1
|
Li D, Ma Q. Ubiquitin-specific protease: an emerging key player in cardiomyopathy. Cell Commun Signal 2025; 23:143. [PMID: 40102846 PMCID: PMC11921692 DOI: 10.1186/s12964-025-02123-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 02/23/2025] [Indexed: 03/20/2025] Open
Abstract
Protein quality control (PQC) plays a vital role in maintaining normal heart function, as cardiomyocytes are relatively sensitive to misfolded or damaged proteins, which tend to accumulate under pathological conditions. Ubiquitin-specific protease (USP) is the largest deubiquitinating enzyme family and a key component of the ubiquitin proteasome system (UPS), which is a non-lysosomal protein degradation machinery to mediate PQC in cells. USPs regulate the stability or activity of the target proteins that involve intracellular signaling, transcriptional control of inflammation, antioxidation, and cell growth. Recent studies demonstrate that the USPs can regulate fibrosis, lipid metabolism, glucose homeostasis, hypertrophic response, post-ischemic recovery and cell death such as apoptosis and ferroptosis in cardiomyocytes. Since myocardial cell loss is an important component of cardiomyopathy, therefore, these findings suggest that the UPSs play emerging roles in cardiomyopathy. This review briefly summarizes recent literature on the regulatory roles of USPs in the occurrence and development of cardiomyopathy, giving us new insights into the molecular mechanisms of USPs in different cardiomyopathy and potential preventive strategies for cardiomyopathy.
Collapse
Affiliation(s)
- Danlei Li
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan Province, China
| | - Qilin Ma
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan Province, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan Province, China.
| |
Collapse
|
2
|
Cardano M, Buscemi G, Zannini L. Sex Disparities in P53 Regulation and Functions: Novel Insights for Personalized Cancer Therapies. Cells 2025; 14:363. [PMID: 40072091 PMCID: PMC11898824 DOI: 10.3390/cells14050363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/21/2025] [Accepted: 02/24/2025] [Indexed: 03/15/2025] Open
Abstract
Epidemiological studies have revealed significant sex differences in the incidence of tumors unrelated to reproductive functions, with females demonstrating a lesser risk and a better response to therapy than males. However, the reasons for these disparities are still unknown and cancer therapies are generally sex-unbiased. The tumor-suppressor protein p53 is a transcription factor that can activate the expression of multiple target genes mainly involved in the maintenance of genome stability and tumor prevention. It is encoded by TP53, which is the most-frequently mutated gene in human cancers and therefore constitutes an attractive target for therapy. Recently, evidence of sex differences has emerged in both p53 regulations and functions, possibly providing novel opportunities for personalized cancer medicine. Here, we will review and discuss current knowledge about sexual disparities in p53 pathways, their role in tumorigenesis and cancer progression, and their importance in the therapy choice process, finally highlighting the importance of considering sex contribution in both basic research and clinical practice.
Collapse
|
3
|
Tian S, Hao ZY, Xu DH, Wang XZ, Shi CC, Zhang Y. Menin inhibitor MI-503 exhibits potent anti-cancer activity in osteosarcoma. Sci Rep 2025; 15:7059. [PMID: 40016386 PMCID: PMC11868418 DOI: 10.1038/s41598-025-91351-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 02/19/2025] [Indexed: 03/01/2025] Open
Abstract
Small molecule Menin inhibitor recently has emerged as a new therapeutic by targeting the interaction of histone methyltransferase MLL1 (KMT2A) with Menin. MLL1 is associated with aggressive osteosarcoma (OS) in young adults. The purpose of the study is to explore whether Menin inhibitors have therapeutic effects in OS.To investigate the anti-OS activity of the Menin inhibitor MI-503 in vitro, we performed CCK-8 cell growth and colony formation assay. Cellular thermal shift assay was used to test whether MI-503 binds to Menin in osteosarcoma cells. The expression of oncogenes in MI-503 treated cells were detected by western blotting and Quantitative reverse transcription polymerase chain reaction (RT-qPCR) assay. Finally, we established the OS subcutaneous xenograft mice model to study the anti-OS effect of MI-503 in vivo.The results showed that MI-503 dose-dependently suppressed cell proliferation in 6 OS cell lines, including 143B, HOS, Saos-2, SKES1, MG-63, and U2OS. 143B is the most sensitive cell line with EC50 value 0.13 µM. Cellular thermal shift assay showed that MI-503 binds cellular Menin. RT-qPCR assay showed that MI-503 suppressed the expression of Mcl-1 and c-Myc in 143B cells. Western blotting result showed that MI-503 markedly suppressed the H3K4 methylation, significantly suppressed the expression of Mcl-1 and c-Myc, and increased the expression of p27 and cl-PARP in 143B and Saos-2 cells. In a study with 143B cell-derived xenograft model, we found that MI-503 profoundly inhibited OS tumor growth in mice. Immunohistochemistry (IHC) study showed that MI-503 suppressed the H3K4 methylation and inhibited the expression of the cell proliferation biomarker Ki67 in 143B OS xenograft tissue.Overall, our findings demonstrated the potent anti-OS activity of MI-503 in both in vitro and in vivo models, which also indicated that Menin inhibitor may be a prospective therapeutic strategy for human OS.
Collapse
Affiliation(s)
- Shen Tian
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhuang-Yu Hao
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Deng-Hui Xu
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xuan-Zong Wang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Cheng-Cheng Shi
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No.1, East Jian She Road, Zhengzhou, 450052, Henan, China.
| | - Yi Zhang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
4
|
Backhus LM, Chang CF, Sakoda LC, Chambers SR, Henderson LM, Henschke CI, Hollenbeck GJ, Jacobson FL, Martin LW, Proctor ED, Schiller JH, Siegfried JM, Wisnivesky JP, Wolf AS, Jemal A, Kelly K, Sandler KL, Watkins PN, Smith RA, Rivera MP. The American Cancer Society National Lung Cancer Roundtable strategic plan: Lung cancer in women. Cancer 2024; 130:3985-3995. [PMID: 39302237 DOI: 10.1002/cncr.35083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Lung cancer in women is a modern epidemic and represents a global health crisis. Cigarette smoking remains the most important risk factor for lung cancer in all patients and, among women globally, rates of smoking continue to increase. Although some data exist supporting sex-based differences across the continuum of lung cancer, there is currently a dearth of research exploring the differences in risk, biology, and treatment outcomes in women. Consequently, the American Cancer Society National Lung Cancer Roundtable recognizes the urgent need to promote awareness and future research that will close the knowledge gaps regarding lung cancer in women. To this end, the American Cancer Society National Lung Cancer Roundtable Task Group on Lung Cancer in Women convened a summit undertaking the following to: (1) summarize existing evidence and identify knowledge gaps surrounding the epidemiology, risk factors, biologic differences, and outcomes of lung cancer in women; (2) develop and prioritize research topics and questions that address research gaps and advance knowledge to improve quality of care of lung cancer in women; and (3) propose strategies for future research. PLAIN LANGUAGE SUMMARY: Lung cancer is the leading cause of cancer mortality in women, and, despite comparatively lower exposures to occupational and environmental carcinogens compared with men, disproportionately higher lung cancer rates in women who ever smoked and women who never smoked call for increased awareness and research that will close the knowledge gaps regarding lung cancer in women.
Collapse
Affiliation(s)
- Leah M Backhus
- Department of Cardiothoracic Surgery, Division of Thoracic Surgery, Stanford University, Stanford, California, USA
| | - Ching-Fei Chang
- Department of Pulmonary, Critical Care, and Sleep Medicine, University of Southern California, Keck School of Medicine, Los Angeles, California, USA
| | - Lori C Sakoda
- Division of Research, Kaiser Permanente Northern California, Oakland, California, USA
| | - Shonta R Chambers
- Department of Health Equity, Patient Advocate Foundation, Hampton, Virginia, USA
| | - Louise M Henderson
- Department of Radiology, The University of North Carolina at Chapel Hill, Lineberger Comprehensive Cancer Center, Chapel Hill, North Carolina, USA
| | - Claudia I Henschke
- Department of Radiology, The Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Phoenix Veterans Affairs Health Care System, Phoenix, Arizona, USA
| | | | - Francine L Jacobson
- Department of Radiology, Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Linda W Martin
- Department of Surgery, University of Virginia, Charlottesville, Virginia, USA
| | - Elridge D Proctor
- Government Affairs, GO2 Foundation for Lung Cancer, Washington, District of Columbia, USA
| | | | - Jill M Siegfried
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Juan P Wisnivesky
- Department of Medicine, The Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Andrea S Wolf
- Department Thoracic Surgery, The Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ahmedin Jemal
- Surveillance and Health Equity Science, American Cancer Society, Atlanta, Georgia, USA
| | - Karen Kelly
- Department of Internal Medicine, Division of Hematology and Oncology, The University of California at Davis, Sacramento, California, USA
| | - Kim L Sandler
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | - Robert A Smith
- Center for Early Cancer Detection Science, American Cancer Society, Atlanta, Georgia, USA
| | - M Patricia Rivera
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Wilmot Cancer Institute, The University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
5
|
Malik MZ, Dashti M, Jangid A, Channanath A, Elsa John S, Singh RKB, Al-Mulla F, Alphonse Thanaraj T. Complex p53 dynamics regulated by miR-125b in cellular responses to reactive oxidative stress and DNA damage. Brief Bioinform 2024; 26:bbae706. [PMID: 39820247 PMCID: PMC11736902 DOI: 10.1093/bib/bbae706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/27/2024] [Accepted: 12/28/2024] [Indexed: 01/19/2025] Open
Abstract
In response to distinct cellular stresses, the p53 exhibits distinct dynamics. These p53 dynamics subsequently control cell fate. However, different stresses can generate the same p53 dynamics with different cell fate outcomes, suggesting that the integration of dynamic information from other pathways is important for cell fate regulation. The interactions between miRNA-125b, p53, and reactive oxygen species (ROS) are significant in the context of cellular stress responses and apoptosis. However, the regulating mechanism of miR-125b with p53 is not fully studied. The dynamics of p53 and its response to the miR-125b regulation are still open questions. In the present study, we try to answer some of these fundamental questions based on basic model built from available experimental reports. The miR-125b-p53 regulatory network is modeled using a set of 11 molecular species variables. The biochemical network of miR-125b-p53, described by 22 reaction channels, is represented by coupled ordinary differential equations (ODEs) using the mass action law of chemical kinetics. These ODEs are solved numerically using the standard fourth-order Runge-Kutta method to analyze the dynamical behavior of the system. The biochemical network model we designed is based on both experimental and theoretical reported data. The p53 dynamics driven by miR-125b exhibit five distinct dynamical states: first and second stable states, first and second dynamical states, and a sustained oscillation state. These different p53 dynamical states may correspond to various cellular conditions. If the stress induced by miR-125b is weak, the system will be weakly activated, favoring a return to normal functioning. However, if the stress is significantly strong, the system will move to an active state. To sustain this active state, which is far from equilibrium with little scope for returning to normal conditions, the system may transition to an apoptotic state by crossing through other intermediate states, as it is unlikely to regain normal functioning. The p53 dynamical states show a multifractal nature, contributed by both short- and long-range correlations. The networks illustrated from these dynamical states follow hierarchical scale-free features, exhibiting an assortative nature with an absence of the centrality-lethality rule. Furthermore, the active dynamical state is generally closer to hierarchical characteristics and is self-organized. Our research study reveals that significant activity of miR-125b on the p53 regulatory network and its dynamics can only be observed when the system is slightly activated by ROS. However, this process does not necessarily require the direct study of ROS activity. These findings elucidate the mechanisms by which cells integrate signaling pathways with distinct temporal activity patterns to encode stress specificity and direct diverse cell fate decisions.
Collapse
Affiliation(s)
- Md Zubbair Malik
- Department of Translational Research, Dasman Diabetes Institute, Dasman 15462, Kuwait City, Kuwait
| | - Mohammed Dashti
- Department of Translational Research, Dasman Diabetes Institute, Dasman 15462, Kuwait City, Kuwait
| | - Amit Jangid
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Arshad Channanath
- Department of Translational Research, Dasman Diabetes Institute, Dasman 15462, Kuwait City, Kuwait
| | - Sumi Elsa John
- Department of Translational Research, Dasman Diabetes Institute, Dasman 15462, Kuwait City, Kuwait
| | - R K Brojen Singh
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Fahd Al-Mulla
- Department of Translational Research, Dasman Diabetes Institute, Dasman 15462, Kuwait City, Kuwait
| | | |
Collapse
|
6
|
Ahmadi SE, Rahimian E, Rahimi S, Zarandi B, Bahraini M, Soleymani M, Safdari SM, Shabannezhad A, Jaafari N, Safa M. From regulation to deregulation of p53 in hematologic malignancies: implications for diagnosis, prognosis and therapy. Biomark Res 2024; 12:137. [PMID: 39538363 PMCID: PMC11565275 DOI: 10.1186/s40364-024-00676-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
The p53 protein, encoded by the TP53 gene, serves as a critical tumor suppressor, playing a vital role in maintaining genomic stability and regulating cellular responses to stress. Dysregulation of p53 is frequently observed in hematological malignancies, significantly impacting disease progression and patient outcomes. This review aims to examine the regulatory mechanisms of p53, the implications of TP53 mutations in various hematological cancers, and emerging therapeutic strategies targeting p53. We conducted a comprehensive literature review to synthesize recent findings related to p53's multifaceted role in hematologic cancers, focusing on its regulatory pathways and therapeutic potential. TP53 mutations in hematological malignancies often lead to treatment resistance and poor prognosis. Current therapeutic strategies, including p53 reactivation and gene therapy, show promise in improving treatment outcomes. Understanding the intricacies of p53 regulation and the consequences of its mutations is essential for developing effective diagnostic and therapeutic strategies in hematological malignancies, ultimately enhancing patient care and survival.
Collapse
Affiliation(s)
- Seyed Esmaeil Ahmadi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Elahe Rahimian
- Department of Medical Translational Oncology, National Center for Tumor Diseases (NCT) Dresden, Dresden, Germany
| | - Samira Rahimi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Bahman Zarandi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehran Bahraini
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maral Soleymani
- Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Mehrab Safdari
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ashkan Shabannezhad
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Niloofar Jaafari
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Majid Safa
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Teng W, Ling Y, Long N, Cen W, Zhang H, Jiang L, Liu J, Zhou X, Chu L. Repurposing flubendazole for glioblastoma ferroptosis by affecting xCT and TFRC proteins. J Cell Mol Med 2024; 28:e70188. [PMID: 39543084 PMCID: PMC11563996 DOI: 10.1111/jcmm.70188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 10/05/2024] [Accepted: 10/22/2024] [Indexed: 11/17/2024] Open
Abstract
New uses of old drugs hold great promise for clinical translation. Flubendazole, an FDA-approved antiparasitic drug, has been shown to target p53 and promote apoptosis in glioblastoma (GBM) cells. However, its damaging mechanism in GBM remains elusive. Herein, we explored the ferroptosis-inducing ability of flubendazole on GBM cells. After treating glioma cell lines U251 and LN229 with the flubendazole (DMSO <1‰), cell viability was inhibited in a concentration-dependent manner (IC50 for LN229 = 0.5331 μM, IC50 for U251 = 0.6809 μM), attributed to the induction of ferroptosis, as evidenced by increased MDA levels, accumulation of ROS and lipid peroxides, change in mitochondrial membrane potential and structure. Protein analysis related to ferroptosis showed upregulation of TFRC, DMT1 and p53, alongside downregulation of xCT, FHC and GPX4 (p < 0.05). All-atom docking studies demonstrated that flubendazole bound closely with xCT, and TFRC, validating its role in inducing glioma ferroptosis via modulation of these proteins. Notably, flubendazole could damage the glioblastoma stem cells (GSC) that are typically resistant to other therapies, thereby possessing advantages in stopping glioma recurrence. This study delved into the mechanisms of flubendazole-induced ferroptosis in glioma, broadening its application and providing new ideas for new uses of other old drugs.
