1
|
Jia K, Cao L, Yu Y, Jing D, Wu W, Van Tine BA, Shao Z. Signaling pathways and targeted therapies in Ewing sarcoma. Pharmacol Ther 2025; 266:108765. [PMID: 39622389 DOI: 10.1016/j.pharmthera.2024.108765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/08/2024]
Abstract
Ewing sarcoma, the second most prevalent malignant bone tumor with potential occurrence in soft tissues, exhibits a high level of aggressiveness, primarily afflicting children and adolescents. It is characterized by fusion proteins arising from chromosomal translocations. The fusion proteins induce aberrations in multiple signaling pathways and molecules, constituting a key event in oncogenic transformation. While diagnostic and therapeutic modalities have advanced in recent decades and multimodal treatments, including surgery, radiotherapy, and chemotherapy, have significantly improved survival of patients with localized tumors, patients with metastatic tumors continue to face poor prognoses. There persists a pressing need for novel alternative treatments, yet the translation of our understanding of Ewing sarcoma pathogenesis into improved clinical outcomes remains a critical challenge. Here, we provide a comprehensive review of Ewing sarcoma, including fusion proteins, various signaling pathways, pivotal pathogenetic molecules implicated in its development, and associated targeted therapies and immunotherapies. We summarize past endeavors, current advancements, and deliberate on limitations and future research directions. It is envisaged that this review will furnish novel insights into prospective treatment avenues for Ewing sarcoma.
Collapse
Affiliation(s)
- Ke Jia
- Department of Orthopaedics, Union hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Li Cao
- Department of Orthopaedics, Union hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Washington University School of Medicine, St Louis, MO, USA.
| | - Yihan Yu
- Department of Orthopaedics, Union hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Doudou Jing
- Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Taiyuan 030001, China.
| | - Wei Wu
- Department of Orthopaedics, Union hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | | | - Zengwu Shao
- Department of Orthopaedics, Union hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
2
|
Ai Z, Li D, Lan S, Zhang C. Nanomaterials exert biological effects by influencing the ubiquitin-proteasome system. Eur J Med Chem 2025; 282:116974. [PMID: 39556894 DOI: 10.1016/j.ejmech.2024.116974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/05/2024] [Accepted: 10/14/2024] [Indexed: 11/20/2024]
Abstract
The ubiquitin-proteasome system (UPS) is an important type of protein post-translational modification that affects the quantity and quality of various proteins and influences cellular processes such as the cell cycle, transcription, oxidative stress, and autophagy. Nanomaterials (NMs), which exhibit excellent physicochemical properties, can directly interact with the UPS and act as molecular-targeted drugs to induce changes in biological processes. This review provides an overview of the influence of NMs on the UPS of misfolded proteins and key proteins, which are related to cancer, neurodegenerative diseases and oxidative stress. This review also summarizes the role of modification processes involved in ubiquitination the biological effects of NMs and the mechanism of such effects of NMs through regulation of the UPS. This review deepens our understanding of the influence of NMs on the protein degradation process and provides new potential therapeutic targets for disease.
Collapse
Affiliation(s)
- Zhen Ai
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Dan Li
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Shuquan Lan
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Chao Zhang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China.
| |
Collapse
|
3
|
Zhang B, Li Y, Lin Y, Wang T, Chen L, Cai J, Ji T, Diao P, Ma Y, Zhang Y, You W, Chen J, Zhao P. Structure-Guided Discovery of Novel N4-(Substituted Thiazol-2-yl)- N2-(4-Substituted phenyl)pyrimidine-2,4-Diamines as Potent CDK2 and CDK9 Dual Inhibitors with High Oral Bioavailability. J Med Chem 2025. [PMID: 39772543 DOI: 10.1021/acs.jmedchem.4c02441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
CDK2 and CDK9 play pivotal roles in cell cycle progression and gene transcription, respectively, making them promising targets for cancer treatment. Herein, we discovered a series of N4-(substituted thiazol-2-yl)-N2-(4-substituted phenyl)pyrimidine-2,4-diamines as highly potent CDK2/9 dual inhibitors. Especially, compound 20a significantly inhibited CDK2 (IC50 = 0.004 μM) and CDK9 (IC50 = 0.009 μM), achieving a 1000- and 2800-fold improvement over lead compound 11, and demonstrating broad antitumor efficacy. Mechanistic studies indicated that 20a effectively and simultaneously suppressed CDK2 and CDK9 proteins in the HCT116 cell line, leading to G2/M cell cycle arrest and cell apoptosis by regulating cell cycle- and apoptosis-related protein expression. Most importantly, 20a exhibited 86.7% oral bioavailability in rats and effectively inhibited tumor growth in HCT116 xenograft and C6 glioma rat models without significant toxicity. Overall, these observations clearly confirmed the promising therapeutic strategy of CDK2/9 dual inhibitors and provided a novel potent candidate for cancer therapy.
Collapse
Affiliation(s)
- Bei Zhang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, P. R. China
| | - Yanhong Li
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, P. R. China
| | - Yukang Lin
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, P. R. China
| | - Ting Wang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, P. R. China
| | - Lin Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, P. R. China
| | - Jianfan Cai
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, P. R. China
| | - Tangyang Ji
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, P. R. China
| | - Pengcheng Diao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, P. R. China
| | - Yufeng Ma
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, P. R. China
| | - Yanting Zhang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, P. R. China
| | - Wenwei You
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, P. R. China
| | - Jingkao Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, P. R. China
| | - Peiliang Zhao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, P. R. China
| |
Collapse
|
4
|
Wang C, Wang Y, Meng F, Liu T, Wang X, Cai X, Zhang M, Aliper A, Ren F, Zhavoronkov A, Ding X. Discovery of pyrrolopyrimidinone derivatives as potent PKMYT1 inhibitors for the treatment of cancer. Eur J Med Chem 2025; 281:117025. [PMID: 39515174 DOI: 10.1016/j.ejmech.2024.117025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/25/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
The protein kinase PKMYT1 is responsible for inhibitory CDK1 phosphorylation, thus playing a central role in regulating the G2/M cell cycle checkpoint. As many cancers have dysfunctional cell cycle checkpoint signaling, PKMYT1 inhibition is emerging as an attractive target in advanced tumors. PKMYT1 inhibitors, however, have encountered difficulties in balancing biological efficacy, on-target specificity, and favorable stability and other drug-like properties. Herein, we report the design and development of pyrrolopyrimidinone derivatives intended to simultaneously restrict molecular conformation and shield a metabolic site in order to optimize stability. Compound 7 demonstrated strong PKMYT1-specific inhibition, a subsequent decrease in CDK1 phosphorylation, and antitumor efficacy in vitro, as well as enhanced metabolic stability, favorable pharmacokinetic and bioavailability properties, and potent antitumor in vivo efficacy. Our findings indicate that compound 7 is a promising PKMYT1 inhibitor for the treatment of advanced cancers with cell cycle defects.
Collapse
Affiliation(s)
- Chao Wang
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai, 201203, China
| | - Yazhou Wang
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai, 201203, China
| | - Fanye Meng
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai, 201203, China
| | - Tingting Liu
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai, 201203, China
| | - Xiaomin Wang
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai, 201203, China
| | - Xin Cai
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai, 201203, China
| | - Man Zhang
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai, 201203, China
| | - Alex Aliper
- Insilico Medicine AI Limited, Masdar City, Abu Dhabi, 145748, United Arab Emirates
| | - Feng Ren
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai, 201203, China
| | - Alex Zhavoronkov
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai, 201203, China; Insilico Medicine AI Limited, Masdar City, Abu Dhabi, 145748, United Arab Emirates.
| | - Xiao Ding
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai, 201203, China; Insilico Medicine AI Limited, Masdar City, Abu Dhabi, 145748, United Arab Emirates.
| |
Collapse
|
5
|
Lin ZR, Xia TL, Wang MY, Zhang LJ, Liu YM, Yuan BY, Zhou AJ, Yuan L, Zheng J, Bei JX, Lin DX, Zeng MS, Zhong Q. Inactivation of TACC2 epigenetically represses CDKN1A and confers sensitivity to CDK inhibitors. MED 2025:100568. [PMID: 39793578 DOI: 10.1016/j.medj.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 10/28/2024] [Accepted: 12/12/2024] [Indexed: 01/13/2025]
Abstract
BACKGROUND The genomic landscape of esophageal squamous cell carcinoma (ESCC) has been characterized extensively, but there remains a significant need for actionable targets and effective therapies. METHODS Here, we perform integrative analysis of genome-wide loss of heterozygosity and expression to identify potential tumor suppressor genes. The functions and mechanisms of one of the candidates, TACC2, are then explored both in vitro and in vivo, leading to the proposal of a therapeutic strategy based on the concept of synthetic lethality. FINDINGS We reveal that the inactivation of TACC2, due to copy number loss and promoter hypermethylation, is associated with poor prognosis in ESCC patients. TACC2 depletion enhances ESCC tumorigenesis and progression, as demonstrated in Tacc2 knockout mouse models and by increased growth abilities of ESCC cells. Mechanistically, TACC2 interacts with components of the NuRD and CoREST co-repressor complexes, including MTA1, MBD3, and HMG20B, in the cytoplasm. TACC2 loss leads to the translocation of these proteins into the nucleus, facilitating the formation of functional NuRD and CoREST complexes and the epigenetic repression of CDKN1A. This repression results in elevated CDK1/2 activation. Furthermore, TACC2-deficient cells and ESCC patient-derived organoids with reduced TACC2 expression show increased sensitivity to CDK inhibitors, particularly dinaciclib, which is currently in a phase III trial. Notably, the combination of TACC2-specific RNAi and dinaciclib in subcutaneous ESCC models significantly impairs tumor growth. CONCLUSIONS The findings suggest a strategy for cancer treatment based on synthetic lethality. FUNDING Funded by NKRDP, NSFC, GDIIET, GDBABRF, GDECISTP, and SYSUTP.
Collapse
Affiliation(s)
- Zhi-Rui Lin
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China; Department of Pathology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, P.R. China
| | - Tian-Liang Xia
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Meng-Yao Wang
- Radiation Oncology Department, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou 510245, P.R. China
| | - Lan-Jun Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Yan-Min Liu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Bo-Yu Yuan
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Ai-Jun Zhou
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Li Yuan
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Jian Zheng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Jin-Xin Bei
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Dong-Xin Lin
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China; Department of Etiology and Carcinogenesis, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Mu-Sheng Zeng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China.
| | - Qian Zhong
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China.
| |
Collapse
|
6
|
Wang Y, Zhou B, Lian X, Yu S, Huang B, Wu X, Wen L, Zhu C. KIF18A Is a Novel Target of JNK1/c-Jun Signaling Pathway Involved in Cervical Tumorigenesis. J Cell Physiol 2025; 240:e31516. [PMID: 39749722 DOI: 10.1002/jcp.31516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 11/21/2024] [Accepted: 12/13/2024] [Indexed: 01/04/2025]
Abstract
Cervical cancer remains a significant global health concern. KIF18A, a kinesin motor protein regulating microtubule dynamics during mitosis, is frequently overexpressed in various cancers, but its regulatory mechanisms are poorly understood. This study investigates KIF18A's role in cervical cancer and its regulation by the JNK1/c-Jun signaling pathway. Cell growth was assessed in vitro using MTT and colony formation assays, and in vivo using a nude mouse xenograft model with KIF18A knockdown HeLa cells. The Genomic Data Commons (GDC) data portal was used to identify KIF18A-related protein kinases in cervical cancer. Western blot analysis was employed to analyze phosphor-c-Jun, c-Jun, and KIF18A expression levels following JNK1 inhibition, c-Jun knockdown/overexpression, and KIF18A knockdown in cervical cancer cells. Chromatin immunoprecipitation (ChIP) and luciferase reporter assays were performed to assess c-Jun binding and transcriptional activity of the KIF18A promoter. KIF18A knockdown significantly impaired cervical cancer cell growth both in vitro and in vivo. A strong positive correlation was observed between JNK1 and KIF18A expression in cervical and other cancers. JNK1 inhibition decreased both KIF18A expression and c-Jun phosphorylation. c-Jun was found to directly bind to and activate the KIF18A promoter. Furthermore, c-Jun knockdown inhibited cervical cancer cell growth, and this effect was partially rescued by KIF18A overexpression. This study demonstrates that the JNK1/c-Jun pathway activates KIF18A expression, which is essential for cervical cancer cell growth. Targeting the JNK/c-Jun/KIF18A axis may represent a promising novel therapeutic strategy for cancer treatment.
Collapse
Affiliation(s)
- Yajie Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Bowen Zhou
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Xiaoying Lian
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Siqi Yu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Baihai Huang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Xinyue Wu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Lianpu Wen
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Changjun Zhu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| |
Collapse
|
7
|
Wang S, Liu C, Li Y, Qiao J, Chen X, Bao J, Li R, Xing Y. Suppression of KLF5 targets RREB1 to restrain the proliferation of ovarian cancer cells through ERK/MAPK signaling pathway. 3 Biotech 2025; 15:4. [PMID: 39676889 PMCID: PMC11635078 DOI: 10.1007/s13205-024-04171-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/21/2024] [Indexed: 12/17/2024] Open
Abstract
The overexpression of Kruppel-like factor 5 (KLF5) appears in several types of cancer. KLF5 may be an effective therapeutic target for treating OC, but its function in ovarian cancer (OC) remains unknown. The KLF5 mRNA expression levels in several OC cell lines were analyzed using RT-qPCR. Then, NC-siRNA or KLF5-siRNA was transfected into SK-OV-3 and OVCAR-3 cells. RT-qPCR and WB were used to detect the efficiency of KLF5 silence, CCK-8, colony formation assay, IHC staining, flow cytometry, and WB were performed to investigate the KLF5 function on OC cell proliferation and the activation of the extracellular signal-regulated Kinase (ERK)/mitogen-activated protein kinase (MAPK) signaling pathway. Next, a dual-luciferase and IF assay were used to determine the relationship between KLF5 and the Ras response element-binding protein (RREB1). SK-OV-3 and OVCAR-3 cells were treated with KLF5-siRNA and C16-PAF + EGF (MAPK agonist), separately or in combination. Proteins including KLF5, RREB1, p-p38, p-ERK1/2, ERK5, p-ERK5, Cyclin D1, CDK4, and CDK6 were quantified by WB. Finally, CCK-8, colony formation assay, and flow cytometry were employed again. KLF5 is highly expressed in OC cells compared with normal cells. When KLF5 knockdowns in SK-OV-3 and OVCAR-3 cells, the cell proliferation restrains, and the G1 phase prolongs. In addition, KLF5 silence caused a decrease of Cyclin D1, CDK4, CDK6, p-p38, p-ERK1/2, and p-ERK5/ERK5 expression levels. However, these statuses could be revised by C16-PAF + EGF. Results also found that when the ERK/MAPK signaling is activating, RREB1 is expressed low. The KLF5 silence could up-regulate the RREB1 expression. The KLF5 silence could restrain the OC cell proliferation and cell cycle. KLF5-siRNA may target upregulating RREB1 expression, thereby inhibiting the activation of the ERK/MAPK signaling pathway in OC cells.
