis of brain cancer, particularly malignant tumors, has remained poor worldwide, approximately 308,102 new cases of brain and other CNS tumors were diagnosed in the year 2020, with an estimated 251,329 deaths. The cost and time-consuming nature of studies to find new anticancer agents makes it necessary to have well-designed studies. In the present study, the pathways that can be targeted for drug development are discussed in detail. Some of the important cellular origins, signaling, and pathways involved in the efficacy of bioactive molecules against CNS tumorigenesis or progression, as well as prognosis and common approaches for treatment of different types of brain tumors, are reviewed. Moreover, different study tools, including cell lines, in vitro, in vivo, and clinical trial challenges, are discussed. In addition, in this article, natural products as one of the most important sources for finding new chemotherapeutics were reviewed and over 700 reported molecules with efficacy against CNS cancer cells are gathered and classified according to their structure. Based on the clinical trials that have been registered, very few of these natural or semi-synthetic derivatives have been studied in humans. The review can help researchers understand the involved mechanisms and design new goal-oriented studies for drug development against CNS malignancies.
Collapse
Affiliation(s)
- Ardalan Pasdaran
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Irwin Darren Grice
- Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, Queensland, Australia
- School of Medical Science, Griffith University, Gold Coast, Southport, Queensland, Australia
| | - Azadeh Hamedi
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
23
|
Tsai HE, Chen CL, Chang TT, Fu CW, Chen WC, Perez SJLP, Hsiao PW, Tai MH, Li WS. Development of a Novel, Potent, and Selective Sialyltransferase Inhibitor for Suppressing Cancer Metastasis. Int J Mol Sci 2024; 25:4283. [PMID: 38673867 PMCID: PMC11050067 DOI: 10.3390/ijms25084283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/01/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Sialyltransferase-catalyzed membrane protein and lipid glycosylation plays a vital role as one of the most abundant post-translational modifications and diversification reactions in eukaryotes. However, aberrant sialylation has been associated with cancer malignancy and metastasis. Sialyltransferases thus represent emerging targets for the development of small molecule cancer drugs. Herein, we report the inhibitory effects of a recently discovered lithocholic acid derivative FCW393 on sialyltransferase catalytic activity, integrin sialyation, cancer-associated signal transduction, MDA-MB-231 and B16F10 cell migration and invasion, and in in vivo studies, on tumor growth, metastasis, and angiogenesis. FCW393 showed effective and selective inhibition of the sialyltransferases ST6GAL1 (IC50 = 7.8 μM) and ST3GAL3 (IC50 = 9.45 μM) relative to ST3GAL1 (IC50 > 400 μM) and ST8SIA4 (IC50 > 100 μM). FCW393 reduced integrin sialylation in breast cancer and melanoma cells dose-dependently and downregulated proteins associated with the integrin-regulated FAK/paxillin and GEF/Rho/ROCK pathways, and with the VEGF-regulated Akt/NFκB/HIF-1α pathway. FCW393 inhibited cell migration (IC50 = 2.6 μM) and invasion in in vitro experiments, and in in vivo studies of tumor-bearing mice, FCW393 reduced tumor size, angiogenesis, and metastatic potential. Based on its demonstrated selectivity, cell permeability, relatively low cytotoxicity (IC50 = 55 μM), and high efficacy, FCW393 shows promising potential as a small molecule experimental tool compound and a lead for further development of a novel cancer therapeutic.
Collapse
Grants
- AS-KPQ-110-EIMD, AS-KPQ-109-BioMed, AS-KPQ-110-BioMed and AS-KPQ-111-KNT Academia Sinica
- MOST, Taiwan, MOST 110-0210-01-22-02, MOST-108-3114-Y-001-002, MOST 108-3111-Y-001-056, MOST 106-2113-M-001-011, MOST 103-2325-B-001-001 and MOST108-2314-B-110-003-MY2 Ministry of Science and Technology, TAIWAN
- 108-36 Kaohsiung Armed Forces General Hospital, TAIWAN
Collapse
Affiliation(s)
- Han-En Tsai
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan (C.-W.F.); (S.J.L.P.P.)
| | - Chia-Ling Chen
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan (C.-W.F.); (S.J.L.P.P.)
| | - Tzu-Ting Chang
- Biomedical Translation Research Center, Academia Sinica, National Biotechnology Research Park, Taipei 115, Taiwan
| | - Chih-Wei Fu
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan (C.-W.F.); (S.J.L.P.P.)
- Department of Chemistry, National Central University, Taoyuan 320, Taiwan
| | - Wei-Chia Chen
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan (C.-W.F.); (S.J.L.P.P.)
- Department of Chemistry, National Taiwan Normal University, Taipei 106, Taiwan
| | - Ser John Lynon P. Perez
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan (C.-W.F.); (S.J.L.P.P.)
- Biomedical Translation Research Center, Academia Sinica, National Biotechnology Research Park, Taipei 115, Taiwan
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
- Sustainable Chemical Science and Technology, Taiwan International Graduate Program, National Yang Ming Chiao Tung University and Academia Sinica, Taipei 115, Taiwan
| | - Pei-Wen Hsiao
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Ming-Hong Tai
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
- Center for Neuroscience, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Wen-Shan Li
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan (C.-W.F.); (S.J.L.P.P.)
- Biomedical Translation Research Center, Academia Sinica, National Biotechnology Research Park, Taipei 115, Taiwan
- Sustainable Chemical Science and Technology, Taiwan International Graduate Program, National Yang Ming Chiao Tung University and Academia Sinica, Taipei 115, Taiwan
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
- Department of Medicinal and Applied Chemistry, College of Life Science, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
24
|
Naganuma T. Selective inhibition of partial EMT-induced tumour cell growth by cerium valence states of extracellular ceria nanoparticles for anticancer treatment. Colloids Surf B Biointerfaces 2024; 236:113794. [PMID: 38382224 DOI: 10.1016/j.colsurfb.2024.113794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/31/2024] [Accepted: 02/07/2024] [Indexed: 02/23/2024]
Abstract
Targeting specific tumour cells and their microenvironments is essential for enhancing the efficacy of chemotherapy and reducing its side effects. A partial epithelial-to-mesenchymal transition state (pEMT, with a hybrid epithelial/mesenchymal phenotype) in tumour cells is an attractive targeting for anticancer treatment because it potentially provides maximal stemness and metastasis relevant to malignant cancer stem cell-like features. However, treatment strategies to target pEMT in tumour cells remain a challenge. This study demonstrates that extracellular cerium oxide nanoparticles (CNPs) selectively inhibit the growth of pEMT-induced tumour cells, without affecting full epithelial tumour cells. Herein, highly concentrated Ce3+ and Ce4+ ions are formed on CNP-layered poly-L-lactic acid surfaces. Cell cultures of pEMT-induced and uninduced lung cancer cell lines on the CNP-layered substrates allow the effect of extracellular CNPs on tumour cell growth to be investigated. The extracellular CNPs with dominant Ce3+ and Ce4+ ions were able to trap pEMT-induced tumour cells in a growth-arrested quiescent/dormant or cytostatic state without generating redox-related reactive oxygen species (ROS), i.e. non-redox mechanisms. The dominant Ce3+ state provided highly efficient growth inhibition of the pEMT-induced tumour cells. In contrast, the dominant Ce4+ state showed highly selective and appropriate growth regulation of normal and tumour cells, including a mesenchymal phenotype. Furthermore, Ce4+-CNPs readily adsorbed serum-derived fibronectin and laminin. Cerium valence-specific proteins adsorbed on CNPs may influence receptor-mediated cell-CNP interactions, leading to tumour cell growth inhibition. These findings provide new perspectives for pEMT-targeting anticancer treatments based on the unique biointerface of extracellular CNPs with different Ce valence states.
Collapse
Affiliation(s)
- Tamaki Naganuma
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
| |
Collapse
|
25
|
Liu L, He Z, Jiang Z, Liu Z, Zhuang X. Acidity-induced ITGB6 promote migration and invasion of lung cancer cells by epithelial-mesenchymal transition and focal adhesion. Exp Cell Res 2024; 436:113962. [PMID: 38316250 DOI: 10.1016/j.yexcr.2024.113962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/20/2024] [Accepted: 02/02/2024] [Indexed: 02/07/2024]
Abstract
Non-small cell lung cancer (NSCLC) is a prevalent tumor and acidic tumor microenvironment provides an energy source driving tumor progression. We previously demonstrated significantly upregulated Integrin β6 (ITGB6) in NSCLC cells. This study was designed to investigate the role of ITGB6 in NSCLC metastasis and explore the potential mechanisms. The expression of ITGB6 was evaluated in patients with NSCLC. Migration and invasion assays were utilized to investigate the role of ITGB6, and ChIP-qPCR and dual-luciferase reporter experiments preliminarily analyzed the relationship between ETS proto-oncogene 1 (ETS1) and ITGB6. Bioinformatics analysis and rescue models were performed to explore the underlying mechanisms. The results demonstrated that ITGB6 was upregulated in NSCLC patients and the difference was even more pronounced in patients with poor prognosis. Functionally, acidity-induced ITGB6 promoted migration and invasion of NSCLC cells in vitro, and epithelial-mesenchymal transition (EMT) and focal adhesion were the important mechanisms responsible for ITGB6-involved metastasis. Mechanistically, we revealed ETS1 enriched in the ITGB6 promoter region and promoted transcription to triggered the activation of subsequent signaling pathways. Moreover, ChIP-qPCR and dual-luciferase reporter experiments demonstrated that ETS1 played an important role in directly mediating ITGB6 expression. Furthermore, we found ITGB6 was responsible for the acidic microenvironment-mediated migration and invasion processes in NSCLC by performing rescue experiments with ITGB6 knockdown. Our findings indicated acidic microenvironment directly induced ETS1 to regulate the expression of ITGB6, and then the highly expressed ITGB6 further mediate EMT and activates the downstream focal adhesion pathways, eventually promotes the invasion and migration in NSCLC progression and metastasis.