Collapse
Affiliation(s)
- Wei Teng
- Department of NeurosurgeryThe Affiliated Hospital of Guizhou Medical UniversityGuiyangGuizhouChina
- Department of Clinical MedicineGuizhou Medical UniversityGuiyangGuizhouChina
| | - Yuanguo Ling
- Department of NeurosurgeryThe Affiliated Hospital of Guizhou Medical UniversityGuiyangGuizhouChina
- Department of Clinical MedicineGuizhou Medical UniversityGuiyangGuizhouChina
| | - Niya Long
- Department of Clinical MedicineGuizhou Medical UniversityGuiyangGuizhouChina
| | - Wu Cen
- Department of Clinical MedicineGuizhou Medical UniversityGuiyangGuizhouChina
| | - Hongzhi Zhang
- Department of NeurosurgeryThe Affiliated Hospital of Guizhou Medical UniversityGuiyangGuizhouChina
| | - Lishi Jiang
- Department of NeurosurgeryThe Affiliated Hospital of Guizhou Medical UniversityGuiyangGuizhouChina
| | - Jian Liu
- Department of NeurosurgeryThe Affiliated Hospital of Guizhou Medical UniversityGuiyangGuizhouChina
- Department of Neurosurgery, Guizhou Provincial People's HospitalGuiyangGuizhouChina
| | - Xingwang Zhou
- Department of NeurosurgeryThe Affiliated Hospital of Guizhou Medical UniversityGuiyangGuizhouChina
- Department of Clinical MedicineGuizhou Medical UniversityGuiyangGuizhouChina
| | - Liangzhao Chu
- Department of NeurosurgeryThe Affiliated Hospital of Guizhou Medical UniversityGuiyangGuizhouChina
- Department of Clinical MedicineGuizhou Medical UniversityGuiyangGuizhouChina
| |
Collapse
|
8
|
Li J, Huang X, Luo L, Sun J, Guo Q, Yang X, Zhang C, Ni B. The role of p53 in male infertility. Front Endocrinol (Lausanne) 2024; 15:1457985. [PMID: 39469578 PMCID: PMC11513281 DOI: 10.3389/fendo.2024.1457985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/27/2024] [Indexed: 10/30/2024] Open
Abstract
The tumor suppressor p53 is a transcription factor involved in a variety of crucial cellular functions, including cell cycle arrest, DNA repair and apoptosis. Still, a growing number of studies indicate that p53 plays multiple roles in spermatogenesis, as well as in the occurrence and development of male infertility. The representative functions of p53 in spermatogenesis include the proliferation of spermatogonial stem cells (SSCs), spermatogonial differentiation, spontaneous apoptosis, and DNA damage repair. p53 is involved in various male infertility-related diseases. Innovative therapeutic strategies targeting p53 have emerged in recent years. This review focuses on the role of p53 in spermatogenesis and male infertility and analyses the possible underlying mechanism involved. All these conclusions may provide a new perspective on drug intervention targeting p53 for male infertility treatment.
Collapse
Affiliation(s)
- Jing Li
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xia Huang
- Department of Human Resource, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lei Luo
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jialin Sun
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qie Guo
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xue Yang
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chuanzhou Zhang
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Beibei Ni
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
9
|
Schubert SA, Ruano D, Joruiz SM, Stroosma J, Glavak N, Montali A, Pinto LM, Rodríguez-Girondo M, Barge-Schaapveld DQCM, Nielsen M, van Nesselrooij BPM, Mensenkamp AR, van Leerdam ME, Sharp TH, Morreau H, Bourdon JC, de Miranda NFCC, van Wezel T. Germline variant affecting p53β isoforms predisposes to familial cancer. Nat Commun 2024; 15:8208. [PMID: 39294166 PMCID: PMC11410958 DOI: 10.1038/s41467-024-52551-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 09/06/2024] [Indexed: 09/20/2024] Open
Abstract
Germline and somatic TP53 variants play a crucial role during tumorigenesis. However, genetic variations that solely affect the alternatively spliced p53 isoforms, p53β and p53γ, are not fully considered in the molecular diagnosis of Li-Fraumeni syndrome and cancer. In our search for additional cancer predisposing variants, we identify a heterozygous stop-lost variant affecting the p53β isoforms (p.*342Serext*17) in four families suspected of an autosomal dominant cancer syndrome with colorectal, breast and papillary thyroid cancers. The stop-lost variant leads to the 17 amino-acid extension of the p53β isoforms, which increases oligomerization to canonical p53α and dysregulates the expression of p53's transcriptional targets. Our study reveals the capacity of p53β mutants to influence p53 signalling and contribute to the susceptibility of different cancer types. These findings underscore the significance of p53 isoforms and the necessity of comprehensive investigation into the entire TP53 gene in understanding cancer predisposition.
Collapse
Affiliation(s)
- Stephanie A Schubert
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Dina Ruano
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Jordy Stroosma
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Nikolina Glavak
- School of Medicine, University of Dundee, Dundee, UK
- Croatian Institute of Transfusion Medicine, Zagreb, Croatia
| | - Anna Montali
- School of Medicine, University of Dundee, Dundee, UK
| | - Lia M Pinto
- School of Medicine, University of Dundee, Dundee, UK
| | - Mar Rodríguez-Girondo
- Department of Biomedical Data Sciences, Section of Medical Statistics, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Maartje Nielsen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Arjen R Mensenkamp
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Monique E van Leerdam
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Thomas H Sharp
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
- School of Biochemistry, University of Bristol, Bristol, UK
| | - Hans Morreau
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | - Tom van Wezel
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands.
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
10
|
Ghasemi N, Azizi H. Exploring Myc puzzle: Insights into cancer, stem cell biology, and PPI networks. Gene 2024; 916:148447. [PMID: 38583818 DOI: 10.1016/j.gene.2024.148447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 03/13/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
"The grand orchestrator," "Universal Amplifier," "double-edged sword," and "Undruggable" are just some of the Myc oncogene so-called names. It has been around 40 years since the discovery of the Myc, and it remains in the mainstream of cancer treatment drugs. Myc is part of basic helix-loop-helix leucine zipper (bHLH-LZ) superfamily proteins, and its dysregulation can be seen in many malignant human tumors. It dysregulates critical pathways in cells that are connected to each other, such as proliferation, growth, cell cycle, and cell adhesion, impacts miRNAs action, intercellular metabolism, DNA replication, differentiation, microenvironment regulation, angiogenesis, and metastasis. Myc, surprisingly, is used in stem cell research too. Its family includes three members, MYC, MYCN, and MYCL, and each dysfunction was observed in different cancer types. This review aims to introduce Myc and its function in the body. Besides, Myc deregulatory mechanisms in cancer cells, their intricate aspects will be discussed. We will look at promising drugs and Myc-based therapies. Finally, Myc and its role in stemness, Myc pathways based on PPI network analysis, and future insights will be explained.
Collapse
Affiliation(s)
- Nima Ghasemi
- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| | - Hossein Azizi
- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran.
| |
Collapse
|
11
|
Benitez DA, Cumplido-Laso G, Olivera-Gómez M, Del Valle-Del Pino N, Díaz-Pizarro A, Mulero-Navarro S, Román-García A, Carvajal-Gonzalez JM. p53 Genetics and Biology in Lung Carcinomas: Insights, Implications and Clinical Applications. Biomedicines 2024; 12:1453. [PMID: 39062026 PMCID: PMC11274425 DOI: 10.3390/biomedicines12071453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
The TP53 gene is renowned as a tumor suppressor, playing a pivotal role in overseeing the cell cycle, apoptosis, and maintaining genomic stability. Dysregulation of p53 often contributes to the initiation and progression of various cancers, including lung cancer (LC) subtypes. The review explores the intricate relationship between p53 and its role in the development and progression of LC. p53, a crucial tumor suppressor protein, exists in various isoforms, and understanding their distinct functions in LC is essential for advancing our knowledge of this deadly disease. This review aims to provide a comprehensive literature overview of p53, its relevance to LC, and potential clinical applications.
Collapse
Affiliation(s)
- Dixan A. Benitez
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain; (G.C.-L.); (M.O.-G.); (N.D.V.-D.P.); (A.D.-P.); (S.M.-N.); (A.R.-G.)
| | | | | | | | | | | | | | - Jose Maria Carvajal-Gonzalez
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain; (G.C.-L.); (M.O.-G.); (N.D.V.-D.P.); (A.D.-P.); (S.M.-N.); (A.R.-G.)
| |
Collapse
|
12
|
Datkhile KD, Gudur R, Patil MN, Gudur A. Interactive Association of XRCC1, XRCC2, XRCC3, and TP53 Gene Polymorphisms With Gastrointestinal Cancer Risk: Insights From a Hospital-Based Case-Control Study. Cureus 2024; 16:e61921. [PMID: 38983993 PMCID: PMC11230727 DOI: 10.7759/cureus.61921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 06/07/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND AND AIM Gastrointestinal (GI) cancer presents a significant worldwide health burden, influenced by a combination of genetic and environmental factors. This study endeavors to explore the combined effects of the XRCC1, XRCC2, XRCC3, and TP53 genes that contribute to the heightened risk of GI cancer, shedding light on their combined influence on cancer susceptibility. MATERIALS AND METHODS A total of 200 histologically confirmed cases of GI cancer and an equal number of controls were selected to examine genetic polymorphisms within the XRCC1, XRCC2, XRCC3, and TP53 genes using the polymerase chain reaction-based restriction fragment length polymorphism (PCR-RFLP). Odds ratios (OR) with 95% confidence intervals (CI) were calculated to assess the association of these polymorphisms with GI cancer susceptibility, with statistical significance (p ≤ 0.05). RESULTS Logistic regression analysis confirmed strong evidence of synergistic interactions among specific variant genotypes. Notably, combinations such as heterozygous Arg/Ser+Ser/Ser genotype of TP53 Arg249Ser polymorphism with Arg/Trp+Trp/Trp genotype of XRCC1 Arg194Trp polymorphism (OR=2.64; 95% CI: 1.35-5.18; p=0.004), Arg/Gln+Gln/Gln genotype of XRCC1 at codon 399 (OR=5.04; 95% CI: 2.81-9.05; p=0.0001), Arg/His and His/His genotypes of XRCC2 Arg188His (OR=2.16; 95% CI: 1.06-4.39; p<0.032), and Thr/Met+Met/Met genotype of XRCC3 Thr242Met (OR=3.48; 95% CI: 1.79-6.77; p=0.0002) showed significant associations with GI cancer risk in the study population. CONCLUSIONS The findings indicate a notable association between the combined effect of heterozygous variant genotypes of TP53 and variant genotypes of XRCC1, XRCC2, and XRCC3 on GI cancer risk. However, further research with a larger sample size and broad single nucleotide polymorphism (SNP) spectra is necessary to understand the interaction between genetic variations and environmental factors influencing GI cancer susceptibility.
Collapse
Affiliation(s)
- Kailas D Datkhile
- Department of Molecular Biology and Genetics, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| | - Rashmi Gudur
- Department of Oncology, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| | - Madhavi N Patil
- Department of Molecular Biology and Genetics, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| | - Anand Gudur
- Department of Oncology, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
- Department of Oncology, Krishna Charitable Hospital, Karad, IND
| |
Collapse
|
13
|
Ahmad I, Jasim SA, Sergeevna KN, Jyothi S R, Kumar A, Dusanov A, Shuhata Alubiady MH, Sinha A, Zain Al-Abdeen SH, Hjazi A. Emerging roles of long noncoding RNA H19 in human lung cancer. Cell Biochem Funct 2024; 42:e4072. [PMID: 39031589 DOI: 10.1002/cbf.4072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/14/2024] [Accepted: 06/02/2024] [Indexed: 07/22/2024]
Abstract
Lung cancer holds the position of being the primary cause of cancer-related fatalities on a global scale. Furthermore, it exhibits the highest mortality rate among all types of cancer. The survival rate within a span of 5 years is less than 20%, primarily due to the fact that the disease is often diagnosed at an advanced stage, resulting in less effective treatment options compared to earlier stages. There are two main types of primary lung cancer: nonsmall-cell lung cancer, which accounts for approximately 80%-85% of all cases, and small-cell lung cancer, which is categorized based on the specific type of cells in which the cancer originates. The understanding of the biology of this disease and the identification of oncogenic driver alterations have significantly transformed the landscape of therapeutic approaches. Long noncoding RNAs (lncRNAs) play a crucial role in regulating various physiological and pathological processes through diverse molecular mechanisms. Among these lncRNAs, lncRNA H19, initially identified as an oncofetal transcript, has garnered significant attention due to its elevated expression in numerous tumors. Extensive research has confirmed its involvement in tumorigenesis and malignant progression by promoting cell growth, invasion, migration, epithelial-mesenchymal transition, metastasis, and therapy resistance. This comprehensive review aims to provide an overview of the aberrant overexpression of lncRNA H19 and the molecular pathways through which it contributes to the advancement of lung cancer. The findings of this review highlight the potential for further investigation into the diagnosis and treatment of this disease, offering promising avenues for future research.
Collapse
Affiliation(s)
- Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | | | - Klunko Nataliya Sergeevna
- Department of Training of Scientific and Scientific-Pedagogical Personnel, Russian New University, Moscow, Russia
| | - Renuka Jyothi S
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Ashwani Kumar
- Department of Pharmacy, Vivekananda Global University, Jaipur, Rajasthan, India
| | - Abdigafur Dusanov
- Department of Internal Medicine Number 4, Samarkand State Medical University, Samarkand, Uzbekistan
| | | | - Aashna Sinha
- School of Applied and Life Sciences, Divison of Research and Innovation, Uttaranchal University, Dehradun, Uttarakhand, India
| | | | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| |
Collapse
|
14
|
He Z, Liu X, Qin S, Yang Q, Na J, Xue Z, Zhong L. Anticancer Mechanism of Astragalus Polysaccharide and Its Application in Cancer Immunotherapy. Pharmaceuticals (Basel) 2024; 17:636. [PMID: 38794206 PMCID: PMC11124422 DOI: 10.3390/ph17050636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Astragalus polysaccharide (APS) derived from A. membranaceus plays a crucial role in traditional Chinese medicine. These polysaccharides have shown antitumor effects and are considered safe. Thus, they have become increasingly important in cancer immunotherapy. APS can limit the spread of cancer by influencing immune cells, promoting cell death, triggering cancer cell autophagy, and impacting the tumor microenvironment. When used in combination with other therapies, APS can enhance treatment outcomes and reduce toxicity and side effects. APS combined with immune checkpoint inhibitors, relay cellular immunotherapy, and cancer vaccines have broadened the application of cancer immunotherapy and enhanced treatment effectiveness. By summarizing the research on APS in cancer immunotherapy over the past two decades, this review elaborates on the anticancer mechanism of APS and its use in cancer immunotherapy and clinical trials. Considering the multiple roles of APS, this review emphasizes the importance of using APS as an adjunct to cancer immunotherapy and compares other polysaccharides with APS. This discussion provides insights into the specific mechanism of action of APS, reveals the molecular targets of APS for developing effective clinical strategies, and highlights the wide application of APS in clinical cancer therapy in the future.
Collapse
Affiliation(s)
- Ziqing He
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China; (Z.H.); (X.L.); (S.Q.); (Q.Y.); (J.N.)
| | - Xiyu Liu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China; (Z.H.); (X.L.); (S.Q.); (Q.Y.); (J.N.)
| | - Simin Qin
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China; (Z.H.); (X.L.); (S.Q.); (Q.Y.); (J.N.)
| | - Qun Yang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China; (Z.H.); (X.L.); (S.Q.); (Q.Y.); (J.N.)
| | - Jintong Na
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China; (Z.H.); (X.L.); (S.Q.); (Q.Y.); (J.N.)
| | - Zhigang Xue
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China; (Z.H.); (X.L.); (S.Q.); (Q.Y.); (J.N.)
| | - Liping Zhong
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China; (Z.H.); (X.L.); (S.Q.); (Q.Y.); (J.N.)
- School of Pharmacy, Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
15
|
Ren F, Dai J, Zhang J, Luan Y, Yang F, Shen J, Liu H, Zhou J. A magnetic calcium phosphate for selective capture of multi-phosphopeptides. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1238:124110. [PMID: 38603891 DOI: 10.1016/j.jchromb.2024.124110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/19/2024] [Accepted: 03/27/2024] [Indexed: 04/13/2024]
Abstract
The specific enrichment of multi-phosphopeptides in the presence of non-phosphopeptides and mono-phosphopeptides was still a challenge for phosphoproteomics research. Most of these enrichment materials relied on Zn, Ti, Sn, and other rare precious metals as the bonding center to enrich multi-phosphopeptides while ignoring the use of common metal elements. The addition of rare metals increased the cost of the experiment, which was not conducive to their large-scale application in biomedical proteomics laboratories. In addition, multiple high-speed centrifugation steps also resulted in the loss of low-abundance multi-phosphopeptides in the treatment procedure of biological samples. This study proposed the use of calcium, a common element, as the central bonding agent for synthesizing magnetic calcium phosphate materials (designated as CaP-Fe3O4). These materials aim to capture multi-phosphopeptides and identifying phosphorylation sites. The current results demonstrate that CaP-Fe3O4 exhibited excellent selection specificity, high sensitivity, and stability in the enrichment of multi-phosphopeptides and the identification of phosphorylation sites. Additionally, the introduction of magnetic separation not only reduced the time required for multi-phosphopeptides enrichment but also prevented the loss of these peptides during high-speed centrifugation. These findings contribute to the widespread application and advancement of phosphoproteomics research.