Collapse
Affiliation(s)
- Shenglan Wang
- Department of Pathophysiology, Qinghai University Medical College, Xining, China
| | - Chuanchuan Liu
- Key Laboratory of Hydatidosis Research, Qinghai University Affiliated Hospital, Xining, China
| | - Yongchuan Li
- Department of Gynaecology, Qinghai Red Cross Hospital, Xining, China
| | - Jinwan Qiao
- Department of Scientific Research and Teaching, Fifth People’s Hospital of Qinghai Province, Xining, China
| | - Xinling Chen
- Department of Basic Medicine, Qinghai University, Xining, China
| | - Jin Bao
- Department of Basic Medicine, Qinghai University, Xining, China
| | - Ran Li
- Department of Basic Medicine, Qinghai University, Xining, China
| | - Yanxia Xing
- Department of Gynaecology, The Fifth People’s Hospital of Qinghai Province, No.166, Nanshan East Road, Chengdong District, Xining, 810007 Qinghai China
| |
Collapse
|
8
|
Wang X, Tian W, Wang N, Yang X, Liu Z, Li L, Zhao T, Wang C, Zhang H, Yang H, Jia Y. Transcriptome analysis reveals the anticancer effects of fenbendazole on ovarian cancer: an in vitro and in vivo study. BMC Cancer 2024; 24:1593. [PMID: 39736624 DOI: 10.1186/s12885-024-13361-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 12/17/2024] [Indexed: 01/01/2025] Open
Abstract
New treatment strategies for ovarian cancer, which is the deadliest female reproductive tract malignancy, are urgently needed. Here, we investigated the anticancer effects of fenbendazole (FBZ), a benzimidazole compound, on the regulation of apoptosis and mitotic catastrophe in A2780 and SKOV3 human epithelial ovarian cancer cells. Functional experiments, including Cell Counting Kit 8 (CCK-8), colony formation, and flow cytometry assays, were conducted to explore the effects of FBZ on the malignant biological behavior of A2780 and SKOV3 cells. RNA sequencing and western blotting were utilized to elucidate the underlying mechanisms by which FBZ affects cell apoptosis. We found that FBZ inhibited the proliferation and promoted the apoptosis of ovarian cancer cells in a dose-dependent manner. Furthermore, we reported the transcriptome profiling of FBZ-treated SKOV3 ovarian cancer cells. In all, 1747 differentially expressed genes (DEGs) were identified, including 944 downregulated and 803 upregulated genes. KEGG enrichment and Reactome enrichment analyses revealed that the DEGs were associated mainly with mitosis- and cell cycle-related pathways. Additionally, we found that FBZ may promote apoptosis via mitotic catastrophe. Finally, oral administration of FBZ inhibited tumor growth in a mouse model of xenograft ovarian cancer. Overall, these findings suggest that FBZ has therapeutic potential for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Xin Wang
- Department of Gynecology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, Kunming, 650118, Yunnan, P. R. China
| | - Wenda Tian
- Department of Gynecology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, Kunming, 650118, Yunnan, P. R. China
| | - Ning Wang
- Department of Obstetrics and Gynecology, Dehong Affiliated Hospital of Kunming Medical University, Dehong People's Hospital of Yunnan Province, Kunming, 678400, Yunnan, P. R. China
| | - Xiangqun Yang
- Department of Gynecology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, Kunming, 650118, Yunnan, P. R. China
| | - Zhenyan Liu
- Department of Gynecology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, Kunming, 650118, Yunnan, P. R. China
| | - Lvzhou Li
- Department of Obstetrics and Gynecology, Dehong Affiliated Hospital of Kunming Medical University, Dehong People's Hospital of Yunnan Province, Kunming, 678400, Yunnan, P. R. China
| | - Taoyu Zhao
- Department of Obstetrics and Gynecology, Dehong Affiliated Hospital of Kunming Medical University, Dehong People's Hospital of Yunnan Province, Kunming, 678400, Yunnan, P. R. China
| | - Chuanlin Wang
- Department of Clinical Nutrition, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, Kunming, 650118, Yunnan, P. R. China
| | - Hongping Zhang
- Department of Gynecology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, Kunming, 650118, Yunnan, P. R. China.
| | - Hongying Yang
- Department of Gynecology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, Kunming, 650118, Yunnan, P. R. China.
| | - Yue Jia
- Department of Gynecology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, Kunming, 650118, Yunnan, P. R. China.
| |
Collapse
|
9
|
Lyu Y, Li Q, Xie S, Zhao Z, Ma L, Wu Z, Bao W, Cai Y, Liu H, He H, Xie K, Gao F, Yang Y, Wu P, He P, Wang K, Dai X, Wu H, Lan T, Cheng C. Synergistic Ultrasound-Activable Artificial Enzyme and Precision Gene Therapy to Suppress Redox Homeostasis and Malignant Phenotypes for Controllably Combating Hepatocellular Carcinoma. J Am Chem Soc 2024. [PMID: 39723916 DOI: 10.1021/jacs.4c10997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Hepatocellular carcinoma (HCC) remains one of the most lethal malignant tumors. Multimodal therapeutics with synergistic effects for treating HCC have attracted increasing attention, for instance, designing biocompatible porphyrin-based nanomedicines for enzyme-mimetic and ultrasound (US)-activable reactive oxygen species (ROS) generation. Despite the promise, the landscape of such advancements remains sparse. Here, we propose the de novo design of a π-conjugated, osmium (Os)-coordinated polyporphyrin (P-Por-Os) nanovesicle to serve as an ultrasound-activable artificial enzyme for synergistic therapies to suppress redox homeostasis and malignant phenotypes for controllably combating HCC. Our findings reveal that the P-Por-Os with US showed superior, multifaceted, and controllable ROS-generating activities. This system not only subverts the redox balance within HCC cells but also achieves precise and controlled tumor ablation at remarkably low concentrations, as evidenced across cellular assays and animal models. In the liver orthotopic model, US not only activates the artificial enzyme to catalyze ROS but also facilitates remote-controlled ablation of HCC through precise US positioning. Moreover, the P-Por-Os + US can assist the precision gene therapy by knocking down the ROS resistance factor, MT2A, and down-regulating its downstream oncogene IGFBP2 to attenuate ROS resistance, proliferation, and migration of HCC efficiently. We suggest that the design of this ultrasound-activable artificial enzyme presents a promising avenue for the engineering of innovative tumoricidal materials, offering a synergistic therapeutic approach with high biosecurity for HCC treatment.
Collapse
Affiliation(s)
- Yinghao Lyu
- Department of General Surgery, Liver Transplant Center, Transplant Center, Laboratory of Hepatic AI Translation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qian Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Sinan Xie
- Department of General Surgery, Liver Transplant Center, Transplant Center, Laboratory of Hepatic AI Translation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhenyang Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Lang Ma
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhe Wu
- Tianfu Jincheng Laboratory, City of Future Medicine, Chengdu 610093, China
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 641400, China
| | - Wen Bao
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 641400, China
| | - Yunshi Cai
- Department of General Surgery, Liver Transplant Center, Transplant Center, Laboratory of Hepatic AI Translation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hu Liu
- Department of General Surgery, Liver Transplant Center, Transplant Center, Laboratory of Hepatic AI Translation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Haorong He
- Department of General Surgery, Liver Transplant Center, Transplant Center, Laboratory of Hepatic AI Translation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Kunlin Xie
- Department of General Surgery, Liver Transplant Center, Transplant Center, Laboratory of Hepatic AI Translation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Fengwei Gao
- Department of General Surgery, Liver Transplant Center, Transplant Center, Laboratory of Hepatic AI Translation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ying Yang
- Department of General Surgery, Liver Transplant Center, Transplant Center, Laboratory of Hepatic AI Translation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Pu Wu
- Department of General Surgery, Liver Transplant Center, Transplant Center, Laboratory of Hepatic AI Translation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Penghui He
- Department of General Surgery, Liver Transplant Center, Transplant Center, Laboratory of Hepatic AI Translation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Kaipeng Wang
- Department of General Surgery, Liver Transplant Center, Transplant Center, Laboratory of Hepatic AI Translation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xinye Dai
- Department of General Surgery, Liver Transplant Center, Transplant Center, Laboratory of Hepatic AI Translation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hong Wu
- Department of General Surgery, Liver Transplant Center, Transplant Center, Laboratory of Hepatic AI Translation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tian Lan
- Department of General Surgery, Liver Transplant Center, Transplant Center, Laboratory of Hepatic AI Translation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin 14195, Germany
- Department of Endodontics, Department of Orthodontics, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
10
|
Yao Y, Liu Y, Lu B, Ji G, Wang L, Dong K, Zhao Z, Lyu D, Wei M, Tu S, Lyu X, Li Y, Huang R, Zhou W, Xu G, Pan X, Cui X. Construction and validation of a regulatory T cells-based classification of renal cell carcinoma: an integrated bioinformatic analysis and clinical cohort study. Cell Oncol (Dordr) 2024:10.1007/s13402-024-01030-9. [PMID: 39714755 DOI: 10.1007/s13402-024-01030-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2024] [Indexed: 12/24/2024] Open
Abstract
PURPOSE Renal cell carcinoma (RCC), exhibiting remarkable heterogeneity, can be highly infiltrated by regulatory T cells (Tregs). However, the relationship between Treg and the heterogeneity of RCC remains to be explored. METHODS We acquired single-cell RNA-seq profiles and 537 bulk RNA-seq profiles of TCGA-KIRC cohort. Through clustering, monocle2 pseudotime and prognostic analyses, we identified Treg states-related prognostic genes (TSRPGs), then constructing the RCC Treg states-related prognostic classification (RCC-TSC). We also explored its prognostic significance and multi-omics landmarks. Additionally, we utilized correlation analysis to establish regulatory networks, and predicted candidate inhibitors. More importantly, in Xinhua cohort of 370 patients with kidney neoplasm, we used immunohistochemical (IHC) staining for classification, then employing statistical analyses including Chi-square tests and multivariate Cox proportional hazards regression analysis to explore its clinical relevance. RESULTS We defined 44 TSRPGs in four different monocle states, and identified high immune infiltration RCC (HIRC, LAG3+, Mki67+) as the highly exhausted subtype with the worst prognosis in RCC-TSC (p < 0.001). BATF-LAG3-immune cells axis might be its underlying metastasis-related mechanism. Immunotherapy and inhibitors including sunitinib potentially conferred best therapeutic effects for HIRC. Furthermore, we successfully validated HIRC subtype as an independent prognostic factor within the Xinhua cohort (OS, HR = 16.68, 95% CI = 1.88-148.1, p = 0.011; PFS, HR = 4.43, 95% CI = 1.55-12.6, p = 0.005). CONCLUSION Through integrated bioinformatics analysis and a large-sample retrospective clinical study, we successfully established RCC-TSC and a diagnostic kit, which could stratify RCC patients with different prognosis and to guide personalized treatment.
Collapse
Affiliation(s)
- Yuntao Yao
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yifan Liu
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Bingnan Lu
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Guo Ji
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lei Wang
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Keqin Dong
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Zihui Zhao
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Donghao Lyu
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Maodong Wei
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Siqi Tu
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Xukun Lyu
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yuanan Li
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Runzhi Huang
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China.
| | - Wang Zhou
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Guofeng Xu
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Xiuwu Pan
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Xingang Cui
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
11
|
Delgado-de la Mora J, Al Assaad M, Quitian S, Levine MF, Deshpande A, Sigouros M, Manohar J, Medina-Martínez JS, Sboner A, Elemento O, Jessurun J, Hissong E, Mosquera JM. Novel structural variants that impact cell cycle genes are elucidated in metastatic gastrointestinal stromal tumors. Pathol Res Pract 2024; 266:155782. [PMID: 39708519 DOI: 10.1016/j.prp.2024.155782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal neoplasm of the digestive tract. Despite multiple therapeutic advances, patients with advanced disease frequently develop resistance to tyrosine kinase inhibitors (TKIs), and therefore represent a therapeutic challenge. We employed whole genome sequencing (WGS) on three metastatic GISTs refractory to various TKIs and explored a publicly available cohort of 499 GISTs. This study sheds light on the clinical importance of alterations in cell cycle genes such as cyclin-dependent kinase 2 A (CDKN2A), and cyclin-dependent kinase 2B (CDKN2B), their frequent alteration in metastatic GISTs and their potential role in tumor progression of this neoplasm. Likewise, new structural variations were identified in cyclin-dependent kinase 12 (CDK12). Whole genome profiling of metastatic GIST provides new insights to advance precision care of the disease, focusing on new therapeutic possibilities, especially for emerging targets such as CDK12.
Collapse
Affiliation(s)
- Jesús Delgado-de la Mora
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 1300 York Ave, New York, NY 10065, USA; Englander Institute for Precision Medicine, Weill Cornell Medicine, 413 East 69th Street, New York, NY 10021, USA
| | - Majd Al Assaad
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 1300 York Ave, New York, NY 10065, USA; Englander Institute for Precision Medicine, Weill Cornell Medicine, 413 East 69th Street, New York, NY 10021, USA
| | - Stephanie Quitian
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 1300 York Ave, New York, NY 10065, USA
| | - Max F Levine
- Isabl Inc., 175 Greenwich Street, Fl 38, New York, NY 10007, USA
| | - Aditya Deshpande
- Isabl Inc., 175 Greenwich Street, Fl 38, New York, NY 10007, USA
| | - Michael Sigouros
- Englander Institute for Precision Medicine, Weill Cornell Medicine, 413 East 69th Street, New York, NY 10021, USA
| | - Jyothi Manohar
- Englander Institute for Precision Medicine, Weill Cornell Medicine, 413 East 69th Street, New York, NY 10021, USA
| | | | - Andrea Sboner
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 1300 York Ave, New York, NY 10065, USA; Englander Institute for Precision Medicine, Weill Cornell Medicine, 413 East 69th Street, New York, NY 10021, USA; Institute for Computational Biomedicine, Weill Cornell Medicine, 1305 York Avenue, New York, NY 10021, USA
| | - Olivier Elemento
- Englander Institute for Precision Medicine, Weill Cornell Medicine, 413 East 69th Street, New York, NY 10021, USA; Institute for Computational Biomedicine, Weill Cornell Medicine, 1305 York Avenue, New York, NY 10021, USA
| | - José Jessurun
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 1300 York Ave, New York, NY 10065, USA
| | - Erika Hissong
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 1300 York Ave, New York, NY 10065, USA; Englander Institute for Precision Medicine, Weill Cornell Medicine, 413 East 69th Street, New York, NY 10021, USA
| | - Juan Miguel Mosquera
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 1300 York Ave, New York, NY 10065, USA; Englander Institute for Precision Medicine, Weill Cornell Medicine, 413 East 69th Street, New York, NY 10021, USA.
| |
Collapse
|
12
|
Kim J, Brunetti B, Kumar A, Mangla A, Honda K, Yoshida A. Inhibition of glutaminase elicits senolysis in therapy-induced senescent melanoma cells. Cell Death Dis 2024; 15:902. [PMID: 39695080 DOI: 10.1038/s41419-024-07284-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/21/2024] [Accepted: 12/04/2024] [Indexed: 12/20/2024]
Abstract
The cyclin D1-Cyclin-Dependent Kinases 4 and 6 (CDK4/6) complex is crucial for the development of melanoma. We previously demonstrated that targeting CDK4/6 using small molecule inhibitors (CDK4/6i) suppresses BrafV600E melanoma growth in vitro and in vivo through induction of cellular senescence. However, clinical trials investigating CDK4/6i in melanoma have not yielded successful outcomes, underscoring the necessity to enhance the therapeutic efficacy of CDK4/6i. Accumulated research has shown that while senescence initially suppresses cell proliferation, a prolonged state of senescence eventually leads to tumor relapse by altering the tumor microenvironment, suggesting that removal of those senescent cells (in a process referred to as senolysis) is of clinical necessity to facilitate clinical response. We demonstrate that glutaminase 1 (GLS1) expression is specifically upregulated in CDK4/6i-induced senescent BrafV600E melanoma cells. Upregulated GLS1 expression renders BrafV600E melanoma senescent cells vulnerable to GLS1 inhibitor (GLS1i). Furthermore, we demonstrate that this senolytic approach targeting upregulated GLS1 expression is applicable even though those cells developed resistance to the BrafV600E inhibitor vemurafenib, a frequently encountered substantial clinical challenge to treating patients. Thus, this novel senolytic approach may revolutionize current CDK4/6i mediated melanoma treatment if melanoma cells undergo senescence prior to developing resistance to CDK4/6i. Given that we demonstrate that a low dose of vemurafenib induced senescence, which renders BrafV600E melanoma cells susceptible to GLS1i and recent accumulated research shows many cancer cells undergo senescence in response to chemotherapy, radiation, and immunotherapy, this senolytic therapy approach may prove applicable to a wide range of cancer types once senescence and GLS1 expression are induced.
Collapse
Affiliation(s)
- Justin Kim
- Department of Dermatology, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA
| | - Bryce Brunetti
- Department of Dermatology, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA
| | - Ayanesh Kumar
- Department of Dermatology, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA
| | - Ankit Mangla
- Department of Hematology and Oncology, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA
| | - Kord Honda
- Department of Dermatology, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA
| | - Akihiro Yoshida
- Department of Dermatology, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA.