Collapse
Affiliation(s)
- Linxin Liu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhuoru He
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhangyu Jiang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhongqiu Liu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaojun Zhuang
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
26
|
Jain K, Minhaj RF, Kanchanawong P, Sheetz MP, Changede R. Nano-clusters of ligand-activated integrins organize immobile, signalling active, nano-clusters of phosphorylated FAK required for mechanosignaling in focal adhesions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.25.581925. [PMID: 38464288 PMCID: PMC10925161 DOI: 10.1101/2024.02.25.581925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Transmembrane signalling receptors, such as integrins, organise as nanoclusters that are thought to provide several advantages including, increasing avidity, sensitivity (increasing the signal-to-noise ratio) and robustness (signalling above a threshold rather than activation by a single receptor) of the signal compared to signalling by single receptors. Compared to large micron-sized clusters, nanoclusters offer the advantage of rapid turnover for the disassembly of the signal. However, if nanoclusters function as signalling hubs remains poorly understood. Here, we employ fluorescence nanoscopy combined with photoactivation and photobleaching at sub-diffraction limited resolution of ~100nm length scale within a focal adhesion to examine the dynamics of diverse focal adhesion proteins. We show that (i) subregions of focal adhesions are enriched in immobile population of integrin β3 organised as nanoclusters, which (ii) in turn serve to organise nanoclusters of associated key adhesome proteins- vinculin, focal adhesion kinase (FAK) and paxillin, demonstrating that signalling proceeds by formation of nanoclusters rather than through individual proteins. (iii) Distinct focal adhesion protein nanoclusters exhibit distinct dynamics dependent on function. (iv) long-lived nanoclusters function as signalling hubs- wherein phosphorylated FAK and paxillin formed stable nanoclusters in close proximity to immobile integrin nanoclusters which are disassembled in response to inactivation signal by phosphatase PTPN12 (v) signalling takes place in response to an external signal such as force or geometric arrangement of the nanoclusters and when the signal is removed, these nanoclusters disassemble. Taken together, these results demonstrate that signalling downstream of transmembrane receptors is organised as hubs of signalling proteins (FAK, paxillin, vinculin) seeded by nanoclusters of the transmembrane receptor (integrin).
Collapse
Affiliation(s)
- Kashish Jain
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Rida F Minhaj
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Pakorn Kanchanawong
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Michael P Sheetz
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
- Molecular Mechanomedicine Program, Biochemistry and Molecular Biology Department, University of Texas Medical Branch, Galveston, TX, USA
| | - Rishita Changede
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
- TeOra Pte. Ltd, Singapore, Singapore
| |
Collapse
|
27
|
Liao Y, Remsing Rix LL, Li X, Fang B, Izumi V, Welsh EA, Monastyrskyi A, Haura EB, Koomen JM, Doebele RC, Rix U. Differential network analysis of ROS1 inhibitors reveals lorlatinib polypharmacology through co-targeting PYK2. Cell Chem Biol 2024; 31:284-297.e10. [PMID: 37848034 PMCID: PMC10922442 DOI: 10.1016/j.chembiol.2023.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 08/02/2023] [Accepted: 09/19/2023] [Indexed: 10/19/2023]
Abstract
Multiple tyrosine kinase inhibitors (TKIs) are often developed for the same indication. However, their relative overall efficacy is frequently incompletely understood and they may harbor unrecognized targets that cooperate with the intended target. We compared several ROS1 TKIs for inhibition of ROS1-fusion-positive lung cancer cell viability, ROS1 autophosphorylation and kinase activity, which indicated disproportionately higher cellular potency of one TKI, lorlatinib. Quantitative chemical and phosphoproteomics across four ROS1 TKIs and differential network analysis revealed that lorlatinib uniquely impacted focal adhesion signaling. Functional validation using pharmacological probes, RNA interference, and CRISPR-Cas9 knockout uncovered a polypharmacology mechanism of lorlatinib by dual targeting ROS1 and PYK2, which form a multiprotein complex with SRC. Rational multi-targeting of this complex by combining lorlatinib with SRC inhibitors exhibited pronounced synergy. Taken together, we show that systems pharmacology-based differential network analysis can dissect mixed canonical/non-canonical polypharmacology mechanisms across multiple TKIs enabling the design of rational drug combinations.
Collapse
Affiliation(s)
- Yi Liao
- Department of Drug Discovery, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Lily L Remsing Rix
- Department of Drug Discovery, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Xueli Li
- Department of Drug Discovery, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Bin Fang
- Proteomics and Metabolomics Core, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Victoria Izumi
- Proteomics and Metabolomics Core, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Eric A Welsh
- Biostatistics and Bioinformatics Shared Resource, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Andrii Monastyrskyi
- Department of Drug Discovery, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; Department of Oncologic Sciences, University of South Florida, Tampa, FL 33620, USA
| | - Eric B Haura
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - John M Koomen
- Department of Oncologic Sciences, University of South Florida, Tampa, FL 33620, USA; Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Robert C Doebele
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Uwe Rix
- Department of Drug Discovery, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; Department of Oncologic Sciences, University of South Florida, Tampa, FL 33620, USA.
| |
Collapse
|
28
|
Nadar S, Borkar MR, Khan T. Identification of potential focal adhesion kinase (FAK) inhibitors: a molecular modeling approach. J Biomol Struct Dyn 2024:1-11. [PMID: 38356145 DOI: 10.1080/07391102.2024.2314266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/30/2024] [Indexed: 02/16/2024]
Abstract
Focal adhesion kinase (FAK) is an enzyme of paramount importance as it is involved in several critical roles, which are linked to proliferation of cancer cells. FAK is quintessential for cancer cell mitigation, adhesion and survival, downregulation of which interferes with the growth of cancer cells. The expression of FAK is elevated in breast cancer, hepatocellular carcinomas, neuroblastoma cells, demonstrating the need for FAK inhibitors as a potential treatment. Based on an in silico drug screen, the study aimed to identify potential FAK inhibitors. 3180 molecules retrieved from the Zinc database comprising biogenic molecules, FDA-approved drugs and compounds in clinical trials were screened against the FAK enzyme (PDB:2ETM). The XP docking study of the best 51 ligands revealed that ZINC02033589 (Silymarin) showed good binding to FAK with -10.97 kcal/mol dock score followed by ZINC00518397 with -8.23 kcal/mol and ZINC03831112 - 8.07 kcal/mol. The interactions of the top three ligands with FAK were further validated by molecular dynamic simulation study of 100 ns and MM-GBSA calculations. The ΔG of binding of ZINC02033589, ZINC00518397 and ZINC03831112 was found to be -59.09, -45.08 and -48.53 kcal/mol respectively. The study established the fact that among the three molecules, ZINC02033589 showed good stability and binding towards FAK. These results could usher in the development of potential FAK inhibitor entities, that could be persuaded and substantiated by the molecules identified in this study for subsequent synthetic and bioactivity research studies.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sahaya Nadar
- Department of Pharmaceutical Chemistry, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
- Department of Pharmaceutical Chemistry, St. John Institute of Pharmacy and Research, Palghar, India
| | - Maheshkumar R Borkar
- Department of Pharmaceutical Chemistry, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Tabassum Khan
- Department of Pharmaceutical Chemistry, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| |
Collapse
|
29
|
Ng WH, Soo KC, Huynh H. Vinorelbine Improves the Efficacy of Sorafenib against Hepatocellular Carcinoma: A Promising Therapeutic Approach. Int J Mol Sci 2024; 25:1563. [PMID: 38338842 PMCID: PMC10855313 DOI: 10.3390/ijms25031563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/22/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading global cause of cancer-related mortality. Despite the widespread adoption of sorafenib as the standard HCC treatment, its efficacy is constrained, frequently encountering resistance. To augment the effectiveness of sorafenib, this study investigated the synergy of sorafenib and vinorelbine using 22 HCC patient-derived xenograft (PDX) models. In this study, mice bearing HCC tumors were treated with the vehicle, sorafenib (15 mg/kg), vinorelbine (3 mg/kg), and sorafenib-vinorelbine combination (Sora/Vino). Rigorous monitoring of the tumor growth and side effects coupled with comprehensive histological and molecular analyses was conducted. The overall survival (OS) of mice bearing HCC orthotopic tumors was also assessed. Our data showed a notable 86.4% response rate to Sora/Vino, surpassing rates of 31.8% for sorafenib and 9.1% for vinorelbine monotherapies. Sora/Vino significantly inhibited tumor growth, prolonged OS of mice bearing HCC orthotopic tumors (p < 0.01), attenuated tumor cell proliferation and angiogenesis, and enhanced necrosis and apoptosis. The combination therapy effectively suppressed the focal adhesion kinase (FAK) pathway, which is a pivotal player in cell proliferation, tumor angiogenesis, survival, and metastasis. The noteworthy antitumor activity in 22 HCC PDX models positions Sora/Vino as a promising candidate for early-phase clinical trials, leveraging the established use of sorafenib and vinorelbine in HCC and other cancers.
