1
|
Xu L, Xu Y, Wang G, Tu X, Xu J, Zheng H, Wang D, Su Y, Zhang XK, Zeng Z. Halogenated retinoid derivatives as dual RARα and RXRα modulators for treating acute promyelocytic leukemia cells. Eur J Med Chem 2024; 277:116779. [PMID: 39163777 DOI: 10.1016/j.ejmech.2024.116779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/06/2024] [Accepted: 08/12/2024] [Indexed: 08/22/2024]
Abstract
Acute promyelocytic leukemia (APL), a distinctive subtype of acute myeloid leukemia (AML), is characterized by the t(15; 17) translocation forming the PML-RARα fusion protein. Recent studies have revealed a crucial role of retinoid X receptor α (RXRα) in PML-RARα's tumorigenesis. This necessitates the development of dual RARα and RXRα targeting compounds for treating APL. Here, we developed a pair of brominated retinoid isomers, 5a and 5b, exhibiting RARα agonistic selectivity among the RAR subtypes and RXRα partial agonistic activities. In the treatment of APL cells, low doses (RARα activation range) of 5a and 5b degrade PML-RARα and strongly induce differentiation, while higher doses (RXRα activation range) induce G2/M arrest and apoptosis in both all-trans retinoic acid (ATRA)-sensitive and resistant cells. We replaced the bromine in 5a with chlorine or iodine to obtain compounds 7 or 8a. Interestingly, the chlorinated compound 7 tends to activate RXRα and induce G2/M arrest and apoptosis, while the iodinated compound 8a tends to activate RARα and induce differentiation. Together, our work underscores several advantages and characteristics of halogens in the rational design of RARα and RXRα ligands, offering three promising drug candidates for treating both ATRA-sensitive and resistant APL.
Collapse
Affiliation(s)
- Lin Xu
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, 361102, Fujian, China
| | - Yunqing Xu
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, 361102, Fujian, China
| | - Guijiang Wang
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, 361102, Fujian, China
| | - Xuhuang Tu
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, 361102, Fujian, China
| | - Jiale Xu
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, 361102, Fujian, China
| | - Hongzhi Zheng
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, 361102, Fujian, China
| | - Daohu Wang
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, 361102, Fujian, China
| | - Ying Su
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, 361102, Fujian, China; NucMito Pharmaceuticals Co., Ltd., Xiamen, 361000, China
| | - Xiao-Kun Zhang
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, 361102, Fujian, China.
| | - Zhiping Zeng
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, 361102, Fujian, China.
| |
Collapse
|
2
|
Xie S, Liu H, Zhu S, Chen Z, Wang R, Zhang W, Xian H, Xiang R, Xia X, Sun Y, Long J, Wang Y, Wang M, Wang Y, Yu Y, Huang Z, Lu C, Xu Z, Liu H. Arsenic trioxide and p97 inhibitor synergize against acute myeloid leukemia by targeting nascent polypeptides and activating the ZAKα-JNK pathway. Cancer Gene Ther 2024; 31:1486-1497. [PMID: 39122830 PMCID: PMC11489083 DOI: 10.1038/s41417-024-00818-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024]
Abstract
Arsenic trioxide (ATO) has exhibited remarkable efficacy in treating acute promyelocytic leukemia (APL), primarily through promoting the degradation of the PML-RARα fusion protein. However, ATO alone fails to confer any survival benefit to non-APL acute myeloid leukemia (AML) patients and exhibits limited efficacy when used in combination with other agents. Here, we explored the general toxicity mechanisms of ATO in APL and potential drugs that could be combined with ATO to exhibit synergistic lethal effects on other AML. We demonstrated that PML-RARα degradation and ROS upregulation were insufficient to cause APL cell death. Based on the protein synthesis of different AML cells and their sensitivity to ATO, we established a correlation between ATO-induced cell death and protein synthesis. Our findings indicated that ATO induced cell death by damaging nascent polypeptides and causing ribosome stalling, accompanied by the activation of the ZAKα-JNK pathway. Furthermore, ATO-induced stress activated the GCN2-ATF4 pathway, and ribosome-associated quality control cleared damaged proteins with the assistance of p97. Importantly, our data revealed that inhibiting p97 enhanced the effectiveness of ATO in killing AML cells. These explorations paved the way for identifying optimal synthetic lethal drugs to enhance ATO treatment on non-APL AML.
Collapse
Affiliation(s)
- Shufeng Xie
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai, China.
| | - Hui Liu
- Key Laboratory of Pediatric Hematology & Oncology of the Ministry of Health of China, Department of Hematology & Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shouhai Zhu
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Zhihong Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai, China
| | - Ruiheng Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai, China
| | - Wenjie Zhang
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Huajian Xian
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai, China
| | - Rufang Xiang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai, China
- Department of General Practice, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoli Xia
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai, China
| | - Yong Sun
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai, China
| | - Jinlan Long
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yuanli Wang
- Department of Hematology, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, Hubei, China
| | - Minghui Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai, China
| | - Yixin Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai, China
| | - Yaoyifu Yu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai, China
| | - Zixuan Huang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai, China
| | - Chaoqun Lu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai, China
| | - Zhenshu Xu
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, China.
| | - Han Liu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai, China.
| |
Collapse
|
3
|
Shao XJ, Wang W, Xu AX, Qi XT, Cai MY, Du WX, Cao J, He QJ, Ying MD, Yang B. Palmitoyltransferase ZDHHC3 is essential for the oncogenic activity of PML/RARα in acute promyelocytic leukemia. Acta Pharmacol Sin 2024:10.1038/s41401-024-01371-z. [PMID: 39227737 DOI: 10.1038/s41401-024-01371-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 07/25/2024] [Indexed: 09/05/2024] Open
Abstract
The oncogenic fusion protein promyelocytic leukemia/retinoic acid receptor alpha (PML/RARα) is critical for acute promyelocytic leukemia (APL). PML/RARα initiates APL by blocking the differentiation and increasing the self-renewal of leukemic cells. The standard clinical therapies all-trans retinoic acid (ATRA) and arsenic trioxide (ATO), which induce PML/RARα proteolysis, have dramatically improved the prognosis of APL patients. However, the emergence of mutations conferring resistance to ATRA and ATO has created challenges in the treatment of APL patients. Exploring pathways that modulate the oncogenic activity of PML/RARα could help develop novel therapeutic strategies for APL, particularly for drug-resistant APL. Herein, we demonstrated for the first time that palmitoylation of PML/RARα was a critical determinant of its oncogenic activity. PML/RARα palmitoylation was found to be catalyzed mainly by the palmitoyltransferase ZDHHC3. Mechanistically, ZDHHC3-mediated palmitoylation regulated the oncogenic transcriptional activity of PML/RARα and APL pathogenesis. The knockdown or overexpression of ZDHHC3 had respective effects on the expression of proliferation- and differentiation-related genes. Consistently, the depletion or inhibition of ZDHHC3 could significantly arrest the malignant progression of APL, particularly drug-resistant APL, whereas ZDHHC3 overexpression appeared to have a promoting effect on the malignant progression of APL. Thus, our study not only reveals palmitoylation as a novel regulatory mechanism that modulates PML/RARα oncogenic activity but also identifies ZDHHC3 as a potential therapeutic target for APL, including drug-resistant APL.
Collapse
Affiliation(s)
- Xue-Jing Shao
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wei Wang
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ai-Xiao Xu
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiao-Tian Qi
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Min-Yi Cai
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wen-Xin Du
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ji Cao
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Qiao-Jun He
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Mei-Dan Ying
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- Cancer Center, Zhejiang University, Hangzhou, 310058, China.
- School of Medicine, Hangzhou City University, Hangzhou, 310015, China.
- Division of Hematology-Oncology, the Children's Hospital Zhejiang University School of Medicine, Hangzhou, 310015, China.
| | - Bo Yang
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- School of Medicine, Hangzhou City University, Hangzhou, 310015, China.
| |
Collapse
|
4
|
Zhang Y, Lou J, Liu Y, Jin P, Tan Y, Song H, Jin W, Wang D, Dong F, Wu S, Fang H, Chen S, Chen Z, Wang K. Phase separation of PML/RARα and BRD4 coassembled microspeckles governs transcriptional dysregulation in acute promyelocytic leukemia. Proc Natl Acad Sci U S A 2024; 121:e2406519121. [PMID: 39136995 PMCID: PMC11348160 DOI: 10.1073/pnas.2406519121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 07/12/2024] [Indexed: 08/29/2024] Open
Abstract
In acute promyelocytic leukemia (APL), the promyelocytic leukemia-retinoic acid receptor alpha (PML/RARα) fusion protein destroys PML nuclear bodies (NBs), leading to the formation of microspeckles. However, our understanding, largely learned from morphological observations, lacks insight into the mechanisms behind PML/RARα-mediated microspeckle formation and its role in APL leukemogenesis. This study presents evidence uncovering liquid-liquid phase separation (LLPS) as a key mechanism in the formation of PML/RARα-mediated microspeckles. This process is facilitated by the intrinsically disordered region containing a large portion of PML and a smaller segment of RARα. We demonstrate the coassembly of bromodomain-containing protein 4 (BRD4) within PML/RARα-mediated condensates, differing from wild-type PML-formed NBs. In the absence of PML/RARα, PML NBs and BRD4 puncta exist as two independent phases, but the presence of PML/RARα disrupts PML NBs and redistributes PML and BRD4 into a distinct phase, forming PML/RARα-assembled microspeckles. Genome-wide profiling reveals a PML/RARα-induced BRD4 redistribution across the genome, with preferential binding to super-enhancers and broad-promoters (SEBPs). Mechanistically, BRD4 is recruited by PML/RARα into nuclear condensates, facilitating BRD4 chromatin binding to exert transcriptional activation essential for APL survival. Perturbing LLPS through chemical inhibition (1, 6-hexanediol) significantly reduces chromatin co-occupancy of PML/RARα and BRD4, attenuating their target gene activation. Finally, a series of experimental validations in primary APL patient samples confirm that PML/RARα forms microspeckles through condensates, recruits BRD4 to coassemble condensates, and co-occupies SEBP regions. Our findings elucidate the biophysical, pathological, and transcriptional dynamics of PML/RARα-assembled microspeckles, underscoring the importance of BRD4 in mediating transcriptional activation that enables PML/RARα to initiate APL.
Collapse
MESH Headings
- Humans
- Leukemia, Promyelocytic, Acute/metabolism
- Leukemia, Promyelocytic, Acute/genetics
- Leukemia, Promyelocytic, Acute/pathology
- Transcription Factors/metabolism
- Transcription Factors/genetics
- Cell Cycle Proteins/metabolism
- Cell Cycle Proteins/genetics
- Oncogene Proteins, Fusion/metabolism
- Oncogene Proteins, Fusion/genetics
- Cell Line, Tumor
- Gene Expression Regulation, Leukemic
- Nuclear Proteins/metabolism
- Nuclear Proteins/genetics
- Promyelocytic Leukemia Protein/metabolism
- Promyelocytic Leukemia Protein/genetics
- Phase Separation
- Bromodomain Containing Proteins
Collapse
Affiliation(s)
- Yi Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Jiacheng Lou
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
- Department of Neurosurgery, Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Second Hospital of Dalian Medical University, Dalian116027, China
| | - Yabin Liu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Peng Jin
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Yun Tan
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Huan Song
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Wen Jin
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Dan Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Fangyi Dong
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Shishuang Wu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Hai Fang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Saijuan Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Zhu Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
- Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Kankan Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
- Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| |
Collapse
|
5
|
Wang J, Liang S, Zhu D, Ma X, Peng Q, Wang G, Wang Y, Chen T, Wu M, Hu TY, Zhang Y. Valence-Change MnO 2-Coated Arsenene Nanosheets as a Pin1 Inhibitor for Hepatocellular Carcinoma Treatment. J Am Chem Soc 2024; 146:21568-21582. [PMID: 39051165 PMCID: PMC11311233 DOI: 10.1021/jacs.4c05162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
The heterogeneity of hepatocellular carcinoma (HCC) can prevent effective treatment, emphasizing the need for more effective therapies. Herein, we employed arsenene nanosheets coated with manganese dioxide and polyethylene glycol (AMPNs) for the degradation of Pin1, which is universally overexpressed in HCC. By employing an "AND gate", AMPNs exhibited responsiveness toward excessive glutathione and hydrogen peroxide within the tumor microenvironment, thereby selectively releasing AsxOy to mitigate potential side effects of As2O3. Notably, AMPNs induced the suppressing Pin1 expression while simultaneously upregulation PD-L1, thereby eliciting a robust antitumor immune response and enhancing the efficacy of anti-PD-1/anti-PD-L1 therapy. The combination of AMPNs and anti-PD-1 synergistically enhanced tumor suppression and effectively induced long-lasting immune memory. This approach did not reveal As2O3-associated toxicity, indicating that arsenene-based nanotherapeutic could be employed to amplify the response rate of anti-PD-1/anti-PD-L1 therapy to improve the clinical outcomes of HCC patients and potentially other solid tumors (e.g., breast cancer) that are refractory to anti-PD-1/anti-PD-L1 therapy.
Collapse
Affiliation(s)
- Jingguo Wang
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong 510080, China
| | - Siping Liang
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong 510080, China
| | - Dongdong Zhu
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong 510080, China
| | - Xiaocao Ma
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong 510080, China
| | - Qin Peng
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong 510080, China
| | - Guanzhao Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangdong 510006, China
| | - Yuting Wang
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong 510080, China
| | - Tiantian Chen
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong 510080, China
| | - Minhao Wu
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong 510080, China
| | - Tony Y Hu
- Center of Cellular and Molecular Diagnosis, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Yuanqing Zhang
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong 510080, China
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangdong 510006, China
| |
Collapse
|
6
|
Plant G, Kirton A, Guilcher GMT, AlNajjar M, Mah K, Mitha AP, Riva-Cambrin J, Steele M. Aortic Valve Thrombus, Stroke, and Endovascular Thrombectomy in a Child With APML and Trisomy 21. J Pediatr Hematol Oncol 2024; 46:272-274. [PMID: 38857164 DOI: 10.1097/mph.0000000000002858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 02/29/2024] [Indexed: 06/12/2024]
Abstract
APML, a subtype of acute myeloid leukemia, is highly curable, with cure rates over 90%. Despite its therapeutic success, APML poses elevated bleeding risks due to frequent prior disseminated intravascular coagulation. Less commonly recognized but critical is the thrombotic risk. We document a unique pediatric case: a 13-year-old with trisomy 21 diagnosed with APML had an asymptomatic aortic valve thrombus leading to thromboembolic arterial ischemic stroke. Through endovascular thrombectomy, cerebral circulation was re-established, extracting a fibrin thrombus with APML cells. Neurological recovery was swift. This report underscores the importance of vigilance for thrombotic complications in APML, highlighting the potential severity of overlooked risks.