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
13
|
Liu S, Zhao R, Zang Y, Huang P, Zhang Q, Fan X, Bai J, Zheng X, Zhao S, Kuai D, Gao C, Wang Y, Xue F. Interleukin-22 promotes endometrial carcinoma cell proliferation and cycle progression via ERK1/2 and p38 activation. Mol Cell Biochem 2024:10.1007/s11010-024-05179-7. [PMID: 39690293 DOI: 10.1007/s11010-024-05179-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/29/2024] [Indexed: 12/19/2024]
Abstract
Endometrial carcinoma (EC) is one of the most common gynecological malignant tumors, but its underlying pathogenic mechanisms are largely obscure. Interleukin-22 (IL-22), one cytokine in the tumor immune microenvironment, was reported to be associated with carcinoma progression. Here, we aimed to investigate the regulation of IL-22 in endometrial carcinoma. Enzyme-linked immunosorbent assay (ELISA) analysis of IL-22 was done in 27 controls and 51 patients with EC. We examined the proliferative potential, cycle progression, and signaling pathways modulated by IL-22 in EC cells. Western blot analysis was performed to investigate the expression of proliferative and cycle-related proteins in EC cells. The effect of IL-22 mediated by interleukin-22 receptor alpha 1 (IL-22RA1) was examined using cell transfection with small interfering RNA (siRNA). In addition, a xenograft tumor model was performed to assess the effect of IL-22 in vivo. We demonstrated significant up-regulation of serum IL-22 concentrations in EC patients (42.59 ± 23.72 pg/mL) compared to the control group (27.47 ± 8.29 pg/mL). High levels of IL-22 concentrations appear to correlate with malignant clinicopathological features of EC. Treatment with IL-22 promoted cell proliferation and G1/S phase progression in Ishikawa and HEC-1B cells. Western blot analysis revealed that c-Myc, cyclin E1, cyclin-dependent kinase (CDK)2, cyclin D1, CDK4, CDK6, p-extracellular signal-regulated kinase1/2 (p-ERK1/2), and p-p38 were highly expressed in EC cells exposed to IL-22. Moreover, in the EC mice model, we found that giving exogenous IL-22 increased tumor volume and weight. Immunohistochemistry showed that intra-tumor Ki-67 expression was up-regulated upon IL-22 treatment. The IL-22-mediated changes in cell proliferation, cycle progression, and protein expression can be effectively inhibited by the ERK1/2 inhibitor U0126 and the p38 inhibitor SB202190. In addition, the role of IL-22 in EC is receptor-dependent. Our findings suggest that IL-22 promotes endometrial carcinoma cell proliferation and G1/S phase progression by activating ERK1/2 and p38 signaling. Therefore, IL-22 may represent a potential therapeutic target for the treatment of endometrial carcinoma.
Collapse
Affiliation(s)
- Shiqi Liu
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Ruqian Zhao
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Department of Gynecology, Huzhou Maternity & Child Health Care Hospital, Huzhou, 313002, Zhejiang, China
| | - Yuqin Zang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Department of Gynecology, Qingdao Municipal Hospital, Shandong, 266071, China
| | - Pengzhu Huang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Qiaoling Zhang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Xiangqin Fan
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Junyi Bai
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Xingyu Zheng
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Shuangshuang Zhao
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Dan Kuai
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Chao Gao
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Yingmei Wang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300052, China.
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| | - Fengxia Xue
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300052, China.
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| |
Collapse
|
14
|
Guo L, Zhao Y, Bai X, Wang X, Tuoheti K, Cao Y, Zuo Y, Zhang X, Liu T. RRM2 Is a Putative Biomarker and Promotes Bladder Cancer Progression via PI3K/AKT/mTOR Pathway. J Cell Physiol 2024:e31501. [PMID: 39676643 DOI: 10.1002/jcp.31501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/24/2024] [Accepted: 11/25/2024] [Indexed: 12/17/2024]
Abstract
Bladder cancer (BLCA) is the tenth most common cancer worldwide, characterized by its high recurrence and progression rates. Thus, identifying prognostic biomarkers and understanding its underlying mechanisms are imperative to enhance patient outcomes. In this study, we aimed to investigate the prognostic significance, expression, functional activity, and underlying mechanisms of RRM2 in BLCA. RRM2 expression and its association with pathological grading and survival were investigated in samples from TCGA dataset and BLCA tissue microarray. CCK8 assays, colony formation assays, wound healing, and transwell assays were performed to assess the role of RRM2 in BLCA cell proliferation and migration. Western blot was employed to investigate alterations in markers associated with epithelial-to-mesenchymal transition (EMT), apoptosis, and cell cycle regulation. Gene set enrichment analysis was performed to investigate the biological processes associated with RRM2, which were subsequently validated. The expression of RRM2 was significantly elevated in both BLCA tissues and cells. Our results also indicated a positive correlation between RRM2 expression and high tumor stage, high tumor grade, and poor survival. Knockdown of RRM2 inhibited cell proliferation and migration of BLCA. RRM2 knockdown significantly induced apoptosis and arrested the cell cycle at the G0/G1 phase. Opposite results were observed in the RRM2 overexpression cells. Additionally, our study demonstrates that RRM2 promotes BLCA progression by activating the PI3K/AKT/mTOR pathway. RRM2 is remarkably correlated with poor prognosis in BLCA and facilitate its progression via PI3K/AKT/mTOR pathway. It is suggested that RRM2 might become an effective prognostic biomarker and potential therapeutic target for BLCA.
Collapse
Affiliation(s)
- Linfa Guo
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yiqiao Zhao
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiaojie Bai
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiaolong Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Kuerban Tuoheti
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yuanfei Cao
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yingtong Zuo
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xinhua Zhang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Tongzu Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
15
|
Foffano L, Cucciniello L, Nicolò E, Migliaccio I, Noto C, Reduzzi C, Malorni L, Cristofanilli M, Gerratana L, Puglisi F. Cyclin-dependent kinase 4 and 6 inhibitors (CDK4/6i): Mechanisms of resistance and where to find them. Breast 2024; 79:103863. [PMID: 39718288 DOI: 10.1016/j.breast.2024.103863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 12/15/2024] [Indexed: 12/25/2024] Open
Abstract
CDK4/6 inhibitors (CDK4/6i) have significantly impacted on the treatment of HR + HER2 negative (HER2-) metastatic breast cancer (BC) when combined with endocrine therapy. Nonetheless, despite significant research efforts, the mechanisms of de novo and acquired resistance to CDK4/6i have not yet been fully elucidated, highlighting the need for a deeper understanding of these process. Additionally, the importance of dissecting CDK4/6i resistance from endocrine resistance for personalized treatment is increasingly recognized. Liquid biopsy has emerged as a minimally invasive tool for identifying circulating biomarkers of resistance through the integration of multiparametric and dynamic assessments that encompass ctDNA, CTCs, exosomes, and epigenetic ctDNA alterations, representing a promising perspective for the clinical characterization of treatment resistance and guiding post-progression strategies to improve patient outcomes. Aim of this review is summarize potential mechanisms of CDK4/6i resistance, along with the advantages of using liquid biopsy to identify resistance biomarkers in HR+/HER2- MBC patients treated with CDK 4/6 inhibitors.
Collapse
Affiliation(s)
- L Foffano
- Department of Medical Oncology. CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy; Department of Medicine, University of Udine, Udine, Italy
| | - L Cucciniello
- Department of Medical Oncology. CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy; Department of Medicine, University of Udine, Udine, Italy
| | - E Nicolò
- Division of Hematology-Oncology, Weill Cornell Medicine, New York, NY, USA; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy; Division of New Drugs and Early Drug Development, European Institute of Oncology IRCCS, Milan, Italy
| | - I Migliaccio
- "Sandro Pitigliani" Translational Research Unit, Hospital of Prato, 59100, Prato, Italy
| | - C Noto
- Department of Medical Oncology. CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy; Department of Medicine, University of Udine, Udine, Italy
| | - C Reduzzi
- Division of Hematology-Oncology, Weill Cornell Medicine, New York, NY, USA
| | - L Malorni
- "Sandro Pitigliani" Translational Research Unit, Hospital of Prato, 59100, Prato, Italy; "Sandro Pitigliani" Medical Oncology Department, Hospital of Prato, 59100, Prato, Italy
| | - M Cristofanilli
- Division of Hematology-Oncology, Weill Cornell Medicine, New York, NY, USA
| | - L Gerratana
- Department of Medical Oncology. CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy.
| | - F Puglisi
- Department of Medical Oncology. CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy; Department of Medicine, University of Udine, Udine, Italy
| |
Collapse
|
16
|
Hamdy NM, Zaki MB, Abdelmaksoud NM, Ismail RA, Abd-Elmawla MA, Rizk NI, Fathi D, Abulsoud AI. Insights into the genetic and epigenetic mechanisms governing X-chromosome-linked-miRNAs expression in cancer; a step-toward ncRNA precision. Int J Biol Macromol 2024; 289:138773. [PMID: 39675615 DOI: 10.1016/j.ijbiomac.2024.138773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 12/17/2024]
Abstract
Sex chromosomes play a significant role in establishing sex-specific differences in gene expression, thereby contributing to phenotypic diversity and susceptibility to various diseases. MicroRNAs (miRNAs), which are small non-coding RNAs encoded by both the X and Y chromosomes, exhibit sex-specific regulatory characteristics. Computational analysis has identified several X-linked miRNAs differentially expressed in sex-specific cancers. This review aims to elucidate the genetic and epigenetic mechanisms that govern the sex-specific expression of X- and Y-linked miRNAs, with particular attention to their functional role in regulating diverse cellular processes in different cancer pathways. In addition, this review provides a comprehensive understanding of the targeted therapeutic interventions and critical insights into the potential clinical implications of targeting sex-specific miRNAs. In conclusion, this review opens new horizons for further research to effectively translate these findings into viable treatment options.
Collapse
Affiliation(s)
- Nadia M Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abassia, Cairo 11566, Egypt.
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia 32897, Egypt
| | | | - Rehab A Ismail
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mai A Abd-Elmawla
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Kasr Al-Ainy, Cairo 11562, Egypt
| | - Nehal I Rizk
- Department of Biochemistry, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo 11786, Egypt
| | - Doaa Fathi
- Department of Biochemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21526, Egypt
| | - Ahmed I Abulsoud
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al Azhar University, Nasr City, Cairo 11231, Egypt
| |
Collapse
|
17
|
Pravin N, Jóźwiak K. PROTAC unleashed: Unveiling the synthetic approaches and potential therapeutic applications. Eur J Med Chem 2024; 279:116837. [PMID: 39305635 DOI: 10.1016/j.ejmech.2024.116837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/26/2024] [Accepted: 09/02/2024] [Indexed: 10/28/2024]
Abstract
Proteolysis-Targeting Chimeras (PROTACs) are a novel class of bifunctional small molecules that alter protein levels by targeted degradation. This innovative approach uses the ubiquitin-proteasome system to selectively eradicate disease-associated proteins, providing a novel therapeutic strategy for a wide spectrum of diseases. This review delineates detailed synthetic approaches involved in PROTAC building blocks, including the ligand and protein binding parts, linker attached structural components of PROTACs and the actual PROTAC molecules. Furthermore, the recent advancements in PROTAC-mediated degradation of specific oncogenic and other disease-associated proteins, such as those involved in neurodegenerative, antiviral, and autoimmune diseases, were also discussed. Additionally, we described the current landscape of PROTAC clinical trials and highlighted key studies that underscore the translational potential of this emerging therapeutic modality. These findings demonstrate the versatility of PROTACs in modulating the levels of key proteins involved in various severe diseases.
Collapse
Affiliation(s)
- Narayanaperumal Pravin
- Department of Biopharmacy, Medical University of Lublin, Ul.W.Chodzki 4a, 20-093 Lublin, Poland.
| | - Krzysztof Jóźwiak
- Department of Biopharmacy, Medical University of Lublin, Ul.W.Chodzki 4a, 20-093 Lublin, Poland.
| |
Collapse
|
18
|
Liu C, Chen S, Zhang Y, Zhou X, Wang H, Wang Q, Lan X. Mechanisms of Rho GTPases in regulating tumor proliferation, migration and invasion. Cytokine Growth Factor Rev 2024; 80:168-174. [PMID: 39317522 DOI: 10.1016/j.cytogfr.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 09/26/2024]
Abstract
The occurrence of most cancers is due to the clonal proliferation of tumor cells, immune evasion, and the ability to spread to other body parts. Rho GTPases, a family of small GTPases, are key regulators of cytoskeleton reorganization and cell polarity. Additionally, Rho GTPases are key proteins that induce the proliferation and metastasis of tumor cells. This review focuses on the complex regulatory mechanisms of Rho GTPases, exploring their critical role in promoting tumor cell proliferation and dissemination. Regarding tumor cell proliferation, attention is given to the role of Rho GTPases in regulating the cell cycle and mitosis. In terms of tumor cell dissemination, the focus is on the role of Rho GTPases in regulating cell migration and invasion. Overall, this review elucidates the mechanisms of Rho GTPases members in the development of tumor cells, aiming to provide theoretical references for the treatment of mammalian tumor diseases and related applications.
Collapse
Affiliation(s)
- Cheng Liu
- College Of Animal, Science And Technology, Southwest University, Chongqing 400715, China.
| | - Shutao Chen
- College Of Animal, Science And Technology, Southwest University, Chongqing 400715, China.
| | - Yu Zhang
- College Of Animal, Science And Technology, Southwest University, Chongqing 400715, China.
| | - Xinyi Zhou
- College Of Animal, Science And Technology, Southwest University, Chongqing 400715, China.
| | - Haiwei Wang
- Chongqing Academy Of Animal Sciences, Chongqing 402460, China.
| | - Qigui Wang
- Chongqing Academy Of Animal Sciences, Chongqing 402460, China.
| | - Xi Lan
- College Of Animal, Science And Technology, Southwest University, Chongqing 400715, China.
| |
Collapse
|
19
|
Chen C, Feng Y, Zhou C, Liu Z, Tang Z, Zhang Y, Li T, Gu C, Chen J. Development of natural product-based targeted protein degraders as anticancer agents. Bioorg Chem 2024; 153:107772. [PMID: 39243739 DOI: 10.1016/j.bioorg.2024.107772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/14/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024]
Abstract
Targeted protein degradation (TPD) has emerged as a powerful approach for eliminating cancer-causing proteins through an "event-driven" pharmacological mode. Proteolysis-targeting chimeras (PROTACs), molecular glues (MGs), and hydrophobic tagging (HyTing) have evolved into three major classes of TPD technologies. Natural products (NPs) are a primary source of anticancer drugs and have played important roles in the development of TPD technology. NPs potentially expand the toolbox of TPD by providing a variety of E3 ligase ligands, protein of interest (POI) warheads, and hydrophobic tags (HyTs). As a promising direction in the TPD field, NP-based degraders have shown great potential for anticancer therapy. In this review, we summarize recent advances in the development of NP-based degraders (PROTACs, MGs and HyTing) with anticancer applications. Moreover, we put forward the challenges while presenting potential opportunities for the advancement of future targeted protein degraders derived from NPs.