Collapse
Affiliation(s)
- Wai Har Ng
- Laboratory of Molecular Endocrinology, National Cancer Centre Singapore, Singapore 168583, Singapore;
| | - Khee Chee Soo
- Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, Singapore 168583, Singapore
| | - Hung Huynh
- Laboratory of Molecular Endocrinology, National Cancer Centre Singapore, Singapore 168583, Singapore;
| |
Collapse
|
30
|
Lin K, Zhao Y, Tang Y, Chen Y, Lin M, He L. Collagen I-induced VCAN/ERK signaling and PARP1/ZEB1-mediated metastasis facilitate OSBPL2 defect to promote colorectal cancer progression. Cell Death Dis 2024; 15:85. [PMID: 38267463 PMCID: PMC10808547 DOI: 10.1038/s41419-024-06468-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/26/2024]
Abstract
The global burden of colorectal cancer (CRC) has rapidly increased in recent years. Dysregulated cholesterol homeostasis facilitated by extracellular matrix (ECM) remodeling transforms the tumor microenvironment. Collagen I, a major with ECM component is highly expressed in colorectal tumors with infiltrative growth. Although oxysterol binding protein (OSBP)-related proteins accommodate tumorigenesis, OSBPL2, which is usually involved in deafness, is not associated with CRC progression. Therefore, we aimed to investigate the pathological function of OSBPL2 and identify the molecular link between ECM-Collagen I and OSBPL2 in CRC to facilitate the development of new treatments for CRC. OSBPL2 predicted a favorable prognosis in stage IV CRC and substantially repressed Collagen I-induced focal adhesion, migration, and invasion. The reduction of OSBPL2 activated ERK signaling through the VCAN/AREG/EREG axis during CRC growth, while relying on PARP1 via ZEB1 in CRC metastasis. OSBPL2 defect supported colorectal tumor growth and metastasis, which were suppressed by the ERK and PARP1 inhibitors SCH772984 and AG14361, respectively. Overall, our findings revealed that the Collagen I-induced loss of OSBPL2 aggravates CRC progression through VCAN-mediated ERK signaling and the PARP1/ZEB1 axis. This demonstrates that SCH772984 and AG14361 are reciprocally connective therapies for OSBPL2Low CRC, which could contribute to further development of targeted CRC treatment.
Collapse
Affiliation(s)
- Kang Lin
- Center for Clinical Research and Translational Medicine, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Gastrointestinal Surgery and Translational Medicine, School of Medicine, Tongji University, Shanghai, China
| | - Yun Zhao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Yuqi Tang
- Center for Clinical Research and Translational Medicine, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Gastrointestinal Surgery and Translational Medicine, School of Medicine, Tongji University, Shanghai, China
| | - Ying Chen
- Center for Clinical Research and Translational Medicine, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Gastrointestinal Surgery and Translational Medicine, School of Medicine, Tongji University, Shanghai, China
| | - Moubin Lin
- Center for Clinical Research and Translational Medicine, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China.
- Institute of Gastrointestinal Surgery and Translational Medicine, School of Medicine, Tongji University, Shanghai, China.
- Department of General Surgery, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Luwei He
- Center for Clinical Research and Translational Medicine, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China.
- Institute of Gastrointestinal Surgery and Translational Medicine, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
31
|
Hou W, Gad SA, Ding X, Dhanarajan A, Qiu W. Focal adhesion kinase confers lenvatinib resistance in hepatocellular carcinoma via the regulation of lysine-deficient kinase 1. Mol Carcinog 2024; 63:173-189. [PMID: 37787401 PMCID: PMC10842616 DOI: 10.1002/mc.23644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 10/04/2023]
Abstract
Lenvatinib is a clinically effective multikinase inhibitor approved for first-line therapy of advanced hepatocellular carcinoma (HCC). Although resistance against lenvatinib often emerges and limits its antitumor activity, the underlying molecular mechanisms involved in endogenous and acquired resistance remain elusive. In this study, we identified focal adhesion kinase (FAK) as a critical contributor to lenvatinib resistance in HCC. The elevated expression and phosphorylation of FAK were observed in both acquired and endogenous lenvatinib-resistant (LR) HCC cells. Furthermore, inhibition of FAK reversed lenvatinib resistance in vitro and in vivo. Mechanistically, FAK promoted lenvatinib resistance through regulating lysine-deficient kinase 1 (WNK1). Phosphorylation of WNK1 was significantly increased in LR-HCC cells. Further, WNK1 inhibitor WNK463 resensitized either established or endogenous LR-HCC cells to lenvatinib treatment. In addition, overexpression of WNK1 desensitized parental HCC cells to lenvatinib treatment. Conclusively, our results establish a crucial role and novel mechanism of FAK in lenvatinib resistance and suggest that targeting the FAK/WNK1 axis is a promising therapeutic strategy in HCC patients showing lenvatinib resistance.
Collapse
Affiliation(s)
- Wei Hou
- Department of Surgery, Loyola University Chicago Stritch School of Medicine, 2160 South 1 Avenue., Maywood, IL 60153, USA
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, 2160 South 1 Avenue., Maywood, IL 60153, USA
| | - Shaimaa A. Gad
- Department of Surgery, Loyola University Chicago Stritch School of Medicine, 2160 South 1 Avenue., Maywood, IL 60153, USA
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, 2160 South 1 Avenue., Maywood, IL 60153, USA
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Center, Egypt
| | - Xianzhong Ding
- Department of Pathology, Loyola University Chicago Stritch School of Medicine, 2160 South 1 Avenue., Maywood, IL 60153, USA
| | - Asha Dhanarajan
- Department of Medicine, Loyola University Chicago Stritch School of Medicine, 2160 South 1 Avenue., Maywood, IL 60153, USA
| | - Wei Qiu
- Department of Surgery, Loyola University Chicago Stritch School of Medicine, 2160 South 1 Avenue., Maywood, IL 60153, USA
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, 2160 South 1 Avenue., Maywood, IL 60153, USA
| |
Collapse
|
32
|
Prasad P, Billah Khair AM, Venkatesan K, Shahwan M, Shamsi A. Molecular and functional insight into focal adhesion kinases: Therapeutic implications for oral malignancies. Drug Discov Today 2024; 29:103852. [PMID: 38070702 DOI: 10.1016/j.drudis.2023.103852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/21/2023] [Accepted: 12/05/2023] [Indexed: 12/18/2023]
Abstract
Oral carcinoma is the sixth most common cancer globally, with one death occurring every hour. Focal adhesion kinase (FAK) is an intercellular protein tyrosine kinase, a key indicator of the development of oral cancer. FAK overexpression leads to the initiation and significant progression of metastasis in head and neck cancers, indicating its vital role in cancer progression and potential as a biomarker for early oral malignant transformation. The present review elaborates on FAK's function in oral malignancies since it could serve as a biomarker of the initial stages of oral malignant transformation and a possible predictive factor for risk assessment.
