1
|
Aguadé-Gorgorió G, Anderson ARA, Solé R. Modeling tumors as complex ecosystems. iScience 2024; 27:110699. [PMID: 39280631 PMCID: PMC11402243 DOI: 10.1016/j.isci.2024.110699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2024] Open
Abstract
Many cancers resist therapeutic intervention. This is fundamentally related to intratumor heterogeneity: multiple cell populations, each with different phenotypic signatures, coexist within a tumor and its metastases. Like species in an ecosystem, cancer populations are intertwined in a complex network of ecological interactions. Most mathematical models of tumor ecology, however, cannot account for such phenotypic diversity or predict its consequences. Here, we propose that the generalized Lotka-Volterra model (GLV), a standard tool to describe species-rich ecological communities, provides a suitable framework to model the ecology of heterogeneous tumors. We develop a GLV model of tumor growth and discuss how its emerging properties provide a new understanding of the disease. We discuss potential extensions of the model and their application to phenotypic plasticity, cancer-immune interactions, and metastatic growth. Our work outlines a set of questions and a road map for further research in cancer ecology.
Collapse
Affiliation(s)
| | - Alexander R A Anderson
- Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Ricard Solé
- ICREA-Complex Systems Lab, UPF-PRBB, Dr. Aiguader 80, 08003 Barcelona, Spain
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
| |
Collapse
|
2
|
Martinson WD, Volkening A, Schmidtchen M, Venkataraman C, Carrillo JA. Linking discrete and continuous models of cell birth and migration. ROYAL SOCIETY OPEN SCIENCE 2024; 11:232002. [PMID: 39021774 PMCID: PMC11252671 DOI: 10.1098/rsos.232002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 05/10/2024] [Indexed: 07/20/2024]
Abstract
Self-organization of individuals within large collectives occurs throughout biology. Mathematical models can help elucidate the individual-level mechanisms behind these dynamics, but analytical tractability often comes at the cost of biological intuition. Discrete models provide straightforward interpretations by tracking each individual yet can be computationally expensive. Alternatively, continuous models supply a large-scale perspective by representing the 'effective' dynamics of infinite agents, but their results are often difficult to translate into experimentally relevant insights. We address this challenge by quantitatively linking spatio-temporal dynamics of continuous models and individual-based data in settings with biologically realistic, time-varying cell numbers. Specifically, we introduce and fit scaling parameters in continuous models to account for discrepancies that can arise from low cell numbers and localized interactions. We illustrate our approach on an example motivated by zebrafish-skin pattern formation, in which we create a continuous framework describing the movement and proliferation of a single cell population by upscaling rules from a discrete model. Our resulting continuous models accurately depict ensemble average agent-based solutions when migration or proliferation act alone. Interestingly, the same parameters are not optimal when both processes act simultaneously, highlighting a rich difference in how combining migration and proliferation affects discrete and continuous dynamics.
Collapse
Affiliation(s)
| | | | - Markus Schmidtchen
- Institute of Scientific Computing, Technische Universität Dresden, Dresden, Germany
| | | | | |
Collapse
|
3
|
Dimitriou NM, Flores-Torres S, Kyriakidou M, Kinsella JM, Mitsis GD. Cancer cell sedimentation in 3D cultures reveals active migration regulated by self-generated gradients and adhesion sites. PLoS Comput Biol 2024; 20:e1012112. [PMID: 38861575 PMCID: PMC11195982 DOI: 10.1371/journal.pcbi.1012112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/24/2024] [Accepted: 04/25/2024] [Indexed: 06/13/2024] Open
Abstract
Cell sedimentation in 3D hydrogel cultures refers to the vertical migration of cells towards the bottom of the space. Understanding this poorly examined phenomenon may allow us to design better protocols to prevent it, as well as provide insights into the mechanobiology of cancer development. We conducted a multiscale experimental and mathematical examination of 3D cancer growth in triple negative breast cancer cells. Migration was examined in the presence and absence of Paclitaxel, in high and low adhesion environments and in the presence of fibroblasts. The observed behaviour was modeled by hypothesizing active migration due to self-generated chemotactic gradients. Our results did not reject this hypothesis, whereby migration was likely to be regulated by the MAPK and TGF-β pathways. The mathematical model enabled us to describe the experimental data in absence (normalized error<40%) and presence of Paclitaxel (normalized error<10%), suggesting inhibition of random motion and advection in the latter case. Inhibition of sedimentation in low adhesion and co-culture experiments further supported the conclusion that cells actively migrated downwards due to the presence of signals produced by cells already attached to the adhesive glass surface.
Collapse
Affiliation(s)
| | | | - Maria Kyriakidou
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | | | | |
Collapse
|
4
|
Simpson MJ, Murphy KM, McCue SW, Buenzli PR. Discrete and continuous mathematical models of sharp-fronted collective cell migration and invasion. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240126. [PMID: 39076824 PMCID: PMC11286127 DOI: 10.1098/rsos.240126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 02/22/2024] [Indexed: 07/31/2024]
Abstract
Mathematical models describing the spatial spreading and invasion of populations of biological cells are often developed in a continuum modelling framework using reaction-diffusion equations. While continuum models based on linear diffusion are routinely employed and known to capture key experimental observations, linear diffusion fails to predict well-defined sharp fronts that are often observed experimentally. This observation has motivated the use of nonlinear degenerate diffusion; however, these nonlinear models and the associated parameters lack a clear biological motivation and interpretation. Here, we take a different approach by developing a stochastic discrete lattice-based model incorporating biologically inspired mechanisms and then deriving the reaction-diffusion continuum limit. Inspired by experimental observations, agents in the simulation deposit extracellular material, which we call a substrate, locally onto the lattice, and the motility of agents is taken to be proportional to the substrate density. Discrete simulations that mimic a two-dimensional circular barrier assay illustrate how the discrete model supports both smooth and sharp-fronted density profiles depending on the rate of substrate deposition. Coarse-graining the discrete model leads to a novel partial differential equation (PDE) model whose solution accurately approximates averaged data from the discrete model. The new discrete model and PDE approximation provide a simple, biologically motivated framework for modelling the spreading, growth and invasion of cell populations with well-defined sharp fronts. Open-source Julia code to replicate all results in this work is available on GitHub.
Collapse
Affiliation(s)
- Matthew J. Simpson
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Keeley M. Murphy
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Scott W. McCue
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Pascal R. Buenzli
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
5
|
Aguadé-Gorgorió G, Anderson AR, Solé R. Modeling tumors as species-rich ecological communities. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.22.590504. [PMID: 38712062 PMCID: PMC11071393 DOI: 10.1101/2024.04.22.590504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Many advanced cancers resist therapeutic intervention. This process is fundamentally related to intra-tumor heterogeneity: multiple cell populations, each with different mutational and phenotypic signatures, coexist within a tumor and its metastatic nodes. Like species in an ecosystem, many cancer cell populations are intertwined in a complex network of ecological interactions. Most mathematical models of tumor ecology, however, cannot account for such phenotypic diversity nor are able to predict its consequences. Here we propose that the Generalized Lotka-Volterra model (GLV), a standard tool to describe complex, species-rich ecological communities, provides a suitable framework to describe the ecology of heterogeneous tumors. We develop a GLV model of tumor growth and discuss how its emerging properties, such as outgrowth and multistability, provide a new understanding of the disease. Additionally, we discuss potential extensions of the model and their application to three active areas of cancer research, namely phenotypic plasticity, the cancer-immune interplay and the resistance of metastatic tumors to treatment. Our work outlines a set of questions and a tentative road map for further research in cancer ecology.
Collapse
Affiliation(s)
| | - Alexander R.A. Anderson
- Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, USA
| | - Ricard Solé
- ICREA-Complex Systems Lab, UPF-PRBB, Dr. Aiguader 80, 08003 Barcelona, Spain
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
| |
Collapse
|
6
|
Arulraj T, Wang H, Ippolito A, Zhang S, Fertig EJ, Popel AS. Leveraging multi-omics data to empower quantitative systems pharmacology in immuno-oncology. Brief Bioinform 2024; 25:bbae131. [PMID: 38557676 PMCID: PMC10982948 DOI: 10.1093/bib/bbae131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/20/2024] [Accepted: 03/08/2024] [Indexed: 04/04/2024] Open
Abstract
Understanding the intricate interactions of cancer cells with the tumor microenvironment (TME) is a pre-requisite for the optimization of immunotherapy. Mechanistic models such as quantitative systems pharmacology (QSP) provide insights into the TME dynamics and predict the efficacy of immunotherapy in virtual patient populations/digital twins but require vast amounts of multimodal data for parameterization. Large-scale datasets characterizing the TME are available due to recent advances in bioinformatics for multi-omics data. Here, we discuss the perspectives of leveraging omics-derived bioinformatics estimates to inform QSP models and circumvent the challenges of model calibration and validation in immuno-oncology.
Collapse
Affiliation(s)
- Theinmozhi Arulraj
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hanwen Wang
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Alberto Ippolito
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Shuming Zhang
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Elana J Fertig
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Oncology, and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD, USA
| | - Aleksander S Popel
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Oncology, and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
7
|
Hassan J, Saeed SM, Deka L, Uddin MJ, Das DB. Applications of Machine Learning (ML) and Mathematical Modeling (MM) in Healthcare with Special Focus on Cancer Prognosis and Anticancer Therapy: Current Status and Challenges. Pharmaceutics 2024; 16:260. [PMID: 38399314 PMCID: PMC10892549 DOI: 10.3390/pharmaceutics16020260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/29/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
The use of data-driven high-throughput analytical techniques, which has given rise to computational oncology, is undisputed. The widespread use of machine learning (ML) and mathematical modeling (MM)-based techniques is widely acknowledged. These two approaches have fueled the advancement in cancer research and eventually led to the uptake of telemedicine in cancer care. For diagnostic, prognostic, and treatment purposes concerning different types of cancer research, vast databases of varied information with manifold dimensions are required, and indeed, all this information can only be managed by an automated system developed utilizing ML and MM. In addition, MM is being used to probe the relationship between the pharmacokinetics and pharmacodynamics (PK/PD interactions) of anti-cancer substances to improve cancer treatment, and also to refine the quality of existing treatment models by being incorporated at all steps of research and development related to cancer and in routine patient care. This review will serve as a consolidation of the advancement and benefits of ML and MM techniques with a special focus on the area of cancer prognosis and anticancer therapy, leading to the identification of challenges (data quantity, ethical consideration, and data privacy) which are yet to be fully addressed in current studies.
Collapse
Affiliation(s)
- Jasmin Hassan
- Drug Delivery & Therapeutics Lab, Dhaka 1212, Bangladesh; (J.H.); (S.M.S.)
| | | | - Lipika Deka
- Faculty of Computing, Engineering and Media, De Montfort University, Leicester LE1 9BH, UK;
| | - Md Jasim Uddin
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Diganta B. Das
- Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, UK
| |
Collapse
|
8
|
Spoerri L, Beaumont KA, Anfosso A, Murphy RJ, Browning AP, Gunasingh G, Haass NK. Real-Time Cell Cycle Imaging in a 3D Cell Culture Model of Melanoma, Quantitative Analysis, Optical Clearing, and Mathematical Modeling. Methods Mol Biol 2024; 2764:291-310. [PMID: 38393602 DOI: 10.1007/978-1-0716-3674-9_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Aberrant cell cycle progression is a hallmark of solid tumors. Therefore, cell cycle analysis is an invaluable technique to study cancer cell biology. However, cell cycle progression has been most commonly assessed by methods that are limited to temporal snapshots or that lack spatial information. In this chapter, we describe a technique that allows spatiotemporal real-time tracking of cell cycle progression of individual cells in a multicellular context. The power of this system lies in the use of 3D melanoma spheroids generated from melanoma cells engineered with the fluorescent ubiquitination-based cell cycle indicator (FUCCI). This technique, combined with mathematical modeling, allows us to gain further and more detailed insight into several relevant aspects of solid cancer cell biology, such as tumor growth, proliferation, invasion, and drug sensitivity.