Collapse
Affiliation(s)
- FangKun Ren
- College of Life Sciences, Jiangsu Key Laboratory Biofunctional Materials, Nanjing Normal University, Nanjing 210023, China
| | - JunYong Dai
- College of Life Sciences, Jiangsu Key Laboratory Biofunctional Materials, Nanjing Normal University, Nanjing 210023, China
| | - JingYi Zhang
- College of Life Sciences, Jiangsu Key Laboratory Biofunctional Materials, Nanjing Normal University, Nanjing 210023, China
| | - YanFei Luan
- College of Life Sciences, Jiangsu Key Laboratory Biofunctional Materials, Nanjing Normal University, Nanjing 210023, China
| | - Fan Yang
- College of Life Sciences, Jiangsu Key Laboratory Biofunctional Materials, Nanjing Normal University, Nanjing 210023, China
| | - Jian Shen
- College of Life Sciences, Jiangsu Key Laboratory Biofunctional Materials, Nanjing Normal University, Nanjing 210023, China
| | - HaiLong Liu
- College of Life Sciences, Jiangsu Key Laboratory Biofunctional Materials, Nanjing Normal University, Nanjing 210023, China.
| | - JiaHong Zhou
- College of Life Sciences, Jiangsu Key Laboratory Biofunctional Materials, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
16
|
Khan R, Pari B, Puszynski K. Comprehensive Bioinformatic Investigation of TP53 Dysregulation in Diverse Cancer Landscapes. Genes (Basel) 2024; 15:577. [PMID: 38790205 PMCID: PMC11121236 DOI: 10.3390/genes15050577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
P53 overexpression plays a critical role in cancer pathogenesis by disrupting the intricate regulation of cellular proliferation. Despite its firmly established function as a tumor suppressor, elevated p53 levels can paradoxically contribute to tumorigenesis, influenced by factors such as exposure to carcinogens, genetic mutations, and viral infections. This phenomenon is observed across a spectrum of cancer types, including bladder (BLCA), ovarian (OV), cervical (CESC), cholangiocarcinoma (CHOL), colon adenocarcinoma (COAD), diffuse large B-cell lymphoma (DLBC), esophageal carcinoma (ESCA), head and neck squamous cell carcinoma (HNSC), kidney chromophobe (KICH), kidney renal clear cell carcinoma (KIRC), liver hepatocellular carcinoma (LIHC), lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), and uterine corpus endometrial carcinoma (UCEC). This broad spectrum of cancers is often associated with increased aggressiveness and recurrence risk. Effective therapeutic strategies targeting tumors with p53 overexpression require a comprehensive approach, integrating targeted interventions aimed at the p53 gene with conventional modalities such as chemotherapy, radiation therapy, and targeted drugs. In this extensive study, we present a detailed analysis shedding light on the multifaceted role of TP53 across various cancers, with a specific emphasis on its impact on disease-free survival (DFS). Leveraging data from the TCGA database and the GTEx dataset, along with GEPIA, UALCAN, and STRING, we identify TP53 overexpression as a significant prognostic indicator, notably pronounced in prostate adenocarcinoma (PRAD). Supported by compelling statistical significance (p < 0.05), our analysis reveals the distinct influence of TP53 overexpression on DFS outcomes in PRAD. Additionally, graphical representations of overall survival (OS) underscore the notable disparity in OS duration between tumors exhibiting elevated TP53 expression (depicted by the red line) and those with lower TP53 levels (indicated by the blue line). The hazard ratio (HR) further emphasizes the profound impact of TP53 on overall survival. Moreover, our investigation delves into the intricate TP53 protein network, unveiling genes exhibiting robust positive correlations with TP53 expression across 13 out of 27 cancers. Remarkably, negative correlations emerge with pivotal tumor suppressor genes. This network analysis elucidates critical proteins, including SIRT1, CBP, p300, ATM, DAXX, HSP 90-alpha, Mdm2, RPA70, 14-3-3 protein sigma, p53, and ASPP2, pivotal in regulating cell cycle dynamics, DNA damage response, and transcriptional regulation. Our study underscores the paramount importance of deciphering TP53 dynamics in cancer, providing invaluable insights into tumor behavior, disease-free survival, and potential therapeutic avenues.
Collapse
Affiliation(s)
- Ruby Khan
- Department of Systems Biology and Engineering, Silesian University of Technology, 44-100 Gliwice, Poland;
| | - Bakht Pari
- Principal, Nursing School, Lady Reading Hospital Peshawar, Peshawar 25000, Pakistan;
| | - Krzysztof Puszynski
- Department of Systems Biology and Engineering, Silesian University of Technology, 44-100 Gliwice, Poland;
| |
Collapse
|
17
|
Li JL, Jain N, Tamayo LI, Tong L, Jasmine F, Kibriya MG, Demanelis K, Oliva M, Chen LS, Pierce BL. The association of cigarette smoking with DNA methylation and gene expression in human tissue samples. Am J Hum Genet 2024; 111:636-653. [PMID: 38490207 PMCID: PMC11023923 DOI: 10.1016/j.ajhg.2024.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 02/17/2024] [Accepted: 02/21/2024] [Indexed: 03/17/2024] Open
Abstract
Cigarette smoking adversely affects many aspects of human health, and epigenetic responses to smoking may reflect mechanisms that mediate or defend against these effects. Prior studies of smoking and DNA methylation (DNAm), typically measured in leukocytes, have identified numerous smoking-associated regions (e.g., AHRR). To identify smoking-associated DNAm features in typically inaccessible tissues, we generated array-based DNAm data for 916 tissue samples from the GTEx (Genotype-Tissue Expression) project representing 9 tissue types (lung, colon, ovary, prostate, blood, breast, testis, kidney, and muscle). We identified 6,350 smoking-associated CpGs in lung tissue (n = 212) and 2,735 in colon tissue (n = 210), most not reported previously. For all 7 other tissue types (sample sizes 38-153), no clear associations were observed (false discovery rate 0.05), but some tissues showed enrichment for smoking-associated CpGs reported previously. For 1,646 loci (in lung) and 22 (in colon), smoking was associated with both DNAm and local gene expression. For loci detected in both lung and colon (e.g., AHRR, CYP1B1, CYP1A1), top CpGs often differed between tissues, but similar clusters of hyper- or hypomethylated CpGs were observed, with hypomethylation at regulatory elements corresponding to increased expression. For lung tissue, 17 hallmark gene sets were enriched for smoking-associated CpGs, including xenobiotic- and cancer-related gene sets. At least four smoking-associated regions in lung were impacted by lung methylation quantitative trait loci (QTLs) that co-localize with genome-wide association study (GWAS) signals for lung function (FEV1/FVC), suggesting epigenetic alterations can mediate the effects of smoking on lung health. Our multi-tissue approach has identified smoking-associated regions in disease-relevant tissues, including effects that are shared across tissue types.
Collapse
Affiliation(s)
- James L Li
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60637, USA; Interdisciplinary Scientist Training Program, University of Chicago, Chicago, IL 60637, USA
| | - Niyati Jain
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60637, USA; Committee on Genetics, Genomics, Systems Biology, University of Chicago, Chicago, IL 60637, USA
| | - Lizeth I Tamayo
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60637, USA
| | - Lin Tong
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60637, USA
| | - Farzana Jasmine
- Institute for Population and Precision Health (IPPH), Biological Sciences Division, University of Chicago, Chicago, IL 60637, USA
| | - Muhammad G Kibriya
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60637, USA
| | - Kathryn Demanelis
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Meritxell Oliva
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60637, USA; Genomics Research Center, AbbVie, North Chicago, IL 60064, USA
| | - Lin S Chen
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60637, USA
| | - Brandon L Pierce
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60637, USA; Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA; Comprehensive Cancer Center, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
18
|
Zhao K, Li Q, Li P, Liu T, Liu X, Zhu F, Zhang L. Single-cell transcriptome sequencing provides insight into multiple chemotherapy resistance in a patient with refractory DLBCL: a case report. Front Immunol 2024; 15:1303310. [PMID: 38533514 PMCID: PMC10963401 DOI: 10.3389/fimmu.2024.1303310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/21/2024] [Indexed: 03/28/2024] Open
Abstract
Relapsed and refractory diffuse large B-cell lymphoma (DLBCL) is associated with poor prognosis. As such, a comprehensive analysis of intratumoral components, intratumoral heterogeneity, and the immune microenvironment is essential to elucidate the mechanisms driving the progression of DLBCL and to develop new therapeutics. Here, we used single-cell transcriptome sequencing and conventional bulk next-generation sequencing (NGS) to understand the composite tumor landscape of a single patient who had experienced multiple tumor recurrences following several chemotherapy treatments. NGS revealed several key somatic mutations that are known to contribute to drug resistance. Based on gene expression profiles at the single-cell level, we identified four clusters of malignant B cells with distinct transcriptional signatures, showing high intra-tumoral heterogeneity. Among them, heterogeneity was reflected in activating several key pathways, human leukocyte antigen (HLA)-related molecules' expression, and key oncogenes, which may lead to multi-drug resistance. In addition, FOXP3+ regulatory CD4+ T cells and exhausted cytotoxic CD8+ T cells were identified, accounted for a significant proportion, and showed highly immunosuppressive properties. Finally, cell communication analysis indicated complex interactions between malignant B cells and T cells. In conclusion, this case report demonstrates the value of single-cell RNA sequencing for visualizing the tumor microenvironment and identifying potential therapeutic targets in a patient with treatment-refractory DLBCL. The combination of NGS and single-cell RNA sequencing may facilitate clinical decision-making and drug selection in challenging DLBCL cases.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Liling Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
19
|
Li M, Wu X, Chen M, Hao S, Yu Y, Li X, Zhao E, Xu M, Yu Z, Wang Z, Xu N, Jin C, Yin Y. DNAJC10 maintains survival and self-renewal of leukemia stem cells through PERK branch of the unfolded protein response. Haematologica 2024; 109:751-764. [PMID: 37496439 PMCID: PMC10905105 DOI: 10.3324/haematol.2023.282691] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 07/20/2023] [Indexed: 07/28/2023] Open
Abstract
Leukemia stem cells (LSC) require frequent adaptation to maintain their self-renewal ability in the face of longer exposure to cell-intrinsic and cell-extrinsic stresses. However, the mechanisms by which LSC maintain their leukemogenic activities, and how individual LSC respond to stress, remain poorly understood. Here, we found that DNAJC10, a member of HSP40 family, was frequently up-regulated in various types of acute myeloid leukemia (AML) and in LSC-enriched cells. Deficiency of DNAJC10 leads to a dramatic increase in the apoptosis of both human leukemia cell lines and LSC-enriched populations. Although DNAJC10 is not required for normal hematopoiesis, deficiency of Dnajc10 significantly abrogated AML development and suppressed self-renewal of LSC in the MLL-AF9-induced murine leukemia model. Mechanistically, inhibition of DNAJC10 specifically induces endoplasmic reticulum stress and promotes activation of PERK-EIF2α-ATF4 branch of unfolded protein response (UPR). Blocking PERK by GSK2606414 (PERKi) or shRNA rescued the loss of function of DNAJC10 both in vitro and in vivo. Importantly, deficiency of DNAJC10 increased sensitivity of AML cells to daunorubicin (DNR) and cytarabine (Ara-C). These data revealed that DNAJC10 functions as an oncogene in MLL-AF9-induced AML via regulation of the PERK branch of the UPR. DNAJC10 may be an ideal therapeutic target for eliminating LSC, and improving the effectiveness of DNR and Ara-C.
Collapse
Affiliation(s)
- Minjing Li
- Institute of Integrated Medicine, Binzhou Medical University, Yantai 264003
| | - Xingli Wu
- The Second School of Clinical Medicine, Binzhou Medical University, Yantai, 264003, China; Laboratory of Experimental Hematology, School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003
| | - Meiyang Chen
- Laboratory of Experimental Hematology, School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003
| | - Shiyu Hao
- Laboratory of Experimental Hematology, School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003
| | - Yue Yu
- The Second School of Clinical Medicine, Binzhou Medical University, Yantai, 264003, China; Laboratory of Experimental Hematology, School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003
| | - Xiang Li
- The Second School of Clinical Medicine, Binzhou Medical University, Yantai, 264003, China; Laboratory of Experimental Hematology, School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003
| | - Erdi Zhao
- Laboratory of Experimental Hematology, School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003
| | - Ming Xu
- Laboratory of Experimental Hematology, School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003
| | - Zhenhai Yu
- Laboratory of Experimental Hematology, School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003
| | - Zhiqiang Wang
- Laboratory of Experimental Hematology, School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003
| | - Ning Xu
- Department of Gastroenterology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264100
| | - Changzhu Jin
- Laboratory of Experimental Hematology, School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003, China; Department of Human Anatomy, School of Basic Medicine, Qilu Medicine University, Zibo, 255300.
| | - Yancun Yin
- Laboratory of Experimental Hematology, School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003.
| |
Collapse
|
20
|
Pinto EM, Fridman C, Figueiredo BC, Salvador H, Teixeira MR, Pinto C, Pinheiro M, Kratz CP, Lavarino C, Legal EAMF, Le A, Kelly G, Koeppe E, Stoffel EM, Breen K, Hahner S, Heinze B, Techavichit P, Krause A, Ogata T, Fujisawa Y, Walsh MF, Rana HQ, Maxwell KN, Garber JE, Rodriguez-Galindo C, Ribeiro RC, Zambetti GP. Multiple TP53 p.R337H haplotypes and implications for tumor susceptibility. HGG ADVANCES 2024; 5:100244. [PMID: 37794678 PMCID: PMC10597792 DOI: 10.1016/j.xhgg.2023.100244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/06/2023] Open
Abstract
The germline TP53 p.R337H mutation is reported as the most common germline TP53 variant. It exists at a remarkably high frequency in the population of southeast Brazil as founder mutation in two distinct haplotypes with the most frequent co-segregating with the p.E134∗ variant of the XAF1 tumor suppressor and an increased cancer risk. Founder mutations demonstrate linkage disequilibrium with neighboring genetic polymorphic markers that can be used to identify the founder variant in different geographic regions and diverse populations. We report here a shared haplotype among Brazilian, Portuguese, and Spanish families and the existence of three additional distinct TP53 p.R337H alleles. Mitochondrial DNA sequencing and Y-STR profiling of Brazilian carriers of the founder TP53 p.R337H allele reveal an excess of Native American haplogroups in maternal lineages and exclusively European haplogroups in paternal lineages, consistent with communities established through male European settlers with extensive intermarriage with Indigenous women. The identification of founder and independent TP53 p.R337H alleles underlines the importance for considering the haplotype as a functional unit and the additive effects of constitutive polymorphisms and associated variants in modifier genes that can influence the cancer phenotype.
