1
|
Wang X, Qin Z, Qiu W, Xu K, Bai Y, Zeng B, Ma Y, Yang S, Shi Y, Fan Y. Novel EGFR inhibitors against resistant L858R/T790M/C797S mutant for intervention of non-small cell lung cancer. Eur J Med Chem 2024; 277:116711. [PMID: 39094277 DOI: 10.1016/j.ejmech.2024.116711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024]
Abstract
To overcome C797S mutation, the latest and most common resistance mechanism in the clinical treatment of third-generation EGFR inhibitor, a novel series of substituted 6-(2-aminopyrimidine)-indole derivatives were designed and synthesized. Through the structure-activity relationship (SAR) study, compound 11eg was identified as a novel and potent EGFR L858R/T790M/C797S inhibitor (IC50 = 0.053 μM) but had a weak effect on EGFRWT (IC50 = 1.05 μM). 11eg significantly inhibited the proliferation of the non-small cell lung cancer (NSCLC) cells harboring EGFRL858R/T790M/C797S with an IC50 of 0.052 μM. 11eg also showed potent inhibitory activity against other NSCLC cell lines harboring main EGFR mutants. Furthermore, 11eg exhibited much superior activity in arresting cell cycle and inducing apoptosis of NSCLC cells with mutant EGFRC797S. It blocked cellular EGFR signaling. Importantly, 11eg markedly suppressed the tumor growth in in vivo xenograft mouse model with good safety. Additionally, 11eg displayed good microsomal stability. These results demonstrated the potential of 11eg with novel scaffold as a promising lead compound targeting EGFRC797S to guide in-depth structural optimization.
Collapse
Affiliation(s)
- Xiaoxue Wang
- Eye Institute, Nankai University, 94 Weijin Road, Tianjin, 300071, China; School of Medicine, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Zhongxiang Qin
- School of Medicine, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Wenrui Qiu
- Tianjin Normal University, No.393, Extension of Bin Shui West Road, Xi Qing District, Tianjin, 300387, China
| | - Kejia Xu
- School of Medicine, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Yuting Bai
- School of Medicine, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Beilei Zeng
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, China
| | - Yakun Ma
- School of Medicine, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Shuang Yang
- School of Medicine, Nankai University, 94 Weijin Road, Tianjin, 300071, China.
| | - Yi Shi
- School of Medicine, Nankai University, 94 Weijin Road, Tianjin, 300071, China.
| | - Yan Fan
- Eye Institute, Nankai University, 94 Weijin Road, Tianjin, 300071, China; School of Medicine, Nankai University, 94 Weijin Road, Tianjin, 300071, China.
| |
Collapse
|
2
|
Konsue A, Lamtha T, Gleeson D, Jones DJL, Britton RG, Pickering JD, Choowongkomon K, Gleeson MP. Design, preparation and biological evaluation of new Rociletinib-inspired analogs as irreversible EGFR inhibitors to treat non-small-cell-lung cancer. Bioorg Med Chem 2024; 113:117906. [PMID: 39299082 DOI: 10.1016/j.bmc.2024.117906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 09/22/2024]
Abstract
Epidermal growth factor receptor (EGFR) kinase has been implicated in the uncontrolled cell growth associated with non-small cell lung cancer (NSCLC). This has prompted the development of 3 generations of EGFR inhibitors over the last 2 decades due to the rapid development of drug resistance issues caused by clinical mutations, including T790M, L858R and the double mutant T790M & L858R. In this work we report the design, preparation and biological assessment of new irreversible 2,4-diaminopyrimidine-based inhibitors of EGFR kinase. Twenty new compounds have been prepared and evaluated which incorporate a range of electrophilic moieties. These include acrylamide, 2-chloroacetamide and (2E)-3-phenylprop-2-enamide, to allow reaction with residue Cys797. In addition, more polar groups have been incorporated to provide a better balance of physical properties than clinical candidate Rociletinib. Inhibitory activities against EGFR wildtype (WT) and EGFR T790M & L858R have been evaluated along with cytotoxicity against EGFR-overexpressing (A549, A431) and normal cell lines (HepG2). Selectivity against JAK3 kinase as well as physicochemical properties determination (logD7.4 and phosphate buffer solubility) have been used to profile the compounds. We have identified 20, 21 and 23 as potent mutant EGFR inhibitors (≤20 nM), with comparable or better selectivity over WT EGFR, and lower activity at JAK3, than Osimertinib or Rociletinib. Compounds 21 displayed the best combination of EGFR mutant activity, JAK3 selectivity, cellular activity and physicochemical properties. Finally, kinetic studies on 21 were performed, confirming a covalent mechanism of action at EGFR.
Collapse
Affiliation(s)
- Adchata Konsue
- Department of Biomedical Engineering, School of Engineering, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Thomanai Lamtha
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Duangkamol Gleeson
- Department of Chemistry & Applied Computational Chemistry Research Unit, School of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Donald J L Jones
- Leicester Cancer Research Centre, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - Robert G Britton
- Leicester Cancer Research Centre, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - James D Pickering
- School of Chemistry, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - Kiattawee Choowongkomon
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - M Paul Gleeson
- Department of Biomedical Engineering, School of Engineering, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand.
| |
Collapse
|
3
|
Ardeshir-Larijani F, Ramalingam SS. The MARIPOSA trials - implications for the treatment of EGFR-mutant NSCLC. Nat Rev Clin Oncol 2024; 21:767-768. [PMID: 39160242 DOI: 10.1038/s41571-024-00938-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Affiliation(s)
- Fatemeh Ardeshir-Larijani
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Winship Cancer Institute, Atlanta, GA, USA
| | - Suresh S Ramalingam
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Winship Cancer Institute, Atlanta, GA, USA.
| |
Collapse
|
4
|
Bollhagen A, Bodenmiller B. Highly Multiplexed Tissue Imaging in Precision Oncology and Translational Cancer Research. Cancer Discov 2024; 14:2071-2088. [PMID: 39485249 PMCID: PMC11528208 DOI: 10.1158/2159-8290.cd-23-1165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 05/24/2024] [Accepted: 08/13/2024] [Indexed: 11/03/2024]
Abstract
Precision oncology tailors treatment strategies to a patient's molecular and health data. Despite the essential clinical value of current diagnostic methods, hematoxylin and eosin morphology, immunohistochemistry, and gene panel sequencing offer an incomplete characterization. In contrast, highly multiplexed tissue imaging allows spatial analysis of dozens of markers at single-cell resolution enabling analysis of complex tumor ecosystems; thereby it has the potential to advance our understanding of cancer biology and supports drug development, biomarker discovery, and patient stratification. We describe available highly multiplexed imaging modalities, discuss their advantages and disadvantages for clinical use, and potential paths to implement these into clinical practice. Significance: This review provides guidance on how high-resolution, multiplexed tissue imaging of patient samples can be integrated into clinical workflows. It systematically compares existing and emerging technologies and outlines potential applications in the field of precision oncology, thereby bridging the ever-evolving landscape of cancer research with practical implementation possibilities of highly multiplexed tissue imaging into routine clinical practice.
Collapse
Affiliation(s)
- Alina Bollhagen
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
- Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
- Life Science Zurich Graduate School, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Bernd Bodenmiller
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
- Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
5
|
Huang C, Huang X, Qiu X, Kong X, Wu C, Jiang X, Yao M, Wang M, Su L, Lv C, Wong PP. Pericytes Modulate Third-Generation Tyrosine Kinase Inhibitor Sensitivity in EGFR-Mutated Lung Cancer Cells Through IL32-β5-Integrin Paracrine Signaling. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2405130. [PMID: 39435643 DOI: 10.1002/advs.202405130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/17/2024] [Indexed: 10/23/2024]
Abstract
EGFR-mutated lung cancer patients sometimes display restricted responses to third-generation tyrosine kinase inhibitors (TKIs), potentially attributable to undervalued input from stromal cells, notably pericytes (PCs). The study shows that PCs isolated from EGFR-mutated patients have a unique secretome profile, notably secreting IL32 and affecting signaling pathways and biological processes linked to TKI sensitivity. Clinical evidence, supported by single-cell RNA sequencing and multiplex immunostaining of tumor tissues, confirms the presence of IL32-expressing pericytes closely interacting with β5-integrin-expressing cancer cells in EGFR-mutated patients, impacting therapeutic response and prognosis. Co-culture and conditioned medium experiments demonstrate that PCs reduce TKI effectiveness in EGFR-mutated cancer cells, a reversible phenomenon through silencing IL32 expression in PCs or depleting the IL32 receptor β5-integrin on cancer cells, thereby restoring cancer cell sensitivity. Mechanistically, it is shown that YY1 signaling upregulates IL32 secretion in PCs, subsequently activating the β5-integrin-Src-Akt pathway in EGFR-mutated cancer cells, contributing to their TKI sensitivity. In animal studies, co-injection of cancer cells with PCs compromises TKI effectiveness, independently of blood vessel functions, while inhibition of β5-integrin restores tumor cell sensitivity. Overall, the findings highlight direct crosstalk between cancer cells and pericytes, impacting TKI sensitivity via IL32-β5-integrin paracrine signaling, proposing an enhanced therapeutic approach for EGFR-mutated patients.
Collapse
Affiliation(s)
- Cheng Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Guangzhou Key Laboratory of Precise Diagnosis and Treatment of Biliary Tract Cancer, Department of Biliary-Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Xi Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Xiaoyi Qiu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Xiangzhan Kong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Chunmiao Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Xue Jiang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Mingkang Yao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Department of Respiratory Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Minghui Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Department of Thoracic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Liangping Su
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Urological Diseases, Guangzhou Medical University, Guangzhou, 510120, China
| | - Cui Lv
- Clinical Biobank Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Ping-Pui Wong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Guangzhou Key Laboratory of Precise Diagnosis and Treatment of Biliary Tract Cancer, Department of Biliary-Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| |
Collapse
|
6
|
Roskoski R. Targeted and cytotoxic inhibitors used in the treatment of lung cancers. Pharmacol Res 2024; 209:107465. [PMID: 39426470 DOI: 10.1016/j.phrs.2024.107465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
Lung cancer is the leading cause of cancer deaths in the United States and the world. It is divided into two major types: small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC). In the tumor-node-metastasis (TNM) cancer-staging classification system (Stages I/II/III/IV), the severity of neoplastic growth is characterized by the size of the tumor (T1 to T4), the extent of lymph node involvement (N0 to N3), and whether (M1) or not (M0) distant metastasis has occurred. Surgery is the treatment of choice for medically fit patients with Stage I/II NSCLC. Combination chemoradiotherapy and immune checkpoint inhibitor therapy are used across all NSCLC types. Oncogene-addicted tumors with sensitizing EGFR or BRAF mutations or activating ALK, ROS1 or NTRK translocations are treated with their cognate orally active small molecule protein kinase blockers. On the order of 20 % of NSCLCs bear activating mutations in EGFR and are treated with osimertinib and other kinase antagonists. SCLC, which accounts for approximately 15 % of lung cancer cases, is a deadly high-grade neuroendocrine carcinoma with a poor prognosis. Limited-stage SCLC is confined to one hemi-thorax and one radiation port and extensive-stage disease signifies those cancers that do not meet the criteria for limited-stage disease. Local treatment options to control thoracic disease include radiotherapy and surgery. In patients with extensive-stage disease, a platinum agent (cisplatin or carboplatin) combined with etoposide and an anti-PDL1 inhibitor (atezolizumab or durvalumab) for four cycles followed by anti-PDL1 maintenance therapy is the recommended first-line regimen.
Collapse
Affiliation(s)
- Robert Roskoski
- Blue Ridge Institute for Medical Research, 221 Haywood Knolls Drive, Hendersonville, NC 28791, United States.
| |
Collapse
|
7
|
Dimitrov J, Maddalena M, Terlizzi C, Altobelli GG, Pellegrino S, Mehmood T, De Rosa V, Iommelli F, Del Vecchio S. Dynamic roles of neutrophil extracellular traps in cancer cell adhesion and activation of Notch 1-mediated epithelial-to-mesenchymal transition in EGFR-driven lung cancer cells. Front Immunol 2024; 15:1470620. [PMID: 39430758 PMCID: PMC11487346 DOI: 10.3389/fimmu.2024.1470620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/18/2024] [Indexed: 10/22/2024] Open
Abstract
Introduction Neutrophil extracellular traps (NETs) are complex structures released by activated neutrophils that may modulate different steps of the metastatic cascade. The aim of our study was to investigate how NETs can modulate the adhesion properties of cancer cells and whether cell exposure to NETs can activate the epithelial-to-mesenchymal transition (EMT) program thus enhancing the migratory and invasive properties of tumor cells. Materials and methods Different cancer cell lines were subjected to a solid-phase adhesion assay using NET-coated plates with or without the addition of antibodies against α5β1 or CCDC25 receptor. After 1-4 h of incubation, adherent cells were expressed as the percentage of total cell number. To test EMT occurrence, cells were treated with NETs for up to 48 h and then the levels of E-cadherin, vimentin, Snail, Slug, Zeb 1 and Twist 1 along with levels of Notch 1 and cleaved Notch 1 were determined by western blotting. Untreated and NET-treated cells were subjected to migration assays using 24-multiwell plates with transwell and FBS as chemoattractant. Results Cancer cell adhesion to NET-coated plates varied between 30% and 92.7% and was significantly higher than that obtained in uncoated plates. The addition of antibodies against α5β1 or CCDC25 caused a strong reduction of cell adhesion to NETs. The prolonged exposure of EGFR-driven cancer cell lines to NETs caused the activation of the EMT program through the upregulation and cleavage of Notch 1 and was confirmed by the enhanced expression of EMT markers. The consequent loss of the epithelial phenotype induced a strong reduction of the expression of the oncogene driver. Cell migration was significantly enhanced in NET-treated cells as compared to untreated cells. Discussion Our findings reveal the dynamic role of NETs that may provide a DNA and fibronectin rich environment for binding of many cancer cells at distant sites where the prolonged exposure to NETs triggers the EMT through the activation of Notch 1 signaling pathway with the subsequent enhancement of migratory and invasive properties of cancer cells. Furthermore, our findings provide an example of how an immune/inflammatory microenvironment may directly modulate the sensitivity of cancer cells to oncogene targeted agents.
Collapse
Affiliation(s)
- Jelena Dimitrov
- Department of Advanced Biomedical Sciences, University “Federico II”, Naples, Italy
| | - Maurizio Maddalena
- Department of Advanced Biomedical Sciences, University “Federico II”, Naples, Italy
| | - Cristina Terlizzi
- Institute of Biostructures and Bioimaging, National Research Council, Naples, Italy
| | | | - Sara Pellegrino
- Department of Advanced Biomedical Sciences, University “Federico II”, Naples, Italy
| | - Tayyaba Mehmood
- Department of Advanced Biomedical Sciences, University “Federico II”, Naples, Italy
| | - Viviana De Rosa
- Institute of Biostructures and Bioimaging, National Research Council, Naples, Italy
| | - Francesca Iommelli
- Institute of Biostructures and Bioimaging, National Research Council, Naples, Italy
| | - Silvana Del Vecchio
- Department of Advanced Biomedical Sciences, University “Federico II”, Naples, Italy
| |
Collapse
|
8
|
Scholtes JF, Alhambra C, Carpino PA. Trends in covalent drug discovery: a 2020-23 patent landscape analysis focused on select covalent reacting groups (CRGs) found in FDA-approved drugs. Expert Opin Ther Pat 2024; 34:843-861. [PMID: 39219095 DOI: 10.1080/13543776.2024.2400175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/02/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION Covalent drugs contain electrophilic groups that can react with nucleophilic amino acids located in the active sites of proteins, particularly enzymes. Recently, there has been considerable interest in using covalent drugs to target non-catalytic amino acids in proteins to modulate difficult targets (i.e. targeted covalent inhibitors). Covalent compounds contain a wide variety of covalent reacting groups (CRGs), but only a few of these CRGs are present in FDA-approved covalent drugs. AREAS COVERED This review summarizes a 2020-23 patent landscape analysis that examined trends in the field of covalent drug discovery around targets and organizations. The analysis focused on patent applications that were submitted to the World International Patent Organization and selected using a combination of keywords and structural searches based on CRGs present in FDA-approved drugs. EXPERT OPINION A total of 707 patent applications from >300 organizations were identified, disclosing compounds that acted at 71 targets. Patent application counts for five targets accounted for ~63% of the total counts (i.e. BTK, EGFR, FGFR, KRAS, and SARS-CoV-2 Mpro). The organization with the largest number of patent counts was an academic institution (Dana-Farber Cancer Institute). For one target, KRAS G12C, the discovery of new drugs was highly competitive (>100 organizations, 186 patent applications).