Collapse
Affiliation(s)
- Cheng Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yanyan Feng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chen Zhou
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, United States
| | - Zhouyan Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ziwei Tang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ye Zhang
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Tong Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chenglei Gu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jichao Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
20
|
Liu Q, Zhao X, Shao X, Cheng P, Cui J, Han S. ROR2 promotes cell cycle progression and cell proliferation through the PI3K/AKT signaling pathway in gastric cancer. Mol Carcinog 2024; 63:2316-2331. [PMID: 39150155 DOI: 10.1002/mc.23811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/20/2024] [Accepted: 08/05/2024] [Indexed: 08/17/2024]
Abstract
Proliferation is a critical characteristic of the progression of gastric cancer (GC). Receptor tyrosine kinase-like orphan receptor 2 (ROR2), the orphan receptor tyrosine kinase-like receptor, exhibits effects on tumor growth due to its abnormal expression in cancer. The goal of our study was to assess the potential regulatory role exerted by the ROR2 on GC cells. Through previous bioinformatics analysis, we discovered an association between ROR2 and the G2/M phase of the GC cell cycle. However, little is known about the link between ROR2 and the G2/M phase cell cycle in GC. Here, the findings of our study indicate that ROR2, after transcribed expression by Twist1, activates the PI3K/AKT/mTOR/S6K signal transduction pathway, thus leading to the acceleration of the G2/M phase and subsequent promotion of cell proliferation in GC. Furthermore, the functional link among ROR2, Twist1, and G2/M phase of cell cycle was also confirmed in mouse xenograft tissues and human tissues. ROR2 expression was correlated with Twist expression and lower survival in vivo. Notably, our suggestion is that focusing on ROR2 as a potential therapeutic approach could show potential for the management of GC.
Collapse
Affiliation(s)
- Qi Liu
- Medical Research and Laboratory Diagnostic Center, Jinan Central Hospital, Shandong University, Jinan, China
| | - Xin Zhao
- Medical Research and Laboratory Diagnostic Center, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiaowen Shao
- Medical Research and Laboratory Diagnostic Center, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ping Cheng
- Medical Research and Laboratory Diagnostic Center, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jingyi Cui
- Medical Research and Laboratory Diagnostic Center, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Shuyi Han
- Medical Research and Laboratory Diagnostic Center, Jinan Central Hospital, Shandong University, Jinan, China
- Medical Research and Laboratory Diagnostic Center, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
21
|
Alharbi HO, Sugden PH, Clerk A. Mitogen-activated protein kinase signalling in rat hearts during postnatal development: MAPKs, MAP3Ks, MAP4Ks and DUSPs. Cell Signal 2024; 124:111397. [PMID: 39251052 DOI: 10.1016/j.cellsig.2024.111397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/27/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024]
Abstract
Mammalian cardiomyocytes become terminally-differentiated during the perinatal period. In rodents, cytokinesis ceases after a final division cycle immediately after birth. Nuclear division continues and most cardiomyocytes become binucleated by ∼11 days. Subsequent growth results from an increase in cardiomyocyte size. The mechanisms involved remain under investigation. Mitogen-activated protein kinases (MAPKs) regulate cell growth/death: extracellular signal-regulated kinases 1/2 (ERK1/2) promote proliferation, whilst c-Jun N-terminal kinases (JNKs) and p38-MAPKs respond to cellular stresses. We assessed their regulation in rat hearts during postnatal development (2, 7, 14, and 28 days, 12 weeks) during which time there was rapid, substantial downregulation of mitosis/cytokinesis genes (Cenpa/e/f, Aurkb, Anln, Cdca8, Orc6) with lesser downregulation of DNA replication genes (Orcs1-5, Mcms2-7). MAPK activation was assessed by immunoblotting for total and phosphorylated (activated) kinases. Total ERK1/2 was downregulated, but not JNKs or p38-MAPKs, whilst phosphorylation of all MAPKs increased relative to total protein albeit transiently for JNKs. These profiles differed from activation of Akt (also involved in cardiomyocyte growth). Dual-specificity phosphatases, upstream MAPK kinase kinases (MAP3Ks), and MAP3K kinases (MAP4Ks) identified in neonatal rat cardiomyocytes by RNASeq were differentially regulated during postnatal cardiac development. The MAP3Ks that we could assess by immunoblotting (RAF kinases and Map3k3) showed greater downregulation of the protein than mRNA. MAP3K2/MAP3K3/MAP4K5 were upregulated in human failing heart samples and may be part of the "foetal gene programme" of re-expressed genes in disease. Thus, MAPKs, along with kinases and phosphatases that regulate them, potentially play a significant role in postnatal remodelling of the heart.
Collapse
Affiliation(s)
- Hajed O Alharbi
- Department of Medical Laboratory, College of Applied Medical Sciences, Quassim University, Buraydah, Saudi Arabia; School of Biological Sciences, University of Reading, Reading, UK
| | - Peter H Sugden
- School of Biological Sciences, University of Reading, Reading, UK
| | - Angela Clerk
- School of Biological Sciences, University of Reading, Reading, UK.
| |
Collapse
|
22
|
Hu X, Chen L, Liu T, Wan Z, Yu H, Tang F, Shi J, Chen Z, Wang X, Yang Z. TAF1D promotes tumorigenesis and metastasis by activating PI3K/AKT/mTOR signaling in clear cell renal cell carcinoma. Cell Signal 2024; 124:111425. [PMID: 39307376 DOI: 10.1016/j.cellsig.2024.111425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/30/2024] [Accepted: 09/17/2024] [Indexed: 10/02/2024]
Abstract
Clear cell renal cell carcinoma (ccRCC) is a malignant tumor needs more effective treatments. TATA box-binding protein-associated factor RNA polymerase I subunit D (TAF1D) is a member of the selective factor 1 complex and functions in RNA polymerase I-dependent transcription. Higher TAF1D expression was found in ccRCC tumor tissues and indicated worse survival. Our study aimed to investigate the therapeutic potential of TAF1D in ccRCC. The proliferation and migration of ccRCC cells were significantly inhibited after TAF1D knockdown, while TAF1D overexpressing had opposite effects. Moreover, TAF1D knockdown induced cells to undergo G0/G1 cell cycle arrest and blockade of the epithelial-mesenchymal transition (EMT) process. Mechanistically, TAF1D affect the cell cycle and EMT through the PI3K/AKT/mTOR signaling pathway, thereby promoting the proliferation and metastasis of ccRCC cells in vivo and in vitro. The inhibitory effect of TAF1D knockdown could be reverted by the AKT activator SC79 in ccRCC cells, confirming this mechanism. Besides, TAF1D knockdown in ccRCC cells had a sensitizing effect on sunitinib and enhanced tumor cell inhibiting induced by sunitinib. In conclusion, TAF1D may be a promising target for the treatment of ccRCC and for overcoming sunitinib resistance.
Collapse
Affiliation(s)
- Xuan Hu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Liang Chen
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Tao Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ziyu Wan
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hua Yu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Feng Tang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jiageng Shi
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhizhuang Chen
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xinghuan Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Zhonghua Yang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
23
|
Zhang Y, Li R, Li H, Huang Y, Mei Y, Zheng Y, Guo Y, Zhou Z, Yong Z, Zhao Y, Dong W, Gao J, Cao X. Morpho-histological and Transcriptome Analysis Reveal the Unreduced Sperm Formation Mechanism in cdk1-Depletion Zebrafish. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:1206-1218. [PMID: 39243300 DOI: 10.1007/s10126-024-10366-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 08/26/2024] [Indexed: 09/09/2024]
Abstract
Cyclin-dependent kinases (Cdks) are major molecules related to cell cycle regulation. Polyploidy can be caused by the production of unreduced gametes, which is often related to the abnormal cell cycle of germ cells. Here, we successfully constructed a cdk1 mutation line (cdk1+/-) in zebrafish, a commonly used model organism. It showed that cdk1 depletion resulted in the generation of both polyploid and aneuploid embryos of WT♀ × cdk1+/-♂ zebrafish. In addition to normal sperms (1N), the depletion of cdk1 in zebrafish also led to the production of some large-head 2N sperms and higher ploidy sperms. Results of bivalent analysis of testis and ultrastructure analysis of spermatogonia suggested that the production of these large-head sperms was due to spermatogonia chromosome doubling in cdk1+/- zebrafish. Transcriptome analysis revealed aberrant expressions of some cell cycle and DNA replication-related genes in the early testis of cdk1+/- zebrafish relative to WT zebrafish. Through STRING correlation analysis, we further proved that cdk1 depletion affected the mitosis process and endoduplication initiation of spermatogonia by regulating expressions of some proteins related to cell cycle (i.e., Espl1 and Pp1) and DNA replication (i.e., Orc1 and Rnaseh2b), thereby leading to the formation of unreduced sperms. This study provides important information on revealing the molecular mechanisms of unreduced gamete formation caused by cdk1 mutation. Meanwhile, it also provides an important reference for the creation of fish polyploid germplasm.
Collapse
Affiliation(s)
- Yunbang Zhang
- College of Fisheries, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, No. 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Rongyun Li
- College of Fisheries, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hui Li
- College of Fisheries, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuwei Huang
- College of Fisheries, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yihui Mei
- College of Fisheries, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuxuan Zheng
- College of Fisheries, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yankun Guo
- College of Fisheries, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zihao Zhou
- College of Fisheries, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhonglin Yong
- College of Fisheries, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ying Zhao
- College of Fisheries, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenjing Dong
- College of Fisheries, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jian Gao
- College of Fisheries, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, No. 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Xiaojuan Cao
- College of Fisheries, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China.
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, No. 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, People's Republic of China.
| |
Collapse
|
24
|
Wu R, Li P, Hao B, Fredimoses M, Ge Y, Zhou Y, Tang L, Li Y, Liu H, Janson V, Hu Y, Liu H. Design, synthesis, and biological evaluation of novel 5,7,4'-trimethoxyflavone sulfonamide-based derivatives as highly potent inhibitors of LRPPRC/STAT3/CDK1. Bioorg Chem 2024; 153:107878. [PMID: 39395319 DOI: 10.1016/j.bioorg.2024.107878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/25/2024] [Accepted: 10/05/2024] [Indexed: 10/14/2024]
Abstract
Leucine-rich pentatricopeptide repeat-containing protein (LRPPRC), signal transducer and activator of transcription 3 (STAT3), and cyclin-dependent kinase 1 (CDK1) are promising therapeutic targets for cancer treatment. However, there is a lack of effective inhibitors of LRPPRC, STAT3, and CDK1 in clinic. Our previous study has proved that 5,7,4'-Trimethoxyflavone (TMF) is a novel inhibitor of LRPPRC/STAT3/CDK1. However, the extraction rate of TMF from Tangerine Peel is quite low, and the doses of TMF in cells and mice are rather high. Herein, structural modifications of TMF have led to two series of TMF derivatives including sulfonamide substituted at 3'-position (7a-m) and 3',8-position (11a-m). Among all compounds, 7e, 7k, 11e, and 11g exhibited as effective, broad-spectrum, and potent anticancer agents in vitro. Moreover, 7e, 7k, 11e, and 11g showed better antitumor effects than TMF and clinical used chemotherapy drug capecitabine in vivo with no obvious toxicity. Mechanism studies showed that 11g could bind to LRPPRC, STAT3, and CDK1 to disassociate the LRPPRC-JAK2-STAT3 and JAK2-STAT3-CDK1 complexes, resulting in suppression of JAK2/STAT3 signaling pathway. These findings suggest that 11g may serve as a leading compound for cancer therapy as a triple-target (LRPPRC, STAT3, and CDK1) inhibitor.
Collapse
Affiliation(s)
- Rui Wu
- Department of Pathophysiology, School of Basic Medicine Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Pan Li
- China-US (Henan) Hormel Cancer Institute, No. 127, Dongming Road, Jinshui District, Zhengzhou, Henan 450008, China.
| | - Bingbing Hao
- Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Mangaladoss Fredimoses
- China-US (Henan) Hormel Cancer Institute, No. 127, Dongming Road, Jinshui District, Zhengzhou, Henan 450008, China
| | - Yunxiao Ge
- Department of Pathophysiology, School of Basic Medicine Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yubing Zhou
- Department of Pathophysiology, School of Basic Medicine Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Lin Tang
- Department of Pathophysiology, School of Basic Medicine Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yuanying Li
- Department of Pathophysiology, School of Basic Medicine Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Hangrui Liu
- Department of Pathophysiology, School of Basic Medicine Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Victor Janson
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Yamei Hu
- China-US (Henan) Hormel Cancer Institute, No. 127, Dongming Road, Jinshui District, Zhengzhou, Henan 450008, China; Department of Clinical Research and Translational Medicine, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Hui Liu
- Department of Pathophysiology, School of Basic Medicine Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan 450001, China; China-US (Henan) Hormel Cancer Institute, No. 127, Dongming Road, Jinshui District, Zhengzhou, Henan 450008, China; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
25
|
Eyuboglu S, Alpsoy S, Uversky VN, Coskuner-Weber O. Key genes and pathways in the molecular landscape of pancreatic ductal adenocarcinoma: A bioinformatics and machine learning study. Comput Biol Chem 2024; 113:108268. [PMID: 39467488 DOI: 10.1016/j.compbiolchem.2024.108268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 10/20/2024] [Indexed: 10/30/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is recognized for its aggressive nature, dismal prognosis, and a notably low five-year survival rate, underscoring the critical need for early detection methods and more effective therapeutic approaches. This research rigorously investigates the molecular mechanisms underlying PDAC, with a focus on the identification of pivotal genes and pathways that may hold therapeutic relevance and prognostic value. Through the construction of a protein-protein interaction (PPI) network and the examination of differentially expressed genes (DEGs), the study uncovers key hub genes such as CDK1, KIF11, and BUB1, demonstrating their substantial role in the pathogenesis of PDAC. Notably, the dysregulation of these genes is consistent across a spectrum of cancers, positing them as potential targets for wide-ranging cancer therapeutics. This study also brings to the fore significant genes encoding intrinsically disordered proteins, in particular GPRC5A and KRT7, unveiling promising new pathways for therapeutic intervention. Advanced machine learning techniques were harnessed to classify PDAC patients with high accuracy, utilizing the key genetic markers as a dataset. The Support Vector Machine (SVM) model leveraged the hub genes to achieve a sensitivity of 91 % and a specificity of 85 %, while the RandomForest model notched a sensitivity of 91 % and specificity of 92.5 %. Crucially, when the identified genes were cross-referenced with TCGA-PAAD clinical datasets, a tangible correlation with patient survival rates was discovered, reinforcing the potential of these genes as prognostic biomarkers and their viability as targets for therapeutic intervention. This study's findings serve as a potent testament to the value of molecular analysis in enhancing the understanding of PDAC and in advancing the pursuit for more effective diagnostic and treatment strategies.
Collapse
Affiliation(s)
- Sinan Eyuboglu
- Turkish-German University, Molecular Biotechnology, Sahinkaya Caddesi, No. 106, Beykoz, Istanbul 34820, Turkey
| | - Semih Alpsoy
- Turkish-German University, Molecular Biotechnology, Sahinkaya Caddesi, No. 106, Beykoz, Istanbul 34820, Turkey
| | - Vladimir N Uversky
- USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Orkid Coskuner-Weber
- Turkish-German University, Molecular Biotechnology, Sahinkaya Caddesi, No. 106, Beykoz, Istanbul 34820, Turkey.
| |
Collapse
|
26
|
Roy R, Gampa SC, Garimella SV. Role of specific CDKs in regulating DNA damage repair responses and replication stress. Curr Opin Pharmacol 2024; 79:102485. [PMID: 39265226 DOI: 10.1016/j.coph.2024.102485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/14/2024]
Abstract
Cyclins along with their catalytic units, Cyclin-dependent kinases (CDKs) regulate the cell cycle transition and transcription; and are essentially known as 'master regulators' in modulating DNA damage response (DDR) and replication stress. In addition to influencing DNA repair and damage signaling, CDKs also play a pivotal role in cell division fidelity and the maintenance of genomic integrity after DNA damage. In this review, we focus on the intricate ways by which specific CDKs mainly CDK7, CDK9, and CDK12/13, regulate the cell cycle progression and transcription and how their modulation can lead to lethal effects on the integrity of the genome. With a better knowledge of how these CDKs control the DDR and replication stress, it is now possible to combine CDK inhibitors with chemotherapeutic drugs that damage DNA in ways that can be applied in clinical settings as successful therapeutic strategies.