Collapse
Affiliation(s)
- Emilia M Pinto
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - Cintia Fridman
- Departamento de Medicina Legal, Bioética, Medicina do Trabalho e Medicina Física e Reabilitação, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | | | - Hector Salvador
- Pediatric Oncology Department, Sant Joan de Deu Hospital, Barcelona, Spain
| | - Manuel R Teixeira
- Cancer Genetics Group, IPO Porto Research Center (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Porto, Portugal; Department of Laboratory Genetics, Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center and School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Carla Pinto
- Cancer Genetics Group, IPO Porto Research Center (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Porto, Portugal
| | - Manuela Pinheiro
- Cancer Genetics Group, IPO Porto Research Center (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Porto, Portugal
| | - Christian P Kratz
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Cinzia Lavarino
- Pediatric Oncology Department, Sant Joan de Deu Hospital, Barcelona, Spain
| | - Edith A M F Legal
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Paraná, Brazil
| | - Anh Le
- Department of Medicine-Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gregory Kelly
- Department of Medicine-Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Erika Koeppe
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Elena M Stoffel
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Kelsey Breen
- Department of Pediatrics and Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Stefanie Hahner
- Department of Medicine I, Division of Endocrinology and Diabetology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Britta Heinze
- Department of Medicine I, Division of Endocrinology and Diabetology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Piti Techavichit
- Integrative and Innovative Hematology/Oncology Research Unit, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Amanda Krause
- Division of Human Genetics, National Health Laboratory Service (NHLS) and Faculty of Health Sciences, School of Pathology, The University of the Witwatersrand, Johannesburg, South Africa
| | - Tsutomu Ogata
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yasuko Fujisawa
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Michael F Walsh
- Department of Pediatrics and Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Huma Q Rana
- Division of Cancer Genetics and Prevention, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Kara N Maxwell
- Department of Medicine-Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Judy E Garber
- Division of Cancer Genetics and Prevention, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Carlos Rodriguez-Galindo
- Department of Global Pediatric Medicine, St. Jude Children's Research Hospital, Memphis, TN, USA; Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Raul C Ribeiro
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Gerard P Zambetti
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
21
|
Zhu Y, Xiao M, Zhao R, Yang X, Wu K, Liu X, Chen X, Guo L, Liu J, Chen X, Liu N, He Y, Zhang Y. Arsenic-induced downregulation of BRWD3 suppresses proliferation and induces apoptosis in lung adenocarcinoma cells through the p53 and p65 pathways. Hum Exp Toxicol 2024; 43:9603271241279166. [PMID: 39190898 DOI: 10.1177/09603271241279166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Bromodomain and WD-repeat domain-containing protein 3 (BRWD3) exhibits high expression in lung adenocarcinoma (LUAD) tissues and cells; however, its function in arsenic-induced toxicological responses remains unclear. This study aimed to investigate BRWD3 expression in response to arsenic-induced conditions and its impact on the proliferation and apoptosis of LUAD cell line SPC-A1 upon BRWD3 knockdown. The results revealed a decrease in BRWD3 expression in SPC-A1 cells treated with sodium arsenite (NaAsO2), but not sodium arsenite's metabolites. BRWD3 knockdown suppressed cell proliferation and induced apoptosis in SPC-A1 cells. Western blot analysis revealed that BRWD3 knockdown resulted in the upregulation of p53, phospho-p53-Ser392, and its downstream factors including MDM2, Bak, and Bax. Additionally, we observed the downregulation of p65, phospho-p65-Ser276, phospho-p65-Ser536, and its downstream factors, including IκBα, BIRC3, XIAP and CIAP1. Moreover, polymerase chain reaction analysis showed that BRWD3 knockdown also resulted in the downregulation of proliferation-related genes and upregulation of apoptosis-related genes. In conclusion, BRWD3 mediated proliferation and apoptosis via the p53 and p65 pathways in response to arsenic exposure, suggesting potential implications for LUAD treatment through BRWD3 downregulation by arsenic.
Collapse
Affiliation(s)
- Yanhua Zhu
- Department of Clinical Laboratory, The First Afliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Key Laboratory of Laboratory Medicine, Kunming, China
- Yunnan Province Clinical Research Center for Laboratory Medicine, Kunming, China
| | - Mei Xiao
- Department of Clinical Laboratory, The First Afliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Key Laboratory of Laboratory Medicine, Kunming, China
- Yunnan Province Clinical Research Center for Laboratory Medicine, Kunming, China
| | - Ruihuan Zhao
- School of Public Health, Kunming Medical University, Kunming, China
| | - Xuefei Yang
- School of Public Health, Kunming Medical University, Kunming, China
| | - Kun Wu
- Department of Clinical Laboratory, The First Afliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Key Laboratory of Laboratory Medicine, Kunming, China
- Yunnan Province Clinical Research Center for Laboratory Medicine, Kunming, China
| | - Xiao Liu
- Department of Clinical Laboratory, The First Afliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Key Laboratory of Laboratory Medicine, Kunming, China
- Yunnan Province Clinical Research Center for Laboratory Medicine, Kunming, China
| | - Xi Chen
- Department of Clinical Laboratory, The First Afliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Key Laboratory of Laboratory Medicine, Kunming, China
- Yunnan Province Clinical Research Center for Laboratory Medicine, Kunming, China
| | - Lei Guo
- Department of Clinical Laboratory, The First Afliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Key Laboratory of Laboratory Medicine, Kunming, China
- Yunnan Province Clinical Research Center for Laboratory Medicine, Kunming, China
| | - Jiezhen Liu
- Department of Clinical Laboratory, The First Afliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Key Laboratory of Laboratory Medicine, Kunming, China
- Yunnan Province Clinical Research Center for Laboratory Medicine, Kunming, China
| | - Xu Chen
- Department of Clinical Laboratory, The First Afliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Key Laboratory of Laboratory Medicine, Kunming, China
- Yunnan Province Clinical Research Center for Laboratory Medicine, Kunming, China
| | - Na Liu
- School of Public Health, Kunming Medical University, Kunming, China
| | - Yuefeng He
- School of Public Health, Kunming Medical University, Kunming, China
| | - Yanliang Zhang
- Department of Clinical Laboratory, The First Afliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Key Laboratory of Laboratory Medicine, Kunming, China
- Yunnan Province Clinical Research Center for Laboratory Medicine, Kunming, China
| |
Collapse
|
22
|
Li M, Yang J, Li J, Zhou Y, Li X, Ma Z, Li X, Ma H, Ye X. Epiberberine induced p53/p21-dependent G2/M cell cycle arrest and cell apoptosis in gastric cancer cells by activating γ-aminobutyric acid receptor- β3. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155198. [PMID: 38006806 DOI: 10.1016/j.phymed.2023.155198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 11/27/2023]
Abstract
BACKGROUND AND PURPOSE Epiberberine (EPI) is one of the most important bioalkaloid found in the rhizome of Coptis chinensis, which has been observed to exhibit pharmaceutical effects against gastric cancer (GC). Nevertheless, the potential mechanism of EPI against GC cells still remains unclear. This study aimed to identify the core receptor on GC cells through which EPI inhibited the growth of GC cells and to explore the underlying inhibitory mechanisms. METHODS To identify hub receptor targets that respond to EPI treatment, RNA sequencing (RNA-Seq) data from a tumor-bearing mouse model were analyzed using bioinformatics method and molecular docking. The binding interaction between EPI and GABRB3 was validated through western blotting based-cellular thermal shift assay (WB-CETSA). To further verify the binding region between EPI and GABRB3 through circular dichroism (CD) chromatography, fragments of the extracellular and transmembrane domains of the GABRB3 protein were expressed and purified in vitro. Stable cell lines with the overexpression or knockdown of GABRB3 were established using the recombinant lentivirus system. MTT ((3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide)) assay, colony formation assay, invasion and migration experiments, and flow cytometry were conducted to validate the inhibitory effect of EPI on the GC cells via GABRB3. Additionally, western blotting was utilized to explore the potential inhibitory mechanisms. RESULTS Through the combination of multiple bioinformatics methods and molecular docking, we found that the γ-aminobutyric acid type A receptor subunit -β3 (GABRB3) might be the critical receptor target in response to EPI treatment. The results of WB-CETSA analysis indicated that EPI significantly promoted the thermostability of the GABRB3 protein. Importantly, EPI could directly bind to GABRB3 and alter the secondary structure of GABRB3 fragments similar to the natural agonist, γ-aminobutyric acid (GABA). The EPI-induced suppression of the malignant phenotype of GC cells was dependent on the presence of GABRB3. GABRB3 expression was positively correlated with TP53 in patients with GC. The binding of EPI to GABRB3 stimulated p53 accumulation in GC cells. This activated the p21/CDK1/cyclinB1 pathway, resulting in G2/M cell cycle arrest, and induced the Bcl-2/BAX/Caspase axis-dependent cell apoptosis. CONCLUSION This study revealed the target receptor for EPI in GC cells and provided new insights into its anticancer mechanisms.
Collapse
Affiliation(s)
- Mengmeng Li
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Jiaye Yang
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Juan Li
- School of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Yuan Zhou
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Xiaoduo Li
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Zhengcai Ma
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Xuegang Li
- School of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Hang Ma
- School of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China.
| | - Xiaoli Ye
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), School of Life Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
23
|
Dunsche L, Ivanisenko N, Riemann S, Schindler S, Beissert S, Angeli C, Kreis S, Tavassoli M, Lavrik I, Kulms D. A cytosolic mutp53(E285K) variant confers chemoresistance of malignant melanoma. Cell Death Dis 2023; 14:831. [PMID: 38097548 PMCID: PMC10721616 DOI: 10.1038/s41419-023-06360-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023]
Abstract
Malignant melanoma (MM) is known to be intrinsically chemoresistant, even though only ~20% of MM carry mutations of the tumor suppressor p53. Despite improvement of systemic therapy the mortality rate of patients suffering from metastatic MM is still ~70%, highlighting the need for alternative treatment options or for the re-establishment of conventional therapeutic approaches, including chemotherapy. Screening the p53 mutation status in a cohort of 19 patient-derived melanoma samples, we identified one rarely described missense mutation of p53 leading to E285K amino acid exchange (mutp53(E285K)). Employing structural and computational analysis we revealed a major role of E285 residue in maintaining stable conformation of wild-type p53 (wtp53). E285K mutation was predicted to cause interruption of a salt-bridge network affecting the conformation of the C-terminal helix of the DNA-binding domain (DBD) thereby preventing DNA interaction. In this context, a cluster of frequently mutated amino acid residues in cancer was identified to putatively lead to similar structural effects as E285K substitution (E285 cluster). Functional analysis, including knockdown of endogenous p53 and reconstitution with diverse p53 missense mutants confirmed mutp53(E285K) to have lost transcriptional activity, to be localized in the cytosol of cancer cells, by both means conferring chemoresistance. Re-sensitization to cisplatin-induced cell death was achieved using clinically approved compounds aiming to restore p53 wild-type function (PRIMA1-Met), or inhibition of AKT-driven MAPK survival pathways (afuresertib), in both cases being partially due to ferroptosis induction. Consequently, active ferroptosis induction using the GPX4 inhibitor RSL3 proved superior in tumorselectively fighting MM cells. Due to high prevalence of the E285-cluster mutations in MM as well as in a variety of other tumor types, we conclude this cluster to serve an important function in tumor development and therapy and suggest new implications for ferroptosis induction in therapeutic applications fighting MM in particular and cancer in general.
Collapse
Affiliation(s)
- Luise Dunsche
- Experimental Dermatology, Department of Dermatology, TU-Dresden, 01307, Dresden, Germany
- National Center for Tumor Diseases, TU-Dresden, 01307, Dresden, Germany
| | - Nikita Ivanisenko
- Translational Inflammation Research, Medical Faculty, Center of Dynamic Systems, Otto von Guericke University, 39106, Magdeburg, Germany
| | - Shamala Riemann
- Experimental Dermatology, Department of Dermatology, TU-Dresden, 01307, Dresden, Germany
- National Center for Tumor Diseases, TU-Dresden, 01307, Dresden, Germany
| | - Sebastian Schindler
- Experimental Dermatology, Department of Dermatology, TU-Dresden, 01307, Dresden, Germany
- National Center for Tumor Diseases, TU-Dresden, 01307, Dresden, Germany
| | - Stefan Beissert
- Experimental Dermatology, Department of Dermatology, TU-Dresden, 01307, Dresden, Germany
| | - Cristian Angeli
- Department of Life Science and Medicine, University of Luxembourg, Belvaux, 4367, Luxembourg
| | - Stephanie Kreis
- Department of Life Science and Medicine, University of Luxembourg, Belvaux, 4367, Luxembourg
| | - Mahvash Tavassoli
- Molecular Oncology, Guy's Hospital, Kings College London, London, SE1 1UL, UK
| | - Inna Lavrik
- Translational Inflammation Research, Medical Faculty, Center of Dynamic Systems, Otto von Guericke University, 39106, Magdeburg, Germany
| | - Dagmar Kulms
- Experimental Dermatology, Department of Dermatology, TU-Dresden, 01307, Dresden, Germany.
- National Center for Tumor Diseases, TU-Dresden, 01307, Dresden, Germany.
| |
Collapse
|
24
|
Abdulrahman N, Leo R, Boumenar HA, Ahmad F, Mateo JM, Jochebeth A, Al-Sowaidi NK, Sher G, Ansari AW, Alam M, Uddin S, Ahmad A, Steinhoff M, Buddenkotte J. Embelin inhibits viability of cutaneous T cell lymphoma cell lines HuT78 and H9 by targeting inhibitors of apoptosis. Leuk Lymphoma 2023; 64:2236-2248. [PMID: 37708450 DOI: 10.1080/10428194.2023.2256909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 05/15/2023] [Accepted: 08/30/2023] [Indexed: 09/16/2023]
Abstract
Cutaneous T cell lymphoma (CTCL) is a varied group of neoplasms that affects the skin. Acquired resistance against chemotherapeutic drugs and associated toxic side effects are limitations that warrant search for novel drugs against CTCL. Embelin (EMB) is a naturally occurring benzoquinone derivative that has gained attention owing to its anticancer pharmacological actions and nontoxic nature. We assessed the anticancer activity of EMB against CTCL cell lines, HuT78, and H9. EMB inhibited viability of CTCL cells in a dose-dependent manner. EMB activated extrinsic and intrinsic pathways of apoptosis as shown by the activation of initiator and executioner caspases. EMB-induced apoptosis also involved suppression of inhibitors of apoptosis, XIAP, cIAP1, and cIAP2. PARP cleavage and upregulation of pH2AX indicated DNA damage induced by EMB. In conclusion, we characterized a novel apoptosis-inducing activity of EMB against CTCL cells, implicating EMB as a potential therapeutic agent against CTCL.
Collapse
Affiliation(s)
- Nabeel Abdulrahman
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Rari Leo
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Hasna Amal Boumenar
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Fareed Ahmad
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Jericha M Mateo
- Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Anh Jochebeth
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | | | - Gulab Sher
- Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Abdul W Ansari
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Majid Alam
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Shahab Uddin
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Aamir Ahmad
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Martin Steinhoff
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar
- College of Medicine, Qatar University, Doha, Qatar
- Weill Cornell Medicine, School of Medicine, Doha, Qatar
- Department of Dermatology, Weill Cornell Medicine, New York, NY, USA
| | - Joerg Buddenkotte
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
25
|
Gu X, Huang Z, Chen J, Luo Y, Ge S, Jia R, Song X, Chai P, Xu S, Fan X. Establishment and Characterization of a TP53-Mutated Eyelid Sebaceous Carcinoma Cell Line. Invest Ophthalmol Vis Sci 2023; 64:16. [PMID: 38095907 PMCID: PMC10723222 DOI: 10.1167/iovs.64.15.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/19/2023] [Indexed: 12/17/2023] Open
Abstract
Purpose Eyelid sebaceous carcinoma (SeC) is the third most frequent eyelid malignancy worldwide and is relatively prevalent in Asian patients. An eyelid SeC cell line model is necessary for experimental research to explore the etiology and pathogenesis of eyelid SeC. This study established and characterized an eyelid SeC cell line with a TP53 mutation that might be useful for analyzing potential treatment options for eyelid SeC. Methods The eyelid SeC cell line SHNPH-SeC was obtained from a patient with eyelid SeC at Shanghai Ninth People's Hospital (SHNPH), Shanghai JiaoTong University School of Medicine. Immunofluorescence staining was employed to detect the origination and proliferation activity. Short tandem repeat (STR) profiling was performed for verification. Chromosome analysis was implemented to investigate chromosome aberrations. Whole exome sequencing (WES) was used to discover genomic mutations. Cell proliferation assays were performed to identify sensitivity to mitomycin-C (MMC) and 5-fluorouracil (5-FU). Results SHNPH-SeC cells were successively subcultured for more than 100 passages and demonstrated rapid proliferation and migration. Karyotype analysis revealed abundant chromosome aberrations, and WES revealed SeC-related mutations in TP53, KMT2C, and ERBB2. An in vivo tumor model was successfully established in NOD/SCID mice. Biomarkers of eyelid SeC, including cytokeratin 5 (CK5), epithelial membrane antigen (EMA), adipophilin, p53, and Ki-67, were detected in SHNPH-SeC cells, original tumors, and xenografts. MMC and 5-FU inhibited the proliferation and migration of SHNPH-SeC cells, and SHNPH-SeC cells presented a greater drug response than non-TP53-mutated SeC cells. Conclusions The newly established eyelid SeC cell line SHNPH-SeC demonstrates mutation in TP53, the most commonly mutated gene in SeC. It presents SeC properties and malignant characteristics that may facilitate the investigation of cellular behaviors and molecular mechanisms of SeC to explore promising therapeutic strategies.