Collapse
Affiliation(s)
- Loredana Spoerri
- Frazer Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Kimberley A Beaumont
- The Centenary Institute, Sydney, NSW, Australia
- Uniquest, The University of Queensland, Brisbane, QLD, Australia
| | | | - Ryan J Murphy
- Mathematical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Alexander P Browning
- Mathematical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Gency Gunasingh
- Frazer Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Nikolas K Haass
- Frazer Institute, The University of Queensland, Brisbane, QLD, Australia.
- The Centenary Institute, Sydney, NSW, Australia.
| |
Collapse
|
9
|
Bergman DR, Norton KA, Jain HV, Jackson T. Connecting Agent-Based Models with High-Dimensional Parameter Spaces to Multidimensional Data Using SMoRe ParS: A Surrogate Modeling Approach. Bull Math Biol 2023; 86:11. [PMID: 38159216 PMCID: PMC10757706 DOI: 10.1007/s11538-023-01240-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/22/2023] [Indexed: 01/03/2024]
Abstract
Across a broad range of disciplines, agent-based models (ABMs) are increasingly utilized for replicating, predicting, and understanding complex systems and their emergent behavior. In the biological and biomedical sciences, researchers employ ABMs to elucidate complex cellular and molecular interactions across multiple scales under varying conditions. Data generated at these multiple scales, however, presents a computational challenge for robust analysis with ABMs. Indeed, calibrating ABMs remains an open topic of research due to their own high-dimensional parameter spaces. In response to these challenges, we extend and validate our novel methodology, Surrogate Modeling for Reconstructing Parameter Surfaces (SMoRe ParS), arriving at a computationally efficient framework for connecting high dimensional ABM parameter spaces with multidimensional data. Specifically, we modify SMoRe ParS to initially confine high dimensional ABM parameter spaces using unidimensional data, namely, single time-course information of in vitro cancer cell growth assays. Subsequently, we broaden the scope of our approach to encompass more complex ABMs and constrain parameter spaces using multidimensional data. We explore this extension with in vitro cancer cell inhibition assays involving the chemotherapeutic agent oxaliplatin. For each scenario, we validate and evaluate the effectiveness of our approach by comparing how well ABM simulations match the experimental data when using SMoRe ParS-inferred parameters versus parameters inferred by a commonly used direct method. In so doing, we show that our approach of using an explicitly formulated surrogate model as an interlocutor between the ABM and the experimental data effectively calibrates the ABM parameter space to multidimensional data. Our method thus provides a robust and scalable strategy for leveraging multidimensional data to inform multiscale ABMs and explore the uncertainty in their parameters.
Collapse
Affiliation(s)
- Daniel R Bergman
- Department of Mathematics, University of Michigan, 530 Church Street, Ann Arbor, MI, 48109, USA
| | - Kerri-Ann Norton
- Computational Biology Laboratory, Computer Science Program, Bard College, 30 Campus Road, Annandale-on-Hudson, NY, 12504, USA
| | - Harsh Vardhan Jain
- Department of Mathematics & Statistics, University of Minnesota Duluth, 1117 University Drive, Duluth, MN, 55812, USA
| | - Trachette Jackson
- Department of Mathematics, University of Michigan, 530 Church Street, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
10
|
Murphy RJ, Gunasingh G, Haass NK, Simpson MJ. Formation and Growth of Co-Culture Tumour Spheroids: New Compartment-Based Mathematical Models and Experiments. Bull Math Biol 2023; 86:8. [PMID: 38091169 DOI: 10.1007/s11538-023-01229-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 10/23/2023] [Indexed: 12/18/2023]
Abstract
Co-culture tumour spheroid experiments are routinely performed to investigate cancer progression and test anti-cancer therapies. Therefore, methods to quantitatively characterise and interpret co-culture spheroid growth are of great interest. However, co-culture spheroid growth is complex. Multiple biological processes occur on overlapping timescales and different cell types within the spheroid may have different characteristics, such as differing proliferation rates or responses to nutrient availability. At present there is no standard, widely-accepted mathematical model of such complex spatio-temporal growth processes. Typical approaches to analyse these experiments focus on the late-time temporal evolution of spheroid size and overlook early-time spheroid formation, spheroid structure and geometry. Here, using a range of ordinary differential equation-based mathematical models and parameter estimation, we interpret new co-culture experimental data. We provide new biological insights about spheroid formation, growth, and structure. As part of this analysis we connect Greenspan's seminal mathematical model to co-culture data for the first time. Furthermore, we generalise a class of compartment-based spheroid mathematical models that have previously been restricted to one population so they can be applied to multiple populations. As special cases of the general model, we explore multiple natural two population extensions to Greenspan's seminal model and reveal biological mechanisms that can describe the internal dynamics of growing co-culture spheroids and those that cannot. This mathematical and statistical modelling-based framework is well-suited to analyse spheroids grown with multiple different cell types and the new class of mathematical models provide opportunities for further mathematical and biological insights.
Collapse
Affiliation(s)
- Ryan J Murphy
- Mathematical Sciences, Queensland University of Technology, Brisbane, Australia.
| | - Gency Gunasingh
- Frazer Institute, The University of Queensland, Brisbane, Australia
| | - Nikolas K Haass
- Frazer Institute, The University of Queensland, Brisbane, Australia
| | - Matthew J Simpson
- Mathematical Sciences, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
11
|
Terragni F, Martinson WD, Carretero M, Maini PK, Bonilla LL. Soliton approximation in continuum models of leader-follower behavior. Phys Rev E 2023; 108:054407. [PMID: 38115402 DOI: 10.1103/physreve.108.054407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/17/2023] [Indexed: 12/21/2023]
Abstract
Complex biological processes involve collective behavior of entities (bacteria, cells, animals) over many length and time scales and can be described by discrete models that track individuals or by continuum models involving densities and fields. We consider hybrid stochastic agent-based models of branching morphogenesis and angiogenesis (new blood vessel creation from preexisting vasculature), which treat cells as individuals that are guided by underlying continuous chemical and/or mechanical fields. In these descriptions, leader (tip) cells emerge from existing branches and follower (stalk) cells build the new sprout in their wake. Vessel branching and fusion (anastomosis) occur as a result of tip and stalk cell dynamics. Coarse graining these hybrid models in appropriate limits produces continuum partial differential equations (PDEs) for endothelial cell densities that are more analytically tractable. While these models differ in nonlinearity, they produce similar equations at leading order when chemotaxis is dominant. We analyze this leading order system in a simple quasi-one-dimensional geometry and show that the numerical solution of the leading order PDE is well described by a soliton wave that evolves from vessel to source. This wave is an attractor for intermediate times until it arrives at the hypoxic region releasing the growth factor. The mathematical techniques used here thus identify common features of discrete and continuum approaches and provide insight into general biological mechanisms governing their collective dynamics.
Collapse
Affiliation(s)
- F Terragni
- Gregorio Millán Institute for Fluid Dynamics, Nanoscience and Industrial Mathematics, Universidad Carlos III de Madrid, 28911 Leganés, Spain
- Department of Mathematics, Universidad Carlos III de Madrid, 28911 Leganés, Spain
| | - W D Martinson
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford OX2 6GG, United Kingdom
| | - M Carretero
- Gregorio Millán Institute for Fluid Dynamics, Nanoscience and Industrial Mathematics, Universidad Carlos III de Madrid, 28911 Leganés, Spain
- Department of Mathematics, Universidad Carlos III de Madrid, 28911 Leganés, Spain
| | - P K Maini
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford OX2 6GG, United Kingdom
| | - L L Bonilla
- Gregorio Millán Institute for Fluid Dynamics, Nanoscience and Industrial Mathematics, Universidad Carlos III de Madrid, 28911 Leganés, Spain
- Department of Mathematics, Universidad Carlos III de Madrid, 28911 Leganés, Spain
| |
Collapse
|
12
|
Savchenko E, Rosenfeld A, Bunimovich-Mendrazitsky S. Mathematical modeling of BCG-based bladder cancer treatment using socio-demographics. Sci Rep 2023; 13:18754. [PMID: 37907551 PMCID: PMC10618543 DOI: 10.1038/s41598-023-45581-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/21/2023] [Indexed: 11/02/2023] Open
Abstract
Cancer is one of the most widespread diseases around the world with millions of new patients each year. Bladder cancer is one of the most prevalent types of cancer affecting all individuals alike with no obvious "prototypical patient". The current standard treatment for BC follows a routine weekly Bacillus Calmette-Guérin (BCG) immunotherapy-based therapy protocol which is applied to all patients alike. The clinical outcomes associated with BCG treatment vary significantly among patients due to the biological and clinical complexity of the interaction between the immune system, treatments, and cancer cells. In this study, we take advantage of the patient's socio-demographics to offer a personalized mathematical model that describes the clinical dynamics associated with BCG-based treatment. To this end, we adopt a well-established BCG treatment model and integrate a machine learning component to temporally adjust and reconfigure key parameters within the model thus promoting its personalization. Using real clinical data, we show that our personalized model favorably compares with the original one in predicting the number of cancer cells at the end of the treatment, with [Formula: see text] improvement, on average.
Collapse
Affiliation(s)
| | - Ariel Rosenfeld
- Department of Information Science, Bar Ilan University, Ramat-Gan, Israel
| | | |
Collapse
|
13
|
Strobl MAR, Gallaher J, Robertson-Tessi M, West J, Anderson ARA. Treatment of evolving cancers will require dynamic decision support. Ann Oncol 2023; 34:867-884. [PMID: 37777307 PMCID: PMC10688269 DOI: 10.1016/j.annonc.2023.08.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 08/01/2023] [Accepted: 08/21/2023] [Indexed: 10/02/2023] Open
Abstract
Cancer research has traditionally focused on developing new agents, but an underexplored question is that of the dose and frequency of existing drugs. Based on the modus operandi established in the early days of chemotherapies, most drugs are administered according to predetermined schedules that seek to deliver the maximum tolerated dose and are only adjusted for toxicity. However, we believe that the complex, evolving nature of cancer requires a more dynamic and personalized approach. Chronicling the milestones of the field, we show that the impact of schedule choice crucially depends on processes driving treatment response and failure. As such, cancer heterogeneity and evolution dictate that a one-size-fits-all solution is unlikely-instead, each patient should be mapped to the strategy that best matches their current disease characteristics and treatment objectives (i.e. their 'tumorscape'). To achieve this level of personalization, we need mathematical modeling. In this perspective, we propose a five-step 'Adaptive Dosing Adjusted for Personalized Tumorscapes (ADAPT)' paradigm to integrate data and understanding across scales and derive dynamic and personalized schedules. We conclude with promising examples of model-guided schedule personalization and a call to action to address key outstanding challenges surrounding data collection, model development, and integration.
Collapse
Affiliation(s)
- M A R Strobl
- Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa; Translational Hematology and Oncology Research, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, USA
| | - J Gallaher
- Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa
| | - M Robertson-Tessi
- Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa
| | - J West
- Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa
| | - A R A Anderson
- Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa.
| |
Collapse
|
14
|
Cho H, Lewis AL, Storey KM, Zittle AC. An adaptive information-theoretic experimental design procedure for high-to-low fidelity calibration of prostate cancer models. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:17986-18017. [PMID: 38052545 DOI: 10.3934/mbe.2023799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
The use of mathematical models to make predictions about tumor growth and response to treatment has become increasingly prevalent in the clinical setting. The level of complexity within these models ranges broadly, and the calibration of more complex models requires detailed clinical data. This raises questions about the type and quantity of data that should be collected and when, in order to maximize the information gain about the model behavior while still minimizing the total amount of data used and the time until a model can be calibrated accurately. To address these questions, we propose a Bayesian information-theoretic procedure, using an adaptive score function to determine the optimal data collection times and measurement types. The novel score function introduced in this work eliminates the need for a penalization parameter used in a previous study, while yielding model predictions that are superior to those obtained using two potential pre-determined data collection protocols for two different prostate cancer model scenarios: one in which we fit a simple ODE system to synthetic data generated from a cellular automaton model using radiotherapy as the imposed treatment, and a second scenario in which a more complex ODE system is fit to clinical patient data for patients undergoing intermittent androgen suppression therapy. We also conduct a robust analysis of the calibration results, using both error and uncertainty metrics in combination to determine when additional data acquisition may be terminated.