Collapse
Affiliation(s)
- Rahul Roy
- Centre for Biomedical Engineering, Indian Institute of Technology, New Delhi, 110016, India
| | - Siri Chandana Gampa
- Department of Biotechnology, School of Science, GITAM (deemed to be University), Visakhapatnam, 530045, India
| | - Sireesha V Garimella
- Department of Biotechnology, School of Science, GITAM (deemed to be University), Visakhapatnam, 530045, India.
| |
Collapse
|
27
|
Li J, Ding S, Li M, Zou B, Chu M, Gu G, Chen C, Liu YJ, Zheng K, Meng Z. LncRNA PVT1 promotes malignant progression by regulating the miR-7-5p/CDKL1 axis in oral squamous cell carcinoma. Mol Cell Probes 2024; 78:101995. [PMID: 39617072 DOI: 10.1016/j.mcp.2024.101995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 12/20/2024]
Abstract
Oral squamous cell carcinoma (OSCC), one of the most common types of head and neck squamous cell carcinoma (HNSCC), is characterized by high incidence and mortality. PVT1 is a long non-coding RNA (lncRNA) that plays an oncogenic role in various cancer types. This study aims to reveal the role and underlying molecular mechanism of PVT1 in OSCC progression. The expression levels of PVT1, miR-7-5p, and CDKL1 mRNA were evaluated using qRT-PCR. Western blot and IHC analysis were conducted to determine the protein expression of CDKL1. The biological functions of PVT1, miR-7-5p, and CDKL1 in OSCC were investigated through CCK-8, transwell migration and invasion assays. In vivo experiments utilized a xenograft model to examine the impact of PVT1 on OSCC. Furthermore, the interaction among PVT1, miR-7-5p, and CDKL1 was explored using RNA pull down assay and luciferase reporter assays. We found that PVT1 enhanced cell proliferation, migration, and invasion by targeting CDKL1. In addition, PVT1 functions as a sponge to modulate miR-7-5p, thereby influencing the expression of CDKL1 and the progression of OSCC. In conclusion, this study illustrates that the "PVT1/miR-7-5p/CDKL1" pathway is capable of promoting the progression of OSCC and may serve as a promising target for developing treatment strategies for OSCC.
Collapse
Affiliation(s)
- Jun Li
- Chemical Engineering College, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China; Department of Stomatology & Precision Biomedical Laboratory, Liaocheng People's Hospital, Medical School of Liaocheng University, Liaocheng, Shandong 252000, China.
| | - Shuxin Ding
- School of Stomatology, Shandong Second Medical University, Weifang, Shangdong 261000, China
| | - Min Li
- Department of Stomatology & Precision Biomedical Laboratory, Liaocheng People's Hospital, Medical School of Liaocheng University, Liaocheng, Shandong 252000, China
| | - Bo Zou
- Department of Stomatology & Precision Biomedical Laboratory, Liaocheng People's Hospital, Medical School of Liaocheng University, Liaocheng, Shandong 252000, China
| | - Miaomiao Chu
- Department of Stomatology & Precision Biomedical Laboratory, Liaocheng People's Hospital, Medical School of Liaocheng University, Liaocheng, Shandong 252000, China
| | - Guohao Gu
- Department of Stomatology & Precision Biomedical Laboratory, Liaocheng People's Hospital, Medical School of Liaocheng University, Liaocheng, Shandong 252000, China
| | - Cheng Chen
- Department of Stomatology & Precision Biomedical Laboratory, Liaocheng People's Hospital, Medical School of Liaocheng University, Liaocheng, Shandong 252000, China
| | - Yu-Jiao Liu
- Department of Stomatology & Precision Biomedical Laboratory, Liaocheng People's Hospital, Medical School of Liaocheng University, Liaocheng, Shandong 252000, China
| | - Ke Zheng
- Chemical Engineering College, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Zhen Meng
- Department of Stomatology & Precision Biomedical Laboratory, Liaocheng People's Hospital, Medical School of Liaocheng University, Liaocheng, Shandong 252000, China
| |
Collapse
|
28
|
Lu Z, Han J, Ji Y, Li B, Zhang A. Computational design of CDK1 inhibitors with enhanced target affinity and drug-likeness using deep-learning framework. Heliyon 2024; 10:e40345. [PMID: 39748968 PMCID: PMC11693894 DOI: 10.1016/j.heliyon.2024.e40345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 09/20/2024] [Accepted: 11/11/2024] [Indexed: 01/04/2025] Open
Abstract
Cyclin Dependent Kinase 1 (CDK1) plays a crucial role in cell cycle regulation, and dysregulation of its activity has been implicated in various cancers. Although several CDK1 inhibitors are currently in clinical trials, none have yet been approved for therapeutic use. This research utilized deep learning techniques, specifically Recurrent Neural Networks with Long Short-Term Memory (LSTM), to generate potential CDK1 inhibitors. Molecular docking, evaluation of molecular properties, and molecular dynamics simulations were conducted to identify the most promising candidates. The results showed that the generated ligands exhibited substantial improvements in target affinity and drug-likeness. Molecular docking results showed that the generated ligands had an average binding affinity of -10.65 ± 0.877 kcal/mol towards CDK1. The Quantitative Estimate of Drug-likeness (QED) values for the generated ligands averaged 0.733 ± 0.10, significantly higher than the 0.547 ± 0.15 observed for known CDK1 inhibitors (p < 0.001). Molecular dynamics simulations further confirmed the stability and favorable interactions of the selected ligands with the CDK1 complex. The identification of novel CDK1 inhibitors with improved binding affinities and drug-likeness properties could potentially fill the gap in the ongoing development of CDK inhibitors. However, it is imperative to note that extensive experimental validation is required prior to advancing these generated ligands to subsequent stages of drug development.
Collapse
Affiliation(s)
- Zuokun Lu
- Food and Pharmacy College, Xuchang University, Xuchang, 461000, Henan, China
- Key Laboratory of Biomarker-Based Rapid Detection Technology for Food Safety of Henan Province, Xuchang University, Xuchang, 461000, Henan, China
| | - Jiayuan Han
- Food and Pharmacy College, Xuchang University, Xuchang, 461000, Henan, China
| | - Yibo Ji
- Food and Pharmacy College, Xuchang University, Xuchang, 461000, Henan, China
| | - Bingrui Li
- Food and Pharmacy College, Xuchang University, Xuchang, 461000, Henan, China
| | - Aili Zhang
- Food and Pharmacy College, Xuchang University, Xuchang, 461000, Henan, China
| |
Collapse
|
29
|
Sun F, Ji C, Zhou X, Zhang Y, Cheng H, Ye Z. Targeting RACGAP1 suppresses growth hormone pituitary adenoma growth. Endocrine 2024:10.1007/s12020-024-04116-4. [PMID: 39607642 DOI: 10.1007/s12020-024-04116-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024]
Abstract
PURPOSE Growth hormone pituitary adenoma (GHPA) is a major subtype of pituitary adenoma (PA), with tumor enlargement and abnormal secretion of growth hormone (GH) often causing complications. Rac GTPase-activating protein 1 (RACGAP1), a member of the guanine triphosphatase-activating protein family, is highly overexpressed in multiple tumors and promotes tumor growth. However, the role of RACGAP1 in GHPA remains unelucidated. Besides, specific inhibitors targeting RACGAP1 have not yet been developed. In this study, we aimed to determine the expression and function of RACGAP1 in GHPA and identify effective inhibitors against RACGAP1. METHODS Immunohistochemistry was used to detect the expression of RACGAP1 in GHPA and normal pituitary tissues. The effect of RACGAP1 on cell proliferation, apoptosis, and cell cycle was evaluated by knockdown of RACGAP1 in GH3 cells in vitro and xenograft models of GHPA in vivo. The downstream mechanism of RACGAP1 was explored by RNA sequencing, bioinformatic analysis, and Western blot. Inhibitors targeting RACGAP1 were screened and verified through a structure-based virtual docking method, cell viability assays, and surface plasmon resonance (SPR) experiments. RESULTS RACGAP1 expression was increased in GHPA compared with normal pituitary tissues. Knocking down RACGAP1 suppressed cell growth in vitro and in vivo. Preliminary mechanism studies indicated that inhibition of RACGAP1 led to the upregulation of p21 and the downregulation of several genes involved in the cell cycle signaling pathway, such as Cyclin A, CDK1, and CDK2. Moreover, DB07268 was identified for the first time as an effective RACGAP1 inhibitor that could prominently restrain the proliferation of GH3 cells. CONCLUSION This study demonstrates that RACGAP1 plays a critical role in GHPA, highlighting the novel inhibitor DB07268 as a promising therapeutic approach.
Collapse
Affiliation(s)
- Feifan Sun
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, 200040, China
- Neurosurgical Institute of Fudan University, Shanghai, 200040, China
| | - Chenxing Ji
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, 200040, China
- Neurosurgical Institute of Fudan University, Shanghai, 200040, China
| | - Xiang Zhou
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, 200040, China
- Neurosurgical Institute of Fudan University, Shanghai, 200040, China
- Shanghai Key laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, 200040, China
| | - Yichao Zhang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, 200040, China
- Neurosurgical Institute of Fudan University, Shanghai, 200040, China
- Shanghai Key laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, 200040, China
| | - Haixia Cheng
- Department of Pathology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
| | - Zhao Ye
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, 200040, China.
- Neurosurgical Institute of Fudan University, Shanghai, 200040, China.
- Shanghai Key laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, 200040, China.
| |
Collapse
|
30
|
Filetti M, Occhipinti M, Cirillo A, Scirocchi F, Ugolini A, Giusti R, Lombardi P, Daniele G, Botticelli A, Lo Russo G, De Braud F, Marchetti P, Nuti M, Ferretti E, Farina L, Rughetti A, Petti M. Exploring Genomic Biomarkers for Pembrolizumab Response: A Real-World Approach and Patient Similarity Network Analysis Reveal DNA Response and Repair Gene Mutations as a Signature. Cancers (Basel) 2024; 16:3955. [PMID: 39682144 DOI: 10.3390/cancers16233955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/08/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
Purpose: Single-agent immune checkpoint inhibitor (IO) therapy is the standard for non-oncogene-addicted advanced non-small cell lung cancer (aNSCLC) with PD-L1 tumor proportion score ≥ 50%. Smoking-induced harm generates high tumor mutation burden (H-TMB) in smoking patients (S-pts), while never-smoking patients (NS-pts) typically have low TMB (L-TMB) and are unresponsive to IO. However, the molecular characterization of NS-pts with H-TMB remains unclear. Experimental design: Clinical data of 142 aNSCLC patients with PD-L1 ≥ 50% treated with first line pembrolizumab were retrospectively collected. Next-generation sequencing was performed using the FoundationOne®CDx assay to correlate genomic alterations with clinical characteristics and response outcomes. Detected mutations were classified into eleven main pathways and enrichment analysis identified patient subgroups based on mutated pathways. Additionally, a patient similarity network was constructed to analyze molecular characterization. Results were validated using data from 853 aNSCLC patients in POPLAR and OAK trials. Results: Among the patients, S-pts had higher TMB than NS-pts. Interestingly, 11 (8%) NS-pts exhibited H-TMB and were enriched in β-catenin/Wnt and DDR pathway mutations. DDR pathway mutations were confirmed to be enriched in NS-pts with H-TMB using data from POPLAR and OAK trials. In the real-world cohort, the NS/H-TMB subgroup with DDR pathway mutations demonstrated improved IO outcome. Patient similarity network analysis confirmed the clustering of NS/H-TMB patients with DDR mutations and their association with improved overall survival in both the real-world cohort and the trials. Conclusions: The DDR signature has a potential role as an additional generator of H-TMB in NS-pts. This subgroup of IO-responsive NS-pts may have better prognosis. Our findings suggest that DDR-based mutational profiling may help identify NS-pts who could benefit from IO therapy.
Collapse
Affiliation(s)
- Marco Filetti
- Phase 1 Unit, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, 00168 Rome, Italy
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Mario Occhipinti
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
- Thoracic Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Alessio Cirillo
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
- Department of Radiology, Oncological and Anatomo-Pathological Science, Sapienza University of Rome, 00161 Rome, Italy
| | - Fabio Scirocchi
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
- Department of Onco-Hematology, Gene and Cell Therapy, Bambino Gesù Children's Hospital-IRCCS, 00165 Rome, Italy
| | - Alessio Ugolini
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Raffaele Giusti
- Department of Medical Oncology, St. Andrea Hospital, 00189 Rome, Italy
| | - Pasquale Lombardi
- Phase 1 Unit, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, 00168 Rome, Italy
| | - Gennaro Daniele
- Phase 1 Unit, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, 00168 Rome, Italy
| | - Andrea Botticelli
- Department of Radiology, Oncological and Anatomo-Pathological Science, Sapienza University of Rome, 00161 Rome, Italy
| | - Giuseppe Lo Russo
- Thoracic Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Filippo De Braud
- Oncology and Hemato-Oncology Department, University of Milan, 20133 Milan, Italy
| | - Paolo Marchetti
- Istituto Dermopatico dell'Immacolata IDI-IRCCS, 00167 Rome, Italy
| | - Marianna Nuti
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Elisabetta Ferretti
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Lorenzo Farina
- Department of Computer, Control, and Management Engineering, Sapienza University of Rome, 00161 Rome, Italy
| | - Aurelia Rughetti
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Manuela Petti
- Department of Computer, Control, and Management Engineering, Sapienza University of Rome, 00161 Rome, Italy
| |
Collapse
|
31
|
Ouyang Y, Wu Z, Aili D, Yang C, Zhang H, Wu T. Pan-cancer analysis identifies the oncogenic role of CCNE1 in human cancers. Aging (Albany NY) 2024; 16:13392-13408. [PMID: 39591374 PMCID: PMC11719100 DOI: 10.18632/aging.206163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024]
Abstract
OBJECTIVE To investigate expression, prognosis, immune cell infiltration of Cyclin E1 (CCNE1) in cancer. METHODS We used TIMER and GEPIA datasets to analyze the differential expression of CCNE1 in multiple tumors. GEPIA and Kaplan-Meier plotter databases were utilized to observe the prognostic significance of CCNE1 in cancer. TIMER and cBioPortal databases were adopted for the analysis regarding immune infiltration and mutation respectively. RESULTS The results showed that CCNE1 was highly expressed in multiple cancers including BLCA, BRCA, CHOL, COAD, ESCA, HNSC, KICH, KIRC, KIRP, LIHC, LUAD, LUSC, READ, STAD, THCA, UCEC (P < 0.001) and CESC (P < 0.01). High CCNE1 expression was associated with a poor overall survival prognosis in several cancers, including ACC, BRCA, KIRC, KIRP, LGG, LIHC, LUAD and MESO. Additionally, CCNE1 expression was correlated with the cancer-associated immune infiltration level in BRCA, COAD, LUSC, STAD and THYM. CONCLUSIONS CCNE1 is expected to be a potential biomarker for tumor prognosis and immune infiltration in various cancers.
Collapse
Affiliation(s)
- Yujie Ouyang
- Department of Dermatology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, China
| | - Ziyi Wu
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Dilihumaer Aili
- Department of Orthopedic Surgery, Affiliated Hospital of Traditional Chinese Medicine, Xinjiang Medical University, Ürümqi 830054, China
| | - Chunhua Yang
- Department of Orthopedics, Changsha Hospital, Xiangya Medical College, Central South University, Changsha 410005, China
| | - Hui Zhang
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Tong Wu
- Department of Orthopedics, Changsha Hospital, Xiangya Medical College, Central South University, Changsha 410005, China
| |
Collapse
|
32
|
Ghani U, Ghori FK, Qamar MU, Khan H, Azad B, Habib S, Justin S, Khan IN, Shah TA, Shazly GA, Bourhia M, Perveen F, Javed A. SLNP-based CDK4- targeted nanotherapy against glioblastoma. Front Oncol 2024; 14:1455816. [PMID: 39650055 PMCID: PMC11621005 DOI: 10.3389/fonc.2024.1455816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/14/2024] [Indexed: 12/11/2024] Open
Abstract
Introduction Glioblastoma is a grade IV solid brain tumor and has a 15-month survival rate even after treatment. Glioblastoma development is heavily influenced by retinoblastoma protein (pRB) pathway changes. The blood-brain barrier, drug resistance, and severe toxicity of Temozolamide are key obstacles in treating glioblastoma. Innovative treatments targeting the pRB pathway with efficient delivery vehicles are required to treat glioblastoma. Methods For this purpose, a library of 691 plant extracts previously tested in vitro for anti-cancerous, anti inflammatory, and anti-proliferative characteristics was created after thorough literature investigations. Compounds were docked against pRB pathway protein ligands using molecular operating environment and chimera. Their nuclear structure and drug-like properties were predicted through Lipinski rule and density functional theory analysis. Physio-chemical characterizations of naked and drug-encapsulated SLNPs assessed size, stability, entrapment efficiency, and drug release rate. Anti-cancer potential of drug and drug- loaded SLNPs was evaluated using U87, U251, and HEK cell lines. Formulations were tested for cancer cell metastatic potential using cell migration assays. Results Silymarin (Sil) was identified as the most potent compound against CDK4, which was then encapsulated in stearic acid solid lipid nanoparticles (SLNP-Sil). Sil showed decreased cell viability 72 h after treatment against both U87 and U251 cell lines but had negligible cytotoxic effect on HEK-293. IC50 value of Sil was 155.14 µM for U87 and 195.93 µM for U251. Sil and SLNP-Sil effectively inhibited U87 and U251 cell migration 24 h after treatment. Discussion Our results indicated that Sil and SLNP-Sil are promising therapeutic approaches against glioblastoma and merit in vivo experimental verification using orthotropic xenograft mouse models against glioblastoma.