Collapse
Affiliation(s)
- Xiang Gu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Ziyue Huang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Jie Chen
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Yingxiu Luo
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Xin Song
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Peiwei Chai
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Shiqiong Xu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| |
Collapse
|
26
|
Fischer NW, Ma YHV, Gariépy J. Emerging insights into ethnic-specific TP53 germline variants. J Natl Cancer Inst 2023; 115:1145-1156. [PMID: 37352403 PMCID: PMC10560603 DOI: 10.1093/jnci/djad106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/09/2023] [Accepted: 06/02/2023] [Indexed: 06/25/2023] Open
Abstract
The recent expansion of human genomics repositories has facilitated the discovery of novel TP53 variants in populations of different ethnic origins. Interpreting TP53 variants is a major clinical challenge because they are functionally diverse, confer highly variable predisposition to cancer (including elusive low-penetrance alleles), and interact with genetic modifiers that alter tumor susceptibility. Here, we discuss how a cancer risk continuum may relate to germline TP53 mutations on the basis of our current review of genotype-phenotype studies and an integrative analysis combining functional and sequencing datasets. Our study reveals that each ancestry contains a distinct TP53 variant landscape defined by enriched ethnic-specific alleles. In particular, the discovery and characterization of suspected low-penetrance ethnic-specific variants with unique functional consequences, including P47S (African), G334R (Ashkenazi Jewish), and rs78378222 (Icelandic), may provide new insights in terms of managing cancer risk and the efficacy of therapy. Additionally, our analysis highlights infrequent variants linked to milder cancer phenotypes in various published reports that may be underdiagnosed and require further investigation, including D49H in East Asians and R181H in Europeans. Overall, the sequencing and projected functions of TP53 variants arising within ethnic populations and their interplay with modifiers, as well as the emergence of CRISPR screens and AI tools, are now rapidly improving our understanding of the cancer susceptibility spectrum, leading toward more accurate and personalized cancer risk assessments.
Collapse
Affiliation(s)
- Nicholas W Fischer
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Yu-Heng Vivian Ma
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Jean Gariépy
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
27
|
Zhang H, Yue X, Chen Z, Liu C, Wu W, Zhang N, Liu Z, Yang L, Jiang Q, Cheng Q, Luo P, Liu G. Define cancer-associated fibroblasts (CAFs) in the tumor microenvironment: new opportunities in cancer immunotherapy and advances in clinical trials. Mol Cancer 2023; 22:159. [PMID: 37784082 PMCID: PMC10544417 DOI: 10.1186/s12943-023-01860-5] [Citation(s) in RCA: 101] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/13/2023] [Indexed: 10/04/2023] Open
Abstract
Despite centuries since the discovery and study of cancer, cancer is still a lethal and intractable health issue worldwide. Cancer-associated fibroblasts (CAFs) have gained much attention as a pivotal component of the tumor microenvironment. The versatility and sophisticated mechanisms of CAFs in facilitating cancer progression have been elucidated extensively, including promoting cancer angiogenesis and metastasis, inducing drug resistance, reshaping the extracellular matrix, and developing an immunosuppressive microenvironment. Owing to their robust tumor-promoting function, CAFs are considered a promising target for oncotherapy. However, CAFs are a highly heterogeneous group of cells. Some subpopulations exert an inhibitory role in tumor growth, which implies that CAF-targeting approaches must be more precise and individualized. This review comprehensively summarize the origin, phenotypical, and functional heterogeneity of CAFs. More importantly, we underscore advances in strategies and clinical trials to target CAF in various cancers, and we also summarize progressions of CAF in cancer immunotherapy.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xinghai Yue
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Department of Urology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Zhe Chen
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Chao Liu
- Department of Neurosurgery, Central Hospital of Zhuzhou, Zhuzhou, China
| | - Wantao Wu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Nan Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Liping Yang
- Department of Laboratory Medicine, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Qing Jiang
- Department of Urology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Peng Luo
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| | - Guodong Liu
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
28
|
Biglari-Zadeh G, Sargazi S, Mohammadi M, Ghasemi M, Majidpour M, Saravani R, Mirinejad S. Relationship Between Genetic Polymorphisms in Cell Cycle Regulatory Gene TP53 and Polycystic Ovarian Syndrome: A Case-Control Study and In Silico Analyses. Biochem Genet 2023; 61:1827-1849. [PMID: 36856940 DOI: 10.1007/s10528-023-10349-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 02/15/2023] [Indexed: 03/02/2023]
Abstract
Polycystic ovarian syndrome (PCOS) is a complex endocrine and metabolic condition with several potential causes. Insulin resistance is a hallmark of PCOS that often coexists with hirsutism, hyperandrogenism, being overweight, and hormonal imbalances. The functioning of multiple replication and transcription factors is regulated by tumor suppressor genes (TSGs), which play a crucial role in maintaining genomic integrity and controlling the cell cycle of granulosa cells. In the present study, we examined how three single nucleotide polymorphisms (SNPs) in TP53, a cell cycle regulatory gene, affect the risk of developing PCOS in a sample of an Iranian population. Genomic DNA was extracted from 200 PCOS patients and 200 healthy women to analyze TP53 rs17880604, rs1625895, and rs1042522 SNPs using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. Our findings revealed that the majority of PCOS cases were overweight [25 < body mass index (BMI) < 30]. A positive association was observed between the TP53 rs1042522 SNP and the risk of PCOS under codominant heterozygous and overdominant genetic patterns (odds ratio > 1). Meanwhile, a negative association was observed between TP53 SNPs (rs1625895, rs17880604) and susceptibility to PCOS under codominant heterozygous and dominant models of inheritance (odds ratio < 1). Moreover, different genotype and haplotype combinations of rs17880604/rs1625895/rs1042522 conferred a decreased risk of PCOS in our population. We found no statistical difference in the frequency of TP53 genotypes between PCOS cases and/or controls in terms of BMI, waist circumference, prolactin level, and markers of lipid and carbohydrate profile (P > 0.05). Molecular dynamic prediction showed that the missense substitution in the 17p13.1 position (rs1042522) could change the properties and secondary structure of the p53 protein. As inherited risk factors, TP53 variations may play a pivotal role in the pathogenesis of PCOS among Iranian women. Replicated population-based studies on other ethnicities are required to find the genetic contribution of variants of TP53, or SNPs located in other TSGs, to the etiology of this endocrine disease.
Collapse
Affiliation(s)
- Ghazaleh Biglari-Zadeh
- Department of Biology, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, 9816743463, Iran.
| | - Malihe Mohammadi
- Department of Biology, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran
| | - Marzieh Ghasemi
- Pregnancy Health Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.
- Moloud Infertility Center, Ali Ibn Abitaleb Hospital, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Mahdi Majidpour
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, 9816743463, Iran
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Ramin Saravani
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, 9816743463, Iran
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Shekoufeh Mirinejad
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, 9816743463, Iran
| |
Collapse
|
29
|
Navarange SS, Bane SM, Mehta D, Shah S, Gupta S, Waghmare SK. Epithelial-to-mesenchymal transition status correlated with ultrastructural features, and TP53 mutation in patient-derived oral cancer cell lines. Mol Biol Rep 2023; 50:8469-8481. [PMID: 37639153 DOI: 10.1007/s11033-023-08720-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 07/28/2023] [Indexed: 08/29/2023]
Abstract
BACKGROUND Oral Squamous Cell Carcinoma (OSCC) is a highly prevalent cancer in the Indian subcontinent. The major cause of mortality in OSCC patients is metastasis. Epithelial-to-mesenchymal transition (EMT) marks an important step in the metastatic process. Additionally, TP53, an important tumor suppressor gene, is also a significant determinant of the treatment outcome, and also plays a role in EMT. Therefore, understanding the interconnections between ultrastructural features, EMT status and TP53 mutational status is of vital importance. METHODS AND RESULTS The ultrastructure of five OSCC cell lines was visualized by transmission electron microscopy. Trans-well invasion and migration assays as well as scratch-wound assay, and the expression of various EMT-related genes were utilized to assess the EMT status of the cell lines. The TP53 exons were amplified for the ACOSC3, ACOSC4 and ACOSC16 cell lines and sequenced and the mutations in the gene were identified by sequence alignment. The TP53 mutation in the UPCI:SCC029B cell line has been previously reported, while UPCI:SCC040 has been reported to harbor a wild type TP53. The ACOSC4 cell line which showed the shortest intercellular gaps, also had the least invasive and migratory potential. Interestingly, ACOSC4 showed the highest expression of E-cadherin and the lowest expression of Vimentin, TWIST1, ZEB1, and MMPs. Additionally, TP53 gene of ACOSC4 was unmutated, whereas the ACOSC3 and ACOSC16 harbored TP53 mutations. The mutation in ACOSC3 (R196*) was also found in 7 TCGA samples. Similarly, the UPCI:SCC040 cell line that harbors a wild type TP53 showed shorter intracellular gaps. CONCLUSIONS Cellular migratory properties are associated with cellular ultrastructure, epithelial-to-mesenchymal transition status and the status of TP53 mutation in the genome.
Collapse
Affiliation(s)
- Sushant S Navarange
- Waghmare Lab, Stem Cell Biology Group, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Cancer Research Institute, Navi Mumbai, 410210, India
- Training School Complex, Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400085, India
| | - Sanjay M Bane
- Waghmare Lab, Stem Cell Biology Group, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Cancer Research Institute, Navi Mumbai, 410210, India
| | - Darshan Mehta
- Waghmare Lab, Stem Cell Biology Group, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Cancer Research Institute, Navi Mumbai, 410210, India
- Training School Complex, Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400085, India
| | - Sanket Shah
- Gupta Lab, Epigenetics and chromatin Biology Group, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Cancer Research Institute, Navi Mumbai, 410210, India
- Training School Complex, Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400085, India
| | - Sanjay Gupta
- Gupta Lab, Epigenetics and chromatin Biology Group, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Cancer Research Institute, Navi Mumbai, 410210, India
- Training School Complex, Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400085, India
| | - Sanjeev K Waghmare
- Waghmare Lab, Stem Cell Biology Group, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Cancer Research Institute, Navi Mumbai, 410210, India.
- Training School Complex, Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400085, India.
| |
Collapse
|
30
|
Stieg DC, Parris JLD, Yang THL, Mirji G, Reiser SK, Murali N, Werts M, Barnoud T, Lu DY, Shinde R, Murphy ME, Claiborne DT. The African-centric P47S Variant of TP53 Confers Immune Dysregulation and Impaired Response to Immune Checkpoint Inhibition. CANCER RESEARCH COMMUNICATIONS 2023; 3:1200-1211. [PMID: 37441266 PMCID: PMC10335007 DOI: 10.1158/2767-9764.crc-23-0149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/18/2023] [Accepted: 06/14/2023] [Indexed: 07/15/2023]
Abstract
The tumor suppressor TP53 is the most frequently mutated gene in cancer and is mutationally inactivated in 50% of sporadic tumors. Inactivating mutations in TP53 also occur in Li Fraumeni syndrome (LFS). In addition to germline mutations in TP53 in LFS that completely inactivate this protein, there are many more germline mutant forms of TP53 in human populations that partially inactivate this protein: we call these partially inactivating mutations "hypomorphs." One of these hypomorphs is a SNP that exists in 6%-10% of Africans and 1%-2% of African Americans, which changes proline at amino acid 47 to serine (Pro47Ser; P47S). We previously showed that the P47S variant of p53 is intrinsically impaired for tumor suppressor function, and that this SNP is associated with increased cancer risk in mice and humans. Here we show that this SNP also influences the tumor microenvironment, and the immune microenvironment profile in P47S mice is more protumorigenic. At basal levels, P47S mice show impaired memory T-cell formation and function, along with increased anti-inflammatory (so-called "M2") macrophages. We show that in tumor-bearing P47S mice, there is an increase in immunosuppressive myeloid-derived suppressor cells and decreased numbers of activated dendritic cells, macrophages, and B cells, along with evidence for increased T-cell exhaustion in the tumor microenvironment. Finally, we show that P47S mice demonstrate an incomplete response to anti-PD-L1 therapy. Our combined data suggest that the African-centric P47S variant leads to both intrinsic and extrinsic defects in tumor suppression. Significance Findings presented here show that the P47S variant of TP53 influences the immune microenvironment, and the immune response to cancer. This is the first time that a naturally occurring genetic variant of TP53 has been shown to negatively impact the immune microenvironment and the response to immunotherapy.
Collapse
Affiliation(s)
- David C. Stieg
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Joshua L. D. Parris
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Tyler Hong Loong Yang
- Program in Immunology, Microenvironment, and Metastasis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Gauri Mirji
- Program in Immunology, Microenvironment, and Metastasis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Sarah Kim Reiser
- Program in Immunology, Microenvironment, and Metastasis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Nivitha Murali
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Madison Werts
- Program in Immunology, Microenvironment, and Metastasis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Thibaut Barnoud
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina
| | - David Y. Lu
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Rahul Shinde
- Program in Immunology, Microenvironment, and Metastasis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Maureen E. Murphy
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Daniel T. Claiborne
- Program in Immunology, Microenvironment, and Metastasis, The Wistar Institute, Philadelphia, Pennsylvania
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, Pennsylvania
| |
Collapse
|
31
|
Moe SE, Erland FA, Fromreide S, Lybak S, Brydoy M, Dongre HN, Dhayalan SM, Costea DE, Vintermyr OK, Aarstad HJ. The TP53 Codon 72 Arginine Polymorphism Is Found with Increased TP53 Somatic Mutations in HPV(-) and in an Increased Percentage among HPV(+) Norwegian HNSCC Patients. Biomedicines 2023; 11:1838. [PMID: 37509476 PMCID: PMC10376802 DOI: 10.3390/biomedicines11071838] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/19/2023] [Accepted: 06/24/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Somatic TP53 mutations are frequent in head and neck squamous cell carcinoma (HNSCC) and are important pathogenic factors. OBJECTIVE To study TP53 mutations relative to the presence of human papillomavirus (HPV) in tumors in HNSCC patients. METHODS Using a custom-made next-generation sequencing (NGS) panel on formalin-fixed, paraffin-embedded tumor tissue, we analyzed somatic TP53 mutations and the TP53 single-nucleotide polymorphism (SNP) codon 72 (P72R; rs1042522) (proline → arginine) from 104 patients with HNSCC. RESULTS Only 2 of 44 patients with HPV-positive (HPV(+)) HNSCC had a TP53 somatic mutation, as opposed to 42/60 HPV-negative (HPV(-)) HNSCC patients (p < 0.001). Forty-five different TP53 somatic mutations were detected. Furthermore, in HPV(-) patients, we determined an 80% prevalence of somatic TP53 mutations in the TP53 R72 polymorphism cohort versus 40% in the TP53 P72 cohort (p = 0.001). A higher percentage of patients with oral cavity SCC had TP53 mutations than HPV(-) oropharyngeal (OP) SCC patients (p = 0.012). Furthermore, 39/44 HPV(+) tumor patients harbored the TP53 R72 polymorphism in contrast to 42/60 patients in the HPV(-) group (p = 0.024). CONCLUSIONS Our observations show that TP53 R72 polymorphism is associated with a tumor being HPV(+). We also report a higher percentage of somatic TP53 mutations with R72 than P72 in HPV(-) HNSCC patients.
Collapse
Affiliation(s)
- Svein Erik Moe
- Department of Otolaryngology/Head and Neck Surgery, Haukeland University Hospital (HUS), N-5020 Bergen, Norway
| | - Fredrik A Erland
- Department of Otolaryngology/Head and Neck Surgery, Haukeland University Hospital (HUS), N-5020 Bergen, Norway
| | - Siren Fromreide
- Department of Clinical Medicine, University of Bergen, N-5020 Bergen, Norway
| | - Stein Lybak
- Department of Otolaryngology/Head and Neck Surgery, Haukeland University Hospital (HUS), N-5020 Bergen, Norway
| | - Marianne Brydoy
- Department of Oncology, Haukeland University Hospital (HUS), N-5020 Bergen, Norway
| | - Harsh N Dongre
- Department of Clinical Medicine, University of Bergen, N-5020 Bergen, Norway
| | - Sophia M Dhayalan
- Department of Pathology, Haukeland University Hospital (HUS), N-5020 Bergen, Norway
| | | | - Olav K Vintermyr
- Department of Pathology, Haukeland University Hospital (HUS), N-5020 Bergen, Norway
| | - Hans Jørgen Aarstad
- Department of Clinical Medicine, University of Bergen, N-5020 Bergen, Norway
| |
Collapse
|
32
|
Ruan Y, Tang Q, Qiao J, Wang J, Li H, Yue X, Sun Y, Wang P, Yang H, Liu Z. Identification of a novel glycolysis-related prognosis risk signature in triple-negative breast cancer. Front Oncol 2023; 13:1171496. [PMID: 37274269 PMCID: PMC10233057 DOI: 10.3389/fonc.2023.1171496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/05/2023] [Indexed: 06/06/2023] Open
Abstract
Introduction Triple-negative breast cancer (TNBC) is a particularly aggressive cluster of breast cancer characterized by significant molecular heterogeneity. Glycolysis is a metabolic pathway that is significantly associated with cancer progression, metastasis, recurrence and chemoresistance. However, the potential roles of glycolysis-related genes in TNBC remain unclear. Methods In the present study, we identified 108 glycolysis-related differentially expressed genes (DEGs) between breast cancer (BRCA) tumor tissues and normal tissues, and we divided patients into two different clusters with significantly distinct molecular characteristics, clinicopathological features, prognosis, immune cell infiltration and mutation burden. We then constructed a 10-gene signature that classified all TNBCs into low- and high-risk groups. Results The high-risk group had significantly lower survival than the low-risk group, which implied that the risk score was an independent prognostic indicator for TNBC patients. Consequently, we constructed and validated a prognostic nomogram, which accurately predicted individual overall survival (OS) of TNBC. Moreover, the risk score predicted the drug sensitivity of chemotherapeutic agents and immunotherapy for TNBC patients. Discussion The present comprehensive analysis of glycolysis-related DEGs in TNBC provides new methods for prognosis prediction and more effective treatment strategies.