Collapse
|
9
|
Hao S, Wang JH, Hou L, Liang JW, Yan JH, Niu YF, Li XY, Sun Q, Meng FH. Design, synthesis and biological evaluation of novel quinazoline-derived EGFR/HER-2 dual-target inhibitors bearing a heterocyclic-containing tail as potential anti-tumor agents. Bioorg Chem 2024; 151:107686. [PMID: 39111120 DOI: 10.1016/j.bioorg.2024.107686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 08/30/2024]
Abstract
A series of novel quinazoline-derived EGFR/HER-2 dual-target inhibitors were designed and synthesized by heterocyclic-containing tail approach. The inhibitory activities against four human epidermal growth factor receptor (HER) isozymes (EGFR, HER-2, HER-3 and HER-4) of all new compounds so designed were investigated in vitro. Compound 12k was found to be the most effective and rather selective dual-target inhibitor of EGFR and HER-2 with inhibitory constant (IC50) values of 6.15 and 9.78 nM, respectively, which was more potent than the clinical used agent Lapatinib (IC50 = 8.41 and 9.41 nM). Meanwhile, almost all compounds showed excellent antiproliferative activities against four cancer cell models (A549, NCI-H1975, SK-BR-3 and MCF-7) and low damage to healthy cells. Among them, compound 12k also exhibited the most prominent antitumor activity. Moreover, the hit compound 12k could bind to EGFR and HER-2 stably in molecular docking and dynamics studies. The following wound healing assay revealed that compound 12k could inhibit the migration of SK-BR-3 cells. Further studies found that compound 12k could arrest cell cycle in the G0/G1 phase and induce SK-BR-3 cells apoptosis. Notably, compound 12k could effectively inhibit breast cancer growth with little toxicity in the SK-BR-3 cell xenograft model. Taken together, in vitro and in vivo results disclosed that compound 12k had high drug potential as a dual-target inhibitor of EGFR/HER-2 to inhibit breast cancer growth.
Collapse
Affiliation(s)
- Shuang Hao
- School of Pharmacy, China Medical University, Shenyang 110122, PR China
| | - Jia-Hui Wang
- School of Pharmacy, China Medical University, Shenyang 110122, PR China
| | - Liang Hou
- School of Pharmacy, China Medical University, Shenyang 110122, PR China
| | - Jing-Wei Liang
- School of Pharmacy, China Medical University, Shenyang 110122, PR China; School of Pharmacy, Hainan Medical University, Haikou 571199, PR China
| | - Jing-Han Yan
- School of Pharmacy, China Medical University, Shenyang 110122, PR China
| | - Yi-Fan Niu
- School of Pharmacy, China Medical University, Shenyang 110122, PR China
| | - Xin-Yang Li
- School of Pharmacy, China Medical University, Shenyang 110122, PR China; Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang 110004, PR China
| | - Qi Sun
- School of Pharmacy, China Medical University, Shenyang 110122, PR China.
| | - Fan-Hao Meng
- School of Pharmacy, China Medical University, Shenyang 110122, PR China.
| |
Collapse
|
10
|
Wang T, Wang Y, Lu J, Chen J, Wang L, Ouyang Z, Ouyang W, Hu C, Weng J, Zhang JQ. Design, synthesis and bioevaluation of dual EGFR-PI3Kα inhibitors for potential treatment of NSCLC. Bioorg Chem 2024; 151:107714. [PMID: 39167867 DOI: 10.1016/j.bioorg.2024.107714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/23/2024] [Accepted: 08/09/2024] [Indexed: 08/23/2024]
Abstract
Aberrant activation or mutation of the EGFR-PI3K-Akt-mTOR signaling pathway has been implicated in a wide range of human cancers, especially non-small-cell lung cancer (NSCLC). Thus, dual inhibition of EGFR and PI3K has been investigated as a promising strategy to address acquired drug resistance resulting from the use of tyrosine kinase inhibitors. A series of dual EGFR/PI3Kα inhibitors was synthesized using pharmacophore hybridization of the third-generation EGFR inhibitor olmutinib and the PI3Kα selective inhibitor TAK-117. The optimal compound 30k showed potent kinase inhibitory activities with IC50 values of 3.6 and 30.0 nM against EGFRL858R/T790M and PI3Kα, respectively. Compound 30k exhibited a significant antiproliferative effect in NCI-H1975 cells with a higher selectivity profile than olmutinib. The potential antitumor mechanism, molecular binding modes, and in vitro metabolic stability of compound 30k were also clarified.
Collapse
Affiliation(s)
- Tingliang Wang
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, College of Pharmacy, Guizhou Medical University, Guiyang 561113, China; Department of Pharmacy, Liupanshui Municipal People's Hospital, Liupanshui 553000, China
| | - Yujie Wang
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, College of Pharmacy, Guizhou Medical University, Guiyang 561113, China
| | - Jiangrong Lu
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, College of Pharmacy, Guizhou Medical University, Guiyang 561113, China
| | - Junxiao Chen
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, College of Pharmacy, Guizhou Medical University, Guiyang 561113, China
| | - Lili Wang
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, College of Pharmacy, Guizhou Medical University, Guiyang 561113, China.
| | - Zheng Ouyang
- The Second Affiliated Hospital of Guizhou University of Chinese Medicine, Guiyang 550003, China
| | - Weiwei Ouyang
- Department of Thoracic Oncology, the Affiliated Hospital of Guizhou Medical University, Guiyang 550008, China
| | - Chujiao Hu
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, College of Pharmacy, Guizhou Medical University, Guiyang 561113, China.
| | - Jiang Weng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ji-Quan Zhang
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, College of Pharmacy, Guizhou Medical University, Guiyang 561113, China.
| |
Collapse
|
11
|
Lu Z, Bi Y, Jiang J, Yao X, Hou G. Exploring the prognostic and therapeutic value of HIF1A in lung adenocarcinoma. Heliyon 2024; 10:e37739. [PMID: 39318795 PMCID: PMC11420488 DOI: 10.1016/j.heliyon.2024.e37739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/26/2024] Open
Abstract
Lung adenocarcinoma (LUAD) remains a challenge within the realm of non-small cell lung cancer (NSCLC), demanding innovative diagnostic and therapeutic solutions. In this study, we systematically detected the correlation between the expression of hypoxia-induced factor 1A (HIF1A) and the clinical characteristics of LUAD, alongside lung squamous cell carcinoma (LUSC). Our bioinformatic analysis reveals that HIF1A mRNA expression is significantly upregulated in both LUAD and LUSC samples compared to non-tumorous lung tissues. The overexpression is positively correlated with increased copy number variation and negatively associated with promoter methylation. However, meta-analysis and survival analyses revealed a pronounced association between elevated HIF1A expression and poor clinical outcome specifically within the LUAD subset, with no such correlation evident in LUSC. Additionally, we explored the interplay between HIF1A expression, leukocyte infiltration, and the presence of immunosuppressive markers, revealing HIF1A's suppressive role in cytotoxicity against cancer cells. Furthermore, we performed in silico prediction to explore the correlations between HIF1A and its interacting proteins, associated pathways, glycolysis, and m6A modification, and the feasibility of targeting HIF1A with specific drugs. In summary, our study revealed the prognostic significance and therapeutic potential of HIF1A in LUAD.
Collapse
Affiliation(s)
- Zhimin Lu
- Department of Outpatient, Affiliated Hospital of Jiaxing University, The First Hospital of Jiaxing, Jiaxing, Zhejiang, China
| | - Yanyu Bi
- Department of Oncology, Affiliated Hospital of Jiaxing University, The First Hospital of Jiaxing, Jiaxing, Zhejiang, China
| | - Jialu Jiang
- Department of Oncology, Affiliated Hospital of Jiaxing University, The First Hospital of Jiaxing, Jiaxing, Zhejiang, China
| | - Xuming Yao
- Department of Oncology, Affiliated Hospital of Jiaxing University, The First Hospital of Jiaxing, Jiaxing, Zhejiang, China
| | - Guoxin Hou
- Department of Oncology, Affiliated Hospital of Jiaxing University, The First Hospital of Jiaxing, Jiaxing, Zhejiang, China
| |
Collapse
|
12
|
Thomson C, Braybrooke E, Colclough N, Davies NL, Floc'h N, Greenwood R, Guérot C, Hargreaves D, Johnstrom P, Khurana P, Kostomiris DH, Li S, Lister A, Lorthioir O, Martin S, McCoull W, McLean NJ, McWilliams L, Orme JP, Packer MJ, Pearson S, Swaih AM, Tentarelli S, Tucker MJ, Ward RA, Wilkinson S, Winlow P, Wood IL. Optimization of Potent, Efficacious, Selective and Blood-Brain Barrier Penetrating Inhibitors Targeting EGFR Exon20 Insertion Mutations. J Med Chem 2024. [PMID: 39340451 DOI: 10.1021/acs.jmedchem.4c01792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2024]
Abstract
Herein, we report the optimization of a series of epidermal growth factor receptor (EGFR) Exon20 insertion (Ex20Ins) inhibitors using structure-based drug design (SBDD), leading to the discovery of compound 28, a potent and wild type selective molecule, which demonstrates efficacy in multiple EGFR Ex20Ins xenograft models and blood-brain barrier penetration in preclinical species. Building on our earlier discovery of an in vivo probe, SBDD was used to design a novel bicyclic core with a lower molecular weight to facilitate blood-brain barrier penetration. Further optimization including strategic linker replacement and diversification of the ring system interacting with the c-helix enabled photolytic and metabolic stability improvements. Together with refinement of molecular properties important for achieving high brain exposure, including molecular weight, H-bonding, and polarity, 28 was identified.
Collapse
Affiliation(s)
- Clare Thomson
- Oncology R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0AA, United Kingdom
| | - Erin Braybrooke
- Oncology R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0AA, United Kingdom
| | - Nicola Colclough
- Oncology R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0AA, United Kingdom
| | - Nichola L Davies
- Oncology R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0AA, United Kingdom
| | - Nicolas Floc'h
- Oncology R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0AA, United Kingdom
| | - Ryan Greenwood
- Oncology R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0AA, United Kingdom
| | - Carine Guérot
- Oncology R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0AA, United Kingdom
| | - David Hargreaves
- Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0AA, United Kingdom
| | - Peter Johnstrom
- AstraZeneca Translational Centre, Personal Healthcare and Biomarkers, AstraZeneca R&D, Karolinska Institutet, Department of Clinical Neuroscience, Karolinska University Hospital, R5:U1, Stockholm SE-171 76, Sweden
| | - Puneet Khurana
- Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0AA, United Kingdom
| | - Demetrios H Kostomiris
- Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Songlei Li
- Pharmaron Beijing Co., Ltd., 6 Taihe Road, BDA, Beijing 100176, P. R. China
| | - Andrew Lister
- Oncology R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0AA, United Kingdom
| | - Olivier Lorthioir
- Oncology R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0AA, United Kingdom
| | - Scott Martin
- Oncology R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0AA, United Kingdom
| | - William McCoull
- Oncology R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0AA, United Kingdom
| | - Neville J McLean
- Oncology R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0AA, United Kingdom
| | - Lisa McWilliams
- Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0AA, United Kingdom
| | - Jonathan P Orme
- Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0AA, United Kingdom
| | - Martin J Packer
- Oncology R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0AA, United Kingdom
| | - Stuart Pearson
- Oncology R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0AA, United Kingdom
| | - Aisha M Swaih
- Oncology R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0AA, United Kingdom
| | - Sharon Tentarelli
- Oncology R&D, AstraZeneca, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Michael J Tucker
- Oncology R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0AA, United Kingdom
| | - Richard A Ward
- Oncology R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0AA, United Kingdom
| | - Stephen Wilkinson
- Oncology R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0AA, United Kingdom
| | - Poppy Winlow
- Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0AA, United Kingdom
| | - Isabel L Wood
- Oncology R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0AA, United Kingdom
| |
Collapse
|
13
|
Huang B, Abedi M, Ahn G, Coventry B, Sappington I, Tang C, Wang R, Schlichthaerle T, Zhang JZ, Wang Y, Goreshnik I, Chiu CW, Chazin-Gray A, Chan S, Gerben S, Murray A, Wang S, O'Neill J, Yi L, Yeh R, Misquith A, Wolf A, Tomasovic LM, Piraner DI, Duran Gonzalez MJ, Bennett NR, Venkatesh P, Ahlrichs M, Dobbins C, Yang W, Wang X, Sahtoe DD, Vafeados D, Mout R, Shivaei S, Cao L, Carter L, Stewart L, Spangler JB, Roybal KT, Greisen PJ, Li X, Bernardes GJL, Bertozzi CR, Baker D. Designed endocytosis-inducing proteins degrade targets and amplify signals. Nature 2024:10.1038/s41586-024-07948-2. [PMID: 39322662 DOI: 10.1038/s41586-024-07948-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/13/2024] [Indexed: 09/27/2024]
Abstract
Endocytosis and lysosomal trafficking of cell surface receptors can be triggered by endogenous ligands. Therapeutic approaches such as lysosome-targeting chimaeras1,2 (LYTACs) and cytokine receptor-targeting chimeras3 (KineTACs) have used this to target specific proteins for degradation by fusing modified native ligands to target binding proteins. Although powerful, these approaches can be limited by competition with native ligands and requirements for chemical modification that limit genetic encodability and can complicate manufacturing, and, more generally, there may be no native ligands that stimulate endocytosis through a given receptor. Here we describe computational design approaches for endocytosis-triggering binding proteins (EndoTags) that overcome these challenges. We present EndoTags for insulin-like growth factor 2 receptor (IGF2R) and asialoglycoprotein receptor (ASGPR), sortilin and transferrin receptors, and show that fusing these tags to soluble or transmembrane target protein binders leads to lysosomal trafficking and target degradation. As these receptors have different tissue distributions, the different EndoTags could enable targeting of degradation to different tissues. EndoTag fusion to a PD-L1 antibody considerably increases efficacy in a mouse tumour model compared to antibody alone. The modularity and genetic encodability of EndoTags enables AND gate control for higher-specificity targeted degradation, and the localized secretion of degraders from engineered cells. By promoting endocytosis, EndoTag fusion increases signalling through an engineered ligand-receptor system by nearly 100-fold. EndoTags have considerable therapeutic potential as targeted degradation inducers, signalling activators for endocytosis-dependent pathways, and cellular uptake inducers for targeted antibody-drug and antibody-RNA conjugates.
Collapse
Affiliation(s)
- Buwei Huang
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Mohamad Abedi
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Green Ahn
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Brian Coventry
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Isaac Sappington
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Cong Tang
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Rong Wang
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Thomas Schlichthaerle
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Jason Z Zhang
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Yujia Wang
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Inna Goreshnik
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Ching Wen Chiu
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Adam Chazin-Gray
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Sidney Chan
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Stacey Gerben
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Analisa Murray
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Shunzhi Wang
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | | | - Li Yi
- Novo Nordisk, Måløv, Denmark
| | | | | | | | - Luke M Tomasovic
- Departments of Biomedical Engineering and Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
- Medical Scientist Training Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dan I Piraner
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Maria J Duran Gonzalez
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Nathaniel R Bennett
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Preetham Venkatesh
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Maggie Ahlrichs
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Craig Dobbins
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Wei Yang
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Xinru Wang
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | | | - Dionne Vafeados
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Rubul Mout
- Harvard Medical School, Harvard University, Boston, MA, USA
| | - Shirin Shivaei
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA, USA
| | - Longxing Cao
- School of Life Sciences, Westlake University, Hangzhou, China
| | - Lauren Carter
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Lance Stewart
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | | | - Kole T Roybal
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | | | - Xiaochun Li
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Gonçalo J L Bernardes
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Carolyn R Bertozzi
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
- Institute for Protein Design, University of Washington, Seattle, WA, USA.