Collapse
Affiliation(s)
- Heyrim Cho
- Department of Mathematics, University of California, Riverside CA, USA
| | - Allison L Lewis
- Department of Mathematics, Lafayette College, Easton PA, USA
| | | | - Anna C Zittle
- Department of Mathematics, Lafayette College, Easton PA, USA
| |
Collapse
|
15
|
Ayensa-Jiménez J, Doweidar MH, Doblaré M, Gaffney EA. A Mathematical Modelling Study of Chemotactic Dynamics in Cell Cultures: The Impact of Spatio-temporal Heterogeneity. Bull Math Biol 2023; 85:98. [PMID: 37684435 PMCID: PMC10491576 DOI: 10.1007/s11538-023-01194-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 08/04/2023] [Indexed: 09/10/2023]
Abstract
As motivated by studies of cellular motility driven by spatiotemporal chemotactic gradients in microdevices, we develop a framework for constructing approximate analytical solutions for the location, speed and cellular densities for cell chemotaxis waves in heterogeneous fields of chemoattractant from the underlying partial differential equation models. In particular, such chemotactic waves are not in general translationally invariant travelling waves, but possess a spatial variation that evolves in time, and may even oscillate back and forth in time, according to the details of the chemotactic gradients. The analytical framework exploits the observation that unbiased cellular diffusive flux is typically small compared to chemotactic fluxes and is first developed and validated for a range of exemplar scenarios. The framework is subsequently applied to more complex models considering the chemoattractant dynamics under more general settings, potentially including those of relevance for representing pathophysiology scenarios in microdevice studies. In particular, even though solutions cannot be constructed in all cases, a wide variety of scenarios can be considered analytically, firstly providing global insight into the important mechanisms and features of cell motility in complex spatiotemporal fields of chemoattractant. Such analytical solutions also provide a means of rapid evaluation of model predictions, with the prospect of application in computationally demanding investigations relating theoretical models and experimental observation, such as Bayesian parameter estimation.
Collapse
Affiliation(s)
- Jacobo Ayensa-Jiménez
- Aragon Institute of Engineering Research, University of Zaragoza, Mariano Esquillor, s.n., 50018 Zaragoza, Spain
- Tissue Microenvironment Laboratory (TME Lab), Institute for Health Research Aragón, San Juan Bosco, 13, 50009 Zaragoza, Spain
| | - Mohamed H. Doweidar
- Aragon Institute of Engineering Research, University of Zaragoza, Mariano Esquillor, s.n., 50018 Zaragoza, Spain
- Mechanical Engineering Department, School of Engineering and Architecture (EINA), University of Zaragoza, María de Luna s.n., 50018 Zaragoza, Spain
| | - Manuel Doblaré
- Aragon Institute of Engineering Research, University of Zaragoza, Mariano Esquillor, s.n., 50018 Zaragoza, Spain
- Mechanical Engineering Department, School of Engineering and Architecture (EINA), University of Zaragoza, María de Luna s.n., 50018 Zaragoza, Spain
- Tissue Microenvironment Laboratory (TME Lab), Institute for Health Research Aragón, San Juan Bosco, 13, 50009 Zaragoza, Spain
- Nanjing Tech University, 30 South Puzhu Road, 211816 Nanjing, China
| | - Eamonn A. Gaffney
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Woodstock Road, Oxford, OX2 6GG UK
| |
Collapse
|
16
|
Reyes-Aldasoro CC. Modelling the Tumour Microenvironment, but What Exactly Do We Mean by "Model"? Cancers (Basel) 2023; 15:3796. [PMID: 37568612 PMCID: PMC10416922 DOI: 10.3390/cancers15153796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
The Oxford English Dictionary includes 17 definitions for the word "model" as a noun and another 11 as a verb. Therefore, context is necessary to understand the meaning of the word model. For instance, "model railways" refer to replicas of railways and trains at a smaller scale and a "model student" refers to an exemplary individual. In some cases, a specific context, like cancer research, may not be sufficient to provide one specific meaning for model. Even if the context is narrowed, specifically, to research related to the tumour microenvironment, "model" can be understood in a wide variety of ways, from an animal model to a mathematical expression. This paper presents a review of different "models" of the tumour microenvironment, as grouped by different definitions of the word into four categories: model organisms, in vitro models, mathematical models and computational models. Then, the frequencies of different meanings of the word "model" related to the tumour microenvironment are measured from numbers of entries in the MEDLINE database of the United States National Library of Medicine at the National Institutes of Health. The frequencies of the main components of the microenvironment and the organ-related cancers modelled are also assessed quantitatively with specific keywords. Whilst animal models, particularly xenografts and mouse models, are the most commonly used "models", the number of these entries has been slowly decreasing. Mathematical models, as well as prognostic and risk models, follow in frequency, and these have been growing in use.
Collapse
|
17
|
Weatherley G, Araujo RP, Dando SJ, Jenner AL. Could Mathematics be the Key to Unlocking the Mysteries of Multiple Sclerosis? Bull Math Biol 2023; 85:75. [PMID: 37382681 PMCID: PMC10310626 DOI: 10.1007/s11538-023-01181-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 06/19/2023] [Indexed: 06/30/2023]
Abstract
Multiple sclerosis (MS) is an autoimmune, neurodegenerative disease that is driven by immune system-mediated demyelination of nerve axons. While diseases such as cancer, HIV, malaria and even COVID have realised notable benefits from the attention of the mathematical community, MS has received significantly less attention despite the increasing disease incidence rates, lack of curative treatment, and long-term impact on patient well-being. In this review, we highlight existing, MS-specific mathematical research and discuss the outstanding challenges and open problems that remain for mathematicians. We focus on how both non-spatial and spatial deterministic models have been used to successfully further our understanding of T cell responses and treatment in MS. We also review how agent-based models and other stochastic modelling techniques have begun to shed light on the highly stochastic and oscillatory nature of this disease. Reviewing the current mathematical work in MS, alongside the biology specific to MS immunology, it is clear that mathematical research dedicated to understanding immunotherapies in cancer or the immune responses to viral infections could be readily translatable to MS and might hold the key to unlocking some of its mysteries.
Collapse
Affiliation(s)
- Georgia Weatherley
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Robyn P Araujo
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Samantha J Dando
- School of Biomedical Sciences, Centre for Immunology and Infection Control, Faculty of Health, Queensland University of Technology, Brisbane, Australia
| | - Adrianne L Jenner
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, Australia.
| |
Collapse
|
18
|
Ghannoum S, Fantini D, Zahoor M, Reiterer V, Phuyal S, Leoncio Netto W, Sørensen Ø, Iyer A, Sengupta D, Prasmickaite L, Mælandsmo GM, Köhn-Luque A, Farhan H. A combined experimental-computational approach uncovers a role for the Golgi matrix protein Giantin in breast cancer progression. PLoS Comput Biol 2023; 19:e1010995. [PMID: 37068117 PMCID: PMC10159355 DOI: 10.1371/journal.pcbi.1010995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 05/04/2023] [Accepted: 03/04/2023] [Indexed: 04/18/2023] Open
Abstract
Our understanding of how speed and persistence of cell migration affects the growth rate and size of tumors remains incomplete. To address this, we developed a mathematical model wherein cells migrate in two-dimensional space, divide, die or intravasate into the vasculature. Exploring a wide range of speed and persistence combinations, we find that tumor growth positively correlates with increasing speed and higher persistence. As a biologically relevant example, we focused on Golgi fragmentation, a phenomenon often linked to alterations of cell migration. Golgi fragmentation was induced by depletion of Giantin, a Golgi matrix protein, the downregulation of which correlates with poor patient survival. Applying the experimentally obtained migration and invasion traits of Giantin depleted breast cancer cells to our mathematical model, we predict that loss of Giantin increases the number of intravasating cells. This prediction was validated, by showing that circulating tumor cells express significantly less Giantin than primary tumor cells. Altogether, our computational model identifies cell migration traits that regulate tumor progression and uncovers a role of Giantin in breast cancer progression.
Collapse
Affiliation(s)
- Salim Ghannoum
- Institute of Basic Medical Sciences, Department of Molecular Medicine, University of Oslo, Oslo, Norway
| | - Damiano Fantini
- Department of Urology, Northwestern University, Chicago, Illinois, United States of America
| | - Muhammad Zahoor
- Institute of Basic Medical Sciences, Department of Molecular Medicine, University of Oslo, Oslo, Norway
| | - Veronika Reiterer
- Institute of Pathophysiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Santosh Phuyal
- Institute of Basic Medical Sciences, Department of Molecular Medicine, University of Oslo, Oslo, Norway
| | - Waldir Leoncio Netto
- Oslo Centre for Biostatistics and Epidemiology, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Øystein Sørensen
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway
| | - Arvind Iyer
- Department of Computational Biology, University of Lausanne (UNIL), Lausanne, Switzerland
| | - Debarka Sengupta
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India
- Centre for Artificial Intelligence, Indraprastha Institute of Information Technology, Delhi, India
| | - Lina Prasmickaite
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway
| | - Gunhild Mari Mælandsmo
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway
- Department of Medical Biology, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Alvaro Köhn-Luque
- Oslo Centre for Biostatistics and Epidemiology, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Hesso Farhan
- Institute of Basic Medical Sciences, Department of Molecular Medicine, University of Oslo, Oslo, Norway
- Institute of Pathophysiology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
19
|
Cho H, Lewis AL, Storey KM, Byrne HM. Designing experimental conditions to use the Lotka-Volterra model to infer tumor cell line interaction types. J Theor Biol 2023; 559:111377. [PMID: 36470468 DOI: 10.1016/j.jtbi.2022.111377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/25/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
The Lotka-Volterra model is widely used to model interactions between two species. Here, we generate synthetic data mimicking competitive, mutualistic and antagonistic interactions between two tumor cell lines, and then use the Lotka-Volterra model to infer the interaction type. Structural identifiability of the Lotka-Volterra model is confirmed, and practical identifiability is assessed for three experimental designs: (a) use of a single data set, with a mixture of both cell lines observed over time, (b) a sequential design where growth rates and carrying capacities are estimated using data from experiments in which each cell line is grown in isolation, and then interaction parameters are estimated from an experiment involving a mixture of both cell lines, and (c) a parallel experimental design where all model parameters are fitted to data from two mixtures (containing both cell lines but with different initial ratios) simultaneously. Each design is tested on data generated from the Lotka-Volterra model with noise added, to determine efficacy in an ideal sense. In addition to assessing each design for practical identifiability, we investigate how the predictive power of the model - i.e., its ability to fit data for initial ratios other than those to which it was calibrated - is affected by the choice of experimental design. The parallel calibration procedure is found to be optimal and is further tested on in silico data generated from a spatially-resolved cellular automaton model, which accounts for oxygen consumption and allows for variation in the intensity level of the interaction between the two cell lines. We use this study to highlight the care that must be taken when interpreting parameter estimates for the spatially-averaged Lotka-Volterra model when it is calibrated against data produced by the spatially-resolved cellular automaton model, since baseline competition for space and resources in the CA model may contribute to a discrepancy between the type of interaction used to generate the CA data and the type of interaction inferred by the LV model.
Collapse
Affiliation(s)
- Heyrim Cho
- Department of Mathematics, University of California, Riverside, CA, United States of America
| | - Allison L Lewis
- Department of Mathematics, Lafayette College, Easton, PA, United States of America
| | - Kathleen M Storey
- Department of Mathematics, Lafayette College, Easton, PA, United States of America.
| | - Helen M Byrne
- Department of Mathematics, University of Oxford, Oxford, UK
| |
Collapse
|
20
|
Valentim CA, Rabi JA, David SA. Cellular-automaton model for tumor growth dynamics: Virtualization of different scenarios. Comput Biol Med 2023; 153:106481. [PMID: 36587567 DOI: 10.1016/j.compbiomed.2022.106481] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/08/2022] [Accepted: 12/25/2022] [Indexed: 12/29/2022]
Abstract
Mathematical Oncology has emerged as a research field that applies either continuous or discrete models to mathematically describe cancer-related phenomena. Such methods are usually expressed in terms of differential equations, however tumor composition involves specific cellular structure and can demonstrate probabilistic nature, often requiring tailor-made approaches. In this context, cell-based models allow monitoring independent single parameters, which might vary in both time and space. By relying on extant tumor growth models in the literature, this study introduces cellular-automata simulation strategies that admit heterogeneous cell population while capturing both single-cell and cluster-cell behaviors. In this agent-based computational model, tumor cells are limited to follow four possible courses of action, namely: proliferation, migration, apoptosis or quiescence. Despite the apparent simplicity of those actions, the model can represent different complex tumor features depending on parameter settings. This study virtualized five different scenarios, showcasing model capabilities of representing tumor dynamics including alternate dormancy periods, cell death instability and cluster formation. Implementation techniques are also explored together with prospective model expansion towards deterministic features. The proposed stochastic cellular automaton model is able to effectively simulate different scenarios regarding tumor growth effectively, figuring as an interesting tool for in silico modeling, with promising capabilities of expansion to support research in mathematical oncology, thus improving diagnosis tools and/or personalized treatment.