Collapse
Affiliation(s)
- Gayathri Plant
- Department of Critical Care Medicine, The Hospital for Sick Children, Toronto, ON
| | - Adam Kirton
- Departments of Pediatrics and Clinical Neurosciences
| | - Gregory M T Guilcher
- Pediatrics
- Sections of Pediatric Oncology and Blood and Marrow Transplant
- Oncology, Cumming School of Medicine
| | | | - Kandice Mah
- Section of Cardiology, BC Children's Hospital, Vancouver, BC, Canada
| | - Alim P Mitha
- Department of Clinical Neurosciences, Section of Neurosurgery, University of Calgary
| | - Jay Riva-Cambrin
- Department of Clinical Neurosciences, Section of Neurosurgery, University of Calgary
| | | |
Collapse
|
7
|
Gaela VM, Hsia HY, Joseph NA, Tzeng WY, Ting PC, Shen YL, Tsai CT, Boudier T, Chen LY. Orphan nuclear receptors-induced ALT-associated PML bodies are targets for ALT inhibition. Nucleic Acids Res 2024; 52:6472-6489. [PMID: 38752489 PMCID: PMC11194075 DOI: 10.1093/nar/gkae389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 04/23/2024] [Accepted: 05/08/2024] [Indexed: 06/25/2024] Open
Abstract
Orphan nuclear receptors (NRs), such as COUP-TF1, COUP-TF2, EAR2, TR2 and TR4, are implicated in telomerase-negative cancers that maintain their telomeres through the alternative lengthening of telomeres (ALT) mechanism. However, how telomere association of orphan NRs is involved in ALT activation remains unclear. Here, we demonstrate that telomeric tethering of orphan NRs in human fibroblasts initiates formation of ALT-associated PML bodies (APBs) and features of ALT activity, including ALT telomere DNA synthesis, telomere sister chromatid exchange, and telomeric C-circle generation, suggesting de novo ALT induction. Overexpression of orphan NRs exacerbates ALT phenotypes in ALT cells, while their depletion limits ALT. Orphan NRs initiate ALT via the zinc finger protein 827, suggesting the involvement of chromatin structure alterations for ALT activation. Furthermore, we found that orphan NRs and deficiency of the ALT suppressor ATRX-DAXX complex operate in concert to promote ALT activation. Moreover, PML depletion by gene knockout or arsenic trioxide treatment inhibited ALT induction in fibroblasts and ALT cancer cells, suggesting that APB formation underlies the orphan NR-induced ALT activation. Importantly, arsenic trioxide administration abolished APB formation and features of ALT activity in ALT cancer cell line-derived mouse xenografts, suggesting its potential for further therapeutic development to treat ALT cancers.
Collapse
Affiliation(s)
- Venus Marie Gaela
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 11529, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Hsuan-Yu Hsia
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Nithila A Joseph
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Wan-Yi Tzeng
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
- Insitute of Molecular and Cellular Biology, National Taiwan University, Taipei 106319, Taiwan
| | - Pin-Chao Ting
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei 11490, Taiwan
| | - Yi-Ling Shen
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Chia-Tsen Tsai
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 11529, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Thomas Boudier
- CENTURI multi-engineering platform, Aix-Marseille Université, Marseille 13288, France
| | - Liuh-Yow Chen
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 11529, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
8
|
Li R, Xue C, Pan Y, Li G, Huang Z, Xu J, Zhang J, Chen X, Hou L. Research on different compound combinations of Realgar-Indigo naturalis formula to reverse acute promyelocytic leukemia arsenic resistance by regulating autophagy through mTOR pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 326:117778. [PMID: 38310990 DOI: 10.1016/j.jep.2024.117778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/29/2023] [Accepted: 01/13/2024] [Indexed: 02/06/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In China, the Chinese patent drug Realgar-Indigo naturalis Formula (RIF) is utilized for the therapy of acute promyelocytic leukemia (APL). Comprising four traditional Chinese herb-Realgar, Indigo naturalis, Salvia miltiorrhiza, and Pseudostellaria heterophylla-it notably includes tetra-arsenic tetra-sulfide, indirubin, tanshinone IIa, and total saponins of Radix Pseudostellariae as its primary active components. Due to its arsenic content, RIF distinctly contributes to the therapy for APL. However, the challenge of arsenic resistance in APL patients complicates the clinical use of arsenic agents. Interestingly, RIF demonstrates a high remission rate in APL patients, suggesting that its efficacy is not significantly compromised by arsenic resistance. Yet, the current state of research on RIF's ability to reverse arsenic resistance remains unclear. AIM OF THE STUDY To investigate the mechanism of different combinations of the compound of RIF in reversing arsenic resistance in APL. MATERIALS AND METHODS The present study utilized the arsenic-resistant HL60-PMLA216V-RARα cell line to investigate the effects of various RIF compounds, namely tetra-arsenic tetra-sulfide (A), indirubin (I), tanshinone IIa (T), and total saponins of Radix Pseudostellariae (S). The assessment of cell viability, observation of cell morphology, and evaluation of cell apoptosis were performed. Furthermore, the mitochondrial membrane potential, changes in the levels of PMLA216V-RARα, apoptosis-related factors, and the PI3K/AKT/mTOR pathway were examined, along with autophagy in all experimental groups. Meanwhile, we observed the changes about autophagy after blocking the PI3K or mTOR pathway. RESULTS Tanshinone IIa, indirubin and total saponins of Radix Pseudostellariae could enhance the effect of tetra-arsenic tetra-sulfide down-regulating PMLA216V-RARα, and the mechanism was suggested to be related to inhibiting mTOR pathway to activate autophagy. CONCLUSIONS We illustrated that the synergistic effect of different compound combinations of RIF can regulate autophagy through the mTOR pathway, enhance cell apoptosis, and degrade arsenic-resistant PMLA216V-RARα.
Collapse
Affiliation(s)
- Ruibai Li
- Department of Hematology and Oncology, Dongzhimen Hospital, Beijing University of Chinese Medicine, 100007, China; Department of Hematology, Xiyuan Hospital, China Academy of Chinese Medicine Sciences, 100091, China
| | - Chengyuan Xue
- Department of Hematology and Oncology, Dongzhimen Hospital, Beijing University of Chinese Medicine, 100007, China
| | - Yiming Pan
- Department of Hematology and Oncology, Dongzhimen Hospital, Beijing University of Chinese Medicine, 100007, China
| | - Guangda Li
- Department of Hematology and Oncology, Dongzhimen Hospital, Beijing University of Chinese Medicine, 100007, China
| | - Ziming Huang
- Department of Medical & Strategic Planning, Techpool Bio-Pharma Co., Ltd, 510520, China
| | - Jing Xu
- Department of Hematology and Oncology, Dongzhimen Hospital, Beijing University of Chinese Medicine, 100007, China
| | - Jingfang Zhang
- School of Life Science, Beijing University of Chinese Medicine, 102488, China
| | - Xinyi Chen
- Department of Hematology and Oncology, Dongzhimen Hospital, Beijing University of Chinese Medicine, 100007, China
| | - Li Hou
- Department of Hematology and Oncology, Dongzhimen Hospital, Beijing University of Chinese Medicine, 100007, China.
| |
Collapse
|
9
|
Kowald L, Roedig J, Karlowitz R, Wagner K, Smith S, Juretschke T, Beli P, Müller S, van Wijk SJL. USP22 regulates APL differentiation via PML-RARα stabilization and IFN repression. Cell Death Discov 2024; 10:128. [PMID: 38467608 PMCID: PMC10928094 DOI: 10.1038/s41420-024-01894-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 03/13/2024] Open
Abstract
Ubiquitin-specific peptidase 22 (USP22) is a deubiquitinating enzyme (DUB) that underlies tumorigenicity, proliferation, cell death and differentiation through deubiquitination of histone and non-histone targets. Ubiquitination determines stability, localization and functions of cell fate proteins and controls cell-protective signaling pathways to surveil cell cycle progression. In a variety of carcinomas, lymphomas and leukemias, ubiquitination regulates the tumor-suppressive functions of the promyelocytic leukemia protein (PML), but PML-specific DUBs, DUB-controlled PML ubiquitin sites and the functional consequences of PML (de)ubiquitination remain unclear. Here, we identify USP22 as regulator of PML and the oncogenic acute promyelocytic leukemia (APL) fusion PML-RARα protein stability and identify a destabilizing role of PML residue K394. Additionally, loss of USP22 upregulates interferon (IFN) and IFN-stimulated gene (ISG) expression in APL and induces PML-RARα stabilization and a potentiation of the cell-autonomous sensitivity towards all-trans retinoic acid (ATRA)-mediated differentiation. Our findings imply USP22-dependent surveillance of PML-RARα stability and IFN signaling as important regulator of APL pathogenesis, with implications for viral mimicry, differentiation and cell fate regulation in other leukemia subtypes.
Collapse
Affiliation(s)
- Lisa Kowald
- Institute for Experimental Pediatric Hematology and Oncology, Medical Faculty, Goethe-University Frankfurt, Komturstrasse 3a, 60528, Frankfurt am Main, Germany
| | - Jens Roedig
- Institute for Experimental Pediatric Hematology and Oncology, Medical Faculty, Goethe-University Frankfurt, Komturstrasse 3a, 60528, Frankfurt am Main, Germany
| | - Rebekka Karlowitz
- Institute for Experimental Pediatric Hematology and Oncology, Medical Faculty, Goethe-University Frankfurt, Komturstrasse 3a, 60528, Frankfurt am Main, Germany
| | - Kristina Wagner
- Institute of Biochemistry II (IBCII), Medical Faculty, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Sonja Smith
- Institute for Experimental Pediatric Hematology and Oncology, Medical Faculty, Goethe-University Frankfurt, Komturstrasse 3a, 60528, Frankfurt am Main, Germany
| | - Thomas Juretschke
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany
| | - Petra Beli
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany
| | - Stefan Müller
- Institute of Biochemistry II (IBCII), Medical Faculty, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Sjoerd J L van Wijk
- Institute for Experimental Pediatric Hematology and Oncology, Medical Faculty, Goethe-University Frankfurt, Komturstrasse 3a, 60528, Frankfurt am Main, Germany.
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, Frankfurt am Main, Germany.
- German Cancer Research Center (DKFZ), Heidelberg, Germany.
- University Cancer Centre Frankfurt (UCT), University Hospital Frankfurt, Goethe-University Frankfurt, Frankfurt, Germany.
| |
Collapse
|
10
|
Jin W, Dai Y, Chen L, Zhu H, Dong F, Zhu H, Meng G, Li J, Chen S, Chen Z, Fang H, Wang K. Cellular hierarchy insights reveal leukemic stem-like cells and early death risk in acute promyelocytic leukemia. Nat Commun 2024; 15:1423. [PMID: 38365836 PMCID: PMC10873341 DOI: 10.1038/s41467-024-45737-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 02/02/2024] [Indexed: 02/18/2024] Open
Abstract
Acute promyelocytic leukemia (APL) represents a paradigm for targeted differentiation therapy, with a minority of patients experiencing treatment failure and even early death. We here report a comprehensive single-cell analysis of 16 APL patients, uncovering cellular compositions and their impact on all-trans retinoic acid (ATRA) response in vivo and early death. We unveil a cellular differentiation hierarchy within APL blasts, rooted in leukemic stem-like cells. The oncogenic PML/RARα fusion protein exerts branch-specific regulation in the APL trajectory, including stem-like cells. APL cohort analysis establishes an association of leukemic stemness with elevated white blood cell counts and FLT3-ITD mutations. Furthermore, we construct an APL-specific stemness score, which proves effective in assessing early death risk. Finally, we show that ATRA induces differentiation of primitive blasts and patients with early death exhibit distinct stemness-associated transcriptional programs. Our work provides a thorough survey of APL cellular hierarchies, offering insights into cellular dynamics during targeted therapy.
Collapse
Affiliation(s)
- Wen Jin
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yuting Dai
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Li Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Honghu Zhu
- Department of Hematology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Fangyi Dong
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Hongming Zhu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Guoyu Meng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Junmin Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Saijuan Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhu Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Hai Fang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Kankan Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
11
|
Wang X, Zheng D, Wang C, Xue D, Wang Q, Xia J. Harnessing intermolecular G-quadruplex-based spatial confinement effect for accelerated activation of CRISPR/Cas12a empowers ultra-sensitive detection of PML/RARA fusion genes. Anal Chim Acta 2024; 1287:342108. [PMID: 38182385 DOI: 10.1016/j.aca.2023.342108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/01/2023] [Accepted: 12/02/2023] [Indexed: 01/07/2024]
Abstract
Accurate detection and classification of the three isoforms of PML/RARA genomic fragments are crucial for predicting disease progression, stratifying risk, and administering precise drug therapies in acute promyelocytic leukemia (APL). In this study, we have developed a highly specific nucleic acid detection platform capable of quantifying the long isoform of the three main PML-RARA isoforms at a constant temperature. This platform integrates the strengths of the CRISPR/Cas12a nuclease-based method and the rolling circle amplification (RCA) technique. Notably, the RCA-assisted CRISPR/Cas12a trans-cleavage system incorporates a spatial confinement effect by utilizing intermolecular G-quadruplex structures. This innovative design effectively enhances the local concentration of CRISPR/Cas12a, thereby accelerating its cleaving efficiency towards reporter nucleic acids and enabling the detection of PML/RARA fusion gene expression through spectroscopy. The robust detection of PML/RARA fusion gene from human serum samples validates the reliability and potential of this platform in the screening, diagnosis, and prognosis of APL cases. Our findings present an approach that holds significant potential for the further development of the robust CRISPR/Cas sensor system, offering a rapid and adaptable paradigm for APL diagnosis.
Collapse
Affiliation(s)
- Xinrui Wang
- Medical Research Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, 350000, PR China; NHC Key Laboratory of Technical Evaluation of Fertility Regulation for Non-Human Primate (Fujian Maternity and Child Health Hospital), Fuzhou, Fujian, 350000, PR China.
| | - Dan Zheng
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, Anhui, 236037, PR China
| | - Chengyi Wang
- Department of Hematology & Oncology, Fujian Children's Hospital (Fujian Branch of Shanghai Children's Medical Center), Fuzhou, Fujian, 350011, PR China
| | - Danni Xue
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, Anhui, 236037, PR China
| | - Qi Wang
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, Anhui, 236037, PR China
| | - Juan Xia
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, Anhui, 236037, PR China.
| |
Collapse
|
12
|
Wang M, Yin J, Han Q, Li B, Zhao XW, Xue L. Arsenic Trioxide Suppresses Angiogenesis in Non-small Cell Lung Cancer via the Nrf2-IL-33 Signaling Pathway. Anticancer Agents Med Chem 2024; 24:1142-1150. [PMID: 38847245 DOI: 10.2174/0118715206288348240420174853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/29/2024] [Accepted: 03/13/2024] [Indexed: 10/03/2024]
Abstract
BACKGROUND Non-Small Cell Lung Cancer (NSCLC) ranks as a leading cause of cancer-related mortality, necessitating the urgent search for cost-effective and efficient anti-NSCLC drugs. Our preliminary research has demonstrated that arsenic trioxide (ATO) significantly inhibits NSCLC angiogenesis, exerting anti-tumor effects. In conjunction with existing literature reports, the Nrf2-IL-33 pathway is emerging as a novel mechanism in NSCLC angiogenesis. OBJECTIVE This study aimed to elucidate whether ATO can inhibit NSCLC angiogenesis through the Nrf2-IL-33 pathway. METHODS Immunohistochemistry was employed to assess the expression of Nrf2, IL-33, and CD31 in tumor tissues from patients with NSCLC. DETA-NONOate was used as a nitric oxide (NO) donor to mimic high levels of NO in the tumor microenvironment. Western blot, quantitative real-time PCR, and enzyme-linked immunosorbent assay were utilized to evaluate the expression of Nrf2 and IL-33 in the NCI-H1299 cell line. Subcutaneous xenograft models were established in nude mice by implanting NCI-H1299 cells to assess the anti-tumor efficacy of ATO. RESULTS High expression levels of Nrf2 and IL-33 were observed in tumor samples from patients with NSCLC, and Nrf2 expression positively correlated with microvascular density in NSCLC. In vitro, NO (released from 1mM DETA-NONOate) promoted activation of the Nrf2-IL-33 signaling pathway in NCI-H1299 cells, which was reversed by ATO. Additionally, both Nrf2 deficiency and ATO treatment significantly attenuated NOinduced IL-33 expression. In vivo, both ATO and the Nrf2 inhibitor ML385 demonstrated significant inhibitory effects on angiogenesis tumor growth. CONCLUSION Nrf2-IL-33 signaling is usually activated in NSCLC and positively correlates with tumor angiogenesis. ATO effectively disrupts the activation of the Nrf2-IL-33 pathway in NSCLC and thus inhibits angiogenesis, suggesting its potential as an anti-angiogenic agent for use in the treatment of NSCLC.