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA.
| |
Collapse
|
14
|
Yan Y, Shen S, Li J, Su L, Wang B, Zhang J, Lu J, Luo H, Han P, Xu K, Shen X, Huang S. Cross-omics strategies and personalised options for lung cancer immunotherapy. Front Immunol 2024; 15:1471409. [PMID: 39391313 PMCID: PMC11465239 DOI: 10.3389/fimmu.2024.1471409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 08/30/2024] [Indexed: 10/12/2024] Open
Abstract
Lung cancer is one of the most common malignant tumours worldwide and its high mortality rate makes it a leading cause of cancer-related deaths. To address this daunting challenge, we need a comprehensive understanding of the pathogenesis and progression of lung cancer in order to adopt more effective therapeutic strategies. In this regard, integrating multi-omics data of the lung provides a highly promising avenue. Multi-omics approaches such as genomics, transcriptomics, proteomics, and metabolomics have become key tools in the study of lung cancer. The application of these methods not only helps to resolve the immunotherapeutic mechanisms of lung cancer, but also provides a theoretical basis for the development of personalised treatment plans. By integrating multi-omics, we have gained a more comprehensive understanding of the process of lung cancer development and progression, and discovered potential immunotherapy targets. This review summarises the studies on multi-omics and immunology in lung cancer, and explores the application of these studies in early diagnosis, treatment selection and prognostic assessment of lung cancer, with the aim of providing more personalised and effective treatment options for lung cancer patients.
Collapse
Affiliation(s)
- Yalan Yan
- School of Clinical Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Siyi Shen
- School of Clinical Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Jiamin Li
- School of Clinical Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Lanqian Su
- School of Clinical Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Binbin Wang
- Intensive Care Unit, Xichong People’s Hospital, Nanchong, China
| | - Jinghan Zhang
- Department of Anaesthesiology, Southwest Medical University, Luzhou, China
| | - Jiaan Lu
- School of Clinical Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Huiyan Luo
- Department of Oncology, Chongqing General Hospital, Chongqing University, Chongqing, China
| | - Ping Han
- Department of Oncology, Chongqing General Hospital, Chongqing University, Chongqing, China
| | - Ke Xu
- Department of Oncology, Chongqing General Hospital, Chongqing University, Chongqing, China
| | - Xiang Shen
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Shangke Huang
- Department of Oncology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| |
Collapse
|
15
|
Hsu PC, Chang JWC, Chiu LC, Yang CT, Kuo SCH, Fang YF, Wu CE. Analysis of genomic alternations in epidermal growth factor receptor (EGFR)-T790M-mutated non-small cell lung cancer (NSCLC) patients with acquired resistance to osimertinib therapy. Clin Transl Oncol 2024:10.1007/s12094-024-03727-7. [PMID: 39317868 DOI: 10.1007/s12094-024-03727-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 09/09/2024] [Indexed: 09/26/2024]
Abstract
BACKGROUND AND OBJECTIVES Genomic alterations after resistance to osimertinib therapy in advanced T790M-mutated non-small cell lung cancer (NSCLC) are complex and poorly understood. In this study, we aimed to detect these genomic alternations via comprehensive next-generation sequencing (NGS) of tissue and liquid biopsies. PATIENTS AND METHODS From September 2020 to June 2021, 31 stage IIIB/IV T790M-mutated NSCLC patients who exhibited progressive disease after osimertinib therapy and provided written informed consent were recruited. Liquid and tissue biopsy samples for NGS testing were collected from 31 and 18 patients, respectively. Eighteen study patients had paired NGS data from tissue and liquid biopsies. RESULTS With respect to the T790M mutation status, the preservation and loss rates were 33% and 67%, respectively, in both liquid and tissue biopsy samples. Five patients (16.1%) had the C797S mutation (4 liquid samples and 1 tissue sample). Two (6.5%) had MET mutations, 3 (9.7%) had BRAF-V600E mutations, and 1 (3.2%) had a KRAS-G12C mutation. Among the 18 patients who underwent tissue rebiopsies, those with preserved T790M mutation had significantly longer progression-free survival (PFS) with osimertinib therapy than those with T790M mutation loss (10.8 vs. 5.0 months, P = 0.045). Among all patients, those with T790M mutation loss in liquid biopsy samples had longer PFS after osimertinib therapy (10.8 vs. 7.5 months, P = 0.209) and postprogression survival (17.7 vs. 9.6 months, P = 0.132) than those with preserved T790M mutation based on liquid biopsies. CONCLUSIONS NGS using either tissue or liquid biopsy samples from advanced T790M-mutated NSCLC patients with acquired resistance to osimertinib therapy can detect various genomic alternations. Future studies focusing on subsequent tailored therapies on the basis of NGS results are warranted.
Collapse
Affiliation(s)
- Ping-Chih Hsu
- Division of Thoracic Oncology, Department of Thoracic Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, 33305, Taiwan
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan
| | - John Wen-Cheng Chang
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, 5, Fu-Hsing Street, Kwei-Shan, Taoyuan, 33305, Taiwan
| | - Li-Chung Chiu
- Division of Thoracic Oncology, Department of Thoracic Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, 33305, Taiwan
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan
| | - Cheng-Ta Yang
- Division of Thoracic Oncology, Department of Thoracic Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, 33305, Taiwan
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan
- Department of Internal Medicine, Taoyuan Chang Gung Memorial Hospital, Taoyuan, 33378, Taiwan
- Department of Respiratory Therapy, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan
| | - Scott Chih-Hsi Kuo
- Division of Thoracic Oncology, Department of Thoracic Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, 33305, Taiwan
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan
| | - Yueh-Fu Fang
- Division of Thoracic Oncology, Department of Thoracic Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, 33305, Taiwan
| | - Chiao-En Wu
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan.
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, 5, Fu-Hsing Street, Kwei-Shan, Taoyuan, 33305, Taiwan.
| |
Collapse
|
16
|
Kim S, Heo Y, Lee YH, Kang JH. Are 19del and L858R really different disease entities? Future Oncol 2024; 20:1689-1694. [PMID: 39279671 PMCID: PMC11486137 DOI: 10.1080/14796694.2024.2362613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/29/2024] [Indexed: 09/18/2024] Open
Abstract
Clinicians have recognized the similarities and differences between the two subtypes of common epidermal growth factor receptor (EGFR) mutations, but actual treatment strategies have not yet changed. The L858R mutation can be understood by considering the pharmacological conformational plasticity of the receptor protein and the presence of other co-occurring mutations, whether subtypes of EGFR or non-EGFR mutations and differences in downstream signaling pathways. As long as we know that molecular differences lead to biological differences, it is a challenge for all of us that our treatment strategies must change.
Collapse
Affiliation(s)
- Seoree Kim
- Division of Medical Hemato-Oncology, Department of Internal Medicine, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Yunseok Heo
- Biopharmaceutical Research Center, Korea Basic Science Institute (KBSI), Chungbuk, 28119, Republic of Korea
| | - Young-Ho Lee
- Biopharmaceutical Research Center, Korea Basic Science Institute (KBSI), Chungbuk, 28119, Republic of Korea
- Bio-Analytical Science, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon, 34134, Republic of Korea
- Department of Systems Biotechnology, Chung-Ang University, Gyeonggi, 17546, Republic of Korea
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Miyagi, 980-8578, Japan
| | - Jin Hyoung Kang
- Division of Medical Oncology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| |
Collapse
|
17
|
Cheng C, Fan B, Yang Y, Wang P, Wu M, Xia H, Syed BM, Wu H, Liu Q. Construction of an adverse outcome pathway framework for arsenic-induced lung cancer using a network-based approach. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116809. [PMID: 39083875 DOI: 10.1016/j.ecoenv.2024.116809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024]
Abstract
Environmental pollutants are considered as a cause of tumorigenesis, but approaches to assess their risk of causing tumors remain insufficient. As an alternative approach, the adverse outcome pathway (AOP) framework is used to assess the risk of tumors caused by environmental pollutants. Arsenic is a pollutant associated with lung cancer, but early assessment of lung cancer risk is lacking. Therefore, we applied the AOP framework to arsenic-induced lung cancer. A systematic review revealed increased risks of lung cancer following exposure to a range of arsenic concentrations in drinking water (OR = 1.83, 95 % CI = 1.46-2.30). We obtained, from public databases, genes related to risk of arsenic-induced lung cancer. Then, Cox and LASSO regressions were used to screen target genes from the risk genes. Subsequently, target genes, phenotypes, and pathways were used to construct the computational AOP network, which was determined by Cytoscape to have 156 edges and 45 nodes. Further, target genes, phenotypes, and pathways were used as molecular initiating events and key events to construct the AOP framework depending on upstream and downstream relationships. In the AOP framework, by Weight of Evidence, arsenic exposure increased levels of EGFR, activated the PI3K/AKT pathway, regulated cell proliferation by promoting the G1/S phase transition, and caused generation of lung cancers. External validation was achieved through arsenite-induced, malignant transformed human bronchial epithelial (HBE) cells. Overall, these results, by integration into existing data to construct an AOP framework, provide insights into the assessment of lung cancer risk for arsenic exposure. Special attention needs to be focused on populations with low-dose arsenic exposure.
Collapse
Affiliation(s)
- Cheng Cheng
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute for Advanced Study of Public Health, Gusu School, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Bowen Fan
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute for Advanced Study of Public Health, Gusu School, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yi Yang
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute for Advanced Study of Public Health, Gusu School, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Peiwen Wang
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute for Advanced Study of Public Health, Gusu School, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Meng Wu
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu 210009, China
| | - Haibo Xia
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute for Advanced Study of Public Health, Gusu School, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Binafsha Manzoor Syed
- Medical Research Center, Liaquat University of Medical & Health Sciences, Jamshoro, Sindh 76090, Pakistan
| | - Hao Wu
- The Key Laboratory of Modern Toxicology, Ministry of Education, Department of Emergency and Critical Care Medicine, Institute of Poisoning, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China.
| | - Qizhan Liu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute for Advanced Study of Public Health, Gusu School, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China.
| |
Collapse
|
18
|
Wu WF, Lai KM, Chen CH, Wang BC, Chen YJ, Shen CW, Chen KY, Lin EC, Chen CC. Predicting the T790M mutation in non-small cell lung cancer (NSCLC) using brain metastasis MR radiomics: a study with an imbalanced dataset. Discov Oncol 2024; 15:447. [PMID: 39277568 PMCID: PMC11401825 DOI: 10.1007/s12672-024-01333-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024] Open
Abstract
BACKGROUND Early detection of T790M mutation in exon 20 of epidermal growth factor receptor (EGFR) in non-small cell lung cancer (NSCLC) patients with brain metastasis is crucial for optimizing treatment strategies. In this study, we developed radiomics models to distinguish NSCLC patients with T790M-positive mutations from those with T790M-negative mutations using multisequence MR images of brain metastasis despite an imbalanced dataset. Various resampling techniques and classifiers were employed to identify the most effective strategy. METHODS Radiomic analyses were conducted on a dataset comprising 125 patients, consisting of 18 with EGFR T790M-positive mutations and 107 with T790M-negative mutations. Seventeen first- and second-order statistical features were selected from CET1WI, T2WI, T2FLAIR, and DWI images. Four classifiers (logistic regression, support vector machine, random forest [RF], and extreme gradient boosting [XGBoost]) were evaluated under 13 different resampling conditions. RESULTS The area under the curve (AUC) value achieved was 0.89, using the SVM-SMOTE oversampling method in combination with the XGBoost classifier. This performance was measured against the AUC reported in the literature, serving as an upper-bound reference. Additionally, comparable results were observed with other oversampling methods paired with RF or XGBoost classifiers. CONCLUSIONS Our study demonstrates that, even when dealing with an imbalanced EGFR T790M dataset, reasonable predictive outcomes can be achieved by employing an appropriate combination of resampling techniques and classifiers. This approach has significant potential for enhancing T790M mutation detection in NSCLC patients with brain metastasis.
Collapse
Affiliation(s)
- Wen-Feng Wu
- Department of Radiology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, 600, Taiwan
| | - Kuan-Ming Lai
- Department of Radiology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, 600, Taiwan
- Central Taiwan University of Science and Technology Institute of Radiological Science, Taichung, 406, Taiwan
| | - Chia-Hung Chen
- Department of Radiology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, 600, Taiwan
- Central Taiwan University of Science and Technology Institute of Radiological Science, Taichung, 406, Taiwan
| | - Bai-Chuan Wang
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi, 62102, Taiwan
| | - Yi-Jen Chen
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi, 62102, Taiwan
| | - Chia-Wei Shen
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi, 62102, Taiwan
| | - Kai-Yan Chen
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi, 62102, Taiwan
| | - Eugene C Lin
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi, 62102, Taiwan.
- Center for Nano Bio-Detection, National Chung Cheng University, Chiayi, 621, Taiwan.
| | - Chien-Chin Chen
- Department of Pathology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, No. 539, Zhongxiao Rd., East Dist., Chiayi City, 60002, Taiwan.
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, 402, Taiwan.
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 701, Taiwan.
- Department of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan, 717, Taiwan.
| |
Collapse
|
19
|
Zhou FM, Wang KK, Wang LH, Qiu JG, Wang W, Liu WJ, Wang L, Jiang BH. CIB2 mediates acquired gefitinib resistance by inducing ZEB1 expression and epithelial-mesenchymal transition. Aging (Albany NY) 2024; 16:12277-12292. [PMID: 39264588 PMCID: PMC11424576 DOI: 10.18632/aging.206086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 08/01/2024] [Indexed: 09/13/2024]
Abstract
EGFR-TKIs have been used as frontline treatment in patients with advanced non-small cell lung cancer (NSCLC) suffering from the EGFR mutation. Gefitinib, the first-generation EGFR-TKI, has greatly improved survival rates in lung cancer patients, whereas acquired gefitinib resistance is still a critical issue that needs to be overcome. In our research, high expression levels of CIB2 were found in gefitinib-resistant lung cancer cells. CIB2 knockout rendered gefitinib-resistant cells more sensitive to gefitinib, and overexpression of CIB2 in parental cells was sufficient to induce more resistance to gefitinib. Inhibition of CIB2 in gefitinib-resistant lung cancer cells significantly induced cell apoptosis. To clarify the major molecular mechanism by which CIB2 increases gefitinib resistance, we demonstrated that raised CIB2 in lung cancer cells promoted epithelial-to-mesenchymal transition (EMT) through upregulation of ZEB1. Moreover, FOSL1 transcriptionally regulated CIB2 expression. Finally, CIB2 rendered tumors resistant to gefitinib treatment in vivo. Our results explored a new mechanism: upregulated CIB2 promoted EMT through ZEB1 to regulate gefitinib resistance, which could be a candidate therapeutic target for overcoming acquired resistance to EGFR-TKIs in NSCLC patients.
Collapse
Affiliation(s)
- Feng-Mei Zhou
- Academy of Medical Science, Zhengzhou University, Zhengzhou 450000, China
| | - Kun-Kun Wang
- Academy of Medical Science, Zhengzhou University, Zhengzhou 450000, China
| | - Li-Hong Wang
- Academy of Medical Science, Zhengzhou University, Zhengzhou 450000, China
| | - Jian-Ge Qiu
- Academy of Medical Science, Zhengzhou University, Zhengzhou 450000, China
| | - Wei Wang
- Academy of Medical Science, Zhengzhou University, Zhengzhou 450000, China
| | - Wen-Jing Liu
- The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Lin Wang
- Academy of Medical Science, Zhengzhou University, Zhengzhou 450000, China
| | - Bing-Hua Jiang
- Academy of Medical Science, Zhengzhou University, Zhengzhou 450000, China
| |
Collapse
|
20
|
Si Q, Bai M, Wang X, Wang T, Qin Y. Photonanozyme-Kras-ribosome combination treatment of non-small cell lung cancer after COVID-19. Front Immunol 2024; 15:1420463. [PMID: 39308869 PMCID: PMC11412844 DOI: 10.3389/fimmu.2024.1420463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 08/14/2024] [Indexed: 09/25/2024] Open
Abstract
With the outbreak of the coronavirus disease 2019 (COVID-19), reductions in T-cell function and exhaustion have been observed in patients post-infection of COVID-19. T cells are key mediators of anti-infection and antitumor, and their exhaustion increases the risk of compromised immune function and elevated susceptibility to cancer. Non-small cell lung cancer (NSCLC) is the most common subtype of lung cancer with high incidence and mortality. Although the survival rate after standard treatment such as surgical treatment and chemotherapy has improved, the therapeutic effect is still limited due to drug resistance, side effects, and recurrence. Recent advances in molecular biology and immunology enable the development of highly targeted therapy and immunotherapy for cancer, which has driven cancer therapies into individualized treatments and gradually entered clinicians' views for treating NSCLC. Currently, with the development of photosensitizer materials, phototherapy has been gradually applied to the treatment of NSCLC. This review provides an overview of recent advancements and limitations in different treatment strategies for NSCLC under the background of COVID-19. We discuss the latest advances in phototherapy as a promising treatment method for NSCLC. After critically examining the successes, challenges, and prospects associated with these treatment modalities, their profound prospects were portrayed.