Collapse
Affiliation(s)
- Carlos A Valentim
- Department of Biosystems Engineering, University of São Paulo, Pirassununga, Brazil.
| | - José A Rabi
- Department of Biosystems Engineering, University of São Paulo, Pirassununga, Brazil.
| | - Sergio A David
- Department of Biosystems Engineering, University of São Paulo, Pirassununga, Brazil.
| |
Collapse
|
21
|
Gonçalves IG, García-Aznar JM. Hybrid computational models of multicellular tumour growth considering glucose metabolism. Comput Struct Biotechnol J 2023; 21:1262-1271. [PMID: 36814723 PMCID: PMC9939553 DOI: 10.1016/j.csbj.2023.01.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/30/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
Cancer cells metabolize glucose through metabolic pathways that differ from those used by healthy and differentiated cells. In particular, tumours have been shown to consume more glucose than their healthy counterparts and to use anaerobic metabolic pathways, even under aerobic conditions. Nevertheless, scientists have still not been able to explain why cancer cells evolved to present an altered metabolism and what evolutionary advantage this might provide them. Experimental and computational models have been increasingly used in recent years to understand some of these biological questions. Multicellular tumour spheroids are effective experimental models as they replicate the initial stages of avascular solid tumour growth. Furthermore, these experiments generate data which can be used to calibrate and validate computational studies that aim to simulate tumour growth. Hybrid models are of particular relevance in this field of research because they model cells as individual agents while also incorporating continuum representations of the substances present in the surrounding microenvironment that may participate in intracellular metabolic networks as concentration or density distributions. Henceforth, in this review, we explore the potential of computational modelling to reveal the role of metabolic reprogramming in tumour growth.
Collapse
Key Words
- ABM, agent-based model
- ATP, adenosine triphosphate
- CA, cellular automata
- CPM, cellular Potts model
- ECM, extracellular matrix
- FBA, Flux Balance Analysis
- FDG-PET, [18F]-fluorodeoxyglucose-positron emission tomography
- MCTS, multicellular tumour spheroids
- ODEs, ordinary differential equations
- PDEs, partial differential equations
- SBML, Systems Biology Markup Language
- Warburg effect
- agent-based models
- glucose metabolism
- hybrid modelling
- multicellular simulations
Collapse
Affiliation(s)
- Inês G. Gonçalves
- Multiscale in Mechanical and Biological Engineering, Department of Mechanical Engineering, Aragon Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza 50018, Aragon, Spain
| | - José Manuel García-Aznar
- Multiscale in Mechanical and Biological Engineering, Department of Mechanical Engineering, Aragon Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza 50018, Aragon, Spain
| |
Collapse
|
22
|
Murphy RJ, Gunasingh G, Haass NK, Simpson MJ. Growth and adaptation mechanisms of tumour spheroids with time-dependent oxygen availability. PLoS Comput Biol 2023; 19:e1010833. [PMID: 36634128 PMCID: PMC9876349 DOI: 10.1371/journal.pcbi.1010833] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 01/25/2023] [Accepted: 12/21/2022] [Indexed: 01/13/2023] Open
Abstract
Tumours are subject to external environmental variability. However, in vitro tumour spheroid experiments, used to understand cancer progression and develop cancer therapies, have been routinely performed for the past fifty years in constant external environments. Furthermore, spheroids are typically grown in ambient atmospheric oxygen (normoxia), whereas most in vivo tumours exist in hypoxic environments. Therefore, there are clear discrepancies between in vitro and in vivo conditions. We explore these discrepancies by combining tools from experimental biology, mathematical modelling, and statistical uncertainty quantification. Focusing on oxygen variability to develop our framework, we reveal key biological mechanisms governing tumour spheroid growth. Growing spheroids in time-dependent conditions, we identify and quantify novel biological adaptation mechanisms, including unexpected necrotic core removal, and transient reversal of the tumour spheroid growth phases.
Collapse
Affiliation(s)
- Ryan J. Murphy
- Mathematical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
- * E-mail:
| | - Gency Gunasingh
- Frazer Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Nikolas K. Haass
- Frazer Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Matthew J. Simpson
- Mathematical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
23
|
Stochastic Fluctuations Drive Non-genetic Evolution of Proliferation in Clonal Cancer Cell Populations. Bull Math Biol 2022; 85:8. [PMID: 36562835 DOI: 10.1007/s11538-022-01113-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022]
Abstract
Evolutionary dynamics allows us to understand many changes happening in a broad variety of biological systems, ranging from individuals to complete ecosystems. It is also behind a number of remarkable organizational changes that happen during the natural history of cancers. These reflect tumour heterogeneity, which is present at all cellular levels, including the genome, proteome and phenome, shaping its development and interrelation with its environment. An intriguing observation in different cohorts of oncological patients is that tumours exhibit an increased proliferation as the disease progresses, while the timescales involved are apparently too short for the fixation of sufficient driver mutations to promote explosive growth. Here, we discuss how phenotypic plasticity, emerging from a single genotype, may play a key role and provide a ground for a continuous acceleration of the proliferation rate of clonal populations with time. We address this question by combining the analysis of real-time growth of non-small-cell lung carcinoma cells (N-H460) together with stochastic and deterministic mathematical models that capture proliferation trait heterogeneity in clonal populations to elucidate the contribution of phenotypic transitions on tumour growth dynamics.
Collapse
|
24
|
Jain HV, Norton KA, Prado BB, Jackson TL. SMoRe ParS: A novel methodology for bridging modeling modalities and experimental data applied to 3D vascular tumor growth. Front Mol Biosci 2022; 9:1056461. [PMID: 36619168 PMCID: PMC9816661 DOI: 10.3389/fmolb.2022.1056461] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
Multiscale systems biology is having an increasingly powerful impact on our understanding of the interconnected molecular, cellular, and microenvironmental drivers of tumor growth and the effects of novel drugs and drug combinations for cancer therapy. Agent-based models (ABMs) that treat cells as autonomous decision-makers, each with their own intrinsic characteristics, are a natural platform for capturing intratumoral heterogeneity. Agent-based models are also useful for integrating the multiple time and spatial scales associated with vascular tumor growth and response to treatment. Despite all their benefits, the computational costs of solving agent-based models escalate and become prohibitive when simulating millions of cells, making parameter exploration and model parameterization from experimental data very challenging. Moreover, such data are typically limited, coarse-grained and may lack any spatial resolution, compounding these challenges. We address these issues by developing a first-of-its-kind method that leverages explicitly formulated surrogate models (SMs) to bridge the current computational divide between agent-based models and experimental data. In our approach, Surrogate Modeling for Reconstructing Parameter Surfaces (SMoRe ParS), we quantify the uncertainty in the relationship between agent-based model inputs and surrogate model parameters, and between surrogate model parameters and experimental data. In this way, surrogate model parameters serve as intermediaries between agent-based model input and data, making it possible to use them for calibration and uncertainty quantification of agent-based model parameters that map directly onto an experimental data set. We illustrate the functionality and novelty of Surrogate Modeling for Reconstructing Parameter Surfaces by applying it to an agent-based model of 3D vascular tumor growth, and experimental data in the form of tumor volume time-courses. Our method is broadly applicable to situations where preserving underlying mechanistic information is of interest, and where computational complexity and sparse, noisy calibration data hinder model parameterization.
Collapse
Affiliation(s)
- Harsh Vardhan Jain
- Department of Mathematics and Statistics, University of Minnesota Duluth, Duluth, MN, United States
| | - Kerri-Ann Norton
- Reem and Kayden Center for Science and Computation, Computational Biology Laboratory, Computer Science Program, Bard College, Annandale-on-Hudson, NY, United States
| | | | - Trachette L. Jackson
- Department of Mathematics, University of Michigan, Ann Arbor, MI, United States,*Correspondence: Trachette L. Jackson,
| |
Collapse
|
25
|
Shojaee P, Mornata F, Deutsch A, Locati M, Hatzikirou H. The impact of tumor associated macrophages on tumor biology under the lens of mathematical modelling: A review. Front Immunol 2022; 13:1050067. [PMID: 36439180 PMCID: PMC9685623 DOI: 10.3389/fimmu.2022.1050067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/18/2022] [Indexed: 09/10/2023] Open
Abstract
In this article, we review the role of mathematical modelling to elucidate the impact of tumor-associated macrophages (TAMs) in tumor progression and therapy design. We first outline the biology of TAMs, and its current application in tumor therapies, and their experimental methods that provide insights into tumor cell-macrophage interactions. We then focus on the mechanistic mathematical models describing the role of macrophages as drug carriers, the impact of macrophage polarized activation on tumor growth, and the role of tumor microenvironment (TME) parameters on the tumor-macrophage interactions. This review aims to identify the synergies between biological and mathematical approaches that allow us to translate knowledge on fundamental TAMs biology in addressing current clinical challenges.
Collapse
Affiliation(s)
- Pejman Shojaee
- Centre for Information Services and High Performance Computing, Technische Universität (TU) Dresden, Dresden, Germany
| | - Federica Mornata
- Leukocyte Biology Lab, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Andreas Deutsch
- Centre for Information Services and High Performance Computing, Technische Universität (TU) Dresden, Dresden, Germany
| | - Massimo Locati
- Leukocyte Biology Lab, IRCCS Humanitas Research Hospital, Rozzano, Italy
- Department of Medical Biotechnologies and Translational Medicine, Universitàdegli Studi di Milano, Milan, Italy
| | - Haralampos Hatzikirou
- Centre for Information Services and High Performance Computing, Technische Universität (TU) Dresden, Dresden, Germany
- Mathematics Department, Khalifa University, Abu Dhabi, United Arab Emirates
- Healthcare Engineering Innovation Centre (HEIC), Khalifa University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
26
|
Ngalim SH, Yusoff N, Johnson RR, Abdul Razak SR, Chen X, Hobbs JK, Lee YY. A review on mechanobiology of cell adhesion networks in different stages of sporadic colorectal cancer to explain its tumorigenesis. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 175:63-72. [PMID: 36116549 DOI: 10.1016/j.pbiomolbio.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/07/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
Sporadic colorectal cancer (CRC) is strongly linked to extraneous factors, like poor diet and lifestyle, but not to inherent factors like familial genetics. The changes at the epigenomics and signalling pathways are known across the sporadic CRC stages. The catch is that temporal information of the onset, the feedback loop, and the crosstalk of signalling and noise are still unclear. This makes it challenging to diagnose and treat colon cancer effectively with no relapse. Various microbial cells and native cells of the colon, contribute to sporadic CRC development. These cells secrete autocrine and paracrine for their bioenergetics and communications with other cell types. Imbalances of the biochemicals affect the epithelial lining of colon. One side of this epithelial lining is interfacing the dense colon tissue, while the other side is exposed to microbiota and excrement from the lumen. Hence, the epithelial lining is prone to tumorigenesis due to the influence of both biochemical and mechanical cues from its complex surrounding. The role of physical transformations in tumorigenesis have been limitedly discussed. In this context, cellular and tissue structures, and force transductions are heavily regulated by cell adhesion networks. These networks include cell anchoring mechanism to the surrounding, cell structural integrity mechanism, and cell effector molecules. This review will focus on the progression of the sporadic CRC stages that are governed by the underlaying cell adhesion networks within the epithelial cells. Additionally, current and potential technologies and therapeutics that target cell adhesion networks for treatments of sporadic CRC will be incorporated.