Collapse
MESH Headings
- NF-E2-Related Factor 2/metabolism
- NF-E2-Related Factor 2/antagonists & inhibitors
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/pathology
- Humans
- Lung Neoplasms/drug therapy
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Interleukin-33/metabolism
- Interleukin-33/antagonists & inhibitors
- Arsenic Trioxide/pharmacology
- Animals
- Signal Transduction/drug effects
- Mice
- Mice, Nude
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/chemistry
- Neovascularization, Pathologic/drug therapy
- Neovascularization, Pathologic/metabolism
- Cell Proliferation/drug effects
- Drug Screening Assays, Antitumor
- Structure-Activity Relationship
- Dose-Response Relationship, Drug
- Molecular Structure
- Neoplasms, Experimental/drug therapy
- Neoplasms, Experimental/pathology
- Neoplasms, Experimental/metabolism
- Mice, Inbred BALB C
- Angiogenesis Inhibitors/pharmacology
- Angiogenesis Inhibitors/chemistry
- Tumor Cells, Cultured
- Angiogenesis
Collapse
Affiliation(s)
- Mingdong Wang
- Department of Thoracic Surgery, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai, 200003, China
- Department of Thoracic Surgery, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, 1279 Sanmen Road, Shanghai, 200434, China
| | - Jizhong Yin
- Department of Respiratory and Critical Care Medicine, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai, 200003, China
| | - Qianyu Han
- Department of Thoracic Surgery, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai, 200003, China
| | - Bing Li
- Department of Respiratory and Critical Care Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, 1279 Sanmen Road, Shanghai, 200434, China
| | - Xue-Wei Zhao
- Department of Thoracic Surgery, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, 1279 Sanmen Road, Shanghai, 200434, China
| | - Lei Xue
- Department of Thoracic Surgery, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai, 200003, China
| |
Collapse
|
13
|
Ryu S, Ye X, Olson JJ, Mikkelsen T, Bangiyev L, Lesser GJ, Batchelor T, Nabors B, Desideri S, Walbert T, Grossman SA. Phase I and pharmacodynamic study of arsenic trioxide plus radiotherapy in patients with newly diagnosed glioblastoma. Neurooncol Adv 2024; 6:vdae089. [PMID: 38978961 PMCID: PMC11229030 DOI: 10.1093/noajnl/vdae089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024] Open
Abstract
Background When arsenic trioxide (ATO) was combined with radiation for treatment of transplanted murine gliomas in the brain, tumor response improved with disrupted tumor blood flow and survival was significantly prolonged. Methods Total of 31 patients with newly diagnosed glioblastoma were accrued to a multi-institutional, NCI-funded, phase I study to determine the maximum tolerated dose (MTD) of ATO administered with radiation. Secondary objectives were survival and pharmacodynamic changes in perfusion on magnetic resonance imaging (MRI). Patients (unknown MGMT and IDH status) received ATO either once or twice weekly during radiation without concurrent or adjuvant temozolomide. Results Median age: 54.9 years, male: 68%, KPS ≥ 90: 77%, debulking surgery: 77%. Treatments were well-tolerated: 81% of patients received all the planned ATO doses. Dose-limiting toxicities included elevated liver function tests, hypokalemia, and edema. The MTD on the weekly schedule was 0.4 mg/kg and on the biweekly was 0.3 mg/kg. The median survival (mOS) for all patients was 17.7 months. Survival on the biweekly schedule (22.8 months) was longer than on the weekly schedule (12.1 months) (P = .039) as was progression-free survival (P = .004). Similarly, cerebral blood flow was significantly reduced in patients treated on the biweekly schedule (P = .007). Conclusions ATO with standard radiation is well tolerated in patients with newly diagnosed glioblastoma. Even without temozolomide or adjuvant therapy, the overall survival of all patients (17.7 months) and especially patients who received biweekly ATO (22.8 months) is surprising and accompanied by pharmacodynamic changes on MRI. Further studies of this regimen are warranted.
Collapse
Affiliation(s)
- Samuel Ryu
- Department of Radiation Oncology, Stony Brook University School of Medicine, Stony Brook, New York, USA
| | - Xiaobu Ye
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jeffrey J Olson
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Tom Mikkelsen
- Jeffries Center for Precision Medicine, Henry Ford Health, Detroit, Michigan, USA
| | - Lev Bangiyev
- Department of Radiology, Stony Brook University School of Medicine, Stony Brook, New York, USA
| | - Glenn J Lesser
- Department of Internal Medicine, Hematology and Oncology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Tracy Batchelor
- Department of Neurology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Burt Nabors
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Serena Desideri
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Tobias Walbert
- Department of Neurology, Henry Ford Health, Wayne State School of Medicine, Detroit, Michigan, USA
- Department of Surgery, Michigan State University, Detroit, Michigan, USA
| | - Stuart A Grossman
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
14
|
Bercier P, Wang QQ, Zang N, Zhang J, Yang C, Maimaitiyiming Y, Abou-Ghali M, Berthier C, Wu C, Niwa-Kawakita M, Dirami T, Geoffroy MC, Ferhi O, Quentin S, Benhenda S, Ogra Y, Gueroui Z, Zhou C, Naranmandura H, de Thé H, Lallemand-Breitenbach V. Structural Basis of PML-RARA Oncoprotein Targeting by Arsenic Unravels a Cysteine Rheostat Controlling PML Body Assembly and Function. Cancer Discov 2023; 13:2548-2565. [PMID: 37655965 PMCID: PMC10714139 DOI: 10.1158/2159-8290.cd-23-0453] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 07/31/2023] [Accepted: 08/30/2023] [Indexed: 09/02/2023]
Abstract
PML nuclear bodies (NB) are disrupted in PML-RARA-driven acute promyelocytic leukemia (APL). Arsenic trioxide (ATO) cures 70% of patients with APL, driving PML-RARA degradation and NB reformation. In non-APL cells, arsenic binding onto PML also amplifies NB formation. Yet, the actual molecular mechanism(s) involved remain(s) elusive. Here, we establish that PML NBs display some features of liquid-liquid phase separation and that ATO induces a gel-like transition. PML B-box-2 structure reveals an alpha helix driving B2 trimerization and positioning a cysteine trio to form an ideal arsenic-binding pocket. Altering either of the latter impedes ATO-driven NB assembly, PML sumoylation, and PML-RARA degradation, mechanistically explaining clinical ATO resistance. This B2 trimer and the C213 trio create an oxidation-sensitive rheostat that controls PML NB assembly dynamics and downstream signaling in both basal state and during stress response. These findings identify the structural basis for arsenic targeting of PML that could pave the way to novel cancer drugs. SIGNIFICANCE Arsenic curative effects in APL rely on PML targeting. We report a PML B-box-2 structure that drives trimer assembly, positioning a cysteine trio to form an arsenic-binding pocket, which is disrupted in resistant patients. Identification of this ROS-sensitive triad controlling PML dynamics and functions could yield novel drugs. See related commentary by Salomoni, p. 2505. This article is featured in Selected Articles from This Issue, p. 2489.
Collapse
Affiliation(s)
- Pierre Bercier
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
- GenCellDis, Inserm U944, CNRS UMR7212, Université Paris Cité, Paris, France
| | - Qian Qian Wang
- Department of Hematology of First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Public Health, School of Medicine and Department of Toxicology, Zhejiang University, Hangzhou, China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Ning Zang
- Public Health, School of Medicine and Department of Toxicology, Zhejiang University, Hangzhou, China
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jie Zhang
- Public Health, School of Medicine and Department of Toxicology, Zhejiang University, Hangzhou, China
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chang Yang
- Department of Hematology of First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Public Health, School of Medicine and Department of Toxicology, Zhejiang University, Hangzhou, China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yasen Maimaitiyiming
- Department of Hematology of First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Public Health, School of Medicine and Department of Toxicology, Zhejiang University, Hangzhou, China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Majdouline Abou-Ghali
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
- GenCellDis, Inserm U944, CNRS UMR7212, Université Paris Cité, Paris, France
| | - Caroline Berthier
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Chengchen Wu
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
- GenCellDis, Inserm U944, CNRS UMR7212, Université Paris Cité, Paris, France
| | - Michiko Niwa-Kawakita
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
- GenCellDis, Inserm U944, CNRS UMR7212, Université Paris Cité, Paris, France
| | - Thassadite Dirami
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
- GenCellDis, Inserm U944, CNRS UMR7212, Université Paris Cité, Paris, France
| | - Marie-Claude Geoffroy
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
- GenCellDis, Inserm U944, CNRS UMR7212, Université Paris Cité, Paris, France
| | - Omar Ferhi
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
- GenCellDis, Inserm U944, CNRS UMR7212, Université Paris Cité, Paris, France
| | - Samuel Quentin
- GenCellDis, Inserm U944, CNRS UMR7212, Université Paris Cité, Paris, France
| | - Shirine Benhenda
- GenCellDis, Inserm U944, CNRS UMR7212, Université Paris Cité, Paris, France
| | - Yasumitsu Ogra
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Zoher Gueroui
- Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, Paris, France
| | - Chun Zhou
- Public Health, School of Medicine and Department of Toxicology, Zhejiang University, Hangzhou, China
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hua Naranmandura
- Department of Hematology of First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Public Health, School of Medicine and Department of Toxicology, Zhejiang University, Hangzhou, China
| | - Hugues de Thé
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
- GenCellDis, Inserm U944, CNRS UMR7212, Université Paris Cité, Paris, France
- Hematology Laboratory, Hôpital St Louis, AP/HP, Paris, France
| | - Valérie Lallemand-Breitenbach
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
- GenCellDis, Inserm U944, CNRS UMR7212, Université Paris Cité, Paris, France
| |
Collapse
|
15
|
Leal AS, Hung PY, Chowdhury AS, Liby KT. Retinoid X Receptor agonists as selective modulators of the immune system for the treatment of cancer. Pharmacol Ther 2023; 252:108561. [PMID: 37952906 DOI: 10.1016/j.pharmthera.2023.108561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/28/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023]
Abstract
Upon heterodimerizing with other nuclear receptors, retinoid X receptors (RXR) act as ligand-dependent transcription factors, regulating transcription of critical signaling pathways that impact numerous hallmarks of cancer. By controlling both inflammation and immune responses, ligands that activate RXR can modulate the tumor microenvironment. Several small molecule agonists of these essential receptors have been synthesized. Historically, RXR agonists were tested for inhibition of growth in cancer cells, but more recent drug discovery programs screen new molecules for inhibition of inflammation or activation of immune cells. Bexarotene is the first successful example of an effective therapeutic that molecularly targets RXR; this drug was approved to treat cutaneous T cell lymphoma and is still used as a standard of care treatment for this disease. No additional RXR agonists have yet achieved FDA approval, but several promising novel compounds are being developed. In this review, we provide an overview of the multiple mechanisms by which RXR signaling regulates inflammation and tumor immunity. We also discuss the potential of RXR-dependent immune cell modulation for the treatment or prevention of cancer and concomitant challenges and opportunities.
Collapse
Affiliation(s)
- Ana S Leal
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States of America; Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Pei-Yu Hung
- Department of Physiology, Michigan State University, East Lansing, MI, United States of America
| | - Afrin Sultana Chowdhury
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Karen T Liby
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States of America; Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States of America.
| |
Collapse
|
16
|
Nishimagi A, Kobayashi M, Sugimoto K, Kofunato Y, Sato N, Haga J, Ishigame T, Kimura T, Kenjo A, Kobayashi Y, Hashimoto Y, Marubashi S, Chiba H. Aberrant phosphorylation of human LRH1 at serine 510 is predictable of hepatocellular carcinoma recurrence. Clin Exp Med 2023; 23:4985-4995. [PMID: 37285077 PMCID: PMC10725388 DOI: 10.1007/s10238-023-01098-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/20/2023] [Indexed: 06/08/2023]
Abstract
We previously identified the AKT-phosphorylation sites in nuclear receptors and showed that phosphorylation of S379 in mouse retinoic acid γ and S518 in human estrogen receptor α regulate their activity independently of the ligands. Since this site is conserved at S510 in human liver receptor homolog 1 (hLRH1), we developed a monoclonal antibody (mAb) that recognized the phosphorylation form of hLRH1S510 (hLRH1pS510) and verified its clinicopathological significance in hepatocellular carcinoma (HCC). We generated the anti-hLRH1pS510 mAb and assessed its selectivity. We then evaluated the hLRH1pS510 signals in 157 cases of HCC tissues by immunohistochemistry because LRH1 contributes to the pathogenesis of diverse cancers. The developed mAb specifically recognized hLRH1pS510 and worked for immunohistochemistry of formalin-fixed paraffin-embedded tissues. hLRH1pS510 was exclusively localized in the nucleus of HCC cells, but the signal intensity and positive rates varied among the subjects. According to the semi-quantification, 45 cases (34.9%) showed hLRH1pS510-high, and the remaining 112 cases (65.1%) exhibited hLRH1pS510-low. There were significant differences in the recurrence-free survival (RFS) between the two groups, and the 5-year RFS rates in the hLRH1pS510-high and hLRH1pS510-low groups were 26.5% and 46.1%, respectively. In addition, high hLRH1pS510 was significantly correlated with portal vein invasion, hepatic vein invasion, and high levels of serum alpha-fetoprotein (AFP). Furthermore, multivariable analysis revealed that hLRH1pS510-high was an independent biomarker for HCC recurrence. We conclude that aberrant phosphorylation of hLRH1S510 is a predictor of poor prognosis for HCC. The anti-hLRH1pS510 mAb could provide a powerful tool to validate the relevance of hLRH1pS510 in pathological processes such as tumor development and progression.