Collapse
Affiliation(s)
- Qiaoyan Si
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
- School of Biomedical Engineering, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Mingjian Bai
- School of Biomedical Engineering, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Xiaolong Wang
- School of Biomedical Engineering, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Tianyu Wang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Yan Qin
- School of Biomedical Engineering, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
21
|
Bagchi A, Stayrook SE, Xenaki KT, Starbird CA, Doulkeridou S, El Khoulati R, Roovers RC, Schmitz KR, van Bergen En Henegouwen PMP, Ferguson KM. Structural insights into the role and targeting of EGFRvIII. Structure 2024; 32:1367-1380.e6. [PMID: 38908376 PMCID: PMC11380598 DOI: 10.1016/j.str.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 04/06/2024] [Accepted: 05/28/2024] [Indexed: 06/24/2024]
Abstract
The epidermal growth factor receptor (EGFR) is a well-known oncogenic driver in lung and other cancers. In glioblastoma multiforme (GBM), the EGFR deletion variant III (EGFRvIII) is frequently found alongside EGFR amplification. Agents targeting the EGFR axis have shown limited clinical benefits in GBM and the role of EGFRvIII in GBM is poorly understood. To shed light on the role of EGFRvIII and its potential as a therapeutic target, we determined X-ray crystal structures of a monomeric EGFRvIII extracellular region (ECR). The EGFRvIII ECR resembles the unliganded conformation of EGFR, including the orientation of the C-terminal region of domain II. Domain II is mostly disordered, but the ECR structure is compact. We selected a nanobody with preferential binding to EGFRvIII relative to EGFR and structurally defined an epitope on domain IV that is occluded in the unliganded intact EGFR. These findings suggest new avenues for EGFRvIII targeting in GBM.
Collapse
Affiliation(s)
- Atrish Bagchi
- Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Steven E Stayrook
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Cancer Biology Institute, Yale University West Campus, West Haven, CT 06516, USA
| | - Katerina T Xenaki
- Division of Cell Biology, Neurobiology and Biophysics, Department of Biology, Science Faculty, Utrecht University, Utrecht 3584CH, the Netherlands
| | - Chrystal A Starbird
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Cancer Biology Institute, Yale University West Campus, West Haven, CT 06516, USA
| | - Sofia Doulkeridou
- Division of Cell Biology, Neurobiology and Biophysics, Department of Biology, Science Faculty, Utrecht University, Utrecht 3584CH, the Netherlands
| | - Rachid El Khoulati
- Division of Cell Biology, Neurobiology and Biophysics, Department of Biology, Science Faculty, Utrecht University, Utrecht 3584CH, the Netherlands
| | - Rob C Roovers
- Division of Cell Biology, Neurobiology and Biophysics, Department of Biology, Science Faculty, Utrecht University, Utrecht 3584CH, the Netherlands
| | - Karl R Schmitz
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Paul M P van Bergen En Henegouwen
- Division of Cell Biology, Neurobiology and Biophysics, Department of Biology, Science Faculty, Utrecht University, Utrecht 3584CH, the Netherlands
| | - Kathryn M Ferguson
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Cancer Biology Institute, Yale University West Campus, West Haven, CT 06516, USA.
| |
Collapse
|
22
|
Huang Y, Hou R, Lam FS, Jia Y, Zhou Y, He X, Li G, Xiong F, Cao Y, Wang D, Li X. Agonist Discovery for Membrane Proteins on Live Cells by Using DNA-encoded Libraries. J Am Chem Soc 2024; 146:24638-24653. [PMID: 39171830 DOI: 10.1021/jacs.4c08624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Identifying biologically active ligands for membrane proteins is an important task in chemical biology. We report an approach to directly identify small molecule agonists against membrane proteins by selecting DNA-encoded libraries (DELs) on live cells. This method connects extracellular ligand binding with intracellular biochemical transformation, thereby biasing the selection toward agonist identification. We have demonstrated the methodology with three membrane proteins: epidermal growth factor receptor (EGFR), thrombopoietin receptor (TPOR), and insulin receptor (INSR). A ∼30 million and a 1.033 billion-compound DEL were selected against these targets, and novel agonists with subnanomolar affinity and low micromolar cellular activities have been discovered. The INSR agonists activated the receptor by possibly binding to an allosteric site, exhibited clear synergistic effects with insulin, and activated the downstream signaling pathways. Notably, the agonists did not activate the insulin-like growth factor 1 receptor (IGF-1R), a highly homologous receptor whose activation may lead to tumor progression. Collectively, this work has developed an approach toward "functional" DEL selections on the cell surface and may provide a widely applicable method for agonist discovery for membrane proteins.
Collapse
Affiliation(s)
- Yiran Huang
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR 999077, China
| | - Rui Hou
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR 999077, China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK, Innovation and Technology Commission, Units 1503-1511, 15/F., Building 17W, Hong Kong SAR 999077, China
| | - Fong Sang Lam
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR 999077, China
| | - Yunxuan Jia
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR 999077, China
| | - Yu Zhou
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR 999077, China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK, Innovation and Technology Commission, Units 1503-1511, 15/F., Building 17W, Hong Kong SAR 999077, China
| | - Xun He
- Shenzhen NewDEL Biotech Co., Ltd., Shenzhen 518110, China
| | - Gang Li
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518000, China
| | - Feng Xiong
- Shenzhen NewDEL Biotech Co., Ltd., Shenzhen 518110, China
| | - Yan Cao
- School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Dongyao Wang
- School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Xiaoyu Li
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR 999077, China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK, Innovation and Technology Commission, Units 1503-1511, 15/F., Building 17W, Hong Kong SAR 999077, China
| |
Collapse
|
23
|
Zhou CQ, Li A, Ri K, Sultan AS, Ren H. Anti-HDGF Antibody Targets EGFR Tyrosine Kinase Inhibitor-Tolerant Cells in NSCLC Patient-Derived Xenografts. CANCER RESEARCH COMMUNICATIONS 2024; 4:2308-2319. [PMID: 39041204 PMCID: PMC11370239 DOI: 10.1158/2767-9764.crc-24-0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/31/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
Constitutively active mutant EGFR is one of the major oncogenic drivers in non-small cell lung cancer (NSCLC). Targeted therapy using EGFR tyrosine kinase inhibitor (TKI) is a first-line option in patients that have metastatic or recurring disease. However, despite the high response rate to TKI, most patients have a partial response, and the disease eventually progresses in 10 to 19 months. It is believed that drug-tolerant cells that survive TKI exposure during the progression-free period facilitate the emergence of acquired resistance. Thus, targeting the drug-tolerant cells could improve the treatment of NSCLC with EGFR mutations. We demonstrated here that EGFR-mutant patient-derived xenograft tumors responded partially to osimertinib despite near-complete inhibition of EGFR activation. Signaling in AKT/mTOR and MAPK pathways could be reactivated shortly after initial inhibition. As a result, many tumor cells escaped drug killing and regained growth following about 35 days of continuous osimertinib dosing. However, when an antibody to hepatoma-derived growth factor (HDGF) was given concurrently with osimertinib, tumors showed complete or near-complete responses. There was significant prolongation of progression-free survival of tumor-bearing mice as well. IHC and Western blot analysis of tumors collected in the early stages of treatment suggest that increased suppression of the AKT/mTOR and MAPK pathways could be a mechanism that results in enhanced efficacy of osimertinib when it is combined with an anti-HDGF antibody. SIGNIFICANCE These results suggest that HDGF could be critically involved in promoting tolerance to TKI in patient-derived xenografts of NSCLC tumors. Blocking HDGF signaling could be a potential means to enhance EGFR-targeted therapy of NSCLC that warrants further advanced preclinical and clinical studies.
Collapse
Affiliation(s)
- Cindy Q. Zhou
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, Baltimore, Maryland.
| | - Ariel Li
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, Baltimore, Maryland.
| | - Kaoru Ri
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, Baltimore, Maryland.
| | - Ahmed S. Sultan
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, Baltimore, Maryland.
| | - Hening Ren
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, Baltimore, Maryland.
| |
Collapse
|
24
|
Zhang C, Yang L, Zhao W, Zhu H, Shi S, Chen S, Wang G, Li B, Zhao G. A heterogeneous tumor immune microenvironment of uncommon epidermal growth factor receptor mutant non-small cell lung cancer. Cancer Sci 2024; 115:3143-3152. [PMID: 38890815 PMCID: PMC11462928 DOI: 10.1111/cas.16253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/31/2024] [Accepted: 06/05/2024] [Indexed: 06/20/2024] Open
Abstract
Common epidermal growth factor receptor (EGFR) mutations are usually not considered for immunotherapy in non-small cell lung cancer (NSCLC) due to poor efficacy. However, whether uncommon EGFR mutations are suitable for immunotherapy has not been thoroughly studied. Thus, we explored the tumor immune microenvironment (TME) features in uncommon EGFR mutant NSCLC. In this study, a total of 41 patients with EGFR mutations were included, the majority (85.4%) of whom were stage I. Among them, 22 patients harbored common mutations, while 19 patients presented with uncommon mutations. Compared with common mutations, uncommon mutations exhibited more infiltrating T cells and fewer M2 macrophages, upregulated expression of antigen processing and a presentation pathway. Unsupervised clustering based on the mIF profile identified two classes with heterogeneous TME in uncommon mutations. Class 1 featured the absence of PD-1+ cytotoxic T cell infiltration, and class 2 displayed a hotter TME because of the downregulated expression of hypoxia (p < 0.001), oxidative phosphorylation (p = 0.009), and transforming growth factor beta signaling (p = 0.01) pathways as well as increased expression of CTLA4 (p = 0.001) and PDCD1 (p = 0.004). The association of CTLA4 and PDCD1 with TME profiles was validated in a TCGA lung adenocarcinoma cohort with uncommon EGFR mutations. Our study reveals the distinct and heterogeneous TME features in uncommon EGFR mutant NSCLC.
Collapse
Affiliation(s)
- Chong Zhang
- Health Science CenterNingbo UniversityNingboChina
- Department of Thoracic SurgeryNingbo No.2 HospitalNingboChina
| | - Liangwei Yang
- Department of Thoracic SurgeryNingbo No.2 HospitalNingboChina
| | - Weidi Zhao
- Department of Thoracic SurgeryNingbo No.2 HospitalNingboChina
| | - Huangkai Zhu
- Department of Thoracic SurgeryNingbo No.2 HospitalNingboChina
| | - Shuo Shi
- Burning Rock BiotechGuangzhouChina
| | | | | | - Bing Li
- Burning Rock BiotechGuangzhouChina
| | - Guofang Zhao
- Health Science CenterNingbo UniversityNingboChina
- Department of Thoracic SurgeryNingbo No.2 HospitalNingboChina
| |
Collapse
|
25
|
Lehmann U, Stenzinger A. [The EGFR biomarker in tumor pathology]. PATHOLOGIE (HEIDELBERG, GERMANY) 2024; 45:344-346. [PMID: 39110165 DOI: 10.1007/s00292-024-01342-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/02/2024] [Indexed: 08/24/2024]
Affiliation(s)
- Ulrich Lehmann
- Molekularpathologie, Institut für Pathologie, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, OE5110, 30625, Hannover, Deutschland.
| | - Albrecht Stenzinger
- Molekularpathologisches Zentrum, Pathologisches Institut, Universitätsklinikum Heidelberg, Universität Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Deutschland.
| |
Collapse
|
26
|
Masudur Rahman Munna M, Touki Tahamid Tusar M, Sajnin Shanta S, Hossain Ahmed M, Sarafat Ali M. Unveiling promising phytocompounds from Moringa oleifera as dual inhibitors of EGFR (T790M/C797S) and VEGFR-2 in non-small cell lung cancer through in silico screening, ADMET, dynamics simulation, and DFT analysis. J Genet Eng Biotechnol 2024; 22:100406. [PMID: 39179328 PMCID: PMC11372720 DOI: 10.1016/j.jgeb.2024.100406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 08/26/2024]
Abstract
Non-small cell lung cancer (NSCLC) is among the main causes of mortality from cancer around the globe, affecting all genders. Current treatments mainly focus on tyrosine kinase inhibitors (TKIs) targeting the epidermal growth factor receptor (EGFR). However, resistance mechanisms, such as the emergence of T790M and C797S EGFR mutations and upregulation of VEGFR-2, often hinder the effectiveness of TKIs. Thereby, EGFR and VEGFR-2 present an intriguing opportunity for the treatment of NSCLC by developing dual-acting drugs. This research aims to evaluate prospective Moringa oleifera L. (MO)-originated compounds to efficiently block both of these receptors. In our research, we screened a library of 200 compounds sourced from MO, a plant known for its remarkable therapeutic potential. We identified five intriguing phytocompounds: hesperetin, gossypetin, quercetin, gallocatechin, and epigallocatechin, as potential anti-cancer agents. The compounds have demonstrated notable binding affinity in virtual screening and multi-stage molecular docking analysis, surpassing the controls, Erlotinib and Bevacizumab + Rituximab. In addition, these compounds demonstrate top-notch drug-likeness and ADMET properties. The five promising drug candidates also had a strong ability to bind to receptors and stayed stable with them during the 200 ns molecular dynamics (MD) simulation and MM-GBSA calculation. Furthermore, DFT analysis indicates that hesperetin, gossypetin, and quercetagetin stand out as the most promising drug candidates among all others. The findings of our study suggest that these three therapeutic candidates can precisely target both EGFR and VEGFR-2 and can potentially act on both of these pathways as a single agent.
Collapse
Affiliation(s)
- Md Masudur Rahman Munna
- Department of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; Dawn of Bioinformatics Limited, Dhaka 1361, Bangladesh
| | - Md Touki Tahamid Tusar
- Department of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Saima Sajnin Shanta
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Md Hossain Ahmed
- Department of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Md Sarafat Ali
- Department of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh.
| |
Collapse
|
27
|
Wang Q, Zhu Y, Pei J. Targeting EGFR with molecular degraders as a promising strategy to overcome resistance to EGFR inhibitors. Future Med Chem 2024; 16:1923-1944. [PMID: 39206853 PMCID: PMC11485768 DOI: 10.1080/17568919.2024.2389764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Abnormal activation of EGFR is often associated with various malignant tumors, making it an important target for antitumor therapy. However, traditional targeted inhibitors have several limitations, such as drug resistance and side effects. Many studies have focused on the development of EGFR degraders to overcome this resistance and enhance the therapeutic effect on tumors. Proteolysis targeting chimeras (PROTAC) and Lysosome-based degradation techniques have made significant progress in degrading EGFR. This review provides a summary of the structural and function of EGFR, the resistance, particularly the research progress and activity of EGFR degraders via the proteasome and lysosome. Furthermore, this review aims to provide insights for the development of the novel EGFR degraders.
Collapse
Affiliation(s)
- Qiangfeng Wang
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
| | - Yumeng Zhu
- State Key Laboratory of Biotherapy & Cancer Center, West China Hospital, Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Junping Pei
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| |
Collapse
|
28
|
Yi SA, Cho D, Kim S, Kim H, Choi MK, Choi HS, Shin S, Yun S, Lim A, Jeong JK, Yoon DE, Cha HJ, Kim K, Han JW, Cho HS, Cho J. Functional loss of ERBB receptor feedback inhibitor 1 (MIG6) promotes glioblastoma tumorigenesis by aberrant activation of epidermal growth factor receptor (EGFR). Mol Oncol 2024. [PMID: 39129344 DOI: 10.1002/1878-0261.13717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 06/07/2024] [Accepted: 07/30/2024] [Indexed: 08/13/2024] Open
Abstract
Dysregulation of epidermal growth factor receptor (EGFR) is one of the most common mechanisms associated with the pathogenesis of various cancers. Mitogen-inducible gene 6 [MIG6; also known as ERBB receptor feedback inhibitor 1 (ERRFI1)], identified as a feedback inhibitor of EGFR, negatively regulates EGFR by directly inhibiting its kinase activity and facilitating its internalization, subsequently leading to degradation. Despite its proposed role as an EGFR-dependent tumor suppressor, the functional consequences and clinical relevance in cancer etiology remain incompletely understood. Here, we identify that the stoichiometric balance between MIG6 and EGFR is crucial in promoting EGFR-dependent oncogenic growth in various experimental model systems. In addition, a subset of ERRFI1 (the official gene symbol of MIG6) mutations exhibit impaired ability to suppress the enzymatic activation of EGFR at multiple levels. In summary, our data suggest that decreased or loss of MIG6 activity can lead to abnormal activation of EGFR, potentially contributing to cellular transformation. We propose that the mutation status of ERRFI1 and the expression levels of MIG6 can serve as additional biomarkers for guiding EGFR-targeted cancer therapies, including glioblastoma.