Collapse
Affiliation(s)
- Siti Hawa Ngalim
- Advanced Medical and Dental Institute, Universiti Sains Malaysia (USM) Bertam, 13200 Kepala Batas, Penang, Malaysia.
| | - Norwahida Yusoff
- School of Mechanical Engineering, Universiti Sains Malaysia (USM) Engineering Campus, 14300 Nibong Tebal, Penang, Malaysia
| | - Rayzel Renitha Johnson
- Advanced Medical and Dental Institute, Universiti Sains Malaysia (USM) Bertam, 13200 Kepala Batas, Penang, Malaysia
| | - Siti Razila Abdul Razak
- Advanced Medical and Dental Institute, Universiti Sains Malaysia (USM) Bertam, 13200 Kepala Batas, Penang, Malaysia
| | - Xinyue Chen
- Department of Physics and Astronomy, University of Sheffield, Hounsfield Road, Sheffield, S3 7RH, United Kingdom
| | - Jamie K Hobbs
- Department of Physics and Astronomy, University of Sheffield, Hounsfield Road, Sheffield, S3 7RH, United Kingdom
| | - Yeong Yeh Lee
- School of Medical Sciences, Universiti Sains Malaysia (USM) Kubang Kerian, 16150 Kota Bharu, Kelantan, Malaysia
| |
Collapse
|
27
|
Giunta V, Hillen T, Lewis MA, Potts JR. Detecting minimum energy states and multi-stability in nonlocal advection-diffusion models for interacting species. J Math Biol 2022; 85:56. [PMID: 36264394 PMCID: PMC9585017 DOI: 10.1007/s00285-022-01824-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/27/2022] [Accepted: 10/03/2022] [Indexed: 11/26/2022]
Abstract
Deriving emergent patterns from models of biological processes is a core concern of mathematical biology. In the context of partial differential equations, these emergent patterns sometimes appear as local minimisers of a corresponding energy functional. Here we give methods for determining the qualitative structure of local minimum energy states of a broad class of multi-species nonlocal advection-diffusion models, recently proposed for modelling the spatial structure of ecosystems. We show that when each pair of species respond to one another in a symmetric fashion (i.e. via mutual avoidance or mutual attraction, with equal strength), the system admits an energy functional that decreases in time and is bounded below. This suggests that the system will eventually reach a local minimum energy steady state, rather than fluctuating in perpetuity. We leverage this energy functional to develop tools, including a novel application of computational algebraic geometry, for making conjectures about the number and qualitative structure of local minimum energy solutions. These conjectures give a guide as to where to look for numerical steady state solutions, which we verify through numerical analysis. Our technique shows that even with two species, multi-stability with up to four classes of local minimum energy states can emerge. The associated dynamics include spatial sorting via aggregation and repulsion both within and between species. The emerging spatial patterns include a mixture of territory-like segregation as well as narrow spike-type solutions. Overall, our study reveals a general picture of rich multi-stability in systems of moving and interacting species.
Collapse
Affiliation(s)
- Valeria Giunta
- School of Mathematics and Statistics, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield, S3 7RH UK
| | - Thomas Hillen
- Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, AB T6G 2G1 Canada
| | - Mark A. Lewis
- Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, AB T6G 2G1 Canada
- Department of Mathematics and Statistics and Department of Biology, University of Victoria, PO Box 1700 Station CSC, Victoria, BC Canada
| | - Jonathan R. Potts
- School of Mathematics and Statistics, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield, S3 7RH UK
| |
Collapse
|
28
|
Jia G, Yang H, Wang K, Huang D, Chen W, Shan Y. The modeling study of the effect of morphological behaviors of extracellular matrix fibers on the dynamic interaction between tumor cells and antitumor immune response. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2022; 38:e3633. [PMID: 35703086 DOI: 10.1002/cnm.3633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 04/28/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Low response rate limits the effective application of immunotherapy, in which the interactions between tumor cells and immune cells play a significant role. The strength of regulation could be mediated by extracellular matrix (ECM) fibers, which is still insufficiently investigated. In the study, the cellular potts model was utilized to explore the role of morphological properties of ECM in tumor-immune interactions. It was observed that high-density random ECM fibers delayed the interaction between tumor cells and T cells. Moreover, the tumor-immune interactions were ECM morphology-specific. Radial ECM fibers exhibited weaker inhibitory role in the process of contact between tumor cells and T cells. This study provided the useful mechanism of tumor-immune interactions from the viewpoint of morphological effect of ECM fibers, facilitating improving the efficiency of immunotherapy.
Collapse
Affiliation(s)
- Guanjie Jia
- Department of Biomedical Engineering, Research Center for Nano-Biomaterials and Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Hao Yang
- Department of Biomedical Engineering, Research Center for Nano-Biomaterials and Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Kaiqun Wang
- Department of Biomedical Engineering, Research Center for Nano-Biomaterials and Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Di Huang
- Department of Biomedical Engineering, Research Center for Nano-Biomaterials and Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Weiyi Chen
- Department of Biomedical Engineering, Research Center for Nano-Biomaterials and Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Yanhu Shan
- School of Instrument and Electronics, North University of China, Taiyuan, China
| |
Collapse
|
29
|
Advances in molecular biomarkers research and clinical application progress for gastric cancer immunotherapy. Biomark Res 2022; 10:67. [PMID: 36042469 PMCID: PMC9426247 DOI: 10.1186/s40364-022-00413-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/20/2022] [Indexed: 11/10/2022] Open
Abstract
Gastric cancer is characterized by high morbidity and mortality worldwide. Early-stage gastric cancer is mainly treated with surgery, while for advanced gastric cancer, the current treatment options remain insufficient. In the 2022 NCCN Guidelines for Gastric Cancer, immunotherapy is listed as a first-line option for certain conditions. Immunotherapy for gastric cancer mainly targets the PD-1 molecule and achieves therapeutic effects by activating T cells. In addition, therapeutic strategies targeting other molecules, such as CTLA4, LAG3, Tim3, TIGIT, and OX40, have also been developed to improve the treatment efficacy of gastric cancer immunotherapy. This review summarizes the molecular biomarkers of gastric cancer immunotherapy and their clinical trials.
Collapse
|
30
|
Nasim A, Yates J, Derks G, Dunlop C. A Spatially Resolved Mechanistic Growth Law for Cancer Drug Development Predicting Tumor Growing Fractions. CANCER RESEARCH COMMUNICATIONS 2022; 2:754-761. [PMID: 36923310 PMCID: PMC10010375 DOI: 10.1158/2767-9764.crc-22-0032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/25/2022] [Accepted: 07/08/2022] [Indexed: 11/16/2022]
Abstract
Mathematical models used in preclinical drug discovery tend to be empirical growth laws. Such models are well suited to fitting the data available, mostly longitudinal studies of tumor volume; however, they typically have little connection with the underlying physiologic processes. This lack of a mechanistic underpinning restricts their flexibility and potentially inhibits their translation across studies including from animal to human. Here we present a mathematical model describing tumor growth for the evaluation of single-agent cytotoxic compounds that is based on mechanistic principles. The model can predict spatial distributions of cell subpopulations and account for spatial drug distribution effects within tumors. Importantly, we demonstrate that the model can be reduced to a growth law similar in form to the ones currently implemented in pharmaceutical drug development for preclinical trials so that it can integrated into the current workflow. We validate this approach for both cell-derived xenograft and patient-derived xenograft (PDX) data. This shows that our theoretical model fits as well as the best performing and most widely used models. However, in addition, the model is also able to accurately predict the observed growing fraction of tumours. Our work opens up current preclinical modeling studies to also incorporating spatially resolved and multimodal data without significant added complexity and creates the opportunity to improve translation and tumor response predictions. Significance This theoretical model has the same mathematical structure as that currently used for drug development. However, its mechanistic basis enables prediction of growing fraction and spatial variations in drug distribution.
Collapse
Affiliation(s)
- Adam Nasim
- Department of Mathematics, University of Surrey, Guildford, United Kingdom
| | - James Yates
- Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Gianne Derks
- Department of Mathematics, University of Surrey, Guildford, United Kingdom
| | - Carina Dunlop
- Department of Mathematics, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
31
|
Lapin A, Perfahl H, Jain HV, Reuss M. Integrating a dynamic central metabolism model of cancer cells with a hybrid 3D multiscale model for vascular hepatocellular carcinoma growth. Sci Rep 2022; 12:12373. [PMID: 35858953 PMCID: PMC9300625 DOI: 10.1038/s41598-022-15767-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/29/2022] [Indexed: 11/09/2022] Open
Abstract
We develop here a novel modelling approach with the aim of closing the conceptual gap between tumour-level metabolic processes and the metabolic processes occurring in individual cancer cells. In particular, the metabolism in hepatocellular carcinoma derived cell lines (HEPG2 cells) has been well characterized but implementations of multiscale models integrating this known metabolism have not been previously reported. We therefore extend a previously published multiscale model of vascular tumour growth, and integrate it with an experimentally verified network of central metabolism in HEPG2 cells. This resultant combined model links spatially heterogeneous vascular tumour growth with known metabolic networks within tumour cells and accounts for blood flow, angiogenesis, vascular remodelling and nutrient/growth factor transport within a growing tumour, as well as the movement of, and interactions between normal and cancer cells. Model simulations report for the first time, predictions of spatially resolved time courses of core metabolites in HEPG2 cells. These simulations can be performed at a sufficient scale to incorporate clinically relevant features of different tumour systems using reasonable computational resources. Our results predict larger than expected temporal and spatial heterogeneity in the intracellular concentrations of glucose, oxygen, lactate pyruvate, f16bp and Acetyl-CoA. The integrated multiscale model developed here provides an ideal quantitative framework in which to study the relationship between dosage, timing, and scheduling of anti-neoplastic agents and the physiological effects of tumour metabolism at the cellular level. Such models, therefore, have the potential to inform treatment decisions when drug response is dependent on the metabolic state of individual cancer cells.
Collapse
Affiliation(s)
- Alexey Lapin
- Stuttgart Research Center Systems Biology, University Stuttgart, Stuttgart, Germany
- Institute of Chemical Process Engineering, University Stuttgart, Stuttgart, Germany
| | - Holger Perfahl
- Stuttgart Research Center Systems Biology, University Stuttgart, Stuttgart, Germany
| | - Harsh Vardhan Jain
- Department of Mathematics and Statistics, University of Minnesota Duluth, Duluth, MN, USA
| | - Matthias Reuss
- Stuttgart Research Center Systems Biology, University Stuttgart, Stuttgart, Germany.
| |
Collapse
|
32
|
Amereh M, Seyfoori A, Akbari M. In Vitro Brain Organoids and Computational Models to Study Cell Death in Brain Diseases. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2515:281-296. [PMID: 35776358 DOI: 10.1007/978-1-0716-2409-8_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Understanding the mechanisms underlying the formation and progression of brain diseases is challenging due to the vast variety of involved genetic/epigenetic factors and the complexity of the environment of the brain. Current preclinical monolayer culture systems fail to faithfully recapitulate the in vivo complexities of the brain. Organoids are three-dimensional (3D) culture systems that mimic much of the complexities of the brain including cell-cell and cell-matrix interactions. Complemented with a theoretical framework to model the dynamic interactions between different components of the brain, organoids can be used as a potential tool for studying disease progression, transport of therapeutic agents in tissues, drug screening, and toxicity analysis. In this chapter, we first report on the fabrication and use of a novel self-filling microwell arrays (SFMWs) platform that is self-filling and enables the formation of organoids with uniform size distributions. Next, we will introduce a mathematical framework that predicts the organoid growth, cell death, and the therapeutic responses of the organoids to different therapeutic agents. Through systematic investigations, the computational model can identify shortcomings of in vitro assays and reduce the time and effort required to improve preclinical tumor models' design. Lastly, the mathematical model provides new testable hypotheses and encourages mathematically driven experiments.