Collapse
Affiliation(s)
- Uzma Ghani
- Molecular Immunology Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Fareeha Khalid Ghori
- Molecular Immunology Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Muhammad Usman Qamar
- Institute of Microbiology, Faculty of Life Sciences, Government College University Faisalabad, Faisalabad, Pakistan
- Division of Infectious Disease and Department of Medicine, University of Geneva, Geneva, Switzerland
| | - Hina Khan
- Molecular Immunology Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Basit Azad
- Materials And Modeling Lab, School of Interdisciplinary Engineering and Sciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Sabahat Habib
- Molecular Immunology Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Saira Justin
- Molecular Immunology Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Ishaq N. Khan
- Cancer Cell Culture and Precision Oncomedicine Lab, Institute of Basic Medical Sciences (IBMS), Khyber Medical University, Peshawar, Pakistan
- Department of Pharmaceutical Sciences, Taxes A&M Health Science Center, Joe H. Reynolds Medical Sciences Build, College Station, TX, United States
| | - Tawaf Ali Shah
- College of Agriculture Engineering and Food Sciences, Shandong University of Technology, Zibo, China
| | - Gamal A. Shazly
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed Bourhia
- Department of Chemistry and Biochemistry, Faculty of Medicine and Pharmacy, Ibn Zohr University, Laayoune, Morocco
| | - Fouzia Perveen
- Materials And Modeling Lab, School of Interdisciplinary Engineering and Sciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Aneela Javed
- Molecular Immunology Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| |
Collapse
|
33
|
Hayatigolkhatmi K, Soriani C, Soda E, Ceccacci E, El Menna O, Peri S, Negrelli I, Bertolini G, Franchi GM, Carbone R, Minucci S, Rodighiero S. Automated workflow for the cell cycle analysis of (non-)adherent cells using a machine learning approach. eLife 2024; 13:RP94689. [PMID: 39576677 PMCID: PMC11584176 DOI: 10.7554/elife.94689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2024] Open
Abstract
Understanding the cell cycle at the single-cell level is crucial for cellular biology and cancer research. While current methods using fluorescent markers have improved the study of adherent cells, non-adherent cells remain challenging. In this study, we addressed this gap by combining a specialized surface to enhance cell attachment, the FUCCI(CA)2 sensor, an automated image analysis pipeline, and a custom machine learning algorithm. This approach enabled precise measurement of cell cycle phase durations in non-adherent cells. This method was validated in acute myeloid leukemia cell lines NB4 and Kasumi-1, which have unique cell cycle characteristics, and we tested the impact of cell cycle-modulating drugs on NB4 cells. Our cell cycle analysis system, which is also compatible with adherent cells, is fully automated and freely available, providing detailed insights from hundreds of cells under various conditions. This report presents a valuable tool for advancing cancer research and drug development by enabling comprehensive, automated cell cycle analysis in both adherent and non-adherent cells.
Collapse
Affiliation(s)
| | - Chiara Soriani
- Department of Experimental Oncology, European Institute of Oncology-IRCCSMilanItaly
| | - Emanuel Soda
- Department of Experimental Oncology, European Institute of Oncology-IRCCSMilanItaly
| | - Elena Ceccacci
- Department of Experimental Oncology, European Institute of Oncology-IRCCSMilanItaly
| | - Oualid El Menna
- Department of Experimental Oncology, European Institute of Oncology-IRCCSMilanItaly
| | - Sebastiano Peri
- Department of Experimental Oncology, European Institute of Oncology-IRCCSMilanItaly
| | | | | | | | | | - Saverio Minucci
- Department of Experimental Oncology, European Institute of Oncology-IRCCSMilanItaly
- Department of Oncology and Hemato-Oncology, University of MilanMilanItaly
| | - Simona Rodighiero
- Department of Experimental Oncology, European Institute of Oncology-IRCCSMilanItaly
| |
Collapse
|
34
|
Wong PY, Chan CYK, Xue HDG, Goh CC, Cheu JWS, Tse APW, Zhang MS, Zhang Y, Wong CCL. Cell cycle inhibitors activate the hypoxia-induced DDX41/STING pathway to mediate antitumor immune response in liver cancer. JCI Insight 2024; 9:e170532. [PMID: 39388278 PMCID: PMC11601891 DOI: 10.1172/jci.insight.170532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 10/02/2024] [Indexed: 10/12/2024] Open
Abstract
Cell cycle inhibitors have a long history as cancer treatment. Here, we report that these inhibitors combated cancer partially via the stimulator of IFN genes (STING) signaling pathway. We demonstrated that paclitaxel (microtubule stabilizer), palbociclib (cyclin-dependent kinase 4/6 inhibitor), and AZD1152 and GSK1070916 (aurora kinase B inhibitors) have anticancer functions beyond arresting the cell cycle. They consistently caused cytosolic DNA accumulation and DNA damage, which inadvertently triggered the cytosolic DNA sensor DEAD-box helicase 41 (DDX41) and activated STING to secrete pro-inflammatory senescence-associated secretory phenotype factors (SASPs). Interestingly, we found that DDX41 was a transcriptional target of HIF. Hypoxia induced expression of DDX41 through HIF-1, making hypoxic hepatocellular carcinoma (HCC) cells more sensitive to the antimitotic agents in STING activation and SASP production. The SASPs triggered immune cell infiltration in tumors for cancer clearance. The treatment with cell cycle inhibitors, especially paclitaxel, extended survival by perturbing mouse HCC growth when used in combination with anti-PD-1. We observed a trend that paclitaxel suppressed Sting wild-type HCC more effectively than Sting-KO HCC, suggesting that STING might contribute to the antitumor effects of paclitaxel. Our study revealed the immune-mediated tumor-suppressing properties of cell cycle inhibitors and suggested combined treatment with immunotherapy as a potential therapeutic approach.
Collapse
Affiliation(s)
- Po Yee Wong
- Department of Pathology, School of Clinical Medicine, and
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong
| | - Cerise Yuen Ki Chan
- Department of Pathology, School of Clinical Medicine, and
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong
| | - Helen Do Gai Xue
- Department of Pathology, School of Clinical Medicine, and
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong
| | - Chi Ching Goh
- Department of Pathology, School of Clinical Medicine, and
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Jacinth Wing Sum Cheu
- Department of Pathology, School of Clinical Medicine, and
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong
| | - Aki Pui Wah Tse
- Department of Pathology, School of Clinical Medicine, and
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Misty Shuo Zhang
- Department of Pathology, School of Clinical Medicine, and
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Yan Zhang
- Department of Pathology, School of Clinical Medicine, and
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong
| | - Carmen Chak Lui Wong
- Department of Pathology, School of Clinical Medicine, and
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
35
|
Bayer LV, Milano SN, Kaur H, Bratu DP. Post-transcriptional regulation of cyclin A and cyclin B mRNAs is mediated by Bruno 1 and Cup, and further fine-tuned within P-bodies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.17.618951. [PMID: 39464095 PMCID: PMC11507948 DOI: 10.1101/2024.10.17.618951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Cell cycle progression is tightly controlled by the regulated synthesis and degradation of Cyclins, such as Cyclin A and Cyclin B, which activate CDK1 to trigger mitosis. Mutations affecting Cyclin regulation are often linked to tumorigenesis, making the study of cyclin mRNA regulation critical for identifying new cancer therapies. In this study, we demonstrate via super-resolution microscopy that cyclin A and cyclin B mRNAs associate with Bruno 1 and Cup in nurse cells. The depletion of either protein leads to abnormal Cyclin A and Cyclin B protein expression and a reduction in mRNA levels for both Cyclins. We further reveal that both cyclin A and cyclin B mRNAs accumulate in P-bodies marked by Me31B. Interestingly, Me31B is not involved in regulating cyclin A mRNA, as no changes in cyclin A mRNA levels or repression are observed upon Me31B depletion. However, cyclin B mRNA shows stage-specific derepression and reduced levels when Me31B is absent. Notably, the association between cyclin B and Cup is strengthened in the absence of Me31B, indicating that this interaction occurs independently of P-bodies. These results highlight the nuanced, mRNA-specific roles of P-body condensates in post-transcriptional regulation, challenging the idea of a uniform, binary mechanism of mRNA repression in P-bodies.
Collapse
Affiliation(s)
- Livia V. Bayer
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY, 10065 USA
| | - Samantha N. Milano
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY, 10065 USA
- Program in Molecular, Cellular, and Developmental Biology, The Graduate Center, City University of New York, New York, NY, 10016 USA
| | - Harpreet Kaur
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY, 10065 USA
| | - Diana P. Bratu
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY, 10065 USA
- Program in Molecular, Cellular, and Developmental Biology, The Graduate Center, City University of New York, New York, NY, 10016 USA
| |
Collapse
|
36
|
Zhai LH, Jia XL, Chen YL, Liu MY, Zhang JD, Ma SJ, Wang XJ, Cheng WH, He JL, Zhou JJ, Zuo LY, Zhang MQ, Yuan Q, Xu MH, Ji J, Tan MJ, Liu B. Comprehensive multi-omics analysis elucidates colchicine-induced toxicity mechanisms and unveils the therapeutic potential of MLN4924 and kinase inhibitors. Acta Pharmacol Sin 2024:10.1038/s41401-024-01422-5. [PMID: 39567751 DOI: 10.1038/s41401-024-01422-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/05/2024] [Indexed: 11/22/2024] Open
Abstract
Colchicine is a widely prescribed anti-inflammatory drug for the treatment of gout, familial Mediterranean fever and pericarditis, but its narrow therapeutic window presents a significant risk of severe toxicity. Despite its clinical relevance, the molecular mechanisms underlying colchicine's pharmacological effects and associated toxicity and explored potential therapeutic interventions to mitigate its adverse effects. We showed the colchicine's impact on cellular morphology in human umbilical vein endothelial cells (HUVEC) and HeLa cells including cell rounding and detachment following 24 h of exposure that revealed pronounced cytotoxic effects. We then established a large-scale screening model to identify small molecules capable of reversing colchicine-induced cellular toxicity, and identified MLN4924, an inhibitor of the Cullin-RING E3 ligase (CRL) system, as a promising candidate for mitigating colchicine-induced cellular injury. Through a comprehensive multi-omics approach including transcriptomics, proteomics, phosphoproteomics and ubiquitinomics, we systematically characterized the molecular perturbations caused by colchicine and delineated the protective mechanisms of MLN4924. We found that MLN4924 exerted its protective effects by modulating critical cellular pathways, specifically preventing the dysregulation of cell cycle progression, mitotic disruption and microtubule destabilization triggered by colchicine. Furthermore, proteomic and phosphoproteomic analyses revealed significant alterations in kinase signaling networks, with combined inhibition of CDK1 and PAK1 emerging as an effective strategy to counteract colchicine-induced cellular dysfunction. These results not only provide a detailed molecular characterization of colchicine toxicity but also identify key therapeutic targets, laying the groundwork for the development of targeted interventions to mitigate colchicine-induced adverse effects in clinical practice.
Collapse
Affiliation(s)
- Lin-Hui Zhai
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
- Translational Research Institute of Brain and Brain-like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
| | - Xing-Long Jia
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Yu-Lu Chen
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Mu-Yin Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jing-Dan Zhang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China
| | - Shao-Jie Ma
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Xiu-Jun Wang
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Wen-Hao Cheng
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Jing-Liang He
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Jiao-Jiao Zhou
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Ling-Yi Zuo
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Mei-Qi Zhang
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Qing Yuan
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Meng-Han Xu
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Jing Ji
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Min-Jia Tan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China.
| | - Bin Liu
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China.
| |
Collapse
|
37
|
Khan B, Qahwaji R, Alfaifi MS, Athar T, Khan A, Mobashir M, Ashankyty I, Imtiyaz K, Alahmadi A, Rizvi MMA. Deciphering molecular landscape of breast cancer progression and insights from functional genomics and therapeutic explorations followed by in vitro validation. Sci Rep 2024; 14:28794. [PMID: 39567714 PMCID: PMC11579425 DOI: 10.1038/s41598-024-80455-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 11/19/2024] [Indexed: 11/22/2024] Open
Abstract
Breast cancer is caused by aberrant breast cells that proliferate and develop into tumors. Tumors have the potential to spread throughout the body and become lethal if ignored. Metastasis is the process by which invasive tumors move to neighboring lymph nodes or other organs. Metastasis can be lethal and perhaps fatal. The objective of our study was to elucidate the molecular mechanisms underlying the transition of Ductal Carcinoma In Situ (DCIS) to Invasive Ductal Carcinoma (IDC), with a particular focus on hub genes and potential therapeutic agents. Using Weighted Gene Co-expression Network Analysis (WGCNA), we built a comprehensive network combining clinical and phenotypic data from both DCIS and IDC. Modules within this network, correlated with specific phenotypic traits, were identified, and hub genes were identified as critical markers. Receiver Operating Characteristic (ROC) analysis assessed their potential as biomarkers, while survival curve analysis gauged their prognostic value. Furthermore, molecular docking predicted interactions with potential therapeutic agents. Ten hub genes-CDK1, KIF11, NUF2, ASPM, CDCA8, CENPF, DTL, EXO1, KIF2C, and ZWINT-emerged as pivotal fibroblast-specific genes potentially involved in the DCIS to IDC transition. These genes exhibited pronounced positive correlations with key pathways like the cell cycle and DNA repair, Molecular docking revealed Fisetin, an anti-inflammatory compound, effectively binding to both CDK1 and DTL underscoring their role in orchestrating cellular transformation. CDK1 and DTL were selected for molecular docking with CDK1 inhibitors, revealing effective binding of Fisetin, an anti-inflammatory compound, to both. Of the identified hub genes, DTL-an E3 ubiquitin ligase linked to the CRL4 complex-plays a central role in cancer progression, impacting tumor growth, invasion, and metastasis, as well as cell cycle regulation and epithelial-mesenchymal transition (EMT). CDK1, another hub gene, is pivotal in cell cycle progression and associated with various biological processes. In conclusion, our study offers insights into the complex mechanisms driving the transition from DCIS to IDC. It underscores the importance of hub genes and their potential interactions with therapeutic agents, particularly Fisetin. By shedding light on the interplay between CDK1 and DTL expression, our findings contribute to understanding the regulatory landscape of invasive ductal carcinoma and pave the way for future investigations and novel therapeutic avenues.