Collapse
Affiliation(s)
- Prathibha Prasad
- Basic Medical and Dental Sciences Department, College of Dentistry, Ajman University, Ajman, United Arab Emirates; Center of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Al-Moutassem Billah Khair
- Basic Medical and Dental Sciences Department, College of Dentistry, Ajman University, Ajman, United Arab Emirates; Center of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Kumar Venkatesan
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Moyad Shahwan
- Center of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates; College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates
| | - Anas Shamsi
- Center of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates.
| |
Collapse
|
33
|
Oketch DJA, Giulietti M, Piva F. Copy Number Variations in Pancreatic Cancer: From Biological Significance to Clinical Utility. Int J Mol Sci 2023; 25:391. [PMID: 38203561 PMCID: PMC10779192 DOI: 10.3390/ijms25010391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/20/2023] [Accepted: 12/24/2023] [Indexed: 01/12/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common type of pancreatic cancer, characterized by high tumor heterogeneity and a poor prognosis. Inter- and intra-tumoral heterogeneity in PDAC is a major obstacle to effective PDAC treatment; therefore, it is highly desirable to explore the tumor heterogeneity and underlying mechanisms for the improvement of PDAC prognosis. Gene copy number variations (CNVs) are increasingly recognized as a common and heritable source of inter-individual variation in genomic sequence. In this review, we outline the origin, main characteristics, and pathological aspects of CNVs. We then describe the occurrence of CNVs in PDAC, including those that have been clearly shown to have a pathogenic role, and further highlight some key examples of their involvement in tumor development and progression. The ability to efficiently identify and analyze CNVs in tumor samples is important to support translational research and foster precision oncology, as copy number variants can be utilized to guide clinical decisions. We provide insights into understanding the CNV landscapes and the role of both somatic and germline CNVs in PDAC, which could lead to significant advances in diagnosis, prognosis, and treatment. Although there has been significant progress in this field, understanding the full contribution of CNVs to the genetic basis of PDAC will require further research, with more accurate CNV assays such as single-cell techniques and larger cohorts than have been performed to date.
Collapse
Affiliation(s)
| | - Matteo Giulietti
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Francesco Piva
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| |
Collapse
|
34
|
Lo HC, Hua WJ, Yeh H, Lin ZH, Huang LC, Ciou YR, Ruan R, Lin KF, Tseng AJ, Wu ATH, Hsu WH, Chao CH, Lin TY. GMI, a Ganoderma microsporum protein, abolishes focal adhesion network to reduce cell migration and metastasis of lung cancer. Life Sci 2023; 335:122255. [PMID: 37967792 DOI: 10.1016/j.lfs.2023.122255] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 11/17/2023]
Abstract
BACKGROUND Cancer metastasis is a major cause of cancer-related deaths, emphasizing the urgent need for effective therapies. Although it has been shown that GMI, a fungal protein from Ganoderma microsporum, could suppress primary tumor growth in a wide spectrum of cancer types, it is still unclear whether GMI exhibits anti-metastasis properties, particularly in lung cancers. Further investigation is needed. AIMS AND OBJECTIVES The objective of this study is to investigate the potential inhibitory effects of GMI on lung cancer metastasis in vivo. Utilizing systematic and comprehensive approaches, our research aims to elucidate the underlying molecular mechanisms responsible for the anti-metastatic effects. MATERIALS AND METHODS In vitro migration and cell adhesion assays addressed the epithelial-to-mesenchymal transition (EMT)-related phenotype. Proteomic and bioinformatic analyses identified the GMI-regulated proteins and cellular responses. GMI-treated LLC1-bearing mice were analyzed using IVIS Spectrum to assess the anti-metastatic effect. KEY FINDINGS GMI inhibits EMT as well as cell migration. GMI disrupts cell adhesion and downregulates integrin, resulting in inhibition of phosphorylated FAK. GMI induces macropinocytosis and lysosome-mediated degradation of integrin αv, α5, α6 and β1. GMI downregulates Slug via inhibition of FAK activity, which in turn enhances expressions of epithelial-related markers and decreases cell mobility. Mechanistically, GMI-induced FAK inhibition engenders MDM2 expression and enhances MDM2/p21/Slug complex formation, leading to Slug degradation. GMI treatment reduces the metastatic pulmonary lesion and prolongs the survival of LLC1-bearing mice. SIGNIFICANCE Our findings highlight GMI as a promising therapeutic candidate for metastatic lung cancers, offering potential avenues for further research and drug development.
Collapse
Affiliation(s)
- Hung-Chih Lo
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
| | - Wei-Jyun Hua
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
| | - Hsin Yeh
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Zhi-Hu Lin
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Li-Chen Huang
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Ru Ciou
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Runcheng Ruan
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Kai-Fan Lin
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ai-Jung Tseng
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Alexander T H Wu
- The Ph.D. Program for Translational Medicine, College of Medical Science & Technology, Taipei Medical University, Taipei Taiwan
| | - Wei-Hung Hsu
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; LO-Sheng Hospital Ministry of Health and Welfare, Taipei, Taiwan; School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chi-Hong Chao
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan; Center For Intelligent Drug Systems and Smart Bio-devices (IDS(2)B), National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Tung-Yi Lin
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan; Biomedical Industry Ph.D. Program, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
35
|
Ashok G, Ramaiah S. FN1 and cancer-associated fibroblasts markers influence immune microenvironment in clear cell renal cell carcinoma. J Gene Med 2023; 25:e3556. [PMID: 37358013 DOI: 10.1002/jgm.3556] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/18/2023] [Accepted: 06/08/2023] [Indexed: 06/27/2023] Open
Abstract
BACKGROUND Altered tumor microenvironment (TME) is characterized in clear cell renal cell carcinoma (ccRCC) as a result of the heterogeneity observed in the TME. Modulations in TME have shown tumor metastasis promotion; hence, identifying TME-based biomarkers can be critical for theranostics application. METHODS Here, we performed an integrated systems biology approach utilizing differential gene expression, network metrics and clinical samples cohorts to prioritize the major deregulated genes and their associated pathways specific for metastasis. RESULTS The gene expression profiling of 140 ccRCC samples resulted in 3657 differentially expressed genes, from which a network of 1867 up-regulated genes were further computed using network metrics for screening hub-genes. The specific pathways of ccRCC entailed through functional enrichment analysis of the hub-gene clusters indicated the role of the identified hub-genes in the enriched pathways, further validating the functional significance of the hub-genes. The positive correlation of TME cells, namely cancer-associated fibroblasts (CAFs) and its biomarkers (FAP and S100A4) with FN1, signified the role of hub-gene signaling for promoting metastasis in ccRCC. Thereafter, comparative expression, differential methylation, genetic alteration and overall survival analysis were analyzed to validate the screened hub-genes. CONCLUSIONS The hub-genes were validated and prioritized by correlating with expression-based parameters, including histological grades, tumor, metastatic and pathological stages (based on median transcript per million; analysis of variance [ANOVA], P ≤ 0.05) from a clinically curated ccRCC dataset to further substantiate the translational benefits of the screened hub-genes as potential diagnostic biomarkers for ccRCC.
Collapse
Affiliation(s)
- Gayathri Ashok
- Medical and Biological Computing Laboratory, School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
- Department of Bio-Sciences, SBST, VIT, Vellore, Tamil Nadu, India
| | - Sudha Ramaiah
- Medical and Biological Computing Laboratory, School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
- Department of Bio-Sciences, SBST, VIT, Vellore, Tamil Nadu, India
| |
Collapse
|
36
|
Fang B, Lai Y, Yan H, Ma Y, Ni Z, Zhu Q, Zhang J, Ye Y, Wang M, Wang P, Wang Y, Zhang S, Hui M, Wang D, Zhao Y, Li X, Wang K, Liu Z. Design, synthesis, and biological evaluation of 1,6-naphthyridine-2-one derivatives as novel FGFR4 inhibitors for the treatment of colorectal cancer. Eur J Med Chem 2023; 259:115703. [PMID: 37556948 DOI: 10.1016/j.ejmech.2023.115703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/30/2023] [Accepted: 07/30/2023] [Indexed: 08/11/2023]
Abstract
Aberrant FGFR4 signaling has been implicated in the development of several cancers, making FGFR4 a promising target for cancer therapy. Several FGFR4-selective inhibitors have been developed, yet none of them have been approved. Herein, we report a novel series of 1,6-naphthyridine-2-one derivatives as potent and selective inhibitors targeting FGFR4 kinase. Preliminary structure-activity relationship analysis was conducted. The screening cascades revealed that 19g was the preferred compound among the prepared series. 19g demonstrated excellent kinase selectivity and substantial cytotoxic effect against all tested colorectal cancer cell lines. 19g induced significant tumor inhibition in a HCT116 xenograft mouse model without any apparent toxicity. Notably, 19g exhibited excellent potency in disrupting the phosphorylation of FGFR4 and downstream signaling proteins mediated by FGF18 and FGF19. Compound 19g might be a potential antitumor drug candidate for the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Bo Fang
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang, 325035, China
| | - Yinshuang Lai
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang, 325035, China
| | - Hao Yan
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang, 325035, China
| | - Yue Ma
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang, 325035, China
| | - Zefeng Ni
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang, 325035, China
| | - Qianqian Zhu
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang, 325035, China
| | - Jianxia Zhang
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang, 325035, China
| | - Yanfei Ye
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang, 325035, China
| | - Mengying Wang
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang, 325035, China
| | - Peipei Wang
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang, 325035, China
| | - Yan Wang
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang, 325035, China
| | - Shuyuan Zhang
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang, 325035, China
| | - Min Hui
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang, 325035, China
| | - Dalong Wang
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang, 325035, China
| | - Yunjie Zhao
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang, 325035, China
| | - Xiaokun Li
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang, 325035, China.