Collapse
Affiliation(s)
- Meitham Amereh
- Laboratory for Innovations in Microengineering (LiME), University of Victoria, Victoria, BC, Canada.,Department of Mechanical Engineering, University of Victoria, Victoria, BC, Canada
| | - Amir Seyfoori
- Laboratory for Innovations in Microengineering (LiME), University of Victoria, Victoria, BC, Canada.,Center for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, Victoria, BC, Canada
| | - Mohsen Akbari
- Laboratory for Innovations in Microengineering (LiME), University of Victoria, Victoria, BC, Canada. .,Center for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, Victoria, BC, Canada.
| |
Collapse
|
33
|
Bekker RA, Kim S, Pilon-Thomas S, Enderling H. Mathematical modeling of radiotherapy and its impact on tumor interactions with the immune system. Neoplasia 2022; 28:100796. [PMID: 35447601 PMCID: PMC9043662 DOI: 10.1016/j.neo.2022.100796] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 03/27/2022] [Accepted: 04/01/2022] [Indexed: 11/01/2022]
Abstract
Radiotherapy is a primary therapeutic modality widely utilized with curative intent. Traditionally tumor response was hypothesized to be due to high levels of cell death induced by irreparable DNA damage. However, the immunomodulatory aspect of radiation is now widely accepted. As such, interest into the combination of radiotherapy and immunotherapy is increasing, the synergy of which has the potential to improve tumor regression beyond that observed after either treatment alone. However, questions regarding the timing (sequential vs concurrent) and dose fractionation (hyper-, standard-, or hypo-fractionation) that result in improved anti-tumor immune responses, and thus potentially enhanced tumor inhibition, remain. Here we discuss the biological response to radiotherapy and its immunomodulatory properties before giving an overview of pre-clinical data and clinical trials concerned with answering these questions. Finally, we review published mathematical models of the impact of radiotherapy on tumor-immune interactions. Ranging from considering the impact of properties of the tumor microenvironment on the induction of anti-tumor responses, to the impact of choice of radiation site in the setting of metastatic disease, these models all have an underlying feature in common: the push towards personalized therapy.
Collapse
|
34
|
Evaluation of the Anti-Histoplasma capsulatum Activity of Indole and Nitrofuran Derivatives and Their Pharmacological Safety in Three-Dimensional Cell Cultures. Pharmaceutics 2022; 14:pharmaceutics14051043. [PMID: 35631629 PMCID: PMC9147190 DOI: 10.3390/pharmaceutics14051043] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/04/2022] [Accepted: 05/09/2022] [Indexed: 11/25/2022] Open
Abstract
Histoplasma capsulatum is a fungus that causes histoplasmosis. The increased evolution of microbial resistance and the adverse effects of current antifungals help new drugs to emerge. In this work, fifty-four nitrofurans and indoles were tested against the H. capsulatum EH-315 strain. Compounds with a minimum inhibitory concentration (MIC90) equal to or lower than 7.81 µg/mL were selected to evaluate their MIC90 on ATCC G217-B strain and their minimum fungicide concentration (MFC) on both strains. The quantification of membrane ergosterol, cell wall integrity, the production of reactive oxygen species, and the induction of death by necrosis–apoptosis was performed to investigate the mechanism of action of compounds 7, 11, and 32. These compounds could reduce the extracted sterol and induce necrotic cell death, similarly to itraconazole. Moreover, 7 and 11 damaged the cell wall, causing flaws in the contour (11), or changing the size and shape of the fungal cell wall (7). Furthermore, 7 and 32 induced reactive oxygen species (ROS) formation higher than 11 and control. Finally, the cytotoxicity was measured in two models of cell culture, i.e., monolayers (cells are flat) and a three-dimensional (3D) model, where they present a spheroidal conformation. Cytotoxicity assays in the 3D model showed a lower toxicity in the compounds than those performed on cell monolayers. Overall, these results suggest that derivatives of nitrofurans and indoles are promising compounds for the treatment of histoplasmosis.
Collapse
|
35
|
Tang TQ, Shah Z, Bonyah E, Jan R, Shutaywi M, Alreshidi N. Modeling and Analysis of Breast Cancer with Adverse Reactions of Chemotherapy Treatment through Fractional Derivative. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:5636844. [PMID: 35190752 PMCID: PMC8858052 DOI: 10.1155/2022/5636844] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 01/19/2022] [Indexed: 01/09/2023]
Abstract
The abnormal growth of cells in the breast is called malignancy or breast cancer; it is a life-threatening and dangerous cancer in women around the world. In the treatment of cancer, the doctors apply different techniques to stop cancer cell development, remove cancer cells through surgery, or kill cancer cells. In chemotherapy treatment, powerful drugs are used to kill abnormal cells; however, it has adverse reactions on the patient heart which is called cardiotoxicity. In this paper, we formulate the dynamics of cancer in the breast with adverse reactions of chemotherapy treatment on the heart of a patient in the fractional framework to visualize its dynamical behaviour. We listed the fundamental results of the fractional calculus for the analysis of our model. The model is then analyzed for the basic properties, and the existence and uniqueness of the proposed breast cancer system are investigated through fixed point theory. Furthermore, the Adams-Bashforth numerical technique is presented for the solution of fractional-order system to illustrate the time series of breast cancer model. The dynamical behaviour of different stages of breast cancer is then highlighted numerically to show the effect of fractional-order ϑ and to visualize the role of input parameter on the dynamics of breast cancer.
Collapse
Affiliation(s)
- Tao-Qian Tang
- International Intercollegiate Ph.D. Program, National Tsing Hua University, Hsinchu 30013, Taiwan
- Department of Internal Medicine, E-Da Hospital, Kaohsiung 82445, Taiwan
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan
- Department of Family and Community Medicine, E-Da Hospital, Kaohsiung 82445, Taiwan
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Zahir Shah
- Department of Mathematical Sciences, University of Lakki Marwat, Lakki Marwat, 28420 KPK, Pakistan
| | - Ebenezer Bonyah
- Department of Mathematics Education, University of Education Winneba Kumasi (Kumasicompus), Kumasi 00233, Ghana
| | - Rashid Jan
- Department of Mathematics, University of Swabi, Swabi, 23561 KPK, Pakistan
| | - Meshal Shutaywi
- King Abdulaziz University, College of Science & Arts, Department of Mathematics, Rabigh, Saudi Arabia
| | - Nasser Alreshidi
- Department of Mathematics College of Science Northern Border University, Arar 73222, Saudi Arabia
| |
Collapse
|
36
|
Mohammadi M, Aghanajafi C, Soltani M, Raahemifar K. Numerical Investigation on the Anti-Angiogenic Therapy-Induced Normalization in Solid Tumors. Pharmaceutics 2022; 14:363. [PMID: 35214095 PMCID: PMC8877966 DOI: 10.3390/pharmaceutics14020363] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/29/2022] [Accepted: 01/31/2022] [Indexed: 01/27/2023] Open
Abstract
This study numerically analyzes the fluid flow and solute transport in a solid tumor to comprehensively examine the consequence of normalization induced by anti-angiogenic therapy on drug delivery. The current study leads to a more accurate model in comparison to previous research, as it incorporates a non-homogeneous real-human solid tumor including necrotic, semi-necrotic, and well-vascularized regions. Additionally, the model considers the effects of concurrently chemotherapeutic agents (three macromolecules of IgG, F(ab')2, and F(ab')) and different normalization intensities in various tumor sizes. Examining the long-term influence of normalization on the quality of drug uptake by necrotic area is another contribution of the present study. Results show that normalization decreases the interstitial fluid pressure (IFP) and spreads the pressure gradient and non-zero interstitial fluid velocity (IFV) into inner areas. Subsequently, wash-out of the drug from the tumor periphery is decreased. It is also demonstrated that normalization can improve the distribution of solute concentration in the interstitium. The efficiency of normalization is introduced as a function of the time course of perfusion, which depends on the tumor size, drug type, as well as normalization intensity, and consequently on the dominant mechanism of drug delivery. It is suggested to accompany anti-angiogenic therapy by F(ab') in large tumor size (Req=2.79 cm) to improve reservoir behavior benefit from normalization. However, IgG is proposed as the better option in the small tumor (Req=0.46 cm), in which normalization finds the opportunity of enhancing uniformity of IgG average exposure by 22%. This study could provide a perspective for preclinical and clinical trials on how to take advantage of normalization, as an adjuvant treatment, in improving drug delivery into a non-homogeneous solid tumor.
Collapse
Affiliation(s)
- Mahya Mohammadi
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran 19967-15433, Iran; (M.M.); (C.A.)
- Department of Applied Mathematics, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Cyrus Aghanajafi
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran 19967-15433, Iran; (M.M.); (C.A.)
| | - M. Soltani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran 19967-15433, Iran; (M.M.); (C.A.)
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
- Advanced Bioengineering Initiative Center, Multidisciplinary International Complex, K. N. Toosi University of Technology, Tehran 14176-14411, Iran
- Centre for Biotechnology and Bioengineering (CBB), University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Kaamran Raahemifar
- Data Science and Artificial Intelligence Program, College of Information Sciences and Technology (IST), Penn State University, State College, PA 16801, USA;
- School of Optometry and Vision Science, Faculty of Science, University of Waterloo, 200 University Ave W, Waterloo, ON N2L 3G1, Canada
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue W, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
37
|
de los Reyes AA, Kim Y. Optimal regulation of tumour-associated neutrophils in cancer progression. ROYAL SOCIETY OPEN SCIENCE 2022; 9:210705. [PMID: 35127110 PMCID: PMC8808100 DOI: 10.1098/rsos.210705] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 11/19/2021] [Indexed: 06/14/2023]
Abstract
In a tumour microenvironment, tumour-associated neutrophils could display two opposing differential phenotypes: anti-tumour (N1) and pro-tumour (N2) effector cells. Converting N2 to N1 neutrophils provides innovative therapies for cancer treatment. In this study, a mathematical model for N1-N2 dynamics describing the cancer survival and immune inhibition in response to TGF-β and IFN-β is considered. The effects of exogenous intervention of TGF-β inhibitor and IFN-β are examined in order to enhance N1 recruitment to combat tumour progression. Our approach employs optimal control theory to determine drug infusion protocols that could minimize tumour volume with least administration cost possible. Four optimal control scenarios corresponding to different therapeutic strategies are explored, namely, TGF-β inhibitor control only, IFN-β control only, concomitant TGF-β inhibitor and IFN-β controls, and alternating TGF-β inhibitor and IFN-β controls. For each scheme, different initial conditions are varied to depict different pathophysiological condition of a cancer patient, leading to adaptive treatment schedule. TGF-β inhibitor and IFN-β drug dosages, total drug amount, infusion times and relative cost of drug administrations are obtained under various circumstances. The control strategies achieved could guide in designing individualized therapeutic protocols.
Collapse
Affiliation(s)
- Aurelio A. de los Reyes
- Biomedical Mathematics Group, Pioneer Research Center for Mathematical and Computational Sciences, Institute for Basic Science, Daejeon 34126, Republic of Korea
- Institute of Mathematics, University of the Philippines Diliman, Quezon City 1101, Philippines
| | - Yangjin Kim
- Department of Mathematics, Konkuk University, Seoul 05029, Republic of Korea
- Mathematical Biosciences Institute, Columbus, OH 43210, USA
| |
Collapse
|
38
|
Abstract
AbstractTumour spheroid experiments are routinely used to study cancer progression and treatment. Various and inconsistent experimental designs are used, leading to challenges in interpretation and reproducibility. Using multiple experimental designs, live-dead cell staining, and real-time cell cycle imaging, we measure necrotic and proliferation-inhibited regions in over 1000 4D tumour spheroids (3D space plus cell cycle status). By intentionally varying the initial spheroid size and temporal sampling frequencies across multiple cell lines, we collect an abundance of measurements of internal spheroid structure. These data are difficult to compare and interpret. However, using an objective mathematical modelling framework and statistical identifiability analysis we quantitatively compare experimental designs and identify design choices that produce reliable biological insight. Measurements of internal spheroid structure provide the most insight, whereas varying initial spheroid size and temporal measurement frequency is less important. Our general framework applies to spheroids grown in different conditions and with different cell types.
Collapse
|
39
|
Agossou C, Atchadé MN, Djibril AM, Kurisheva SV. Mathematical modeling and machine learning for public health decision-making: the case of breast cancer in Benin. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2022; 19:1697-1720. [PMID: 35135225 DOI: 10.3934/mbe.2022080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Breast cancer is the most common type of cancer in women. Its mortality rate is high due to late detection and cardiotoxic effects of chemotherapy. In this work, we used the Support Vector Machine (SVM) method to classify tumors and proposed a new mathematical model of the patient dynamics of the breast cancer population. Numerical simulations were performed to study the behavior of the solutions around the equilibrium point. The findings revealed that the equilibrium point is stable regardless of the initial conditions. Moreover, this study will help public health decision-making as the results can be used to minimize the number of cardiotoxic patients and increase the number of recovered patients after chemotherapy.