Collapse
MESH Headings
- Humans
- Breast Neoplasms/genetics
- Breast Neoplasms/pathology
- Breast Neoplasms/drug therapy
- Female
- Gene Expression Regulation, Neoplastic
- Genomics/methods
- Gene Regulatory Networks
- Disease Progression
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/pathology
- Carcinoma, Ductal, Breast/drug therapy
- Carcinoma, Intraductal, Noninfiltrating/genetics
- Carcinoma, Intraductal, Noninfiltrating/pathology
- Carcinoma, Intraductal, Noninfiltrating/drug therapy
- Molecular Docking Simulation
- Gene Expression Profiling
- Prognosis
- Cell Line, Tumor
Collapse
Affiliation(s)
- Bushra Khan
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Rowaid Qahwaji
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 22233, Saudi Arabia
- Hematology Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mashael S Alfaifi
- Department of Epidemiology, Faculty of Public Health and Health Informatics, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Tanwir Athar
- College of Dentistry and Pharmacy, Buraydah Private Colleges, Buraydah, 51418, Saudi Arabia
| | - Abdullah Khan
- Department of Mechanical Engineering, Faculty of Engineering, Jamia Millia Islamia, New Delhi, India
| | - Mohammad Mobashir
- Department of Biomedical Laboratory Science, Faculty of Natural Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, 7491, Norway.
| | - Ibraheem Ashankyty
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 22233, Saudi Arabia
| | - Khalid Imtiyaz
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Areej Alahmadi
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 22233, Saudi Arabia
| | | |
Collapse
|
38
|
Cai R, Lin H, Cheng Q, Mao Q, Zhang C, Tan Y. Construction of a novel lipid drop-mitochondria-associated genetic profile for predicting the survival and prognosis of lung adenocarcinoma. Discov Oncol 2024; 15:668. [PMID: 39551861 PMCID: PMC11570572 DOI: 10.1007/s12672-024-01526-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/04/2024] [Indexed: 11/19/2024] Open
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) is one of the most common malignant tumors. Although several treatments have been proposed, the long-term prognosis of this cancer is poor. Lipid droplets and mitochondria are important organelles that regulate energy metabolism in cells and are postulated to promote the occurrence and progression of tumors. However, few risk prediction models have been constructed based on lipid drop-mitochondria-related genes (LMRGs). METHODS In this study, we constructed a lipid drop-mitochondrial (LD-M) risk score model based on data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Biological functions and clinical benefits associated with the various risk scores were analyzed using R software, GraphPad Prism 9, and the online database system. RESULTS An LD-M risk score model comprising ABLIM3, AK4, CAV2, CPS1, CYP24A1, DLGAP5, FGR, and SH3BP5, was developed and its predictive power was validated. The risk score was closely associated with the cell cycle. Immunophenoscore (IPS) and Tumor immune dysfunction and exclusion (TIDE) results demonstrated that the low-risk group was more sensitive to immunotherapy. Drug sensitivity analysis indicated that BMS-754807, ZM447439, SB216763, and other drugs had lower IC50 values in the low-risk group. CONCLUSION Our results suggest that the LD-M risk score is an effective prognostic indicator for individualized treatment of LUAD.
Collapse
Affiliation(s)
- Ruijuan Cai
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hongsheng Lin
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | | | - Qiyuan Mao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chuchu Zhang
- Institute of Chinese Medicine Information, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ying Tan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
39
|
Muhammed MT, Er M, Akkoc S. Molecular modeling and cytotoxic activity studies of oxirane-2-carboxylate derivatives. J Biomol Struct Dyn 2024:1-12. [PMID: 39544072 DOI: 10.1080/07391102.2024.2428826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/08/2024] [Indexed: 11/17/2024]
Abstract
In this study, five 3-aryloxirane-2-carboxylate derivatives were prepared, and the antiproliferative activities of molecules were screened in lung and colon cancer cell lines. The results showed that molecules had antiproliferative activity on cancerous cells with IC50 values under 100 µM. Furthermore, all of the molecules were found to have a much higher cytotoxic effect than cisplatin in colon cancer cells. The interactions of the relatively active compounds to the crucial enzyme in cancer cell proliferation, cyclin-dependent kinase 1 (CDK1), were investigated using molecular docking. The stability of the resulting CDK1-compound complexes procured from the docking was also assessed through molecular dynamics (MD) simulations. Then, the binding affinity of compounds 2-3a and 2-3c to the target enzyme was computed by MMPBSA. The molecular docking study demonstrated that the two most active compounds could bind to the enzyme. The binding potential of 2-3a is anticipated to be higher as it had one more conventional hydrogen bond and a slightly lower binding energy than compound 2-3c. The MD simulation study exhibited that the two compounds formed a stable complex with the enzyme. On the other hand, the MMPBSA energy computation implicated a slightly higher binding affinity for compound 2-3c toward the enzyme. Furthermore, electrical and frontier molecular orbital analysis of all of the tested compounds was conducted by density functional theory (DFT) studies. Compound 2-3a is anticipated to be the most chemically stable as it gave the highest energy gap value in the DFT analysis.
Collapse
Affiliation(s)
- Muhammed Tilahun Muhammed
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Suleyman Demirel University, Isparta, Türkiye
| | - Mustafa Er
- Faculty of Pharmacy, Department of Basic Pharmaceutical Sciences, Suleyman Demirel University, Isparta, Türkiye
| | - Senem Akkoc
- Faculty of Pharmacy, Department of Basic Pharmaceutical Sciences, Suleyman Demirel University, Isparta, Türkiye
- Faculty of Engineering and Natural Sciences, Bahçeşehir University, Istanbul, Türkiye
| |
Collapse
|
40
|
Liu J, Tan G, Wang S, Tong B, Wu Y, Zhang L, Jiang B. Artesunate induces HO-1-mediated cell cycle arrest and senescence to protect against ocular fibrosis. Int Immunopharmacol 2024; 141:112882. [PMID: 39151383 DOI: 10.1016/j.intimp.2024.112882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/04/2024] [Accepted: 08/04/2024] [Indexed: 08/19/2024]
Abstract
Recent research found artesunate could inhibit ocular fibrosis; however, the underlying mechanisms are not fully known. Since the ocular fibroblast is the main effector cell in fibrosis, we hypothesized that artesunate may exert its protective effects by inhibiting the fibroblasts proliferation. TGF-β1-induced ocular fibroblasts and glaucoma filtration surgery (GFS)-treated rabbits were used as ocular fibrotic models. Firstly, we analyzed fibrosis levels by assessing the expression of fibrotic marker proteins, and used Ki67 immunofluorescence, EdU staining, flow cytometry to determine cell cycle status, and SA-β-gal staining to assess cellular senescence levels. Then to predict target genes and pathways of artesunate, we analyzed the differentially expressed genes and enriched pathways through RNA-seq. Western blot and immunohistochemistry were used to detect the pathway-related proteins. Additionally, we validated the dependence of artesunate's effects on HO-1 expression through HO-1 siRNA. Moreover, DCFDA and MitoSOX fluorescence staining were used to examine ROS level. We found artesunate significantly inhibits the expression of fibrosis-related proteins, induces cell cycle arrest and cellular senescence. Knocking down HO-1 in fibroblasts with siRNA reverses these regulatory effects of artesunate. Mechanistic studies show that artesunate significantly inhibits the activation of the Cyclin D1/CDK4-pRB pathway, induces an increase in cellular and mitochondrial ROS levels and activates the Nrf2/HO-1 pathway. In conclusion, the present study identifies that artesunate induces HO-1 expression through ROS to activate the antioxidant Nrf2/HO-1 pathway, subsequently inhibits the cell cycle regulation pathway Cyclin D1/CDK4-pRB in an HO-1-dependent way, induces cell cycle arrest and senescence, and thereby resists periorbital fibrosis.
Collapse
Affiliation(s)
- Jingyuan Liu
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha 410000, Hunan, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China
| | - Guangshuang Tan
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha 410000, Hunan, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China
| | - Shutong Wang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha 410000, Hunan, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China
| | - Boding Tong
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha 410000, Hunan, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China
| | - Ying Wu
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha 410000, Hunan, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China
| | - Lusi Zhang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha 410000, Hunan, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China.
| | - Bing Jiang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha 410000, Hunan, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China.
| |
Collapse
|
41
|
Li J, Liu Q, Zhang T, Du Q. Bioinformatics Analysis Reveals CDK1 and DLGAP5 as Key Modulators of Tumor Immune Cell Infiltration in Hepatocellular Carcinoma. Cancer Manag Res 2024; 16:1597-1608. [PMID: 39559249 PMCID: PMC11572444 DOI: 10.2147/cmar.s478426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/01/2024] [Indexed: 11/20/2024] Open
Abstract
Introduction Hepatocellular carcinoma (HCC), a prevalent and aggressive form of cancer, poses significant challenges due to its limited therapeutic options. This study aims to leverage multi-omics data from liver cancer to identify potential therapeutic targets for HCC. Methods We employed an integrative approach by analyzing various omics datasets related to liver cancer. Through comprehensive data mining and analysis, we identified key genes that are significantly associated with HCC. To gain insights into their biological roles and underlying mechanisms, we constructed gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway networks. Specifically, we focused on genes that exhibited high expression levels in HCC and were correlated with poor patient prognosis. Among these, CDK1 and DLGAP5 emerged as promising candidates and were further investigated for their potential involvement in tumor immune cell infiltration and HCC progression. Results Our analysis revealed that CDK1 and DLGAP5 are highly expressed in HCC tissues compared to normal liver tissues, and their elevated expression is associated with unfavorable clinical outcomes. Furthermore, through GO and KEGG pathway analyses, we found that these genes are implicated in critical biological processes and signaling pathways relevant to HCC pathogenesis. Notably, CDK1 and DLGAP5 were shown to be associated with tumor immune cell infiltration, suggesting their potential role in modulating the tumor microenvironment and promoting HCC progression. Discussion These findings provide valuable insights into the development of novel therapeutic approaches for HCC.
Collapse
Affiliation(s)
- Jiajing Li
- The Diagnostics Laboratory, Affiliated Hospital to Zunyi Medical University, Zunyi, Guizhou, 563000, People’s Republic of China
| | - Qi Liu
- Affiliated Hospital to Zunyi Medical University, Zunyi, Guizhou, 563000, People’s Republic of China
| | - Ting Zhang
- Affiliated Hospital to Zunyi Medical University, Zunyi, Guizhou, 563000, People’s Republic of China
| | - Qian Du
- Department of Endoscopy and Digestive System, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, 550002, People’s Republic of China
| |
Collapse
|
42
|
Limanówka P, Ochman B, Świętochowska E. Mechanisms Behind the Impact of PIWI Proteins on Cancer Cells: Literature Review. Int J Mol Sci 2024; 25:12217. [PMID: 39596284 PMCID: PMC11594409 DOI: 10.3390/ijms252212217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/09/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
The P-Element-induced wimpy testis (PIWI) group of proteins plays a key role in RNA interference, particularly in the regulation of small non-coding RNAs. However, in recent years, PIWIs have gained attention in several diseases, mainly cancer. Therefore, the aim of this review was to evaluate current knowledge about the impact of PIWI proteins on cancer cells. PIWIs alter a number of pathways within cells, resulting in significant changes in cell behavior. Basic processes of cancer cells have been shown to be altered by either overexpression or inhibition of PIWIs. Regulation of apoptosis, metastasis, invasion, or proliferation of cancerous cells by these proteins proves their involvement in the progression of the malignancy. It has been revealed that PIWIs are also connected with cancer stem cells (CSCs), which proves their ability to become a therapeutic target. However, research on this topic is still fairly limited, and with significant differences between cancer types, it is necessary to refrain from making any decisive conclusions.
Collapse
Affiliation(s)
| | | | - Elżbieta Świętochowska
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana, 41-800 Zabrze, Poland; (P.L.); (B.O.)
| |
Collapse
|
43
|
Zhong G, Chang X, Xie W, Zhou X. Targeted protein degradation: advances in drug discovery and clinical practice. Signal Transduct Target Ther 2024; 9:308. [PMID: 39500878 PMCID: PMC11539257 DOI: 10.1038/s41392-024-02004-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/19/2024] [Accepted: 09/28/2024] [Indexed: 11/08/2024] Open
Abstract
Targeted protein degradation (TPD) represents a revolutionary therapeutic strategy in disease management, providing a stark contrast to traditional therapeutic approaches like small molecule inhibitors that primarily focus on inhibiting protein function. This advanced technology capitalizes on the cell's intrinsic proteolytic systems, including the proteasome and lysosomal pathways, to selectively eliminate disease-causing proteins. TPD not only enhances the efficacy of treatments but also expands the scope of protein degradation applications. Despite its considerable potential, TPD faces challenges related to the properties of the drugs and their rational design. This review thoroughly explores the mechanisms and clinical advancements of TPD, from its initial conceptualization to practical implementation, with a particular focus on proteolysis-targeting chimeras and molecular glues. In addition, the review delves into emerging technologies and methodologies aimed at addressing these challenges and enhancing therapeutic efficacy. We also discuss the significant clinical trials and highlight the promising therapeutic outcomes associated with TPD drugs, illustrating their potential to transform the treatment landscape. Furthermore, the review considers the benefits of combining TPD with other therapies to enhance overall treatment effectiveness and overcome drug resistance. The future directions of TPD applications are also explored, presenting an optimistic perspective on further innovations. By offering a comprehensive overview of the current innovations and the challenges faced, this review assesses the transformative potential of TPD in revolutionizing drug development and disease management, setting the stage for a new era in medical therapy.
Collapse
Affiliation(s)
- Guangcai Zhong
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Xiaoyu Chang
- School of Pharmaceutical Sciences, Pingyuan Laboratory, Zhengzhou University, Zhengzhou, 450001, China
| | - Weilin Xie
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| | - Xiangxiang Zhou
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China.
| |
Collapse
|
44
|
Abdelmegeed H, Abo-Salem HM, Zayed EM, El-Sawy ER. Anti colorectal cancer activity and in silico studies of novel pyridine nortopsentin analog as cyclin dependent kinase 6 inhibitor. Sci Rep 2024; 14:26327. [PMID: 39487179 PMCID: PMC11530689 DOI: 10.1038/s41598-024-75411-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/04/2024] [Indexed: 11/04/2024] Open
Abstract
Nortopsentins are a vital class of deep-sea sponge metabolites which can be used as leads for antitumor agents. Although their action has been studied in several diseases' contexts, their cytotoxic activity against colorectal carcinoma has not yet been fully investigated. Therefore, a series of 2,6-bis(1H-indol-3-yl)-4-(substituted-phenyl)pyridin-5-carbonitriles 4a-j (nortopsentin analogs) was investigated for their cytotoxic activity against colorectal carcinoma. The analog 4i showed the highest antitumor activity via inducing cell cycle arrest at G1 phase. Cell cycle arrest was induced due to expression downregulation of CDK2, CDK4, and CDK6. In addition, 4i suppressed the enzymatic activity of CDK6. The theoretical study of some basic quantum factors and the geometric shape of compound 4i proved that the compound is stable and a soft molecule, in which the EHOMO and ELUMO energies were negative and had a small ∆E gap. 4i also demonstrated a high potential for oral bioavailability due to its adherence to Lipinski's rule of five. The molecular docking studies of 4i analog showed good binding mode with CDK6 active pocket through the formation of multiple interactions with its key amino acids.
Collapse
Affiliation(s)
- Heba Abdelmegeed
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, 12622, Giza, Egypt
| | - Heba M Abo-Salem
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, 12622, Giza, Egypt
| | - Ehab M Zayed
- Green Chemistry Department, National Research Centre, Dokki, 12622, Giza, Egypt
| | - Eslam R El-Sawy
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, 12622, Giza, Egypt.
| |
Collapse
|
45
|
Sakai K, Ohara S, Tanaka J, Suda K, Muramatsu T, Uematsu C, Tsutani Y, Mitsudomi T, Nishio K. Improved platelet separation performance from whole blood using an acoustic fluidics system. Cancer Sci 2024; 115:3795-3803. [PMID: 39308033 PMCID: PMC11531943 DOI: 10.1111/cas.16337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/18/2024] [Accepted: 08/27/2024] [Indexed: 11/05/2024] Open
Abstract
This study investigated the effectiveness of acoustic separation for platelet analysis in patients with non-small-cell lung cancer (NSCLC), comparing it with traditional centrifugation methods. In total, 10 patients with NSCLC and 10 healthy volunteers provided peripheral blood samples, which were processed using either acoustic separation or centrifugation to isolate platelets. The study included whole transcriptome analysis of platelets, peripheral blood mononuclear cells, and tumor tissue samples, employing hierarchical clustering and Gene Ontology analysis to explore gene expression differences. Acoustic separation proved more efficient than centrifugation in terms of platelet yield, recovery rate, and RNA yield. Gene expression profiles of platelets from patients with NSCLC showed distinct patterns compared with healthy volunteers, indicating tumor-influenced alterations. Gene Ontology analysis revealed enrichment in pathways associated with platelet activation and the tumor microenvironment. This finding indicates the potential of acoustic isolation in platelet separation and its relevance in understanding the unique gene expression profile of platelets in patients with NSCLC. The findings of this study suggested that platelets from cancer patients separated by acoustic techniques exhibited tumor-specific alterations and provided new insights into the diagnosis of cancer in platelet analysis systems in clinical practice.