| | - Kun Wang
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang, 325035, China.
| | - Zhiguo Liu
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang, 325035, China; Oujiang Laboratory, Zhejiang Laboratory for Regenerative Medicine, Vision and Brain Health, Wenzhou, Zhejiang, 325035, China.
| |
Collapse
|
37
|
Liu H, Jin C, Yang X, Xia N, Guo C, Dong Q. Identification of key genes and validation of key gene aquaporin 1 on Wilms' tumor metastasis. PeerJ 2023; 11:e16025. [PMID: 37904849 PMCID: PMC10613441 DOI: 10.7717/peerj.16025] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 08/13/2023] [Indexed: 11/01/2023] Open
Abstract
Background Wilms' tumor (WT) is one of the most common solid tumors in children with unsatisfactory prognosis, but few molecular prognostic markers have been discovered for it. Many genes are associated with the occurrence and prognosis of WT. This study aimed to explore the key genes and potential molecular mechanisms through bioinformatics and to verify the effects of aquaporin 1 (AQP1) on WT metastasis. Methods Differentially expressed genes (DEGs) were generated from WT gene expression data sets from the Gene Expression Omnibus (GEO) database. Gene functional enrichment analysis was carried out with the Database for Annotation, Visualization and Integrated Discovery (DAVID). A protein-protein interaction network (PPI) was constructed and visualized by the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database and Cytoscape software. Minimal Common Oncology Data Elements (MCODE) was used to detect the important modules in the PPI network, and the important nodes (genes) in the PPI module were sorted by CytoHubba. RT-qPCR was performed to validate the expression of the key genes in WT. Wound healing and Transwell assays were used to detect the cell migration and invasion abilities of AQP1-overexpressing cells. Phalloidin-iFlour 488 was used to stain the cytoskeleton to observe how AQP1 overexpression affects cytoskeletal microfilament structure. Results A total of 73 co-expressed DEGs were chosen for further investigation. The importance of homeostasis and transmembrane transport of ions and water were highlighted by functional analysis. Gene regulatory network and PPI network were predicted. MCODE plug identified two important modules. Finally, top five key genes were identified using CytoHubba, including Renin (REN), nephrosis 2 (NPHS2), Solute Carrier Family 12 Member 3 (SLC12A3), Solute Carrier Family 12 Member 1 (SLC12A1) and AQP1. The five key genes were mainly enriched in cell volume and ion homeostasis. RT-qPCR confirmed the expression of the five key genes in WT. AQP1 was validated to be expressed at significantly lower levels in WT than in normal tissue. AQP1 overexpression significantly reduced the migratory and invasive capacity of Wit-49 cells, as evidenced by reducing the scratch healing rate and the number of perforated control cells by Wit-49 cells. AQP1 overexpression also reduced the expression of biomarkers of epithelial-mesenchymal transformation, decreased levels of vimentin and N-cadherin and increased expression of E-cadherin, resulting in decreased formation of conspicuous lamellipodial protrusions, characteristic of diminished WT cell invasion and migration. Conclusion Our study reveals the key genes of WT. These key genes may provide novel insight for the mechanism and diagnosis of WT. AQP1 overexpression inhibited invasion, migration, EMT, and cytoskeletal rearrangement of WT cells, indicating that AQP1 plays a role in the pathogenesis of WT.
Collapse
Affiliation(s)
- Hong Liu
- Department of Pediatric Surgery, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong, China
| | - Chen Jin
- Department of Pediatric Surgery, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong, China
| | - Xia Yang
- Institute of Digital Medicine and Computer-Assisted Surgery, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Nan Xia
- Institute of Digital Medicine and Computer-Assisted Surgery, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Chunzhi Guo
- Department of Thyroid Surgery, Affiliated Qingdao Central Hospital, Qingdao University, Qingdao, Shandong, China
| | - Qian Dong
- Department of Pediatric Surgery, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
38
|
Zhang Q, Shi M, Zheng R, Han H, Zhang X, Lin F. C1632 inhibits ovarian cancer cell growth and migration by inhibiting LIN28 B/let-7/FAK signaling pathway and FAK phosphorylation. Eur J Pharmacol 2023; 956:175935. [PMID: 37541366 DOI: 10.1016/j.ejphar.2023.175935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 06/28/2023] [Accepted: 07/31/2023] [Indexed: 08/06/2023]
Abstract
The highly conserved RNA-binding protein LIN28B and focal adhesion kinase (FAK) are significantly upregulated in ovarian cancer (OC), serving as markers for disease progression and prognosis. Nonetheless, the correlation between LIN28B and FAK, as well as the pharmacological effects of the LIN28 inhibitor C1632, in OC cells have not been elucidated. The present study demonstrates that C1632 significantly reduced the rate of DNA replication, arrested the cell cycle at the G0/G1 phase, consequently reducing cell viability, and impeding clone formation. Moreover, treatment with C1632 decreased cell-matrix adhesion, as well as inhibited cell migration and invasion. Further mechanistic studies revealed that C1632 inhibited the OC cell proliferation and migration by concurrently inhibiting LIN28 B/let-7/FAK signaling pathway and FAK phosphorylation. Furthermore, C1632 exhibited an obvious inhibitory effect on OC cell xenograft tumors in mice. Altogether, these findings identified that LIN28 B/let-7/FAK is a valuable target in OC and C1632 is a promising onco-therapeutic agent for OC treatment.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Mengyun Shi
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Ruiling Zheng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Haoyi Han
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Xin Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Feng Lin
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China; Department of Gynecology, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| |
Collapse
|
39
|
Khan SU, Fatima K, Malik F, Kalkavan H, Wani A. Cancer metastasis: Molecular mechanisms and clinical perspectives. Pharmacol Ther 2023; 250:108522. [PMID: 37661054 DOI: 10.1016/j.pharmthera.2023.108522] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/22/2023] [Accepted: 08/29/2023] [Indexed: 09/05/2023]
Abstract
Metastatic progression combined with non-responsiveness towards systemic therapy often shapes the course of disease for cancer patients and commonly determines its lethal outcome. The complex molecular events that promote metastasis are a combination of both, the acquired pro-metastatic properties of cancer cells and a metastasis-permissive or -supportive tumor micro-environment (TME). Yet, dissemination is a challenging process for cancer cells that requires a series of events to enable cancer cell survival and growth. Metastatic cancer cells have to initially detach themselves from primary tumors, overcome the challenges of their intravasal journey and colonize distant sites that are suited for their metastases. The implicated obstacles including anoikis and immune surveillance, can be overcome by intricate intra- and extracellular signaling pathways, which we will summarize and discuss in this review. Further, emerging modulators of metastasis, like the immune-microenvironment, microbiome, sublethal cell death engagement, or the nervous system will be integrated into the existing working model of metastasis.
Collapse
Affiliation(s)
- Sameer Ullah Khan
- The University of Texas MD Anderson Cancer Center, Division of Genitourinary Medical Oncology, Holcombe Blvd, Houston, TX 77030, USA; Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Jammu and Kashmir, India
| | - Kaneez Fatima
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Jammu and Kashmir, India; Academy of Scientific and Innovative Research (ASIR), Ghaziabad 201002, India
| | - Fayaz Malik
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Jammu and Kashmir, India; Academy of Scientific and Innovative Research (ASIR), Ghaziabad 201002, India.
| | - Halime Kalkavan
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, Essen, Germany; German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany.
| | - Abubakar Wani
- St. Jude Children's Research Hospital, 262 Danny Thomas Pl, Memphis, TN 38105, United States.
| |
Collapse
|
40
|
Tan X, Yan Y, Song B, Zhu S, Mei Q, Wu K. Focal adhesion kinase: from biological functions to therapeutic strategies. Exp Hematol Oncol 2023; 12:83. [PMID: 37749625 PMCID: PMC10519103 DOI: 10.1186/s40164-023-00446-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/27/2023] Open
Abstract
Focal adhesion kinase (FAK), a nonreceptor cytoplasmic tyrosine kinase, is a vital participant in primary cellular functions, such as proliferation, survival, migration, and invasion. In addition, FAK regulates cancer stem cell activities and contributes to the formation of the tumor microenvironment (TME). Importantly, increased FAK expression and activity are strongly associated with unfavorable clinical outcomes and metastatic characteristics in numerous tumors. In vitro and in vivo studies have demonstrated that modulating FAK activity by application of FAK inhibitors alone or in combination treatment regimens could be effective for cancer therapy. Based on these findings, several agents targeting FAK have been exploited in diverse preclinical tumor models. This article briefly describes the structure and function of FAK, as well as research progress on FAK inhibitors in combination therapies. We also discuss the challenges and future directions regarding anti-FAK combination therapies.
Collapse
Affiliation(s)
- Ximin Tan
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuheng Yan
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Bin Song
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Shuangli Zhu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qi Mei
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.
| | - Kongming Wu
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.