Collapse
Affiliation(s)
- Yuxia Ruan
- Department of Breast Surgery, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Qiang Tang
- The Second Affiliated Hospital of Zhejiang University School Medicine, Hangzhou, China
| | - Jianghua Qiao
- Department of Breast Surgery, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Jiabin Wang
- Department of Breast Surgery, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Huimin Li
- Department of Cancer Cell Biology, Tianjin’s Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Xiayu Yue
- Department of Breast Surgery, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Yadong Sun
- Department of Breast Surgery, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Peili Wang
- Department of Breast Surgery, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Hanzhao Yang
- Department of Breast Surgery, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Zhenzhen Liu
- Department of Breast Surgery, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
33
|
Duncan A, Nousome D, Ricks R, Kuo HC, Ravindranath L, Dobi A, Cullen J, Srivastava S, Chesnut GT, Petrovics G, Kohaar I. Association of TP53 Single Nucleotide Polymorphisms with Prostate Cancer in a Racially Diverse Cohort of Men. Biomedicines 2023; 11:biomedicines11051404. [PMID: 37239075 DOI: 10.3390/biomedicines11051404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 04/25/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Growing evidence indicates the involvement of a genetic component in prostate cancer (CaP) susceptibility and clinical severity. Studies have reported the role of germline mutations and single nucleotide polymorphisms (SNPs) of TP53 as possible risk factors for cancer development. In this single institutional retrospective study, we identified common SNPs in the TP53 gene in AA and CA men and performed association analyses for functional TP53 SNPs with the clinico-pathological features of CaP. The SNP genotyping analysis of the final cohort of 308 men (212 AA; 95 CA) identified 74 SNPs in the TP53 region, with a minor allele frequency (MAF) of at least 1%. Two SNPs were non-synonymous in the exonic region of TP53: rs1800371 (Pro47Ser) and rs1042522 (Arg72Pro). The Pro47Ser variant had an MAF of 0.01 in AA but was not detected in CA. Arg72Pro was the most common SNP, with an MAF of 0.50 (0.41 in AA; 0.68 in CA). Arg72Pro was associated with a shorter time to biochemical recurrence (BCR) (p = 0.046; HR = 1.52). The study demonstrated ancestral differences in the allele frequencies of the TP53 Arg72Pro and Pro47Ser SNPs, providing a valuable framework for evaluating CaP disparities among AA and CA men.
Collapse
Affiliation(s)
- Allison Duncan
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA
- F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Darryl Nousome
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA
| | - Randy Ricks
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA
| | - Huai-Ching Kuo
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA
| | - Lakshmi Ravindranath
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Albert Dobi
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Jennifer Cullen
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA
| | - Shiv Srivastava
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA
| | - Gregory T Chesnut
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA
- Urology Service, Walter Reed National Military Medical Center, Bethesda, MD 20814, USA
| | - Gyorgy Petrovics
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Indu Kohaar
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| |
Collapse
|
34
|
Yuan Z, Li Y, Zhang S, Wang X, Dou H, Yu X, Zhang Z, Yang S, Xiao M. Extracellular matrix remodeling in tumor progression and immune escape: from mechanisms to treatments. Mol Cancer 2023; 22:48. [PMID: 36906534 PMCID: PMC10007858 DOI: 10.1186/s12943-023-01744-8] [Citation(s) in RCA: 264] [Impact Index Per Article: 132.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/11/2023] [Indexed: 03/13/2023] Open
Abstract
The malignant tumor is a multi-etiological, systemic and complex disease characterized by uncontrolled cell proliferation and distant metastasis. Anticancer treatments including adjuvant therapies and targeted therapies are effective in eliminating cancer cells but in a limited number of patients. Increasing evidence suggests that the extracellular matrix (ECM) plays an important role in tumor development through changes in macromolecule components, degradation enzymes and stiffness. These variations are under the control of cellular components in tumor tissue via the aberrant activation of signaling pathways, the interaction of the ECM components to multiple surface receptors, and mechanical impact. Additionally, the ECM shaped by cancer regulates immune cells which results in an immune suppressive microenvironment and hinders the efficacy of immunotherapies. Thus, the ECM acts as a barrier to protect cancer from treatments and supports tumor progression. Nevertheless, the profound regulatory network of the ECM remodeling hampers the design of individualized antitumor treatment. Here, we elaborate on the composition of the malignant ECM, and discuss the specific mechanisms of the ECM remodeling. Precisely, we highlight the impact of the ECM remodeling on tumor development, including proliferation, anoikis, metastasis, angiogenesis, lymphangiogenesis, and immune escape. Finally, we emphasize ECM "normalization" as a potential strategy for anti-malignant treatment.
Collapse
Affiliation(s)
- Zhennan Yuan
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Yingpu Li
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Sifan Zhang
- Department of Neurobiology, Harbin Medical University, Harbin, 150081, China
| | - Xueying Wang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - He Dou
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Xi Yu
- Department of Gynecological Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Zhiren Zhang
- NHC Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.,Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang Key Laboratory for Metabolic Disorder and Cancer Related Cardiovascular Diseases, Harbin, 150001, China
| | - Shanshan Yang
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, 150000, China.
| | - Min Xiao
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
| |
Collapse
|
35
|
Koyasu S, Horita S, Saito K, Kobayashi M, Ishikita H, Chow CCT, Kambe G, Nishikawa S, Menju T, Morinibu A, Okochi Y, Tabuchi Y, Onodera Y, Takeda N, Date H, Semenza GL, Hammond EM, Harada H. ZBTB2 links p53 deficiency to HIF-1-mediated hypoxia signaling to promote cancer aggressiveness. EMBO Rep 2023; 24:e54042. [PMID: 36341521 PMCID: PMC9827547 DOI: 10.15252/embr.202154042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/16/2022] [Accepted: 10/19/2022] [Indexed: 11/09/2022] Open
Abstract
Aberrant activation of the hypoxia-inducible transcription factor HIF-1 and dysfunction of the tumor suppressor p53 have been reported to induce malignant phenotypes and therapy resistance of cancers. However, their mechanistic and functional relationship remains largely unknown. Here, we reveal a mechanism by which p53 deficiency triggers the activation of HIF-1-dependent hypoxia signaling and identify zinc finger and BTB domain-containing protein 2 (ZBTB2) as an important mediator. ZBTB2 forms homodimers via its N-terminus region and increases the transactivation activity of HIF-1 only when functional p53 is absent. The ZBTB2 homodimer facilitates invasion, distant metastasis, and growth of p53-deficient, but not p53-proficient, cancers. The intratumoral expression levels of ZBTB2 are associated with poor prognosis in lung cancer patients. ZBTB2 N-terminus-mimetic polypeptides competitively inhibit ZBTB2 homodimerization and significantly suppress the ZBTB2-HIF-1 axis, leading to antitumor effects. Our data reveal an important link between aberrant activation of hypoxia signaling and loss of a tumor suppressor and provide a rationale for targeting a key mediator, ZBTB2, to suppress cancer aggressiveness.
Collapse
Affiliation(s)
- Sho Koyasu
- Laboratory of Cancer Cell Biology, Graduate School of BiostudiesKyoto UniversityKyotoJapan
- Department of Genome Repair Dynamics, Radiation Biology Center, Graduate School of BiostudiesKyoto UniversityKyotoJapan
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of MedicineKyoto UniversityKyotoJapan
- Research Center for Advanced Science and TechnologyThe University of TokyoTokyoJapan
| | - Shoichiro Horita
- Department of Bioregulation and Pharmacological MedicineFukushima Medical UniversityFukushimaJapan
| | - Keisuke Saito
- Research Center for Advanced Science and TechnologyThe University of TokyoTokyoJapan
| | - Minoru Kobayashi
- Laboratory of Cancer Cell Biology, Graduate School of BiostudiesKyoto UniversityKyotoJapan
- Department of Genome Repair Dynamics, Radiation Biology Center, Graduate School of BiostudiesKyoto UniversityKyotoJapan
| | - Hiroshi Ishikita
- Research Center for Advanced Science and TechnologyThe University of TokyoTokyoJapan
| | - Christalle CT Chow
- Laboratory of Cancer Cell Biology, Graduate School of BiostudiesKyoto UniversityKyotoJapan
| | - Gouki Kambe
- Laboratory of Cancer Cell Biology, Graduate School of BiostudiesKyoto UniversityKyotoJapan
| | - Shigeto Nishikawa
- Department of Thoracic Surgery, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Toshi Menju
- Department of Thoracic Surgery, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Akiyo Morinibu
- Laboratory of Cancer Cell Biology, Graduate School of BiostudiesKyoto UniversityKyotoJapan
- Department of Genome Repair Dynamics, Radiation Biology Center, Graduate School of BiostudiesKyoto UniversityKyotoJapan
| | - Yasushi Okochi
- Laboratory of Cancer Cell Biology, Graduate School of BiostudiesKyoto UniversityKyotoJapan
- Faculty of MedicineKyoto UniversityKyotoJapan
| | - Yoshiaki Tabuchi
- Division of Molecular Genetics Research, Life Science Research CenterUniversity of ToyamaToyamaJapan
| | - Yasuhito Onodera
- Global Center for Biomedical Science and Engineering, Faculty of MedicineHokkaido UniversitySapporoJapan
| | - Norihiko Takeda
- Division of Cardiology and Metabolism, Center for Molecular MedicineJichi Medical UniversityTochigiJapan
| | - Hiroshi Date
- Department of Thoracic Surgery, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Gregg L Semenza
- McKusick‐Nathans Institute of Genetic MedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Institute for Cell EngineeringJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Ester M Hammond
- MRC Oxford Institute for Radiation Oncology, Department of OncologyUniversity of OxfordOxfordUK
| | - Hiroshi Harada
- Laboratory of Cancer Cell Biology, Graduate School of BiostudiesKyoto UniversityKyotoJapan
- Department of Genome Repair Dynamics, Radiation Biology Center, Graduate School of BiostudiesKyoto UniversityKyotoJapan
| |
Collapse
|
36
|
Abstract
Deregulation of transcription factors is critical to hallmarks of cancer. Genetic mutations, gene fusions, amplifications or deletions, epigenetic alternations, and aberrant post-transcriptional modification of transcription factors are involved in the regulation of various stages of carcinogenesis, including cancer initiation, progression, and metastasis. Thus, targeting the dysfunctional transcription factors may lead to new cancer therapeutic strategies. However, transcription factors are conventionally considered as "undruggable." Here, we summarize the recent progresses in understanding the regulation of transcription factors in cancers and strategies to target transcription factors and co-factors for preclinical and clinical drug development, particularly focusing on c-Myc, YAP/TAZ, and β-catenin due to their significance and interplays in cancer.
Collapse
Affiliation(s)
- Zhipeng Tao
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.
| | - Xu Wu
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.
| |
Collapse
|
37
|
Li Z, Li M, Xia P, Wang L, Lu Z. Targeting long non-coding RNA PVT1/TGF-β/Smad by p53 prevents glioma progression. Cancer Biol Ther 2022; 23:225-233. [PMID: 35275031 PMCID: PMC8920172 DOI: 10.1080/15384047.2022.2042160] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Glioma is a primary intracranial malignant tumor with poor prognosis, and its pathogenesis is unclear. This study discussed the impact of p53/lncRNA plasmacytoma variant translocation 1 (lncRNA PVT1)/transforming growth factor beta (TGF-β)/Smad axis on the biological characteristics of glioma. Glioma and normal tissues were collected, in which relative lncRNA PVT1 and p53 expression was assessed. Pearson’s analysis was adopted for the correlation analysis between lncRNA PVT1 and p53. Short interfering RNA (siRNA) against lncRNA PVT1 (siRNA-PVT1), siRNA-p53 or both was transfected into the glioma cells to evaluate effects of lncRNA PVT1 and p53 on cell proliferation, migration, invasion, and apoptosis. Mouse xenograft model of glioma was established to verify function of lncRNA PVT1 and p53 in vivo. Relationship among p53, lncRNA PVT1 and TGF-β/Smad was predicted and confirmed. Glioma tissues and cells showed downregulated p53 expression and increased lncRNA PVT1 expression. An adverse relationship was noted between p53 expression and lncRNA PVT1 expression. p53 was shown to be enriched in the lncRNA PVT1 promoter region and resulted in its suppression. p53 inhibited glioma cell proliferation, migration, and invasion, and induced apoptosis as well as arrested tumor growth by downregulating lncRNA PVT1. LncRNA PVT1was found to bind to TGF-β and activate TGF-β/Smad pathway, promoting progression of glioma. Consequently, p53 exerts anti-oncogenic function on glioma development by suppressing lncRNA PVT1 and subsequently inactivating TGF-β/Smad pathway.
Collapse
Affiliation(s)
- Zhang Li
- Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan,Shandong Province, China
| | - Ming Li
- Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan,Shandong Province, China
| | - Pengcheng Xia
- Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan,Shandong Province, China
| | - Lili Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan,Shandong Province, China
| | - Zhiming Lu
- Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan,Shandong Province, China
| |
Collapse
|
38
|
Nakano S, Yamaji T, Katagiri R, Sawada N, Inoue M, Tsugane S, Iwasaki M. p53 Arg72Pro polymorphism, adiposity status, and cancer risk: Two case-cohorts within a Japanese prospective study. Cancer Sci 2022; 113:4385-4393. [PMID: 36083231 DOI: 10.1111/cas.15572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/25/2022] [Accepted: 09/01/2022] [Indexed: 12/15/2022] Open
Abstract
The tumor suppressor protein, p53, is a critical molecule involved in cancer development. However, the association between p53 Arg72Pro polymorphism and cancer risk remains unclear, possibly due to the pro-tumor potential of p53 under metabolic stress. Here, we hypothesized that the p53 Arg72Pro polymorphism plays different roles during tumorigenesis by adiposity status. We measured baseline body mass index (BMI) and p53 Arg72Pro polymorphism for two case-cohorts, which included 4264 cancers with up to 20 years of follow-up. Multivariable-adjusted hazard ratios (HRs) and confidence intervals (CIs) were estimated using weighted Cox proportional-hazards method. Without consideration of adiposity status, p53 Arg72Pro polymorphism was not associated with cancer risk. However, proline (Pro) homozygous genotype conferred an increased cancer risk for individuals with a BMI <25 kg/m2 (HR [95% CI]: 1.12 [1.00-1.26] for total cancer and 1.19 [1.02-1.38] for obesity-related cancer), but not for those with a BMI ≥ 25 kg/m2 . The heterogeneous effect of p53 Arg72Pro polymorphism on cancer risk according to adiposity status was indicated (pheterogeneity : 0.07 for total cancer and 0.03 for obesity-related cancer). Furthermore, the association between overweight and cancer risk was only observed in arginine (Arg) carriers, but not in Pro homozygous carriers (pheterogeneity : 0.07 for total cancer and 0.02 for obesity-related cancer). Pro homozygous carriers were more likely to be predisposed to cancer than Arg carriers with normal-weight conditions. In addition, overweight was related to a higher cancer risk in Arg carriers than Pro homozygous carriers. Our findings may suggest the adiposity-dependent dual effects of p53 Arg72Pro polymorphism during tumorigenesis.