Collapse
Affiliation(s)
- Kazuko Sakai
- Department of Genome BiologyKindai University Faculty of MedicineOsakasayamaJapan
| | - Shuta Ohara
- Division of Thoracic Surgery, Department of SurgeryKindai University Faculty of MedicineOsakasayamaJapan
| | - Junko Tanaka
- Center for Digital Services—Healthcare, Research & Development GroupHitachi, Ltd.TokyoJapan
| | - Kenichi Suda
- Division of Thoracic Surgery, Department of SurgeryKindai University Faculty of MedicineOsakasayamaJapan
| | - Takamichi Muramatsu
- Diagnostic System Business Strategy Planning Division, Healthcare Business GroupHitachi High‐Tech CorporationTokyoJapan
| | - Chihiro Uematsu
- Center for Digital Services—Healthcare, Research & Development GroupHitachi, Ltd.TokyoJapan
| | - Yasuhiro Tsutani
- Division of Thoracic Surgery, Department of SurgeryKindai University Faculty of MedicineOsakasayamaJapan
| | - Tetsuya Mitsudomi
- Division of Thoracic Surgery, Department of SurgeryKindai University Faculty of MedicineOsakasayamaJapan
| | - Kazuto Nishio
- Department of Genome BiologyKindai University Faculty of MedicineOsakasayamaJapan
| |
Collapse
|
46
|
Mishima M, Takai A, Takeda H, Iguchi E, Nakano S, Fujii Y, Ueno M, Ito T, Teramura M, Eso Y, Shimizu T, Maruno T, Hidema S, Nishimori K, Marusawa H, Hatano E, Seno H. TERT upregulation promotes cell proliferation via degradation of p21 and increases carcinogenic potential. J Pathol 2024; 264:318-331. [PMID: 39329419 DOI: 10.1002/path.6351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 06/13/2024] [Accepted: 08/16/2024] [Indexed: 09/28/2024]
Abstract
Telomerase reverse transcriptase (TERT) gene aberration is detectable in >80% of cases with hepatocellular carcinoma (HCC). TERT reactivation is essential for cellular immortalization because it stabilizes telomere length, although the role of TERT in hepatocarcinogenesis remains unelucidated. To elucidate the significance of aberrant TERT expression in hepatocytes in inflammation-associated hepatocarcinogenesis, we generated Alb-Cre;TertTg mice, which overexpress TERT in the liver and examined their phenotype during chronic inflammation. Based on transcriptome data from the liver tissue of Alb-Cre;TertTg mice, we examined the role of TERT in hepatocarcinogenesis in vitro. We also evaluated the relationship between TERT and cell-cycle-related molecules, including p21, in HCC samples. The liver tumor development rate was increased by TERT overexpression during chronic inflammation, especially in the absence of p53 function. Gene set enrichment analysis of liver tissues revealed that gene sets related to TNF-NFκB signaling, cell cycle, and apoptosis were upregulated in Alb-Cre;TertTg liver. A luciferase reporter assay and immunoprecipitation revealed that TERT interacted with NFκB p65 and enhanced NFκB promoter activity. On the other hand, TERT formed protein complexes with p21, cyclin A2, and cyclin E and promoted ubiquitin-mediated degradation of p21, specifically in the G1 phase. In the clinical HCC samples, TERT was highly expressed but p21 was conversely downregulated, and TERT expression was associated with the upregulation of molecules related to the cell cycle. Taken together, the aberrant upregulation of TERT increased NFκB promoter activity and promoted cell cycle progression via p21 ubiquitination, leading to hepatocarcinogenesis. © 2024 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Masako Mishima
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Atsushi Takai
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Haruhiko Takeda
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Eriko Iguchi
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shigeharu Nakano
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yosuke Fujii
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masayuki Ueno
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takahiko Ito
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Mari Teramura
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yuji Eso
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takahiro Shimizu
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takahisa Maruno
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shizu Hidema
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University, Fukushima, Japan
| | - Katsuhiko Nishimori
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University, Fukushima, Japan
| | - Hiroyuki Marusawa
- Department of Gastroenterology and Hepatology, Osaka Red Cross Hospital, Osaka, Japan
| | - Etsuro Hatano
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroshi Seno
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
47
|
Zhou Q, Wu F, Chen Y, Fu J, Zhou L, Xu Y, He F, Gong Z, Yuan F. Reynoutria multiflora (Thunb.) Moldenke and its ingredient suppress lethal prostate cancer growth by inducing CDC25B-CDK1 mediated cell cycle arrest. Bioorg Chem 2024; 152:107731. [PMID: 39180863 DOI: 10.1016/j.bioorg.2024.107731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/09/2024] [Accepted: 08/15/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND Reynoutria multiflora (Thunb.) Moldenke (Polygonum multiflorum Thunb, PM) is a medicinal plant that was an element of traditional Chinese medicine (TCM) for centuries as a treatment for a wide range of conditions. Recent studies reported that PM suppressed prostate cancer growth in an AR-dependent manner. However, its role and mechanism in the treatment of advanced prostate cancer remain to be explored. This study aims to explore the anti-tumor role and potential mechanism of PM on prostate cancer. METHODS Cell viability, colony formation, fluorescence-activated cell sorting (FACS), and wound-healing assays were conducted to evaluate the tumor suppression effect of PM on lethal prostate cancer models in vitro. A xenograft mice model was established to detect the impact of PM on tumor growth and evaluate its biosafety in vivo. Integrative network pharmacology, RNA-seq, and bioinformatics were applied to determine the mechanisms of PM in prostate cancer. Molecular docking, cellular thermal shift assay (CETSA), CRISPR-Cas13, RT-qPCR, and WB were collaboratively employed to identify the potential anti-tumor ingredient derived from PM and its corresponding targets. RESULTS PM significantly suppressed the growth of prostate cancer and sensitized prostate cancer to AR antagonists. Mechanistically, PM induced G2/M-phase cell-cycle arrest by modulating the phosphorylation of CDK1. Additionally, polygalacic acid derived from PM and its structural analog suppress prostate cancer growth by targeting CDC25B, a master regulator of the cell cycle that governs CDK1 phosphorylation. CONCLUSION PM and its ingredient polygalacic acid suppress lethal prostate cancer growth by regulating the CDC25B-CDK1 axis to induce cell cycle arrest.
Collapse
MESH Headings
- Male
- cdc25 Phosphatases/metabolism
- cdc25 Phosphatases/antagonists & inhibitors
- Prostatic Neoplasms/drug therapy
- Prostatic Neoplasms/pathology
- Prostatic Neoplasms/metabolism
- Humans
- CDC2 Protein Kinase/metabolism
- CDC2 Protein Kinase/antagonists & inhibitors
- Cell Proliferation/drug effects
- Animals
- Mice
- Cell Cycle Checkpoints/drug effects
- Structure-Activity Relationship
- Molecular Structure
- Drug Screening Assays, Antitumor
- Dose-Response Relationship, Drug
- Antineoplastic Agents, Phytogenic/pharmacology
- Antineoplastic Agents, Phytogenic/chemistry
- Antineoplastic Agents, Phytogenic/isolation & purification
- Cell Survival/drug effects
- Neoplasms, Experimental/drug therapy
- Neoplasms, Experimental/pathology
- Neoplasms, Experimental/metabolism
- Mice, Nude
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Qianqian Zhou
- The Center of Cancer Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Fanchen Wu
- The Center of Cancer Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 201203 Shanghai, China
| | - Yanhua Chen
- The Center of Cancer Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Jianguo Fu
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lihong Zhou
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 201203 Shanghai, China
| | - Yunfei Xu
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Feng He
- The Center of Cancer Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Zhangbin Gong
- The Center of Cancer Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Fuwen Yuan
- The Center of Cancer Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Department of Urology and Andrology, Gongli Hospital, Shanghai 200135, China.
| |
Collapse
|
48
|
Vishwakarma KK, Kolthur US, Venkatramani R. Multiple Functional Protein-Protein Interaction Interfaces Allosterically Regulate ATP-Binding in Cyclin-Dependent Kinase-1. Proteins 2024; 92:1329-1342. [PMID: 39012208 DOI: 10.1002/prot.26729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/30/2024] [Accepted: 06/27/2024] [Indexed: 07/17/2024]
Abstract
The ATP-dependent phosphorylation activity of cyclin-dependent kinase 1 (CDK1), an essential enzyme for cell cycle progression, is regulated by interactions with Cyclin-B, substrate, and Cks proteins. We have recently shown that active site acetylation in CDK1 abrogated binding to Cyclin-B which posits an intriguing long-range communication between the catalytic site and the protein-protein interaction (PPI) interface. Now, we demonstrate a general allosteric link between the CDK1 active site and all three of its PPI interfaces through atomistic molecular dynamics (MD) simulations. Specifically, we examined ATP binding free energies to CDK1 in native nonacetylated (K33wt) and acetylated (K33Ac) forms as well as the acetyl-mimic K33Q and the acetyl-null K33R mutant forms, which are accessible in vitro. In agreement with experiments, ATP binding is stronger in K33wt relative to the other three perturbed states. Free energy decomposition reveals, in addition to expected local changes, significant and selective nonlocal entropic responses to ATP binding/perturbation of K33 from theαC -helix, activation loop (A-loop), andαG -α H segments in CDK1 which interface with Cyclin-B, substrate, and Cks proteins, respectively. Statistical analysis reveals that while entropic responses of protein segments to active site perturbations are on average correlated with their dynamical changes, such correlations are lost in about 9%-48% of the dataset depending on the segment. Besides proving the bi-directional communication between the active site and the CDK1:Cyclin-B interface, our study uncovers a hitherto unknown mode of ATP binding regulation by multiple PPI interfaces in CDK1.
Collapse
Affiliation(s)
| | - Ullas Seetharam Kolthur
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
- Tata Institute of Fundamental Research, Hyderabad, India
| | - Ravindra Venkatramani
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai, India
| |
Collapse
|
49
|
Xu Y, Shao L, Zhou Z, Zhao L, Wan S, Sun W, Wanyan W, Yuan Y. ARG2 knockdown promotes G0/G1 cell cycle arrest and mitochondrial dysfunction in adenomyosis via regulation NF-κB and Wnt/Β-catenin signaling cascades. Int Immunopharmacol 2024; 140:112817. [PMID: 39116499 DOI: 10.1016/j.intimp.2024.112817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/28/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND Adenomyosis is a common gynecological disease, characterized by overgrowth of endometrial glands and stroma in the myometrium, however its exact pathophysiology still remains uncertain. Emerging evidence has demonstrated the elevated level of arginase 2 (ARG2) in endometriosis and adenomyosis. This study aimed to determine whether ARG2 involved in mitochondrial function and epithelial to mesenchymal transition (EMT) in adenomyosis and its potential underlying mechanisms. MATERIALS AND METHODS RNA interference was used to inhibit ARG2 gene, and then Cell Counting Kit (CCK-8) assay and flow cytometery were performed to detect the cell proliferation capacity, cell cycle, and apoptosis progression, respectively. The mouse adenomyosis model was established and RT-PCR, Western blot analysis, mitochondrial membrane potential (Δψm) detection and mPTP opening evaluation were conducted. RESULTS Silencing ARG2 effectively down-regulated its expression at the mRNA and protein levels in endometrial cells, leading to decreased enzyme activity and inhibition of cell viability. Additionally, ARG2 knockdown induced G0/G1 cell cycle arrest, promoted apoptosis, and modulated the expression of cell cycle- and apoptosis-related regulators. Notably, the interference with ARG2 induces apoptosis by mitochondrial dysfunction, ROS production, ATP depletion, decreasing the Bcl-2/Bax ratio, releasing Cytochrome c, and increasing the expression of Caspase-9/-3 and PARP. In vivo study in a mouse model of adenomyosis demonstrated also elevated levels of ARG2 and EMT markers, while siARG2 treatment reversed EMT and modulated inflammatory cytokines. Furthermore, ARG2 knockdown was found to modulate the NF-κB and Wnt/β-catenin signaling pathways in mouse adenomyosis. CONCLUSION Consequently, ARG2 silencing could induce apoptosis through a mitochondria-dependent pathway mediated by ROS, and G0/G1 cell cycle arrest via suppressing NF-κB and Wnt/β-catenin signaling pathways in Ishikawa cells. These findings collectively suggest that ARG2 plays a crucial role in the pathogenesis of adenomyosis and may serve as a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Yaping Xu
- Department of Gynaecology, Shandong Provincial Third Hospital, Shandong University, No.11 Wuyingshan Middle Road, Tianqiao District, Jinan, Shandong 250031, China; State Key Laboratory of Ultrasound in Medicine and Engineering, No.1 Medical College Road, Yuzhong District, Chongqing, China
| | - Lin Shao
- Department of Gynaecology, Shandong Provincial Third Hospital, Shandong University, No.11 Wuyingshan Middle Road, Tianqiao District, Jinan, Shandong 250031, China; State Key Laboratory of Ultrasound in Medicine and Engineering, No.1 Medical College Road, Yuzhong District, Chongqing, China
| | - Zhan Zhou
- Department of Gynaecology, Shandong Provincial Third Hospital, Shandong University, No.11 Wuyingshan Middle Road, Tianqiao District, Jinan, Shandong 250031, China
| | - Liying Zhao
- Department of Gynaecology, Shandong Provincial Third Hospital, Shandong University, No.11 Wuyingshan Middle Road, Tianqiao District, Jinan, Shandong 250031, China
| | - Shuquan Wan
- Department of Gynaecology, Shandong Provincial Third Hospital, Shandong University, No.11 Wuyingshan Middle Road, Tianqiao District, Jinan, Shandong 250031, China
| | - Wenjing Sun
- Department of Gynaecology, Shandong Provincial Third Hospital, Shandong University, No.11 Wuyingshan Middle Road, Tianqiao District, Jinan, Shandong 250031, China
| | - Wenya Wanyan
- Department of Gynaecology, Shandong Provincial Third Hospital, Shandong University, No.11 Wuyingshan Middle Road, Tianqiao District, Jinan, Shandong 250031, China
| | - Yinping Yuan
- State Key Laboratory of Ultrasound in Medicine and Engineering, No.1 Medical College Road, Yuzhong District, Chongqing, China; Department of Pathology, Shandong Cancer Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250031, China.
| |
Collapse
|
50
|
Yang M, Xiang H, Luo G. Targeting Protein Kinase, Membrane-Associated Tyrosine/Threonine 1 (PKMYT1) for Precision Cancer Therapy: From Discovery to Clinical Trial. J Med Chem 2024; 67:17997-18016. [PMID: 39383322 DOI: 10.1021/acs.jmedchem.4c01619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
\Protein kinase membrane-associated tyrosine/threonine 1 (PKMYT1), an overlooked member of the WEE family responsible for regulating cell cycle transition, has recently emerged as a compelling therapeutic target for precision cancer therapy due to its established synthetic lethal relationship with CCNE1 (cyclin E1) amplification. Since the first-in-class selective PKMYT1 inhibitor, RP-6306, entered clinical trials in 2021, the field has experienced renewed interest underscored by the growing number of inhibitor patents and the exploration of additional gene alterations, such as KRAS/p53 mutations, FBXW7 mutation, and PPP2R1A mutation, as novel synthetic lethal partners. This perspective summarizes, for the first time, the PKMYT1 structure, function, and inhibitors in both the literature and patent applications reported to date. Compounds are described focusing on their design and optimization process, structural features, and biological activity with the aim to promoting further drug discovery efforts targeting PKMYT1 as a potential precision therapy.
Collapse
Affiliation(s)
- Ming Yang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Hua Xiang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Guoshun Luo
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
| |
Collapse
|