Collapse
Affiliation(s)
- Atsushi Nishimagi
- Department of Hepato-Biliary-Pancreatic and Transplant Surgery, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan
| | - Makoto Kobayashi
- Department of Basic Pathology, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan
| | - Kotaro Sugimoto
- Department of Basic Pathology, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan.
| | - Yasuhide Kofunato
- Department of Hepato-Biliary-Pancreatic and Transplant Surgery, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan
| | - Naoya Sato
- Department of Hepato-Biliary-Pancreatic and Transplant Surgery, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan
| | - Junichiro Haga
- Department of Hepato-Biliary-Pancreatic and Transplant Surgery, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan
| | - Teruhide Ishigame
- Department of Hepato-Biliary-Pancreatic and Transplant Surgery, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan
| | - Takashi Kimura
- Department of Hepato-Biliary-Pancreatic and Transplant Surgery, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan
| | - Akira Kenjo
- Department of Hepato-Biliary-Pancreatic and Transplant Surgery, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan
| | - Yasuyuki Kobayashi
- Department of Diagnostic Pathology, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan
| | - Yuko Hashimoto
- Department of Diagnostic Pathology, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan
| | - Shigeru Marubashi
- Department of Hepato-Biliary-Pancreatic and Transplant Surgery, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan
| | - Hideki Chiba
- Department of Basic Pathology, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan.
| |
Collapse
|
17
|
Ferguson KM, Gillen SL, Chaytor L, Poon E, Marcos D, Gomez RL, Woods LM, Mykhaylechko L, Elfari L, Martins da Costa B, Jamin Y, Carroll JS, Chesler L, Ali FR, Philpott A. Palbociclib releases the latent differentiation capacity of neuroblastoma cells. Dev Cell 2023; 58:1967-1982.e8. [PMID: 37734383 DOI: 10.1016/j.devcel.2023.08.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 07/05/2023] [Accepted: 08/24/2023] [Indexed: 09/23/2023]
Abstract
Neuroblastoma is the most common extracranial solid tumor in infants, arising from developmentally stalled neural crest-derived cells. Driving tumor differentiation is a promising therapeutic approach for this devastating disease. Here, we show that the CDK4/6 inhibitor palbociclib not only inhibits proliferation but induces extensive neuronal differentiation of adrenergic neuroblastoma cells. Palbociclib-mediated differentiation is manifested by extensive phenotypic and transcriptional changes accompanied by the establishment of an epigenetic program driving expression of mature neuronal features. In vivo palbociclib significantly inhibits tumor growth in mouse neuroblastoma models. Furthermore, dual treatment with retinoic acid resets the oncogenic adrenergic core regulatory circuit of neuroblastoma cells, further suppresses proliferation, and can enhance differentiation, altering gene expression in ways that significantly correlate with improved patient survival. We therefore identify palbociclib as a therapeutic approach to dramatically enhance neuroblastoma differentiation efficacy that could be used in combination with retinoic acid to improve patient outcomes.
Collapse
Affiliation(s)
- Kirsty M Ferguson
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge CB2 0AW, UK
| | - Sarah L Gillen
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge CB2 0AW, UK
| | - Lewis Chaytor
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge CB2 0AW, UK; Department of Oncology, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Evon Poon
- Division of Clinical Studies, The Institute of Cancer Research (ICR) and Royal Marsden NHS Trust, Sutton SM2 5NG, UK
| | - Daniel Marcos
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge CB2 0AW, UK; Department of Oncology, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Roshna Lawrence Gomez
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Healthcare City, P.O. Box 505055, Dubai, United Arab Emirates
| | - Laura M Woods
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge CB2 0AW, UK; Department of Oncology, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Lidiya Mykhaylechko
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge CB2 0AW, UK; Department of Oncology, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Louis Elfari
- Wellcome-MRC Cambridge Stem Cell Institute Advanced Imaging Facility, Cambridge CB2 0AW, UK
| | - Barbara Martins da Costa
- Division of Clinical Studies, The Institute of Cancer Research (ICR) and Royal Marsden NHS Trust, Sutton SM2 5NG, UK
| | - Yann Jamin
- Division of Radiotherapy and Imaging, The Institute of Cancer Research (ICR) and Royal Marsden NHS Trust, Sutton SM2 5NG, UK
| | - Jason S Carroll
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | - Louis Chesler
- Division of Clinical Studies, The Institute of Cancer Research (ICR) and Royal Marsden NHS Trust, Sutton SM2 5NG, UK
| | - Fahad R Ali
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Healthcare City, P.O. Box 505055, Dubai, United Arab Emirates
| | - Anna Philpott
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge CB2 0AW, UK; Department of Oncology, University of Cambridge, Cambridge CB2 0XZ, UK.
| |
Collapse
|
18
|
Liccardo F, Śniegocka M, Tito C, Iaiza A, Ottone T, Divona M, Travaglini S, Mattei M, Cicconi R, Miglietta S, Familiari G, Nottola SA, Petrozza V, Tamagnone L, Voso MT, Masciarelli S, Fazi F. Retinoic acid and proteotoxic stress induce AML cell death overcoming stromal cell protection. J Exp Clin Cancer Res 2023; 42:223. [PMID: 37653435 PMCID: PMC10469880 DOI: 10.1186/s13046-023-02793-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/10/2023] [Indexed: 09/02/2023] Open
Abstract
BACKGROUND Acute myeloid leukemia (AML) patients bearing the ITD mutation in the tyrosine kinase receptor FLT3 (FLT3-ITD) present a poor prognosis and a high risk of relapse. FLT3-ITD is retained in the endoplasmic reticulum (ER) and generates intrinsic proteotoxic stress. We devised a strategy based on proteotoxic stress, generated by the combination of low doses of the differentiating agent retinoic acid (R), the proteasome inhibitor bortezomib (B), and the oxidative stress inducer arsenic trioxide (A). METHODS We treated FLT3-ITD+ AML cells with low doses of the aforementioned drugs, used alone or in combinations and we investigated the induction of ER and oxidative stress. We then performed the same experiments in an in vitro co-culture system of FLT3-ITD+ AML cells and bone marrow stromal cells (BMSCs) to assess the protective role of the niche on AML blasts. Eventually, we tested the combination of drugs in an orthotopic murine model of human AML. RESULTS The combination RBA exerts strong cytotoxic activity on FLT3-ITD+ AML cell lines and primary blasts isolated from patients, due to ER homeostasis imbalance and generation of oxidative stress. AML cells become completely resistant to the combination RBA when treated in co-culture with BMSCs. Nonetheless, we could overcome such protective effects by using high doses of ascorbic acid (Vitamin C) as an adjuvant. Importantly, the combination RBA plus ascorbic acid significantly prolongs the life span of a murine model of human FLT3-ITD+ AML without toxic effects. Furthermore, we show for the first time that the cross-talk between AML and BMSCs upon treatment involves disruption of the actin cytoskeleton and the actin cap, increased thickness of the nuclei, and relocalization of the transcriptional co-regulator YAP in the cytosol of the BMSCs. CONCLUSIONS Our findings strengthen our previous work indicating induction of proteotoxic stress as a possible strategy in FLT3-ITD+ AML therapy and open to the possibility of identifying new therapeutic targets in the crosstalk between AML and BMSCs, involving mechanotransduction and YAP signaling.
Collapse
Affiliation(s)
- Francesca Liccardo
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Section of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Martyna Śniegocka
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Section of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Claudia Tito
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Section of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Alessia Iaiza
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Section of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Tiziana Ottone
- Department of Biomedicine and Prevention, University of Tor Vergata, Rome, Italy
- Santa Lucia Foundation, I.R.C.C.S., Neuro-Oncohematology, Rome, Italy
| | - Mariadomenica Divona
- Department of Biomedicine and Prevention, University of Tor Vergata, Rome, Italy
| | - Serena Travaglini
- Department of Biomedicine and Prevention, University of Tor Vergata, Rome, Italy
| | - Maurizio Mattei
- Department of Biology, University of Tor Vergata, Rome, Italy
- Centro Interdipartimentale-CIMETA, University of Tor Vergata, Rome, Italy
| | - Rosella Cicconi
- Centro Interdipartimentale-CIMETA, University of Tor Vergata, Rome, Italy
| | - Selenia Miglietta
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Section of Human Anatomy, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Familiari
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Section of Human Anatomy, Sapienza University of Rome, Rome, Italy
| | - Stefania Annarita Nottola
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Section of Human Anatomy, Sapienza University of Rome, Rome, Italy
| | - Vincenzo Petrozza
- Department of Medico-Surgical Sciences & Biotechnologies, Center for Biophotonics, Sapienza University of Rome, Latina, Italy
| | - Luca Tamagnone
- Department of Life Sciences and Public Health, Histology and Embryology Unit, Catholic University of the Sacred Hearth, Rome, Italy
- Fondazione Policlinico Universitario "A. Gemelli", IRCCS, Rome, Italy
| | - Maria Teresa Voso
- Department of Biomedicine and Prevention, University of Tor Vergata, Rome, Italy
- Santa Lucia Foundation, I.R.C.C.S., Neuro-Oncohematology, Rome, Italy
| | - Silvia Masciarelli
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Section of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy.
| | - Francesco Fazi
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Section of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
19
|
Wang QQ, Hussain L, Yu PH, Yang C, Zhu CY, Ma YF, Wang SC, Yang T, Kang YY, Yu WJ, Maimaitiyiming Y, Naranmandura H. Hyperthermia promotes degradation of the acute promyelocytic leukemia driver oncoprotein ZBTB16/RARα. Acta Pharmacol Sin 2023; 44:822-831. [PMID: 36216898 PMCID: PMC10042863 DOI: 10.1038/s41401-022-01001-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/13/2022] [Indexed: 11/09/2022] Open
Abstract
The acute promyelocytic leukemia (APL) driver ZBTB16/RARα is generated by the t(11;17) (q23;q21) chromosomal translocation, which is resistant to combined treatment of all-trans retinoic acid (ATRA) and arsenic trioxide (ATO) or conventional chemotherapy, resulting in extremely low survival rates. In the current study, we investigated the effects of hyperthermia on the oncogenic fusion ZBTB16/RARα protein to explore a potential therapeutic approach for this variant APL. We showed that Z/R fusion protein expressed in HeLa cells was resistant to ATO, ATRA, and conventional chemotherapeutic agents. However, mild hyperthermia (42 °C) rapidly destabilized the ZBTB16/RARα fusion protein expressed in HeLa, 293T, and OCI-AML3 cells, followed by robust ubiquitination and proteasomal degradation. In contrast, hyperthermia did not affect the normal (i.e., unfused) ZBTB16 and RARα proteins, suggesting a specific thermal sensitivity of the ZBTB16/RARα fusion protein. Importantly, we found that the destabilization of ZBTB16/RARα was the initial step for oncogenic fusion protein degradation by hyperthermia, which could be blocked by deletion of nuclear receptor corepressor (NCoR) binding sites or knockdown of NCoRs. Furthermore, SIAH2 was identified as the E3 ligase participating in hyperthermia-induced ubiquitination of ZBTB16/RARα. In short, these results demonstrate that hyperthermia could effectively destabilize and subsequently degrade the ZBTB16/RARα fusion protein in an NCoR-dependent manner, suggesting a thermal-based therapeutic strategy that may improve the outcome in refractory ZBTB16/RARα-driven APL patients in the clinic.
Collapse
Affiliation(s)
- Qian-Qian Wang
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Zhejiang Province Key Laboratory of Haematology Oncology Diagnosis and Treatment, Hangzhou, 310003, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Liaqat Hussain
- Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, 38000, Pakistan
| | - Pei-Han Yu
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Chang Yang
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Chen-Ying Zhu
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Ya-Fang Ma
- Department of Hematology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Si-Chun Wang
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Tao Yang
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yuan-Yuan Kang
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Wen-Juan Yu
- Department of Hematology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yasen Maimaitiyiming
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, 310003, China.
- Department of Neurobiology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brain Medicine, and MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University School of Medicine, Hangzhou, 310031, China.
| | - Hua Naranmandura
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, 310003, China.
- Zhejiang Province Key Laboratory of Haematology Oncology Diagnosis and Treatment, Hangzhou, 310003, China.
- Cancer Center, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
20
|
Boldig K, Kiamos A, Matthews-Hew T, Omman R, Quan W. Acute Promyelocytic Leukemia Treatment Masking Hepatic Tuberculosis: A Management Dilemma. J Hematol 2023; 12:100-104. [PMID: 37187498 PMCID: PMC10181323 DOI: 10.14740/jh1109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/05/2023] [Indexed: 05/17/2023] Open
Abstract
Acute promyelocytic leukemia is a form of acute myeloid leukemia (AML) that is characterized by presence of a promyelocytic leukemia-retinoic acid receptor alpha fusion. In most patients, this fusion is detected on conventional karyotype as the t(15;17)(q24.1;q21.2) translocation, but some patients have cryptic translocations with a normal karyotype. Historically, AML is associated with a poor prognosis. Treatment with all-trans retinoic acid and arsenic trioxide assures long-term survival in the majority of patients. This treatment is generally well-tolerated but may cause hepatotoxicity. This is usually identified by transaminitis but resolves after temporary cessation of treatment. Our patient's hepatotoxicity did not resolve following all-trans retinoic acid and arsenic trioxide cessation which posed a diagnostic dilemma. This prompted exploration of other possible causes of hepatotoxicity. An eventual liver biopsy identified acid-fast bacilli, confirming a diagnosis of hepatic tuberculosis. A broad differential diagnosis is imperative when investigating abnormalities in liver function, especially in chemotherapy patients when treatment cessation may cause cancer progression.
Collapse
Affiliation(s)
- Kimberly Boldig
- Department of Internal Medicine, University of Florida College of Medicine: Jacksonville, Jacksonville, FL 32209, USA
- Corresponding Author: Kimberly Boldig, Department of Internal Medicine, University of Florida College of Medicine: Jacksonville, Jacksonville, FL 32209, USA.
| | - Amy Kiamos
- Department of Internal Medicine, University of Florida College of Medicine: Jacksonville, Jacksonville, FL 32209, USA
| | - Trevanne Matthews-Hew
- Department of Hematology and Oncology, Mayo Clinic Jacksonville, Jacksonville, FL 32224, USA
| | - Reeba Omman
- Department of Pathology, University of Florida College of Medicine: Jacksonville, Jacksonville, FL 32209, USA
| | - Walter Quan
- Department of Hematology and Oncology, University of Florida College of Medicine: Jacksonville, Jacksonville, FL 32209, USA
| |
Collapse
|
21
|
Poplineau M, Platet N, Mazuel A, Hérault L, N’Guyen L, Koide S, Nakajima-Takagi Y, Kuribayashi W, Carbuccia N, Haboub L, Vernerey J, Oshima M, Birnbaum D, Iwama A, Duprez E. Noncanonical EZH2 drives retinoic acid resistance of variant acute promyelocytic leukemias. Blood 2022; 140:2358-2370. [PMID: 35984905 PMCID: PMC10653050 DOI: 10.1182/blood.2022015668] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 07/31/2022] [Indexed: 11/20/2022] Open
Abstract
Cancer cell heterogeneity is a major driver of therapy resistance. To characterize resistant cells and their vulnerabilities, we studied the PLZF-RARA variant of acute promyelocytic leukemia, resistant to retinoic acid (RA), using single-cell multiomics. We uncovered transcriptional and chromatin heterogeneity in leukemia cells. We identified a subset of cells resistant to RA with proliferation, DNA replication, and repair signatures that depend on a fine-tuned E2F transcriptional network targeting the epigenetic regulator enhancer of zeste homolog 2 (EZH2). Epigenomic and functional analyses validated the driver role of EZH2 in RA resistance. Targeting pan-EZH2 activities (canonical/noncanonical) was necessary to eliminate leukemia relapse-initiating cells, which underlies a dependency of resistant cells on an EZH2 noncanonical activity and the necessity to degrade EZH2 to overcome resistance. Our study provides critical insights into the mechanisms of RA resistance that allow us to eliminate treatment-resistant leukemia cells by targeting EZH2, thus highlighting a potential targeted therapy approach. Beyond RA resistance and acute promyelocytic leukemia context, our study also demonstrates the power of single-cell multiomics to identify, characterize, and clear therapy-resistant cells.