Collapse
Affiliation(s)
- Sang Ah Yi
- Epigenome Dynamics Control Research Center, School of Pharmacy, Sungkyunkwan University, Suwon, Korea
| | - Daseul Cho
- Department of Biomedical Science & Engineering, Dankook University, Cheonan, Korea
- Department of Nanobiomedical Science, Dankook University, Cheonan, Korea
| | - Sujin Kim
- Department of Biomedical Science & Engineering, Dankook University, Cheonan, Korea
- Department of Nanobiomedical Science, Dankook University, Cheonan, Korea
| | - Hyunjin Kim
- Department of Nanobiomedical Science, Dankook University, Cheonan, Korea
| | - Myung Kyung Choi
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Hee Seong Choi
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Sukjin Shin
- Department of Biomedical Science & Engineering, Dankook University, Cheonan, Korea
- Department of Nanobiomedical Science, Dankook University, Cheonan, Korea
| | - Sujin Yun
- Department of Biomedical Science & Engineering, Dankook University, Cheonan, Korea
- Department of Nanobiomedical Science, Dankook University, Cheonan, Korea
| | - Ahjin Lim
- Department of Biomedical Science & Engineering, Dankook University, Cheonan, Korea
- Department of Nanobiomedical Science, Dankook University, Cheonan, Korea
| | - Jae Kyun Jeong
- Department of Nanobiomedical Science, Dankook University, Cheonan, Korea
| | - Da Eun Yoon
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Korea
- Department of Physiology, Korea University College of Medicine, Seoul, Korea
| | - Hye Ji Cha
- Department of Biomedical Science & Engineering, Dankook University, Cheonan, Korea
| | - Kyoungmi Kim
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Korea
- Department of Physiology, Korea University College of Medicine, Seoul, Korea
| | - Jeung-Whan Han
- Epigenome Dynamics Control Research Center, School of Pharmacy, Sungkyunkwan University, Suwon, Korea
| | - Hyun-Soo Cho
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Jeonghee Cho
- Department of Biomedical Science & Engineering, Dankook University, Cheonan, Korea
- Department of Nanobiomedical Science, Dankook University, Cheonan, Korea
| |
Collapse
|
29
|
Kerdkumthong K, Roytrakul S, Songsurin K, Pratummanee K, Runsaeng P, Obchoei S. Proteomics and Bioinformatics Identify Drug-Resistant-Related Genes with Prognostic Potential in Cholangiocarcinoma. Biomolecules 2024; 14:969. [PMID: 39199357 PMCID: PMC11352417 DOI: 10.3390/biom14080969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/21/2024] [Accepted: 08/05/2024] [Indexed: 09/01/2024] Open
Abstract
Drug resistance is a major challenge in the treatment of advanced cholangiocarcinoma (CCA). Understanding the mechanisms of drug resistance can aid in identifying novel prognostic biomarkers and therapeutic targets to improve treatment efficacy. This study established 5-fluorouracil- (5-FU) and gemcitabine-resistant CCA cell lines, KKU-213FR and KKU-213GR, and utilized comparative proteomics to identify differentially expressed proteins in drug-resistant cells compared to parental cells. Additionally, bioinformatics analyses were conducted to explore the biological and clinical significance of key proteins. The drug-resistant phenotypes of KKU-213FR and KKU-213GR cell lines were confirmed. In addition, these cells demonstrated increased migration and invasion abilities. Proteomics analysis identified 81 differentially expressed proteins in drug-resistant cells, primarily related to binding functions, biological regulation, and metabolic processes. Protein-protein interaction analysis revealed a highly interconnected network involving MET, LAMB1, ITGA3, NOTCH2, CDH2, and NDRG1. siRNA-mediated knockdown of these genes in drug-resistant cell lines attenuated cell migration and cell invasion abilities and increased sensitivity to 5-FU and gemcitabine. The mRNA expression of these genes is upregulated in CCA patient samples and is associated with poor prognosis in gastrointestinal cancers. Furthermore, the functions of these proteins are closely related to the epithelial-mesenchymal transition (EMT) pathway. These findings elucidate the potential molecular mechanisms underlying drug resistance and tumor progression in CCA, providing insights into potential therapeutic targets.
Collapse
Affiliation(s)
- Kankamol Kerdkumthong
- Department of Biochemistry, Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai District, Songkhla 90110, Thailand; (K.K.); (K.S.); (K.P.); (P.R.)
| | - Sittiruk Roytrakul
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Tani 12120, Thailand;
| | - Kawinnath Songsurin
- Department of Biochemistry, Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai District, Songkhla 90110, Thailand; (K.K.); (K.S.); (K.P.); (P.R.)
| | - Kandawasri Pratummanee
- Department of Biochemistry, Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai District, Songkhla 90110, Thailand; (K.K.); (K.S.); (K.P.); (P.R.)
| | - Phanthipha Runsaeng
- Department of Biochemistry, Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai District, Songkhla 90110, Thailand; (K.K.); (K.S.); (K.P.); (P.R.)
- Center of Excellence for Biochemistry, Faculty of Science, Prince of Songkla University, Hat Yai District, Songkhla 90110, Thailand
| | - Sumalee Obchoei
- Department of Biochemistry, Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai District, Songkhla 90110, Thailand; (K.K.); (K.S.); (K.P.); (P.R.)
- Center of Excellence for Biochemistry, Faculty of Science, Prince of Songkla University, Hat Yai District, Songkhla 90110, Thailand
| |
Collapse
|
30
|
Ozgencil F, Gunindi HB, Eren G. Dual-targeted NAMPT inhibitors as a progressive strategy for cancer therapy. Bioorg Chem 2024; 149:107509. [PMID: 38824699 DOI: 10.1016/j.bioorg.2024.107509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/29/2024] [Accepted: 05/28/2024] [Indexed: 06/04/2024]
Abstract
In mammals, nicotinamide phosphoribosyltransferase (NAMPT) is a crucial enzyme in the nicotinamide adenine dinucleotide (NAD+) synthesis pathway catalyzing the condensation of nicotinamide (NAM) with 5-phosphoribosyl-1-pyrophosphate (PRPP) to produce nicotinamide mononucleotide (NMN). Given the pivotal role of NAD+ in a range of cellular functions, including DNA synthesis, redox reactions, cytokine generation, metabolism, and aging, NAMPT has become a promising target for many diseases, notably cancer. Therefore, various NAMPT inhibitors have been reported and classified as first and second-generation based on their chemical structures and design strategies, dual-targeted being one. However, most NAMPT inhibitors suffer from several limitations, such as dose-dependent toxicity and poor pharmacokinetic properties. Consequently, there is no clinically approved NAMPT inhibitor. Hence, research on discovering more effective and less toxic dual-targeted NAMPT inhibitors with desirable pharmacokinetic properties has drawn attention recently. This review summarizes the previously reported dual-targeted NAMPT inhibitors, focusing on their design strategies and advantages over the single-targeted therapies.
Collapse
Affiliation(s)
- Fikriye Ozgencil
- SIRTeam Group, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, 06330 Ankara, Türkiye
| | - Habibe Beyza Gunindi
- SIRTeam Group, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, 06330 Ankara, Türkiye
| | - Gokcen Eren
- SIRTeam Group, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, 06330 Ankara, Türkiye.
| |
Collapse
|
31
|
Erber R. [Pathological Diagnostic Testing and Biomarkers for Perioperative System Therapy]. Zentralbl Chir 2024; 149:S13-S25. [PMID: 39137758 DOI: 10.1055/a-2359-2150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Optimal personalized treatment planning for resectable lung cancer requires quality-assured, standardized and prompt processing of tissue samples in pathological laboratories, as well as the determination of relevant predictive and prognostic biomarkers. Pathological diagnostic testing includes histological tumor typing, staging and tumor grading, resection status and, if necessary, regression grading after neoadjuvant systemic therapy. Histopathological typing is performed according to the current WHO classification and includes adenocarcinomas, squamous cell carcinomas, other non-small cell lung carcinomas (NSCLCs), carcinoids, small cell and large cell neuroendocrine carcinomas. Standardized tumor grading currently plays an important role in invasive non-mucinous adenocarcinoma in particular and enables prognostic risk assessment. The R classification and regression grading are also prognostically relevant. In the early stages of NSCLC, molecular biomarkers such as EGFR, ALK and PD-L1, are relevant for decisions on individual treatment. Testing is performed on FFPE tissue samples and must be carried out in a quality-assured manner and in accordance with international standards.
Collapse
Affiliation(s)
- Ramona Erber
- Pathologisches Institut, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Deutschland
- Institut für Pathologie, Universität Regensburg, Regensburg, Deutschland
| |
Collapse
|
32
|
Zhang Q, Zhou JD, Ding H, Yang L, Lu C, Chu MQ, Qian J, Zhang TJ. A case of Ph + acute lymphoblastic leukemia and EGFR mutant lung adenocarcinoma synchronous overlap: may one TKI drug solve two diseases? BMC Med Genomics 2024; 17:182. [PMID: 38978091 PMCID: PMC11232208 DOI: 10.1186/s12920-024-01955-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 06/28/2024] [Indexed: 07/10/2024] Open
Abstract
BACKGROUND Philadelphia chromosome positive (Ph+) acute lymphoblastic leukemia (ALL) refers to ALL patients with t(9;22) cytogenetic abnormalities, accounting for about 25% of ALL. Lung adenocarcinoma (LUAD) is the most common pathological type of non-small-cell lung cancer, which has a frequency of approximately 45% cases with mutations in EGFR. Both Ph+ ALL and EGFR mutant LUAD are involved in the pathogenesis of the abnormal activation of the tyrosine kinase pathway. Although the second primary hematological malignancy after the treatment of solid tumors is common in clinics, the synchronous multiple primary malignant tumors of hematological malignancy overlap solid tumors are uncommon, even both tumors involved in the pathogenesis of the abnormal activation of the tyrosine kinase pathway are extremely rare. CASE PRESENTATION An 84-year-old man with fatigue and dizziness was diagnosed with Ph+ ALL. Meanwhile, a chest CT indicated a space-occupying lesions, characterized by the presence of void, in the right lower lope with the enlargement of mediastinal lymph node and right pleural effusion. After a few weeks, the patient was diagnosed with LUAD with EGFR exon 19 mutation. Both tyrosine kinase inhibitors (TKI) (Flumatinib) and EGFR-TKI (Oxertinib) was used for the patients, and finally have controlled both diseases. CONCLUSION As far as we know, we for the first time reported a case of Ph+ ALL and EGFR mutant LUAD synchronous overlap, of which pathogenesis is related to abnormal tyrosine kinase activation. This patient was successfully treated with two different TKIs without serious adverse events.
Collapse
Grants
- 81900166, 82270179, 82300164 National Natural Science Foundation of China
- 81900166, 82270179, 82300164 National Natural Science Foundation of China
- 81900166, 82270179, 82300164 National Natural Science Foundation of China
- BK20221287, BK20230296 Natural Science Foundation of Jiangsu Province
- BK20221287, BK20230296 Natural Science Foundation of Jiangsu Province
- M2022123 Research Project of Jiangsu Commission of Health
- SH2022027, SH2023009 Social Development Foundation of Zhenjiang
- SH2022027, SH2023009 Social Development Foundation of Zhenjiang
Collapse
Affiliation(s)
- Qi Zhang
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
- Department of Respiratory Disease, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Jing-Dong Zhou
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Hao Ding
- Department of Respiratory Disease, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Lei Yang
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Chao Lu
- Department of Radiology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Ming-Qiang Chu
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
- Department of Respiratory Disease, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Jun Qian
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Ting-Juan Zhang
- Department of Oncology, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd, Zhenjiang, 212002, Jiangsu, People's Republic of China.
| |
Collapse
|
33
|
Park J, Yu G, Seo SY, Yang J, Kim H. SynDesign: web-based prime editing guide RNA design and evaluation tool for saturation genome editing. Nucleic Acids Res 2024; 52:W121-W125. [PMID: 38682594 PMCID: PMC11223855 DOI: 10.1093/nar/gkae304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/22/2024] [Accepted: 04/24/2024] [Indexed: 05/01/2024] Open
Abstract
Saturation genome editing (SGE) enables in-depth functional evaluation of disease-associated genes and variants by generating all possible single nucleotide variants (SNVs) within a given coding region. Although prime editing can be employed for inducing these SNVs, designing efficient prime editing guide RNAs (pegRNAs) can be challenging and time-consuming. Here, we present SynDesign, an easy-to-use webtool for the design, evaluation, and construction precision pegRNA libraries for SGE with synonymous mutation markers. SynDesign offers a simple yet powerful interface that automates the generation of all feasible pegRNA designs for a target gene or variant of interest. The pegRNAs are selected using the state-of-the-art models to predict prime editing efficiencies for various prime editors and cell types. Top-scoring pegRNA designs are further enhanced using synonymous mutation markers which improve pegRNA efficiency by diffusing the cellular mismatch repair mechanism and serve as sequence markers for improved identification of intended edits following deep sequencing. SynDesign is expected to facilitate future research using SGE to investigate genes or variants of interest associated with human diseases. SynDesign is freely available at https://deepcrispr.info/SynDesign without a login process.
Collapse
Affiliation(s)
- Jinman Park
- Department of Pharmacology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Graduate School of Medical Science, Brain Korea 21 Plus Project for Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Goosang Yu
- Department of Pharmacology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Graduate School of Medical Science, Brain Korea 21 Plus Project for Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Sang-Yeon Seo
- Department of Pharmacology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Graduate School of Medical Science, Brain Korea 21 Plus Project for Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jinyeong Yang
- Department of Pharmacology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Graduate School of Medical Science, Brain Korea 21 Plus Project for Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Hyongbum Henry Kim
- Department of Pharmacology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Graduate School of Medical Science, Brain Korea 21 Plus Project for Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
- Yonsei-IBS Institute, Yonsei University, Seoul 03722, Republic of Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Woo Choo Lee Institute for Precision Drug Development, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Won-Sang Lee Institute for Hearing Loss, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| |
Collapse
|
34
|
Patnaik SK, Ayyamperumal S, Jade D, Palathoti N, Akey KS, Jupudi S, Harrison MA, Ponnambalam S, Mj N, Mjn C. Virtual high throughput screening of natural peptides against ErbB1 and ErbB2 to identify potential inhibitors for cancer chemotherapy. J Biomol Struct Dyn 2024; 42:5551-5574. [PMID: 37387589 DOI: 10.1080/07391102.2023.2226744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 06/13/2023] [Indexed: 07/01/2023]
Abstract
Human epidermal growth factor receptors (EGFR), namely ErbB1/HER1, ErbB2/HER2/neu, ErbB3/HER3, and ErbB4/HER4, the trans-membrane family of tyrosine kinase receptors, are overexpressed in many types of cancers. These receptors play an important role in cell proliferation, differentiation, invasion, metastasis and angiogenesis including unregulated activation of cancer cells. Overexpression of ErbB1 and ErbB2 that occurs in several types of cancers is associated with poor prognosis leading to resistance to ErbB1-directed therapies. In this connection, promising strategy to overcome the disadvantages of the existing chemotherapeutic drugs is the use of short peptides as anticancer agents. In the present study, we have performed virtual high throughput screening of natural peptides against ErbB1 and ErbB2 to identify potential dual inhibitors and identified five inhibitors based on their binding affinities, ADMET analysis, MD simulation studies and calculation of free energy of binding. These natural peptides could be further exploited for developing drugs for treating cancer.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sunil Kumar Patnaik
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Tamil Nadu, India
| | - Selvaraj Ayyamperumal
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Tamil Nadu, India
| | - Dhananjay Jade
- School of Biomedical Sciences, University of Leeds, Leeds, UK
| | - Nagarjuna Palathoti
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Tamil Nadu, India
| | - Krishna Swaroop Akey
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Tamil Nadu, India
| | - Srikanth Jupudi
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Tamil Nadu, India
| | | | | | - Nanjan Mj
- JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Tamil Nadu, India
| | - Chandrasekar Mjn
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Tamil Nadu, India
- School of Life Sciences, JSS Academy of Higher Education & Research(Ooty Campus), Ooty, Tamil Nadu, India
| |
Collapse
|
35
|
Shao J, Gu Y, Guo R, Xu J. A Visual Analysis of the Research Dynamics in Resistance to EGFR Inhibitors for NSCLC. Drug Des Devel Ther 2024; 18:2571-2591. [PMID: 38947223 PMCID: PMC11214774 DOI: 10.2147/dddt.s465238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/07/2024] [Indexed: 07/02/2024] Open
Abstract
Purpose Activating mutations in epidermal growth factor receptor (EGFR) have been identified as key predictive biomarkers for the customized treatment with EGFR tyrosine kinase inhibitors (TKIs) in non-small cell lung cancer (NSCLC), aiding in improving patient response rates and survival. However, resistance challenges the efficacy of these treatments, with limited understanding of post-resistance therapeutic strategies. A deep understanding of the biology and resistance mechanisms of EGFR-mutant NSCLC is crucial for developing new treatment approaches. This study, through bibliometric analysis, summarizes the trends in research on resistance to EGFR-TKIs. Methods Research papers on NSCLC with EGFR inhibitor resistance were collected from the Web of Science Core Collection (WoSCC). The analysis utilized bibliometric tools like CiteSpace, VOSviewer, and other platforms for comprehensive analysis and visualization of the outcomes. Results The WoSCC database contains a total of 5866 documents on resistance to EGFR-TKIs treatment, including 4727 articles (93.48%) and 1139 reviews (6.52%), spanning 81 countries and regions, 4792 institutions, with the involvement of 23,594 authors. Since 2016, there has been a significant increase in publications in this field. China has the highest publication output, while the United States has the highest citation count for papers. Harvard University leads in terms of the number of publications. Among the top ten journals with the highest output, Clinical Cancer Research has the highest impact factor at 11.5, with 90% of the journals classified in Q1 or Q2. Rafael Rosell is one of the most influential authors in this field, ranking second in publication volume and fourth in citation count. Research on EGFR-TKIs resistance mainly focuses on genetic testing, resistance mechanisms, and post-resistance treatment strategies. Conclusion This study provides researchers with a reliable basis and guidance for finding authoritative references, understanding research trends, and exploring potential directions.