Collapse
Affiliation(s)
- Cyrille Agossou
- National Higher School of Mathematics Genius and Modelization, National University of Sciences, Technologies, Engineering and Mathematics, Abomey, Benin Republic
| | - Mintodê Nicodème Atchadé
- National Higher School of Mathematics Genius and Modelization, National University of Sciences, Technologies, Engineering and Mathematics, Abomey, Benin Republic
- University of Abomey-Calavi/ International Chair in Mathematical Physics and Applications (ICMPA : UNESCO-Chair), 072 BP 50 Cotonou, Benin Republic
- Saint-Petersburg State University of Economics, Department of Statistics and Econometrics, Russian Federation
| | - Aliou Moussa Djibril
- National Higher School of Mathematics Genius and Modelization, National University of Sciences, Technologies, Engineering and Mathematics, Abomey, Benin Republic
| | | |
Collapse
|
40
|
Cancer modelling as fertile ground for new mathematical challenges. Phys Life Rev 2022; 40:3-5. [DOI: 10.1016/j.plrev.2022.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/17/2022] [Indexed: 12/17/2022]
|
41
|
Browning AP, Sharp JA, Murphy RJ, Gunasingh G, Lawson B, Burrage K, Haass NK, Simpson M. Quantitative analysis of tumour spheroid structure. eLife 2021; 10:e73020. [PMID: 34842141 PMCID: PMC8741212 DOI: 10.7554/elife.73020] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/26/2021] [Indexed: 11/25/2022] Open
Abstract
Tumour spheroids are common in vitro experimental models of avascular tumour growth. Compared with traditional two-dimensional culture, tumour spheroids more closely mimic the avascular tumour microenvironment where spatial differences in nutrient availability strongly influence growth. We show that spheroids initiated using significantly different numbers of cells grow to similar limiting sizes, suggesting that avascular tumours have a limiting structure; in agreement with untested predictions of classical mathematical models of tumour spheroids. We develop a novel mathematical and statistical framework to study the structure of tumour spheroids seeded from cells transduced with fluorescent cell cycle indicators, enabling us to discriminate between arrested and cycling cells and identify an arrested region. Our analysis shows that transient spheroid structure is independent of initial spheroid size, and the limiting structure can be independent of seeding density. Standard experimental protocols compare spheroid size as a function of time; however, our analysis suggests that comparing spheroid structure as a function of overall size produces results that are relatively insensitive to variability in spheroid size. Our experimental observations are made using two melanoma cell lines, but our modelling framework applies across a wide range of spheroid culture conditions and cell lines.
Collapse
Affiliation(s)
- Alexander P Browning
- School of Mathematical Sciences, Queensland University of TechnologyBrisbaneAustralia
- ARC Centre of Excellence for Mathematical and Statistical Frontiers, Queensland University of TechnologyMelbourneAustralia
| | - Jesse A Sharp
- School of Mathematical Sciences, Queensland University of TechnologyBrisbaneAustralia
- ARC Centre of Excellence for Mathematical and Statistical Frontiers, Queensland University of TechnologyMelbourneAustralia
| | - Ryan J Murphy
- School of Mathematical Sciences, Queensland University of TechnologyBrisbaneAustralia
| | - Gency Gunasingh
- The University of Queensland Diamantina Institute, The University of QueenslandBrisbaneAustralia
| | - Brodie Lawson
- School of Mathematical Sciences, Queensland University of TechnologyBrisbaneAustralia
- ARC Centre of Excellence for Mathematical and Statistical Frontiers, Queensland University of TechnologyMelbourneAustralia
| | - Kevin Burrage
- School of Mathematical Sciences, Queensland University of TechnologyBrisbaneAustralia
- ARC Centre of Excellence for Mathematical and Statistical Frontiers, Queensland University of TechnologyMelbourneAustralia
- Department of Computer Science, University of OxfordOxfordUnited Kingdom
| | - Nikolas K Haass
- The University of Queensland Diamantina Institute, The University of QueenslandBrisbaneAustralia
| | - Matthew Simpson
- School of Mathematical Sciences, Queensland University of TechnologyBrisbaneAustralia
| |
Collapse
|
42
|
Reye G, Huang X, Haupt LM, Murphy RJ, Northey JJ, Thompson EW, Momot KI, Hugo HJ. Mechanical Pressure Driving Proteoglycan Expression in Mammographic Density: a Self-perpetuating Cycle? J Mammary Gland Biol Neoplasia 2021; 26:277-296. [PMID: 34449016 PMCID: PMC8566410 DOI: 10.1007/s10911-021-09494-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 07/05/2021] [Indexed: 12/23/2022] Open
Abstract
Regions of high mammographic density (MD) in the breast are characterised by a proteoglycan (PG)-rich fibrous stroma, where PGs mediate aligned collagen fibrils to control tissue stiffness and hence the response to mechanical forces. Literature is accumulating to support the notion that mechanical stiffness may drive PG synthesis in the breast contributing to MD. We review emerging patterns in MD and other biological settings, of a positive feedback cycle of force promoting PG synthesis, such as in articular cartilage, due to increased pressure on weight bearing joints. Furthermore, we present evidence to suggest a pro-tumorigenic effect of increased mechanical force on epithelial cells in contexts where PG-mediated, aligned collagen fibrous tissue abounds, with implications for breast cancer development attributable to high MD. Finally, we summarise means through which this positive feedback mechanism of PG synthesis may be intercepted to reduce mechanical force within tissues and thus reduce disease burden.
Collapse
Affiliation(s)
- Gina Reye
- School of Biomedical Sciences, Gardens Point, Queensland University of Technology (QUT), Kelvin Grove, QLD, 4059, Australia
- Translational Research Institute, Woolloongabba, QLD, Australia
| | - Xuan Huang
- School of Biomedical Sciences, Gardens Point, Queensland University of Technology (QUT), Kelvin Grove, QLD, 4059, Australia
- Translational Research Institute, Woolloongabba, QLD, Australia
| | - Larisa M Haupt
- Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical Sciences, Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), 60 Musk Ave, Kelvin Grove, QLD, 4059, Australia
| | - Ryan J Murphy
- School of Mathematical Sciences, Gardens Point, Queensland University of Technology (QUT), Kelvin Grove, QLD, Australia
| | - Jason J Northey
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Erik W Thompson
- School of Biomedical Sciences, Gardens Point, Queensland University of Technology (QUT), Kelvin Grove, QLD, 4059, Australia
- Translational Research Institute, Woolloongabba, QLD, Australia
| | - Konstantin I Momot
- School of Chemistry and Physics, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Honor J Hugo
- School of Biomedical Sciences, Gardens Point, Queensland University of Technology (QUT), Kelvin Grove, QLD, 4059, Australia.
- Translational Research Institute, Woolloongabba, QLD, Australia.
| |
Collapse
|
43
|
Mascheroni P, Savvopoulos S, Alfonso JCL, Meyer-Hermann M, Hatzikirou H. Improving personalized tumor growth predictions using a Bayesian combination of mechanistic modeling and machine learning. COMMUNICATIONS MEDICINE 2021; 1:19. [PMID: 35602187 PMCID: PMC9053281 DOI: 10.1038/s43856-021-00020-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/08/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND In clinical practice, a plethora of medical examinations are conducted to assess the state of a patient's pathology producing a variety of clinical data. However, investigation of these data faces two major challenges. Firstly, we lack the knowledge of the mechanisms involved in regulating these data variables, and secondly, data collection is sparse in time since it relies on patient's clinical presentation. The former limits the predictive accuracy of clinical outcomes for any mechanistic model. The latter restrains any machine learning algorithm to accurately infer the corresponding disease dynamics. METHODS Here, we propose a novel method, based on the Bayesian coupling of mathematical modeling and machine learning, aiming at improving individualized predictions by addressing the aforementioned challenges. RESULTS We evaluate the proposed method on a synthetic dataset for brain tumor growth and analyze its performance in predicting two relevant clinical outputs. The method results in improved predictions in almost all simulated patients, especially for those with a late clinical presentation (>95% patients show improvements compared to standard mathematical modeling). In addition, we test the methodology in two additional settings dealing with real patient cohorts. In both cases, namely cancer growth in chronic lymphocytic leukemia and ovarian cancer, predictions show excellent agreement with reported clinical outcomes (around 60% reduction of mean squared error). CONCLUSIONS We show that the combination of machine learning and mathematical modeling approaches can lead to accurate predictions of clinical outputs in the context of data sparsity and limited knowledge of disease mechanisms.
Collapse
Affiliation(s)
- Pietro Mascheroni
- Braunschweig Integrated Centre of Systems Biology and Helmholtz Centre for Infectious Research, Braunschweig, Germany
| | - Symeon Savvopoulos
- grid.5596.f0000 0001 0668 7884KU Leuven, Department of Chemical Engineering, Leuven, Belgium
| | - Juan Carlos López Alfonso
- Braunschweig Integrated Centre of Systems Biology and Helmholtz Centre for Infectious Research, Braunschweig, Germany
| | - Michael Meyer-Hermann
- Braunschweig Integrated Centre of Systems Biology and Helmholtz Centre for Infectious Research, Braunschweig, Germany ,Centre for Individualized Infection Medicine, Hannover, Germany ,grid.6738.a0000 0001 1090 0254Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Haralampos Hatzikirou
- grid.440568.b0000 0004 1762 9729Mathematics Department, Khalifa University, Abu Dhabi, UAE ,grid.4488.00000 0001 2111 7257Centre for Information Services and High Performance Computing, TU Dresden, Dresden, Germany
| |
Collapse
|
44
|
Mohammadi H, Kheshti M. Long-life control of tumor growth via synchronizing to a less severe case. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2021.102727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
45
|
In-Silico Modeling of Tumor Spheroid Formation and Growth. MICROMACHINES 2021; 12:mi12070749. [PMID: 34202262 PMCID: PMC8303756 DOI: 10.3390/mi12070749] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 12/20/2022]
Abstract
Mathematical modeling has significant potential for understanding of biological models of cancer and to accelerate the progress in cross-disciplinary approaches of cancer treatment. In mathematical biology, solid tumor spheroids are often studied as preliminary in vitro models of avascular tumors. The size of spheroids and their cell number are easy to track, making them a simple in vitro model to investigate tumor behavior, quantitatively. The growth of solid tumors is comprised of three main stages: transient formation, monotonic growth and a plateau phase. The last two stages are extensively studied. However, the initial transient formation phase is typically missing from the literature. This stage is important in the early dynamics of growth, formation of clonal sub-populations, etc. In the current work, this transient formation is modeled by a reaction–diffusion partial differential equation (PDE) for cell concentration, coupled with an ordinary differential equation (ODE) for the spheroid radius. Analytical and numerical solutions of the coupled equations were obtained for the change in the radius of tumor spheroids over time. Human glioblastoma (hGB) cancer cells (U251 and U87) were spheroid cultured to validate the model prediction. Results of this study provide insight into the mechanism of development of solid tumors at their early stage of formation.
Collapse
|
46
|
Fiandaca G, Delitala M, Lorenzi T. A Mathematical Study of the Influence of Hypoxia and Acidity on the Evolutionary Dynamics of Cancer. Bull Math Biol 2021; 83:83. [PMID: 34129102 PMCID: PMC8205926 DOI: 10.1007/s11538-021-00914-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 05/25/2021] [Indexed: 10/31/2022]
Abstract
Hypoxia and acidity act as environmental stressors promoting selection for cancer cells with a more aggressive phenotype. As a result, a deeper theoretical understanding of the spatio-temporal processes that drive the adaptation of tumour cells to hypoxic and acidic microenvironments may open up new avenues of research in oncology and cancer treatment. We present a mathematical model to study the influence of hypoxia and acidity on the evolutionary dynamics of cancer cells in vascularised tumours. The model is formulated as a system of partial integro-differential equations that describe the phenotypic evolution of cancer cells in response to dynamic variations in the spatial distribution of three abiotic factors that are key players in tumour metabolism: oxygen, glucose and lactate. The results of numerical simulations of a calibrated version of the model based on real data recapitulate the eco-evolutionary spatial dynamics of tumour cells and their adaptation to hypoxic and acidic microenvironments. Moreover, such results demonstrate how nonlinear interactions between tumour cells and abiotic factors can lead to the formation of environmental gradients which select for cells with phenotypic characteristics that vary with distance from intra-tumour blood vessels, thus promoting the emergence of intra-tumour phenotypic heterogeneity. Finally, our theoretical findings reconcile the conclusions of earlier studies by showing that the order in which resistance to hypoxia and resistance to acidity arise in tumours depend on the ways in which oxygen and lactate act as environmental stressors in the evolutionary dynamics of cancer cells.