Collapse
Affiliation(s)
- Mathilde Poplineau
- Epigenetic Control of Normal and Malignant Hematopoiesis, CRCM, Aix Marseille University, CNRS UMR7258, INSERM U1068, Institut Paoli-Calmettes, Marseille, France
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
- Equipe Labellisée Ligue Nationale Contre le Cancer
| | - Nadine Platet
- Epigenetic Control of Normal and Malignant Hematopoiesis, CRCM, Aix Marseille University, CNRS UMR7258, INSERM U1068, Institut Paoli-Calmettes, Marseille, France
- Equipe Labellisée Ligue Nationale Contre le Cancer
| | - Adrien Mazuel
- Epigenetic Control of Normal and Malignant Hematopoiesis, CRCM, Aix Marseille University, CNRS UMR7258, INSERM U1068, Institut Paoli-Calmettes, Marseille, France
- Equipe Labellisée Ligue Nationale Contre le Cancer
| | - Léonard Hérault
- Epigenetic Control of Normal and Malignant Hematopoiesis, CRCM, Aix Marseille University, CNRS UMR7258, INSERM U1068, Institut Paoli-Calmettes, Marseille, France
- Equipe Labellisée Ligue Nationale Contre le Cancer
- MABioS, I2M, Aix Marseille University,CNRS UMR7373, Marseille, France
| | - Lia N’Guyen
- Epigenetic Control of Normal and Malignant Hematopoiesis, CRCM, Aix Marseille University, CNRS UMR7258, INSERM U1068, Institut Paoli-Calmettes, Marseille, France
- Equipe Labellisée Ligue Nationale Contre le Cancer
| | - Shuhei Koide
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Yaeko Nakajima-Takagi
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Wakako Kuribayashi
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Nadine Carbuccia
- Predictive Oncology Laboratory, CRCM, Aix Marseille University, CNRS UMR7258, INSERM 1068, Institut Paoli-Calmettes, Marseille, France
| | - Loreen Haboub
- Epigenetic Control of Normal and Malignant Hematopoiesis, CRCM, Aix Marseille University, CNRS UMR7258, INSERM U1068, Institut Paoli-Calmettes, Marseille, France
- Equipe Labellisée Ligue Nationale Contre le Cancer
| | - Julien Vernerey
- Epigenetic Control of Normal and Malignant Hematopoiesis, CRCM, Aix Marseille University, CNRS UMR7258, INSERM U1068, Institut Paoli-Calmettes, Marseille, France
| | - Motohiko Oshima
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Daniel Birnbaum
- Predictive Oncology Laboratory, CRCM, Aix Marseille University, CNRS UMR7258, INSERM 1068, Institut Paoli-Calmettes, Marseille, France
| | - Atsushi Iwama
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Estelle Duprez
- Epigenetic Control of Normal and Malignant Hematopoiesis, CRCM, Aix Marseille University, CNRS UMR7258, INSERM U1068, Institut Paoli-Calmettes, Marseille, France
- Equipe Labellisée Ligue Nationale Contre le Cancer
| |
Collapse
|
22
|
Abstract
Myelodysplastic syndromes (MDS) are a family of myeloid cancers with diverse genotypes and phenotypes characterized by ineffective haematopoiesis and risk of transformation to acute myeloid leukaemia (AML). Some epidemiological data indicate that MDS incidence is increasing in resource-rich regions but this is controversial. Most MDS cases are caused by randomly acquired somatic mutations. In some patients, the phenotype and/or genotype of MDS overlaps with that of bone marrow failure disorders such as aplastic anaemia, paroxysmal nocturnal haemoglobinuria (PNH) and AML. Prognostic systems, such as the revised International Prognostic Scoring System (IPSS-R), provide reasonably accurate predictions of survival at the population level. Therapeutic goals in individuals with lower-risk MDS include improving quality of life and minimizing erythrocyte and platelet transfusions. Therapeutic goals in people with higher-risk MDS include decreasing the risk of AML transformation and prolonging survival. Haematopoietic cell transplantation (HCT) can cure MDS, yet fewer than 10% of affected individuals receive this treatment. However, how, when and in which patients with HCT for MDS should be performed remains controversial, with some studies suggesting HCT is preferred in some individuals with higher-risk MDS. Advances in the understanding of MDS biology offer the prospect of new therapeutic approaches.
Collapse
|
23
|
Zhou W, Yu J, Li Y, Wang K. Neoantigen-specific TCR-T cell-based immunotherapy for acute myeloid leukemia. Exp Hematol Oncol 2022; 11:100. [PMID: 36384590 PMCID: PMC9667632 DOI: 10.1186/s40164-022-00353-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/26/2022] [Indexed: 11/17/2022] Open
Abstract
Neoantigens derived from non-synonymous somatic mutations are restricted to malignant cells and are thus considered ideal targets for T cell receptor (TCR)-based immunotherapy. Adoptive transfer of T cells bearing neoantigen-specific TCRs exhibits the ability to preferentially target tumor cells while remaining harmless to normal cells. High-avidity TCRs specific for neoantigens expressed on AML cells have been identified in vitro and verified using xenograft mouse models. Preclinical studies of these neoantigen-specific TCR-T cells are underway and offer great promise as safe and effective therapies. Additionally, TCR-based immunotherapies targeting tumor-associated antigens are used in early-phase clinical trials for the treatment of AML and show encouraging anti-leukemic effects. These clinical experiences support the application of TCR-T cells that are specifically designed to recognize neoantigens. In this review, we will provide a detailed profile of verified neoantigens in AML, describe the strategies to identify neoantigen-specific TCRs, and discuss the potential of neoantigen-specific T-cell-based immunotherapy in AML.
Collapse
|
24
|
Jiang M, Li J, Wu J, Zhu Y, Gao J. Case report: A rare case of TBL1XR1-RARB positive acute promyelocytic leukemia in child and review of the literature. Front Oncol 2022; 12:1028089. [PMID: 36465368 PMCID: PMC9709304 DOI: 10.3389/fonc.2022.1028089] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/19/2022] [Indexed: 07/12/2024] Open
Abstract
Some forms of acute myelogenous leukemia (AML) share typical morphological and immunophenotypic features of acute promyelocytic leukemia (APL) but are negative for promyelocytic leukemia-retinoic acid receptor alpha (PML-RARA) fusion. These forms of AML are known as variant APL. Some variants of APL present with retinoic acid receptor beta (RARB) fused or rearranged with partner genes. RARB-positive APL is very rare, resistant to all-trans retinoic acid (ATRA), and associated with poor prognosis. Here, we reported one case with TBL1XR1-RARB positive APL, featured by early onset and no apparent bleeding tendency or coagulation dysfunction. This patient was resistant to ATRA and arsenic trioxide (ATO), but was good responsive to conventional chemotherapy for AML. The case report was followed by a literature review.
Collapse
Affiliation(s)
- Mingyan Jiang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory Of Birth Defects And Related Diseases Of Women And Children (Sichuan University), Ministry Of Education, Chengdu, China
| | - Jinrong Li
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory Of Birth Defects And Related Diseases Of Women And Children (Sichuan University), Ministry Of Education, Chengdu, China
| | - Jianrong Wu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory Of Birth Defects And Related Diseases Of Women And Children (Sichuan University), Ministry Of Education, Chengdu, China
| | - Yiping Zhu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory Of Birth Defects And Related Diseases Of Women And Children (Sichuan University), Ministry Of Education, Chengdu, China
| | - Ju Gao
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory Of Birth Defects And Related Diseases Of Women And Children (Sichuan University), Ministry Of Education, Chengdu, China
| |
Collapse
|
25
|
Xu F, Wu L, Guo J, He Q, Zhang Z, Li X. Somatic mutations of activating signalling, transcription factor, and tumour suppressor are a precondition for leukaemia transformation in myelodysplastic syndromes. J Cell Mol Med 2022; 26:5901-5916. [DOI: 10.1111/jcmm.17613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 10/13/2022] [Accepted: 11/01/2022] [Indexed: 11/17/2022] Open
Affiliation(s)
- Feng Xu
- Department of Hematology Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai China
| | - Lin‐Yun Wu
- Department of Hematology Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai China
| | - Juan Guo
- Department of Hematology Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai China
| | - Qi He
- Department of Hematology Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai China
| | - Zheng Zhang
- Department of Hematology Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai China
| | - Xiao Li
- Department of Hematology Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai China
| |
Collapse
|
26
|
Naturally Occurring Bicoumarin Compound Daphnoretin Inhibits Growth and Induces Megakaryocytic Differentiation in Human Chronic Myeloid Leukemia Cells. Cells 2022; 11:cells11203252. [PMID: 36291120 PMCID: PMC9600978 DOI: 10.3390/cells11203252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/17/2022] Open
Abstract
Daphnoretin extracted from the stem and roots of Wikstroemia indica (L.) C.A. Mey has been shown to possess antiviral and antitumor activities. Herein, we hypothesized that daphnoretin might induce megakaryocytic differentiation, thereby inhibiting the proliferation of cells and serving as a differentiation therapy agent for chronic myeloid leukemia (CML). Daphnoretin-treated K562 and HEL cells were examined for growth inhibition, cell morphology, and megakaryocyte-specific markers. Potential mechanisms of megakaryocytic differentiation of daphnoretin-treated K562 cells were evaluated. The results showed that daphnoretin inhibited the growth of K562 and HEL cells in a dose- and time-dependent manner. Flow cytometry analyses revealed that daphnoretin treatment slightly increased the proportion of sub-G1 and polyploid cells compared to that of dimethyl sulfoxide (DMSO)-treated control cells. Morphological examination showed that daphnoretin-treated K562 and HEL cells exhibited enlarged contours and multinucleation as megakaryocytic characteristics compared to DMSO-treated control cells. Daphnoretin treatment also dramatically enhanced the expression of megakaryocytic markers CD61 and CD41. Under optimal megakaryocytic differentiation conditions, daphnoretin increased the phosphorylation of STAT3 but not STAT5. In summary, daphnoretin inhibited cell growth and induced megakaryocytic differentiation in K562 and HEL cells. The efficacy of daphnoretin in vivo and in patients with CML may need further investigations for validation.
Collapse
|
27
|
Huang S, Chen K, Leung JK, Guagliardo P, Chen W, Song W, Clode P, Xu J, Young SG, Jiang H. Subcellular Partitioning of Arsenic Trioxide Revealed by Label-Free Imaging. Anal Chem 2022; 94:13889-13896. [PMID: 36189785 DOI: 10.1021/acs.analchem.2c02770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Subcellular partitioning of therapeutic agents is highly relevant to their interactions with target molecules and drug efficacy, but studying subcellular partitioning is an enormous challenge. Here, we describe the application of nanoscale secondary ion mass spectrometry (NanoSIMS) analysis to define the subcellular pharmacokinetics of a cytotoxic chemotherapy drug, arsenic trioxide (ATO). We reasoned that defining the partitioning of ATO would yield valuable insights into the mechanisms underlying ATO efficacy. NanoSIMS imaging made it possible to define the intracellular fate of ATO in a label-free manner─and with high resolution and high sensitivity. Our studies of ATO-treated cells revealed that arsenic accumulates in the nucleolus. After prolonged ATO exposure, ∼40 nm arsenic- and sulfur-rich protein aggregates appeared in the cell nucleolus, nucleus, and membrane-free compartments in the cytoplasm, and our studies suggested that the partitioning of nanoscale aggregates could be relevant to cell survival. All-trans retinoic acid increased intracellular ATO levels and accelerated the nanoscale aggregate formation in the nucleolus. This study yielded fresh insights into the subcellular pharmacokinetics of an important cancer therapeutic agent and the potential impact of drug partitioning and pharmacokinetics on drug activity.
Collapse
Affiliation(s)
- Song Huang
- School of Molecular Sciences, University of Western Australia, Perth 6009, Australia
| | - Kai Chen
- School of Molecular Sciences, University of Western Australia, Perth 6009, Australia.,Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Jong-Kai Leung
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Paul Guagliardo
- Centre for Microscopy, Characterisation and Analysis, University of Western Australia, Perth 6009, Australia
| | - Weihua Chen
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Wenxin Song
- Department of Medicine, University of California, Los Angeles, California 90095, United States
| | - Peta Clode
- Centre for Microscopy, Characterisation and Analysis, University of Western Australia, Perth 6009, Australia.,School of Biological Sciences, University of Western Australia, Perth 6009, Australia
| | - Jiake Xu
- School of Biological Sciences, University of Western Australia, Perth 6009, Australia
| | - Stephen G Young
- Department of Medicine, University of California, Los Angeles, California 90095, United States.,School of Biomedical Sciences, University of Western Australia, Perth 6009, Australia.,Department of Human Genetics, University of California, Los Angeles, California 90095, United States
| | - Haibo Jiang
- School of Molecular Sciences, University of Western Australia, Perth 6009, Australia.,Department of Chemistry, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
28
|
Song H, Liu Y, Tan Y, Zhang Y, Jin W, Chen L, Wu S, Yan J, Li J, Chen Z, Chen S, Wang K. Recurrent noncoding somatic and germline WT1 variants converge to disrupt MYB binding in acute promyelocytic leukemia. Blood 2022; 140:1132-1144. [PMID: 35653587 PMCID: PMC9461475 DOI: 10.1182/blood.2021014945] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 05/24/2022] [Indexed: 11/22/2022] Open
Abstract
Genetic alternations can occur at noncoding regions, but how they contribute to cancer pathogenesis is poorly understood. Here, we established a mutational landscape of cis-regulatory regions (CREs) in acute promyelocytic leukemia (APL) based on whole-genome sequencing analysis of paired tumor and germline samples from 24 patients and epigenetic profiling of 16 patients. Mutations occurring in CREs occur preferentially in active enhancers bound by the complex of master transcription factors in APL. Among significantly enriched mutated CREs, we found a recurrently mutated region located within the third intron of WT1, an essential regulator of normal and malignant hematopoiesis. Focusing on noncoding mutations within this WT1 intron, an analysis on 169 APL patients revealed that somatic mutations were clustered into a focal hotspot region, including one site identified as a germline polymorphism contributing to APL risk. Significantly decreased WT1 expression was observed in APL patients bearing somatic and/or germline noncoding WT1 variants. Furthermore, biallelic WT1 inactivation was recurrently found in APL patients with noncoding WT1 variants, which resulted in the complete loss of WT1. The high incidence of biallelic inactivation suggested the tumor suppressor activity of WT1 in APL. Mechanistically, noncoding WT1 variants disrupted MYB binding on chromatin and suppressed the enhancer activity and WT1 expression through destroying the chromatin looping formation. Our study highlights the important role of noncoding variants in the leukemogenesis of APL.