Collapse
Affiliation(s)
- Jun Shao
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Yunru Gu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Renhua Guo
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Jiali Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| |
Collapse
|
36
|
Ou SHI, Le X, Nagasaka M, Reungwetwattana T, Ahn MJ, Lim DWT, Santos ES, Shum E, Lau SCM, Lee JB, Calles A, Wu F, Lopes G, Sriuranpong V, Tanizaki J, Horinouchi H, Garassino MC, Popat S, Besse B, Rosell R, Soo RA. Top 20 EGFR+ NSCLC Clinical and Translational Science Papers That Shaped the 20 Years Since the Discovery of Activating EGFR Mutations in NSCLC. An Editor-in-Chief Expert Panel Consensus Survey. LUNG CANCER (AUCKLAND, N.Z.) 2024; 15:87-114. [PMID: 38938224 PMCID: PMC11208875 DOI: 10.2147/lctt.s463429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/27/2024] [Indexed: 06/29/2024]
Abstract
The year 2024 is the 20th anniversary of the discovery of activating epidermal growth factor receptor (EGFR) mutations in non-small cell lung cancer (NSCLC). Since then, tremendous advances have been made in the treatment of NSCLC based on this discovery. Some of these studies have led to seismic changes in the concept of oncology research and spurred treatment advances beyond NSCLC, leading to a current true era of precision oncology for all solid tumors. We now routinely molecularly profile all tumor types and even plasma samples of patients with NSCLC for multiple actionable driver mutations, independent of patient clinical characteristics nor is profiling limited to the advanced incurable stage. We are increasingly monitoring treatment responses and detecting resistance to targeted therapy by using plasma genotyping. Furthermore, we are now profiling early-stage NSCLC for appropriate adjuvant targeted treatment leading to an eventual potential "cure" in early-stage EGFR+ NSCLC which have societal implication on implementing lung cancer screening in never-smokers as most EGFR+ NSCLC patients are never-smokers. All these advances were unfathomable in 2004 when the five papers that described "discoveries" of activating EGFR mutations (del19, L858R, exon 20 insertions, and "uncommon" mutations) were published. To commemorate this 20th anniversary, we assembled a global panel of thoracic medical oncology experts to select the top 20 papers (publications or congress presentation) from the 20 years since this seminal discovery with December 31, 2023 as the cutoff date for inclusion of papers to be voted on. Papers ranked 21 to 30 were considered "honorable mention" and also annotated. Our objective is that these 30 papers with their annotations about their impact and even all the ranked papers will serve as "syllabus" for the education of future thoracic oncology trainees. Finally, we mentioned potential practice-changing clinical trials to be reported. One of them, LAURA was published online on June 2, 2024 was not included in the list of papers to be voted on but will surely be highly ranked if this consensus survery is performed again on the 25th anniversay of the discovery EGFR mutations (i.e. top 25 papers on the 25 years since the discovery of activating EGFR mutations).
Collapse
Affiliation(s)
- Sai-Hong Ignatius Ou
- University of California Irvine School of Medicine, Chao Family Comprehensive Cancer Center, Orange, CA, USA
| | - Xiuning Le
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Misako Nagasaka
- University of California Irvine School of Medicine, Chao Family Comprehensive Cancer Center, Orange, CA, USA
| | - Thanyanan Reungwetwattana
- Division of Medical Oncology, Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Myung-Ju Ahn
- Department of Hematology and Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Darren W T Lim
- Duke-NUS School of medicine, National Cancer Center Singapore, Republic of Singapore
| | - Edgardo S Santos
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, 33431, USA
| | - Elaine Shum
- NYU Langone Perlmutter Cancer Center, NY, NY, USA
| | | | - Jii Bum Lee
- Yonsei Cancer Center Yonsei University, Seoul, Republic of Korea
| | - Antonio Calles
- Department of Medicine, Division of Medical Oncology, Early Drug Development and Phase I Unit, Hospital General Universitario Gregorio Marañón, Madrid, 28007, Spain
| | - Fengying Wu
- Shanghai Chest hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Gilberto Lopes
- Department of Medicine, Division of Medical Oncology, Sylvester Comprehensive Cancer Center at the University of Miami and the Miller School of Medicine, Miami, FL, 33136, USA
| | - Virote Sriuranpong
- Chulalongkorn University, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Junko Tanizaki
- Department of Medicine, Kindai University School of Medicine, Osaka, Japan
| | - Hidehito Horinouchi
- Department of Thoracic Oncology, National Cancer Center Hospital Tokyo, Tokyo, Japan
| | - Marina C Garassino
- Department of Medicine, Division of Medical Oncology-Hematology, University of Chicago Medicine, Chicago, IL, USA
| | - Sanjay Popat
- Royal Marsden Hospital, London, Imperial College, London, UK
| | - Benjamin Besse
- Gustave Roussy Cancer Campus, Villejuif, France; Paris-Saclay University, Orsay, France
| | - Rafael Rosell
- Department of Hematology-Oncology, National University Cancer Institute, National University Hospital Singapore, Republic of Singapore
| | - Ross A Soo
- IOR, Quirón-Dexeus University Institute; ICO, Catalan Institute of Oncology; IGTP, Germans Trias i Pujol Research Institute, Barcelona, Spain
| |
Collapse
|
37
|
Huang L, Liu Y, Yi C, Han L, Li S, Li X, Wu X. Pathological findings of pulmonary papillary adenoma with EGFR mutation and literature review: two cases report. J Cardiothorac Surg 2024; 19:336. [PMID: 38902753 PMCID: PMC11188281 DOI: 10.1186/s13019-024-02852-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 06/14/2024] [Indexed: 06/22/2024] Open
Abstract
OBJECTIVE Pulmonary papillary adenoma is an extremely rare benign tumor. It is derived from type II lung cells and club cells, suggesting that it may originate from stem cells with two-way differentiation. Only one case has been reported with FGFR2-IIIb overexpression. METHODS Two cases of pulmonary papillary adenoma with available data on clinical features, histological morphology, immunophenotype and molecular characteristics were analyzed. RESULTS Both tumors were well-circumscribed unencapsulated nodules composed of papillary structures with fibrovascular cores lined by a single layer of cuboidal or columnar epithelium without necrosis, nuclear atypia and mitoses, or invasion. But malignant transformation features include complex branching structures and significantly enlarged, irregular, and crowded malignant cells in one case. Immunohistochemistry showed that the tumor cells were strongly positive for TTF1, NapsinA, EMA and CK7 and negative for CEA and P63, with a low Ki-67 proliferation index. The EGFR somatic mutation exon19:c.2236_2256delinsATC (p.E746_S752delinsI) was found in one case by next-generation sequencing (NGS) technology. CONCLUSION Pulmonary papillary adenoma is very rare. Virtually all papillary adenomas are clinically silent and discovered incidentally. They are benign tumors, and resection is curative. An EGFR 19 exon deletion mutation in a patient with this tumor type was detected for the first time by NGS, and our results suggest that the malignant transformation of pulmonary papillary adenoma may be mediated by EGFR mutation.
Collapse
Affiliation(s)
- Lu Huang
- Department of Pathology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, 443000, China
- Department of Pathology, Yichang Central People's Hospital, Yichang, 443100, China
- Third-Grade Pharmacological Laboratory On Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
| | - Yi Liu
- Department of Pathology, Yiling Hospital, Yichang, 443100, China
| | - Changjun Yi
- Yichang Ackerman Pathological Diagnostic Centre, Yichang, 443000, China
| | - Lin Han
- Department of Pathology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, 443000, China
- Department of Pathology, Yichang Central People's Hospital, Yichang, 443100, China
- Third-Grade Pharmacological Laboratory On Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
| | - Shuang Li
- Department of Pathology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, 443000, China
- Department of Pathology, Yichang Central People's Hospital, Yichang, 443100, China
- Third-Grade Pharmacological Laboratory On Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
| | - Xingzi Li
- Department of Pathology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, 443000, China
- Department of Pathology, Yichang Central People's Hospital, Yichang, 443100, China
- Third-Grade Pharmacological Laboratory On Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
| | - Xuehui Wu
- Department of Pathology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, 443000, China.
- Department of Pathology, Yichang Central People's Hospital, Yichang, 443100, China.
- Third-Grade Pharmacological Laboratory On Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China.
| |
Collapse
|
38
|
Han JM, Oh KY, Choi SJ, Lee WW, Jin BH, Kim JH, Yu HJ, Kim RJY, Yoon HJ, Lee JI, Hong SD, Cho SD. Antitumor activity of afatinib in EGFR T790M-negative human oral cancer therapeutically targets mTOR/Mcl-1 signaling axis. Cell Oncol (Dordr) 2024:10.1007/s13402-024-00962-6. [PMID: 38888847 DOI: 10.1007/s13402-024-00962-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2024] [Indexed: 06/20/2024] Open
Abstract
PURPOSE This study investigates the role and effectiveness of the epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) in oral cancer, focusing on the clinical relevance of EGFR and myeloid cell leukemia-1 (Mcl-1) in head and neck cancers (HNCs). It aims to explore the molecular mechanism of afatinib, a TKI, in treating human oral cancer. METHODS We conducted an in silico analysis using databases like The Cancer Genome Atlas, Gene Expression Omnibus, and Clinical Proteomic Tumor Analysis Consortium, along with immunohistochemistry staining, to study EGFR and Mcl-1 expression in HNCs. For investigating afatinib's anticancer properties, we performed various in vitro and in vivo analyses, including trypan blue exclusion assay, Western blotting, 4'-6-diamidino-2-phenylindole staining, flow cytometry, quantitative real-time PCR, Mitochondrial membrane potential assay, overexpression vector construction, transient transfection, and a tumor xenograft model. RESULTS Higher expression levels of EGFR and Mcl-1 were observed in HNC patient tissues compared to normal tissues, with their co-expression significantly linked to poor prognosis. There was a strong correlation between EGFR and Mcl-1 expressions in oral cancer patients. Afatinib treatment induced apoptosis and suppressed Mcl-1 in oral cancer cell lines without the EGFR T790M mutation. The mechanism of afatinib-induced apoptosis involved the EGFR/mTOR/Mcl-1 axis, as shown by the effects of mTOR activator MHY1485 and inhibitor rapamycin. Afatinib also increased Bim expression, mitochondrial membrane permeabilization, and cytochrome c release. It significantly lowered tumor volume without affecting body, liver, and kidney weights. CONCLUSION Afatinib, targeting the EGFR/mTOR/Mcl-1 axis, shows promise as a therapeutic strategy for oral cancer, especially in patients with high EGFR and Mcl-1 expressions.
Collapse
Affiliation(s)
- Jung-Min Han
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 03080, Republic of Korea
| | - Kyu-Young Oh
- Department of Oral Pathology, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
| | - Su-Jung Choi
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 03080, Republic of Korea
| | - Won-Woo Lee
- Laboratory Animal Center, CHA University, CHA Biocomplex, Sampyeong-Dong, Seongnam, 13488, Republic of Korea
| | - Bo-Hwan Jin
- Laboratory Animal Center, CHA University, CHA Biocomplex, Sampyeong-Dong, Seongnam, 13488, Republic of Korea
| | - Ji-Hoon Kim
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 03080, Republic of Korea
| | - Hyun-Ju Yu
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 03080, Republic of Korea
| | - Ryan Jin Young Kim
- Department of Dental Science, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 03080, Republic of Korea
| | - Hye-Jung Yoon
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 03080, Republic of Korea
| | - Jae-Il Lee
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 03080, Republic of Korea
| | - Seong-Doo Hong
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 03080, Republic of Korea.
| | - Sung-Dae Cho
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 03080, Republic of Korea.
| |
Collapse
|
39
|
Cao Y, Lan D, Ke X, Zheng W, Zeng J, Niu N, Fu C, Deng W, Jin S. Investigation of RBM10 mutation and its associations with clinical and molecular characteristics in EGFR-mutant and EGFR-wildtype lung adenocarcinoma. Heliyon 2024; 10:e32287. [PMID: 38912481 PMCID: PMC11192990 DOI: 10.1016/j.heliyon.2024.e32287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/21/2024] [Accepted: 05/31/2024] [Indexed: 06/25/2024] Open
Abstract
Background RBM10 is commonly mutated in lung adenocarcinoma (LUAD). However, its role in the pathogenesis of LUAD remains undefined. EGFR-mutant LUAD represents a distinct subset of non-small cell lung cancer (NSCLC). The function of RBM10 in tumor pathogenesis is supposed to differ between EGFR-mutant and EGFR-wt LUAD. This study aimed to interrogate the prevalence of RBM10 mutation in a large cohort of Chinese patients with LUAD and investigate the association of RBM10 mutation with clinical and molecular characteristics of EGFR-mutant and EGFR-wt LUAD. Methods Tumor sequencing data from 2848 Chinese patients with LUAD were retrospectively reviewed and analyzed. The prevalence of RBM10 was also compared with other three cohorts: OrigMed (n = 1222), MSKCC (n = 1267), and TCGA (n = 566). The associations of RBM10 mutation with clinical and molecular characteristics were assessed. An external cohort of 182 patients with LUAD who received PD-1 inhibitor were used to investigate the association of RBM10 mutation with clinical outcomes upon immunotherapy. Results Our cohort showed a higher prevalence of RBM10 in EGFR-mutant LUAD than in EGFR-wt LUAD (14.8 % vs. 6.5 %, p < 0.001). The enrichment of RBM10 mutations in EGFR-mutant LUAD was also seen in another Chinese cohort (OrigMed: 14.9 % vs. 7.8 %, p < 0.001), but not in the two western cohorts (MSKCC: 7.4 % vs. 9.5 %, p = 0.272; TCGA: 8.1 % vs. 6.7 %, p = 0.624). RBM10 mutations co-occurred more frequently with EGFR L858R mutations (23.7 %) than with other types of EGFR mutations (19 del: 7.7 %; other: 7.1 % in others, p < 0.001). In EGFR-mutant LUAD, RBM10 mutations were more commonly found in stage I (18.2 %) and II (21.8 %) vs. stage III (9.4 %) and IV (11.3 %) tumors (p < 0.001). The proportion of PD-L1 positive expression in EGFR-mutant LUAD with concomitant RBM10 mutation was not different from that those without RBM10 mutations (41.8 % vs. 47.9 %, p = 0.566). In contrast, RBM10 mutation occurred more frequently in EGFR-wt LUAD at stage II-IV (stage II: 12.0 %, stage III: 8.7 %, stage IV: 6.6 %) than at stage I (2.8 %). EGFR-wt LUAD with concomitant RBM10 mutations had higher proportions of PD-L1 expression positivity (78.9 % vs. 61.9 %, p = 0.014) and higher tumor mutational load (8.97 vs. 2.99 muts/Mb, p < 0.001) than those without. Patients with EGFR-wt LUAD who also harbored RBM10 loss of function (LOF) mutations had a longer median PFS upon immunotherapy than those with RBM10 non-LOF mutations (7.15 m vs. 2.60 m, HR = 4.83 [1.30-17.94], p = 0.010). Conclusion We comprehensively investigated RBM10 mutations in a Chinese cohort with LUAD. Compared to western cohorts, a significant enrichment of RBM10 mutations in EGFR-mutant LUAD compared to EGFR-wildtype LUAD in the Chinese population. RBM10 mutation shows different associations with clinical and molecular characteristics between EGFR-mutant and EGFR-wt LUAD, suggesting a divergent mechanism between these two subsets via which RBM10 deficiency contribute to tumor pathogenesis. The findings contribute to our understanding of the molecular landscape of LUAD and highlight the importance of considering population-specific factors in cancer genomics research.