- Cancer Center, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
41
|
Wang L, Li J, Chen H. Efficacy and Safety of Low-Dose Apatinib Combined with Chemotherapy as Second-Line Treatment for Advanced Gastric Cancer: A Meta-Analysis. Chemotherapy 2023; 69:11-22. [PMID: 37339610 DOI: 10.1159/000531524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 06/07/2023] [Indexed: 06/22/2023]
Abstract
INTRODUCTION At present, there are several studies on low-dose apatinib combined with chemotherapy as a second-line treatment of advanced gastric cancer (AGC), but the conclusions are controversial. Therefore, this meta-analysis aimed to evaluate the efficacy and safety of low-dose apatinib combined with chemotherapy as a second-line treatment of AGC. METHODS Nine databases were searched for records on apatinib combined with chemotherapy in treating AGC from inception to June 2022. The observation group received low-dose apatinib combined with chemotherapy, while the controls received chemotherapy alone or other non-placebo treatments. Outcomes included objective response rate (ORR), disease control rate (DCR), progression-free survival (PFS), overall survival (OS), and adverse events. The relative risk (RR) and weighted mean difference (WMD) were used as effect sizes. RESULTS Eight studies involving 679 patients were included in this meta-analysis. The results of the meta-analysis showed that the observation group was superior to the controls in terms of ORR (RR = 1.38, 95% confidence interval [CI]: 1.05-1.81, p = 0.02), DCR (RR = 1.35, 95% CI: 1.20-1.53, p < 0.001), OS (WMD = 4.72, 95% CI: 0.71-8.72, p < 0.001), and PFS (WMD = 2.67, 95% CI: 1.7-3.63, p < 0.001). There were no significant differences between the two groups in adverse events of any grade except hypertension (RR = 2.82, 95% CI: 2.07-3.84, p < 0.001), hand-mouth syndrome (RR = 1.84, 95% CI: 1.84-2.48, p < 0.001), and proteinuria (RR = 3.63, 95% CI: 2.31-5.7, p < 0.001). CONCLUSION Low-dose apatinib combined with chemotherapy as a second-line therapy is more effective in improving the efficacy of AGC compared to chemotherapy alone. However, this option has the potential to increase the risk of hypertension, hand-mouth syndrome, and proteinuria.
Collapse
Affiliation(s)
- Liang Wang
- Department of Radiotherapy, Hainan Cancer Hospital, Haikou, China
| | - Juyuan Li
- Department of Gastroenterology, Hainan West Central Hospital, Danzhou, China
| | - Huamin Chen
- Department of Gastrointestinal Oncology Surgery, The Second Affiliated Hospital of Hainan Medical College, Haikou, China
| |
Collapse
|
42
|
Bölük A, Yavuz M, Takanlou MS, Avcı ÇB, Demircan T. In vitro anti-carcinogenic effect of andarine as a selective androgen receptor modulator on MIA-PaCa-2 cells by decreased proliferation and cell-cycle arrest at G0/G1 phase. Biochem Biophys Res Commun 2023; 671:132-139. [PMID: 37302286 DOI: 10.1016/j.bbrc.2023.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 05/25/2023] [Accepted: 06/05/2023] [Indexed: 06/13/2023]
Abstract
Pancreatic cancer (PC) continues to be devastating due to its highly malignant nature and poor prognosis. The limited benefits of the chemotherapeutic drugs and increasing resistance pose a critical challenge to overcome and warrant investigations for new therapeutic agents. Several preclinical and clinical studies have suggested a possible role of the androgen receptor (AR) signaling pathway in PC development and progression. Nevertheless, the studies are limited and inconclusive in explaining the molecular link between AR signaling and PC. Selective androgen receptor modulators (SARMs) are small molecule drugs with high affinity for the androgen receptor. SARMs elicit selective anabolic activities while abrogating undesired androgenic side effects. There is no study focusing on the utility of SARMs as inhibitors of PC. Here, we report the first study evaluating the possible anti-carcinogenic influences of andarine, a member of the SARMs, on PC. The data we presented here has illustrated that andarine repressed PC cell growth and proliferation via cell cycle arrest at G0/G1 phase. Gene expression analysis revealed that it downregulates CDKN1A expression level accordingly. Furthermore, we established that the anti-carcinogenic activity of andarine is not mediated by the PI3K/AKT/mTOR signaling pathway, a crucial regulator of cell survival. Our findings suggest that andarine might be considered as a prospective drug for PC.
Collapse
Affiliation(s)
- Aydın Bölük
- School of Medicine, Muğla Sıtkı Koçman University, Muğla, Turkey
| | - Mervenur Yavuz
- Institute of Natural Sciences, Department of Molecular Biology and Genetics, Muğla Sıtkı Koçman University, Muğla, Turkey
| | - Maryam Sabour Takanlou
- Institute of Health Sciences, Department of Medical Biology, Ege University, İzmir, Turkey
| | - Çığır Biray Avcı
- Medical Biology Department, School of Medicine, Ege University, İzmir, Turkey
| | - Turan Demircan
- Medical Biology Department, School of Medicine, Muğla Sıtkı Koçman University, Muğla, Turkey.
| |
Collapse
|
43
|
Ye X, Zou J, Chen J, Luo S, Zhao Q, Situ B, Zheng L, Wang Q. An Adhesion-based Method for Rapid and Low-cost Isolation of Circulating Tumor Cells. Clin Chim Acta 2023:117421. [PMID: 37290614 DOI: 10.1016/j.cca.2023.117421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 05/15/2023] [Accepted: 06/04/2023] [Indexed: 06/10/2023]
Abstract
BACKGROUND Noninvasive monitoring of cancer through circulating tumor cells (CTCs) is hampered long by unsatisfactory CTCs testing techniques. Efficient isolation of CTCs in a rapid and price-favorable way from billions of leukocytes is crucial for testing. METHODS We developed a new method based on the stronger adhesive power of CTCs versus leukocytes to sensitively isolate CTCs. Using a BSA-coated microplate and low-speed centrifuge, this method could easily separate cancer cells within 20 min at a very low cost. RESULT The capture ratio can reach 70.7∼86.6% in various cancer cell lines (breast/lung/liver/cervical/colorectal cancer) covering different EMT phenotypes and cell sizes, demonstrating the potential for efficient pan-cancer CTCs detection. Moreover, the label-free process can well preserve cell viability (∼99%) to fit downstream DNA/RNA sequencing. CONCLUSIONS A novel technique for non-destructive and rapid enrichment of CTCs has been devised. It has enabled the successful isolation of rare tumor cells in the patient blood sample and pleural effusion, highlighting a promising future of this method in clinical translation.
Collapse
Affiliation(s)
- Xinyi Ye
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China; Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jianjun Zou
- Department of Oncology, Guangzhou Chest Hospital, Guangzhou, 510515, China
| | - Jing Chen
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China; Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Shihua Luo
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China; Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Qianwen Zhao
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China; Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Bo Situ
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China; Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Lei Zheng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China; Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Qian Wang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China; Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
44
|
Seo J, Park M, Ko D, Kim S, Park JM, Park S, Nam KD, Farrand L, Yang J, Seok C, Jung E, Kim YJ, Kim JY, Seo JH. Ebastine impairs metastatic spread in triple-negative breast cancer by targeting focal adhesion kinase. Cell Mol Life Sci 2023; 80:132. [PMID: 37185776 PMCID: PMC10130003 DOI: 10.1007/s00018-023-04760-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 01/12/2023] [Accepted: 03/15/2023] [Indexed: 05/17/2023]
Abstract
We sought to investigate the utility of ebastine (EBA), a second-generation antihistamine with potent anti-metastatic properties, in the context of breast cancer stem cell (BCSC)-suppression in triple-negative breast cancer (TNBC). EBA binds to the tyrosine kinase domain of focal adhesion kinase (FAK), blocking phosphorylation at the Y397 and Y576/577 residues. FAK-mediated JAK2/STAT3 and MEK/ERK signaling was attenuated after EBA challenge in vitro and in vivo. EBA treatment induced apoptosis and a sharp decline in the expression of the BCSC markers ALDH1, CD44 and CD49f, suggesting that EBA targets BCSC-like cell populations while reducing tumor bulk. EBA administration significantly impeded BCSC-enriched tumor burden, angiogenesis and distant metastasis while reducing MMP-2/-9 levels in circulating blood in vivo. Our findings suggest that EBA may represent an effective therapeutic for the simultaneous targeting of JAK2/STAT3 and MEK/ERK for the treatment of molecularly heterogeneous TNBC with divergent profiles. Further investigation of EBA as an anti-metastatic agent for the treatment of TNBC is warranted.