Collapse
Affiliation(s)
- Huan Song
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yabin Liu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yun Tan
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wen Jin
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; and
| | - Li Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shishuang Wu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinsong Yan
- Department of Hematology, the Second Hospital of Dalian Medical University, Dalian, China
| | - Junmin Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhu Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Saijuan Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Kankan Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; and
| |
Collapse
|
29
|
Kumar S, Tchounwou PB. p53 as a unique target of action of cisplatin in acute leukaemia cells. J Cell Mol Med 2022; 26:4727-4739. [PMID: 35946055 PMCID: PMC9443951 DOI: 10.1111/jcmm.17502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/18/2022] [Accepted: 06/26/2022] [Indexed: 12/03/2022] Open
Abstract
Acute promyelocytic leukaemia (APL) occurs in approximately 10% of acute myeloid leukaemia patients. Arsenic trioxide (ATO) has been for APL chemotherapy, but recently several ATO-resistant cases have been reported worldwide. Cisplatin (CDDP) enhances the toxicity of ATO in ovarian, lung cancer, chronic myelogenous leukaemia, and HL-60 cells. Hence, the goal of this study was to investigate a novel target of CDDP action in APL cells, as an alternate option for the treatment of ATO-resistant APL patients. We applied biochemical, molecular, confocal microscopy and advanced gene editing (CRISPR-Cas9) techniques to elucidate the novel target of CDDP action and its functional mechanism in APL cells. Our main findings revealed that CDDP activated p53 in APL cells through stress signals catalysed by ATM and ATR protein kinases, CHK1 and CHK2 phosphorylation at Ser 345 and Thr68 residues, and downregulation and dissociation of MDM2-DAXX-HAUSP complex. Our functional studies confirmed that CDDP-induced repression of MDM2-DAXX-HAUSP complex was significantly reversed in both nutilin-3-treated KG1a and p53-knockdown NB4 cells. Our findings also showed that CDDP stimulated an increased number of promyelocytes with dense granules, activated p53 expression, and downregulated MDM2 in liver and bone marrow of APL mice. Principal conclusion of our study highlights a novel mode of action of CDDP targeting p53 expression which may provide a basis for designing new anti-leukaemic compounds for treatment of APL patients.
Collapse
Affiliation(s)
- Sanjay Kumar
- Cellomics and Toxicogenomics Research Laboratory, NIH/NIMHD‐RCMI Center for Health Disparities ResearchJackson State UniversityJacksonMississippiUSA
- Department of life Sciences, School of Earth, Biological, and Environmental SciencesCentral University South BiharGayaIndia
| | - Paul B. Tchounwou
- Cellomics and Toxicogenomics Research Laboratory, NIH/NIMHD‐RCMI Center for Health Disparities ResearchJackson State UniversityJacksonMississippiUSA
| |
Collapse
|
30
|
Vulin M, Jehanno C, Sethi A, Correia AL, Obradović MMS, Couto JP, Coissieux MM, Diepenbruck M, Preca BT, Volkmann K, der Maur PA, Schmidt A, Münst S, Sauteur L, Kloc M, Palafox M, Britschgi A, Unterreiner V, Galuba O, Claerr I, Lopez-Romero S, Galli GG, Baeschlin D, Okamoto R, Soysal SD, Mechera R, Weber WP, Radimerski T, Bentires-Alj M. A high-throughput drug screen reveals means to differentiate triple-negative breast cancer. Oncogene 2022; 41:4459-4473. [PMID: 36008466 PMCID: PMC9507968 DOI: 10.1038/s41388-022-02429-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 11/09/2022]
Abstract
Plasticity delineates cancer subtypes with more or less favourable outcomes. In breast cancer, the subtype triple-negative lacks expression of major differentiation markers, e.g., estrogen receptor α (ERα), and its high cellular plasticity results in greater aggressiveness and poorer prognosis than other subtypes. Whether plasticity itself represents a potential vulnerability of cancer cells is not clear. However, we show here that cancer cell plasticity can be exploited to differentiate triple-negative breast cancer (TNBC). Using a high-throughput imaging-based reporter drug screen with 9 501 compounds, we have identified three polo-like kinase 1 (PLK1) inhibitors as major inducers of ERα protein expression and downstream activity in TNBC cells. PLK1 inhibition upregulates a cell differentiation program characterized by increased DNA damage, mitotic arrest, and ultimately cell death. Furthermore, cells surviving PLK1 inhibition have decreased tumorigenic potential, and targeting PLK1 in already established tumours reduces tumour growth both in cell line- and patient-derived xenograft models. In addition, the upregulation of genes upon PLK1 inhibition correlates with their expression in normal breast tissue and with better overall survival in breast cancer patients. Our results indicate that differentiation therapy based on PLK1 inhibition is a potential alternative strategy to treat TNBC.
Collapse
Affiliation(s)
- Milica Vulin
- Department of Biomedicine, Department of Surgery, University Hospital Basel, University of Basel, Basel, Switzerland.,Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Charly Jehanno
- Department of Biomedicine, Department of Surgery, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Atul Sethi
- Department of Biomedicine, Department of Surgery, University Hospital Basel, University of Basel, Basel, Switzerland.,Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.,Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Ana Luísa Correia
- Department of Biomedicine, Department of Surgery, University Hospital Basel, University of Basel, Basel, Switzerland.,Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Milan M S Obradović
- Department of Biomedicine, Department of Surgery, University Hospital Basel, University of Basel, Basel, Switzerland.,Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Joana Pinto Couto
- Department of Biomedicine, Department of Surgery, University Hospital Basel, University of Basel, Basel, Switzerland.,Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Marie-May Coissieux
- Department of Biomedicine, Department of Surgery, University Hospital Basel, University of Basel, Basel, Switzerland.,Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Maren Diepenbruck
- Department of Biomedicine, Department of Surgery, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Bogdan-Tiberius Preca
- Department of Biomedicine, Department of Surgery, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Katrin Volkmann
- Department of Biomedicine, Department of Surgery, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Priska Auf der Maur
- Department of Biomedicine, Department of Surgery, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Alexander Schmidt
- Proteomics Core Facility, Biozentrum, University of Basel, Basel, Switzerland
| | - Simone Münst
- Institute of Pathology and Medical Genetics, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Loïc Sauteur
- Department of Biomedicine, Department of Surgery, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Michal Kloc
- Department of Biomedicine, Department of Surgery, University Hospital Basel, University of Basel, Basel, Switzerland.,Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Marta Palafox
- Department of Biomedicine, Department of Surgery, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Adrian Britschgi
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | | | - Olaf Galuba
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Isabelle Claerr
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | | | - Giorgio G Galli
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | | | - Ryoko Okamoto
- Department of Biomedicine, Department of Surgery, University Hospital Basel, University of Basel, Basel, Switzerland.,Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Savas D Soysal
- Department of Surgery, University Hospital Basel, University of Basel, Basel, Switzerland.,Breast Cancer Center, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Robert Mechera
- Department of Surgery, University Hospital Basel, University of Basel, Basel, Switzerland.,Breast Cancer Center, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Walter P Weber
- Department of Surgery, University Hospital Basel, University of Basel, Basel, Switzerland.,Breast Cancer Center, University Hospital Basel, University of Basel, Basel, Switzerland
| | | | - Mohamed Bentires-Alj
- Department of Biomedicine, Department of Surgery, University Hospital Basel, University of Basel, Basel, Switzerland. .,Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.
| |
Collapse
|
31
|
Lara-Ureña N, Jafari V, García-Domínguez M. Cancer-Associated Dysregulation of Sumo Regulators: Proteases and Ligases. Int J Mol Sci 2022; 23:8012. [PMID: 35887358 PMCID: PMC9316396 DOI: 10.3390/ijms23148012] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/14/2022] [Accepted: 07/19/2022] [Indexed: 02/04/2023] Open
Abstract
SUMOylation is a post-translational modification that has emerged in recent decades as a mechanism involved in controlling diverse physiological processes and that is essential in vertebrates. The SUMO pathway is regulated by several enzymes, proteases and ligases being the main actors involved in the control of sumoylation of specific targets. Dysregulation of the expression, localization and function of these enzymes produces physiological changes that can lead to the appearance of different types of cancer, depending on the enzymes and target proteins involved. Among the most studied proteases and ligases, those of the SENP and PIAS families stand out, respectively. While the proteases involved in this pathway have specific SUMO activity, the ligases may have additional functions unrelated to sumoylation, which makes it more difficult to study their SUMO-associated role in cancer process. In this review we update the knowledge and advances in relation to the impact of dysregulation of SUMO proteases and ligases in cancer initiation and progression.
Collapse
Affiliation(s)
| | | | - Mario García-Domínguez
- Andalusian Centre for Molecular Biology and Regenerative Medicine (CABIMER), CSIC-Universidad de Sevilla-Universidad Pablo de Olavide, Av. Américo Vespucio 24, 41092 Seville, Spain; (N.L.-U.); (V.J.)
| |
Collapse
|
32
|
Oral Realgar-Indigo Naturalis Formula Treatment for Acute Promyelocytic Leukemia in Children: A Randomized, Control Clinical Trial. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:8314176. [PMID: 35836830 PMCID: PMC9276483 DOI: 10.1155/2022/8314176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/20/2022] [Indexed: 11/17/2022]
Abstract
Objective To analyze the efficacy, safety, and economy of RIF compared with intravenous arsenic trioxide (ATO) for the induction and consolidation therapy of pediatric APL. Materials and Methods In this randomized control clinical trial (NCT02200978), children with newly diagnosed APL from June 2013 to December 2017 were randomly divided into RIF and ATO groups. The groups were treated with RIF or ATO in combination with all-trans retinoic acid (ARTA) and conventional chemotherapeutic drugs during induction and consolidation therapy. Results Ninteen patients were enrolled, including eight in the RIF group and 11 in the ATO group. After induction therapy, the bone marrow morphologic complete remission (CR) rate, the median time to CR, and molecular remission (promyelocytic leukemia protein (PML)/retinoic acid receptor α (RARα) conversion) rates showed no significant differences between patients in the RIF versus ATO groups (100% vs. 100%, p=1.000; 22 vs. 24 days, p=0.395; 28.5% vs. 54.5%, p=0.367, resp.). After consolidation therapy, the molecular remission rate was 100% in both groups. At the end of more than two years of follow-up, the disease-free survival (DFS) rate was 100% in both groups. Conclusion Oral RIF can achieve similar efficacy to intravenous ATO for APL in children with good safety, less toxicity, fewer side effects, and fewer inpatient days. Therefore, oral RIF can be used as an alternative to intravenous ATO for the treatment of APL in children.
Collapse
|
33
|
Sung JY, Yun W, Kim HY, Kim HJ, Choi JR, Kim SH, Jung CW, Lee ST. Metabolic subtype reveals potential therapeutic vulnerability in acute promyelocytic leukaemia. Clin Transl Med 2022; 12:e964. [PMID: 35808815 PMCID: PMC9270575 DOI: 10.1002/ctm2.964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/15/2022] [Accepted: 06/20/2022] [Indexed: 11/12/2022] Open
Affiliation(s)
- Ji-Yong Sung
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Woobin Yun
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, South Korea
| | - Hyun-Young Kim
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Hee-Jin Kim
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Jong Rak Choi
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, South Korea.,Dxome Co. Ltd., Seongnam-si, Gyeonggi-do, South Korea
| | - Sun-Hee Kim
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Chul Won Jung
- Department of Internal Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Seung-Tae Lee
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, South Korea.,Dxome Co. Ltd., Seongnam-si, Gyeonggi-do, South Korea
| |
Collapse
|
34
|
Hegazy AN, Krönke J, Angermair S, Schwartz S, Weidinger C, Keller U, Treskatsch S, Siegmund B, Schneider T. Anti-SARS-CoV2 antibody-mediated cytokine release syndrome in a patient with acute promyelocytic leukemia. BMC Infect Dis 2022; 22:537. [PMID: 35692034 PMCID: PMC9188919 DOI: 10.1186/s12879-022-07513-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/31/2022] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Passive immunization against SARS-CoV-2 limits viral burden and death from COVID-19; however, it poses a theoretical risk of disease exacerbation through antibody-dependent enhancement (ADE). ADE after anti-SARS-CoV2 antibody treatment has not been reported, and therefore the potential risk and promoting factors remain unknown. CASE PRESENTATION A 75-year-old female was admitted to the emergency room with recurrent, unexplained bruises and leukocytopenia, anemia, and thrombocytopenia. Evaluation of a bone marrow biopsy established the diagnosis of an acute promyelocytic leukemia (APL). SARS-CoV-2 RT-PCR testing of nasal and throat swabs on admission was negative. During the routine SARS-CoV-2 testing of inpatients, our patient tested positive for SARS-CoV-2 on day 14 after admission without typical COVID-19 symptoms. Due to disease- and therapy-related immunosuppression and advanced age conferring a high risk of progressing to severe COVID-19, casirivimab and imdevimab were administered as a preemptive approach. The patient developed immune activation and cytokine release syndrome (CRS) occurring within four hours of preemptive anti-SARS-CoV2 antibody (casirivimab/imdevimab) infusion. Immune activation and CRS were evidenced by a rapid increase in serum cytokines (IL-6, TNFα, IL-8, IL-10), acute respiratory insufficiency, and progressive acute respiratory distress syndrome. DISCUSSION AND CONCLUSION The temporal relationship between therapeutic antibody administration and the rapid laboratory, radiological, and clinical deterioration suggests that CRS was an antibody-related adverse event, potentially exacerbated by APL treatment-mediated differentiation of leukemic blasts and promyelocytes. This case highlights the need for careful assessment of life-threatening adverse events after passive SARS-CoV-2 immunization, especially in the clinical context of patients with complex immune and hematological landscapes.