Collapse
Affiliation(s)
- Shiori Nakano
- Division of Epidemiology, National Cancer Center Institute for Cancer Control, Tokyo, Japan
| | - Taiki Yamaji
- Division of Epidemiology, National Cancer Center Institute for Cancer Control, Tokyo, Japan
| | - Ryoko Katagiri
- Division of Epidemiology, National Cancer Center Institute for Cancer Control, Tokyo, Japan
| | - Norie Sawada
- Division of Cohort Research, National Cancer Center Institute for Cancer Control, Tokyo, Japan
| | - Manami Inoue
- Division of Prevention, National Cancer Center Institute for Cancer Control, Tokyo, Japan
| | - Shoichiro Tsugane
- Division of Cohort Research, National Cancer Center Institute for Cancer Control, Tokyo, Japan.,National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition, Tokyo, Japan
| | - Motoki Iwasaki
- Division of Epidemiology, National Cancer Center Institute for Cancer Control, Tokyo, Japan
| | | |
Collapse
|
39
|
Jiang H, Li AM, Ye J. The magic bullet: Niclosamide. Front Oncol 2022; 12:1004978. [PMID: 36479072 PMCID: PMC9720275 DOI: 10.3389/fonc.2022.1004978] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/12/2022] [Indexed: 08/27/2023] Open
Abstract
The term 'magic bullet' is a scientific concept proposed by the German Nobel laureate Paul Ehrlich in 1907, describing a medicine that could specifically and efficiently target a disease without harming the body. Oncologists have been looking for a magic bullet for cancer therapy ever since. However, the current therapies for cancers-including chemotherapy, radiation therapy, hormone therapy, and targeted therapy-pose either pan-cytotoxicity or only single-target efficacy, precluding their ability to function as a magic bullet. Intriguingly, niclosamide, an FDA-approved drug for treating tapeworm infections with an excellent safety profile, displays broad anti-cancer activity in a variety of contexts. In particular, niclosamide inhibits multiple oncogenic pathways such as Wnt/β-catenin, Ras, Stat3, Notch, E2F-Myc, NF-κB, and mTOR and activates tumor suppressor signaling pathways such as p53, PP2A, and AMPK. Moreover, niclosamide potentially improves immunotherapy by modulating pathways such as PD-1/PDL-1. We recently discovered that niclosamide ethanolamine (NEN) reprograms cellular metabolism through its uncoupler function, consequently remodeling the cellular epigenetic landscape to promote differentiation. Inspired by the promising results from the pre-clinical studies, several clinical trials are ongoing to assess the therapeutic effect of niclosamide in cancer patients. This current review summarizes the functions, mechanism of action, and potential applications of niclosamide in cancer therapy as a magic bullet.
Collapse
Affiliation(s)
- Haowen Jiang
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, United States
| | - Albert M. Li
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, United States
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA, United States
| | - Jiangbin Ye
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, United States
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA, United States
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
40
|
DeLouize AM, Eick G, Karam SD, Snodgrass JJ. Current and future applications of biomarkers in samples collected through minimally invasive methods for cancer medicine and population-based research. Am J Hum Biol 2022; 34:e23665. [PMID: 34374148 PMCID: PMC9894104 DOI: 10.1002/ajhb.23665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 02/04/2023] Open
Abstract
Despite advances in cancer medicine and research, invasive and potentially risky procedures such as biopsies, venous blood tests, imaging, colonoscopy, and pap smear tests are still primarily used for screening, staging, and assessing response to therapy. The development and interdisciplinary use of biomarkers from urine, feces, saliva, scent, and capillary blood collected with minimally invasive methods represents a potential opportunity for integration with biomarker analysis for cancers, both in clinical practice (e.g., in screening, treatment, and disease monitoring, and improved quality of life for patients) and population-based research (e.g., in epidemiology/public health, studies of social and environmental determinants, and evolutionary medicine). In this article, we review the scientific rationale, benefits, challenges, and potential opportunities for measuring cancer-related biomarkers in samples collected through minimally invasive methods.
Collapse
Affiliation(s)
| | - Geeta Eick
- Department of Anthropology, University of Oregon, Eugene, Oregon, USA
| | - Sana D. Karam
- Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - J. Josh Snodgrass
- Department of Anthropology, University of Oregon, Eugene, Oregon, USA
- Center for Global Health, University of Oregon, Eugene, Oregon, USA
| |
Collapse
|
41
|
Thiel KW, Devor EJ, Filiaci VL, Mutch D, Moxley K, Alvarez Secord A, Tewari KS, McDonald ME, Mathews C, Cosgrove C, Dewdney S, Aghajanian C, Samuelson MI, Lankes HA, Soslow RA, Leslie KK. TP53 Sequencing and p53 Immunohistochemistry Predict Outcomes When Bevacizumab Is Added to Frontline Chemotherapy in Endometrial Cancer: An NRG Oncology/Gynecologic Oncology Group Study. J Clin Oncol 2022; 40:3289-3300. [PMID: 35658479 PMCID: PMC9553389 DOI: 10.1200/jco.21.02506] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 02/28/2022] [Accepted: 04/15/2022] [Indexed: 11/20/2022] Open
Abstract
PURPOSE The status of p53 in a tumor can be inferred by next-generation sequencing (NGS) or by immunohistochemistry (IHC). We examined the association between p53 IHC and sequence and whether p53 IHC alone, or integrated with TP53 NGS, predicts the outcome. METHODS From GOG-86P, a randomized phase II study of chemotherapy combined with either bevacizumab or temsirolimus in advanced endometrial cancer, 213 cases had p53 protein expression data measured by IHC and TP53 NGS data. An analysis was designed to integrate p53 expression by IHC with the presence or absence of a TP53 mutation. These variables were further correlated with progression-free survival (PFS) and overall survival (OS) in the chemotherapy plus bevacizumab arms versus the chemotherapy plus temsirolimus arm. RESULTS In the analysis of p53 IHC, the most striking treatment effect favoring bevacizumab was in cases where p53 was overexpressed (PFS hazard ratio [HR]: 0.46, 95% CI, 0.26 to 0.88; OS HR: 0.31, 95% CI, 0.16 to 0.62). On integrated analysis, patients with TP53 missense mutations and p53 protein overexpression had a similar treatment effect on PFS (HR: 0.41, 95% CI, 0.22 to 0.83) and OS (HR: 0.28, 95% CI, 0.14 to 0.59) favoring bevacizumab plus chemotherapy relative to temsirolimus plus chemotherapy. Concordance between TP53 NGS and p53 IHC was 88%. Concordance was 92% when cases with TP53 mutations and POLE mutations or mismatch repair deficiency were removed. CONCLUSION IHC for p53 alone or when integrated with sequencing for TP53 identifies a specific, high-risk tumor genotype/phenotype for which bevacizumab is particularly beneficial in improving outcomes when combined with chemotherapy.
Collapse
Affiliation(s)
- Kristina W. Thiel
- Department of Obstetrics and Gynecology, University of Iowa, Iowa City, IA
| | - Eric J. Devor
- Department of Obstetrics and Gynecology, University of Iowa, Iowa City, IA
| | - Virginia L. Filiaci
- NRG Oncology, Clinical Trial Development Division, Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - David Mutch
- Washington University School of Medicine, Siteman Cancer Center, St Louis, MO
| | - Katherine Moxley
- Stephenson Cancer Center, Gynecologic Cancers Clinic, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | | | | | - Megan E. McDonald
- Department of Obstetrics and Gynecology, University of Iowa, Iowa City, IA
| | - Cara Mathews
- Women and Infants Hospital in Rhode Island/The Warren Alpert Medical School of Brown University, Providence, RI
| | - Casey Cosgrove
- Ohio State University Medical Center, James Cancer Hospital and Solove Research Institute, Obstetrics and Gynecology, Columbus, OH
| | | | - Carol Aghajanian
- Memorial Sloan Kettering Cancer and Weill Cornell Medical Center, New York, NY
| | - Megan I. Samuelson
- Department of Obstetrics and Gynecology, University of Iowa, Iowa City, IA
| | - Heather A. Lankes
- Biopathology Center, The Research Institute at Nationwide Children's Hospital, Columbus, OH
| | - Robert A. Soslow
- The University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Kimberly K. Leslie
- Department of Obstetrics and Gynecology, University of Iowa, Iowa City, IA
- The University of New Mexico Health Sciences Center, Albuquerque, NM
| |
Collapse
|
42
|
Qin JX, Liu X, Wang XL, Wang GY, Liang Q, Dong Y, Pang K, Hao L, Xue L, Zhao Y, Hu ZX, Li R, Lv Q, Chao L, Meng FL, Shi ZD, Han CH. Identification and analysis of microRNA editing events in recurrent bladder cancer based on RNA sequencing: MicroRNA editing level is a potential novel biomarker. Front Genet 2022; 13:984279. [PMID: 36199571 PMCID: PMC9527279 DOI: 10.3389/fgene.2022.984279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Background: With the continued advancement of RNA-seq (RNA-sequencing), microRNA (miRNA) editing events have been demonstrated to play an important role in different malignancies. However, there is yet no description of the miRNA editing events in recurrent bladder cancer.Objective: To identify and compare miRNA editing events in primary and recurrent bladder cancer, as well as to investigate the potential molecular mechanism and its impact on patient prognosis.Methods: We examined the mRNA and miRNA transcriptomes of 12 recurrent bladder cancer cases and 13 primary bladder cancer cases. The differentially expressed mRNA sequences were analyzed. Furthermore, we identified the differentially expressed genes (DEGs) in recurrent bladder cancer. The Gene Ontology (GO) functional enrichment analyses on DEGs and gene set enrichment analysis were performed. The consensus molecular subtype (CMS) classification of bladder cancer was identified using the Consensus MIBC package in R (4.1.0); miRNA sequences were then further subjected to differentially expressed analysis and pathway enrichment analysis. MiRNA editing events were identified using miRge3.0. miRDB and TargetScanHuman were used to predict the downstream targets of specific differentially edited or expressed miRNAs. The expression levels of miR-154-5p and ADAR were validated by RT-qPCR. Finally, survival and co-expression studies were performed on the TCGA-BLCA cohort.Results: First, the mRNA expression levels in recurrent bladder cancer changed significantly, supporting progression via related molecular signal pathways. Second, significantly altered miRNAs in recurrent bladder cancer were identified, with miR-154-5p showing the highest level of editing in recurrent bladder cancer and may up-regulate the expression levels of downstream targets HS3ST3A1, AQP9, MYLK, and RAB23. The survival analysis results of TCGA data revealed that highly expressed HS3ST3A1 and RAB23 exhibited poor prognosis. In addition, miR-154 editing events were found to be significant to CMS classification.Conclusion: MiRNA editing in recurrent bladder cancer was detected and linked with poor patient prognosis, providing a reference for further uncovering the intricate molecular mechanism in recurrent bladder cancer. Therefore, inhibiting A-to-I editing of miRNA may be a viable target for bladder cancer treatment, allowing current treatment choices to be expanded and individualized.
Collapse
Affiliation(s)
- Jia-Xin Qin
- Department of Urology, Xuzhou Clinical College of Xuzhou Medical University, Xuzhou, China
- Department of Urology, Xuzhou Central Hospital, Xuzhou, China
| | - Xing Liu
- Department of Urology, Xuzhou Clinical College of Xuzhou Medical University, Xuzhou, China
- Department of Urology, Xuzhou Central Hospital, Xuzhou, China
| | - Xin-Lei Wang
- Department of Urology, Xuzhou Clinical College of Xuzhou Medical University, Xuzhou, China
- Department of Urology, Xuzhou Central Hospital, Xuzhou, China
| | - Guang-Yue Wang
- Graduate School of Bengbu Medical College, Bengbu, China
| | - Qing Liang
- Department of Urology, Xuzhou Clinical College of Xuzhou Medical University, Xuzhou, China
- Department of Urology, Xuzhou Central Hospital, Xuzhou, China
| | - Yang Dong
- Department of Urology, Xuzhou Clinical College of Xuzhou Medical University, Xuzhou, China
- Department of Urology, Xuzhou Central Hospital, Xuzhou, China
| | - Kun Pang
- Department of Urology, Xuzhou Clinical College of Xuzhou Medical University, Xuzhou, China
- Department of Urology, Xuzhou Central Hospital, Xuzhou, China
| | - Lin Hao
- Department of Urology, Xuzhou Clinical College of Xuzhou Medical University, Xuzhou, China
- Department of Urology, Xuzhou Central Hospital, Xuzhou, China
| | - Liang Xue
- Department of Urology, Xuzhou Clinical College of Xuzhou Medical University, Xuzhou, China
- Department of Urology, Xuzhou Central Hospital, Xuzhou, China
| | - Yan Zhao
- Department of Urology, Xuzhou Clinical College of Xuzhou Medical University, Xuzhou, China
- Department of Urology, Xuzhou Central Hospital, Xuzhou, China
| | - Zheng-Xiang Hu
- Graduate School of Jinzhou Medical College, Jinzhou, China
| | - Rui Li
- Central Laboratory, Xuzhou Central Hospital, Xuzhou, China
| | - Qian Lv
- Central Laboratory, Xuzhou Central Hospital, Xuzhou, China
| | - Liu Chao
- Department of Urology, The Suqian Affiliated Hospital of Xuzhou Medical University School, Suqian, China
| | - Fan-Lai Meng
- Department of Pathology, The Suqian Affiliated Hospital of Xuzhou Medical University School, Suqian, China
| | - Zhen-Duo Shi
- Department of Urology, Xuzhou Clinical College of Xuzhou Medical University, Xuzhou, China
- Department of Urology, Xuzhou Central Hospital, Xuzhou, China
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
- *Correspondence: Zhen-Duo Shi, ; Cong-Hui Han,
| | - Cong-Hui Han
- Department of Urology, Xuzhou Clinical College of Xuzhou Medical University, Xuzhou, China
- Department of Urology, Xuzhou Central Hospital, Xuzhou, China
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
- Department of Urology, Heilongjiang Provincial Hospital, Harbin, China
- *Correspondence: Zhen-Duo Shi, ; Cong-Hui Han,
| |
Collapse
|
43
|
Cai C, Zhang Y, Hu X, Yang S, Ye J, Wei Z, Chu T. Spindle and Kinetochore-associated Family Genes are Prognostic and Predictive Biomarkers in Hepatocellular Carcinoma. J Clin Transl Hepatol 2022; 10:627-641. [PMID: 36062274 PMCID: PMC9396317 DOI: 10.14218/jcth.2021.00216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/07/2021] [Accepted: 10/08/2021] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND AND AIMS Hepatocellular carcinoma (HCC) is one of the most frequent malignant tumors. Spindle and kinetochore-associated (SKA) family genes are essential for the maintenance of the metaphase plate and spindle checkpoint silencing during mitosis. Recent studies have indicated that dysregulation of SKA family genes induces tumorigenesis, tumor progression, and chemoresistance via modulation of cell cycle and DNA replication. However, the differential transcription of SKAs in the context of HCC and its prognostic significance has not been demonstrated. METHODS Bioinformatics analyses were performed using TCGA, ONCOMINE, HCCDB, Kaplan-Meier plotter, STRING, GEPIA databases. qRT-PCR, western blot, and functional assays were utilized for in vitro experiments. RESULTS We found remarkable upregulation of transcripts of SKA family genes in HCC samples compared with normal liver samples on bioinformatics analyses and in vitro validation. Interaction analysis and enrichment analysis showed that SKA family members were mainly related to microtubule motor activity, mitosis, and cell cycle. Immuno-infiltration analysis showed a correlation of all SKA family genes with various immune cell subsets, especially T helper 2 (Th2) cells. Transcriptional levels of SKA family members were positively associated with histologic grade, T stage, and α-fetoprotein in HCC patients. Receiver operating characteristic curve analysis demonstrated a strong predictive ability of SKA1/2/3 for HCC. Increased expression of these SKAs was associated with unfavorable overall survival, progression-free survival, and disease-specific survival. On Cox proportional hazards regression analyses, SKA1 upregulation and pathological staging were independent predictors of overall survival and disease-specific survival of HCC patients. Finally, clinical tissue microarray validation and in vitro functional assays revealed SKA1 acts an important regulatory role in tumor malignant behavior. CONCLUSIONS SKA family members may potentially serve as diagnostic and prognostic markers in the context of HCC. The correlation between SKAs and immune cell infiltration provides a promising research direction for SKA-targeted immunotherapeutics for HCC.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Tongwei Chu
- Correspondence to: Tongwei Chu, Department of Orthopedics, Xinqiao Hospital, Third Military Medical University (Army Medical University), No.83 Xinqiao Main Street, Shapingba District, Chongqing 400037, China. ORCID: https://orcid.org/0000-0003-0309-7082. Tel: +86-13708388336, E-mail:
| |
Collapse
|
44
|
Pharmacological Small Molecules against Prostate Cancer by Enhancing Function of Death Receptor 5. Pharmaceuticals (Basel) 2022; 15:ph15081029. [PMID: 36015177 PMCID: PMC9413322 DOI: 10.3390/ph15081029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/15/2022] [Accepted: 08/19/2022] [Indexed: 02/05/2023] Open
Abstract
Death receptor 5 (DR5) is a membrane protein that mediates exogenous apoptosis. Based on its function, it is considered to be a target for the treatment of cancers including prostate cancer. It is encouraging to note that a number of drugs targeting DR5 are now progressing to different stages of clinical trial studies. We collected 38 active compounds that could produce anti-prostate-cancer effects by modulating DR5, 28 of which were natural compounds and 10 of which were synthetic compounds. In addition, 6 clinically used chemotherapeutic agents have also been shown to promote DR5 expression and thus exert apoptosis-inducing effects in prostate cancer cells. These compounds promote the expression of DR5, thereby enhancing its function in inducing apoptosis. When these compounds were used in combination with the natural ligand of DR5, the number of apoptotic cells was significantly increased. These compounds are all promising for development as anti-prostate-cancer drugs, while most of these compounds are currently being evaluated for their anti-prostate-cancer effects at the cellular level and in animal studies. A great deal of more in-depth research is needed to evaluate whether they can be developed as drugs. We collected literature reports on small molecules against prostate cancer through modulation of DR5 to understand the current dynamics in this field and to evaluate the prospects of small molecules against prostate cancer through modulation of DR5.