Collapse
Affiliation(s)
- Juyeon Seo
- Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea
- Brain Korea 21 Program for Biomedical Science, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea
- Department of Biomedical Research Center, Korea University Guro Hospital, Korea University, Seoul, 08308, Republic of Korea
| | - Minsu Park
- Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea
- Brain Korea 21 Program for Biomedical Science, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea
- Department of Biomedical Research Center, Korea University Guro Hospital, Korea University, Seoul, 08308, Republic of Korea
| | - Dongmi Ko
- Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea
- Brain Korea 21 Program for Biomedical Science, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea
- Department of Biomedical Research Center, Korea University Guro Hospital, Korea University, Seoul, 08308, Republic of Korea
| | - Seongjae Kim
- Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea
- Brain Korea 21 Program for Biomedical Science, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea
- Department of Biomedical Research Center, Korea University Guro Hospital, Korea University, Seoul, 08308, Republic of Korea
| | - Jung Min Park
- Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea
- Brain Korea 21 Program for Biomedical Science, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea
- Department of Biomedical Research Center, Korea University Guro Hospital, Korea University, Seoul, 08308, Republic of Korea
| | - Soeun Park
- Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea
- Brain Korea 21 Program for Biomedical Science, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea
- Department of Biomedical Research Center, Korea University Guro Hospital, Korea University, Seoul, 08308, Republic of Korea
| | - Kee Dal Nam
- Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea
- Department of Biomedical Research Center, Korea University Guro Hospital, Korea University, Seoul, 08308, Republic of Korea
| | - Lee Farrand
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, 5000, Australia
| | - Jinsol Yang
- Galux Inc, Gwanak-Gu, Seoul, 08738, Republic of Korea
| | - Chaok Seok
- Galux Inc, Gwanak-Gu, Seoul, 08738, Republic of Korea
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Eunsun Jung
- Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea.
- Department of Biomedical Research Center, Korea University Guro Hospital, Korea University, Seoul, 08308, Republic of Korea.
- Guro Hospital Campus, Korea University, 97 Gurodong-Gil, Guro-Guu, Seoul, 08308, Republic of Korea.
| | - Yoon-Jae Kim
- Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea.
- Brain Korea 21 Program for Biomedical Science, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea.
- Department of Biomedical Research Center, Korea University Guro Hospital, Korea University, Seoul, 08308, Republic of Korea.
- Guro Hospital Campus, Korea University, 97 Gurodong-Gil, Guro-Guu, Seoul, 08308, Republic of Korea.
| | - Ji Young Kim
- Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea.
- Department of Biomedical Research Center, Korea University Guro Hospital, Korea University, Seoul, 08308, Republic of Korea.
- Guro Hospital Campus, Korea University, 97 Gurodong-Gil, Guro-Guu, Seoul, 08308, Republic of Korea.
| | - Jae Hong Seo
- Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea.
- Brain Korea 21 Program for Biomedical Science, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea.
- Department of Biomedical Research Center, Korea University Guro Hospital, Korea University, Seoul, 08308, Republic of Korea.
- Guro Hospital Campus, Korea University, 97 Gurodong-Gil, Guro-Guu, Seoul, 08308, Republic of Korea.
| |
Collapse
|
45
|
Lima LTFD, Ganzella FADO, Cardoso GC, Pires VDS, Chequin A, Santos GL, Braun-Prado K, Galindo CM, Braz Junior O, Molento MB, Acco A, Adami ER, Costa ET, Cavichiolo Franco CR, Klassen G, Ramos EADS. l-carvone decreases breast cancer cells adhesion, migration, and invasion by suppressing FAK activation. Chem Biol Interact 2023; 378:110480. [PMID: 37059214 DOI: 10.1016/j.cbi.2023.110480] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/24/2023] [Accepted: 04/06/2023] [Indexed: 04/16/2023]
Abstract
Breast cancer is one of the most common types of cancer in the world and current therapeutic strategies present severe drawbacks. l-carvone (CRV), a monoterpene found in Mentha spicata (spearmint), has been reported to have potent anti-inflammatory activity. Here, we examined the role of CRV in breast cancer cell adhesion, migration and invasion in vitro and how this component could suppress the growth of Ehrlich carcinoma-bearing mice. In vivo, treatment with CRV significantly decreased tumor growth, increased tumor necrosis area, and reduced the expression of VEGF and HIF-1α in Ehrlich carcinoma-bearing mice. Furthermore, the anticancer efficacy of CRV was similar to currently used chemotherapy (Methotrexate), and the combination of CRV with MTX potentiated the chemotherapy effects. Further mechanistic investigation in vitro revealed that CRV modulates the interaction of breast cancer cells with the extracellular matrix (ECM) by disrupting focal adhesion, which was shown by scanning electron microscopy (SEM) and immunofluorescence. Moreover, CRV caused a decrease in β1-integrin expression and inhibited focal adhesion kinase (FAK) activation. FAK is one of the most important downstream activators of several metastatic processes, including MMP-2 mediated invasion and HIF-1α/VEGF angiogenesis stimulus, both of which were found to be reduced in MDA-MB-231 cells exposed to CRV. Our results provide new insight about targeting β1-integrin/FAK signaling pathway with CRV, which could be a new potential agent in the treatment of breast cancer.
Collapse
Affiliation(s)
- Lucas Trevisan França de Lima
- Pos-graduate Program of Microbiology, Parasitology and Pathology, Federal University of Parana, Curitiba, PR, Brazil
| | | | - Gabriela Casani Cardoso
- Pos-graduate Program of Microbiology, Parasitology and Pathology, Federal University of Parana, Curitiba, PR, Brazil
| | - Verônica Dos Santos Pires
- Pos-graduate Program of Microbiology, Parasitology and Pathology, Federal University of Parana, Curitiba, PR, Brazil
| | - Andressa Chequin
- Pos-graduate Program of Microbiology, Parasitology and Pathology, Federal University of Parana, Curitiba, PR, Brazil
| | - Giulia Luiza Santos
- Molecular Oncology Center, Research and Education Institute, Hospital Sirio-Libanes, São Paulo, SP, Brazil
| | - Karin Braun-Prado
- Department of Basic Pathology, Federal University of Parana, Curitiba, PR, Brazil
| | | | - Odair Braz Junior
- Pos-graduate Program of Cellular and Molecular Biology, Federal University of Parana, Curitiba, PR, Brazil
| | - Marcelo Beltrão Molento
- Pos-graduate Program of Microbiology, Parasitology and Pathology, Federal University of Parana, Curitiba, PR, Brazil; Department of Veterinary Medicine, Federal University of Parana, Curitiba, PR, Brazil
| | - Alexandra Acco
- Pos-graduate Program of Pharmacology, Federal University of Parana, Curitiba, PR, Brazil
| | - Eliana Rezende Adami
- Pos-graduate Program of Pharmacology, Federal University of Parana, Curitiba, PR, Brazil
| | - Erico Tosoni Costa
- Molecular Oncology Center, Research and Education Institute, Hospital Sirio-Libanes, São Paulo, SP, Brazil
| | | | - Giseli Klassen
- Pos-graduate Program of Microbiology, Parasitology and Pathology, Federal University of Parana, Curitiba, PR, Brazil; Department of Basic Pathology, Federal University of Parana, Curitiba, PR, Brazil
| | - Edneia Amancio de Souza Ramos
- Pos-graduate Program of Microbiology, Parasitology and Pathology, Federal University of Parana, Curitiba, PR, Brazil; Department of Basic Pathology, Federal University of Parana, Curitiba, PR, Brazil.
| |
Collapse
|
46
|
Zhang Y, Zhang W, Zhang R, Xia Y. Knockdown of FBLN2 suppresses TGF-β1-induced MRC-5 cell migration and fibrosis by downregulating VTN. Tissue Cell 2023; 81:102005. [PMID: 36608640 DOI: 10.1016/j.tice.2022.102005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/06/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a common chronic and progressive lung disease. Fibulin-2 (FBLN2) is upregulated in patients with IPF; however, its exact role in IPF remains unclear. The present study aimed to investigate the role and the regulatory mechanism of FBLN2 in TGF-β1-induced fibrogenesis using human lung fibroblast-derived MRC-5 cells. Cell transfection was performed to regulate FBLN2 expression. Reverse transcription-quantitative PCR and western blot analyses were performed to detect the expression levels of FBLN2 and vitronectin (VTN). Cell viability and migration were determined via the Cell Counting Kit-8 and wound healing assays, respectively. Immunofluorescence was performed to detect α-smooth muscle actin (α-SMA)-positive cells. The STRING database was used to predict the interaction between FBLN2 and VTN, which was verified via the protein immunoprecipitation assay. The results demonstrated that inhibition of FBLN2 notably inhibited TGF-β1-induced proliferation and migration, as well as downregulating the protein expression levels of MMP2 and MMP9 in MRC-5 cells. In addition, inhibition of FBLN2 suppressed the expression levels of α-SMA, collagen type 1 α1 and fibronectin. FBLN2 was demonstrated to bind to VTN and negatively regulate its expression. Furthermore, overexpression of VTN partly abolished the inhibitory effects of FBLN2 knockdown on TGF-β1-induced proliferation, migration and fibrosis, as well as the activity of focal adhesion kinase (FAK) signaling. Taken together, the results of the present study suggest that FBLN2 knockdown can attenuate TGF-β1-induced fibrosis in MRC-5 cells by downregulating VTN expression via FAK signaling. Thus, FBLN2 may be a potential therapeutic target for IPF treatment.