Collapse
Affiliation(s)
- Ahmed N Hegazy
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität and Humboldt Universität zu Berlin, Campus Benjamin Franklin, Berlin, Germany. .,Deutsches Rheumaforschungszentrum Berlin (DRFZ), An Institute of the Leibniz Association, Berlin, Germany. .,Berlin Institute of Health (BIH), Berlin, Germany.
| | - Jan Krönke
- Department of Hematology, Oncology and Tumor Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Stefan Angermair
- Department of Anesthesiology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität and Humboldt Universität zu Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Stefan Schwartz
- Department of Hematology, Oncology and Tumor Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Carl Weidinger
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität and Humboldt Universität zu Berlin, Campus Benjamin Franklin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Ulrich Keller
- Department of Hematology, Oncology and Tumor Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sascha Treskatsch
- Department of Anesthesiology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität and Humboldt Universität zu Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Britta Siegmund
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität and Humboldt Universität zu Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Thomas Schneider
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität and Humboldt Universität zu Berlin, Campus Benjamin Franklin, Berlin, Germany
| |
Collapse
|
35
|
Huang X, Yang Y, Zhu D, Zhao Y, Wei M, Li K, Zhu HH, Zheng X. PRMT5-mediated RNF4 methylation promotes therapeutic resistance of APL cells to As 2O 3 by stabilizing oncoprotein PML-RARα. Cell Mol Life Sci 2022; 79:319. [PMID: 35622143 PMCID: PMC11072021 DOI: 10.1007/s00018-022-04358-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/23/2022] [Accepted: 05/08/2022] [Indexed: 11/03/2022]
Abstract
Acute promyelocytic leukemia (APL) is a hematological malignancy driven by the oncoprotein PML-RARα, which can be treated with arsenic trioxide (As2O3) or/and all-trans retinoic acid. The protein arginine methyltransferase 5 (PRMT5) is involved in tumorigenesis. However, little is known about the biological function and therapeutic potential of PRMT5 in APL. Here, we show that PRMT5 is highly expressed in APL patients. PRMT5 promotes APL by interacting with PML-RARα and suppressing its ubiquitination and degradation. Mechanistically, PRMT5 attenuates the interaction between PML-RARα and its ubiquitin E3 ligase RNF4 by methylating RNF4 at Arg164. Notably, As2O3 treatment triggers the dissociation of PRMT5 from PML nuclear bodies, attenuating RNF4 methylation and promoting RNF4-mediated PML-RARα ubiquitination and degradation. Moreover, knockdown of PRMT5 and pharmacological inhibition of PRMT5 with the specific inhibitor EPZ015666 significantly inhibit APL cells growth. The combination of EPZ015666 with As2O3 shows synergistic effects on As2O3-induced differentiation of bone marrow cells from APL mice, as well as on apoptosis and differentiation of primary APL cells from APL patients. These findings provide mechanistic insight into the function of PRMT5 in APL pathogenesis and demonstrate that inhibition of PRMT5, alone or in combination with As2O3, might be a promising therapeutic strategy against APL.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Arsenic Trioxide/pharmacology
- Arsenic Trioxide/therapeutic use
- Cell Line, Tumor/drug effects
- Drug Resistance, Neoplasm/genetics
- Drug Resistance, Neoplasm/physiology
- Humans
- Isoquinolines/pharmacology
- Isoquinolines/therapeutic use
- Leukemia, Promyelocytic, Acute/drug therapy
- Leukemia, Promyelocytic, Acute/genetics
- Leukemia, Promyelocytic, Acute/metabolism
- Leukemia, Promyelocytic, Acute/pathology
- Methylation
- Mice
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Oncogene Proteins, Fusion/therapeutic use
- Protein-Arginine N-Methyltransferases/antagonists & inhibitors
- Protein-Arginine N-Methyltransferases/genetics
- Protein-Arginine N-Methyltransferases/metabolism
- Pyrimidines/pharmacology
- Pyrimidines/therapeutic use
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Ubiquitination
Collapse
Affiliation(s)
- Xinping Huang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing, China
| | - Yongfeng Yang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing, China
| | - Dan Zhu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing, China
| | - Yan Zhao
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing, China
| | - Min Wei
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing, China
| | - Ke Li
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hong-Hu Zhu
- Department of Hematology and Institute of Hematology, Zhejiang Province Key Laboratory of Hematology Oncology Diagnosis and Treatment, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Xiaofeng Zheng
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China.
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing, China.
| |
Collapse
|
36
|
Epithelial de-differentiation triggered by co-ordinate epigenetic inactivation of the EHF and CDX1 transcription factors drives colorectal cancer progression. Cell Death Differ 2022; 29:2288-2302. [PMID: 35606410 PMCID: PMC9613692 DOI: 10.1038/s41418-022-01016-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 11/28/2022] Open
Abstract
Colorectal cancers (CRCs) often display histological features indicative of aberrant differentiation but the molecular underpinnings of this trait and whether it directly drives disease progression is unclear. Here, we identify co-ordinate epigenetic inactivation of two epithelial-specific transcription factors, EHF and CDX1, as a mechanism driving differentiation loss in CRCs. Re-expression of EHF and CDX1 in poorly-differentiated CRC cells induced extensive chromatin remodelling, transcriptional re-programming, and differentiation along the enterocytic lineage, leading to reduced growth and metastasis. Strikingly, EHF and CDX1 were also able to reprogramme non-colonic epithelial cells to express colonic differentiation markers. By contrast, inactivation of EHF and CDX1 in well-differentiated CRC cells triggered tumour de-differentiation. Mechanistically, we demonstrate that EHF physically interacts with CDX1 via its PNT domain, and that these transcription factors co-operatively drive transcription of the colonic differentiation marker, VIL1. Compound genetic deletion of Ehf and Cdx1 in the mouse colon disrupted normal colonic differentiation and significantly enhanced colorectal tumour progression. These findings thus reveal a novel mechanism driving epithelial de-differentiation and tumour progression in CRC.
Collapse
|
37
|
Chen Y, Li M, Wu H, Yuan S, Xia Y, Wang Y, Peng Y, Lan J, Wang Y. Arsenic trioxide induces proteasome dependent TBLR1-RARα degradation to improve leukemia eradication through cell differentiation enhancement. J Cancer 2022; 13:2301-2311. [PMID: 35517404 PMCID: PMC9066217 DOI: 10.7150/jca.66175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 04/04/2022] [Indexed: 12/02/2022] Open
Abstract
Background: Acute promyelocytic leukemia (APL) mainly harbors PML-RARα fusion gene, which is sensitive to all-trans retinoic acid (ATRA) and arsenic trioxide (ATO) treatment. However, APL harboring other RARα fusion genes exhibit different drug sensitivity. Here, we investigated the role and mechanism of TBLR1-RARα, a rare RARα fusion gene, on ATO treatment in leukemia cells. Methods: By constructing two cell models of leukemia cell line HL-60 and U937 with overexpressed TBLR1-RARα, we detected the cell differentiation in the two cell models after ATO treatment by flow cytometry and Wright staining. Meanwhile, cell viability, colony formation and apoptosis were also determined after ATO treatment. Results: We found that TBLR1-RARα enhanced ATO-induced apoptosis and cell proliferation inhibition. Besides, TBLR1-RARα also promoted ATO-induced cell differentiation. Furthermore, we found that the mitochondrial caspase pathway was involved in the apoptosis induced by ATO treatment in TBLR1-RARα positive leukemia cells. Moreover, ATO mediated TBLR1-RARα protein degradation via proteasome pathway, which accounts for the transcriptional activation of RARα target gene and is further involved in cell differentiation of TBLR1-RARα positive leukemia cells. Conclusions: Our study provides evidence that TBLR1-RARα positive APL patients may benefit from ATO treatment, thereby improving the appropriate management in TBLR1-RARα positive APL.
Collapse
Affiliation(s)
- Yirui Chen
- Cancer center, Department of Hematology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, 58 Shangtang Road, Hangzhou, Zhejiang, China, 310014
| | - Manning Li
- Cancer center, Department of Hematology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, 58 Shangtang Road, Hangzhou, Zhejiang, China, 310014
| | - Han Wu
- Cancer center, Department of Hematology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, 58 Shangtang Road, Hangzhou, Zhejiang, China, 310014
| | - Shijin Yuan
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, Zhejiang, China, 310016
| | - Yan Xia
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, Zhejiang, China, 310016
| | - Yingjian Wang
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, Zhejiang, China, 310016
| | - Ye Peng
- Cancer center, Department of Hematology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, 58 Shangtang Road, Hangzhou, Zhejiang, China, 310014
| | - Jianping Lan
- Cancer center, Department of Hematology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, 58 Shangtang Road, Hangzhou, Zhejiang, China, 310014
| | - Yanzhong Wang
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, Zhejiang, China, 310016.,Department of Clinical Laboratory, Xiasha Campus, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, Zhejiang, China, 310016
| |
Collapse
|
38
|
CD44-fibrinogen binding promotes bleeding in acute promyelocytic leukemia by in situ fibrin(ogen) deposition. Blood Adv 2022; 6:4617-4633. [PMID: 35511736 DOI: 10.1182/bloodadvances.2022006980] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/26/2022] [Indexed: 11/20/2022] Open
Abstract
Early haemorrhagic death is still the main obstacle for the successful treatment of acute promyelocytic leukaemia (APL). However, the mechanisms underlying haemostatic perturbations in APL have not been fully elucidated. Here, we report that CD44 on the membrane of APL blasts and NB4 cells ligated bound fibrinogen, resulting in in situ deposition of fibrin and abnormal fibrin distribution. Clots formed by leukaemic cells in response to CD44 and fibrinogen interaction exhibited low permeability and resistance to fibrinolysis. Using flow cytometry and confocal microscopy, we found that CD44 was also involved in platelet and leukaemic cell adhesion. CD44 bound activated platelets but not resting platelets through interaction with P-selectin. APL cell-coated fibrinogen-activated platelets directly induce enhanced procoagulant activity of platelets. In vivo studies revealed that CD44 knockdown shortened bleeding time, increased the level of fibrinogen, and elevated the number of platelets by approximately 2-fold in an APL mouse model. Moreover, CD44 expression on leukaemic cells in an APL mouse model was not only associated with bleeding complications but was also related to the wound healing process and the survival time of APL mice. Collectively, our results suggest that CD44 may be a potential intervention target for preventing bleeding complications in APL.
Collapse
|
39
|
Guarnera L, Ottone T, Fabiani E, Divona M, Savi A, Travaglini S, Falconi G, Panetta P, Rapanotti MC, Voso MT. Atypical Rearrangements in APL-Like Acute Myeloid Leukemias: Molecular Characterization and Prognosis. Front Oncol 2022; 12:871590. [PMID: 35494081 PMCID: PMC9039303 DOI: 10.3389/fonc.2022.871590] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 02/25/2022] [Indexed: 02/02/2023] Open
Abstract
Acute promyelocytic leukemia (APL) accounts for 10–15% of newly diagnosed acute myeloid leukemias (AML) and is typically caused by the fusion of promyelocytic leukemia with retinoic acid receptor α (RARA) gene. The prognosis is excellent, thanks to the all-trans retinoic acid (ATRA) and arsenic trioxide (ATO) combination therapy. A small percentage of APLs (around 2%) is caused by atypical transcripts, most of which involve RARA or other members of retinoic acid receptors (RARB or RARG). The diagnosis of these forms is difficult, and clinical management is still a challenge for the physician due to variable response rates to ATRA and ATO. Herein we review variant APL cases reported in literature, including genetic landscape, incidence of coagulopathy and differentiation syndrome, frequent causes of morbidity and mortality in these patients, sensitivity to ATRA, ATO, and chemotherapy, and outcome. We also focus on non-RAR rearrangements, complex rearrangements (involving more than two chromosomes), and NPM1-mutated AML, an entity that can, in some cases, morphologically mimic APL.
Collapse
Affiliation(s)
- Luca Guarnera
- Department of Biomedicine and Prevention, University of Tor Vergata, Rome, Italy
| | - Tiziana Ottone
- Department of Biomedicine and Prevention, University of Tor Vergata, Rome, Italy.,Santa Lucia Foundation, Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Neuro-Oncohematology, Rome, Italy
| | - Emiliano Fabiani
- Department of Biomedicine and Prevention, University of Tor Vergata, Rome, Italy.,Department of Biomedicine and Prevention, UniCamillus-Saint Camillus International University of Health Sciences, Rome, Italy
| | - Mariadomenica Divona
- Department of Biomedicine and Prevention, University of Tor Vergata, Rome, Italy
| | - Arianna Savi
- Department of Biomedicine and Prevention, University of Tor Vergata, Rome, Italy
| | - Serena Travaglini
- Department of Biomedicine and Prevention, University of Tor Vergata, Rome, Italy
| | - Giulia Falconi
- Department of Biomedicine and Prevention, University of Tor Vergata, Rome, Italy
| | - Paola Panetta
- Department of Biomedicine and Prevention, University of Tor Vergata, Rome, Italy
| | - Maria Cristina Rapanotti
- Department of Biomedicine and Prevention, University of Tor Vergata, Rome, Italy.,Department of Experimental Medicine, Tor Vergata University of Rome, Rome, Italy
| | - Maria Teresa Voso
- Department of Biomedicine and Prevention, University of Tor Vergata, Rome, Italy.,Santa Lucia Foundation, Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Neuro-Oncohematology, Rome, Italy
| |
Collapse
|
40
|
Phenotypic plasticity during metastatic colonization. Trends Cell Biol 2022; 32:854-867. [DOI: 10.1016/j.tcb.2022.03.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 12/20/2022]
|
41
|
Triple chemical derivatization strategy assisted liquid chromatography-mass spectrometry for determination of retinoic acids in human serum. Talanta 2022; 245:123474. [DOI: 10.1016/j.talanta.2022.123474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/06/2022] [Accepted: 04/09/2022] [Indexed: 11/18/2022]
|
42
|
Sumoylation in Physiology, Pathology and Therapy. Cells 2022; 11:cells11050814. [PMID: 35269436 PMCID: PMC8909597 DOI: 10.3390/cells11050814] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 02/04/2023] Open
Abstract
Sumoylation is an essential post-translational modification that has evolved to regulate intricate networks within emerging complexities of eukaryotic cells. Thousands of target substrates are modified by SUMO peptides, leading to changes in protein function, stability or localization, often by modulating interactions. At the cellular level, sumoylation functions as a key regulator of transcription, nuclear integrity, proliferation, senescence, lineage commitment and stemness. A growing number of prokaryotic and viral proteins are also emerging as prime sumoylation targets, highlighting the role of this modification during infection and in immune processes. Sumoylation also oversees epigenetic processes. Accordingly, at the physiological level, it acts as a crucial regulator of development. Yet, perhaps the most prominent function of sumoylation, from mammals to plants, is its role in orchestrating organismal responses to environmental stresses ranging from hypoxia to nutrient stress. Consequently, a growing list of pathological conditions, including cancer and neurodegeneration, have now been unambiguously associated with either aberrant sumoylation of specific proteins and/or dysregulated global cellular sumoylation. Therapeutic enforcement of sumoylation can also accomplish remarkable clinical responses in various diseases, notably acute promyelocytic leukemia (APL). In this review, we will discuss how this modification is emerging as a novel drug target, highlighting from the perspective of translational medicine, its potential and limitations.
Collapse
|
43
|
Kantarjian HM, Jain N, Garcia-Manero G, Welch MA, Ravandi F, Wierda WG, Jabbour EJ. The cure of leukemia through the optimist's prism. Cancer 2022; 128:240-259. [PMID: 34614211 PMCID: PMC8738114 DOI: 10.1002/cncr.33933] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 01/17/2023]
Abstract
Progress is occurring at a dizzying rate across all leukemias. Since the authors' review of the topic in Cancer in 2018, numerous discoveries have been made that have improved the therapy and outcomes of several leukemia subsets. Hairy cell leukemia is potentially curable with a single course of cladribine followed by rituximab (10-year survival, ≥90%). Acute promyelocytic leukemia is curable at a rate of 80% to 90% with a nonchemotherapy regimen of all-trans retinoic acid and arsenic trioxide. The cure rate for core-binding factor acute myeloid leukemia (AML) is ≥75% with fludarabine, high-dose cytarabine, and gemtuzumab ozogamicin. Survival for patients with chronic myeloid leukemia is close to that for an age-matched normal population with BCR-ABL1 tyrosine kinase inhibitors (TKIs). Chronic lymphocytic leukemia, a previously incurable disease, may now be potentially curable with a finite duration of therapy with Bruton tyrosine kinase inhibitors and venetoclax. The estimated 5-year survival rate for patients with Philadelphia chromosome-positive acute lymphoblastic leukemia (ALL) exceeds 70% with intensive chemotherapy and ponatinib, a third-generation BCR-ABL1 TKI, and more recent nonchemotherapy regimens using dasatinib or ponatinib with blinatumomab are producing outstanding results. Survival in both younger and older patients with ALL has improved with the addition of antibodies targeting CD20, CD19 (blinatumomab), and CD22 (inotuzumab) to chemotherapy. Several recent drug discoveries (venetoclax, FLT3 and IDH inhibitors, and oral hypomethylating agents) are also improving outcomes for younger and older patients with AML and for those with higher risk myelodysplastic syndrome.