Collapse
Affiliation(s)
- Yingyue Cao
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, China
- Department of Immunology, School of Basic Medicine and Forensic Medicine, North Sichuan Medical College, China
| | - Dongmei Lan
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, China
| | - Xianni Ke
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, China
| | - Wenyu Zheng
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, China
| | - Jialong Zeng
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, China
| | - Niu Niu
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, China
| | - Chunmei Fu
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, China
| | - Wencui Deng
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, China
| | - Shi Jin
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, China
| |
Collapse
|
40
|
Bai B, An X, Qu Q, Liu X, Liu Y, Wei L. The clinical features and prognostic implications of the co-mutated TP53 gene in advanced non-small cell lung cancer. Clin Transl Oncol 2024:10.1007/s12094-024-03533-1. [PMID: 38872053 DOI: 10.1007/s12094-024-03533-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/18/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND TP53 is a frequently mutated oncogene within non-small cell lung cancer (NSCLC). However, the clinical and prognostic significance of co-mutations in TP53 in patients with advanced NSCLC has not been fully elucidated. METHODS A total of 174 patients with advanced NSCLC were enrolled in this study. All patients were subjected to sequencing analysis of tumor-related genes and information such as PD-L1 expression, TMB, and co-mutation changes were collected. Patients were categorized into TP53 mutant and TP53 wild-type groups according to their TP53 mutation status and then statistically analyzed. RESULTS TP53 mutations were the most common among all patients, accounting for 56.32%, followed by epidermal growth factor receptor mutations at 48.27%. The most common mutation sites in the TP53 mutation group were exons 5-8.TP53 mutations were significantly associated with PD-L1 and TMB levels. Univariate Cox analysis showed that gender and EGFR mutation affected the prognosis of TP53-mutated NSCLC patients, and multivariate Cox regression analysis identified EGFR mutation as an independent risk factor. The OS of NSCLC patients in the TP53 mutation group was significantly shorter than that of the TP53wt group. Survival curves in the TP53/EGFR combined mutation group showed that patients with combined EGFR mutation had a lower survival rate. DISCUSSION TP53 mutations are associated with different clinical indicators and have important implications in clinical treatment. TP53 is a poor prognostic factor for NSCLC patients, and TP53/EGFR co-mutation will affect the survival time of patients. TP53/EGFR co-mutation may be a new prognostic marker for NSCLC.
Collapse
Affiliation(s)
- Bing Bai
- Tai'an City Central Hospital (Tai'an Central Hospital Affiliated to Qingdao University, Mount Taishan Medical Center), Tai'an, 271000, Shandong, China
| | - Xia An
- Department of Respiratory Medicine, The Second Affiliated Hospital of Shandong First Medical University, No. 336 Taishan Street, Taishan District, Tai'an, 271000, Shandong, China
| | - Qinghui Qu
- Yutai County People's Hospital, Jining, 272300, Shandong, China
| | - Xin Liu
- Department of Respiratory Medicine, The Second Affiliated Hospital of Shandong First Medical University, No. 336 Taishan Street, Taishan District, Tai'an, 271000, Shandong, China.
| | - Yuanyuan Liu
- Department of Respiratory Medicine, The Second Affiliated Hospital of Shandong First Medical University, No. 336 Taishan Street, Taishan District, Tai'an, 271000, Shandong, China
| | - Li Wei
- Department of Respiratory Medicine, The Second Affiliated Hospital of Shandong First Medical University, No. 336 Taishan Street, Taishan District, Tai'an, 271000, Shandong, China
| |
Collapse
|
41
|
Thomson C, Barton P, Braybrooke E, Colclough N, Dong Z, Evans L, Floc'h N, Guérot C, Hargreaves D, Khurana P, Li S, Li X, Lister A, McCoull W, McWilliams L, Orme JP, Packer MJ, Swaih AM, Ward RA, Winlow P, Ye Y. Discovery and Optimization of Potent, Efficacious and Selective Inhibitors Targeting EGFR Exon20 Insertion Mutations. J Med Chem 2024; 67:8988-9027. [PMID: 38770784 DOI: 10.1021/acs.jmedchem.4c00227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Herein, we report the identification and optimization of a series of potent inhibitors of EGFR Exon20 insertions with significant selectivity over wild-type EGFR. A strategically designed HTS campaign, multiple iterations of structure-based drug design (SBDD), and tactical linker replacement led to a potent and wild-type selective series of molecules and ultimately the discovery of 36. Compound 36 is a potent and selective inhibitor of EGFR Exon20 insertions and has demonstrated encouraging efficacy in NSCLC EGFR CRISPR-engineered H2073 xenografts that carry an SVD Exon20 insertion and reduced efficacy in a H2073 wild-type EGFR xenograft model compared to CLN-081 (5), indicating that 36 may have lower EGFR wild-type associated toxicity.
Collapse
Affiliation(s)
- Clare Thomson
- AstraZeneca, 1 Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0AA, United Kingdom
| | - Peter Barton
- AstraZeneca, 1 Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0AA, United Kingdom
| | - Erin Braybrooke
- AstraZeneca, 1 Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0AA, United Kingdom
| | - Nicola Colclough
- AstraZeneca, 1 Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0AA, United Kingdom
| | - Zhiqiang Dong
- Pharmaron Beijing Co., Ltd., 6 Taihe Road, BDA, Beijing 100176, P. R. China
| | - Laura Evans
- AstraZeneca, 1 Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0AA, United Kingdom
| | - Nicolas Floc'h
- AstraZeneca, 1 Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0AA, United Kingdom
| | - Carine Guérot
- AstraZeneca, 1 Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0AA, United Kingdom
| | - David Hargreaves
- AstraZeneca, 1 Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0AA, United Kingdom
| | - Puneet Khurana
- AstraZeneca, 1 Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0AA, United Kingdom
| | - Songlei Li
- Pharmaron Beijing Co., Ltd., 6 Taihe Road, BDA, Beijing 100176, P. R. China
| | - Xiuwei Li
- Pharmaron Beijing Co., Ltd., 6 Taihe Road, BDA, Beijing 100176, P. R. China
| | - Andrew Lister
- AstraZeneca, 1 Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0AA, United Kingdom
| | - William McCoull
- AstraZeneca, 1 Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0AA, United Kingdom
| | - Lisa McWilliams
- AstraZeneca, 1 Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0AA, United Kingdom
| | - Jonathan P Orme
- AstraZeneca, 1 Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0AA, United Kingdom
| | - Martin J Packer
- AstraZeneca, 1 Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0AA, United Kingdom
| | - Aisha M Swaih
- AstraZeneca, 1 Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0AA, United Kingdom
| | - Richard A Ward
- AstraZeneca, 1 Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0AA, United Kingdom
| | - Poppy Winlow
- AstraZeneca, 1 Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0AA, United Kingdom
| | - Yang Ye
- Pharmaron Beijing Co., Ltd., 6 Taihe Road, BDA, Beijing 100176, P. R. China
| |
Collapse
|
42
|
Liu Y, Liu X, Wei D, Dang L, Xu X, Huang S, Li L, Wu S, Wu J, Liu X, Sun W, Tao W, Wei Y, Huang X, Li K, Wang X, Zhou F. CoHIT: a one-pot ultrasensitive ERA-CRISPR system for detecting multiple same-site indels. Nat Commun 2024; 15:5014. [PMID: 38866774 PMCID: PMC11169540 DOI: 10.1038/s41467-024-49414-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/05/2024] [Indexed: 06/14/2024] Open
Abstract
Genetic testing is crucial for precision cancer medicine. However, detecting multiple same-site insertions or deletions (indels) is challenging. Here, we introduce CoHIT (Cas12a-based One-for-all High-speed Isothermal Test), a one-pot CRISPR-based assay for indel detection. Leveraging an engineered AsCas12a protein variant with high mismatch tolerance and broad PAM scope, CoHIT can use a single crRNA to detect multiple NPM1 gene c.863_864 4-bp insertions in acute myeloid leukemia (AML). After optimizing multiple parameters, CoHIT achieves a detection limit of 0.01% and rapid results within 30 minutes, without wild-type cross-reactivity. It successfully identifies NPM1 mutations in 30 out of 108 AML patients and demonstrates potential in monitoring minimal residual disease (MRD) through continuous sample analysis from three patients. The CoHIT method is also competent for detecting indels of KIT, BRAF, and EGFR genes. Integration with lateral flow test strips and microfluidic chips highlights CoHIT's adaptability and multiplexing capability, promising significant advancements in clinical cancer diagnostics.
Collapse
Affiliation(s)
- Yin Liu
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Wuhan University Shenzhen Research Institute, Shenzhen, China
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, China
| | - Xinyi Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modeatarn Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Dongyi Wei
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Lu Dang
- Department of Reproductive Medicine, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaoran Xu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | | | - Liwen Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modeatarn Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Sanyun Wu
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Jinxian Wu
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Xiaoyan Liu
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Wenjun Sun
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai, China
| | - Wanyu Tao
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai, China
| | - Yongchang Wei
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Xingxu Huang
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai, China
| | - Kui Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modeatarn Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| | - Xinjie Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modeatarn Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| | - Fuling Zhou
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China.
| |
Collapse
|
43
|
Boukansa S, Mouhrach I, El Agy F, El Bardai S, Bouguenouch L, Serraj M, Amara B, Ouadnouni Y, Smahi M, Alami B, Mellas N, Benbrahim Z, El Fatemi H. Clinicopathological and prognostic implications of EGFR mutations subtypes in Moroccan non-small cell lung cancer patients: A first report. PLoS One 2024; 19:e0298721. [PMID: 38837980 PMCID: PMC11152259 DOI: 10.1371/journal.pone.0298721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/29/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) remains a significant global health concern, with EGFR mutations playing a pivotal role in guiding treatment decisions. This prospective study investigated the prevalence and clinical implications of EGFR mutations in Moroccan NSCLC patients. METHODS A cohort of 302 NSCLC patients was analyzed for EGFR mutations using multiple techniques. Demographic, clinical, and pathological characteristics were assessed, and overall survival (OS) outcomes were compared among different EGFR mutation subtypes. RESULTS EGFR mutations were present in 23.5% of patients, with common mutations (81.69%) dominating. Common mutations showed strong associations with female gender and non-smoking status, while rare mutations were associated with a positive smoking history. Patients with EGFR mutations receiving tyrosine kinase inhibitors (TKIs) had significantly improved OS compared to wild-type EGFR patients. Notably, patients with common EGFR mutations had the highest OS, while those with rare mutations had a shorter survival period, albeit not statistically significant. CONCLUSION This study highlights the relevance of EGFR mutation status in NSCLC patients, particularly in therapeutic decision-making. The association between smoking history and rare mutations suggests the need for tailored approaches. The survival advantage for patients with common EGFR mutations underscores the significance of personalized treatment strategies.
Collapse
Affiliation(s)
- Sara Boukansa
- Laboratory of Biomedical and Translational Research, Faculty of Medicine and Pharmacy, Sidi Mohamed Ben Abdellah University, Fez, Morocco
- Laboratory of Anatomic Pathology and Molecular Pathology, University Hospital Hassan II, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Ismail Mouhrach
- Unit of Medical Genetics and Oncogenetics, University Hospital Hassan II, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Fatima El Agy
- Laboratory of Biomedical and Translational Research, Faculty of Medicine and Pharmacy, Sidi Mohamed Ben Abdellah University, Fez, Morocco
- Laboratory of Anatomic Pathology and Molecular Pathology, University Hospital Hassan II, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Sanae El Bardai
- Laboratory of Anatomic Pathology and Molecular Pathology, University Hospital Hassan II, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Laila Bouguenouch
- Unit of Medical Genetics and Oncogenetics, University Hospital Hassan II, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Mounia Serraj
- Department of Pneumology, University Hospital Hassan II, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Bouchra Amara
- Department of Pneumology, University Hospital Hassan II, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Yassine Ouadnouni
- Department of Thoracic Surgery, University Hospital Hassan II, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Mohamed Smahi
- Department of Thoracic Surgery, University Hospital Hassan II, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Badreeddine Alami
- Department of Radiology, University Hospital Hassan II, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Nawfel Mellas
- Department of Oncology, University Hospital Hassan II, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Zineb Benbrahim
- Department of Oncology, University Hospital Hassan II, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Hinde El Fatemi
- Laboratory of Biomedical and Translational Research, Faculty of Medicine and Pharmacy, Sidi Mohamed Ben Abdellah University, Fez, Morocco
- Laboratory of Anatomic Pathology and Molecular Pathology, University Hospital Hassan II, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| |
Collapse
|
44
|
Leal TA, Ramalingam SS. Commemorating the 20th anniversary of the discovery of epidermal growth factor receptor mutation in lung cancer: Translational research at its best. Cancer 2024; 130:1910-1912. [PMID: 38717934 DOI: 10.1002/cncr.35353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
The discovery of epidermal growth factor receptor mutations in non–small cell lung cancer (NSCLC) launched the era of personalized medicine in advanced NSCLC, which led to a dramatic shift in the therapeutic landscape of this disease.
Collapse
Affiliation(s)
- Ticiana A Leal
- Winship Cancer Institute of Emory University, Atlanta, Georgia, USA
| | | |
Collapse
|
45
|
Weng L, Xu Y, Chen Y, Chen C, Qian Q, Pan J, Su H. Using Vision Transformer for high robustness and generalization in predicting EGFR mutation status in lung adenocarcinoma. Clin Transl Oncol 2024; 26:1438-1445. [PMID: 38194018 DOI: 10.1007/s12094-023-03366-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/04/2023] [Indexed: 01/10/2024]
Abstract
BACKGROUND Lung adenocarcinoma is a common cause of cancer-related deaths worldwide, and accurate EGFR genotyping is crucial for optimal treatment outcomes. Conventional methods for identifying the EGFR genotype have several limitations. Therefore, we proposed a deep learning model using non-invasive CT images to predict EGFR mutation status with robustness and generalizability. METHODS A total of 525 patients were enrolled at the local hospital to serve as the internal data set for model training and validation. In addition, a cohort of 30 patients from the publicly available Cancer Imaging Archive Data Set was selected for external testing. All patients underwent plain chest CT, and their EGFR mutation status labels were categorized as either mutant or wild type. The CT images were analyzed using a self-attention-based ViT-B/16 model to predict the EGFR mutation status, and the model's performance was evaluated. To produce an attention map indicating the suspicious locations of EGFR mutations, Grad-CAM was utilized. RESULTS The ViT deep learning model achieved impressive results, with an accuracy of 0.848, an AUC of 0.868, a sensitivity of 0.924, and a specificity of 0.718 on the validation cohort. Furthermore, in the external test cohort, the model achieved comparable performances, with an accuracy of 0.833, an AUC of 0.885, a sensitivity of 0.900, and a specificity of 0.800. CONCLUSIONS The ViT model demonstrates a high level of accuracy in predicting the EGFR mutation status of lung adenocarcinoma patients. Moreover, with the aid of attention maps, the model can assist clinicians in making informed clinical decisions.
Collapse
Affiliation(s)
- Luoqi Weng
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Yilun Xu
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Yuhan Chen
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Chengshui Chen
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Qinqing Qian
- Department of Respiratory Medicine, Shaoxing People's Hospital, Shaoxing, 312000, Zhejiang, China
| | - Jie Pan
- Department of Gastroenterology, Wenzhou Central Hospital, Wenzhou, 325000, Zhejiang, China
- Department of Gastroenterology, The Dingli Clinical College of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- Department of Gastroenterology, The Second Affiliated Hospital of Shanghai University, Wenzhou, 325000, Zhejiang, China
| | - Huang Su
- Department of Gastroenterology, Wenzhou Central Hospital, Wenzhou, 325000, Zhejiang, China.