Collapse
|
45
|
Floris M, Pira G, Castiglia P, Idda M, Steri M, De Miglio M, Piana A, Cossu A, Azara A, Arru C, Deiana G, Putzu C, Sanna V, Carru C, Serra A, Bisail M, Muroni M. Impact on breast cancer susceptibility and clinicopathological traits of common genetic polymorphisms in TP53, MDM2 and ATM genes in Sardinian women. Oncol Lett 2022; 24:331. [PMID: 36039053 PMCID: PMC9404703 DOI: 10.3892/ol.2022.13451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 06/22/2022] [Indexed: 11/06/2022] Open
Abstract
Common variants of genes involved in DNA damage correction [tumor protein p53 (TP53), murine double 2 homolog oncoprotein (MDM2) and ataxia-telengiectasia mutated (ATM)] may serve a role in cancer predisposition. The purpose of the present study was to investigate the association of five variants in these genes with breast cancer risk and clinicopathological traits in a cohort of 261 women from northern Sardinia. Polymorphic variants in TP53 (rs17878362, rs1042522 and rs1625895), MDM2 (rs2279744) and ATM (rs1799757) were determined by PCR and TaqMan single nucleotide polymorphism assay in patients with breast cancer (n=136) and healthy controls (n=125). Association with clinicopathological (e.g., age at diagnosis, lymph node involvement, clinical stage) and lifestyle factors (e.g., smoking status, alcohol intake, contraceptive use) was also evaluated. TP53 rs17878362 and rs1625895 polymorphisms were associated with decreased risk of BC diagnosis in patients older than 50 years (codominant and recessive models) and post-menopause (recessive model). Furthermore, there was a significant association between lymph node status (positive vs. negative) and ATM rs1799757-delT in dominant and additive models and between MDM2 rs2279744-allele and use of oral contraceptives. This analysis suggested that TP53 rs17878362 and rs1625895 may affect age of onset of breast cancer and ATM rs1799757 and MDM2 rs2279744 may be associated with lymph node status and prolonged use of oral contraceptives, respectively.
Collapse
Affiliation(s)
- Matteo Floris
- Department of Biomedical Sciences, Surgery and Pharmacy, University of Sassari, Sassari, I-07100 Sardinia, Italy
| | - Giovanna Pira
- Department of Biomedical Sciences, Surgery and Pharmacy, University of Sassari, Sassari, I-07100 Sardinia, Italy
| | - Paolo Castiglia
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, I-07100 Sardinia, Italy
| | - Maria Idda
- Institute for Genetic and Biomedical Research, National Research Council, Monserrato, Cagliari, I-09121 Sardinia, Italy
| | - Maristella Steri
- Institute for Genetic and Biomedical Research, National Research Council, Monserrato, Cagliari, I-09121 Sardinia, Italy
| | - Maria De Miglio
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, I-07100 Sardinia, Italy
| | - Andrea Piana
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, I-07100 Sardinia, Italy
| | - Andrea Cossu
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, I-07100 Sardinia, Italy
| | - Antonio Azara
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, I-07100 Sardinia, Italy
| | - Caterina Arru
- Department of Biomedical Sciences, Surgery and Pharmacy, University of Sassari, Sassari, I-07100 Sardinia, Italy
| | - Giovanna Deiana
- Department of Biomedical Sciences, Surgery and Pharmacy, University of Sassari, Sassari, I-07100 Sardinia, Italy
| | - Carlo Putzu
- Division of Medical Oncology, Azienda Ospedaliera Universitaria, Sassari, I-07100 Sardinia, Italy
| | - Valeria Sanna
- Division of Medical Oncology, Azienda Ospedaliera Universitaria, Sassari, I-07100 Sardinia, Italy
| | - Ciriaco Carru
- Department of Biomedical Sciences, Surgery and Pharmacy, University of Sassari, Sassari, I-07100 Sardinia, Italy
| | - Antonello Serra
- Unit of Occupational Medicine, Azienda Ospedaliera Universitaria, Sassari, I-07100 Sardinia, Italy
| | - Marco Bisail
- Lega Italiana per la Lotta contro i Tumori, Sassari, I-07100 Sardinia, Italy
| | - Maria Muroni
- Institute for Genetic and Biomedical Research, National Research Council, Monserrato, Cagliari, I-09121 Sardinia, Italy
| |
Collapse
|
46
|
IDO1 plays a tumor-promoting role via MDM2-mediated suppression of the p53 pathway in diffuse large B-cell lymphoma. Cell Death Dis 2022; 13:572. [PMID: 35760783 PMCID: PMC9237101 DOI: 10.1038/s41419-022-05021-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 06/02/2022] [Accepted: 06/13/2022] [Indexed: 01/21/2023]
Abstract
With the intensive therapeutic strategies, diffuse large B-cell lymphoma (DLBCL) is still a fatal disease due to its progressive characteristics. Indoleamine 2,3-dioxygenase 1 (IDO1) is a key regulator that catalyzes the commitment step of the kynurenine pathway in the immune system, its aberrant activation may contribute to malignant cell escape eradication. However, the role of IDO1 in DLBCL progression remains elusive. Our study showed IDO1 expression was upregulated in DLBCL and was associated with a poor prognosis and low overall survival. Inhibition of IDO1 suppressed DLBCL cell proliferation in vitro and impeded xenograft tumorigenesis in vivo. RNA-seq analyses revealed MDM2 was downregulated while TP53 was upregulated in IDO1 inhibition OCI-Ly10 cells. Mechanistically, IDO1 inhibition decreased the expression of MDM2, a major negative regulator of p53, and restored p53 expression in OCI-Ly3 and OCI-Ly10 cells, resulting in cell cycle arrest and apoptosis. IDO1 inhibition induced cell apoptosis coupled with PUMA and BAX upregulation, as well as BCL2 and BCL-XL downregulation. In addition, p21, a p53 transcriptional target, was upregulated in cell cycle arrest. Taken together, this study revealed IDO1 is essential for the proliferation of DLBCL cells and may be a potential therapeutic target for the treatment of DLBCL.
Collapse
|
47
|
Dhakar R, Dakal TC, Sharma A. Genetic determinants of lung cancer: Understanding the oncogenic potential of somatic missense mutations. Genomics 2022; 114:110401. [PMID: 35709927 DOI: 10.1016/j.ygeno.2022.110401] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 01/31/2022] [Accepted: 06/08/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND Treatment of lung cancer is getting more personalized nowadays and medical practitioners are moving away from conventional histology-driven empirical treatments, platinum-based chemotherapy, and other invasive surgical resections and have started adopting alternate therapies in which therapeutic targets are patient's molecular oncogenic drivers. AIM The aim of the current study is to extract meaningful information from the online somatic mutation data (retrieved from cBioPortal) of 16 most significantly mutated oncogenes in non-small-cell lung cancer (NSCLC), namely EGFR, NRAS, KRAS, HER2 (ERBB2), RET, MET, ROS1, FGFR1, BRAF, AKT1, MEK1 (MAP2K1), PIK3CA, PTEN, DDR2, LKB1 (STK11) and ALK, for improving our understanding of the pathobiology of the lung cancer that can aid decision-making on critical clinical and therapeutic considerations. METHODS Using an integrated approach comprising 4 steps, the oncogenic potential of 661 missense non-synonymous single nucleotide polymorphisms (nsSNPs) in 16 genes was ascertained using 2059 NSCLC (1575 lung adenocarcinomas, 484 lung squamous cell carcinomas) patients' online mutation data. The steps used comprise sequence/structure homology-based prediction, scoring of conservation of mutated residues and positions, prediction of resulting molecular and functional consequences using machine-learning and structure-guided approach. RESULTS Out of a total of 661 nsSNPs analyzed, a set of 29 nsSNPs has been identified as conserved high confidence mutations in 10 of 16 genes relevant to the under study. Out of 29 conserved high confidence nsSNPs, 4 nsSNPs (EGFR N1094Y, BRAF M620I, DDR2 R307L, ALK P1350T) have been found to be putative novel rare genetic markers for NSCLC. CONCLUSIONS The current study, the first of its kind, has provided a list of deleterious non-synonymous somatic mutations in a selected pool of oncogenes that can be considered as a promising target for future drug design and therapy for patients with lung adenocarcinomas and squamous cell carcinomas.
Collapse
Affiliation(s)
- Ramgopal Dhakar
- Genome and Computational Biology Lab, Department of Biotechnology, Mohanlal Sukhadia, University, Udaipur 313001, Rajasthan, India
| | - Tikam Chand Dakal
- Genome and Computational Biology Lab, Department of Biotechnology, Mohanlal Sukhadia, University, Udaipur 313001, Rajasthan, India.
| | - Amit Sharma
- Department of Neurosurgery, University Clinic Bonn, 53127 Bonn, Germany
| |
Collapse
|
48
|
Liang J, Li G, Liao J, Huang Z, Wen J, Wang Y, Chen Z, Cai G, Xu W, Ding Z, Liang H, Datta PK, Chu L, Chen X, Zhang B. Non-coding small nucleolar RNA SNORD17 promotes the progression of hepatocellular carcinoma through a positive feedback loop upon p53 inactivation. Cell Death Differ 2022; 29:988-1003. [PMID: 35034103 PMCID: PMC9090725 DOI: 10.1038/s41418-022-00929-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 12/13/2021] [Accepted: 12/23/2021] [Indexed: 12/11/2022] Open
Abstract
Recent evidence suggests that small nucleolar RNAs (snoRNAs) are involved in the progression of various cancers, but their precise roles in hepatocellular carcinoma (HCC) remain largely unclear. Here, we report that SNORD17 promotes the progression of HCC through a positive feedback loop with p53. HCC-related microarray datasets from the Gene Expression Omnibus (GEO) database and clinical HCC samples were used to identify clinically relevant snoRNAs in HCC. SNORD17 was found upregulated in HCC tissues compared with normal liver tissues, and the higher expression of SNORD17 predicted poor outcomes in patients with HCC, especially in those with wild-type p53. SNORD17 promoted the growth and tumorigenicity of HCC cells in vitro and in vivo by inhibiting p53-mediated cell cycle arrest and apoptosis. Mechanistically, SNORD17 anchored nucleophosmin 1 (NPM1) and MYB binding protein 1a (MYBBP1A) in the nucleolus by binding them simultaneously. Loss of SNORD17 promoted the translocation of NPM1 and MYBBP1A into the nucleoplasm, leading to NPM1/MDM2-mediated stability and MYBBP1A/p300-mediated activation of p53. Interestingly, p300-mediated acetylation of p53 inhibited SNORD17 expression by binding to the promoter of SNORD17 in turn, forming a positive feedback loop between SNORD17 and p53. Administration of SNORD17 antisense oligonucleotides (ASOs) significantly suppressed the growth of xenograft tumors in mice. In summary, this study suggests that SNORD17 drives cancer progression by constitutively inhibiting p53 signaling in HCC and may represent a potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Junnan Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ganxun Li
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingyu Liao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhao Huang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingyuan Wen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Wang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zeyu Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guangzhen Cai
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weiqi Xu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zeyang Ding
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huifang Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pran K Datta
- Division of Hematology and Oncology, Department of Medicine, UAB Comprehensive Cancer Center, Birmingham, AL, USA
| | - Liang Chu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. .,Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China. .,Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. .,Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China. .,Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. .,Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China.
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. .,Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China. .,Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. .,Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
49
|
Long T, Burk RD, Chan PKS, Chen Z. Non-human primate papillomavirus E6-mediated p53 degradation reveals ancient evolutionary adaptation of carcinogenic phenotype to host niche. PLoS Pathog 2022; 18:e1010444. [PMID: 35333912 PMCID: PMC8986119 DOI: 10.1371/journal.ppat.1010444] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/06/2022] [Accepted: 03/15/2022] [Indexed: 11/19/2022] Open
Abstract
Non-human primates (NHPs) are infected with papillomaviruses (PVs) closely related to their human counterparts, but there are few studies on the carcinogenicity of NHP-PVs. Using an in vitro cell co-transfection assay, we systematically screened the biochemical activity of E6 proteins encoded by macaque PVs for their ability to bind and promote degradation of host p53 proteins. A host species barrier exists between HPV16 and MfPV3 with respect to E6-mediated p53 degradation that is reversed when p53 residue 129 is swapped between human and macaque hosts. Systematic investigation found that E6 proteins encoded by most macaque PV types in the high-risk species α12, but not other Alpha-PV clades or Beta-/Gamma-PV genera, can effectively promote monkey p53 degradation. Interestingly, two macaque PV types (MfPV10 and MmPV1) can simultaneously inhibit the expression of human and monkey p53 proteins, revealing complex cross-host interactions between PV oncogenes and host proteomes. Single point-mutant experiments revealed that E6 residue 47 directly interacts with p53 residue 129 for host-specific degradation. These findings suggest an ancient host niche adaptation toward a carcinogenic phenotype in high-risk primate PV ancestors. Following periods of primate host speciation, a loss-of-function mutation model could be responsible for the formation of a host species barrier to E6-mediated p53 degradation between HPVs and NHP-PVs. Our work lays a genetic and functional basis for PV carcinogenicity, which provides important insights into the origin and evolution of specific pathogens in host pathogenesis.
Collapse
Affiliation(s)
- Teng Long
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Robert D. Burk
- Departments of Pediatrics, Microbiology and Immunology, Epidemiology and Population Health, and Obstetrics, Gynecology and Woman’s Health, Albert Einstein College of Medicine, New York city, New York, United States of America
- * E-mail: (RDB); (ZC)
| | - Paul K. S. Chan
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Zigui Chen
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
- * E-mail: (RDB); (ZC)
| |
Collapse
|
50
|
Tamtaji OR, Razavi ZS, Razzaghi N, Aschner M, Barati E, Mirzaei H. Quercetin and Glioma: Which signaling pathways are involved? Curr Mol Pharmacol 2022; 15:962-968. [DOI: 10.2174/1874467215666220211094136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/20/2021] [Accepted: 12/06/2021] [Indexed: 11/22/2022]
Abstract
Abstract:
Gliomas are the most common brain tumors. These tumors commonly exhibit continuous growth without invading surrounding brain tissues. Dominant remedial approaches suffer limited therapy and survival rates. Although some progress has been made in conventional glioma treatments, these breakthroughs have not yet proven sufficient for treating this malignancy. The remedial options are limited given gliomas' aggressive metastasis and drug resistance. Quercetin, a flavonoid, is an anti-oxidative, anti-allergic, antiviral, anti-inflammatory, and anticancer compound. Multiple lines of evidence have shown that Quercetin has anti-tumor effects, documenting this natural compound exerts its pharmacological effects by targeting a variety of cellular and molecular processes, i.e., apoptosis, metastasis, and autophagy. Herein, we summarize various cellular and molecular pathways that are affected by Quercetin in gliomas.
Collapse
Affiliation(s)
- Omid Reza Tamtaji
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Zahra Sadat Razavi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Nazanin Razzaghi
- Laboratory Sciences Research Centre, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, United States
| | - Erfaneh Barati
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, I.R. Iran
| |
Collapse
|