Collapse
Affiliation(s)
- Hagop M Kantarjian
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Nitin Jain
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Mary Alma Welch
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Farhad Ravandi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - William G Wierda
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Elias J Jabbour
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
44
|
Wang H, Wang X, Xu L, Zhang J. TP53 inhibitor PFTα increases the sensitivity of arsenic trioxide in TP53 wild type tumor cells. FEBS Open Bio 2022; 12:616-626. [PMID: 35030298 PMCID: PMC8886521 DOI: 10.1002/2211-5463.13366] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/15/2021] [Accepted: 01/11/2022] [Indexed: 11/08/2022] Open
Abstract
Arsenic trioxide (ATO) has been shown to be effective in treating acute promyelocytic leukemia. TP53 mutated/null tumor cells are more sensitive to ATO treatment compared to tumor cells carrying wild type TP53 gene copies. However, it is unclear whether TP53 inhibitors can increase the sensitivity of TP53 wild type tumor cells to ATO. Here, we show that breast, colon and lung cancer cell lines with mutated/null TP53 are more sensitive to ATO-induced cell growth inhibition than cells with wild type TP53. Moreover, inhibition of TP53 by a TP53 inhibitor, PFTα, increased the ATO sensitivity of TP53 wild type tumor cells, coincident with ATO-induced cell growth arrest and cell apoptosis. Furthermore, combined treatment with ATO and PFTα synergistically inhibited tumor growth in mouse xenografts in vivo. Through microarray transcriptional analysis, we found that ATO-regulated genes were associated with TP53 and cell cycle signaling pathways. Co-treatment with PFTα enhanced ATO induced dynamic transcriptional changes. Overall, our results provide evidences in using TP53 chemical inhibitors to enhance the ATO-mediated therapeutic response against TP53 wild type tumor cells.
Collapse
Affiliation(s)
- Haiwei Wang
- Medical Research Center, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, 350001, Fujian, China
| | - Xinrui Wang
- Medical Research Center, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, 350001, Fujian, China
| | - Liangpu Xu
- Medical Research Center, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, 350001, Fujian, China
| | - Ji Zhang
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| |
Collapse
|
45
|
Chen Y, Su F, Cheng Y, He X, Li Z. Sensitive detection of fusion transcripts with padlock probe-based continuous cascade amplification (P-CCA). Analyst 2022; 147:2207-2214. [DOI: 10.1039/d2an00341d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A padlock probe-based continuous cascade amplification (P-CCA) is proposed for assaying fusion transcripts with high sensitivity and specificity.
Collapse
Affiliation(s)
- Yutong Chen
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Fengxia Su
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Yongqiang Cheng
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Hebei University), Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, Hebei, P. R. China
| | - Xiaofei He
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Zhengping Li
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China
| |
Collapse
|
46
|
Tonc E, Takeuchi Y, Chou C, Xia Y, Holmgren M, Fujii C, Raju S, Chang GS, Iwamoto M, Egawa T. Unexpected suppression of tumorigenesis by c-MYC via TFAP4-dependent restriction of stemness in B lymphocytes. Blood 2021; 138:2526-2538. [PMID: 34283887 PMCID: PMC8678995 DOI: 10.1182/blood.2021011711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 07/10/2021] [Indexed: 11/20/2022] Open
Abstract
The proliferative burst of B lymphocytes is essential for antigen receptor repertoire diversification during the development and selective expansion of antigen-specific clones during immune responses. High proliferative activity inevitably promotes oncogenesis, the risk of which is further elevated in B lymphocytes by endogenous gene rearrangement and somatic mutations. However, B-cell-derived cancers are rare, perhaps owing to putative intrinsic tumor-suppressive mechanisms. We show that c-MYC facilitates B-cell proliferation as a protumorigenic driver and unexpectedly coengages counteracting tumor suppression through its downstream factor TFAP4. TFAP4 is mutated in human lymphoid malignancies, particularly in >10% of Burkitt lymphomas, and reduced TFAP4 expression was associated with poor survival of patients with MYC-high B-cell acute lymphoblastic leukemia. In mice, insufficient TFAP4 expression accelerated c-MYC-driven transformation of B cells. Mechanistically, c-MYC suppresses the stemness of developing B cells by inducing TFAP4 and restricting self-renewal of proliferating B cells. Thus, the pursuant transcription factor cascade functions as a tumor suppressor module that safeguards against the transformation of developing B cells.
Collapse
MESH Headings
- Animals
- B-Lymphocytes/metabolism
- B-Lymphocytes/pathology
- Carcinogenesis/genetics
- Carcinogenesis/pathology
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/pathology
- DNA-Binding Proteins/genetics
- Gene Expression Regulation, Neoplastic
- Genes, Tumor Suppressor
- Humans
- Leukemia, Lymphoid/genetics
- Leukemia, Lymphoid/pathology
- Lymphoma, B-Cell/genetics
- Lymphoma, B-Cell/pathology
- Mice, Inbred C57BL
- Mutation
- Proto-Oncogene Proteins c-myc/genetics
- Transcription Factors/genetics
- Tumor Cells, Cultured
- Mice
Collapse
Affiliation(s)
- Elena Tonc
- Department of Pathology and Immunology and
| | | | - Chun Chou
- Department of Pathology and Immunology and
| | - Yu Xia
- Department of Pathology and Immunology and
| | | | | | | | - Gue Su Chang
- McDonnell Genome Institute, Washington University School of Medicine, St Louis, MO; and
| | - Masahiro Iwamoto
- Department of Orthopaedics, University of Maryland, Baltimore, MD
| | | |
Collapse
|
47
|
Renneville A, Patnaik MM, Chan O, Padron E, Solary E. Increasing recognition and emerging therapies argue for dedicated clinical trials in chronic myelomonocytic leukemia. Leukemia 2021; 35:2739-2751. [PMID: 34175902 DOI: 10.1038/s41375-021-01330-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 02/06/2023]
Abstract
Chronic myelomonocytic leukemia (CMML) is a clonal hematopoietic stem cell disorder with overlapping features of myelodysplastic syndromes (MDS) and myeloproliferative neoplasms (MPN). Median overall survival of this aggressive myeloid malignancy is only 2-3 years, with a 15-30% risk of acute leukemic transformation. The paucity of clinical trials specifically designed for CMML has made therapeutic management of CMML patients challenging. As a result, treatment paradigms for CMML patients are largely borrowed from MDS and MPN. The standard of care still relies on hydroxyurea, hypomethylating agents (HMA), and allogeneic stem cell transplantation, this latter option remaining the only potentially curative therapy. To date, approved drugs for CMML treatment are HMA, including azacitidine, decitabine, and more recently the oral combination of decitabine and cedazuridine. However, HMA treatment does not meaningfully alter the natural course of this disease. New treatment approaches for improving CMML-associated cytopenias or targeting the CMML malignant clone are emerging. More than 25 therapeutic agents are currently being evaluated in phase 1 or phase 2 clinical trials for CMML and other myeloid malignancies, often in combination with a HMA backbone. Several novel agents, such as sotatercept, ruxolitinib, lenzilumab, and tagraxofusp have shown promising clinical efficacy in CMML. Current evidence supports the idea that effective treatment in CMML will likely require combination therapy targeting multiple pathways, which emphasizes the need for additional new therapeutic options. This review focuses on recent therapeutic advances and innovative treatment strategies in CMML, including global and molecularly targeted approaches. We also discuss what may help to make progress in the design of rationally derived and disease-modifying therapies for CMML.
Collapse
Affiliation(s)
| | - Mrinal M Patnaik
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Onyee Chan
- Department of Malignant Hematology, Moffitt Cancer Center, Tampa, FL, USA
| | - Eric Padron
- Department of Malignant Hematology, Moffitt Cancer Center, Tampa, FL, USA
| | - Eric Solary
- INSERM U1287, Gustave Roussy Cancer Campus, Villejuif, France. .,Faculty of Medicine, Université Paris-Sud, Le Kremlin-Bicêtre, France. .,Department of Hematology, Gustave Roussy Cancer Campus, Villejuif, France.
| |
Collapse
|
48
|
Koikawa K, Kibe S, Suizu F, Sekino N, Kim N, Manz TD, Pinch BJ, Akshinthala D, Verma A, Gaglia G, Nezu Y, Ke S, Qiu C, Ohuchida K, Oda Y, Lee TH, Wegiel B, Clohessy JG, London N, Santagata S, Wulf GM, Hidalgo M, Muthuswamy SK, Nakamura M, Gray NS, Zhou XZ, Lu KP. Targeting Pin1 renders pancreatic cancer eradicable by synergizing with immunochemotherapy. Cell 2021; 184:4753-4771.e27. [PMID: 34388391 PMCID: PMC8557351 DOI: 10.1016/j.cell.2021.07.020] [Citation(s) in RCA: 111] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 04/21/2021] [Accepted: 07/15/2021] [Indexed: 12/18/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by notorious resistance to current therapies attributed to inherent tumor heterogeneity and highly desmoplastic and immunosuppressive tumor microenvironment (TME). Unique proline isomerase Pin1 regulates multiple cancer pathways, but its role in the TME and cancer immunotherapy is unknown. Here, we find that Pin1 is overexpressed both in cancer cells and cancer-associated fibroblasts (CAFs) and correlates with poor survival in PDAC patients. Targeting Pin1 using clinically available drugs induces complete elimination or sustained remissions of aggressive PDAC by synergizing with anti-PD-1 and gemcitabine in diverse model systems. Mechanistically, Pin1 drives the desmoplastic and immunosuppressive TME by acting on CAFs and induces lysosomal degradation of the PD-1 ligand PD-L1 and the gemcitabine transporter ENT1 in cancer cells, besides activating multiple cancer pathways. Thus, Pin1 inhibition simultaneously blocks multiple cancer pathways, disrupts the desmoplastic and immunosuppressive TME, and upregulates PD-L1 and ENT1, rendering PDAC eradicable by immunochemotherapy.
Collapse
Affiliation(s)
- Kazuhiro Koikawa
- Division of Translational Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA; Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Shin Kibe
- Division of Translational Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA; Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; Chemical Biology and Therapeutics Science Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Futoshi Suizu
- Division of Translational Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA; Division of Cancer Biology, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan
| | - Nobufumi Sekino
- Division of Translational Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA; Chemical Biology and Therapeutics Science Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Nami Kim
- Division of Translational Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Theresa D Manz
- Department of Cancer Biology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Benika J Pinch
- Department of Cancer Biology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Dipikaa Akshinthala
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Ana Verma
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA 02115, USA; Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Giorgio Gaglia
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA 02115, USA; Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Yutaka Nezu
- Division of Translational Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
| | - Shizhong Ke
- Division of Translational Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA; Chemical Biology and Therapeutics Science Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Chenxi Qiu
- Division of Translational Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA; Chemical Biology and Therapeutics Science Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Kenoki Ohuchida
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yoshinao Oda
- Department of Anatomical Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Tae Ho Lee
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Babara Wegiel
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Division of Surgical Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - John G Clohessy
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Preclinical Murine Pharmacogenetics Facility, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Nir London
- Department of Chemical and Structural Biology, The Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Sandro Santagata
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA 02115, USA; Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Gerburg M Wulf
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Manuel Hidalgo
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Senthil K Muthuswamy
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Masafumi Nakamura
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Nathanael S Gray
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford University, Stanford, CA 94305, USA
| | - Xiao Zhen Zhou
- Division of Translational Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA; Chemical Biology and Therapeutics Science Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Kun Ping Lu
- Division of Translational Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA; Chemical Biology and Therapeutics Science Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
49
|
Ren C, Zhou Y, Liu W, Wang Q. Paradoxical effects of arsenic in the lungs. Environ Health Prev Med 2021; 26:80. [PMID: 34388980 PMCID: PMC8364060 DOI: 10.1186/s12199-021-00998-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 07/15/2021] [Indexed: 11/10/2022] Open
Abstract
High levels (> 100 ug/L) of arsenic are known to cause lung cancer; however, whether low (≤ 10 ug/L) and medium (10 to 100 ug/L) doses of arsenic will cause lung cancer or other lung diseases, and whether arsenic has dose-dependent or threshold effects, remains unknown. Summarizing the results of previous studies, we infer that low- and medium-concentration arsenic cause lung diseases in a dose-dependent manner. Arsenic trioxide (ATO) is recognized as a chemotherapeutic drug for acute promyelocytic leukemia (APL), also having a significant effect on lung cancer. The anti-lung cancer mechanisms of ATO include inhibition of proliferation, promotion of apoptosis, anti-angiogenesis, and inhibition of tumor metastasis. In this review, we summarized the role of arsenic in lung disease from both pathogenic and therapeutic perspectives. Understanding the paradoxical effects of arsenic in the lungs may provide some ideas for further research on the occurrence and treatment of lung diseases.
Collapse
Affiliation(s)
- Caixia Ren
- Department of Respiratory Medicine, The Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Yang Zhou
- Liaoning Clinical Research Center for Lung Cancer, The Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Wenwen Liu
- Liaoning Clinical Research Center for Lung Cancer, The Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Qi Wang
- Department of Respiratory Medicine, The Second Hospital of Dalian Medical University, Dalian, 116023, China.
| |
Collapse
|
50
|
Ferrara F, Molica M, Bernardi M. Drug treatment options for acute promyelocytic leukemia. Expert Opin Pharmacother 2021; 23:117-127. [PMID: 34348549 DOI: 10.1080/14656566.2021.1961744] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Until the late 1980s, acute promyelocytic leukemia (APL) was the most rapidly fatal leukemia; however, nowadays, it is a curable disease with survival rates exceeding 90-95%. The improvement of APL outcome is mainly due to two agents, which target the typical translocation t(15;17) and its fusion transcript PML-RARα responsible for initiating and maintaining the disease: all-trans retinoic acid (ATRA) and arsenic trioxide (ATO). The story of APL represents a pioneering model for the development of precision medicine and curative chemotherapy-free approaches for acute leukemia. AREA COVERED The authors examine the major advances in the treatment of patients with APL focusing on three different eras: 1) the pre-ATRA era; 2) the ATRA era; 3) the ATO era. EXPERT OPINION The combination of ATRA and ATO is effective and curative for the majority of APL patients. It has been approved for low/intermediate risk cases while an experimental trial with a minimal addition of chemotherapy for high-risk ones is ongoing. Disease relapse is infrequent and can be cured with ATRA-ATO rechallenging, with or without subsequent transplantation depending on the interval between complete remission and relapse. New therapeutic landscapes contemplate the use of an oral chemo-free ATRA-ATO combination, implementing treatment as outpatient care, thus increasing quality of life and decreasing medical costs.
Collapse
Affiliation(s)
| | | | - Massimo Bernardi
- Haematology and BMT Unit IRCCS San Raffaele Scientific Institute via Olgettina 60, Milan
| |
Collapse
|