Collapse
Affiliation(s)
- Giada Fiandaca
- Department of Mathematical Sciences "G. L. Lagrange", Politecnico di Torino, Corso Duca degli Abruzzi, 24, Torino, Italy
| | - Marcello Delitala
- Department of Mathematical Sciences "G. L. Lagrange", Politecnico di Torino, Corso Duca degli Abruzzi, 24, Torino, Italy
| | - Tommaso Lorenzi
- Department of Mathematical Sciences "G. L. Lagrange", Politecnico di Torino, Corso Duca degli Abruzzi, 24, Torino, Italy.
| |
Collapse
|
47
|
Yan F, Gunay G, Valerio TI, Wang C, Wilson JA, Haddad MS, Watson M, Connell MO, Davidson N, Fung KM, Acar H, Tang Q. Characterization and quantification of necrotic tissues and morphology in multicellular ovarian cancer tumor spheroids using optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2021; 12:3352-3371. [PMID: 34221665 PMCID: PMC8221959 DOI: 10.1364/boe.425512] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/03/2021] [Accepted: 05/07/2021] [Indexed: 05/02/2023]
Abstract
The three-dimensional (3D) tumor spheroid model is a critical tool for high-throughput ovarian cancer research and anticancer drug development in vitro. However, the 3D structure prevents high-resolution imaging of the inner side of the spheroids. We aim to visualize and characterize 3D morphological and physiological information of the contact multicellular ovarian tumor spheroids growing over time. We intend to further evaluate the distinctive evolutions of the tumor spheroid and necrotic tissue volumes in different cell numbers and determine the most appropriate mathematical model for fitting the growth of tumor spheroids and necrotic tissues. A label-free and noninvasive swept-source optical coherence tomography (SS-OCT) imaging platform was applied to obtain two-dimensional (2D) and 3D morphologies of ovarian tumor spheroids over 18 days. Ovarian tumor spheroids of two different initial cell numbers (5,000- and 50,000- cells) were cultured and imaged (each day) over the time of growth in 18 days. Four mathematical models (Exponential-Linear, Gompertz, logistic, and Boltzmann) were employed to describe the growth kinetics of the tumor spheroids volume and necrotic tissues. Ovarian tumor spheroids have different growth curves with different initial cell numbers and their growths contain different stages with various growth rates over 18 days. The volumes of 50,000-cells spheroids and the corresponding necrotic tissues are larger than that of the 5,000-cells spheroids. The formation of necrotic tissue in 5,000-cells numbers is slower than that in the 50,000-cells ones. Moreover, the Boltzmann model exhibits the best fitting performance for the growth of tumor spheroids and necrotic tissues. Optical coherence tomography (OCT) can serve as a promising imaging modality to visualize and characterize morphological and physiological features of multicellular ovarian tumor spheroids. The Boltzmann model integrating with 3D OCT data of ovarian tumor spheroids provides great potential for high-throughput cancer research in vitro and aiding in drug development.
Collapse
Affiliation(s)
- Feng Yan
- Stephenson School of Biomedical Engineering, University of Oklahoma, OK 73019, USA
- Equal contribution
| | - Gokhan Gunay
- Stephenson School of Biomedical Engineering, University of Oklahoma, OK 73019, USA
- Equal contribution
| | - Trisha I Valerio
- Stephenson School of Biomedical Engineering, University of Oklahoma, OK 73019, USA
- Equal contribution
| | - Chen Wang
- Stephenson School of Biomedical Engineering, University of Oklahoma, OK 73019, USA
| | - Jayla A Wilson
- Stephenson School of Biomedical Engineering, University of Oklahoma, OK 73019, USA
| | - Majood S Haddad
- Stephenson School of Biomedical Engineering, University of Oklahoma, OK 73019, USA
| | - Maegan Watson
- Stephenson School of Biomedical Engineering, University of Oklahoma, OK 73019, USA
| | - Michael O Connell
- Stephenson School of Biomedical Engineering, University of Oklahoma, OK 73019, USA
| | - Noah Davidson
- Stephenson School of Biomedical Engineering, University of Oklahoma, OK 73019, USA
| | - Kar-Ming Fung
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City 73104, USA
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City 73104, USA
| | - Handan Acar
- Stephenson School of Biomedical Engineering, University of Oklahoma, OK 73019, USA
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City 73104, USA
| | - Qinggong Tang
- Stephenson School of Biomedical Engineering, University of Oklahoma, OK 73019, USA
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City 73104, USA
| |
Collapse
|
48
|
Celora GL, Byrne HM, Zois CE, Kevrekidis PG. Phenotypic variation modulates the growth dynamics and response to radiotherapy of solid tumours under normoxia and hypoxia. J Theor Biol 2021; 527:110792. [PMID: 34087269 DOI: 10.1016/j.jtbi.2021.110792] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/25/2021] [Accepted: 05/30/2021] [Indexed: 12/24/2022]
Abstract
In cancer, treatment failure and disease recurrence have been associated with small subpopulations of cancer cells with a stem-like phenotype. In this paper, we develop and investigate a phenotype-structured model of solid tumour growth in which cells are structured by a stemness level, which varies continuously between stem-like and terminally differentiated behaviours. Cell evolution is driven by proliferation and death, as well as advection and diffusion with respect to the stemness structure variable. Here, the magnitude and sign of the advective flux are allowed to vary with the oxygen level. We use the model to investigate how the environment, in particular oxygen levels, affects the tumour's population dynamics and composition, and its response to radiotherapy. We use a combination of numerical and analytical techniques to quantify how under physiological oxygen levels the cells evolve to a differentiated phenotype and under low oxygen level (i.e., hypoxia) they de-differentiate. Under normoxia, the proportion of cancer stem cells is typically negligible and the tumour may ultimately become extinct whereas under hypoxia cancer stem cells comprise a dominant proportion of the tumour volume, enhancing radio-resistance and favouring the tumour's long-term survival. We then investigate how such phenotypic heterogeneity impacts the tumour's response to treatment with radiotherapy under normoxia and hypoxia. Of particular interest is establishing how the presence of radio-resistant cancer stem cells can facilitate a tumour's regrowth following radiotherapy. We also use the model to show how radiation-induced changes in tumour oxygen levels can give rise to complex re-growth dynamics. For example, transient periods of hypoxia induced by damage to tumour blood vessels may rescue the cancer cell population from extinction and drive secondary regrowth.
Collapse
Affiliation(s)
- Giulia L Celora
- Mathematical Institute, University of Oxford, Oxford, United Kingdom.
| | - Helen M Byrne
- Mathematical Institute, University of Oxford, Oxford, United Kingdom
| | - Christos E Zois
- Molecular Oncology Laboratories, Department of Oncology, Oxford University, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, United Kingdom; Department of Radiotherapy and Oncology, School of Health, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - P G Kevrekidis
- Department of Mathematics & Statistics, University of Massachusetts, Amherst 01003, USA
| |
Collapse
|
49
|
Nardini JT, Stolz BJ, Flores KB, Harrington HA, Byrne HM. Topological data analysis distinguishes parameter regimes in the Anderson-Chaplain model of angiogenesis. PLoS Comput Biol 2021; 17:e1009094. [PMID: 34181657 PMCID: PMC8270459 DOI: 10.1371/journal.pcbi.1009094] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 07/09/2021] [Accepted: 05/18/2021] [Indexed: 12/27/2022] Open
Abstract
Angiogenesis is the process by which blood vessels form from pre-existing vessels. It plays a key role in many biological processes, including embryonic development and wound healing, and contributes to many diseases including cancer and rheumatoid arthritis. The structure of the resulting vessel networks determines their ability to deliver nutrients and remove waste products from biological tissues. Here we simulate the Anderson-Chaplain model of angiogenesis at different parameter values and quantify the vessel architectures of the resulting synthetic data. Specifically, we propose a topological data analysis (TDA) pipeline for systematic analysis of the model. TDA is a vibrant and relatively new field of computational mathematics for studying the shape of data. We compute topological and standard descriptors of model simulations generated by different parameter values. We show that TDA of model simulation data stratifies parameter space into regions with similar vessel morphology. The methodologies proposed here are widely applicable to other synthetic and experimental data including wound healing, development, and plant biology.
Collapse
Affiliation(s)
- John T. Nardini
- Department of Mathematics, North Carolina State University, Raleigh, North Carolina, United States of America
| | | | - Kevin B. Flores
- Department of Mathematics, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Heather A. Harrington
- Mathematical Institute, University of Oxford, Oxford, United Kingdom
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Helen M. Byrne
- Mathematical Institute, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
50
|
Wang J, Kural MH, Wu J, Leiby KL, Mishra V, Lysyy T, Li G, Luo J, Greaney A, Tellides G, Qyang Y, Huang N, Niklason LE. An ex vivo physiologic and hyperplastic vessel culture model to study intra-arterial stent therapies. Biomaterials 2021; 275:120911. [PMID: 34087584 DOI: 10.1016/j.biomaterials.2021.120911] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 11/19/2022]
Abstract
Conventional in vitro methods for biological evaluation of intra-arterial devices such as stents fail to accurately predict cytotoxicity and remodeling events. An ex vivo flow-tunable vascular bioreactor system (VesselBRx), comprising intra- and extra-luminal monitoring capabilities, addresses these limitations. VesselBRx mimics the in vivo physiological, hyperplastic, and cytocompatibility events of absorbable magnesium (Mg)-based stents in ex vivo stent-treated porcine and human coronary arteries, with in-situ and real-time monitoring of local stent degradation effects. Unlike conventional, static cell culture, the VesselBRx perfusion system eliminates unphysiologically high intracellular Mg2+ concentrations and localized O2 consumption resulting from stent degradation. Whereas static stented arteries exhibited only 20.1% cell viability and upregulated apoptosis, necrosis, metallic ion, and hypoxia-related gene signatures, stented arteries in VesselBRx showed almost identical cell viability to in vivo rabbit models (~94.0%). Hyperplastic intimal remodeling developed in unstented arteries subjected to low shear stress, but was inhibited by Mg-based stents in VesselBRx, similarly to in vivo. VesselBRx represents a critical advance from the current static culture standard of testing absorbable vascular implants.
Collapse
Affiliation(s)
- Juan Wang
- Department of Anesthesiology, School of Medicine, Yale University, New Haven, CT, 06519, USA
| | - Mehmet H Kural
- Department of Anesthesiology, School of Medicine, Yale University, New Haven, CT, 06519, USA
| | - Jonathan Wu
- Department of Biomedical Engineering, School of Medicine, Yale University, New Haven, CT, 06519, USA
| | - Katherine L Leiby
- Department of Biomedical Engineering, School of Medicine, Yale University, New Haven, CT, 06519, USA
| | - Vinayak Mishra
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, 06269, USA
| | - Taras Lysyy
- Department of Surgery, School of Medicine, Yale University, New Haven, CT, 06519, USA
| | - Guangxin Li
- Department of Surgery, School of Medicine, Yale University, New Haven, CT, 06519, USA
| | - Jiesi Luo
- Yale Cardiovascular Research Center, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT06519, USA
| | - Allison Greaney
- Department of Biomedical Engineering, School of Medicine, Yale University, New Haven, CT, 06519, USA
| | - George Tellides
- Department of Surgery, School of Medicine, Yale University, New Haven, CT, 06519, USA
| | - Yibing Qyang
- Yale Cardiovascular Research Center, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT06519, USA
| | - Nan Huang
- School of Material Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Laura E Niklason
- Department of Anesthesiology, School of Medicine, Yale University, New Haven, CT, 06519, USA; Department of Biomedical Engineering, School of Medicine, Yale University, New Haven, CT, 06519, USA.
| |
Collapse
|