- Department of Gastroenterology, The Dingli Clinical College of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
- Department of Gastroenterology, The Second Affiliated Hospital of Shanghai University, Wenzhou, 325000, Zhejiang, China.
| |
Collapse
|
46
|
Mariella E, Grasso G, Miotto M, Buzo K, Reilly NM, Andrei P, Vitiello PP, Crisafulli G, Arena S, Rospo G, Corti G, Lorenzato A, Cancelliere C, Barault L, Gionfriddo G, Linnebacher M, Russo M, Di Nicolantonio F, Bardelli A. Transcriptome-wide gene expression outlier analysis pinpoints therapeutic vulnerabilities in colorectal cancer. Mol Oncol 2024; 18:1460-1485. [PMID: 38468448 PMCID: PMC11161737 DOI: 10.1002/1878-0261.13622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 02/20/2024] [Indexed: 03/13/2024] Open
Abstract
Multiple strategies are continuously being explored to expand the drug target repertoire in solid tumors. We devised a novel computational workflow for transcriptome-wide gene expression outlier analysis that allows the systematic identification of both overexpression and underexpression events in cancer cells. Here, it was applied to expression values obtained through RNA sequencing in 226 colorectal cancer (CRC) cell lines that were also characterized by whole-exome sequencing and microarray-based DNA methylation profiling. We found cell models displaying an abnormally high or low expression level for 3533 and 965 genes, respectively. Gene expression abnormalities that have been previously associated with clinically relevant features of CRC cell lines were confirmed. Moreover, by integrating multi-omics data, we identified both genetic and epigenetic alternations underlying outlier expression values. Importantly, our atlas of CRC gene expression outliers can guide the discovery of novel drug targets and biomarkers. As a proof of concept, we found that CRC cell lines lacking expression of the MTAP gene are sensitive to treatment with a PRMT5-MTA inhibitor (MRTX1719). Finally, other tumor types may also benefit from this approach.
Collapse
Affiliation(s)
- Elisa Mariella
- Department of Oncology, Molecular Biotechnology CenterUniversity of TorinoItaly
- IFOM ETS, The AIRC Institute of Molecular OncologyMilanItaly
| | - Gaia Grasso
- Department of Oncology, Molecular Biotechnology CenterUniversity of TorinoItaly
- IFOM ETS, The AIRC Institute of Molecular OncologyMilanItaly
| | - Martina Miotto
- Department of Oncology, Molecular Biotechnology CenterUniversity of TorinoItaly
- IFOM ETS, The AIRC Institute of Molecular OncologyMilanItaly
| | - Kristi Buzo
- Department of OncologyUniversity of TorinoCandiolo (TO)Italy
- Candiolo Cancer InstituteFPO‐IRCCSCandiolo (TO)Italy
| | | | - Pietro Andrei
- Department of OncologyUniversity of TorinoCandiolo (TO)Italy
| | - Pietro Paolo Vitiello
- Department of Oncology, Molecular Biotechnology CenterUniversity of TorinoItaly
- IFOM ETS, The AIRC Institute of Molecular OncologyMilanItaly
| | | | - Sabrina Arena
- Department of OncologyUniversity of TorinoCandiolo (TO)Italy
- Candiolo Cancer InstituteFPO‐IRCCSCandiolo (TO)Italy
| | - Giuseppe Rospo
- Department of OncologyUniversity of TorinoCandiolo (TO)Italy
- Present address:
Boehringer Ingelheim RCV GmbH & Co KGViennaAustria
| | - Giorgio Corti
- Department of Oncology, Molecular Biotechnology CenterUniversity of TorinoItaly
| | - Annalisa Lorenzato
- Department of Oncology, Molecular Biotechnology CenterUniversity of TorinoItaly
| | | | - Ludovic Barault
- Department of OncologyUniversity of TorinoCandiolo (TO)Italy
| | | | - Michael Linnebacher
- Clinic of General Surgery, Molecular Oncology and ImmunotherapyUniversity of RostockGermany
| | - Mariangela Russo
- Department of Oncology, Molecular Biotechnology CenterUniversity of TorinoItaly
- IFOM ETS, The AIRC Institute of Molecular OncologyMilanItaly
| | - Federica Di Nicolantonio
- Department of OncologyUniversity of TorinoCandiolo (TO)Italy
- Candiolo Cancer InstituteFPO‐IRCCSCandiolo (TO)Italy
| | - Alberto Bardelli
- Department of Oncology, Molecular Biotechnology CenterUniversity of TorinoItaly
- IFOM ETS, The AIRC Institute of Molecular OncologyMilanItaly
| |
Collapse
|
47
|
Manhas R, Rathore A, Havelikar U, Mahajan S, Gandhi SG, Mahapa A. Uncovering the potentiality of quinazoline derivatives against Pseudomonas aeruginosa with antimicrobial synergy and SAR analysis. J Antibiot (Tokyo) 2024; 77:365-381. [PMID: 38514856 DOI: 10.1038/s41429-024-00717-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 02/10/2024] [Accepted: 02/27/2024] [Indexed: 03/23/2024]
Abstract
Antimicrobial resistance has emerged as a covert global health crisis, posing a significant threat to humanity. If left unaddressed, it is poised to become the foremost cause of mortality worldwide. Among the multitude of resistant bacterial pathogens, Pseudomonas aeruginosa, a Gram-negative, facultative bacterium, has been responsible for mild to deadly infections. It is now enlisted as a global critical priority pathogen by WHO. Urgent measures are required to combat this formidable pathogen, necessitating the development of novel anti-pseudomonal drugs. To confront this pressing issue, we conducted an extensive screening of 3561 compounds from the ChemDiv library, resulting in the discovery of potent anti-pseudomonal quinazoline derivatives. Among the identified compounds, IDD-8E has emerged as a lead molecule, exhibiting exceptional efficacy against P. aeruginosa while displaying no cytotoxicity. Moreover, IDD-8E demonstrated significant pseudomonal killing, disruption of pseudomonal biofilm and other anti-bacterial properties comparable to a well-known antibiotic rifampicin. Additionally, IDD-8E's synergy with different antibiotics further strengthens its potential as a powerful anti-pseudomonal agent. IDD-8E also exhibited significant antimicrobial efficacy against other ESKAPE pathogens. Moreover, we elucidated the Structure-Activity-Relationship (SAR) of IDD-8E targeting the essential WaaP protein in P. aeruginosa. Altogether, our findings emphasize the promise of IDD-8E as a clinical candidate for novel anti-pseudomonal drugs, offering hope in the battle against antibiotic resistance and its devastating impact on global health.
Collapse
Affiliation(s)
- Rakshit Manhas
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu, 180001, India
| | - Arti Rathore
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ujwal Havelikar
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu, 180001, India
| | - Shavi Mahajan
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu, 180001, India
| | - Sumit G Gandhi
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Avisek Mahapa
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu, 180001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
48
|
Sanchis-Borja M, Guisier F, Swalduz A, Curcio H, Basse V, Maritaz C, Chouaid C, Auliac JB. Characterization of Patients with EGFR Mutation-Positive NSCLC Following Emergence of the Osimertinib Resistance Mutations, L718Q or G724S: A Multicenter Retrospective Observational Study in France. Onco Targets Ther 2024; 17:439-448. [PMID: 38836187 PMCID: PMC11147782 DOI: 10.2147/ott.s448909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/11/2024] [Indexed: 06/06/2024] Open
Abstract
Purpose The third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI), osimertinib, is an effective first-line therapy for patients with common EGFR mutation-positive non-small cell lung cancer (NSCLC). However, almost all patients become resistant to treatment. In some patients, emergence of tertiary EGFR mutations is implicated as a resistance mechanism. This study describes patients with NSCLC who acquired the rare EGFR mutations, L718Q or G724S, following EGFR TKI treatment. Patients and Methods This was a retrospective, observational study undertaken in France from Feb-Nov 2021, in patients with EGFR mutation-positive NSCLC with an acquired L718Q or G724S mutation. Primary objectives were description of tumor characteristics, progression, and progression under treatment. Results Nine eligible patients were identified. Acquired resistance to initial EGFR TKI treatment was associated with T790M emergence in six patients, who then received osimertinib monotherapy. Overall, eight patients received osimertinib monotherapy treatment at some point (average treatment duration: 18.3 months). Following the emergence of L718Q or G724S, patients received chemotherapy (n = 4; two of whom subsequently received afatinib), nivolumab (n = 2), afatinib (n = 2), or immunochemotherapy (n = 1). In the four patients who received afatinib after identification of L718Q or G724S, 2 achieved a partial response, one had stable disease and one had progressive disease. Treatment duration was 1.6-31.7 months. In patients with controlled disease (n = 3), progression-free survival was 6.1-31.7 months. Two of these patients had previously received osimertinib. Conclusion Currently, there is no consensus regarding the treatment of EGFR mutation-positive NSCLC following emergence of the osimertinib resistance mutations, L718Q or G724S. Afatinib appears to be a promising treatment option in this setting.
Collapse
Affiliation(s)
| | - Florian Guisier
- Normandie Univ, UNIROUEN, LITIS Laboratory QuantIF team EA4108, CHU Rouen, Department of Pneumology and Inserm CIC-CRB 1404, Rouen, France
| | - Aurélie Swalduz
- Department of Medical Oncology, Léon Bérard Cancer Center, Lyon, France
| | - Hubert Curcio
- Department of Medical Oncology, Centre François Baclesse, Caen, France
| | | | - Christophe Maritaz
- Medical Affairs Department, Oncology, Boehringer Ingelheim France, Paris, France
| | - Christos Chouaid
- Pulmonology Department, Créteil Intercommunal Hospital, Créteil, France
| | | |
Collapse
|
49
|
Inoue M, Ekimoto T, Yamane T, Ikeguchi M. Computational Analysis of Activation of Dimerized Epidermal Growth Factor Receptor Kinase Using the String Method and Markov State Model. J Chem Inf Model 2024; 64:3884-3895. [PMID: 38670929 DOI: 10.1021/acs.jcim.4c00172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Epidermal growth factor receptor (EGFR) activation is accompanied by dimerization. During the activation of the intracellular kinase domain, two EGFR kinases form an asymmetric dimer, and one side of the dimer (receiver) is activated. Using the string method and Markov state model (MSM), we performed a computational analysis of the structural changes in the activation of the EGFR dimer in this study. The string method reveals the minimum free-energy pathway (MFEP) from the inactive to active structure. The MSM was constructed from numerous trajectories of molecular dynamics simulations around the MFEP, which revealed the free-energy map of structural changes. In the activation of the receiver kinase, the unfolding of the activation loop (A-loop) is followed by the rearrangement of the C-helix, as observed in other kinases. However, unlike other kinases, the free-energy map of EGFR at the asymmetric dimer showed that the active state yielded the highest stability and revealed how interactions at the dimer interface induced receiver activation. As the H-helix of the activator approaches the C-helix of the receiver during activation, the A-loop unfolds. Subsequently, L782 of the receiver enters the pocket between the G- and H-helices of the activator, leading to a rearrangement of the hydrophobic residues around L782 of the receiver, which constitutes a structural rearrangement of the C-helix of the receiver from an outward to an inner position. The MSM analysis revealed long-time scale trajectories via kinetic Monte Carlo.
Collapse
Affiliation(s)
- Masao Inoue
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Toru Ekimoto
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Tsutomu Yamane
- HPC- and AI-driven Drug Development Platform Division, Center for Computational Science, RIKEN, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Mitsunori Ikeguchi
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
- HPC- and AI-driven Drug Development Platform Division, Center for Computational Science, RIKEN, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| |
Collapse
|
50
|
Takahashi M, Chong HB, Zhang S, Yang TY, Lazarov MJ, Harry S, Maynard M, Hilbert B, White RD, Murrey HE, Tsou CC, Vordermark K, Assaad J, Gohar M, Dürr BR, Richter M, Patel H, Kryukov G, Brooijmans N, Alghali ASO, Rubio K, Villanueva A, Zhang J, Ge M, Makram F, Griesshaber H, Harrison D, Koglin AS, Ojeda S, Karakyriakou B, Healy A, Popoola G, Rachmin I, Khandelwal N, Neil JR, Tien PC, Chen N, Hosp T, van den Ouweland S, Hara T, Bussema L, Dong R, Shi L, Rasmussen MQ, Domingues AC, Lawless A, Fang J, Yoda S, Nguyen LP, Reeves SM, Wakefield FN, Acker A, Clark SE, Dubash T, Kastanos J, Oh E, Fisher DE, Maheswaran S, Haber DA, Boland GM, Sade-Feldman M, Jenkins RW, Hata AN, Bardeesy NM, Suvà ML, Martin BR, Liau BB, Ott CJ, Rivera MN, Lawrence MS, Bar-Peled L. DrugMap: A quantitative pan-cancer analysis of cysteine ligandability. Cell 2024; 187:2536-2556.e30. [PMID: 38653237 PMCID: PMC11143475 DOI: 10.1016/j.cell.2024.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/15/2024] [Accepted: 03/19/2024] [Indexed: 04/25/2024]
Abstract
Cysteine-focused chemical proteomic platforms have accelerated the clinical development of covalent inhibitors for a wide range of targets in cancer. However, how different oncogenic contexts influence cysteine targeting remains unknown. To address this question, we have developed "DrugMap," an atlas of cysteine ligandability compiled across 416 cancer cell lines. We unexpectedly find that cysteine ligandability varies across cancer cell lines, and we attribute this to differences in cellular redox states, protein conformational changes, and genetic mutations. Leveraging these findings, we identify actionable cysteines in NF-κB1 and SOX10 and develop corresponding covalent ligands that block the activity of these transcription factors. We demonstrate that the NF-κB1 probe blocks DNA binding, whereas the SOX10 ligand increases SOX10-SOX10 interactions and disrupts melanoma transcriptional signaling. Our findings reveal heterogeneity in cysteine ligandability across cancers, pinpoint cell-intrinsic features driving cysteine targeting, and illustrate the use of covalent probes to disrupt oncogenic transcription-factor activity.
Collapse
Affiliation(s)
- Mariko Takahashi
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA.
| | - Harrison B Chong
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Siwen Zhang
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Tzu-Yi Yang
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Matthew J Lazarov
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Stefan Harry
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | | | | | | | | | | | - Kira Vordermark
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Jonathan Assaad
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Magdy Gohar
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Benedikt R Dürr
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Marianne Richter
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Himani Patel
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | | | | | | | - Karla Rubio
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Antonio Villanueva
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Junbing Zhang
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Maolin Ge
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Farah Makram
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Hanna Griesshaber
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Drew Harrison
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Ann-Sophie Koglin
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Samuel Ojeda
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Barbara Karakyriakou
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Alexander Healy
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - George Popoola
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Inbal Rachmin
- Cutaneous Biology Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Neha Khandelwal
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | | | - Pei-Chieh Tien
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Nicholas Chen
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; Department of Pathology, Harvard Medical School, Boston, MA 02114, USA
| | - Tobias Hosp
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Sanne van den Ouweland
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Toshiro Hara
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Lillian Bussema
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Rui Dong
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Lei Shi
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Martin Q Rasmussen
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Ana Carolina Domingues
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Aleigha Lawless
- Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jacy Fang
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Satoshi Yoda
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Linh Phuong Nguyen
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Sarah Marie Reeves
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Farrah Nicole Wakefield
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Adam Acker
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Sarah Elizabeth Clark
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Taronish Dubash
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - John Kastanos
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Eugene Oh
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - David E Fisher
- Cutaneous Biology Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Shyamala Maheswaran
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Daniel A Haber
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Genevieve M Boland
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Surgery, Harvard Medical School, Boston, MA 02114, USA
| | - Moshe Sade-Feldman
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Russell W Jenkins
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Aaron N Hata
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Nabeel M Bardeesy
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Mario L Suvà
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pathology, Harvard Medical School, Boston, MA 02114, USA
| | | | - Brian B Liau
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Christopher J Ott
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Miguel N Rivera
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pathology, Harvard Medical School, Boston, MA 02114, USA
| | - Michael S Lawrence
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pathology, Harvard Medical School, Boston, MA 02114, USA.
| | - Liron Bar-Peled
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|