Collapse
Affiliation(s)
- Yanju Zhang
- Infection Management Office, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Weishuai Zhang
- Department of Pulmonary and Critical Care Medicine, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Rui Zhang
- Department of Pulmonary and Critical Care Medicine, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Yunfei Xia
- Department of Rheumatology and Immunology, Affiliated Hospital of Nantong University, Nantong 226001, China.
| |
Collapse
|
47
|
Rather AA, Chachoo MA. Robust correlation estimation and UMAP assisted topological analysis of omics data for disease subtyping. Comput Biol Med 2023; 155:106640. [PMID: 36774889 DOI: 10.1016/j.compbiomed.2023.106640] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/08/2023] [Accepted: 02/05/2023] [Indexed: 02/10/2023]
Abstract
Deciphering information hidden in the gene expression assays for identifying disease subtypes has significant importance in precision medicine. However, computational limitations thwart this process due to the intricacy of the biological networks and the curse of dimensionality of gene expression data. Therefore, clustering in such scenarios often becomes the first choice of exploratory data analysis to identify natural structures and intrinsic patterns in the data. However, sparse and high dimensional nature of omics data prevents conventional clustering algorithms to discover subtypes that are clinically relevant and statistically significant. Hence, non-linear dimensionality reduction techniques coupled with clustering in such scenarios often becomes imperative to improve the clustering results. In this study, we present a robust pipeline to discover disease subtypes with clinical relevance. Specifically, we focus on discovering patient sub-groups that have a residual life patterns remarkably different from other sub-groups. This is significant because by refining prognosis, subtyping can reduce uncertainty in approximating patients expected outcome. The methodology present is based on robust correlation estimation, UMAP- a non-linear dimensionality reduction method and mapper- a tool from topology. Notably, we suggest a method for improving the robustness of the correlation matrix of gene expression data for improving the clustering results. The performance of the model is evaluated by applying to five cancer datasets obtained through TCGA and comparisons are performed with some state of the art methods of NEMO, RSC-OTRI and SNF with regard to log-rank test and Restricted Life Expectancy Difference. For example in GBM dataset, the minimum separation for any two discovered subtypes is 221 days which is significantly higher than the other methodologies. We also compared the results without using the robust correlation based estimate and observed that robust correlation improves separability between survival curves significantly. From the results we infer that our methodology performs better compared to other methodologies with regard to separating survival curves of patient sub-groups despite using single omics profiles of patients compared to multiple omics profiles of SNF and NEMO. Pathway over-representation analysis is performed on the final clustering results to investigate the biological underpinnings characterizing each subtype.
Collapse
Affiliation(s)
- Arif Ahmad Rather
- Department of Computer Sciences, University of Kashmir, Srinagar, JK, India.
| | | |
Collapse
|
48
|
Sambandam A, Storm E, Tauc H, Hackney JA, Garfield D, Caplazi P, Liu J, Zhang J, Zhang H, Duggan J, Jeet S, Gierke S, Chang P, Wu X, Newman R, Tam L, Alcantar T, Wang L, Roose-Girma M, Modrusan Z, Lee WP, Jasper H, de Sauvage F, Pappu R. Obligate role for Rock1 and Rock2 in adult stem cell viability and function. Heliyon 2023; 9:e14238. [PMID: 36950615 PMCID: PMC10025895 DOI: 10.1016/j.heliyon.2023.e14238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/25/2023] [Accepted: 02/27/2023] [Indexed: 03/12/2023] Open
Abstract
The ability of stem cells to rapidly proliferate and differentiate is integral to the steady-state maintenance of tissues with high turnover such as the blood and intestine. Mutations that alter these processes can cause primary immunodeficiencies, malignancies and defects in barrier function. The Rho-kinases, Rock1 and Rock2, regulate cell shape and cytoskeletal rearrangement, activities essential to mitosis. Here, we use inducible gene targeting to ablate Rock1 and Rock2 in adult mice, and identify an obligate requirement for these enzymes in the preservation of the hematopoietic and gastrointestinal systems. Hematopoietic cell progenitors devoid of Rho-kinases display cell cycle arrest, blocking the differentiation to mature blood lineages. Similarly, these mice exhibit impaired epithelial cell renewal in the small intestine, which is ultimately fatal. Our data reveal a novel role for these kinases in the proliferation and viability of stem cells and their progenitors, which is vital to maintaining the steady-state integrity of these organ systems.
Collapse
Affiliation(s)
| | - Elaine Storm
- Department of Molecular Oncology, Genentech Inc., South San Francisco, CA, USA
| | - Helen Tauc
- Department of Immunology Discovery, Genentech Inc., South San Francisco, CA, USA
| | - Jason A. Hackney
- Department of Bioinformatics, Genentech Inc., South San Francisco, CA, USA
| | - David Garfield
- Department of Bioinformatics, Genentech Inc., South San Francisco, CA, USA
| | - Patrick Caplazi
- Department of Research Pathology, Genentech Inc., South San Francisco, CA, USA
| | - John Liu
- Department of Translational Immunology, Genentech Inc., South San Francisco, CA, USA
| | - Juan Zhang
- Department of Translational Immunology, Genentech Inc., South San Francisco, CA, USA
| | - Hua Zhang
- Department of Translational Immunology, Genentech Inc., South San Francisco, CA, USA
| | - Jeff Duggan
- Department of Immunology Discovery, Genentech Inc., South San Francisco, CA, USA
| | - Surinder Jeet
- Department of Translational Immunology, Genentech Inc., South San Francisco, CA, USA
| | - Sarah Gierke
- Department of Research Pathology, Genentech Inc., South San Francisco, CA, USA
| | - Patrick Chang
- Department of Research Pathology, Genentech Inc., South San Francisco, CA, USA
| | - Xiumin Wu
- Department of Translational Immunology, Genentech Inc., South San Francisco, CA, USA
| | - Robert Newman
- Department of Research Biology, Genentech Inc., South San Francisco, CA, USA
| | - Lucinda Tam
- Department of Research Biology, Genentech Inc., South San Francisco, CA, USA
| | - Tuija Alcantar
- Department of Research Biology, Genentech Inc., South San Francisco, CA, USA
| | - Lifen Wang
- Department of Cancer Immunology, Genentech Inc., South San Francisco, CA, USA
| | - Meron Roose-Girma
- Department of Research Biology, Genentech Inc., South San Francisco, CA, USA
| | - Zora Modrusan
- Department of Microchemistry, Proteomics and Lipidomics, Genentech Inc., South San Francisco, CA, USA
| | - Wyne P. Lee
- Department of Translational Immunology, Genentech Inc., South San Francisco, CA, USA
| | - Heinrich Jasper
- Department of Immunology Discovery, Genentech Inc., South San Francisco, CA, USA
| | - Frederic de Sauvage
- Department of Molecular Oncology, Genentech Inc., South San Francisco, CA, USA
| | - Rajita Pappu
- Department of Immunology Discovery, Genentech Inc., South San Francisco, CA, USA
- Corresponding author.
| |
Collapse
|
49
|
Garnier O, Vilgrain I. Dialogue between VE-Cadherin and Sphingosine 1 Phosphate Receptor1 (S1PR1) for Protecting Endothelial Functions. Int J Mol Sci 2023; 24:ijms24044018. [PMID: 36835432 PMCID: PMC9959973 DOI: 10.3390/ijms24044018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023] Open
Abstract
The endothelial cells (EC) of established blood vessels in adults remain extraordinarily quiescent in the sense that they are not actively proliferating, but they fulfill the necessary role to control the permeability of their monolayer that lines the interior of blood vessels. The cell-cell junctions between ECs in the endothelium comprise tight junctions and adherens homotypic junctions, which are ubiquitous along the vascular tree. Adherens junctions are adhesive intercellular contacts that are crucial for the organization of the EC monolayer and its maintenance and regulation of normal microvascular function. The molecular components and underlying signaling pathways that control the association of adherens junctions have been described in the last few years. In contrast, the role that dysfunction of these adherens junctions has in contributing to human vascular disease remains an important open issue. Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid mediator found at high concentrations in blood which has important roles in the control of the vascular permeability, cell recruitment, and clotting that follow inflammatory processes. This role of S1P is achieved through a signaling pathway mediated through a family of G protein-coupled receptors designated as S1PR1. This review highlights novel evidence for a direct linkage between S1PR1 signaling and the mediation of EC cohesive properties that are controlled by VE-cadherin.
Collapse
|
50
|
Mason WP. Focal Adhesion Kinase as a Therapeutic Target for Meningiomas With Somatic Neurofibromatosis Type 2 Mutations. J Clin Oncol 2023; 41:675-677. [PMID: 36288506 DOI: 10.1200/jco.22.01914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|